
Master of Science Thesis
Stockholm, Sweden 2007

COS/CCS 2007-17

T O B I A S E R I K S S O N

Facilitating communication via the Orc protocol

Orc Protocol Parser and Generator

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Kungliga Tekniska Högskolan Master Thesis Report Draft
Royal Institute of Technology Final Version
 Date: 2007-04-25

Orc Protocol Parser and Generator
Facilitating communication via the Orc protocol

Master Thesis Report

Tobias Eriksson
<toe@kth.se>

Examiner and academic supervisor
Professor Gerald Q. Maguire Jr., School of Information and Communication Technology

Supervisor
Peter Eriksson, Orc Software

 i

Abstract
This master thesis project took place at Orc Software. This company provides technology
for advanced trading, market making, and brokerage. The Orc System is based on a
client/server architecture. The ordinary way to communicate with the Orc Server System
is via the Orc Client Applications, such as Orc Trader or Orc Broker. Additionally, there
is another way to communicate with the Orc Server System without using an Orc Client
Application. There is a service within the Orc Server System which provides an interface
for communication with the Orc Server System. Clients can communicate via this
interface using the Orc Protocol (OP).

Banks and brokers usually have different systems that are specialized for different needs.
Often there is a need to integrate these systems with the Orc Server. In order to simplify
the integration for customers with modest programming experience in TCP/IP and
parsing techniques, Orc Software would like to provide an example parser/generator
capable of communication with the Orc Server System free of charge.

This thesis introduces a toolkit consisting of a parser/generator and a sample application.
The application provides several examples as well as serves as verification to the
customers of how simple it is to develop their own applications by utilizing the different
OP messages.

A comparison was made between the newly created OP parser/generator and a manually
generated FIX client using the FIX gateway which ORC Software AB also sells. This
evaluation shows that OP parser/generator is both faster and less memory demanding
than the manually generated FIX client.

 ii

Sammanfattning
Det här examensarbetet är utfört på Orc Software, som utvecklar system för avancerad
handel, market making samt mäkleri. Detta system är baserat på en klient/server
arkitektur. Normalt sker kommunikationen med Orc Servern via Orc klient applikationer
som Orc Trader eller Orc Broker. Men det finns även ytterligare ett sätt att kommunicera
med Orc Servern utan att använda Orc klient applikationer. Det finns en tjänst i Orc
Servern som tillhandahåller ett gränssnitt som går att kommunicera med genom att
använda Orc Protocol (OP) meddelanden.

Banker och mäklare har vanligtvis flera olika system som alla är specialiserade för olika
behov. Detta gör att det ofta finns ett behov att integrera dessa system med Orc Servern.
För att kunna underlätta integrationen för kunder med låga kunskaper i TCP/IP och
parsing teknik, vill Orc Software tillhandahålla en gratis parser/genererare som kan
kommunicera med Orc Server Systemet.

Examensarbetet introducerar ett paket innehållande en parser/genererare och ett
exempelprogram. Programmet visar ett par exempel samt fungerar som bekräftelse på hur
enkelt det kan vara att utveckla ett eget program som använder sig av del olika OP
meddelanden.

Avslutningsvis presenteras en utvärderingsstudie mellan den utvecklade parser/generator
och en manuellt genererad FIX klient som använder en FIX gateway som Orc Software
också säljer. Utvärderingen visar att parser/genereraren är både snabbare och använder
mindre minne än FIX klienten.

 iii

Acknowledgements
I would like to thank my examiner and advisor Professor Gerald Q. Maguire Jr. at the
Royal Institute of Technology for his advice and valuable ideas. I have really appreciated
the short response time and the correction of my English.

Moreover, I would also like to thank Peter Eriksson at Orc Software for giving me the
opportunity to work on this project and for all the support he gave me during my work.
Many thanks to Thomas Erlandsson who also gave me feedback and really helped me
progress in my work.

 iv

Table of Contents
Abstract .. i
Sammanfattning .. ii
Acknowledgements.. iii
Table of Contents... iv
1 Introduction... 1

1.1 Background... 1
1.2 Problem Description ... 4
1.3 Tasks within the project .. 5

2 Overview... 6
2.1 Parsing... 6
2.2 Interfaces... 12
2.3 JavaCC .. 18
2.4 Building Parsers .. 22
2.5 Orc Protocol .. 24

3 Results... 30
3.1 Analysis and design .. 30
3.2 Parser construction.. 36
3.3 Evaluation ... 40

4 Conclusion and Future Work .. 46
5 References... 47
Appendix A - Abbreviations and Acronyms .. 48
Appendix B – Quick Start Guide .. 49

B.1 Trading Client ... 49
B.2 Unsubscribe from a Topic... 53
B.3 Retrieving a reply message ... 53
B.4 Closing the connection.. 54

 1

1 Introduction
This section outlines the thesis, first giving some background and then defining the
specific problem which is to be addressed.

1.1 Background
This thesis project is being conducted at Orc Software. The company provides
technology for advanced trading, market making, and brokerage.

1.1.1 Basic financial terms
Below are some financial concepts that will be helpful to understand before reading this
report.

Bond is a dept that the issuer owes the holder and, depending on

type, has to pay interest and at maturity repay. [1]

Broker a member of an exchange that is allowed to sell or buy

financial instrument according to the orders from the
customer on that particular market.

Cash instrument The value of these instruments is set on the market. It can

be securities such as corporate stocks, mutual funds, or
bonds.

Corporate stocks The Company issues shares to the market in order to raise

capital. Each shareholder owns a share of the company.
The size of the share is related to the number of stocks
owned.

Derivative instrument The value of these instruments is derived from the

underlying asset. Market participants make an agreement to
make an exchange (money, assets, or another value) in the
future for an underlying asset. Common derivate
instruments are futures, forward, options, and swaps.

Exchange is the opposite of over-the-counter and can, for example,

be a stock exchange (trading stocks). A corporation
provides a place where brokers and traders can trade.

Financial instrument is a legal agreement that involves an economic value. There

are two sort of instrument: cash instrument and derivate
instruments.

Forward A forward is a contract between two actors. For example,

one part agrees to deliver X tons wheat in November at a
price Y per ton, whereas the other part agrees to buy the

 2

wheat at that price. Forward contracts are often traded
Over-the-Counter. [2]

Future is almost the same as a forward contract except the

contract is revalued on a day-to-day basis (Marking to
Market). The future contracts are often traded on an
Exchange.

Market is a place allowing buyers and sellers to share information

and perform exchanges of goods or services. Three special
markets are the stock market, bond market, and
commodities markets.

Marking to Market This means that an instrument is revalued to reflect the

current market conditions.

Mutual fund is a collective instrument where many investors together,

managed by a fund manager, invests money in.

Option An option is either a call or a put option. The buyer of a

call option has the option to purchase the underlying asset
at a particular date in the future at a specific price. A person
buying a put option, on the other hand, has the option to
sell the underlying asset.

Order An order is instructions to a broker from a customer

wanting to buy or sell something on an exchange.

Over-the-counter this means that financial instruments are directly traded

between two parties.

Position is a commitment to buy or sell a given amount of securities

or commodities. A market position means that the
commitment is put on the market.

Portfolio when someone owns, for example, a number of stocks it is

said that he/she has a portfolio of stocks. This is often done
to lower the risk involving owing only one instrument.

Quote often refers to the latest price of a security traded. It could

also be a price which is being offered for a trade.

Swap When two parties agree to exchange cash flows in the

future, they are said to make a swap agreement. For
example, one party changes its variable income to a fixed

 3

one and the other party will get a variable income
according a prearrange formula.

Trade is exchanging of goods or services on a market.

Trader is someone buying or selling financial instrument in the

financial market.

1.1.2 The Orc System
The Orc System [3] is based on a client/server architecture. The Orc Server System
consists of a number of components, including a database. This system supplies market
connectivity to the Orc trading applications, this means that clients can use this
application to access market data and conduct transactions in this market. The ordinary
way to communicate with the Orc Server System is via the Orc Client Applications, such
as Orc Trader or Orc Broker. A simple model of the Orc System, where an Orc Server
provides an Orc client with a connection to a market gateway, is illustrated in the figure
below.

Orc Server

Orc Client

Market
Gateway

1

3

2

Figure 1 - A simple model of the Orc System.

First, the Market gateway registers itself in the Environment Management Daemon
(EMD) and the Port-Mapper daemon (PMD) on the Orc Server. When an Orc client
wants to connect to a Market Gateway, it makes a request to the Orc Server which
provides the appropriate information. Finally, the Orc Client connects directly to the
Market Gateway.

In addition to the Orc Client Application, banks and brokers usually have different
systems that are specialized for different needs. Often there is a need to integrate these
systems so that they can share the same view of, for example, the market or a position.
Earlier, some customers wrote their own application in order to directly communicate
with the Orc Server System's database (called CDS), e.g. making low-level access to the
database. However, this can, for example, cause problems when there is an upgrade to the
Orc Server System.

Fortunately, there is another way to communicate with the Orc Server System without
using an Orc Client Application. There is a service within the Orc Server System which
provides an interface for communication with the Orc Server System. Clients can

 4

communicate via this interface using the Orc Protocol (OP) [4]. Thus applications are
able to access the Orc Server System’s functionalities such as: enter orders, perform
instrument downloads, get positions from a portfolio, and perform theoretical calculations
on instruments. This is sketched in the figure below.

Protocol Client

Orc Protocol
Server

Market
Gateway CDS

Core
Services

Orc Server

PMD

EMD

Storage

Orc Application Client

Figure 2 - An overview of the Orc Protocol Interface and its relationship to the other components of
the Orc Server System

1.2 Problem Description
Some customers who want to interact with the Orc System using OP find it difficult to
create their own parser and generator for this protocol. Thus the integration needed by the
customer must typically be done using a consultancy or with support from Orc Software.
In order to simplify the integration for customers with modest programming experience
in TCP/IP and parsing techniques, Orc Software would like to provide an example
parser/generator capable of communication with the Orc Server System free of charge.

Orc Software wants to provide a toolkit consisting of a parser/generator and a sample
application. The application should provide a few examples as well as serve as
verification to the customers of how simple it is to develop their own applications by
utilizing the different OP messages. Therefore, it is important that the parser/generator
and the example application are easy for the customer to understand. Orc Software hopes
to reduce the perceived difficulty in communicating with their Orc Server System and

 5

thus attract additional customers and to encourage their existing customers to more
tightly integrate with their system.

1.3 Tasks within the project
The first task was to implement an Orc Protocol parser in Java to enable external
programs to communicate with the Orc Protocol. As the Orc Protocol is the gateway to
the Orc System. The specifications for this parser are:

• It should be well documented
• The source will be delivered to customers
• Thread safe
• Fast
• Small memory footprint
• The communication should be TCP/IP based
• It should use the Java Message Service interface (see Section 2.2.3)

The second task was to implement an Orc Protocol generator. Since many applications
will need to send data to the Orc system there is a need for a generator too.

The third task was to create an example application with some Orc protocol messages
using the Orc Protocol Parser and Generator.

The final task was to contrast and compare the created Orc Protocol parser and generator
to a FIX client using the FIX (Financial Information eXchange) gateway which Orc
Software AB also sells. Some of the metrics that are relevant are performance and
functionality.

 6

2 Overview
This section provides the necessary background to understand both the problems
described in section 1.2 and to understand the technology which will be used to solve
these problems. It will start by describing how parsing works, along with the
functionalities and interfaces to the various subsystems. In sections 2.3 and 2.4 two
techniques to create parsers will be illustrated. In order to write an OP parser it is
necessary to understand how the Orc Protocol works, this will be described in section 2.5.

2.1 Parsing
According to Steven John Metsker [5] there are two ways to separate human interaction
from computers; humans work with text and computers with objects. To close this gap,
between the human and the computers, we use parsers. For each language that is to be
used to interact with the computer, a parser is needed to create a human interface that can
transform this language into objects which the computer can understand.

Parsing or syntactic analysis is a well established part of computer science. It is used in
several different sub-disciplines: compiler construction, database interfaces, self-
describing databases, and artificial intelligence. Parsing is generally used to process a
linear representation according a given grammar (here we will exclude parsing of two
dimensional or higher dimensional representations such as images and volumes and will
strictly focus on linear textual representations). This is a broad definition that gives room
for various interpretations. For example, a linear representation can be a sentence, a
computer program, or a sequence of financial data. The grammar, on the other hand,
controls the relationships between the elements. [6]

There are many different languages, such as simple data languages, queries, logical, and
imperative languages, all attempting to make it easy for the user to interact with the
computer. Today a popular programming language is Java. Such a language is convenient
when building programs to give the computer direct commands. However, when
programming Web pages other languages such as HTML (Hypertext Markup Language)
and XML (Extensible Markup Language) are more suitable.

As mentioned above, one area that parsers are used in is the compiling process. To
explain how a parser work, I will describe the part of the compiling process where
parsing is involved.

2.1.1 Compiling process
A compiler translates a program from one language into another. [7] To be able to
successfully complete that task the compiler first needs to understand the structure and
meaning of the source program. The figure below illustrates a simple model of the
compiling process.

 7

Front
End

Back
End

Source
program

Target
program

Intermediate
representation

Compiler

Figure 3 – A simple model of the compiling process

2.1.1.1 Front End
The front end consists of a Lexical analysis, Syntax analysis, and a Semantic analysis.
This is shown in the figure below.

Lexical
analyser Parser

Character
stream

ReductionToken
stream

Parser

Abstract
syntax

Figure 4 - Outline of the stages in the Front End of a compiler

A language is made up of strings that each has a finite number of symbols. The symbols
are from a finite alphabet. In lexical analysis, the compiler breaks the stream of characters
into words known as lexical tokens. After this is done the Syntax analysis begins to parse
the phrase structure of the program. Lastly, Semantic analysis is done and this is where
the actual meaning of the program is considered.

2.1.1.1.1 Lexical Analysis
A lexical token is a unit in the grammar of a language. Examples of tokens in a language
could be ID, NUM, and REAL. Some units are simpler than others to represent. For
example, punctuation marks like colons, semi-colons, commas, parentheses, and square
brackets can be represented using their unique character representations. We also have
keywords like IF and THEN that have a unique spelling.

Other tokens may have very complicated representations. For example, as will be
explained in section 2.5, a value in the Orc Protocol can be an integer, a float, a string, a
date, a time, or a dictionary depending on the key. The dictionary, in turn, can have one
or more key/value combinations.

 8

Consequently, there is a need for rules capable of producing all possible combinations of
lexical tokens. A powerful notation to specify these lexical rules is regular expressions.
Each regular expression often matches several different strings. There are rules of how to
describe a regular expression that matches certain strings and thus, a token. Some of these
rules are listed in the table below:

Table 1- Rules for Regular Expressions

A | B Alternation, choosing from A or B.
A · B Concatenation, an A followed by an B.
AB An implicit way to indicate concatenation.
A * Repetition, zero or more times.
A + Repetition, one or more times.
A ? Optional, zero or one occurrence of A.
[a-zA-Z] Character set alternation.

To describe a token one can combine the different rules and create a regular expression
that matches the strings that you want.

Table 2 - Illustrates how a Token is described using Regular Expressions

Token Regular Expression
IF if
ID [a – z] [a – z 0 – 9] *
NUM [0 – 9] +
REAL ([0 – 9] + "." [0 – 9] *) | ([0 – 9] * "." [0 – 9] +)

In the above table the token ID has to start with a letter and then zero of more letters or
numbers. The token NUM consists of one of more numbers from 0 to 9. Looking at the
token REAL it can be a decimal number greater than 1 or a decimal number less than 1.

One important aspect to consider when writing a regular expression is ambiguity. In this
case, ambiguity means that some strings could match more than one token. The regular
expression above is ambiguous because strings like if8 can be an IF token followed by an
NUM token, or only an ID token. Therefore, there is a need for other rules for a lexical
analyzer to be able to choose the right token for a string. The most used disambiguation
rules used today are Longest match and Rule priority. Longest match means the longest
initial substring of the input that can match any regular expression specified is chosen as
the next token. Rule priority on the other hand means that when the longest match is
found the lexical analyzer checks in the list of lexical tokens for the first regular
expression that can match. For this reason, it is important to carefully write the regular-
expression rules.

Regular expressions are suitable for specifying lexical tokens, but when they are to be
implemented by a computer we need to be more formal. This is where Finite Automata
comes in, as they provide a way to describe regular expressions using different states. As
the name implies the description is an automata which has a finite set of states. The states
are connected using edges. These edges are labeled with a symbol and lead from one state

 9

to another as can be seen in the figure below. The figure shows the lexical token ID
where state 1 is the start state and state 2 is the final state.

1 2
a – z

a – z

0 – 9

Figure 5 - Finite Automaton for the Regular Expression describing the Token ID

There are two different classes of automatons: Deterministic Finite Automaton (DFA)
and Non Deterministic Finite Automaton (NFA). The difference is that the NFA can have
two (or more) edges going from one state to another labeled with the same symbol while
a DFA can not.

To construct a DFA or an NFA by hand requires hard work. Therefore, a lexical-analyzer
generator such as JavaCC or SableCC, both written in Java, can be used. Both take a
regular expression with tokens as an input and produce a lexical-analyzer program. These
two programs can also be used as a parser generator where the input is a context-free
grammar and the output is a parser program. JavaCC will be described in more detailed in
section 2.3.

2.1.1.1.2 Syntax Analysis
A traditional notation for specifying syntactical structure is a context-free (CF) grammar.
This is used in the next step in the compiler process, Syntax analysis. To be able to parse
a language described by a CF grammar we need something more powerful than finite
automata. Why this is the case can be explained by the following example:

Let us start by defining the lexical tokens digits and sum with the help of regular
expressions.

digits = [0 – 9] +
sum = (digits “+”) + digits

In this example a sum could for example be 67+39+7. However, if we wanted to define
an expression like (67+ (39+7)), where the parentheses are balanced, it wouldn’t be
practical to use finite automaton. Finite automaton requires one additional state per open
parentheses. Below is an example grammar of the second expression:

digits = [0 – 9] +
sum = expr “+” expr
expr = “(” sum ”)” | digits

 10

Thus, a parenthesis-nesting with the depth N requires the memory to able handle N states.

In this stage, the symbols are seen by the parser as lexical tokens and the alphabet is the
different token-types that are set by the lexical analyzer. A CF grammar describes the
language based on productions that consists of symbols. A symbol can be either terminal
or nonterminal.

A formal description of a grammar G is [8]:

G = (T, NT, S, P) where,

T – represents terminal symbols, or words, in the language. Terminal symbols are the
basic units of grammatical sentences. For example, in the expression above, the terminal
symbols would be digit and sum, thus words revealed in the lexical analysis.

NT – stands for non-terminal symbols, or syntactic variables. These appear in the rules of
the grammar and are made up of all the symbols in the rules except those already
expressed using a terminal.

S – is the start symbol and a member of NT . If we want to derive a sentence from G it
must begin with S.

P – corresponds to a set of productions. For example, P: NT � (T, NT), thus the rules of
P decide the syntactic structure of the grammar. To make sure the grammar is context-
free we can only allow one non-terminal on the left hand side.

This is illustrated in Figure 6. As the figure shows, a terminal symbol is a token from the
alphabet of strings and belongs on the right side of a production. The non-terminal
symbol on the other hand, is instead on the left hand side in a production.

Symbol Symbol Symbol Symbol

nonterminal terminals

S (id)

P :

Production

Figure 6 - Showing the differences between non-terminal and terminal symbols.

There are many different algorithms to parse a grammar file. These algorithms are often
divided into deterministic top-down methods and deterministic bottom-up methods. [6] A
deterministic parser has the property that there is always only one possibility to choose
from. This means the grammar’s right-hand side starts with a terminal symbol. If this is
true, a predict step will always be followed by a match step. These parsers are faster than
non-deterministic ones that have to search. However, there is one drawback, the number
of grammars that can be handled using this method are fewer and more limited.

 11

2.1.1.1.3 Deterministic top-down methods

The algorithm LL(1) is a deterministic top-down method. LL(1) means the parser
operates from Left to right, produce a Left-most derivation, and uses a look-ahead of one
symbol. Writing this in mathematical symbols a context-free grammar is called LL(1)
when:

(1) A -> nααα ,...,, 21
(2) B = FIRST(1α x#), FIRST(2α x#), …, FIRST(nα x#)
(3) 0=B�

A is in this case a non-terminal with right-hand side nααα ,...,, 21 . The second line states
that the sets FIRST(1α x#), FIRST(2α x#), …, FIRST(nα x#) belongs to B. The third line
means that any prediction for Ax# has no symbol that is a member of more than one set.

It is possible to expand LL(1) to any finite look-ahead, LL(k). Having a greater look-
ahead makes the method more powerful, but also not as fast.

2.1.1.1.4 Deterministic bottom-up methods
One bottom-up algorithm is called LR(k), and it can delay the decision to choose the
production until all input tokens corresponding to the complete right-hand side of a
production have been found. LR(k) stands for left-to-right parse, rightmost-derivation, k-
token lookahead. The k indicates that it can propone the decision k input tokens further
than the production itself. This means, for example, that bottom-up parsers can’t have
semantic actions at the beginning of a production.

To work properly a bottom-up parser needs a stack and an input. Using shift and reduce
the parser steps through the input. Below is an easy example showing how the parser
works:

Input: X Y Z
Grammar rule: A -> X Y Z

Shift: Move the first input X to the top of the stack. X can not match any production so
we put Y and Z onto the stack as well.

Reduce: Pick the grammar rule A -> X Y Z by popping Z, Y, X from the top of the stack
and then push A onto the stack.

Postponing the decision until the last moment makes this method more powerful than the
top-down method. However, this makes it slower as a modest grammar might require
hundreds of thousands or even millions of states making the parsing table huge.

Therefore, an algorithm called LALR(1) [9] was introduced which stands for Look
Ahead LR(1). This algorithm decreases the parser table by merging two states with

 12

identical items but which differ in lookahead sets. LALR(1) parsing is the most-used
parsing method today.

Although it is possible to build a parser by hand the most convenient way is to use a
parser-generator program to build the parser. For example, a program like JavaCC can be
applied. JavaCC uses the parsing algorithm LL(1) and will be described in detail in
chapter 2.3.

2.1.1.1.5 Semantic analysis
In most situations it is not enough for the parser to just recognize whether a sentence
belongs to the language of a grammar or not. There is a need for a mechanism that can
make use of the phrases that are parsed. This is where the next stage in the compiler
process called semantic analysis comes into action.

A first step is often to create a parse tree which is a structure that can be used later. In a
parse tree the input tokens are leaves of the tree and the grammar rules are internal nodes.
In JavaCC there is a tool called Java Tree Builder that automatically creates such a tree.
If a tree should be constructed or if it is better to use an event driven approach will be
discussed more in chapter 2.2.

2.1.1.2 Back End
The next steps (producing assembler and machine code) in the compilation process have
no real connection to this master thesis and will therefore not be described more in detail.

2.2 Interfaces
Before starting to develop the Orc protocol parser generator it is important to consider
how it should use the information received from the Orc System and what is the nature of
the sample application. Should it use the idée behind DOM, i.e. creating a tree of objects
of the whole message, or should it use the event handling of SAX?

Therefore, this section will begin by introducing both SAX and DOM. Moreover, this
section will discuss whether the Java Message Service (JMS) interface could be useful
for the Orc protocol parser generator to use for its implementation.

2.2.1 DOM
The Document Object Model (DOM) [10] is an application programming interface (API)
for HTML and XML documents. The DOM interface was initially a specification to
make JavaScript scripts and Java programs possible to use in different Web browsers.
The DOM working group consisted of people from World Wide Web Consortium (W3C)
[11] and other vendors working with related technologies.

The DOM interface reads the entire XML document into the memory as a tree
representation. This makes it possible for an application implementing the DOM interface
to access any element in the tree to change, delete, or add information.

 13

In the case of the parser generator, this would make an object of every key/value
combination and dictionary in the Orc Protocol (for a description of this protocol see
section 2.5). When the entire, or at least most, of the information received from the Orc
Server System is needed, this approach would be most desirable.

However, one has to consider that DOM is memory demanding and time intense when
the input is large. Most of the customers using the Orc System have multi-market access
which means that there are a lot of instruments available. For example, the reply from an
instrument_download message from the Saxess market (5 000 contracts) is about 10.5
MByte. There are customers that have access to more than 600 000 contracts, which
means almost 1.3 GByte to process. Today memory is very inexpensive, so that might not
be a limited factor. However, it is time consuming to process such huge chunks of data.

2.2.2 SAX
The Simple API for XML [12] (SAX) is used for parsing XML documents using events.
Instead of saving the entire document in a tree, as the DOM interface, the SAX interface
uses event handlers the parser can use for reporting information. It is then up to the
application to handle these SAX events, e.g. choose what information is relevant and
should be saved as an object. SAX is today a SourceForge product and the current
version is SAX 2.0.1 [13].

If the parser generator should utilize SAX it would need an efficient way to be able to
fetch the important parts of the Orc Protocol message, e.g. Message Type, without
having to read through the entire message. Otherwise one might just as well use DOM,
because the speed and memory efficiency of SAX can not be used. As the Orc Protocol is
currently implemented there is no way to figure out where certain parts of the message
reside without parsing the entire message. The reason is that the order of the key/value
combinations can be changed by Orc Software without notice. For further information
about the Orc Protocol please see section 2.5.

2.2.3 Java Message Service
One possibility could be to use the Java Message Service (JMS) [14] interface for the
ORC protocol parser generator. The JMS API is a message standard that makes it
possible for different software applications or components to communicate. One
limitation is that the software has to be based on the Java 2 Platform, Enterprise Edition
(J2EE) in order to be able to create, send, receive, and read messages. Messages can be
either synchronous, using the receive method, or asynchronous, using a message listener.
Basic tasks for a JMS application are creating a connection and a session, creating a
message consumer and producer, and sending and receiving messages.

A JMS application is made up of a JMS provider, JMS clients, Messages,
Administered objects, and Native clients.

JMS Provider is a messaging system providing administrative and control

features.

 14

JMS clients are the one producing or consuming the messages.

Messages are the object that carries the information the JMS clients

communicates.

Administered objects are either destination or connection factories.

Native clients are programs that do not use the JMS interface but the

native API.

The figure below shows the JMS API architecture.

Adm
Tool

Bind JNDI
Namespace

JMS
Client

JMS
Provider

Lookup

Logical
connection

Figure 7 - The architecture of the JMS API

First of all you have to bind, using the administrative tools, destinations and connection
factories into a Java Naming and Directory Interface (JNDI) API [15] namespace. The
JNDI API provides directory and naming functionality to a Java application. This means
any Java application using the JNDI can access a range of directory services, e.g. LDAP,
in a simple way. The client then uses JNDI to look up the Administered object.

When the right Administered object is found the client can establish a logical connection
to that object through a JMS provider.

There are two domains of messaging: point-to-point and publish/subscribe. A JMS
provider must at least implement one of these messaging domains.

The point-to-point domain uses the concept of queues, senders, and receivers. This is
illustrated in the figure below.

Client ClientQueue

Message Message

Send Consume/
Acknowlege

Figure 8 - How a message is sent and received in the point-to-point domain.

 15

One client sends a message to a queue whereas the other client consumes the messages
received form the queue. This means that the sender can keep sending messages even
though the receiver is not fetching the messages. A given message can only be sent to one
receiver. Once the receiver is online it can fetch the message from the queue in the same
order as they were sent. The receiver also has to acknowledge each received message.
The use of point-to-point messaging is useful when the message should be read by only
one consumer.

In the publish/subscribe messaging domain the client sends a message addressing it to a
topic. In this domain the actual sending is called publishing and to receive you have to
first subscribe. The messaging in the publish/subscribe domain can be seen in the figure
below.

Client
Publish

Topic

Client

Client

Client

Subscribe

Deliver

Subscribe

Deliver

Subscribe

Deliver

Figure 9 - The Publish/subscribe messaging domain.

The client that wants to send a message publishes it to the Topic. The Topic then delivers
the message to the clients that have previously subscribed. The difference compared to
the point-to-point messaging is that the message is not retained in the Topic longer than
the time it takes to distribute the message to the subscribers. Thus, if a client subscribes
later it can not get previously sent messages. However, in JMS there are something called
durable subscribers that can receive messages even though they are offline for a while.
This means that if a message should be delivered to many clients the publish/subscribe
messaging should be chosen.

An application can be made up of different building blocks. In JMS these are
Administered objects (connection factories and destinations), Connections, Sessions,
Message producers, Message consumers, and Messages. The JMS API programming
model can be seen in the figure below.

 16

Connection
Factory

Creates

Connection

Session
Message

Consumer
Message
Producer

Creates

Receives FromSends To

Msg

Creates

Creates Creates

Destination Destination

Figure 10 - The JMS API programming model

Connection Factory
The client uses the object connection factory when creating a connection with a provider.
To create a new connection factory in the point-to-point domain you can use the
administrative tool j2eeadmin:

j2eeadmin -addJmsFactory jndi_name queue

The connection factory is either an instance of a QueueConnectionFactory or a
TopicConnectionFactory interface depending on the messaging domain. The following
code creates an instance of a connection factory in the JMS client, using the point-to-
point message domain:

QueueConnectionFactory queueConnectionFactory =
(QueueConnectionFactory) ctx.lookup("QueueConnectionFactory");

The line ctx.lookup("QueueConnectionFactory") uses JNDI to look up a
QueueConnectionFactory and assign it to queueConnectionFactory.

Destination
Destinations are called queues or topics depending on messaging domain. In the
destination object the client saves an address to the target when a message is produced
and an address of the source when a message is received. By using the tool j2eeadmin
you can, for example, create a queue:

j2eeadmin -addJmsDestination "MyQueue" queue

 17

JMS has no naming policy, and the administrator can place an administered object
anywhere in a namespace. However, JMS does not provide a JMS client to create,
administer, or delete queues. This is most of the time not a problem since nearly all
clients use statically defined queues. Instead, a JMS client application has to look up a
queue using JNDI:

Queue myQueue = (Queue) ctx.lookup("MyQueue");

Connection
The connection object is used to create one or more session objects. You use it to
encapsulate a virtual connection with a JMS provider. By using the connection factory
you can now create a connection:

QueueConnection queueConnection =
queueConnectionFactory.createQueueConnection();

Session
Once the connection is made, you use a session to create messages, message producers,
and message consumers:

QueueSession queueSession =queueConnection.createQueueSession(true, 0);

Message consumers and message producers
The objects message producers and message consumers are used for sending the
messages to a destination. The following commands create a message producer and a
message consumer and start the sending and receiving respectively. As you can see you
first have to connect to be able to receive a message.

QueueSender queueSender = queueSession.createSender(myQueue);
QueueReceiver queueReceiver = queueSession.createReceiver(myQueue);

queueSender.send(message); //send the message

queueConnection.start(); //start the connection
Message m = queueReceiver.receive(); //receive the message

Listener
In JMS there is a possibility to receive messages asynchronously. This is accomplished
using a message listener which is an object that uses event handling for messages. To
make it work you have to register the listener with the message consumer.

QueueListener queueListener = new QueueListener();
queueReceiver.setMessageListener(queueListener);

Message
A JMS message is made up of three parts: a header, properties, and a body. The only
thing that is required is the header, the other parts are optional. The header field contains,
for example, a MessageID, the name of the destination queue, etc. In the properties you
can set further values (i.e., those not included in the header). JMS supports a couple of

 18

message types. For example, if the message type in the body is set to TextMessage the
body contains a java.lang.String object. Below is the code used to send a TextMessage to
a queue.

TextMessage message = queueSession.createTextMessage();
message.setText(my_string);
queueSender.send(message);

At the other end the message received is always a generic Message object and has to be
typecasted to the right format.

Message m = queueReceiver.receive();
if (m instanceof TextMessage) {TextMessage message = (TextMessage) m;}

Implementing JMS
A powerful reason why the sample application and the parser generator should implement
the JMS interface is that Orc Software has other development projects that will be using a
subset of the JMS interface. Another reason is that JMS is increasing in popularity, thus
the chances that customers will be familiar with this interface are higher.

The idea is not to implement the entire JMS, rather pick some useful objects and
methods. The application suite should be as simple as possible for the customers to
understand. Initially, it is better to implement just a few methods in order to see how the
customers like the idea. If there is a need to include the whole JMS interface this can be
done in the future.

2.3 JavaCC
The Java Compiler Compiler (JavaCC) and is a generator for producing both a parser and
a lexical analyzer written in Java. As explained in section 2.1, a lexical analyzer takes a
stream of characters and breaks into tokens. The parser, on the other hand, accepts these
tokens as input and determines if it matches the grammar of the language.

Sreeni Viswanadha and Sriram Sankar created JavaCC [16] and distributed it through the
company WebGain. However, since June 2003, JavaCC is open source and the source
code can be downloaded free from java.net.

The input to JavaCC is a file, called a grammar file, containing both a parser and a lexical
analyzer according to JavaCC specifications. The code for a simple example called Test.jj
can be seen in Figure 11.

 19

PARSER_BEGIN(Test)
public class Test {
 public static void main(String args[]) throws ParseException {
 Test parser = new Test(System.in);
 parser.Production1();
 }
}
PARSER_END(Test)

TOKEN:
{

<DIGIT: ["0"-"9"]>
| <LETTER: ["A"-"Z", "a"-"z"]>
| <KEY: ["0"-"9"] | ["A"-"Z", "a"-"z"]>
}

void Production1() :
{}
{
 “{“ Production2() “}” <EOF>
}
void Production2() :
{}
{
 <DIGIT> | <LETTER> | <KEY>
}

Figure 11 - A simple example of a grammar file for JavaCC.

The region between PARSER_BEGIN and PARSER_END is called the Java compilation
unit. The main program creates a parser object and calls the non-terminal Production1().
TOKEN starts the section in the grammar file called the lexical specification region. This
is where the lexical tokens, matched against the character input stream, are specified. The
three lexical tokens are in this case DIGIT, LETTER, and KEY, and the regular
expressions for them are ["0"-"9"] and ["A"-"Z", "a"-"z"]. SKIP, SPECIAL_TOKEN,
and MORE are additional lexical specifications that could be used. [17]

The non-terminals Production1() and Production2() are called grammar productions or
BNF productions. They indicate that the character stream must start with a left brace,
followed by a digit or a letter, a right brace, and end with an end of line token.

When this grammar file is processed by javacc it creates three main files: Test.java,
TestConstants.java, and TestTokenManager.java.

Test.java is the generated parser for this grammar file. This file is the one to run to start
the parsing of a stream of character.

TestTokenManager.java is the Token Manager [18] or lexical analyzer. It tries to match
the maximum number of character from the input file with the regular expressions
specified in the grammar file. If there is more than one longest match, the regular
expression that comes first in the lexical specification section in the grammar file is

 20

chosen. Thus, in the code above, the regular expression to the token KEY will never be
matched even though it should match any letter or digit.

TestConstants.java is an interface consisting of a table of the constants that are used by
the parser and the token manager.

In addition, javacc creates a couple of java files needed to handle exceptions and
representation of tokens.

Entering the compilation command at the command prompt looks as follows:

D:\javacc\javacc Test.jj

Reading from file Test.jj . . .
File "TokenMgrError.java" does not exist. Will create one.
File "ParseException.java" does not exist. Will create one.
File "Token.java" does not exist. Will create one.
File "TestCharStream.java" does not exist. Will create one.
Parser generated successfully.

JavaCC is based on the LL(1) [19] algorithm which was explained in detail in section 2.1.
However, JavaCC allows you to use grammars that are not LL(1) by using look-ahead.
The specifications for look-ahead build into JavaCC can be used where the LL(1) rules
are not satisfactory. The grammar could be ambiguous, meaning it can be matched in two
ways. Often JavaCC gives you a warning message when compiling if ambiguity is likely,
for example:

Choice conflict in (...)* construct at line 25, column 8.
Expansion nested within construct and expansion following construct
have common prefixes, one of which is: ","
Consider using a lookahead of 2 or more for nested expansion.

The general structure of a LOOKAHEAD specification is:

LOOKAHEAD(amount, expansion, { boolean_expression })

amount – states the number of tokens to LOOKAHEAD
expansion – give the expansion to use to perform syntactic LOOKAHEAD
boolean_expression – is the expression to use for semantic LOOKAHEAD

When specifying LOOKAHEAD one of the three entries must at minimum be present.
There are four different ways to set LOOKAHEAD: Global, local, syntactic, and
semantic.

In the above example one way to solve the conflict would be to set the option
LOOKAHEAD to 2. This is a global LOOKAHEAD and means the parsing algorithm in
essence becomes LL(2), i.e. during parsing two tokens will be looked at before making a
choice.

 21

However, a global choice is often not the best way when it comes to performance. By
converting the entire grammar to LL(2) the part of the grammar that still could work
using LL(1) will not be as effective.

Instead of using global LOOKAHEAD perhaps a local LOOKAHEAD could be
sufficient to solve the conflict. Then the LOOKAHEAD is set at a specific point in the
grammar file. This means that most part of the grammar is still LL(1) and thus, performs
better. Local LOOKAHEAD could for example look like this:

void PRODUCTION1() :{}
{
LOOKAHEAD(2)
 <NUM> "{" word() "}"
|
 <DIGIT>
}

In the above example the LOOKAHEAD of 2 only affects the first choice <NUM> "{"
word() "}". The other choice is still LL(1).

A third choice to solve the conflict could be by using something called syntactic
LOOKAHEAD. In this case an expansion is specified that should be evaluated. If the
expansion is true, the following choice is taken.

The last alternative is using semantic LOOKAHEAD. It works by specifying a Boolean
expression whose evaluation determines what actions to take.

The example below shows both syntactic- and semantic LOOKAHED:

void Production1() :{}
{
 LOOKAHEAD(Production2()) Production2()
|
 LOOKAHEAD(getToken(1).kind == “Product3”) Production3()
|
 Production4()
}

In this example the first LOOKAHEAD uses syntactic LOOKAHEAD and states that if
the input of tokens matches Production2, go to Production2(). The second
LOOKAHEAD uses semantic LOOKAHEAD and tells us that if the next token is
Product3 go to Production3().

Running the parser now will only check if the stream of character matches the grammar
specified. Usually, there is a need to do more than that. JavaCC has a tool, JJTree, which
can expand the use of the grammar.

JJTree [20] creates the tree structure consisting of nodes of all non-terminals in the
grammar file. This can be edited manually, e.g. skipping a node of a non-terminal or

 22

creating one for a terminal. The nodes have to implement a Java interface to enable
setting the parent node and adding and retrieving children.

It is possible to run JJTree in two different modes, simple or multi, depending on the
complexity needed for the Node object. To construct the bottom-up tree it uses a stack
that is possible to manage from inside the grammar file.

JJTree constructs two different nodes: a definite node or a conditional node. A definite
node has a specific number of children whereas a conditional node can have all the nodes
within its node scope as children depending on whether or not the condition set evaluates
to true. One way to describe a conditional node is using the shorthand indefinitenode
which means any node. This node is the default way JJTree creates nodes of each
nonterminal if nothing else is specified. For example, to avoid creating nodes write a
#void after the production name or set the NODE_DEFAULT_VOID option to true.

When the JJTree file is configured to save the necessary nodes in a tree, the command
rootnode.dump() prints the whole tree. However, by default there is no information stored
in the nodes without configuring the SimpleNode file (if we run jjTree in simple mode)
with two added methods called, for example, setText() and getText(). This will enable
you to get and set the information you want in the nodes. [21]

2.4 Building Parsers
Instead of using JavaCC, as explained in the previous section, you can write the Java
code directly from the BNF (Backus Naur Form) grammar. Thus, you do not have to
work with two languages and can start writing Java directly. Sequences, alternations, and
repetitions in the grammar are in this case Sequence, Alternation, and Repetition objects.

2.4.1 Building blocks
The parser can be seen as an object that recognizes the elements of a language and then
translates it to the correct format. All languages have a certain pattern. To check if a
particular stream of characters follows that pattern is one of the basic responsibilities for
a parser.

Steven John Metsker [5] suggests that for a functional parser, three classes are needed:
Assembly-, Assembler-, and a Parser class. As stated before, the parser is an object that
recognizes if a certain stream of character follows the grammar of a language. In this
setup, the Assembler helps the parser to build a result, and the Assembly offers the parser
a place to work.

The Assembly Class
The Assembly assigns an index to the string it reads. It also gives the parser a stack and a
target object to work on. The Assembly class must implement the interfaces
PubliclyCloneable and Enumeration. This is needed because the Assembly often has to
record the progress of the parser and clone itself when there are multiple ways to progress
(see Table 3).

 23

Table 3 - Shows the progress of the Assembly from an input string.
String " Put a Car in the garage"
index 3
Stack Car
Target a PutCommand object

In Table 3, the input string can be seen in the first row. The index indicates the parser has
identified three words so far. The third word, Car, is put onto the Stack and the target
object now is PutCommand.

When the Enumeration interface is implemented, the Assembly must have the two
methods hasMoreElements() and nextElement(). This is done in two subclasses;
TokenAssembly and CharacterAssembly. These two subclasses are needed if the parser
should be able to parse a text as a string of tokens.

Tokenizing a text is, as described in chapter 4, the way of taking apart a text into logical
pieces, such as numbers, words, and punctuations. This is called the lexical analysis step
in the progress of reacting to the input.

Parser
A parser is an object that recognizes a stream of characters. In this example, there are two
kinds of parsers, either a Terminal or a Composite. A terminal parser uses no other
parsers when recognizing a string. The composite parser, on the other hand, uses other
parsers to carry out the same task.

Assembler
The Assembler assigns meaning or semantics to the parser. Up to this point, we have
been able to recognize if a string matches a particular language pattern. Now, we want to
be able to react to the input, and this is where the Assembler comes in.

This is how it works: When a parser has a match against an assembly, the method
workOn() in the assembler is called. The assembler now knows the parser has a match
and could start to work on the assembly. First, it could pop the token from the stack of the
assembly and then get the target object and, using a suitable method, set some attributes.
Figure 12 shows an example of an assembler taken from the book Building Parsers with
Java [5].

 24

/**
* This assembler pops a string and sets the target
* coffee's country to this string.
*/
public class CountryAssembler extends Assembler {

 public void workOn(Assembly a) {
 Token t = (Token) a.pop();
 Coffee c = (Coffee) a.getTarget();
 c.setCountry(t.sval().trim());
 }
}

Figure 12 – Code example of an Assembler

2.4.2 Building a Parser
First there is a need for a grammar. The grammar is the rules of the language the string
has to follow to be accepted by the parser. After the grammar is written the next step is to
write the Java code that acts upon the pattern of the grammar.

Metsker suggests starting by writing some sample sentences to test against a simple
grammar consisting of only a few rules. Next, you can expand the grammar to fit all the
rules in the language. This means using an iterative approach for coding and testing.

2.5 Orc Protocol
As explained in the introduction, the Orc Server System has an interface, the Orc
Protocol (OP). This enables other applications, for example, to access the CDS database
in the server. This is illustrated in the figure below.

 25

Protocol Client Protocol Client Protocol Client

Orc Protocol Server

Market
Gateway CDS

Market
Data

Service

Trading
Service

Standing
Data

Service

Theoretical
Calculation

service

Orc Server

Figure 13 – An overview of the Orc Protocol Interface. [3]

As can be seen in the figure above there are four processes running on the Orc server:
Trading Service, Market Data Service, Standing Data Service, and Theoretical
Calculation Service. These services are called the Orc Core Services and provide an
alternative to existing services that are accessible using an Orc client such as Orc Trader
and Orc Broker.

The Trading Service can handle orders, trades, and quotes for connected Orc Protocol
clients. The Market Data Service provides market data and, for example, news messages.
The Standing Data Service handles automation of standing data such as: automatic
download, or deletion/creation of dynamic combinations. The Theoretical Calculation
Service takes care of theoretical calculations and theoretical price feeds.

OP provides many messages to communicate with the OP process within the Orc Server.
This communication is TCP/IP based and the messages are sent in ASCII format. OP is
designed to be independent of both the underlying programming language and platform.

OP consists of four parts: the Orc Protocol server, a communication model, a message
format, and a set of messages. [4]

 26

2.5.1 Orc Protocol server
The OP server is included in the standard Orc Software distribution. As explained earlier,
the OP server is always waiting for new clients to connect; it can then communicate with
other Orc server components as needed. Each client executes in its own thread.

2.5.2 Communication model
As mentioned, when a client connects to the OP server it uses a standard TCP/IP
connection. OP does not have an IANA [22] assigned port. Both the hostname and port
number for the OP server are configured by the customer. The OP server requires
username/password authentication when clients log in to the server. When the client is
authorized, it can start exchanging data with the OP.

The OP server communicates in two ways with the client, either synchronous or
asynchronous. Normally the communication is synchronous. However, if there is a need
for a real time trade feed, such as price, order, or news feed, an order_feed_toggle
message has to be sent to the OP server. In this way the client will receive asynchronous
messages. Trade feed messages from the OP are now mixed in between the other, normal,
replies. The message from the client can be marked with a unique identifier which the
server uses in the reply message.

2.5.3 Message format
The message format for OP is specified using BNF notation which contains a set of meta-
symbols. These meta-symbols are displayed in the table below and are also matched
against the symbols used in JavaCC. This compare is done to make it easier making a
grammar file in JavaCC.

Table 4 - Meta Symbols and their corresponding description in OP and JavaCC
Meta Symbols OP Descriptions Meta Symbols JavaCC
::= is defined as :
| or |
() group items together ()
[] enclose an optional item [] or ()?
{} enclose a repetitive item ()* or ()+
"" enclose a terminal item ""

An OP message format is described in BNF:

 27

message ::= message_length dictionary [whitespaces]
message_length ::= 10*digit
dictionary ::= “{” key_value_combinations “}”
digit ::= “0” | “1” | ... | “9”
key_value_combinations ::=
key_value_combination { “|” key_value_combination }
key_value_combination ::=
[whitespaces] key [whitespaces] “=” [whitespaces] value
[whitespaces]
whitespaces ::= whitespace { whitespace }
whitespace ::= tab | linefeed | carriage_return | space
key ::= letter {letter | digit | underscore}
value ::= string | integer | float | boolean | date | time | dictionary
| enum | empty_value
empty_value ::= “[None]”
letter ::= uppercase_letter | lowercase_letter
uppercase_letter ::= “A” | “B” | ... | “Z”
lowercase_letter ::= “a” | “b” | ... | “z”
underscore ::= “_”
string ::=legal_character{legal_character}|empty_string
empty_string ::= citation citation
citation ::= “““
integer ::= [sign] digit
[digit[digit[digit[digit[digit[digit[digit[digit[digit]]]]]]]]]
float ::= [sign] digit “.” 12*digit (“E” | “e”) [sign] 2*digit [digit]
sign ::= “+” | “-”
boolean ::= “FALSE”|“TRUE”
date ::= 4*digit “-” 2*digit “-” 2*digit /* yyyy-mm-dd */
time ::= 2*digit “:” 2*digit “:” 2*digit /*hh:mm:ss */
enum ::= A list of values of same type (most likely strings)

Figure 14 - The BNF description of the OP

Looking in the table there are some explanations in order. First, a legal character in OP is
any characters except “{“, “|” and “}”. If there is a need to send an empty string to the OP
it has to be specified using two consecutive citation marks (““). An integer can be up to
11 characters long including the sign and has a max/min value of +/- 2,147,483,648.
While OP does not support the Long format, an Integer longer than 11 digits will be
interpreted as a String. Last, the message length in the OP refers to the message length in
bytes and not symbol length. All messages sent to and from OP should be UTF8 encoded.
The problem is that sometimes UTF8 encoded strings have a symbol length that is not
equal to byte length, thus it is important to ensure the byte length is used.

It is also important to know that parsing on key positions in messages is discouraged as
Orc Software could change these positions without notice. Most probably the best way to
parse is parsing the characters “{“, “}”, and “|”. However, if a value has to contain the
parsing characters there is a way in the OP to represent them without risking a
parseexception. The characters “{“, “}”, “\” and “|” should be represented as “\[“, “\]”,
“\\” and “\/” respectively.

Another issue to take into account is that OP version 5.1 and later has no spaces in the
messages, that is the message structure is {key1=value1|key2=value2} and not { key1 =

 28

value1 | key2 = value2 } as for previous versions. However, if there is a need to use the
older format one can always set the configuration setting old_style_output_spacing to
true.

2.5.4 OP messages
As can be seen in the table above, a message in the Orc Protocol has two parts; a message
length and a dictionary. First in the message comes the message length, which is a ten
character long string of digits which indicates the byte length of the message excluding
the message length field itself. The rest of the message consists of a dictionary that can
have one or more key/value combinations. All messages from the client have different
key/value combinations depending on message type, but they all have to include a
message_info key/value combination. The message_info key/value combination in a
reply from the server is replaced with a reply_to key/value combination. As explained
above, the order of appearance of key/value combinations is not specified, meaning that
key/value pairs can occur in any order.

An example of an OP message is:

1234567890{my_string=astring|some_int=123|a_float=-1.2345678901234567E-
123}

The message length is followed by the message (always a dictionary). The first key/value
combination is a key called “my_string” with the value “a string”. A key references some
logical data and implicitly gives the type of the value, in this case a String. Next, the
Meta symbol “|” indicates there are additional key value combinations. The second key is
“some_int” and the value is an integer. As illustrated in the OP BNF table above, a value
can be an integer, a float, a string, a date, a time or a dictionary depending upon which
key it is.

If we instead look at a real OP message it could look like this:

0000000130{message_info={message_type=order_insert}|order={buy_or_sell=
buy|instrument_id={market=Saxess|feedcode=101}|price=29|volume=2000}}

The message length in this example has the same symbol length as byte length, 130
characters. As described above, a message must include a message_info key. The
message_info key has a dictionary as value which consists of the key message_type. This
message is an order_insert type to buy 2000 Ericsson B (feedcode = 101) stocks in the
Saxess market at the price of 29 SEK each.

The third example is a combination of a message sent to the OP Server and a reply
message:

0000000123{ message_info = { message_type = login } | login_id =
tobias| allow_ping = True | ping_timeout = 120 | ping_interval = 30 }

0000000100 { reply_to={ message_type=login } | login_id=tobias |
version=5.2.11b | utc_offset=3600 | error=0 }

 29

This is a login to the OP server for the user tobias, and then a reply message with error=0
indicating that the login was successful. The difference between the client message and
the server message is the message_info key is changed to a reply_to key.

 30

3 Results
This section offers a proposed solution for the problem. It describes the design and the
implementation of an OP client. Following this an evaluation on this OP client is
presented.

3.1 Analysis and design
We begin by implementing a solution using the underlying idea behind DOM, thus it
stores all objects in a tree after the parsing is done. This decision was made because there
was no efficient way to be able to foresee what message was sent without parsing the
entire message. As stated in section 2.5, the Orc Protocol uses key/value combinations
whose order can be changed by Orc Software without notice. Thus, while the message
type today is the first dictionary, this need not be the case in the future.

A subset of the JMS interface has also been implemented. As a start, it will use the
message format MapMessage, to send and receive messages. As mentioned in section
2.2.3, the main reason why the OP client implements the JMS interface is that Orc
Software has other development projects that will be using the JMS interface. Of course,
the fact that JMS is increasing in popularity has also been a factor in choosing to use
JMS.

An overview of the proposed solution can be seen in the figure below.

OP ServerOP Client OP MessagesApplication JMS Messages

Figure 15 - An overview over the proposed solution.

To send a message to the OP Server the customer only has to create a MapMessage that
will result in a specific OP message. An example of a code creating an order insert
message can be seen below.

/*
 * Sends a order_insert message to the OP server
 * Checks the reply.
 */
 public void order_insert(){
 /*
 * Create producer, consumer, and a MapMessage.
 */

 producer = session.createProducer();
 consumer=session.createConsumer();

 //Create a new MapMessage and set the Request number.

 31

 order_insert = session.createMapMessage();
 aRequestNr = aRequestNr+1;

 /*
 * The message that will be sent is:
 * message_info = { message_type = order_insert | private =
 * aRequestNr} | activate = exchange | order = { buy_or_sell = buy |
 * instrument_id = { market = *Saxess | feedcode = 101 } | price =
 * 22 | volume = 1000 } }
 */

 /*
 * SetMessageType() loads an order_insert message with parameters:
 * message_info = { message_type = order_insert | private=aRequestNr}
 *
 * If you want to be able to retrieve the reply message using a
 * consumer, you will have to provide a requestNr as second input
 * to the function setMessageType().
 */

 order_insert.setMessageType("order_insert", aRequestNr);

 // | activate = exchange
 order_insert.setString("activate", "exchange");

 String feedCode = Settings.getSettingsResource(Settings.FEEDCODE);
 String market = Settings.getSettingsResource(Settings.MARKET);
 String volume = Settings.getSettingsResource(Settings.VOLUME);
 String price = Settings.getSettingsResource(Settings.PRICE);
 String buyOrSell =Settings.getSettingsResource(Settings.BUY_OR_SELL);

 //| order = {buy_or_sell = buy | instrument_id ={market = Saxess |
 // feedcode = 101}

 Dictionary order=new Dictionary();
 order.setString("buy_or_sell",buyOrSell);

 Dictionary instrument_id=new Dictionary();
 instrument_id.setString("market", market);
 instrument_id.setString("feedcode", feedCode);
 order.setDictionary("instrument_id", instrument_id);

 //| price = 1 | volume = 1}}
 order.setString("price", price);
 order.setString("volume", volume);
 order_insert.setDictionary("order",order);

 // Send the message to Orc Server
 producer.send(order_insert);

 /*
 * Receive a message reply
 * Get some information from the message. Print it.
 */
 aReply = consumer.receive(aRequestNr);

 if ((aReply.getString("error").equalsIgnoreCase("0"))){

 32

 String order_tag=aReply.getString("order_tag");
 String activate=aReply.getString("activate");
 System.out.println("The order tag is = "+order_tag);
 System.out.println("Activate = "+activate);
 }
 else{
 System.out.println("ERROR:"+aReply.getString("error_description");
 }
}

Figure 16 - The code to create a MapMessage for an order insert OP message.

This message is then transformed into an OP message and delivered to the OP Server.
The reply from the OP Server is, in its turn, transformed into a MapMessage and sent
back to the client. The client can then retrieve the information needed in the same way as
he/she constructed the MapMessage. The components of the OP client are displayed in
the figure below.

TheAPI OPApp

OP Client

Connection
Factory Connection

Producer

Session

Consumer

1 2

3

3

4

4

5

Figure 17 - The components in the OP Client

First of all the client program (App in the figure above) has to create a Connection
Factory object. By using the Connection Factory object, a Connection object can be
created (1). The Connection creates a Session object (2) and a connection with the OP
Server using TheAPI object. The Session, on the other hand, creates both a Producer and
a Consumer (3). Both the Consumer and the Producer have a queue object to store
messages (4). TheAPI controls the communication with the OP server and puts and polls
messages from the queues (5).

The communication between a client application and the OP Server can be illustrated
more in detail using the figure below.

 33

ProducerApp TheAPI OP

Proucer.send(mess)
OutQueue.put(mess)

OutQueue.poll()

CreateOPMessage()

send(OPMess)

Consumer

InQueue.retrieve(Nr)

reply(OPMess)

CreateOPMapMess()

InQueue.put(Nr, mess)

Consumer.receive(Nr)

return mess

InQueue

OutQueue

Figure 18 - The communication between an application and the OP Server.

The client sends messages using the Producer which then puts the messages in a
OutQueue. TheAPI thread checks the OutQueue for new messages, and then pulls them
out of the OutQueue. TheAPI also translates the MapMessage to an OP message before
sending to the OP Server. When there is a reply from the OP Server, TheAPI translates
the messages into MapMessages and puts them in an InQueue. The client then uses the
Consumer object to retrieve the MapMessage. The Consumer checks the InQueue and
returns the message to the client.

The second example is when a client wants to receive asynchronous messages, so called
feed toggle messages, from the OP Server. The clients have to connect to a Topic using
Subscribers which is illustrated in the figure below.

OP ServerTopic

Sub

Sub

Sub

Feed -
Messages

Feed -
Messages

Figure 19 - An overview of the solution with asynchronous messages.

 34

By using a Topic, a message is only sent to that Topic which then distributes the message
to its subscribers. The OP Server does not need to know which clients should receive the
feed message. One example of Feed Toggle Messages is PriceFeed_Toogle where a
client receives price updates on a financial instrument continuously. Using the same
illustration as before, the components in the OP Client when subscribing using Topics are
shown in Figure 20.

TheAPI OPApp

OP Client

Connection
Factory Connection

Subscriber

Session

Topic

1 2

3

3

4

Figure 20 - The components in the OP client when using Topics.

The steps 1 and 2 in the Figure 17 are the same as when sending synchronous messages.
In this case the Session creates both a Subscriber and a Topic (3). The Subscriber handles
the connection to the client application and the Topic sends subscriptions to the TheAPI
that, in turn, sends the message to the OP Server (4).

Figure 21 illustrates more in detail the communication between the client and the OP
Server when the client subscribes to a feed message.

The client sends a Listener to the Subscriber, which will listen to a certain feed message.
When the Subscriber was created using the Session, as explained above, the message was
stored at the Subscriber. This message and the Listener are sent to the Topic. The Topic
sends the message to TheAPI and waits for a hash code to identify a feed message later.
This hash code is created by TheAPI. TheAPI also creates an OP message and sends it to
the OP server. When feed messages arrive to theAPI the hash code is calculated and set
as a parameter in the MapMessage that is also created. The message is then sent to the
Topic. The Topic searches for the Listeners that should receive the message using the
hash code. Last, the OnMessage() function in the Listener can retrieve what is needed
from the message.

 35

SubscriberApp TheAPI OP
setListener(Listener)

Subscribe(mess, Listener) send(mess, name)

CreateOPMess()

send(OPMess)

send(mess)

feed(feedMess)

CreateHashCode()

addMessage(mess)

Topic

addListener()

createHashCode()
Return HashCode

CreateMapMess()

getListener(hashcode)

addListener()

Listener

OnMessage()

Figure 21 - The communication between the client and the OP server when the client subscribes

to a feed message.

3.1.1 Scalability
When multiple clients run on the same machine, the customers can choose between two
different scenarios using the OP client. First, they can create a new object for each client
wanting access to the OP server, or second, they can share the OP client between each
other. The scalability with respect to multiple clients running on the same machine
depends on which scenario used.

If the customer uses the first scenario there will be many threads running on the same
machine. The OP client itself uses three threads to be able to handle requests efficiently.
The first scenario, exemplified using three clients, means that 12 threads are used. This is
illustrated in the figure below.

 36

OP Server

OP Client

App 3

App 2

App 1

3

OP Client

OP Client

3

3

Figure 22 - Multiple clients run on the same machine and each uses an own OP client.

This scenario is best to use when the traffic load is high because OP will serve the client
using three processes. It will also scale better on high end multiple CPU machine.
However, because it uses many threads it will not scale so well when the number of client
increases.

The second scenario is illustrated in the figure below, showing three clients connecting to
one OP client.

OP ServerOP Client

App 3

App 2

App 1

3

Figure 23 - Multiple clients run on the same machine and each uses the same OP client.

This setup will scale better when there are multiple clients connected. The problem is that
when the load is high it will be slower because OP will serve the single client using only
one process.

3.2 Parser construction
The Java class TheAPI uses an OP parser/generator to fetch an OP message and to create
a MapMessage. When a string is received from OP it is passed as input to the Parser from
TheAPI. This string is then parsed into different objects. These objects are then used to
build a MapMessage. This can be illustrated in the following figure.

 37

TheAPI OP

Dictionary

Key Value

Key/value
comb

Parser
String

MapMessage

Figure 24 - The setup between the Parser and TheAPI.

The OP parser/generator has been done using JavaCC. The tool JJTree is used to build a
tree of objects after parsing a character stream. The JavaCC code for the parser/generator
is illustrated in the figure below.

PARSER_BEGIN(Parser1)
public class Parser1 {
}
PARSER_END(Parser1)
<*>
SKIP :{
 " "
| "\t"
| "\n"
| "\r"
}
<*>
TOKEN :{
 <#DIGIT: ["0"-"9"]>
| <#LETTER: ["A"-"Z", "a"-"z"]>
| <START_DICT: ["{"]>:DEFAULT
| <CLOSE_DICT: ["}"]>:DEFAULT
| <NEW_COMB: ["|"]>:DEFAULT
}
<DEFAULT>
TOKEN :{
 <MESSAGE_LENGTH: (<DIGIT>){10}>
| <#UNDERSCORE: "_">
| <KEY: <LETTER>| (<LETTER> | <DIGIT> | <UNDERSCORE>)*>
| <GO_TO_VALUE_STATE: "=">:VALUE_STATE
}
<VALUE_STATE>
TOKEN :{
 <VALUE: (<STRING> | <CHARACTER> | <INTEGER> | <FLOAT> |
<BOOLEAN> | <DATE> | <TIME> | <EMPTY_VALUE>)>
| <#INTEGER: (<SIGN>)? (<DIGIT>){1,10}>
| <#FLOAT: (<SIGN>)? <DIGIT> "." (<DIGIT>){12} ("E" | "e")
(<SIGN>)? (<DIGIT>){2}>
| <#SIGN: "+" | "-">
| <#BOOLEAN: "FALSE"|"TRUE">
| <#DATE: (<DIGIT>){4} "-" (<DIGIT>){2} "-" (<DIGIT>){2}>

 38

| <#TIME: (<DIGIT>){2} ":" (<DIGIT>){2} ":" (<DIGIT>){2}>
| <#STRING: (<LEGAL_CHAR> (<LEGAL_CHAR2>)* <LEGAL_CHAR>) |
<EMPTY_STRING>>
| <#CHARACTER: (<LETTER>)*>
| <#EMPTY_STRING: <CITATION> <CITATION>>
| <#CITATION: "\"">
| <#EMPTY_VALUE: "[NONE]">
| <#LEGAL_CHAR: ~["{","}","|"," "]>
| <#LEGAL_CHAR2: ~["{","}","|"]>
}

SimpleNode Message() :{}{
 <MESSAGE_LENGTH>
 { jjtThis.setKey("Message");jjtThis.setValue("Dictionary");}
 Dictionary()
 {return jjtThis;}
}

void Dictionary() :{}{
 <START_DICT> Key_value_combinations() <CLOSE_DICT>
 { jjtThis.setKey("EMPTY");jjtThis.setValue("key/value comb");}
}

void Key_value_combinations() #void:{}{
 Key_value_combination() (<NEW_COMB> Key_value_combination())*
}

void Key_value_combination() #Name :{Token key, value;}{
 key=<KEY>{jjtThis.setKey(key.image);} "=" (value = <VALUE>
{jjtThis.setValue (value.image);} | Dictionary()
{jjtThis.setValue("Dictionary");})
}

Figure 25 - The JavaCC code for the OP Parser/Generator.

As can be seen in the code, states are used to enable the parsing to process these
messages. The parse remains in the DEFAULT state until a “=” character is read, then,
the parser switches to the VALUE state. The parser switches back to DEFAULT state
whenever a “{“, “}”, or “|” character appear in the input stream. This is done because a
VALUE token could be misinterpreted as a KEY token, or the other way around
depending on the order, if both tokens were to exist in the same state.

The parser creates objects of Message, Dictionary, and Key_value_combination. In this
way the information stored in the tree can be used to create MapMessages according to
the JMS specification (see section 2.2.3). For example, a tree for the below OP message
is shown in Figure 26.

{ message_info = { message_type = order_insert } | activate = exchange
| order = { buy_or_sell = buy | instrument_id = { market=Saxess |
FeedCode=101} | Price = 10 | Volume = 1000 }}

 39

Message
Key: Message

Value: Dictionary

Dictionary
Key: ”EMPTY”

Value: Key/Value Comb.

Dictionary
Key: ”EMPTY”

Value: Key/Value Comb.

Name
Key: Active

Value: Exchange

Dictionary
Key: ”EMPTY”

Value: Key/Value Comb.

Name
Key: message_info

Value:Dictionary

Name
Key: message_type
Value: order_insert

Name
Key: order

Value:Dictionary

Name
Key: Volume
Value:1000

Name
Key: instrument_id
Value:Dictionary

Name
Key: Price
Value:10

Name
Key: buy_or_sell

Value:buy

Dictionary
Key: ”EMPTY”

Value: Key/Value Comb.
Name

Key: market
Value:Saxess

Name
Key: FeedCode

Value 101

Figure 26 - The object tree created by the parser.

As stated, the relevant parts of the tree in the figure above are turned into a MapMessage.
This MapMessage is illustrated in the table below.

Table 5 - An example of a MapMessage for an order_insert OP message.
MapMessage
Message_info Dictionary
Active “Exchange”
Order Dictionary
Message_info
Message_type “order_insert”
Order
Volume “1000”
Price “10”
Buy_or_sell “buy”
Instrument_id Dictionary
Instrument_id
Market “Saxess”
Feedcode “101”

 40

3.3 Evaluation
There are two major metrics to be evaluated for an OP client. First, its speed and second,
the space required. By speed means the time it takes for the program to complete a
request, and by space, the memory used up by the program.

The expected results are that the OP client will be faster and less memory intensive than
the FIX client. This is because the FIX client stores more information locally than the OP
client.

3.3.1 Generic setup
The OP client will be evaluated against a FIX client using a FIX implementation already
sold by Orc Software. The test will be to insert 1000 orders to buy a common stock at
market price. The test starts when the first order is inserted and is completed when the
last order is active on the market. This will be repeated until the observed standard
deviation of the results is less than 5 percent, or a minimum of 10 times. The reason why
we want to test a number of times is to minimize the disturbance from, for example,
temporary network delays. The test will not be conducted on an external test market such
as Saxess-Test market. Instead, it will be carried out on an internal market which means
that there will be no VPN connections to the market or other tests that can interfere.

3.3.2 OP client setup
First, an order feed toggle message will be sent to the OP server to monitor orders.
Second, 1000 order insert MapMessages will be sent to the OP client. The time starts
when the first order is sent, and stops when the last order feed is received from OP stating
that the order is in the market.

3.3.3 FIX client setup
In this setup a so called single order FIX message will be sent to a FIX Gateway. The
FIX message sent to the FIX Gateway can be seen below.

[8=FIX.4.2 9=116 35=D 49=bowmore 56=fixgwHead 34=2 52=20070228-09:52:18
22=8 48=11160_oim 100=RMP 38=1 44=1 54=1 40=2 11=-9030888640�10=000]

This FIX message is explained more in detail in Table 6.

 41

Table 6 - Fix Tag Number and the corresponding Field Name and description. [23]
FIX Tag Num FIX Field Name Description

8 BeginString Identifies the beginning of new message and
protocol version.

9 BodyLength Message length in bytes.
35 MsgType Defines the message type. D stands for a

single order.
49 SenderCompID Identifies the firm sending the message.
56 TargetCompID Identifies the receiving firm.
34 MsgSeqNum The sequence number
52 SendingTime The time the message was transmitted.
22 SecurityIDSource Identifies the source of the SecurityID tag. 8

stands for Exchange Symbol.
48 SecurityID Identifies the contract, in this case, using the

feedcode 11160_oim
100 ExDestination The destination for execution. The market is

RMP.
38 OrderQty The number of shares for the equity.
44 Price The price per unit of quantity.
54 Side Side of the order. For example, 1 for buy and

2 for sell.
40 OrdType OrderType. 2 stands for Limit
11 ClOrdID Client order ID. Unique identifier assigned by

the buy-side.
10 CheckSum The checksum for the message.

3.3.4 Speed Test Results
The speed test results from inserting 1000 orders using the OP client and the FIX client
are shown in Table 7.

 42

Table 7 – Test results when inserting 1000 orders.

FIX Client OP Client
Date 2007-03-16 2007-03-16
Server Birka Birka
Instrument 11160_oim 11160_oim
Market RMP RMP

[ms] [ms]
1 27 906 21 250
2 26 437 20 078
3 27 047 19 937
4 27 390 20 907
5 27 797 20 250
6 28 016 19 875
7 27 094 20 062
8 27 219 20 235
9 26 828 20 359

10 26 938 20 187

Average 27 267 20 314
Variance 259 538 190 032
Std deviation 509 436
Std in percent 1,87% 2,15%

When looking in the table above, we can see that the OP client is faster than FIX client.
On average, it inserts 1000 orders approximately 26 percent faster and the variance is
smaller. There is no reason not to assume that this is true when it comes to other FIX and
OP messages.

3.3.5 Memory consumption test results
The memory consumption test uses the Java SE Monitoring and Management service
[24]. This is as service included in the Java SE 5.0 platform that, for example, provides
tools to monitor current, peak, and threshold memory usage.

Figure 27 below shows the Heap Memory Usage for the OP client. We can see that the
maximum memory usage was around 35 Mb. The cumulative time spent on Garbage
Collection (GC) and the total number of garbage collection invocations can be seen in the
“Details” area.

GC is the process of releasing objects that are no longer referenced. GC often divides
memory into different segments and assigns a memory pool to each. When a segment has
allocated all memory a partial GC, called minor collection, is performed. There are three
segments all holding objects with different ages: Young, Tenured, and Permanent [25].
In the segment holding the younger objects the infant mortality rate is high, and thus,
most object die there. The periodic behavior in Figure 27 is not caused by a timer; instead
it is the Young and Tenured segments that are full. GC uses different algorithms to
release memory in an efficient way. In this case, the PS Scavenge is used 12 times
consuming 231 milliseconds.

 43

Figure 27 - The Heap Memory Usage of the OP client.

There are three more measurements in the “Details” area: Used is the amount of memory
currently use by the OP client, Committed is the amount of memory that is guarantied to
be available for the Java VM, and Max is the maximum amount of memory that the Java
VM can use.

In Figure 28, the FIX client Heap Memory Usage is illustrated. We can see that around
90 Mb of memory is used in the beginning and by the end of the test 158 Mb of memory
is used. This is far more memory usage than the OP client. Even though GC is performed
five times this can not be seen as less heap memory usage in the graph. This can perhaps
be explained if we look at the Max memory in the “Detail” area. The maximum memory
allocated is 935Mb and as long as the FIX client is not close to this number it does not
release any memory.

This hypothesis can be challenged if we lower the Max allowed memory to 120 Mb. In
Figure 29, we can see that in this scenario approximately 10 Mb of memory are released
when GC is invocated.

 44

Figure 28 - The Heap Memory Usage for the FIX client.

Figure 29 - The Heap Memory Usage for the FIX client when Maximum memory is set to 120 Mb.

Figure 30 shows an overview of the Heap Memory Usage, the number of Threads and
Classes used, and CPU usage when executing first the OP client followed by the FIX
client. The red arrows mark the end of the OP client and the start of the FIX client.

 45

Figure 30 - Overview of the memory usage, the number of classes and threads, and the CPU usage.

As already stated, the FIX client uses far more memory than the OP client. One reason
for this is that the FIX client uses both more threads and classes than the OP client. When
we look at the CPU usage we can see that the OP client uses more CPU than the FIX
client. The OP client uses around six percent of the CPU while the FIX client uses as low
as 1 percent. When the FIX client is waiting for the orders to enter the market the CPU
usages is down to zero.

3.3.6 Test summery
To summarize the findings of the evaluation study we can say that the OP client is both
faster and uses less memory than the FIX client. However, when it comes to CPU
utilization the OP client uses more CPU than the FIX client.

As shown, the GC invocations occur more often for the OP client than the FIX client.
This could mean that the OP client uses objects that are short lived and resides in the
Young segment. The FIX client, on the other hand, caches more objects, thus having
more objects in the Permanent segment.

The CPU utilization could be related to the GC invocations. While the OP client has more
invocations than the FIX client this could explain the higher CPU usage. However, the
majority of Orc Software’s customer insert around 5000 orders per day, thus, there is still
safe to say that the OP client scale enough to be able to handle this volume of
transactions.

In the finance sector speed is a very important aspect. This means that the OP client is
preferable, since orders are placed faster and thus the customer's order is executed faster.

 46

4 Conclusion and Future Work
In this section the conclusions that can be drawn based on this thesis are discussed. There
are also some ideas presented to further develop the effectiveness of the parser/generator.

This thesis presented a solution for the initial problem. The solution meets the
requirements, such as being well documented, thread safe, fast, small memory footprint,
and implementing a JMS subset. In the toolkit provided to the customers, a sample
application providing a few examples utilizing different OP messages will be included.
This fulfills the desire by Orc Software to reduce the perceived difficulty in
communicating with their Orc Server System.

The evaluation study showed that the OP parser/generator is both faster and more
memory efficient than the FIX client which uses the FIX gateway. Thus, the OP
parser/generator performs well enough to be competitive in the market; hence it is a good
alternative to the other existing OP parser/generator.

There are alternatives for making an even more efficient OP parser/generator. For future
work, an implementation where the OP specification is read as a template automatically
and object stubs are created should be evaluated. This would make it easy to have objects
for all messages and not have to maintain them when changes occur. In this way the
customers have to know even less about the OP protocol, than they have to when using
the solution presented in this thesis.

An extension to the parser/generator could be to implement a function that could handle,
for example, FIX messages as well. FIX is a protocol that continues to increase in
popularity which means that the parser/generator can be used in many environments. An
extension to the parser/generator can be implemented in perhaps 160 man-hours.

To conclude, this thesis has shown that using of a parser/generator can lead to a high
performance solution, which is easy to understand and correctly implement with limited
effort.

 47

5 References

[1] Wikipedia, http://en.wikipedia.org/wiki/Bond_%28finance%29, last accessed 2007-01-29.
[2] John C. Hull, Options, Futures, & Other Derivatives Fourth Edition, Prentice Hall, 2003.
[3] Orc Software, Orc 5.2 Server Administration Manual, September 2006.
[4] Orc Software, Orc Protocol 5.2 Specification, September 26, 2006.
[5] Steven John Metsker. Building Parsers with Java, Addison Wesley, 2001.
[6] Dick Grune and Ceriel J. Jacobs, Parsing Techniques - A Practical Guide, Ellis Horwoord Ltd, 1990.
[7] Andrew W. Appel and Jens Palsberg, Modern Compiler Implementation in Java 2nd edition,
Cambridge University Press, 2002.
[8] Keith D Cooper and Linda Torczon, Engineering A Compiler, Morgan Kaufmann, 2003.
[9] Doug Lea and James Power, Concurrent programming in Java, Department of Computer Science
National University of Ireland, Maynooth, Formal Language Theory and Parsing,
http://www.cs.nuim.ie/~jpower/Courses/parsing/, last accessed 2006-12-27.
[10] Arnaud Le Hors, Philippe Le Hégaret, Lauren Wood, Gavin Nicol, Jonathan Robie, Mike Champion,
and Steve Byrne, Document Object Model (DOM) Level 2 Specification,
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/DOM2-Core.pdf, last accessed 2007-01-
10.
[11] The World Wide Web Consortium, http://www.w3.org/, last accessed 2007-01-30.
[12] Saxproject, http://www.saxproject.org/quickstart.html, last accessed 2007-01-10.
[13] Sourceforge.net, http://sourceforge.net/projects/sax/, last accessed 2007-01-26.
[14] JMS Tutorial, http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/copyright.html, last accessed
2007-01-02.
[15] Sun Microsystems, Inc, Java Naming and Directory Interface Application Programming Interface
(JNDI API), http://java.sun.com/j2se/1.5/pdf/jndi.pdf, last accessed 2007-01-29.
[16] Theodore S. Norvell., Javacc Tutorial, Memorial University,
http://www.engr.mun.ca/~theo/JavaCC-Tutorial/javacc-tutorial.pdf, last accessed 2007-01-08.
[17] Java.net, JavaCC [tm]: Grammar Files, https://javacc.dev.java.net/doc/javaccgrm.html, last accessed
2007-01-13.
[18] Java.net, JavaCC [tm]: TokenManager MiniTutorial,
https://javacc.dev.java.net/doc/tokenmanager.html, last accessed 2007-01-15.
[19] Java.net, JavaCC [tm]: LOOKAHEAD MiniTutorial, https://javacc.dev.java.net/doc/lookahead.html,
last accessed 2007-01-15.
[20] Java.net, JavaCC [tm]: JJTree Reference Documentation, https://javacc.dev.java.net/doc/JJTree.html,
last accessed 2007-01-15.
[21] Howard Katz, JavaCC, parse trees, and the XQuery grammar, Part 2, http://www-
128.ibm.com/developerworks/xml/library/x-javacc2/, last accessed 2007-01-15.
[22] Internet Assigned Number Authority, Port Numbers, http://www.iana.org/assignments/port-numbers,
last accessed 2007-01-26.
[23] FixProtocol.org, FIXimate 4.4, http://www.fixprotocol.org/specifications/fix4.4fiximate/index.html,
last accessed 2007-02-28.
[24] Java SE Monitoring and Management Guide,
http://java.sun.com/javase/6/docs/technotes/guides/management/toc.html, last accessed 2007-03-16.
[25] Sun Developer Network, Tuning Garbage Collection with the 5.0 Java[tm] Virtual Machine,
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html#1.1.Sizing%20the%20Generations%7Coutline,
last accessed 2007-04-03.

 48

Appendix A - Abbreviations and Acronyms

OP Orc Protocol
EMD Environment Management Daemon
PMD Port-Mapper daemon
FIX Financial Information eXchange
HTML Hypertext Markup Language
XML Extensible Markup Language
DFA Deterministic Finite Automaton
NFA Non Deterministic Finite Automaton
CF Context-Free
JMS Java Message Service
SAX Simple API for XML
DOM Document Object Model
JNDI Java Naming and Directory Interface
JavaCC Java Compiler Compiler
BNF Backus Naur Form

 49

Appendix B – Quick Start Guide
This Quick Start Guide will describe how to setup a Trading Client Application
connecting to the OP Server and using this connection to get different feed messages,
and then send order_insert messages. This setup is illustrated in Figure 31, where the
different OP messages that will be sent to the OP Server also are displayed.

Trading
Client OP Server

+ Order_feed_toggle

+ Trade_feed_toggle

+ Pricefeed_toggle

+ Order_insert

+ Order_range_get

+ Trade_range_get

Figure 31 - The setup with a Trading Client Application and the OP Server.

B.1 Trading Client
This section explains how to create the Trading Client Application. First, we connect
to the OP Server, and then we create both an order_feed_toggle message and a
trade_feed_toggle message. Next, we will create an order_range_get message and a
trade_range_get message. This will give us a view of the current status of the orders
and trades. Last, we will create a price_feed_toggle message and then, using the
prices in the price_feed messages, we will create an order_insert message.

B.1.1 Connect to the OP Server
To initiate a connection with the OP Server you first have to create a
ConnectionFactory object. The input to the ConnectionFactory is the hostname and
port of the OP Server.

connectionFactory = new ConnectionFactory(HOST, PORT);

The next step will be to create a Connection object using the ConnectionFactory
object. If you provide a username and a password as input, a login message will
automatically be sent to the OP Server. If a username and a password are not
provided, you first have to create a login message before exchanging information with
the OP Server.

connection = connectionFactory.createConnection(userName, password);

The last step in the initiate face is to create a Session object using the Connection
object. There is no need for any input when creating a session. The Session object is
later used to create a MapMessage, Producer, Consumer, Topic, and Subscriber.

session = connection.createSession();

 50

B.1.2 Create an order_feed_toggle message
When we want to create an order_feed_toggle message we first have to create a Topic
using the Session object. The input to the function createTopic() should be the same
message type as the requested feed toggle message specified in the OP Specification
except that you leave out “_toggle” in the message type.

Topic order_feed = session.createTopic("order_feed");

At this point there are no publisher sending messages to this Topic. Therefore, the
next step is to create an order_feed_toggle message and send to the OP Server. The
message that should be sent is a JMS message standard called MapMessage. This is
done using the Session object.

MapMessage order_feed_toggle = session.createMapMessage();

When the MapMessage is created you first have to set the message type of the
message. Use the same message type as specified in the OP Specification, except that
you also in this case leave out the “_toggle” in the message type. If you want to be
able to retrieve the reply message using a consumer (see section 1B.3) you have to
provide a unique number as second input to the function setMessageType().

order_feed_toggle.setMessageType("order_feed", unique_Nr);

When this is done it is time to start filling the MapMessage with the key/value
combinations and Dictionaries that are needed. The MapMessage follows the same
message format as an OP message, thus, a particular Dictionary have to have certain
key/value combinations. The code below shows how to insert a string into a
MapMessage. In this case, the order_feed_toggle message will request order_feed
messages from the Saxess market.

Order_feed_toggle.setString("market", "Saxess");

After the Topic and MapMessage are created it is time to create a Subscriber that will
be used to register a Listener that will be listening to the asynchronous messages
received by the Topic. Use the Session object to create a Subscriber using the
createSubscriber() function. Both the Topic and the MapMessage should be as input.

subscriber = session.createSubscriber(order_feed, order_feed_toggle);

The next step is to create a Listener which should be registered with the Topic. This
Listener must include a function named onMessage() that will have a MapMessage as
input. The onMessage() function will execute when a feed message for this Listener is
received by the Topic. In this case we don’t have to do that because the Trading
Client Application implements the Listener interface.

We use the created Subscriber to enable the listener to start listening to the Topic.
This is done using the function setMessageListener(). The input in this example is the
Trading client itself. When the Listener is registered with the Topic, the Topic will
send the newly created MapMessage to the OP Server.

subscriber.setMessageListener(this);

 51

When this is done you will start receiving feed messages from the OP Server. If you
want to unsubscribe see section 1B.2.

B.1.3 Create an trade_feed_toggle message
To create a trade_feed_toggle message you use the same approach as when you
created the order_feed_toggle message. Remember that the input when creating the
Topic should be without the “_toggle”.

Topic trade_feed = session.createTopic("trade_feed");

B.1.4 Create a order_range_get message
The first step is to create a MapMessage. This is, as explained, done using the Session
object.

MapMessage order_range_get = session.createMapMessage();

When the MapMessage is created you first have to set the message type of the
message. Use the same message type as specified in the OP Specification. As
mentioned before, if you want to be able to retrieve the reply message using a
consumer (see section 1B.3) you have to provide a unique number as second input to
the function setMessageType().

order_range_get.setMessageType("order_range_get", unique_Nr);

When this is done it is time to start filling the MapMessage with the key/value
combinations and Dictionaries that are needed. In this case, we want to receive all the
orders for the date 2007-04-24 in the Saxess market that we have created.

order_range_get.setString("market", "Saxess");
order_range_get.setString("startdate", "2007-04-24");
order_range_get.setString("enddate", "2007-04-24");
order_range_get.setString("owner", userName);

When the MapMessage is loaded, it is time to send the message to the OP Server.
First, you have to create a Producer that is responsible for sending the message. Then
use the send() function, with the MapMessage as input, to send the message.

producer = session.createProducer();
producer.send(order_range_get);

Now the message is sent to the OP Server. To retrieve the reply message see section
1B.3.

B.1.5 Create a trade_range_get message
To send a trade_range_get message use the same approach as when creating an
order_range_get message. If you don’t provide a start and an end date the default will
be the current date.

B.1.6 Create an pricefeed_toggle message
First, we have to create the Topic using the Session object.

 52

pricefeed = session.createTopic("pricefeed");

In this scenario, the price_feeds that we are interested in are from the contract
Ericsson B (feedcode=101) on the Saxess market. As before, start by creating a
MapMessage, set the message type, and then load the message. In this example, we
will create an instrument_id Dictionary where we put the feedcode, market, and
currency using the setString() function. Next, we put the Dictionary in the
MapMessage using the setDictionary() function.

MapMessage ericb = session.createMapMessage();
ericb.setMessageType("pricefeed", "ericb");

Dictionary instrument_id =new Dictionary();
instrument_id.setString("feedcode", "101");
instrument_id.setString("market", "Saxess");
instrument_id.setString("currency", "SEK");

ericb.setDictionary("instrument_id", instrument_id);

When the MapMessage is created you follow the same steps as you did when sending
an order_feed and trade_feed messages.

B.1.7 Create a order_insert message
Now we want to use the prices we receive from the price_feed messages to buy
Ericsson B stocks.

Price_feed messages from the OP Server are picked up by the onMessage() function
in the listener. To check the latest price you use the getString() functions.

String last=message.getString("last");

The next step is to create an order_insert MapMessage buying 1000 Ericsson B stocks
on the Saxess market for the latest price.

order_insert = session.createMapMessage();
order_insert.setMessageType("order_insert", unique_Nr);

order_insert.setString("activate", "exchange");

Dictionary order=new Dictionary();
order.setString("buy_or_sell","buy");
order.setString("price", last);
order.setString("volume", "1000");

Dictionary instrument_id=new Dictionary();
instrument_id.setString("market", "saxess");
instrument_id.setString("feedcode", "101");

order.setDictionary("instrument_id", instrument_id);

order_insert.setDictionary("order",order);

The MapMessage we have just created represents the OP message shown below. If we
look inside the MapMessage it will look as displayed in Table 8.

 53

{ message_info = { message_type = order_insert } | activate =
exchange | order = { buy_or_sell = buy | instrument_id = {
market=Saxess | FeedCode=101} | Price = last | Volume = 1000 }}

MapMessage
Message_info Dictionary
Active “Exchange”
Order Dictionary
Message_info
Message_type “order_insert”
Order
Volume “1000”
Price “10”
Buy_or_sell “buy”
Instrument_id Dictionary
Instrument_id
Market “Saxess”
Feedcode “101”

Table 8 - An order insert MapMessage.

When the MapMessage is loaded, it is time to send the message to the OP Server.
This is done the same way as when sending the order_range_get and trade_range_get
messages.

B.2 Unsubscribe from a Topic
To unsubscribe from a feed message use the Topic object and the function
unsubscribe(). The input to this function is the Listener and the MapMessage used
when subscribing. For example, to unsubscribe the feed message created in section
B.1.2 we would write:

order_feed.unsubscribe(this , order_feed_toggle);

B.3 Retrieving a reply message
To be able to retrieve a reply message from the OP Server you first have to create a
consumer object. This is done using the Session object.

consumer=session.createConsumer();

When the consumer is created you can start receiving messages. Use the function
receive() with a unique number as input. This unique number should be the same as
you used when sending the message to the OP Server.

MapMessage aReply = consumer.receive(unique_Nr);

When the message is received you can start using the information stored in the
MapMessage. The functions getDictionary() and getString() will give you the
Dictionaries and key/value combinations needed.

 54

B.4 Closing the connection
When you are finished exchanging information with the OP Server you need to close
the connection. This is very simple using the Connection object.

connection.close();

www.kth.se

COS/CCS 2007-17

