
Master of Science Thesis
Stockholm, Sweden 2007

COS/CCS 2007-04

N U P U R B H A T I A

Policy Management in
Context-Aware Networks

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Policy Management in Context-Aware Networks

Nupur Bhatia

2007-02-14

Master of Science Thesis Project
Conducted at Ericsson Research

Industrial supervisor: Theo Kanter (Ericsson Research)

Academic supervisor: Gerald Q. Maguire Jr.
Examiner: Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
Royal Institute of Technology (KTH)

i

Abstract

The Ambient Network (AN) Project is part of the European Commission’s 6th
Framework Programme and aims to enable cooperation between heterogeneous
networks, using current and future wireless technologies, minimising the effort of
mobile users to gain access to the services that they are interested in - irrespective of
their location or the network they are currently using. Because of the highly mobile
nature of users and a demand for instant and dynamic access to services, these
networks have to be composed ‘on the fly’ without any pre-configurations.

The use of context information in AN can remove the need for pre-configuration of
networks, hence making them autonomic. However, a concern exists that the free and
uncontrolled dissemination of context information could breech the privacy of the
participants. It is extremely important to address these privacy issues in order to
control who has access to what context information. This control can be achieved
through the use of well defined policies. This creates a requirement for a framework
in the ContextWare architecture for protecting context information.

This masters thesis project is part of an effort to create a policy based infrastructure
for authorisation of access to network context information within the AN. The thesis
investigates, models, and designs an architecture for a policy management system
based on OASIS XACML, that creates an extension to the architecture for
management of context information in the AN. In addition to a policy management
architecture within an AN, a policy management architecture for composing ANs is
also created. To facilitate the transfer of requests and policies, the thesis creates a
Policy Management Protocol. The designed architecture was then implemented to
create a proof of concept.

The designed architecture and protocol were evaluated by running tests on the
prototype. The measurements from the tests are analysed and presented in this thesis.
The analysis of the experimental data indicates that a policy management system is
both feasible and practical. The results show that the delay overhead caused by
introducing policy management in a distributed context provisioning system, ranges
from 1.7% in a system without load to 6% in a worst case scenario. The throughput of
the policy management system is 15 requests per second under load.

ii

Sammanfattning

Ambient Network är ett EU-finansierat project inom det 6:e ramprogrammet.
Projektets mål är att möjliggöra samarbete mellan heterogena nätverk, som använder
både dagens men även framtidens trådlösa teknologier, för att minimera
slutanvändarens insats för att nå den tjänst de är intresserade av – oberoende av plats
eller vilket nätverk de använder. På grund av den stora delen av mobila användare
som kräver omedelbar och dynamisk tillgång till tjänster måste dessa nätverk gå
samman ’on the fly’ utan tidigare konfigurering.

Användningen av context information i Ambient Networks kan elmininera behovet av
förkonfigurering av nätverk, följaktligen blir de då autonoma. Dock, ett problem som
uppkommer med detta är att den fria och okontrollerade spridningen av context
information bryter integriteten för deltagarna. Det är väldigt viktigt att ta itu med detta
problem för att kunna kontrollera vilka som har tillgång till vilken context
information. Den här kontrollen kan uppnås genom väldefinierade policies. Detta
skapar ett behov av ett ramverk inom ContextWare arkitekturen för att skydda den
tillgängliga context informationen.

Den här uppsatsen är en del i ansträngningen att skapa en policy baserad infrastruktur
för attestering av tillgång till context information inom Ambient Networks. Uppsatsen
undersöker och designar en arkitektur för ett policy handhavande system som är
baserat på OASIS XACML, den bygger vidare på arkitekturen för handhavande av
context information i Ambient Networks. Utöver policy hantering inom ett ambient
network skapas också policy hantering mellan ambient networks när de förenas. Den
framtagna arkitekturen är därefter implementerad för att visa på konceptets hållbarhet.
En sammanslagning av två policy handhavande system när två nätverk slås ihop är
behandlat endast i teorin, det är inte implementerat.

Designen utvärderas genom att köra test på den implementerade versionen och
därefter analysera och visa resultaten i rapporten. Dessa test innehåller mätningar av
fördröjningen av en enda begäran samt flera, responstiden i ett system med policy-
hantering jämfört med utan samt prestandan i ett policy-hanteringssystem med en liten
mängd policies jämfört med en större mängd policies.

iii

Acknowledgements

I would like to thank Professor Gerald Q. Maguire Jr. for being my academic
supervisor and guiding me with his valuable comments and questions throughout my
thesis; which lead me in the right direction.

I would like to express special thanks to my supervisor at Ericsson, Theo Kanter for
giving me an opportunity to work on this thesis project. I have reverted to him a
number of times when I felt myself in a deadlock situation and discussions with him
have always helped me bring things into focus. His support, suggestions, and
feedback have led me in the correct direction during my thesis work.

I would also like to extend thanks to my colleague Markus Swenson with whom I
have bounced many ideas and had frequent discussions in the area of my work,
helping me to crystallize my ideas.

Many thanks to Börje Ohlman from Ambient Network Project for giving me
directions during our discussions in the initial phase of the project.

The figures, Fig.1 to Fig. 8 in this report have been used with the permission of the
Ambient Network Project.

Last, but not the least, I would like to thank my family for their patience,
understanding, and support during my studies. I dedicate my thesis to them.

iv

Table of Contents

1 INTRODUCTION...1

1.1 THE AMBIENT NETWORK ...1
1.2 AUTHORIZATION WITHIN AMBIENT NETWORKS ...2
1.3 LONGER PROBLEM STATEMENT ..3
1.4 METHODOLOGY AND REPORT STRUCTURE ..4

2 BACKGROUND RELATED TO AMBIENT NETWORKS..5

2.1 AMBIENT CONTROL SPACE (ACS) ...6
2.2 AMBIENT INTERFACES ...7

2.2.1 Ambient Network Interface (ANI) ...8
2.2.2 Ambient Service Interface (ASI) ...8
2.2.3 Ambient Resource Interface (ARI) ..8

2.3 CONTEXT AWARE NETWORKS ...8
2.4 CONTEXTWARE ARCHITECTURE ..9

2.4.1 ContextWare Components ..10
2.4.2 Context Coordinator FE ...11
2.4.3 Context Manager FE ..11
2.4.4 Universal context ID...13

2.5 WORK DONE BY SERGIO QUINTANILLA VIDAL...14
2.6 ADAPTIVE & CONTEXT-AWARE SERVICES (ACAS) PROJECT ..14

3 BACKGROUND RELATED TO POLICY MANAGEMENT...16

3.1 GEOPRIV (GEOGRAPHICAL LOCATION/PRIVACY) ARCHITECTURE16
3.2 IETF PBM FRAMEWORK ...17
3.3 POLICY BASED MANAGEMENT FRAMEWORK FOR AMBIENT NETWORK (PBMAN)18
3.4 COMMON OPEN POLICY SERVICE (COPS) PROTOCOL ...19
3.5 OASIS XACML [13]...20

3.5.1 Rules and Policies...21
3.5.2 Combining Algorithms..21
3.5.3 Target ...22
3.5.4 Attributes ..23
3.5.5 Attributes with multiple values ...24
3.5.6 Policies in a Distributed System ...24
3.5.7 XACML context...24
3.5.8 Data Flow Model..25
3.5.9 The advantages of XACML...27

4 DESIGN OF A POLICY MANAGEMENT SYSTEM (PMS) ARCHITECTURE...............28

4.1 DESIGN DECISIONS FOR POLICY FRAMEWORK AND POLICY MANAGEMENT IN AMBIENT

NETWORKS ...28
4.1.1 Store all policies in a common repository ..28
4.1.2 Centralised PDP and distributed PEP approach ...29
4.1.3 Other Decisions ..30
4.1.4 Policy types...31

4.2 ANALYSIS OF THE CENTRALISED APPROACH FOR THE PMS..31
4.3 POLICY MANAGEMENT ARCHITECTURE ...33
4.4 THE OPERATION OF THE PMS ARCHITECTURE DURING COMPOSITION..................................37
4.5 EXAMPLE SCENARIO ..40
4.6 USE CASE ...41

4.6.1 Use Case for General Access Policies..41
4.6.2 Use Case for fine grained Access Policies at Source ...42
4.6.3 Use Case for fine grained Access Policies at Context Manager.....................................42

4.7 POLICY MANAGEMENT PROTOCOL (PMP) ...43
4.7.1 Transport Protocol ...43
4.7.2 Message format...44
4.7.3 Reliability over UDP ..44
4.7.4 Policies within the AN ..44

v

4.7.5 Policy Enforcement Points..44
4.8 MESSAGE FLOWS ...45

4.8.1 Policy Registration ...45
4.8.2 Access Control for UCI resolution by client at the ConCoord PEP...............................46
4.8.3 Access Control for UCI resolution at the Source or CM PEP..47

4.9 MESSAGE PROTOCOL ...48
4.9.1 REGISTER Message ...49
4.9.2 REGISTER_ACK Message ...49
4.9.3 REGISTER_POLICY Message ...49
4.9.4 ACK Message ...49
4.9.5 REGISTER_RESPONSE Message..49
4.9.6 RESOLVE Message ..49
4.9.7 ACCESS_REQUEST Message..50
4.9.8 ACCESS_RESPONSE Message..50
4.9.9 RESOLVE_RESP Message ...50
4.9.10 GET/SUBSCRIBE Message ...50
4.9.11 GET_REQUEST/SUBSCRIBE_REQUEST Message ...50
4.9.12 CONTEXT_RESPONSE Message..50

5 IMPLEMENTATION ..51

5.1 HARDWARE EQUIPMENT ..51
5.2 SOFTWARE ENVIRONMENT...52
5.3 NETWORK ENVIRONMENT..52
5.4 IMPLEMENTATION DESCRIPTION ..52
5.5 PROTOTYPE LIMITATIONS ..53

6 EVALUATION ...54

6.1 TEST SETUP..54
6.2 NETWORK LATENCY ..55
6.3 RESPONSE TIME MEASUREMENTS FOR A SINGLE REQUEST ..58
6.4 RESPONSE TIME MEASUREMENTS FOR A BURST OF REQUESTS ..60
6.5 RESPONSE TIME MEASUREMENTS FOR A SEQUENCE OF REQUESTS ..64
6.6 LATENCY IN A SYSTEM WITH PMS COMPARED TO ONE WITHOUT A PMS.............................67
6.7 ANALYSIS...68

7 CONCLUSION AND SUGGESTIONS FOR FUTURE WORK..70

7.1 CONCLUSION ..70
7.2 SUGGESTIONS FOR FUTURE WORK ..71

REFERENCES ...73

vi

List of Figures

Fig. 1: High level view of the Ambient Networks with the common............................5
Fig. 2: Ambient Control Space and the Ambient Interfaces [11]6
Fig. 3: Ambient Network composition creating a larger AN [12].................................7
Fig. 4: ContextWare architecture [4] ...10
Fig 5: Flow sequence of context primitives [4] ...11
Fig 6 : Directed Acyclic Graph of Context Associations [4].......................................12
Fig 7: GEOPRIV architecture [4] ..17
Fig 8: PBMAN Information Model ...18
Fig 9: Flow Diagram of access control request/response language of XACML20
Fig 10: XACML Framework ...25
Fig 11: Centralized PMS and distributed PEP approach ...32
Fig. 12 Basic architecture of Policy Management System within AN33
Fig. 13 Policy Management Architecture in AN ...34
Fig 14 : Policy Management Architecture handling fine grained policies at Source ..36
Fig 15 : Policy Management Architecture handling fine grained policies at Context
Manager ...37
Fig. 16: Network integration composition or full delegation38
Fig 17: Network interworking composition or no delegation......................................39
Fig 18: Partial delegation in Control sharing composition ..39
Fig. 19 : Operation of PMS architecture during Composition....................................39
Fig. 20: Use Case for general access policies ..41
Fig 21: Use Case depicting the scenario ..42
Fig 22 : Use Case for processed information...43
Fig 23: Policy Registration at ConCoord...45
Fig 24 : Policy registration at PMS..46
Fig 25 : UCI resolution at ConCoord PEP...47
Fig 26 : Flow Diagram when source or CM has PEP role...48
Fig 27: Prototype node distribution and message flow..51
Fig 28 : Messages with time reference ..55
Fig 29 : Network latency measurement ...56
Fig 30 : Latency measurement, to extract the network latency components56
Fig 31: Total Latency in the Network..58
Fig 32: Response times for a single access request from a client59
Fig 33: Request evaluation time for a single access request from a client60
Fig 34: Response time for a burst of 5 requests...61
Fig 35: Response time for a burst of 10 requests...62
Fig 36: Request Evaluation time for a burst of 15 requests ...63
Fig 37: Request Evaluation time for a burst of 20, 25, and 30 requests64
Fig 38: Response time for a sequence of 30 requests spaced apart by 2 seconds........65
Fig 39: Response time for a sequence of 30 requests spaced apart by 1 second66
Fig 40: Response time for a sequence of 30 requests spaced apart by 500 milliseconds
..67

vii

List of Tables

Table 1: Network Latency ...58
Table 2: Response time for Single Access Request...60
Table 3: Average PMS request evaluation time per request..64

viii

List of Abbreviations

ACAS Adaptive & Context-Aware Services
ACS Ambient Control Space
AN Ambient Networks
ANI Ambient Network Interface
API Application Programming Interface
ARI Ambient Resource Interface
ASI Ambient Service Interface
CCH Cross Layer Context Handling
CCP Context Control Plane
CIB Context Information Base
CLA Context Level Agreement
CM Context Management
CME Context Management enabled Entities
ConCoord Context Coordinator
CUA Context User Agent
CXP Context Exchange Protocol
FA Functional Area
FE Functional Entities
FP6 Sixth Framework Programme
IST Information Society Technology
LG Location Generator
LI Location Information
LR Location Recipient
LS Location Server
OASIS Organization for the Advancement of Structured Information Standards
PAN Personal Area Network
PAP Policy Administration Point
PDP Policy Decision Point
PEP Policy Enforcement Point
PIP Policy Information Point
PMT Policy Management Tool
QoC Quality of Context
RM Rule Maker
SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions
SIP Session Initiation Protocol
TCP Transmission Control Protocol
UCI Universal Context ID
UDP User Datagram Protocol
URI Universal Resource Identifier
URN Uniform Resource Name
WP6 Work Package 6
WWI Wireless World Initiative
XACML eXtensible Access Control Markup Language
XML Extensible Markup Language

Chapter 1: Introduction

1

1 Introduction

This chapter introduces the general area of the thesis and presents the problem that

this thesis aims to solve.

1.1 The Ambient Network

Mobile and wireless networks today are evolving beyond GPRS and 3G to include
WiFi and WIMAX and this heterogeneity brings with it both differences in access
technologies and differences in mobility support. In addition to multiple access
technologies, the networks themselves may be mobile, including both moving access
networks as well as mobile Personal Area Networks (PAN). Today there is a need to
provide a means to seamlessly traverse network to network, operator to operator, and
device to device, so that the user is provided with an affordable, apparently
homogeneous, and ubiquitous network.

The Ambient Network (AN) project [1] is co-sponsored by the European Commission
under the Information Society Technology (IST) priority under the 6th Framework
Programme and undertakes the task of bringing the appearance of homogeneity into
the above mentioned networks.

“Ambient Networks offers a fundamentally new vision based on the
dynamic composition of networks to avoid adding to the growing
patchwork of extensions to existing architectures. This will provide
access to any network, including mobile personal networks, through
instant establishment of inter-network agreements.”[1]

To enable the dynamic behaviour needed in such an AN, the networks have to be
aware of context information. Awareness means both acquiring and acting on this
information. Context is any information that explains the situation of a person, place,
or object [2]. For the AN, the relevant context could be related to storage in devices,
data rates of the links in each (access) network, mobility handoff decisions, user
location, etc. Moreover, in a mobile scenario this context will change and so the
network should adapt to these changes to ensure that the user is always presented with
optimised services and applications: ideally without any need for user intervention.
Context Networks are networks which have the ability to collect, manage, and
distribute context information from and to the various network entities, user services,
and applications.

The Ambient Network project proposes to transparently integrate heterogeneous
networks when needed, on the fly, without being preconfigured by the involved
network operators. The task could become very complex when taking into account
user mobility and the fact that this complexity should be hidden from the user. The
key to reducing this complexity lies in using context information to make autonomic
decisions [4] thus providing the user with the best connectivity possible based on the
users’ requirements at that time and the current capabilities of the available networks.
Work-Package 6: Context Aware Networks (WP6) in the Ambient Networks
project is dedicated to exploiting the advantages of context awareness to “make
mobile communication networks simpler, more efficient, and more powerful” [1]. The

Chapter 1: Introduction

2

task of WP6 has been to create a system architecture for context management called
ContextWare. The aim of this ContextWare architecture (refer section 2.4) is to make
the network itself context aware by making use of user context and network context
information, thus enabling intelligent decision making, hence providing better
services to users. [3]

1.2 Authorization within Ambient Networks

The definition of context in terms of Ambient Networks includes all information
related to any entity in the environment where these entities could be humans,
applications, devices, and software agents. In addition context information represents
some aspect or property that describes the entity and this property could be an
absolute physical property such as the temperature of an entity, or the capacity of a
network, or it could be a logical property such as the cost of a service, or the security
level in a network (which could be different in different situations and is determined
by the creator of the context). Managing this wide range of context data to aid the AN
in self management is a complex task. Moreover the context information is sensitive
information which could be used to alter the behaviour of the network or service and
so access to this context information must only be provided to entities that have the
appropriate access. Security is not just related to controlling who gets into the AN
(authentication). What these entities are allowed to do (authorisation), once inside the
network, is just as critical.

Control means not only preventing the leakage of data, but also permitting access to
necessary information. Access control permits users to access only the information
they have privileges for.

Policies are required to grant access to context information in a secure way, thus
translating the technology independent high level system goals to low level actions.
Here the policies are related to context information and the context information itself
is considered to be the resource for which access is needed.

In addition to providing Access-Control, policy-based networking has been used to
provide a degree of automation, by linking actions in the network to system-events.
Policies permit adaptation of network behaviour without modification of the
implementation and introduce network management flexibility as they seek to control
network behaviour using sets of high-level rules.

ANs require a flexible and scalable policy-based management system that can fulfil
management requirements of all other functional entities in the Ambient Control
Space (see section 2.1). Responsibilities of this management system include network
management, service management, and context management. To realize these
responsibilities, the system must deal with different types of policies such as those for
handling access control, mobility, security, context, composition, QoS, service
provisioning, etc.

The management system must also provide the means to define security policies that
can specify ownership and permissions, and are “well written” in order to avoid
conflicts with other policies within the network.

Chapter 1: Introduction

3

Policies are expressed as a sequence of rules to control the behaviour of an entity (i.e.
as a condition-action pair). Policies can be utilized to realize core management
functionalities such as context management, network management, and service
management. Policies can also be used for processing raw context information
through aggregation, transformation, or filtering to produce new context information.
Finally, access policies can be used to securely control and monitor context
dissemination to services and applications which can either request context values or
decisions of actions to be performed according to the current context.

This thesis implements the management of access to context information through the
use of policies. The aim of this thesis is to provide the ContextWare architecture with
a privacy sensitive authorisation framework utilizing policy management, in order to
control the access and distribution of context information within the boundaries of the
ambient network and for inter network distribution. The specifics of how this is to be
done are described in the next section.

1.3 Longer problem statement

Previous work in the area has been related to designing an architecture and
communication protocol for the collection, management, storage, and distribution of
context information in the Ambient Network [6]. Although there are lot of benefits
achieved by making networks context aware and enabling sharing of context
information between the various network entities to make the networks self-
organising and self-managing, it is very important to keep in perspective the threats of
exposing this context information to undesired entities in an uncontrolled manner.

This motivates the development of a policy framework for authorization of access to
context information. This framework must take into account the nature of the
ContextWare architecture, hence it should provide a high degree of flexibility in order
to support a wide range of services. Authorisation policies should express the context
source’s desires regarding the distribution of context access to other entities [7].

The task of this thesis is to investigate, model, structure, and evaluate a policy
management extension to the ContextWare support in the scope of the Ambient
Network project.

The tasks can be further elaborated as below.

� The main task is to create a policy management architecture to enable
ContextWare (context aware) decisions about authorisation of access to both
ContextWare entities and context. The authorisation scope should be within the
Ambient Control Space(ACS), between different ACSs via the Ambient Network
Interface(ANI), or from the service and application layer via the Ambient Service
Interface(ASI). (For additional details about ACS and interfaces see sections 2.1
and 2.2)

� Develop a protocol to parameterize policies with context information from
ContextWare. This protocol should provide a way to filter, aggregate, or correlate
context information from various sources. The architecture of the policy

Chapter 1: Introduction

4

management extension will be based on OASIS XACML. (For additional details
about OASIS XACML see section 3.5)

� Develop a prototype based on the designed architecture to manage access to
context information within the Ambient Network.

� Carry out measurements during the testing phase to determine that the
computations regarding authorization and dissemination of policy decisions with
respect to context data can be made in a timely fashion. (These results are
presented in Chapter 6).

� Propose further work based on the results regarding extensibility of the approach
and standardisation. (Future work is summarised in Chapter 7).

1.4 Methodology and Report Structure

The applied methodology and structure of the thesis are as follows:

1. Background study in the area of Ambient Networks. (Chapter 2)
2. Study of existing technologies and background for access control through

policy management. (Chapter 3)
3. Discussion of the design principles and design of the policy management

system architecture with example use cases and design of the policy
management protocol. (Chapter 4)

4. Prototype implementation details along with key features and limitations.
(Chapter 5)

5. Evaluation and analysis of the designed architecture and protocol based on
tests performed on the prototype. (Chapter 6)

6. Overall conclusion and suggestions for future studies. (Chapter 7)

Chapter 2: Background related to Ambient Networks

5

2 Background related to Ambient Networks

This chapter provides an introduction to the Ambient Network Project and specifically

to ContextWare concepts. It also briefly covers previous projects done within the

area. Figures one through six in this chapter have been used with the permission of

the Ambient Network project.

Ambient Networks is part of the Information Society Technologies (IST) priority in
the Sixth Framework Programme (FP6) of the European Community for research,
technological development, and demonstration activities. FP6 is part of the Wireless
World Initiative (WWI) which aims to maintain European leadership in wireless
technology by bringing together an industry led consortium of leading operators,
vendors, and research organizations that work together with the determination, skill,
and critical mass to create cross-industry consensus and to drive standardization. [8]

The Ambient Network project aims to connect the heterogeneous networks belonging
to different operators and technology domains by creating a common network control
layer so that these networks appear homogeneous to users. The design paradigm
adopted in the Ambient Network is a horizontal layer of networks with a common
control function, the Ambient Control Space (Fig. 1), that offers services to a wide
range of applications. The central ideas are instant and dynamic composition of
networks without a need for pre-configuration, in order to allow rapid adaptation of
the network topology as needed for moving networks or users. This approach would
enable network operators to easily manage and dynamically setup network
configurations, while the users would benefit from transparent transitions from
network to network and from access to services in different networks without needing
manual intervention.

Fig. 1: High level view of the Ambient Networks with the common

Ambient Control Space for the various

network technologies [9]

Chapter 2: Background related to Ambient Networks

6

The advantage of the Ambient Network paradigm is that it uses both existing and new
networks as building blocks and connects all of these networks together into a larger
system. As illustrated in the figure above, users could own the networks themselves,
as in the case of a Personal Area Network (PAN), i.e. a network of devices directly
associated with the user. This PAN can, using the Ambient Network architecture,
connect seamlessly to other networks such as WLANs and the 3G networks.

The goals of such ambient networks are to provide a scalable and affordable mobile
communication network that provides rich and easy to use communication services in
a cost effective manner, while promoting competition and cooperation amongst
operators and technologies; thus allowing for incremental market introduction of new
technologies. [9]

2.1 Ambient Control Space (ACS)

The framework of AN functionality is a coordinated set of control functions,
collectively referred to as the Ambient Control Space (ACS), which acts as a control
layer to connect existing heterogeneous networks. The ACS manages the underlying
data transfer capabilities and presents a set of well defined control interfaces towards
other ambient networks, the supported services and applications. The ACS can be
subdivided into two types of Functional Entities (FE): the actual Control FE and the
Control Space Framework FE. The actual Control FE includes the Composition
Management entity, Mobility Management entity, etc. These are embedded into the
Control Space Framework (shown as boxes in Fig. 2). Whereas the Control Space
Framework FE consists of functions, needed to assist the actual control functions in
control and management tasks and coordination with other FEs in the control space.
The different Control FEs achieve connectivity with each other by sending messages
via the Control Space Framework FE.

Fig. 2: Ambient Control Space and the Ambient Interfaces [11]

The key feature of the ACS architecture is the modularity achieved by decomposition
into a set of FEs. Ambient Networks, internetworking is based on different
technologies using existing internetworking approaches, such as translation or global
layering.

Chapter 2: Background related to Ambient Networks

7

ACS offers networks the flexibility to move either physically or logically at any time.

As an example, a user can achieve restricted mobility within a network, but when she
moves out of the range of this network, into another network, she might have to
initiate connectivity from scratch again. Instead, using ACS, this connectivity is
achieved transparently by providing a uniform abstraction of the underlying
connectivity to the control space. By using the ACS functionality in the AN, both
networks would have a common control layer, and this would thus help bridge the
control gaps between connectivity islands, allowing a seamless transition for the user
from one network to the other, giving the user the illusion of using a homogeneous
network. [12]

The Ambient Control Space together with network connectivity via Internet Protocol
(IP) is called an Ambient Network. The main characteristics of an Ambient Network
are

� Well defined control interfaces to other ANs, applications, and services.
� Provides all or a subset of the ACS functions.
� Enable dynamic composition of ANs to form a new AN.

Fig. 3: Ambient Network composition creating a larger AN [12]

2.2 Ambient Interfaces

The Ambient Network provides access to the ACS through the use of three interfaces,
the Ambient Network Interface (ANI), the Ambient Service Interface (ASI), and the
Ambient Resource Interface (ARI). These interfaces are used by other ANs,
applications, or connectivity resources (such as routers, media transcoders, etc.) to
connect to the ACS.

Chapter 2: Background related to Ambient Networks

8

2.2.1 Ambient Network Interface (ANI)

The Ambient Network Interface is an (horizontal) interface that connects the ACS
functions of different ANs. The ANI creates a common ACS composed of different
ANs by facilitating communication between the control spaces of participating ANs.
[12]

2.2.2 Ambient Service Interface (ASI)

The Ambient Service Interface is an (vertical) interface that exposes the connectivity
and control functions of the AN to the application layer. This interface lies between
the ACS and the application and makes it possible to implement services without
needing to worry about the heterogeneity of the underlying access networks. Using
the ASI, network context information is made available to applications. [12]

2.2.3 Ambient Resource Interface (ARI)

The Ambient Resource Interface is another (vertical) interface located within a node
between the ACS and the physical connectivity network. The ARI abstracts the
specific control techniques of the underlying connectivity network, thus allowing the
control functions of the ACS FE to operate seamlessly over a heterogeneous network
infrastructure. The ARI provides control mechanisms for managing resources such as
routers, radio terminal interfaces, access points, media transcoders, etc. [12]

2.3 Context Aware Networks

Context information is the situational or environmental information about a person,
place, or thing. Making a system context aware enables the creation of an intelligent
system. However, traditionally context awareness has only been used at the
application level. Along with recent increase in the number of available access
technologies and access networks, there has also been an increase in the number of
devices available with a user, so that a user can interact with more than one access
network. This creates the need to provide (heterogeneous) pervasive computing at the
network level, thus creating the requirement for context information management
across networks and devices. The aim of WP6 in the AN work package 6 (WP6), is to
bring context awareness to the network level, thus making the network entities context
aware.

“ANs aim to support a common framework for context awareness
across all functions in the ACS in order to adapt service availability
and service delivery in heterogeneous networks and dynamic
environments.” [10]

Context information can be categorized into different categories as under [3]:

� Volatile or non-volatile context information -- depending on how fast the
context information changes

� Real time or non-real time context information
� Private or public context information

Chapter 2: Background related to Ambient Networks

9

� Network- centric (network connectivity and bandwidth, resources available,
etc.) or user-centric (user profile, location, etc.) context information

Bringing context awareness to the network level requires network entities to collect
relevant context information and to adapt based on this context information. So
instead of the traditional concept of applications adapting to context information, in
context aware networks, the network protocols adapt based upon the context
information. This benefits the network services available through the functions of
ACS, by providing them with raw context information and also the possibility of
processing and using this processed context information. The user services can also
benefit from network context information across different networks and domains.

2.4 ContextWare architecture

ContextWare is a term coined by researchers participating in WP6. This term is the
name for a proposed architecture for management of context information. In broad
terms, the task of ContextWare is collection of context information from context
providers, management of context information within the ACS, and distribution of
context information to context clients. These context sources and context clients could
be either user applications or network services/entities. Through the use of the
ContextWare architecture, the complete network can be made context aware. This
enables not only applications, but also network management and protocols to adapt
themselves based upon this context knowledge, thus directing the network entity’s
operation and decision making.

The various network services are referred to as the Functional Areas (FA) in an AN,
and one of the goals of WP6 is to make these FAs context aware. ContextWare
functionality mediates between the various FAs by managing the collection,
processing, and distribution of context information. It simplifies the interactions
between the FAs, making them efficient by reducing the number of interactions and
the overhead of control traffic thus improving performance. The ContextWare
architecture should to generic and not be dependent upon specific applications or
devices.

The basic concept underlying the ContextWare architecture [3] [18] is context
association which is a unidirectional relation from a context source to a context client.
It is the direction of the flow of context information. Each context association has
certain attributes linked to it such as Context Level Agreements (CLA), Quality of
Context (QoC), modes of retrieval (such as server push or client pull mechanisms) etc.

CLA are required for the establishment and enforcement of the policies governing the
kind of context information that is allowed to be exchanged between different parties.
CLA can be negotiated both between functions within one AN, and between two
different ANs to allow inter-AN context information utilization. Quality of Context
(QoC) refers to the nature of the context information in terms of precision, probability
of correctness, trust-worthiness, resolution, validity period, etc.

Chapter 2: Background related to Ambient Networks

10

2.4.1 ContextWare Components

The ContextWare architecture has five main components, specifically:

� Context Coordinator
� Context Managers
� Context Information Base
� Context Sources
� Context Sinks

The ContextWare architecture is realized through two main Functional Entities(FE),
the first implements the interface between the ContextWare architecture and other
FAs in the AN and the second implements the internal operations in the ContextWare
architecture. The two FEs are called the Context Coordination FE (ConCoord FE) and
the Context Management FE (CM FE) and are briefly covered below. [4]

AN#1
ACS#1

Context Co-ordination FE

Context Management
FE

CIB

Cntxtware
Clients

ASI

Context associations
and Data flows

Control messages flows

Application

QoS
FE

Other AN
Functional
EntitiesAggregated

Context
Context
Sources

ConCord FE
clients

Composition
FE

Mobility
FE

ConCord
FE

CIB

AN#2

ANI
Context
Sinks

ARI

Ambient
Connectivity

AN#1
ACS#1

Context Co-ordination FE

Context Management
FE

CIB

Cntxtware
Clients

ASI

Context associations
and Data flows

Control messages flows

Application

QoS
FE

Other AN
Functional
EntitiesAggregated

Context
Context
Sources

ConCord FE
clients

Composition
FE

Mobility
FE

ConCord
FE

CIB

AN#2

ANI
Context
Sinks

ARI

Ambient
Connectivity

Fig. 4: ContextWare architecture [4]

In addition to these two main FEs, the ContextWare Architecture includes Context
Sources, Context Sinks, and a Context Information Base (CIB). A Context Source is
the source of context information and could be a context sensor, network service, or
network resource. A Context Sink is the consumer of context information and places
its request with the ConCoord to receive specific context information. The CIB is a
repository of context information, collected from various Context Sources and it
makes this information available to the Context Sinks.

Chapter 2: Background related to Ambient Networks

11

2.4.2 Context Coordinator FE

The context coordinator (ConCoord) is a distributed registry and is the first point of
contact for all clients trying to access context information. The context coordinator
does not store the actual context information, but rather stores pointers to it. It returns
the address of the context source (that has previously registered the requested UCI
with the ConCoord) in response to a context client’s query for a particular UCI. The
context sources register with the distributed registry corresponding to the ConCoord
and specify their location and UCI after proper authentication and authorization. The
ConCoord also authenticates and checks the authorization rights of the context client
before providing it with the location of the context source containing the requested
context information. The primitives involved in the above context protocol are
REGISTER, RESOLVE, GET, SUBSCRIBE, and NOTIFY and are depicted in the
Fig. 5.

Fig 5: Flow sequence of context primitives [4]

The context sources REGISTER the UCI of their context information with the
ConCoord. When the context clients contact the ConCoord using RESOLVE to get
access to a specific item of context information, the ConCoord replies with the
address of the source where the requested context information exists, if access is
granted to the context client. The context client then directly fetches the context
information from the context source using the GET primitive. The context client could
alternatively SUBSCRIBE to a specific item of context information and whenever
there is a change in this context information, the context client would receive a
notification through a NOTIFY primitive.

2.4.3 Context Manager FE

The Context Manager (CM) entity is responsible for implementing the core internal
operations within the context provisioning system which include collection,

Client ConCoord Source

REGISTER (UCI)

REGISTER.resp

RESOLVE (UCI)

RESOLVE.resp (source)

GET (UCI)

SUBSCRIBE(UCI, event)

NOTIFY

GET.resp

Chapter 2: Background related to Ambient Networks

12

management, and distribution of context information to interested entities and also
management of context information sharing across domains.

The CM FE, if delegated, takes responsibility on behalf of the context sources to
manage and distribute context information to the appropriate clients. The CM FE
manages the contents of the CIB, distributing and storing the context information in
the most appropriate location in the CIB to address the issue of scalability, access
rates, and update rates. The CM FE also creates appropriate context associations for
managing scheduled interactions between context sources and sinks as well as for
aggregating context information to meet the client’s requirements. [18]

Similar to the Context Sources, the Context managers, once created register their
output type and capabilities with the ConCoord. The ConCoord's registry therefore
maintains mappings of context information to the location of context sources and of
context managers.

The context data received originally from context sources is in its raw form. This
information can be used as such directly by context clients, but sometimes the context
clients require information that has been collected from multiple sources and
processed in some way. The processing of information, in the form of aggregating,
correlating, or filtering of context information is done by the Context Manager (CM).
The entities involved in context processing are the context clients, the context sources,
and the CMs.

Lets assume a context client requires context information from one or more sources of
type T1, T2, …, Tn. The context manager contains a processing function ‘f’ that
transforms the input context information of type Ti to output context information of
type T. This resulting context information is then made available to the context client
through the context protocol. [4]

Fig 6 : Directed Acyclic Graph of Context Associations [4]

MGR

SRC

SRC

SRC

MGR

CL

CL

Multipipe

Chapter 2: Background related to Ambient Networks

13

As seen in Fig. 6, the initial sources are nodes that have zero inputs, the final clients
are nodes that have zero outputs and the CM are nodes that have non-zero inputs and
outputs. In relation to a particular client, the graph that links all the sources and
managers that lead to the client is called a multi-pipe graph for that client. In addition
to getting inputs from initial sources, the CM could also get input from another CM -
as long as the context information is type consistent. This enables recursive multi-pipe
establishment in a distributed way. This method is advantageous in the sense that the
partially processed context information can be used by different CMs in conjunction
with different initial sources to produce varied context information, thus reducing (or
avoiding) repeated processing. The ConCoord locates the final context manager,
which locates the managers for its input, which in turn locate the managers for their
input, and so on, until the inputs are all initial objects (i.e. basic context sources).

A CM can perform various processing functions, (such as filtering, converting,
logging, aggregating, or correlating) on the ‘raw’ context information and depending
on the type of processing, the CMs are of different types. CMs with only a single
input are either filters, loggers, or converters; while CMs with multiple inputs are
aggregators or correlators. Filter CMs extract specific input from the sources, logger
CMs create logs and records, and converter CMs transform the format of the input
context information.

2.4.4 Universal context ID

An item of context information can be considered as a data object, thus to reference
context information, some form of unique identification is needed. This identification
in the ContextWare architecture is called a Universal Context ID (UCI). A UCI is a
type of Uniform Resource Name (URN) which is a Universal Resource Identifier
(URI) that identifies a context by name in a particular namespace. The UCI simply
uniquely denotes a context, without indicating its location or how to dereference it.
The UCI can be represented in the following format [4]:

ctx://domain/path?options

where, “ctx” denotes the URI scheme for context identifier, “domain” is the domain
name of the Ambient Network where the context object is defined, the “path”
specifies the hierarchy of the existing context information using a set of case sensitive
words separated by slashes and the “option” specifies further modifiers to the context
information in the form of “parameter = value”.

The context information can be referenced locally within a domain by omitting the
network name as [4]:

ctx:/path?options

The difference between the two UCIs is that the fully-qualified UCIs contains a
double slash after the colon and a slash after the domain name, while local UCIs
contains only one slash and omits the domain name. The main advantage of local
UCIs is that context clients can always retrieve their desired context information using
the same name, even when the network changes. A given context object can have
multiple UCIs in the form of aliases. Two different UCIs are equivalent if and only if

Chapter 2: Background related to Ambient Networks

14

they refer to the same context information. There is work ongoing to standardize the
UCI namespace in order to keep the UCIs unique.

2.5 Work done by Sergio Quintanilla Vidal

Sergio Quintanilla Vidal [6] has used a centralized architecture and communication
protocol called Context Exchange Protocol (CXP) for collection, management, and
distribution of context information in the Ambient Network. This design moves the
complexity from the users’ device to the network, thus minimizing the use of the
resources in these devices. CXP is built over UDP, which is a stateless best effort
datagram protocol. Thus CXP implements some reliability measures, specifically the
addition of a sequence number, acknowledgements, buffering at the sender and
receiver, and retransmissions. CXP messages use the Extensible Markup Language
(XML) for communication. The centralized entity through which all other entities
communicate is the CM. Each device may have some context information to share, as
well as it could be interested in context information provided by other entities, thus
each device or entity could both be a context source and context client and is given a
generalized name of Context User Agent (CUA). Each CUA would not necessarily
have access to all the context information provided by other CUAs and the required
access rights are managed through access policies of each CUA. These policies
specify which entities have rights to access the context information belonging to a
CUA, but this is not sufficient for a real-world implementation as it doesn’t
specifically deal with control of a subset of the context information that could be
accessed. Since the design uses a centralized architecture, the core entity is a very
critical node and constitutes a single point of failure.

2.6 Adaptive & Context-Aware Services (ACAS) project

The ACAS project [5] deals with providing adaptive, user-centric Internet services to
users moving within a heterogeneous infrastructure. Unlike the Ambient Network
Project, where context exchange is at network level, the ACAS project exchanges
context information between application layer entities that own several devices. At the
core of the ACAS project is mobile middleware that enables application layer entities
to automatically configure services amongst themselves, without any prior
knowledge, by using context information. The context information is collected from
sensors, then processed, and distributed to context managers, which make this
information available to applications and services. The infrastructure that enables the
services to be context aware is called the Context Information Network and the
context managers in this system are called Context Management enabled Entities
(CMEs). The Context Information Network is based on the IETF Session Initiation
Protocol (SIP) for Instant Messaging and Presence Leveraging Extensions (SIMPLE).

A CME is the central entity in the Context Information Network and represents the
application layer entity such as user, organization, or location. This application level
general CME manages the context information held in devices linked to the user or
application by communicating with the local CMEs present at the devices. This device
CME communicates with the general user CME which is interconnected to other user
CMEs too in the form of a network and this enables devices, entities, and applications
to share context information. When the access to these CMEs is controlled through

Chapter 2: Background related to Ambient Networks

15

rule guided policies, it is termed as a context service, which is a distinct entity that can
be addressed.

Chapter 3 : Background related to Policy Management

16

3 Background related to Policy management

This chapter introduces the previous work done in the area of policy management and

access control. It covers in some depth the policy and access control language, OASIS

XACML which would be the base for the design of the policy management

architecture in the next chapter. Figure seven and eight appear in this chapter with

the permission of the Ambient Network project.

The use of context information in Ambient Networks can remove the need for pre-
configuration of networks, hence making them autonomic. However, a concern that
exists is the free and uncontrolled dissemination of context information breeching the
privacy of the participants. It is extremely important to address these privacy issues in
order to control who has access to what context information. This control can be
achieved through the use of well defined policies. This creates a requirement for a
framework in the ContextWare architecture for protecting context information.
Ambient Networks require a flexible and scalable policy management system that can
fulfill the requirements of all other functional entities in the ACS. Responsibilities of
the management system include network management, service management, and
context management. To realize these responsibilities, the system must deal with
different types of policies such as those for handling mobility, security, context,
composition, QoS, service provisioning, etc.

The management system must also provide a means to define security policies that
can specify ownership and permissions and are “well written” in order to avoid
conflicts with others within the network. To enable creation of policies that are “well
written”, we have to resort to the concept of Well Defined Services. Well Defined
Services provides a common understanding of the service semantics for all the entities
in the participating networks to identify the common services [23]. The policies
defined on a high level outlining the system goals must be technology independent.
These policies can then be interpreted into low-level actions thus improving
scalability with fewer policies to manage and less policy maintenance time.

Policy-based networking has been used to enable an increased degree of automation,
by linking actions in the network to system-events. Network management flexibility
can be achieved without the need of modification in the implementation, using
policies that dictate network behaviour based upon the available context information.
Policies seek to control network behaviour using sets of high-level rules. It is possible
to enhance the performance of such a system, by using systems that are context aware.

3.1 GEOPRIV (Geographical Location/Privacy) architecture

The GEOPRIV architecture deals with the authorization, integrity, and privacy
requirements of information handling in a location based system. A lot of work has
been done in this area and because of the similarities, the ContextWare architecture
can use parts of the GEOPRIV privacy framework in order to control access to
information stored in or referenced by the Context Information Base.

Chapter 3 : Background related to Policy Management

17

Fig 7: GEOPRIV architecture [4]

RFC 3693 [14] describes a protocol-independent model for access to geographical
location. As shown in Fig 7, the Location Generator (LG) gathers the location of the
Target and creates Location Objects (or in other words it produces Location
Information (LI)) and publishes this information to the Location Server (LS). The LS
receives this LI and applies the authorization policy rules received from the Rule
Maker (RM) to this Location Object. The LS optionally receives subscriptions from a
Location Recipient (LR). The authorization policies are rules that specify the specific
conditions under which the LS is authorized to forward LI to the LR and with what
precision. Depending on the rules, the identity of the LR, and the specific request
from the LR to access location information of a particular target, the access to LI is
granted to the LR with the reduced or enhanced data precision.

Comparing the components in the GEOPRIV architecture to ContextWare, and based
on similarities of task, we see that the LR maps to the context client, the LG maps to
the context source, the LI is the context information, and the LS maps to the
ConCoord and CM. The LS in the GEOPRIV architecture or the CM and ConCoord
in the ContextWare architecture play the role of Policy Decision Point. Further, the
ConCoord handles the coarse grained policies, while the CM and context source
handle the fine grained policies that are linked to particular context information.

3.2 IETF PBM Framework

The Policy Based Management (PBM) framework developed by IETF [16] is a
framework that can represent, manage, share, and reuse policies and policy
information. It is a model for policy management utilizing Policy Decision Points
(PDPs or alternately policy servers), Policy Enforcement Points (PEPs), a policy
repository, and a Policy Management Tool (PMT). A PDP handles requests by
applying the relevant policies retrieved by querying the policy repository, making
decisions, and distributing the result of the request to the PEPs. PEPs are entities (e.g.
routers) where the actions are actually enforced. The PMT is used to create, edit, and
administer the policies in the policy repository. Some protocols are necessary for the
interaction between the entities, for example, COPS (section 3.4) is used for
interworking between PDP and PEP, while LDAP is used by the PDP to access
policies in the policy repository.

Location
Server

Location

Generator

Rule

Repository

Location

Recipient

Publication Notification

Policy
Provisioning

Chapter 3 : Background related to Policy Management

18

The IETF framework mainly deals with policy based networking to facilitate network
management, device configuration, and traffic policing relative to Quality of Service
(QoS) constraints. The view taken by IETF framework is compatible with a
centralised model, but does not support the peer-to-peer technology used within AN
[19]. Because of the dynamic nature of an AN, and the need for a dynamic policy-
based infrastructure, the IETF policy framework designed for static networks is
inadequate.

3.3 Policy Based Management Framework for Ambient Network
(PBMAN)

PBMAN [17] is a policy based management framework within the Ambient Network
based on a distributed architecture. It is a policy environment comprised of
information and data models, a simple policy language called LPBMAN, and a policy
interpreter. A prototype in the form of a proof-of-concept has been implemented for
PBMAN using the DHT-based X-Peer middleware1 [24] as the main enabling
platform. The Policy Decision Network (PDN) is the central concept used in
PBMAN. It is responsible for storing and retrieving policies and making decisions
about requests. The PDN is comprised of PDN-Nodes and Repositories. PDN-Nodes
can interact with other PDN-Nodes and PEPs via a peer-to-peer infrastructure, thus
providing load balancing, fault tolerance, and scalability. The PBMAN architecture
recognises PDN ACS and Agent ACS (comprised of User and PEP ACS) as types of
implementations of ACS. The PBMAN architecture adds three new FEs to the ACS,
namely, a policy FE, a P2P FE, and a Data Management FE along with two
information repositories: the policy repository and the Management Information
Repository (MIR).

An information model has been built upon three main types of management entities:
policies, targets, and associations (as shown in Fig 8). Targets are entities such as
services or users that policies may be associated with.

Fig 8: PBMAN Information Model

1 Distributed Hash Table algorithm for performing lookups in peer-to-peer systems based on keys.

Chapter 3 : Background related to Policy Management

19

PBMAN also addresses the issue of composition in the Ambient Network and
classifies compositions according to two criteria: type of ACS involved and mobility
pattern. As mentioned earlier ACS recognises two types of ACS: Agent ACS and
PDN ACS. Thus depending on the type of ACS, the composition could be:
Agent/Agent, Agent/PDN, or PDN/PDN. Depending on mobility, the composition
could be of type fixed/fixed, fixed/mobile, or mobile/mobile. Considering all the
combinations of combining the two criteria, there could be nine types of composition
in PBMAN.

To analyse and test the effectiveness of the PBMAN approach, a video on demand
service was implemented, modelled, deployed, and tested using the X-PBMAN
prototype which is implemented using the X-Peer peer-to-peer middleware [24].

The PBMAN approach used its own policy language which limits its use as a
standardised PBM system. PBMAN does not address context awareness within the
Ambient Network and deals only with Policy management without considering
context information.

3.4 Common Open Policy Service (COPS) Protocol

As defined in RFC 2748 [15], the COPS protocol is a simple query and response
protocol that employs a client/server model where the PEP, acting as a client, sends
requests, updates, and deletes to the PDP; while the PDP, acting as a server, returns
decisions back to the PEP.

The connection between the PEP and remote PDP uses Transmission Control Protocol
(TCP) as its transport protocol making the exchange of messages reliable. The TCP
connection is initiated by the PEP. Subsequently, the communication between the PEP
and the remote PDP is mainly a stateful request / decision exchange. The COPS
protocol is stateful in two main respects:

1. Request/Decision state is shared between client (PEP) and server (PDP). This
means that requests from the client PEP are instantiated and remembered by
the remote PDP until they are explicitly deleted by the PEP. Thus, decisions to
the remote PDP can be generated asynchronously given a current instantiated
request state.

2. State from various events (Request/Decision pairs) may be interdependent.
This means that the server may respond to new queries differently because of
previously instantiated Request/Decision state(s) that are related.

The protocol is extensible and was created for the general administration,
configuration, and enforcement of policies.

The COPS protocol provides message level security for authentication, replay
protection, and message integrity. COPS can also reuse existing protocols for security
such as IPSEC or Transport Layer Security (TLS) [20] to authenticate and secure the
channel between the PEP and the PDP.

Chapter 3 : Background related to Policy Management

20

The PDP can also send unsolicited decisions to the PEP, e.g. the PDP can force the
PEP to change its behavior. Similarly, the PDP can send information for accounting or
monitoring purposes to the PEP.

The PEP out sources the decision making to the PDP. Although the PEP can make
local decisions under the direction of the local PDP, the final decision is made by the
remote PDP.

If the remote PDP is not available, e.g. due to a network error, the PEP must try to
connect to a backup remote PDP or revert to a local PDP. However, when the
connection to the remote PDP is restored, the PEP should update this (remote) PDP
based upon the decisions which occurred locally during the disconnection.

3.5 OASIS XACML [13]

The OASIS eXtensible Access Control Markup Language (XACML) is a standardised
access control policy language utilising XML syntax for managing access to
resources. It can be used for creating generic (i.e. usable in different environments),
extensible, distributed (across different networks and application), and expressive
policies.

XACML is the common language that creates a link between systems that: create
access policy, collect whatever information is necessary to determine compliance with
that policy, evaluate compliance, and enforce the policy.

The OASIS XACML standard provides an access control policy language that is for
defining restrictions for accessing each resource together with a request and response
language. It also provides a framework which uses the policy language. The
request/response language supports queries and depending upon the request, either
permits access or denies it. In addition, a Policy Decision Point (PDP) based on
XACML, supports functions for finding a policy applicable to a request and also for
evaluating the queries to decide whether access is granted or not.

Fig 9: Flow Diagram of access control request/response language of XACML

Chapter 3 : Background related to Policy Management

21

In a typical scenario, a requester wants to take an action on a resource and forwards a
request to the Policy Enforcement Point (PEP) that is associated with the resource and
that protects the resource. As shown in Fig 9, the PEP formulates a decision request
based on the request sent by the requester, the requester’s attributes, the resource, and
other relevant information, and forwards this request to the Policy Decision Point
(PDP). The PDP processes the request based on policies relevant to the request and
responds whether the access can be granted or not.

Policies are needed to handle requests from entities that attempt to access certain
resources. The entity has to be an authenticated user to avoid leakage of information.
The request should specify who is making the request, what resources are needed, and
what action needs to be taken by the resource. In very simple terms, a request can be
stated as:

3.5.1 Rules and Policies

The policy relevant to a particular request, i.e., a decision request, could be composed
of one or more rules or policies. The basic top-level policy elements in XACML are
Rule, Policy, and Policy Set. A Rule element consists of basic Boolean expressions.
Note that a rule element cannot be used independently in a PDP, but has to be
encapsulated in a Policy. The main components of a rule are: Target, Condition, and
Effect. The Target component is explained in section 3.5.3. The Condition is an
optional component and refines the applicability of the rule beyond the applicability
defined by the Target. The Effect component specifies the result of the Rule when it
evaluates to true; it has one of two values: Permit or Deny.

A policy element consists of one or more Rules, a Target, a method or algorithm for
combining the rules to make an authorization decision, and an optional obligation that
has to be fulfilled by the PEP before the result of the request can be used by the
requester. A Policy Set element consists of one or more Policies or Policy Sets or
references to policies in other locations and a method or algorithm for combining
these Policies and Policy Sets to make an authorization decision. In addition it may
contain a Target and obligations.

3.5.2 Combining Algorithms

The algorithms for combining the results of individual Rules and Policies are called
combining algorithms. There are standard combining algorithms defined in XACML
and these can be identified by RuleCombiningAlgID or PolicyCombiningAlgID
depending on whether it is used in a Policy or Policy Set element respectively.
XACML also provides a syntax for creating user defined combining algorithms. The

<Request>

 <Subject>Alice</Subject>

 <Resource>Print</Resource>

 <Action>Print</Action>
</Request>

Chapter 3 : Background related to Policy Management

22

standard algorithms within XACML are Ordered or Unordered Deny-overrides,
Ordered or Unordered Permit-overrides, First-applicable, and Only-one-applicable.

3.5.3 Target

In addition to processing the request from the PEP, the PDP also has to find the Policy
or Policy Set that is linked to the particular request. This is achieved through another
feature defined in XACML called the Target. A Target is a set of simplified
conditions for the Subject (an actor whose characteristics can be referenced in a
condition statement), Resource (data, service or system component), Action (an
operation on a Resource), and Environment (a set of attributes independent of the
subject, resource, or action that is linked to an authorization decision), that must be
met for a Rule, Policy, or Policy Set to apply to a given request. Thus the Target can
find the relevant policies that apply to a given decision request. When a request comes
to a PDP, the PDP verifies that the attributes defined in the target of the rule match
and satisfy the attributes for the subject, resource, action, and environment defined in
the request context. To enable quick lookup of policies, the Target also provides a
way to index these policies.

Once the relevant Policy that applies to a given request is found, the Rules in the
Policy are evaluated. The Rules are Boolean conditions that evaluate to a true or false
result and for a true result the Effect of the Rule is either a Permit or a Deny. If the
condition evaluated to an error, then the result of the Rule is Indeterminate, while if
the condition doesn’t apply to the request, then the result is Not Applicable.

Based on the combining algorithm type used for the rules or policies, the combined
results would vary. As an example, in the case of deny-overrides, if a single rule or
policy evaluates to deny, then regardless of results from other rules or policies, the
combined result is deny. In contrast to this, for permit-overrides, a single permit result
means a combined permit result regardless of results from other rules or policies.

The XACML schema for a target is:

Policies should specify to which requests they apply. This is done through the Target
attribute. The policy should also specify if the policy is to be applied to a particular
request, what effect will it have on the request. A single Policy can apply to multiple

<xs:element name=”Target”type=”xacml:TargetType”/>

<xs:complexType name=”TargetType”>

 <xs:sequence>

 <xs:element ref=”xacml:Subjects” minOccurs=”0”/>

 <xs:element ref=”xacml:Resources” minOccurs=”0”/>

 <xs:element ref=”xacml:Actions” minOccurs=”0”/>

 <xs:element ref=”xacml:Environments” minOccurs=”0”/>

 </xs:sequence>

</xs:complexType>

Chapter 3 : Background related to Policy Management

23

subjects and the policy will apply to each of the subjects (disjunction) one at a time. A
simple example of a policy applied to multiple subjects is:

3.5.4 Attributes

The basic unit in XACML is an attribute. Attributes are characteristics of a Subject,
Resource, Action, or Environment that is referenced in a Target. A request sent by a
PEP to a PDP is composed entirely of attributes which are then compared to the
attributes in policies to reach the access decision. A Named Attribute is an instance of
an attribute that is recognized by an attribute name, type, the identity of the Subject,
Resource, Action, or Environment that holds the attribute, and optionally the issuer of
the attribute. A target element can be specified by multiple attributes defined by
different identifiers and could be of different data types. All the attributes should
match (conjunctive) for the policy to be effective. An example is shown below:

The PDP processes the decision request, resolving the attribute values, using two
mechanisms: AttributeDesignator and AttributeSelector. The AttributeDesignator is
defined in the policy and specifies an attribute for the Subject, Resource, Action, or
Environment with the given name and type. The PDP tries to match the values
specified in the Policy with that of the value in the request. The AttributeSelector is
defined in the Policy and finds the attribute values through the data type and an XPath
expression which identifies the location of an attribute value.

<Policy PolicyId = ”Simple Policy”>

 <Target>

 <Subjects>

 <Subject>Alice</Subject>

 <Subject>Bob</Subject>

 <Resource>Printer</Resource>

 <Action>Print</Action>

 </Subjects>

 </Target>

 <Rule RuleId = ”PermitRule” Effect = ”Permit”/>

</Policy>

<Attribute AttributeId =”subject-id” DataType=”string”>

 Alice

</Attribute>

<Attribute AttributeId =”securityLevel” DataType=”int”>

 3

</Attribute>

Chapter 3 : Background related to Policy Management

24

3.5.5 Attributes with multiple values

The result of both AttributeDesignator and AttributeSelector can be multiple values
and is always returned as a special attribute type called a Bag; even if none or only
one value matches. A Bag is an unordered collection of values which may contain
duplicate values.

To reach an access decision, the resulting attribute values in the Bag are passed
through a set of Functions that can operate on any combination of attribute values to
return the attribute value supported by the system. These functions make it possible
for the PDP to unambiguously handle the case of multiple attribute values. These
functions can be used in various ways including in nested functions arranged in a
complex hierarchy. An example policy for finding the supported attribute is:

3.5.6 Policies in a Distributed System

Instead of storing all policies at a single point, the policies can be spread out in a
distributed system. This means that the policies could be written by different people
and enforced at various different points. This also enables the Policies to be modified
and updated independently as needed. XACML facilitates the collection, combination,
and processing of independent policies at a PDP by comparing attributes with the
relevant Target element relevant to the decision request.

To make extracting and finding the correct Policy for a decision request manageable,
it is necessary to index and identify the policies. This is done based upon the Target
element in XACML. Policies can be stored in a database and the relevant policies can
then be retrieved by the PDP through a database query. Or the policies could be
locally stored at the PDP and the Target element could be evaluated for a particular
decision request to select the relevant policy.

3.5.7 XACML context

The resources controlled by the different PEPs could be of various forms, e.g. a web
server or a remote-access gateway, and they could each use a different format to issue
decision requests. In order for the PDP to communicate and process requests from
multiple resources, either the policies in the various PEP have to be written in all the

<Policy PolicyId = ”Simple Policy”>

 <Target><Subjects><Subject>

 <SubjectMatch MatchId=”string-equal”>

 <AttributeValue DataType=”string”>

 Alice

 </AttributeValue>

 <SubjectAttributeDesignator

 AttributeId =”subject-id”/>

 </SubjectMatch>

 </Subject>…</Subjects></Target>

 …
</Policy>

Chapter 3 : Background related to Policy Management

25

different formats understood by all PEPs in the system or the PDPs could utilize a
standard format, such that any PEPs that use a format different from this would use a
translator to convert the request into the format understood by this PDP.

The latter approach has been adopted in XACML and the standard format for requests
and responses by the PDPs is called the XACML context and its syntax is defined as
an XML schema. The PEPs that issue requests in a different format have to pass these
requests through an intermediate step to convert them into XACML context in order
to be understood by the PDPs. This approach enables the Policies to be written and
analyzed independently of the environment in which they have to be enforced. The
XACML context defines a recognized representation for the input and output of the
PDP attributes. The actual conversion from the application environment to the
XACML context is a task for the individual implementations and is outside the scope
of the XACML specification.

3.5.8 Data Flow Model

Fig. 10 below shows a detailed data flow diagram encapsulating the access control
request/response feature of an XACML supported system.

Fig 10: XACML Framework

The policies and policy sets are created by a Policy Administration Point (PAP) and
made available to the PDP depending on the relevant Target. The requester that needs
access sends an access request to the PEP, which then forwards this request, along
with optional attributes for the Subject, Resource, Action, and Environment, in its
native language, to the context handler which acts as a translator. The context handler

Chapter 3 : Background related to Policy Management

26

transforms the native request to XACML context and sends it to the PDP. The PDP
queries the context handler for any available attributes. The context handler then
forwards this query to the Policy Information Point (PIP). The PIP obtains the
requested attributes from the relevant Subjects, Resource, and Environment and
returns them to the context handler. The context handler then sends this information to
the PDP along with the optional resource information. The PDP processes the request
and evaluates the policy and sends the authorisation decision back to the context
handler. The context handler transforms the result back into the PEP native language
and returns it to the PEP. Even if the PDP has returned a Permit result, there might be
some obligations defined for the PEP to fulfil before it can grant access to the
requester. If the authorisation decision was permitted, the requester is granted access,
otherwise the access is denied.

Let us assume an example control policy from a corporation named Medi Corp
(med.example.com) that states: “Any user with an e-mail name in the
“med.example.com” namespace is allowed to perform any action on any resource.”

Following the flow in the model diagram,

1. The Policy Administration Point (PAP) that is responsible for creating Policies
and Policy Sets, makes this policy available to the PDP.

2. When an entity, for example Bart Simpson, with e-mail name
bs@simpsons.com, tries to get access to some context information that could
be his medical record, he sends an Access Request to the PEP.

3. This request could be in the native request format of the requester and is
forwarded to the Context Handler along with optional attributes for subject,
resource, action, and environment, where it is translated into XACML context.
In this specific example, the subject is the email address of Bart Simpson, the
resource is his medical record and the action is read the medical record.

4. This request is forwarded to the PDP.
5. To process this request, the PDP requires attributes related to the request and

sends a query to the Context Handler.
6, 7, & 8. The Context Handler forwards this query to the Policy Information

Point (PIP) which collects the requested attributes from the relevant Subjects,
Resources, Action, and Environment and passes them back to the Context
Handler.

9 &10. The Context Handler returns the attributes to the PDP optionally also
adding the resource, which is the medical record in this case, in the context.
The PDP first locates the policy related to this request by comparing the
subject, resource, and action in the request against the subject, resource, and
action in the policy target. Having found the policy, the PDP processes the
request in relation to the rules that are specified in the Policy. For our specific
example, the PDP compares the Subject, Resource, and Action in the Request
against the Target of the one Rule in this policy. The requested resource
matches "AnyResource" and the requested action matches "AnyAction" in the
Policy, but the requesting subject-id does not match "@med.example.com".

11. The PDP returns the authorization decision and the response context to the
Context Handler which in this case would be Deny access.

���� The Context Handler performs the translation of the response back to the
native format and sends it to the PEP.

Chapter 3 : Background related to Policy Management

27

13. There might be some obligations that the PEP would have to fulfill to grant
access to the Requester even with a Permit result.

14. Depending on the authorization decision, the Requester is granted or denied
access.

3.5.9 The advantages of XACML

XACML is not in itself a complete authorization solution, but it provides a foundation
upon which integrated solutions can emerge. It provides a host of advanced features
that make it well suited for tying together large-scale authorization solutions. The
many advantages of XACML compared with traditional proprietary languages are:

���� It's standard. As with using any other standardized solution, once XACML
is more widely deployed, the interoperability with other applications will
become easier.

���� It's generic. This means that rather than having to provide access control for
each particular environment or each specific kind of resource separately,
developers can use XACML in any environment. One policy can be written
that can then be used by many different kinds of applications, and when one
common language is used, policy management becomes much easier.

���� It's distributed. This means that a policy can be written in a way that in turn
refers to other policies kept in arbitrary locations. The result is that rather than
having to manage a single monolithic policy, different people or groups can
manage separate sub-policies as appropriate, and XACML knows how to
correctly combine the results from these different policies into one decision.

���� It's powerful. While there are many ways the base language can be extended,
many environments will not need to do so. The standard language already
supports a wide variety of data types, functions, and rules about combining the
results of different policies. In addition to this, there are already standards
groups working on extensions and profiles that will hook XACML into other
standards such as SAML and XML Digital Signature, which will increase the
number of ways that XACML can be used.

Chapter 4: Design of PMS Architecture

28

4 Design of a Policy Management System (PMS) Architecture

This chapter covers the design decisions and presents the designed architecture for

Policy Management within an AN and for the composition scenarios. The design of

the Policy Management Protocol for the transfer of messages is also presented here.

In Chapter 2, the background related to AN and ContextWare was presented. In
Chapter 3, a few existing policy management architectures are covered along with an
overview of the OASIS XACML standard. As mentioned in Chapter 1, the task at
hand is to build a Policy Management architecture to manage authorisation of access
to network context information and ContextWare entities within the ACS of an AN.
This Policy Management architecture should also be capable of managing
authorisation of access to context information from the application and service layer
via the ASI and across an ACS of the constituent ANs via ANI. This architecture will
be based on OASIS XACML.

Although, for the scope of this project, the Policy Management System (PMS) is only
needed for handling access control policies, the actual scope for a PMS within the
Ambient Network is more varied. A fully fledged PMS should be able to support
policies for self management, triggering, composition, mobility, security, QoS, service
provisioning, etc. in addition to access control policies. The policy management
framework should be capable of Context Management, Network Management, and
Service Management. The policies have to be authenticated in order to be secure and
the framework should include policy negotiation capabilities to exclude conflicting
policies. The policies need to be technology independent and should specify high
level system goals that can be translated into low level actions. The design for a
Policy Management System handling all the above capabilities is being developed
within the Work Package D.3 within the AN project.

Taking into consideration the capabilities of a complete PMS, the PMS architecture
for handling the access control feature has to be general and must be easy to extend.

4.1 Design decisions for Policy Framework and Policy Management in
Ambient Networks

In this section we will examine the decisions made in the design of the Policy
Management System.

4.1.1 Store all policies in a common repository

Within the Ambient Network, the access policies dictate rules for access to particular
context information. These policies define the behaviour/access control of the
network. The question is who should be responsible for defining the policies of a
particular resource or UCI object? Is it the provider of the resource or is it some
central administrator? Moreover there could me more than one entity that is interested
in defining access policies for a single resource. In this case the decision has to be
taken by all the policies defined by that resource. To provide a global view of the
whole network it is necessary to consolidate the policies existing in a network.

Chapter 4: Design of PMS Architecture

29

The access policies specify the policies decided by the network administrator or the
source of the context information regarding access to the context information it owns.
These specific access policies might be in conflict with the general access policies (or
some other policies) for the same context information existing in the Ambient
Network.

Although policy negotiation and conflict resolution is out of scope for this thesis, in
order to give a consolidated view of all policies within an AN, the design decision is
to store all policies within an AN in a common repository. This repository is called
a Policy Information Base (PIB).

Different entities may have conflicting configurations or policies, which may lead to
inconsistent network state. With this approach, the conflicting policies would be
resolved when storing the policies in the repository. This approach does not limit the
distributed creation of policies. Thus policies relevant to different context information
could be written by different policy writers and Policy Administration Points (PAP),
but still stored at a common repository. The prototype implementation, implements a
centralised file based repository. The decision of using a file based repository
compared to a database repository is based on factors like performance and cost. Files
tend to be faster to read than databases. When creating or modifying a repository
instance the entire instance needs to be written, so file-based repositories are faster
involving a single operating system operation compared to querying and taking
appropriate action on a section of the database repository. It is easier to share data
from database for redundant nodes compared to replicating file based repositories in
the same state. But for the purpose of our implementation, we don’t implement
duplicate nodes and hence file-based repository is a good choice.

4.1.2 Centralised PDP and distributed PEP approach

The basic design decision that has been used in designing the architecture of the PMS
for AN, is that the management of access to context information is done in a

centralised way. This means that the entity that makes the decision about giving
access to context information, based on policies, will work in a centralised manner.

But this centralised approach will only be restricted to the Policy Decision Point
(PDP), thus the task of policy enforcement can be more flexible. The Policy

Enforcement Points (PEP) can be distributed and exist in nodes belonging to
different FEs. This decision is discussed further in section 4.2.

The Policy Management System is based on the OASIS XACML standard and uses
the java XACML API’s for the implementation.

ConCoord is the first point of contact for any entity joining the AN, and registering or
requesting context information. Thus in our design, we designate the ConCoord as the
first entity that controls access by initially accepting requests for context information,
transforming this request into an XACML request, and subsequently enforcing the
decision received from the PDP regarding access rights of the requester based on
general access policies existing in the AN. If the decision is to permit access, then the
location of the source of the context information is returned to the requester and the
requester directly requests the context information from the source of the context

Chapter 4: Design of PMS Architecture

30

information. The rationale behind this is that a source registers an object only once
with the ConCoord and similarly a client also resolves each UCI object at the
ConCoord only once. Any subsequent interaction is then between the source and the
client directly. In our design, access control based on detailed or fine grained policies
for context information is enforced by the actual source that is responsible for the
context data or the particular context manager, if the source has delegated
responsibility for handling the context information to the CM.

Here the specific access policies for the requested UCI object belonging to the source
or the CM come into play. The source may give access to specific context information
to a client only for a period of time, or a time to live (TTL) value, after which the
client would have to again request for access from the source. Thus although the client
would know the location of the source of context information, the actual access to the
context information can still controlled. The concept of having a TTL value for the
evaluated access response has its advantage because it decreases the load on the PMS
for repeated evaluations of the same UCI object.

Access to aggregated context in the form of filtered, transformed, or aggregated
context information is controlled by the specific CM identified by the UCI. For
aggregated context, the policies related to all the context information in the
aggregated context have to be aggregated or combined into a common Policy Set and
connected to the newly generated context information. The policy combination should
be done in such a way so as to avoid conflicts. Conflict resolution can be done using
some context resolution software (refer to section 7.2). When the common policy set
has been created any additional policies needed, can be added.

4.1.3 Other Decisions

It is assumed that the nodes belonging to an AN are part of a security domain [25].
The domain manager of this domain issues public key certificates to member nodes
whose cryptographically generated identifiers have been signed by the private key of
the manager. Thus the entities joining the Ambient Network are already

authenticated and a security infrastructure exists within the AN.

The policies are identified by a policy identifier <PolicyId> and this policy identifier

has to be unique within a PDP of the relevant domain or the ambient network in
which the policies apply. This motivates the need for creating a standardized
mechanism for naming policies so that each policy has a unique identification within
an AN and also in the new AN created after composition.

For the purpose of this thesis, the following policy naming convention is used.

The Policy ID should have in addition to a policy name or number, an
indicator specifying the source of its creation. Each source is an
encrypted entity and has a unique public key ID - which is globally
unique. The policy name or number has to be unique for each source.

For example, a policy with Policy ID prefix, P1 belonging to the Source S1 would
have the complete Policy ID:

Chapter 4: Design of PMS Architecture

31

PolicyID = “P1:S1”

If there are more than one policy linked to a source, the policy id prefix for each
policy has to be different, so that at any given time, the policy ids are unique.

For example another policy related to the same source S1 would have a Policy Id
prefix different from P1 and could be:

Policy Id = “P2:S1”

In case of composition, when AN1 composes with AN2 to form AN3, the policies that
would be used in the newly composed AN, would be a subset of policies from AN1
and AN2 and will be unique due to the fact that policy ids are based on the source of
their creation. Thus the previously mentioned policy, P1:S1 in the composed scenario
would still be unique as it is linked to a unique source.

4.1.4 Policy types

Depending on the type of management being enforced, the policies can be of different
types. The policies related to access control can be categorised as:

1. Authorization Policies: Authorization policies define the tasks that a service
or client is authorized to do on a target object. These policies are target based
upon the relevance of a policy in terms of a particular request as decided based
on the target. The policies could be either positive (i.e. Permit-biased) or
negative (i.e. Deny-biased).

2. Obligation Policies: The obligation policies define the obligations or activities
that a particular subject or Policy Enforcement Point (PEP) should fulfil before
access can be granted to the subject. These policies are subject based, as it is
the responsibility of the subject to interpret and enforce these policies.

3. Delegation Policies: The delegation policies define under what conditions the
authorization responsibility can be delegated and to whom.

4.2 Analysis of the centralised approach for the PMS

The policies within an AN can be created and owned by different FEs. These policies
are used to define access rights to the context information owned by these FEs.

One approach to manage the access to context information within an AN could be that
each FE is responsible for managing access to the context information owned by it.
This would mean that each FE would have its own PEP, PDP, and PIB for access
control. There might be multiple access policies defined by different entities for a
single UCI object. This distributed policy decision approach would not provide an
overall view of the policies in the AN.

The approach we have taken in the design of PMS is to have a consolidated
centralised Policy FE for the complete Ambient Network that manages access control
to all the context information existing in the AN. To enable this, all the policies
belonging to the different FEs are stored in a centralised repository. This approach can
enable conflict resolution of policies at storage time. Management involves evaluating

Chapter 4: Design of PMS Architecture

32

the request for access to context information against the existing policies within an
AN and arriving at a decision. Thus it is the policy decision entity i.e. the Policy
Decision Point (PDP), that works in a centralised manner. Each FE using the services
of the Policy FE would have its own PEP since policy enforcement is a task on the
specific context information and would still be done at the location of the context
information. The PEPs would be created as per the specific needs of the different FEs.
Thus the PEP would be distributed in the AN.

The advantages of having a centralised approach for PDP is that the use of policy
management within an AN is still a very new area and a centralised PMS makes it
easier for the various FEs to define/handle/change/backup their policies. It is assumed
that at this stage there are a limited number of policies in use. More over, having all
the policies together makes it easier to detect and resolve conflicts. The policies in
XACML are indexed based on their targets and the policies applicable to a particular
decision request are identified based on the target element of the policies. This
motivates use of a centralised PIB that can evaluate the request based on all relevant
policies within the AN, rather than using a subset of the policies. The Fig. 11 depicts
the centralised PDP and distributed PEP approach taken in the design.

Fig 11: Centralized PMS and distributed PEP approach

Evaluating existing Policy Based Management Systems such as that one developed by
IETF (see section 3.2), we see that policies are a centralised management instrument
Thus using a centralised PMS belonging to an AN, is an initial step in exploring
policy based management. Once the use of policy based management has reached
substantial maturity, it can be adapted to a more decentralised model as a future step.

Although easier to implement and use, a centralised PMS has some major constraints.
Having a single centralised PDP presents a single point of failure. The failure of this

Chapter 4: Design of PMS Architecture

33

node can affect the operation of the AN in a very drastic way. Thus it is essential to
support redundancy of this node. This can be achieved by having a duplicate PDP and
a duplicate repository. The duplicate repository must maintain the same state as the
original repository. The duplicate PDP must also maintain the same state as in the
original node since the access control decisions have a time to live factor and in care
of the failure of the original node this data would be lost if not replicated which would
mean re-evaluation of all the access requests. This re-evaluation would lead to high
peak in initial load and would affect the performance of the PDP.

4.3 Policy Management Architecture

As discussed in Section 3.1, the basic elements of the GEOPRIV architecture can be
mapped to the Policy Management architecture in AN. The general PMS architecture
managing the ContextWare entities utilizes an architecture derived from the
GEOPRIV architecture as shown in Fig 12.

Fig. 12 Basic architecture of Policy Management System within AN

The Context Source registers the UCI of the context information with the ConCoord,
while the policies related to the UCI are created by the source and are stored in the
policy repository. When a Context Client tries to access certain context information,
the access rights of the Context Client to the requested context information is checked
first using the coarse grained policies of the ConCoord, then, if access is allowed, the
location of the source of context information is revealed to the Context Client.

Applying the OASIS XACML framework and its elements on the high level
architecture of Policy Management System within AN, the basic requirements for a
policy framework in AN are:

���� Policy Enforcement Points (PEPs) for communicating the access requests on
behalf of Client entities and communicating the response along with the
handling of obligations.

���� Policy Decision Points (PDPs) for handling requests and evaluating them
against the defined policies to reach a decision.

Chapter 4: Design of PMS Architecture

34

���� Policy Information Base (PIB) which is the policy repository for storing
policies.

���� Policy Authoring Points (PAP) for creating and editing policies.
���� Policy Information Point (PIP) or policy finder as an interface to the PIB and

used for storing and fetching of policies.
���� Attribute Information Point (AIP) or attribute finder which is an interface to

the context repository and used for fetching the attributes related to a request.
���� A Context Information Base (CIB) is the Management Information Repository

which contains context information to which the policies are applied.
���� A policy language such as XACML for defining policies for authorisation to

context information.
���� A policy mechanism to handle composition of ANs.

Based on the above requirements for the policy framework, the basic architecture of
Fig. 12 can be further refined as shown in Fig. 13.

Fig. 13 Policy Management Architecture in AN

The Policy Management Architecture of Fig. 13 depicts a Policy Management System
(PMS). The PMS can be used to facilitate the storing of the policies received from the
source at the time of register and the policies received from the client at the time of
resolve.

The ContextWare comprising of the ConCoord, the CIB, and the sources and clients
of context information are assumed to be in a P2P network. When a context source
joins the network and registers its UCI with the distributed ConCoord, the mapping of
the UCI against its source location is stored with the ConCoord. The ConCoord
provides the address of the location of the PMS to this source. The available access

Chapter 4: Design of PMS Architecture

35

policies belonging to this context source are registered by the source at the Policy
Information Point (PIP) in the Policy Management System (PMS) which in turn stores
the policies in the common repository, the Policy Information Base (PIB).

When a Context Client tries to resolve a UCI at the ConCoord, the ConCoord take the
role of a Policy Enforcement Point (PEP) and transforms this UCI request into an
XACML request and sends this request to the Policy Decision Point (PDP) in the
PMS for evaluation. The PDP sends a query to the PIB via the PIP to retrieve the
policies that are applicable to the decision request. This is determined by fetching the
attributes using the Attribute Information Point (AIP) and evaluating the Target
element of the retrieved policies or policy sets. The PDP sends back the response to
the ConCoord PEP. The ConCoord PEP parses and analyses this response and if the
response permits access, the location of the source responsible for this UCI is sent
back to the Client.

As mentioned in section 4.1.2, the policies can be general and coarse grained, or they
could be specific and fine grained. The first category of policies are related to the
whole domain and carry a wider perspective thus they are evaluated initially when an
entity contacts the ConCoord and requests for context information. The ConCoord
here takes the responsibility of the PEP and forwards the request from the Client to
the PDP and also conveys back the response to the Client after handling any
obligations. The fine grained category of policies are more specific to the actual
context information and are evaluated by the PDP either when the Client requests
information from the source, i.e. the owner of the raw context information or the
Context Manager, i.e. responsible for the processed context information. The Policy
Management Architecture of Fig 13 is expressed as a special case for each of the
categories of access policies.

Case 1: General access policies

As explained in the section 2.4.2, ConCoord is the gateway node in the ContextWare
that is the first point of contact for coordinating context information between context
sources and clients. Thus the ConCoord is the most suitable candidate for a PEP and
being responsible for initiating the evaluation of general access policies pertaining to
the whole Ambient Network. All the general policies related to the complete AN
could be created by a PAP and would be stored in a common repository. When a
Client joins the network and subscribes to some context information at the ConCoord,
the request for access would be handled by the PDP in the PMS of the AN. The PDP
would fetch the relevant policies from the PIB through the PIP and the concerned
attributes from the CIB through the AIP and based on the policies take a decision
regarding providing the location of the source of context information to the context
client.

Case 2: Fine grained policies at source

When a source REGISTERs with the ConCoord at the time of joining the AN, the
source stores the access policies related to its context information at the PIB through
the PIP. Once the client has been granted general access by the ConCoord and learns
the location of the source where the context information exists, it sends a GET or
SUBSCRIBE directly to the source of the context information. Here the source acts as

Chapter 4: Design of PMS Architecture

36

a PEP and after transforming the UCI request into an XACML request, forwards the
request to the PMS. This request is handled by the PDP in the PMS of the AN. The
PDP fetches the fine grained policies relevant to the request from the PIB through the
PIP and the concerned attributes directly from the source (if the source has not stored
the attributes in the CIB) through the AIP and based on the policies makes a decision
regarding providing access to the actual context information.

The architecture for this specific case is as shown in Fig. 14

Fig 14 : Policy Management Architecture handling fine grained policies at Source

Case 3: Fine grained policies at CM for processed context information

When a source REGISTERS with the ConCoord at the time of joining the AN, the
source may delegate the responsibility of handling its context information to a
Context Manager for various reasons. A reason could be that the context information
is updated very frequently and the source doesn’t have sufficient resources or doesn’t
want to be bothered with notifying the clients of all of these changes. (Thus the source
simply notifies the CM and the CM takes care of sending updates to the various
clients.) It could also be that the context information should be changed to some other
format through transformation or filtering, or combined with other context
information from other sources to produce new context information. Based on the
policies through which the context managers were created, access policies related to
this new context information should also be dynamically generated through
aggregation of policies of individual sources (or created by an administrator). These
access policies are stored in the PIB through the PIP. Once the client has been granted

Chapter 4: Design of PMS Architecture

37

general access by the ConCoord and has the location of the CM associated with the
context information (as covered in Case 1), it sends a GET or NOTIFY directly to the
CM responsible for the context information. Here the CM acts as a PEP and forwards
the request to the PMS. This request is handled by the PDP in the PMS of the AN.
The PDP fetches the relevant policies from the PIB through the PIP and the concerned
attributes from the CIB through the AIP, then based on the policies makes a decision
regarding providing access to actual context information.

The architecture for this specific case is illustrated in Fig 15.

Fig 15 : Policy Management Architecture handling fine grained policies at Context Manager

4.4 The operation of the PMS architecture during Composition

Composition from the Ambient Networks’ perspective is not limited simply to basic
addressing and routing, but goes much further. Network composition within the AN is
the composition of the functions for incorporating higher layer support including
context distribution and management of context distribution based on policies in the
composing networks and their combined policies .

Composition can be categorized into three types: interworking, network integration,
and control sharing. These different categories of composition, impose different
requirements on the composition of policies and the policy management system.

When interworking, the logical structure of the ACS is not affected, thus each ACS
keeps its own Policy sets. In addition, new policies are added to both the networks to

Chapter 4: Design of PMS Architecture

38

take care of the composition agreements. Thus the PMSs in the composing networks
would continue to maintain their identity and will have their own separate policy
repositories.

For network integration, the ACSs of the compositing networks are merged into one,
creating a new identity. For the PMS, it means the merging of the policy information
base and all the policies from both ANs. Subsequently, the PMS of one ACS will take
charge of handling all the requests and evaluating them against the combined policy
database, while the other PMS is inactive. This means that all the requests for access
to context information from the combined AN would be directed to the selected PMS.
Although, beyond the scope of this thesis, it is worth mentioning that when the policy
databases from the composing networks are combined, the policies have to be
checked to resolve conflicts to ensure consistency of policies in the merged policy
database.

In case of control sharing, some tasks are managed solely by the individual ACS and
for some other tasks a higher level ACS can be created which controls the shared
tasks and resources of both ANs. In terms of PMS it means that in this type of
composition, the architecture behaves as in the case of network integration, as in the
case of interworking, or both together. In other words, it is either full delegation, no
delegation, or partial delegation of control.

Fig. 16 depicts the complete merge scenario, as in the case of network integration or
full delegation under a control sharing scenario. Here the policy management of both
networks would be done by one of the PMSs of the combining networks that takes the
role of the master PMS of the combined ACS of the composed networks. This PMS
uses the combined policies of the composed network to evaluate requests from the
newly formed network. The architecture of the composed PMS would be the same as
shown in Fig 13.

Fig. 16: Network integration composition or full delegation

in Control sharing composition

Interworking or control sharing composition with no delegation is depicted in Fig 17.
As shown in figure, the PMSs of the composing networks continue to control access
to context information in their original domains.

Chapter 4: Design of PMS Architecture

39

Fig 17: Network interworking composition or no delegation

in Control sharing composition

For the composition category of control sharing with partial delegation, access to
certain context information would be limited to the scope of the original uncomposed
networks; whereas for some other context information, the policy management would
be delegated to the combined PMS of the composed network. This is shown in Fig 18.
In this case a node in AN1 would have access to only some nodes and services in
AN2 based on access policies.

Fig 18: Partial delegation in Control sharing composition

When the composition is sharing control with partial delegation, the architecture
would look like that shown in Fig. 19.

Fig. 19 : Operation of PMS architecture during Composition

Chapter 4: Design of PMS Architecture

40

When a Client in AN2 tries to get access to context information in AN1, the client
contacts the ConCoord of the AN2 which in turn contacts the ConCoord of AN1
(based on partial delegation policies) over the ANI and requests access to the context
information. The operation of the PMS would be identical to the operation described
earlier for accessing context information within one AN. Once the Client gets access
to the location of the source of the context information based on policies, the client of
AN2 will directly send an access request to the source in AN1 and the operation of the
PMS would be as described earlier.

4.5 Example Scenario

Here we consider an example scenario specifying both general access rules as well as
access rules specific to particular context information. This and other scenarios would
then be further developed into a use case and implemented in a prototype.

It is close to 8 am in London and Bob is at home getting ready to go to a business
meeting in Liverpool. Bob has a PAN that consists of a laptop (with WLAN,
WiMAX, and Bluetooth), a Smart Phone (with WLAN, UMTS, and Bluetooth), and a
Bluetooth enabled headset. During his journey from London to Liverpool, the wireless
interfaces of Bob’s PAN proactively attempts to discover available wireless wide area
networks (WWAN) (e.g., UMTS or WiMAX). The PAN receives advertisements
from a number of WWAN operators, each advertising their services and rates. In
addition these advertisements include a digital signature of the operator to prove the
authenticity of the operator’s information and the service offering (these are handled
by the Security FE of the PAN).

For Bob’s PAN to compose with any network, the policies in the PAN are used to find
the most suitable network based on the current context information (here we consider
the list of available access networks). The source of information about the available
access networks are the wireless interfaces of Bob's PAN which are a WLAN
interface, a WiMAX interface, a Bluetooth interface, and a UMTS interface. Each of
these interfaces generated its own list of currently available access networks (along
with other information). These sets of interface specific information serve as raw
context information and are represented as context objects to which access is desired
by the client (composition FE) to make its decision about the most suitable network
based on criteria such as bandwidth, cost, etc.

Initially the Composition FE sends a request for access to this context information to
the ConCoord that uses the coarse grained policies of the PAN to decide at a general
level whether access can be granted or not. An example general policy could be, that
access to any context information within the AN, can only be granted to a client that is
within the same AN, and has been authenticated. If access can be granted, then the
address of the source where the requested context information resides is sent back to
the client. Subsequently, a context request is sent by the Composition FE acting as a
client and received by the individual sources of context information, (i.e. the wireless
interfaces or by a delegated context manager that has aggregated all the context
information about the available access networks from various source, i.e. the various
interfaces). These requests are evaluated by the PDP against existing fine grained
access policies pertaining specifically to access networks and a decision is reached if
access to this context information can be granted or not. An example of a fine grained

Chapter 4: Design of PMS Architecture

41

policy could be that access to the context information regarding available networks
cannot be granted to the client if the firewall on the laptop is not running properly.
The fine grained policy being enforced here may itself require access to further
context information (e.g., the state of firewall on the laptop) before the policy can be
enforced.

4.6 Use Case

The above example scenario is presented as use cases below. Here we present three
use cases for each of the three cases presented in section 4.2

4.6.1 Use Case for General Access Policies

This use case presents the case where the coarse grained access policies are applied
when a client joins a network and requests access to context information from the
ConCoord for the first time. The policies applied are general access policies
pertaining to the whole Ambient Network stored in the network by an authenticated
PAP. These policies are applied first by the PDP when any client registers with the
ConCoord. This client could be in the same network, or be a service or application
over ASI, or be another node in another AN over the ANI.

Fig. 20: Use Case for general access policies

Chapter 4: Design of PMS Architecture

42

4.6.2 Use Case for fine grained Access Policies at Source

This use case presents the case where the fine grained access policies existing at the
source are applied, when a client, after joining a network and having received the
location of the source of context information it needs, requests access to context
information from the source. The policies applied are specific access policies
pertaining to the specific context information. The evaluation of the request for
context information is done at the PDP based on the fine grained policies.

Fig 21: Use Case depicting the scenario

4.6.3 Use Case for fine grained Access Policies at Context Manager

This use case presents the case where the fine grained access policies existing at the
Context Manager are applied, when a client, after joining a network and having
received the location of the source of processed context information it needs, requests
access to context information from the Context Manager. The policies applied are
specific access policies pertaining to the specific processed context information. The
evaluation of the request for context information is done at the PDP based on the fine
grained policies.

Chapter 4: Design of PMS Architecture

43

Fig 22 : Use Case for processed information

4.7 Policy Management Protocol (PMP)

The messages within the PMS are XACML messages and have a standard format. A
Policy Management Protocol (PMP) has been designed for the messages to and from
the ContextWare and also within the PMS to carry the XACML messages. PMP was
inspired by the Context Exchange Protocol (CXP).[6].

Another alternative was to use COPS for these messages. In the following section, we
will discuss the factors behind our choice, along with the features of PMP.

4.7.1 Transport Protocol

As discussed in section 3.4, COPS uses TCP as the transport layer for sending its
messages. This requires the establishment of a TCP session. Using such a connection
oriented protocol is suitable when multiple packets may arrive in bursts. However,
ContextWare and PMS send single messages, such as REGISTER, RESOLVE, etc. -
which do not need a TCP session. In contrast, the CXP has been designed to utilize
the stateless, best-effort, transport layer, User Datagram Protocol (UDP). CXP
incorporates reliability measures in the protocol to detect packet loss and resend lost
packages.

Chapter 4: Design of PMS Architecture

44

Therefore, we based the design of the PMP on the Context Exchange Protocol. This
means that like the CXP, the PMP utilizes UDP and also contains support for
detecting and resending lost packets.

4.7.2 Message format

Similar to CXP protocol, PMP protocol uses XML for encoding messages. XML is
widely used and is both machine and human usable. In addition because of its
popularity, there exist a lot of XML parsers and this makes the design simpler to
implement.

4.7.3 Reliability over UDP

As described in section 4.7.1, the protocol utilizes UDP. This creates the need to
introduce some reliability so that lost packages can be detected and retransmitted.
Similar to CXP, the following methods have been utilized:

� A sequence number is introduced in each packet to track the flow of messages

between the sender and receiver. Thus the receiver would be able to
determine if a packet has been missed or is out of order.

� An acknowledgement is sent from the receiver to the sender after successfully
receiving a message. This acknowledgement can either be an explicit message
or be included in the next message sent by the receiver to the sender. The
sender waits for a defined amount of time for the acknowledgement message
before resending the message.

� To check that messages are received in order at the receiver side and to
facilitate retransmission by the sender in case of lost message, buffers
containing the received and sent messages are maintained both at the sender
and receiver side respectively. The buffers are kept up-to-date by deleting the
appropriate messages from the buffer.

4.7.4 Policies within the AN

The policies within the Ambient Network are authored by authenticated Policy
Authoring Points (PAP). These could be stand alone nodes acting as a PAP or various
sources of context information that provide policies controlling access to their specific
context information. These sources could belong to different FEs within the network,
thus each FE would be responsible for providing policies to the PMS for managing
access to its context information. It is assumed that all the FEs would have support for
XACML, thus the policies provided would be in XACML format.

4.7.5 Policy Enforcement Points

The PEPs are not an integral part of the PMS, but belong to the various FEs. The PEP
within ContextWare is located within the ConCoord. This PEP is responsible for
performing multiple tasks. It is the first point of contact for a client trying to request
access to context information. This PEP is also responsible for transforming the UCI
request from the client into an XACML request. It then sends this request to the PDP,

Chapter 4: Design of PMS Architecture

45

which evaluates it based on the existing policies, and responds with a decision to the
PEP. This decision may contain some obligations which the PEP has to fulfil before
permitting access to the client. Based on the response received from the PDP, the PEP
responds to the client. Thus communication between the client and the PMS is always
through the PEP.

4.8 Message Flows

Here we will look at the messages within ContextWare and the PMS for registration
of policies as well as for resolution of UCIs based on access control.

4.8.1 Policy Registration

When an authenticated source, client, or a Policy Authoring Point wants to register
policies with the PMS, it first sends a message REGISTER to the ConCoord in
ContextWare. This message is an empty message and doesn’t contain the actual
policy. In response to this message, the ConCoord returns the location of the PIP to
the registering entity (source, client, or PAP).

Fig 23: Policy Registration at ConCoord

Now the policy registering entity can register the policies with the PMS. It sends the
policies directly to the PIP using the message REGISTER_POLICY which contains
the policies in the body of the message. The PIP then stores them in the common
policy repository, PIB. Once the policy has been successfully stored, the PIB returns
an acknowledgement to the PIP which in turn sends an acknowledgment to the
registering entity that the policy has been stored. The flow diagram for provisioning
of the policies in the Policy Management System is shown in Fig. 24.

Chapter 4: Design of PMS Architecture

46

Fig 24 : Policy registration at PMS

4.8.2 Access Control for UCI resolution by client at the ConCoord PEP

As described in section 2.4.2, the ConCoord is the first point of contact used by a
client trying to resolve a UCI. The discovery of the ConCoord by a Client is
ContextWare specific and is not dealt with in the design of PMP. When a client first
joins an AN, and requests context information from the ConCoord, the ConCoord acts
as a PEP, transforms this request to an XACML request and forwards the resulting
ACCESS_REQUEST to the PDP in the PMS. The ConCoord PEP also sends an
acknowledgment to the client that it has received the request. The PDP similarly sends
an acknowledgement to the PEP that it has received the ACCESS_REQUEST.

Based on the target element of the request, the PIP fetches the relevant policies and
the AIP fetches the relevant attributes from the repositories, then the PDP evaluates
the request. The messages used for this evaluation are not XML messages, but are
internal XACML messages. Thus these are all collocated on the same node.

The PDP sends the ACCESS_RESPONSE containing the decision in XACML format
within the body of the message to the ConCoord PEP. This response is acknowledged.
Based on the result of this evaluation, if access is granted, the ConCoord PEP looks
up the UCI-source mapping and sends the location of the source of the context
information to the client in its RESPONSE. If access is denied, then the PEP informs
the client that access cannot be granted. While granting access, if the decision
contains some obligations to be fulfilled by the client, it is up to the PEP to ensure that
the obligations are enforced before permitting access. Once the client receives the
result, it acknowledges it irrespective of the nature of the result.

The flow diagram is as shown in Fig. 25.

Chapter 4: Design of PMS Architecture

47

Fig 25 : UCI resolution at ConCoord PEP

4.8.3 Access Control for UCI resolution at the Source or CM PEP

If the client was permitted access by the ConCoord PEP and has received the location
of the source or the Context Manager where the required context information exists,
then the Client directly sends a GET_REQUEST to the source or the CM.
Alternatively, it could send a SUBSCRIBE request to the source or CM to receive
updates of the requested context information. The PEP acknowledges the receipt of
this request to the client.

When the source or CM, acting as PEP, receives this request, it forwards the request
to the PDP in the PMS and receives an acknowledgement. The request is evaluated by
the PDP after the PIP and the AIP have fetched the relevant policies and attributes,
then the result is sent back to the PEP (source/CM) as an ACCESS_RESPONSE. This
message is again acknowledged by the PEP.

The result might carry some obligations that must be met by the client before access
can be granted. It is the responsibility of the source (CM) PEP to ensure that the
obligations are met before the access result is conveyed to the client. If access is
permitted and all obligations met, the context information is made available to the
client. What ever is the result from the PEP, the client acknowledges the receipt of
this result.

Chapter 4: Design of PMS Architecture

48

Fig 26 : Flow Diagram when source or CM has PEP role

4.9 Message Protocol

The message syntax of PMP is very similar to the message syntax of CXP designed
by Sergio [6]. The PMP messages are XML messages and contain some header
elements that would be carried in all the messages and the contents of the body
element of each message would be different for different messages. The format of the
PMP message is:

� Element <method>: This element specifies the name of the message that is

sent from the sender to the receiver. Examples of this element are
ACCESS_REQUEST, ACCESS_RESPONSE, etc.

� Element <sequenceNum>: This element contains the sequence number of the

message sent. The sequence number helps the sender to match
acknowledgements and helps the receiver to check the order of messages.

� Element <ack>: This is an optional element and contains the sequence

number of the message being acknowledged.

� Element <fromEntityId>: This is the cryptographic identifier of the node
sending the message.

Chapter 4: Design of PMS Architecture

49

� Element <fromAddress>: This entity contains the IP-address of the sender.

� Element <toAddress>: This entity contains the IP-address of the receiver.

� Element <body>: This element would contain the actual information that is
conveyed. Depending on the method of the message, the body element would
contain different information. This is elaborated below for each of the specific
messages.

4.9.1 REGISTER Message

The body element of this message is empty. This message is sent from the entity
trying to register a policy to the ConCoord to learn the address of the PIP within the
PMS.

4.9.2 REGISTER_ACK Message

This message is sent in response to the REGISTER message and the body of this
message contains the IP-address and port used by the PIP. Thus the body of this
message has the elements <pipIPaddress> and <pipPort>.

4.9.3 REGISTER_POLICY Message

This message is used by the policy owner to register its policy with the PMS. The
body of this message contains the policy in XACML format. Each message can
contain only one policy and if an entity wants to register multiple policies, multiple
REGISTER_POLICY messages will have to be sent.

4.9.4 ACK Message

This message is used when the receiver just wants to send an acknowledgement to the
sender. This message contains the <ack> element with the sequence number of the
message it is acknowledging; the body of the message is empty.

4.9.5 REGISTER_RESPONSE Message

This is a response message sent by the PIP to the source. The body of the message
contains a <result> field to indicate if the policy was registered successfully of not. If
the <result> is successful, it is the only field included in the body of the message. In
case of an unsuccessful result, the <error> field is included that details the reason for
the unsuccessful registration. The <error> field can be used by PIP in the future to
convey to the policy owner any conflicts in the policy with the existing policies.

4.9.6 RESOLVE Message

This message is sent by the client to the ConCoord PEP requesting access to context
information. The body of this Message contains the element <UCI> which contains
the URI of the context being requested. Alternately, it may contain the <request>
field which contains the request for context information in XACML format.

Chapter 4: Design of PMS Architecture

50

4.9.7 ACCESS_REQUEST Message

This message is sent from the PEP to the PDP. The body of this message contains the
XACML request that was created by the PEP from the requested UCI.

4.9.8 ACCESS_RESPONSE Message

This message is sent by the PDP to the PEP. The body of this message contains the
XACML result of the evaluation of the XACML request against the relevant policies.
The result is a <decision> element which contains the actual access response and
optionally may contain an obligation element.

4.9.9 RESOLVE_RESP Message

This message is sent by ConCoord PEP to the client. This message contains a
<result> field in the body of its message. Based on the access decision from the PDP,
the body of this message contains the either the location of the source of context
information, or it contains a deny response.

4.9.10 GET/SUBSCRIBE Message

This message is sent by client directly to the owner of the context information. The
owner could be the source of raw context information or the context manager, which
is the source of aggregated, filtered, or transformed context information. The body of
the message contains the <UCI> element containing the UCI of the requested context
information.

4.9.11 GET_REQUEST/SUBSCRIBE_REQUEST Message

This message is sent by the PEP to the PDP for evaluation of access. The body of this
message contains the XACML request that was created by the PEP from the requested
UCI.

4.9.12 CONTEXT_RESPONSE Message

This message is sent by the PEP to the client. This message contains a <result> field
in the body of its message. Depending on the decision response from the PDP, the
body of the message would either contain deny or would have the actual requested
context information.

Chapter 5: Implementation

51

5 Implementation

This chapter describes the implementation phase, covering the prototype’s details

along with environmental details, including the software and hardware used for

implementing the prototype. The problems encountered during this phase are also

covered here.

The main goals of creating a prototype for the PMS were to create a proof of concept
and to measure the additional time delay and resource requirements introduced by
adding access control to context information in an Ambient Network.

5.1 Hardware Equipment

The prototype consisting of Policy Management System (PMS), Policy Enforcement
Point (PEP), and a client has been implemented using two laptops. The PMS, PEP,
and client nodes have been distributed over the two machines in such a manner that
there is no direct communication between nodes on the same machine. Each of the
three nodes uses a different UDP port to allow them to co-exist on the same computer.

The client and the PMS have been implemented on a HP Compaq nc6000 laptop with
Intel® Pentium® M processor with processing speed of 1400 MHz and the Microsoft
Windows XP Professional operating system.

The PEP has been implemented on an IBM X31 laptop with Intel® Pentium® M
processor with processing speed of 1600 MHz and operating system Microsoft
Windows XP Professional.

Fig. 27 shows the placement of the nodes and the messages between these nodes.

Fig 27: Prototype node distribution and message flow

Chapter 5: Implementation

52

5.2 Software Environment

The prototype has been implemented in java using J2SE version 5.0. The prototype
also uses the XACML implementation for policy management initially developed by
Sun Microsystems, which is known as SunXACML. SunXACML is an open-source
implementation, implemented completely in Java and is currently being developed as
a SourceForge project [27]. The prototype makes use of the SunXACML release
supporting XACML version 1.2.

The implementation has been done using the Eclipse SDK 3.2.0 [28].

5.3 Network Environment

The prototype has been developed and tested within the Ericsson Research test bed
using an IEEE 802.11b WLAN network. Both the machines were located on the same
subnet and thus could reach each other using the local IP addresses. Both machines
were associated with the same access point, so that all communications between the
machines were sent over the WLAN twice, once to the access point and once back to
the other machine.

5.4 Implementation Description

Here we will look at some of the key features of the prototype.

� XML Parser

As described in subsection 4.9, the messages between the different nodes are
XML messages. Thus the prototype has to ensure that the messages are
constructed and received in a correct format. To interpret XML messages, the
prototype makes use of existing standard parsers, specifically the kXML 1.2
parser [29].

� File repository

The policies used for the prototype are stored as XML files in a Microsoft
Windows file directory located on the relevant machine (thus there was no
additional network traffic required to access these files).

� Creation of an XACML request by the PEP

The prototype is designed in such a manner that the PEP takes the requested UCI
that it receives from the client in the RESOLVE message. The PEP converts this
request into an XACML request that is understood by the PMS before sending it
to the PMS.

Alternately, if the request for the UCI from the client is already in the form of an
XACML request, the PEP simply forwards this request to the PMS in its
ACCESS_REQUEST message.

Chapter 5: Implementation

53

� TIME_OUT

The prototype includes a time-out for receiving ACK messages, thus if an ACK is
not received before the end of this time-out, the message is resent.

� Buffered Requests

Both the PEP and the PMS nodes use buffers to store the requests, responses and
the ACK messages. A thread listens to all incoming messages for the node and
stores them in this buffer as a queue. Another thread checks the buffer for
messages waiting and processes them one by one. Thus each node in the
implementation uses two threads.

5.5 Prototype Limitations

Here we highlight the limitations of the prototype as compared to the design
explained in the previous chapter. The reasons for each of these limitations are
given in conjunction with the explanation of the limitation.

� Discovery and bootstrapping

The prototype assumes that the client already knows the address of the ConCoord
PEP to which it initially sends the UCI request. Thus the prototype does not need
to support any bootstrapping mechanisms. In addition the assumption is made that
the ConCoord PEP also knows the location of the PMS.

� PIP and AIP are not implemented as separate entities

The main role within the PMS is that of the PDP that evaluates the access request
against the existing policies. The basic task of the Policy Information Point (PIP)
and the Attribute Information Point (AIP) are to retrieve the relevant policies and
attributes for evaluation of a request. For the purpose of the prototype, the PIP and
the AIP are not implemented as separate modules, but are implemented as integral
part of the PDP. Thus the PDP in the prototype first fetches the relevant policies
and attributes and then evaluates the request against these policies and attributes.

� Policy creation by PAP

The prototype does not implement a Policy Authoring Point (PAP) for authoring
policies within the Ambient Network. The assumption is that this task would be
performed by the functional Entities (FEs) that are the owner of the context
information and thus define the policies for the access to the context information
belonging to them. This is because we only have focused on measuring the
overhead created by access control (as without an understanding of this overhead,
the ability to easily author policies is of limited use). For this reason we omit the
creation of a PAP that creates and stores policies within the PMS. Instead we use
already created policies that pre-exist (i.e., are manually placed) in the PIB
database and evaluate the requests generated by the clients against these policies.

Chapter 6: Evaluation

54

6 Evaluation

This chapter evaluates the design of the architecture and the protocol. The design is

evaluated using both measurements and analysis. In other words, this chapter

considers both qualitatively and quantitatively the quality of the design.

The PMS is designed as a centralised entity. This means that requests from all the
nodes accessing context information would be directed through this centralised FE.
Measurements are performed to calculate the latency and throughput that would result
from such a design. The delay is first evaluated for a single request and then for a
burst of requests. In addition to evaluating the performance of the PMS, these
measurements are used to estimate the throughput of the PMS.

We also measure the delay when the requests are sent in a sequence with a delay of 2
seconds, 1 second, and 500 milliseconds between two consecutive requests, to
estimate the performance of the PMS under different load conditions.

Another test compares the time difference between request evaluation time for context
information in an ACS with a Policy Management System (PMS) and the same
request for context information in an ACS without a PMS.

These tests and their results are described in the following section, but first we
introduce the test environment.

6.1 Test Setup

To perform the measurements, we used Ethereal [21]. Ethereal is a Network Protocol
Analyzer used to monitor network traffic (this software is now called Wireshark [26]).
It is available on both Windows and Linux platforms.

In addition to using Ethereal, we also trace logs of the time stamps of specific events
into log prints and use these for measuring the response times.

Ethereal is used on the machine running the PMS to capture the message packets.
Referring to Fig. 27 in the previous chapter, we see that the PMS is co-located with
the client on the same machine.

Using the analyser and the trace logs, we can see the time when a request is received
by the PMS and also the time when the response is sent from the PMS, thus we can
calculate the PMS response time which is the time required by the PMS to evaluate a
request and generate a response. Referring to Fig. 28, this is the time difference
between sending the ACCESS_RESPONSE at the PMS node and the receiving of the
ACCESS_REQUEST at the same node and is indicated as the time x4-x2. This time
also includes the time the request is waiting in the buffer at the PMS to be evaluated.
We also made measurements for the actual PMS request evaluation time which
excludes the time the request is waiting in the buffer and is the actual time taken by
the PMS to evaluate a request after picking it from the buffer, evaluating the request,
and sending a response.

Chapter 6: Evaluation

55

In addition to measuring the response time of the PMS, we also measure the time
taken by the client to receive a response for its request. This time is measured from
when the RESOLVE is sent from the client to when the RESOLVE_RESP is received
by the client; denoted in Fig. 28 as the time x6-x0.

Fig 28 : Messages with time reference

6.2 Network Latency

The evaluation of the total response time also includes network latencies. Latency can
be defined as a time delay between the moment something is initiated, and the
moment its first effect begins. Specifically network latency is the latency to transfer
the packet from one machine to the other. The total latency of processing the request
is composed of the sum of the network latencies and the sum of the processing
latencies.

Referring to Fig 28, the total latency from the client’s perspective includes the request
processing latency and the network latency. The total latency from the PMS
perspective is the access request processing latency and the network latency.

To measure the network latency, we run the network analyser, Ethereal at both the
machines to capture the UDP packets exchanged between the two machines. To
distinguish between the client and the PMS on the same machine we utilize the port
number of the sender or receiver of the messages.

Chapter 6: Evaluation

56

Fig 29 : Network latency measurement

Network latency can be calculated as the average of the total time delay of the packets
received by the receiver from when they were sent by the sender. Here we have
assumed that the network is symmetrical. From Fig 29, the (one way) network latency
is

Fig 30 : Latency measurement, to extract the network latency components

Extending the above latency measurement to the complete message sequence from the
time the client sends a request to the time the client receives a response, we can derive
the sum of the network latencies.

t1 t2 +

2

= Latency =
(Y0-x0) + (x1-y1)

2

=
(x1-x0) – (y1-y0)

2

Chapter 6: Evaluation

57

The one-way network latency TA between the client and the PEP is as calculated
below:

The one-way network latency TB between the PEP and the PMS is:

Where,

 , ,

 , and

Thus, the total one-way network latency T is the sum of the latencies TA and TB. To
measure the network latency, we sent a single request from the client and measured
the network latencies between the client and the PEP and the PMS and the PEP. This
test was repeated 20 times. All the samples were collected in different captures or in
other words, the test was not performed at the same time. This explains the variance in
the results.

 The captured data was then transferred to the Microsoft® Office Excel 2003
spreadsheet application and the result is displayed in Fig 31. The blue bars indicate
the latency TA and the maroon bars indicate the latency TB, calculated using the
formulas above. The total one-way latency for the complete message flow is shown
by the yellow bars.

T1 =
(y3-y2) – (z3-z2)

2
T2 =

(y4-y2) – (z4-z2)

2

T3 =
(z5-z3) – (y5-y3)

2
T4 =

(z5-z4) – (y5-y4)

2

TB =
T1 + T2 + T3 + T4

4

TA =
(x1-x0) – (y1-y0)

2

+ (y7-y6) – (x7-x6)

2
()

1

2

Chapter 6: Evaluation

58

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Samples

T
im

e
 (

in
 m

s
)

Latency client to PEP Latency PMS to PEP Total Latency

Fig 31: Total Latency in the Network

The average one-way latency or delay between the client and the PEP was found to be
79 ms and the average one-way latency between the PMS and the PEP was 57ms.
Table 1 summarises these results.

One-way network latencies

 Shortest Longest Average

One-way latency

between client and

PEP (TA, in ms)

41 115 84

One-way latency

between PEP and

PMS (TB, in ms)

45 73 57

Total Latency (in ms) 88 168 140

Table 1: Network Latency

6.3 Response time measurements for a single request

A client sends a RESOLVE message to the PEP with the UCI of the context
information it wants to access. We sent a single request from the client and repeated
the same test 20 times to get multiple samples. The results for the time taken by the
PMS to evaluate the access request and return a response versus the total time taken
for the client to receive back the response for its RESOLVE request are compared
below.

Chapter 6: Evaluation

59

To measure the time, we used timestamps inserted in the code to find the exact time
an event occurs. We used the timestamps from the node on which the PMS and the
client were running. Referring to Fig 28, the PMS response time is x4-x2 and the total
response time is x6-x0. As discussed in subsection 5.4, a thread in the PMS stores the
access requests in a buffer and another thread processes these stored requests.

The PMS response time is measured in two ways. The first way is as mentioned above and is the

time difference between sending the access response and the time the access request reaches the

node. We can call this the PMS response time. The second way is the difference between sending

the access response and time the access request is pulled out of the buffer for processing. This

second measurement is the actual time taken by the PMS to evaluate a request and doesn’t

include the time when the request is waiting in the buffer. We can call the PMS request evaluation

time. As seen from the results in

 Table 2, these two measurements are not very different in the case of a single
request. The average PMS response time is 686 milliseconds and the average PMS
request evaluation time is 644 milliseconds. The reason for this small difference is
that since the test includes only a single request, the request doesn’t have to wait in
the queue for a long time.

The captured data from the 20 test samples for a single RESOLVE request are
transferred to the Microsoft® Office Excel 2003 spreadsheet application and the
results are calculated. Fig 32 shows the 20 test sample results for the first case where
the PMS response time includes the time the request is queued in the buffer and the
actual evaluation time.

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Samples

T
im

e
 (

in
 m

s
)

PMS response time Total response time

Fig 32: Response times for a single access request from a client

Fig 33 shows the test results for the 20 samples showing the PMS request evaluation
time which excludes the time the request is queued in the buffer.

Chapter 6: Evaluation

60

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Test Samples

T
im

e
 (

in
 m

s
)

PMS request evaluation time Total response time

Fig 33: Request evaluation time for a single access request from a client

The values for the PMS response time, the PMS request evaluation time and the total response

time are as shown in

 Table 2.

Response time for Single Access Request

Shortest

Longest

Average

PMS response

time

(in ms)

631 771 686

PMS request

evaluation time

(in ms)

601 751 644

Total response

time

(in ms)

851 1041 931

 Table 2: Response time for Single Access Request

6.4 Response time measurements for a burst of requests

In this test we sent continuous RESOLVE requests from the client to the PMS via the
PEP. The test was repeated for a burst of 5, 10, 15, 20, 25, and 30 requests. The
measurements were done using timestamp logs of events from the code. This data was

Chapter 6: Evaluation

61

imported into the spreadsheet application and used for calculating the response times.
The response times from each of these tests are illustrated in graphs. The results
revealed some very interesting observations.

Fig 34 shows the bar chart for the test sample with a burst of 5 requests.

0

500

1000

1500

2000

2500

1 2 3 4 5

Sample Requests

T
im

e
 (

in
 m

s
)

PMS response time PMS request evaluation time Total response time

Fig 34: Response time for a burst of 5 requests

Let us first look at the PMS request evaluation time which is indicated by the middle
bar in Fig 34. The first request takes 1061 milliseconds for access evaluation and the
subsequent requests take an average of 89 ms for access evaluation. The reason for
this huge difference in time between the evaluation of the first and the consecutive
requests is that, in the implementation, the policies are loaded into the memory at the
time of evaluation of the first request. For the subsequent requests, the evaluation
takes much lesser time as the request is evaluated against the policies that are already
loaded in the memory.

This observation leads to the conclusion that the PMS request evaluation time

would reduce ten fold if the policies are read into the memory of the PMS as soon

as they are defined or received from the Policy Authoring Point (PAP).

Again looking at Fig 34, we see that the PMS response time does not reduce in
tandem with the PMS request evaluation time as the former also includes the buffer
queuing time.

Chapter 6: Evaluation

62

Fig 35 shows the chart for a burst of 10 requests.

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 9 10

Sample Requests

T
im

e
 (

in
 m

s
)

PMS response time PMS request evaluation time Total response time

Fig 35: Response time for a burst of 10 requests

Here we again see that the result for the PMS request evaluation time reduces to an
average of 61 milliseconds after the first request in which it also loads the policies.
But we see that the PMS response time and the total response time deteriorates as the
burst of request increases. The reason for this is that there is a single thread in the
implementation that processes the buffer and clears the queue. The buffer includes the
ACK messages in addition to the request messages.

By introducing a pool of threads, instead of a single thread for processing the

buffer, we would be able to reduce the effective PMS response time and bring it

closer to the PMS request evaluation time.

Taking account of the fact that the PMS response time includes the request evaluation
time and the buffer queue time which would increase with the increase in the number
of requests, we will only look at the PMS request evaluation time results for the tests
for the burst of 15, 20, 25, and 30 requests.

Chapter 6: Evaluation

63

Fig 36 shows the results for the test when a burst of 15 requests are sent from the
client.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample requests

T
im

e
 (

in
 m

s
)

PMS request evaluation time

Fig 36: Request Evaluation time for a burst of 15 requests

The results above show the PMS request evaluation time which is the actual
evaluation time excluding the buffer queue time. Looking at the line chart, we see that
after the first request which loads the policies into memory, the average PMS request
evaluation time for most of the requests (excluding the 5th and the 10th request) is 73
ms. There is a very large delay in evaluating the 5th and the 10th request and looking at
the logs, we see that the thread from the PMS process evaluating these requests is
suspended and the thread from the separate process of the client residing on the same
node starts processing the sending of RESOLVE messages and receiving of ACK and
RESOLVE_RESP messages.

By separating the applications or processes of the client and the PMS on to

separate machines, the PMS evaluation of the request after it has been picked up

from the buffer queue can continue uninterrupted and the delay seen in the Fig

36 would disappear.

Fig 37 shows the PMS request evaluation time for a burst of 20, 25 and 30 requests.
Looking at the line chart, we see that the behavior seen in Fig 36 is also here. The
reason again is that the client process takes control of the CPU processor and the PMS
process is suspended.

Thus we can again deduce that placing the PMS and the client on separate nodes, the
delay in evaluating the ACCESS_RESPONSE by the PMS can be reduced.

Chapter 6: Evaluation

64

0

1000

2000

3000

4000

5000

6000

7000

8000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Sample Requests

T
im

e
 (

in
 m

s
)

PMS request evaluation time for 30 requests PMS request evaluation time for 25 requests

PMS request evaluation time for 20 requests

Fig 37: Request Evaluation time for a burst of 20, 25, and 30 requests

Excluding the first request evaluation which includes the policy loading time and also
excluding the delay peaks introduced by the placement of the PMS and the client (for
the prototype) on the same machine, the average PMS request evaluation time for 20,
25, and 30 requests are 51, 56, and 74 milliseconds respectively.

PMS request evaluation time
Burst of

requests

5

10

15

20

25

30

Average

Average Time

per request

 (in ms)

89 61 73 51 56 74 67

Table 3: Average PMS request evaluation time per request

From the Table 3, we see that the average access validation time through the PMS is
67 milliseconds which gives us a throughput of approximately 15 requests per

second.

6.5 Response time measurements for a sequence of requests

In this test we sent a sequence of RESOLVE requests from the client to the PMS via
the PEP. The test was repeated three times for cases when each request was separated
from the next request by a time factor of 2 seconds, 1 second and 500 milliseconds.
The three tests were conducted to measure the response times in a situation when the
PMS was not working under load (the spacing of 2 seconds between requests gave

Chapter 6: Evaluation

65

enough time to the processes to complete their task), to situations when the load was
gradually increased.

The test was done by sending sequences of 30 requests from the client with delays of
2 seconds, 1 second, and 500 milliseconds between two consecutive requests. The
measurements were done using timestamp logs of events from the code. This data was
imported into the spreadsheet application and used for calculating the response times.
The response times from this test with the spacing of 2 seconds between two
consecutive requests are illustrated in Fig 38.

Requests sent with 2 sec in between

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Request Samples

T
im

e
 (

in
 m

s
)

PMS response time PMS request evaluation time

Fig 38: Response time for a sequence of 30 requests spaced apart by 2 seconds

Analysing the test results we see that the first request, which includes the time for
loading the policies into the repository, takes 621 milliseconds for evaluation after
extracting the request from the queue. The actual response time that includes the time
the request is waiting in the buffer is not much more and is 671 milliseconds. After
the first request and with the policies loaded in the memory, the subsequent average
request evaluation time is 36 milliseconds and none of the request evaluations are
delayed.

Looking at the PMS response time results, we see that except for the13th and the 22nd
request (where the buffer delay is in the order of one second), all the other requests
are picked from the buffer and processed as soon as they are received. As explained in
section 6.5, if we introduce a pool of threads for processing the buffer queue, we
would be able to overcome this delay.

The average access validation time through the PMS when it is not overloaded is 36
milliseconds.

Again repeating the above test with a spacing of 1 second between two consecutive
requests, the response times obtained are shown in Fig 39.

Chapter 6: Evaluation

66

Requests sent with 1 sec in between

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Request Samples

T
im

e
 (

in
 m

s
)

PMS response time PMS request evaluation time

Fig 39: Response time for a sequence of 30 requests spaced apart by 1 second

The graph above shows that the first request that loads the policies, takes 641 ms for
request evaluation and 681 ms as the PMS response time. Looking at the logs we saw
that the thread evaluating the request after retrieving it from the buffer gets suspended
for the 5th, 17th, and the 26th requests and the client thread becomes active.

Referring to the description for the same behavior seen in section 3.4, by separating
the client and the PMS on to separate computers, the delay in PMS request evaluation
time can be reduced. Average PMS request evaluation time excluding the delay peaks
is 43 milliseconds.

The same test was repeated for a burst of requests with 500 milliseconds between two
consecutive requests. The results are shown in Fig 40.

The PMS request evaluation time and the PMS response time for the first request
which includes the time for loading the policies are 721 ms and 761 ms respectively.

Chapter 6: Evaluation

67

Requests sent with 500 ms in between

0

500

1000

1500

2000

2500

3000

3500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Request Samples

T
im

e
 (

in
 m

s
)

PMS response time PMS request evaluation time

Fig 40: Response time for a sequence of 30 requests spaced apart by 500 milliseconds

We again see the peaks at the 7th and the 18th request caused by the suspension of the
PMS thread evaluating the response and the transfer of control to the client thread.

Excluding the 1st, 7th, and the 18th requests from the average PMS response time
calculation, the average value for the PMS response time is 58 milliseconds.

6.6 Latency in a system with PMS compared to one without a PMS

In this test setup, we combined the prototype for PMS with the prototype for a
distributed context-aware network developed by Swenson [22] and evaluate the result.
The test involved a client in the distributed network which directed its request to the
PEP and the PMS for requesting access to context information and the result was
conveyed back to the client existing in the distributed overlay.

From the measurements we saw that the following results.

Average PMS response time = 619 ms

Average total response time = 1950 ms

The PMS response time also includes the time for loading the policies into the
memory. With policies preloaded into memory, and looking at the previous results,
we can deduce that this time will be reduced ten-folds. Considering a worst case
scenario, we assume that the average PMS request evaluation time excluding the
policy loading time is 100 milliseconds.

Looking at the results in Swenson’s report [22], we see that the best response time
without using the PMS is 1680 ms and the worst response time is 2100 ms. If the
PMS is used in the distributed context provisioning network, and using the assumed

Chapter 6: Evaluation

68

worst case values of 100 milliseconds for access evaluation, the time delay overhead
caused by access request evaluation would be from 4.7% to 6%.

Using the value of 67 millisecond for average PMS request evaluation time in a PMS
running with load (from subsection 6.4), the time delay overhead caused by access
request evaluation, in a distributed context provisioning network, would be 3.2% to
4%.

In addition to the access request evaluation, the policy management would also
include time delay overheads for request generation by the PEP and request parsing.
These actions are not part of the PMS node and would be handled by the individual
Functional Entities (FEs) but would still account for an overhead in the actual policy
management process.

6.7 Analysis

Evaluating the prototype, we came up with some very interesting observations. These
are highlighted as below:

� The loading of policies onto the PMS memory is an expensive task in terms of
time. The PMS request evaluation time would reduce ten fold if the access request
evaluation task is kept separate from the policy loading task and the policies are
read into the memory of the PMS as soon as they are defined or received from the
Policy Authoring Point (PAP).

� By introducing a pool of threads, instead of a single thread for processing the
buffer in the PMS, multiple requests waiting in the buffer queue could be
evaluated simultaneously, thus reducing the effective PMS response time and
bringing it closer to the PMS request evaluation time.

� By separating the applications or processes of the client and the PMS on to
separate machines, the PMS evaluation of the request after it has been picked up
from the buffer queue can continue uninterrupted and the delay caused by the
client process taking up the processor time, would disappear.

The reason for the suggestion of separating the client from the PMS onto different
machines is because in the prototype, all the requests were sent from the same client
and these were then received via the PEP by the PMS. For example, if the client sends
a burst of 100 requests, with the client and the PMS situated on the same machine, the
CPU would have to distribute the processing time between the client sending 100
requests and the PMS evaluating 100 requests.

Performance measurements in java include the compilation time of translating Java
bytecodes into native code at runtime [30]. Thus creating the prototype in a native
language instead of Java would increase performance. Another suggestion is to run
the prototype on different operating systems such as Unix or Linux instead of
Microsoft ® Windows ® to compare the performance of the PMS.

For a practical implementation within an Ambient Network, the clients would be
distributed on different nodes and the request would be received from the distributed
PEPs. This would solve the problem seen in the prototype introduced by processor
scheduling to some extent.

Chapter 6: Evaluation

69

The average time taken per request for access evaluation is 67 ms leading to
throughput result for the PMS working under load to be 15 requests per second.

Combining the prototype for policy management with the prototype for distributed
context-aware network, and based on measurements and analysis, we saw that the
time delay overhead caused by access request evaluation ranged from 4.7% to 6% for
a worst case scenario.

Chapter 7: Conclusion and suggestion for future work

70

7 Conclusion and suggestions for future work

This chapter concludes the thesis bringing into focus the accomplishments of the

thesis in terms of the initial goal, the knowledge gained, and the contributions made.

This chapter also contains suggestions for future work, discussing the topics and

directions in which the thesis could be extended.

7.1 Conclusion

The goal of the project was to design and implement a policy management
architecture within the Ambient Network project for managing access to context
information. The project involved doing a background study of Ambient Networks, as
well as a study of the existing policy management systems.

Policy management within an AN is a very wide area as policies in such an AN can be
used for handling mobility, security, context, composition, QoS, service provisioning,
etc. This thesis limited the scope of the project to management of access control
policies.

Context information within the Ambient Network is distributed amongst the various
FEs of the AN responsible for the different context information. For our architectural
design of the policy management system we had to decide if the PMS should be
distributed or centralized. The decision was to have the policy decision point and the
policy repository as centralized entities and the policy enforcement points as
distributed entities. This design principal enabled a consolidated and global view of
the complete AN, and was a pragmatic decision at this point, as there are currently a

limited number of policies in use within the AN. These policies are being developed by
the different work packages responsible for the various Functional Entities(FE), to
define the access rules for the context information associated with the FEs. The design
also defined how the policy management system should behave under different types
of composition.

The protocol design utilized a XML based messaging protocol over UDP which took
care of policy provisioning from the policy authoring points to the policy repository as
well as request/response messaging related to access control between the client and
the PMS via the PEP.

A prototype based on the proposed architecture and using the defined protocol was
implemented and tested. The implementation was made using laptops, as currently the
XACML implementation is not supported on handheld devices. The prototype
included an implementation of a client, a PEP, and a PMS using a XML file based
repository.

The design was evaluated by conducting some tests on the prototype. These tests
measured the performance of the PMS with regard to the response time for evaluating
an access request and throughput. The response time was measured for a single
request, a burst of requests, and a sequence of requests with 2 seconds, 1 second, and
500 milliseconds of delay between two consecutive requests to arrive at some
conclusions regarding the performance and scalability of the PMS. In addition, the

Chapter 7: Conclusion and suggestion for future work

71

prototype developed for the PMS was combined with the prototype developed by
Markus Swenson [22] implementing a distributed context provisioning network and
the response time in the combined prototype was measured. This measurement was
used to arrive at the delay overhead values introduced by the policy evaluation
process.

The results for all the measurements mentioned above are summarized in section 6.7.

Evaluating the results from the measurements, we can see that policy evaluation for
access control doesn’t cause a considerable delay (4.7% to 6%) compared to the
provisioning of context information done without access control.

7.2 Suggestions for future work

� Distributed PMS

The current solution is based on a centralised PDP and distributed PEP and
PAP approach. Another approach that could be explored is to have a
combination of distributed and centralised PDP. The idea would be to have
distributed local PDPs at the different FEs collocated with the PEPs. The
scope of this local PDP would be restricted to the policies within the
associated FE. Thus the PDP would make decisions local to the FE. Since
there might be other policies created by entities outside the FE which define
access rights to the UCI object within the FE, it is essential to take a decision
based on all relevant policies. To enable this, the policy decision from all the
local PDPs could be propagated to a centralized PDP which has an overall
view of the AN and makes a decision based on the combined partial results
from the different FEs.

With this approach, the work and thus the load of access decision would be
distributed throughout the Ambient Network. Moreover the local decisions
could have a time to live (TTL) and would not be re-propagated to the central
PDP until their timeout, thus avoiding excessive congestion and saving
resources in the network. This study would be able to compare the practicality
of a distributed approach compared to a centralised approach in terms of
latency and load overheads.

The distributed approach would also have to explore the validity of the
propagated partial access decisions in case of composition, depending on the
type of composition.

� Conflict detection in policies and conflict negotiation /resolution

Conflict detection and resolution of policies is a broad area with many
unknowns and needs further study.

In a highly dynamic environment like Ambient Network, context information
can have many policies linked to it and these policies could be created by
different entities and could by dynamic in the sense that they could change

Chapter 7: Conclusion and suggestion for future work

72

with time. The policies defined for one resource could be in conflict with each
other and would lead to ambiguous results. Thus it is essential to resolve the
conflicts in the policies before they are used for evaluation.

Policy conflicts can occur at different levels and times and so their resolution
cannot be restricted to only one method. These conflicts could appear at
application layer as conflicts between different services or they could appear
in the hardware level. The policies could start conflicting when two policy
repositories are being merged at the time of composition, or they could start
conflicting at runtime depending on the current context information, or
because of conflicting policy actions being executed simultaneously.

As the policy conflicts can appear at different times, the resolution could also
be carried out at different times. Static policy conflicts could be detected at the
time of creation and while being stored in the repository. This method would
enable the system to maintain a static policy conflict-free database.

Resolution of runtime policies can be done automatically by conflict
resolution software that refers to some set of meta-policies using predefined
precedence rules. Human intervention should be an optional feature initiated
only as a last resort since the overall goal is to achieve unattended functioning
of the AN. What effect the runtime conflict resolution would have on the
performance of the policy management system would have to be evaluated.

Thus we see the complexity of the policy conflicts that could appear in the
Ambient Networks and need to be studied further to arrive at suitable
solutions.

73

References

[1] IST project 507134 Ambient Networks, http://www.ambient-networks.org/
(2006-01-11).

 [2] A.K. Day and G. D. Abowd, “Towards a Better Understanding of Context and
Context-Awareness”, Graphics, Visualization and Usability Center and College of
Computing, Georgia Institute of Technology, Atlanta, GA, USA, September 1999.

 [3] Ambient Networks Project WP6, “Ambient Networks ContextWare - First
Paper on Context-aware Networks”, Technical report, IST–2002-507134-
AN/WP6/D61, 2005-01-07.

[4] Ambient Networks Project WP6, “Ambient Networks ContextWare - Second
Paper on Context-aware Networks”, Technical report, IST–2002-507134-
AN/WP6/D6-3, 2005-12-16.

[5] Adaptive & Context-Aware Services project. http://psi.verkstad.net/acas,
project website, last accessed 2006-08-16.

[6] Sergio Quintanilla Vidal, “Context-Aware Networks: Design, Implementation
and Evaluation of an Architecture and a Protocol for the Ambient Networks
Project”, Final Thesis, LITH-IDA-EX--06/012—SE, Linköpings University,
2006-03-13.

[7] R. Giaffreda, H. Tschofenig, T. Kanter, C. Reichert, ”An Authorisation and
Privacy Framework for Context-aware Networks”, Technical Publication, Work
package 6, Ambient Networks, 2005-05-03.

[8] Wireless World Initiative, http://www.wireless-world-initiative.org/, (2006-07-
13).

[9] T. Rinta-aho, “Introduction to Ambient Networks. Slides for NETS 1st
seminar”, April 2005.

[10] A. Karmouch, R. Giaffreda, A. Jonsson, A. Galis, M. Smirnov, R. Glitho and
A. Karlsson, “Context Management Architecture for Ambient Networks“,Wireless
World Research Forum 11, Oslo, Norway, Jun 10-11, 2004.

[11] Ambient Networks Project WP1, “AN Framework Architecture”, Technical
Report, IST-2002-507134-AN/WP1-D05, 2005-12-30

[12] Ambient Networks Project WP1, “Ambient Networking: Concepts and
Architecture”, Technical Report, IST–2002-507134-AN/WP1/D08, 2005-02-17

[13] OASIS XACML, “eXtensible Access Control Markup Language (XACML)”,
Version 2.0, OASIS Standard, 2005-02-01

74

[14] Geographic Location/Privacy (geopriv) Working Group Charter, available at
http://www.ietf.org/html.charters/geopriv-charter.html, (April 2005).

[15] J. Boyle, R. Cohen, D. Durham, S. Herzog, R. Rajan, and A. Sastry, "The
COPS (Common Open Policy Service) Protocol", RFC 2748, January 2000.

[16] R. Yavatkar, D. Pendarakis, and R. Guerin, “A Framework for Policy-based
Admission Control”, RFC 2753, Jan 2000.

[17] C. Kamienski, J. Fidalgo, D. Sadok, J. Lima, L. Pereira, and B. Ohlman,
“PBMAN: A Policy-based Management Framework for Ambient Networks”, Jan
2006.

[18] Ambient Networks Project WP6, “Integrated Design for Context, Network
and Policy Management”, Technical report, FP6-CALL4-027662-AN P2/ D10-
D1, final draft, Dec 2006.

[19] Ambient Networks Project WP6, “Analysis of Policy-based Management
Requirements and Tools for Ambient Networks”, FP6-CALL4-027662-AN P2/
UCL, Feb 2006.

[20] T. Dierks and E. Rescorla, "The Transport Layer Security (TLS) Protocol
Version 1.1”, RFC 4346, April 2006

[21] Ethereal, Network Protocol Analyser, http://www.ethereal.com, accessed on
January 2nd 2007.

[22] M. Swenson, “A distributed approach to context-aware networks”, Upcoming
Master Thesis report, Royal Institute of Technology, Stockholm, January 2007.

[23] B. Ohlman, K. Jean, A. Galis, I. Herwono, and J. Nielsen, “Requirements for
a policy framework for Ambient Network”, Wireless World Research forum.

[24] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, “Looking
Up Data in P2P Systems”, Communications of the ACM, February 2003.

[25] A. Méhes and G. Selander, “Identifiers and keys for management and
composition of Ambient Networks”, Annex 3 of Deliverable Report D7.2
“Ambient Network Security Architecture”, Ambient Networks Project, IST-2002-
507134-AN/WP7/D02, December 2005.

[26] Wireshark, http://www.wireshark.org/, last accessed January 2007

[27] Sun's XACML Implementation, http://sunxacml.sourceforge.net, last
accessed January 2007.

[28] Eclipse SDK, 3.2.0, http://www.eclipse.org/, last accessed January 2007.

[29] kXML-RPC project, http://kxmlrpc.objectweb.org/, last accessed January
2007.

75

[30] M. Cierniak, G. Lueh, J. M. Stichnoth, “Practicing JUDO: Java under dynamic
optimizations”, May 2000.

www.kth.se

COS/CCS 2007-04

