
Master of Science Thesis
Stockholm, Sweden 2007

COS/CCS 2007-10

O S C A R S A N T I L L A N A

RTP redirection using a handheld device
with Minisip

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

KUNGLIGA TEKNISKA HÖGSKOLAN
The Royal Institute of Technology

RTP redirection using a handheld device with Minisip

Master thesis Final Version

Oscar Santillana
osantillana@gmail.com

01/03/07

Supervisor and Examiner: Gerald Q. Maguire Jr.

i

Abstract

This report presents several different techniques for diverting RTP streams when using
a handheld mobile device. This device is running a version of Minisip as the SIP user
agent.

An introduction to the SIP protocol is given to provide some background to the reader
prior to focusing upon the main goal: redirecting RTP streams. A set of requirements
are defined and an RTP media transfer mode is chosen based upon these requirements.
The requirements are derived from a study of a Linux cellular phone’s mobile device
features and capabilities. Minisip was ported to this platform and a series of tests
conducted to evaluate the design decisions made. These tests show that the best method
of redirecting RTP media streams is third party call control (3PCC).

ii

Sammanfattning

Den här rapporten presenterar flera olika teknikerna för att dra RTP strömar när man
använder en mobil anordning. Den här anordningen löper en version av Minisip som
den SIP användare agent.

En introduktion till SIP protokoll är gjord för att ge läsaren någon bakgrund på focusen
ovanför det huvudsakliga målet : omdirigerande de RTP strömarna. En set av bestämd
behov är definierad och en RTP media transfer sätt är vald på grund av de här behoven.
Behoven är härrörda från en studie över en Linux mobiltelefon. Minisip var installerad
till den här plattformen och en serie av test dirigerad för att utvärdera de gjorda
designsbesluten. De här testen visar den bästa metoden för att omdirigera RTP media
strömar är den tredje part kalla kontrollen (3PCC).

iii

Acknowledgements

I would like to sincerely thank Professor Gerald Q. Maguire Jr. for all the help and
advice given to develop this thesis project. Without him, the realization of this project
could not been possible.

I would like to thank also Motorola for the resources provided such as the Linux mobile
phone and the SDK libraries. This could not be possible without the help of Fred Kitson
and Mat Hans. The respective titles are:

- Fred Kitson, PhD, Vice President, Applications Research Center, Motorola Labs
- Mat Hans, PhD, Distinguished Member of the Technical Staff, Applications

Research Center, Motorola Labs

iv

Table of Contents

Abstract .. i
Sammanfattning... ii
Acknowledgements .. iii
Acronyms .. vii
1. Introduction ... 1

1.1. Linux Smart Phones .. 1
1.2. Overview of the Thesis Project ... 2

2. Session Initiation Protocol .. 4
2.1. SIP Network Elements ... 5

2.1.1. User Agents .. 6
2.1.2. SIP Servers... 7

2.2. SIP Messages... 10
2.2.1. SIP URIs .. 11
2.2.2. SIP Requests.. 11
2.2.3. SIP Responses... 12
2.2.4. SIP Headers ... 13

2.3. SIP Transactions... 14
2.4. SIP Dialogs ... 15
2.5. Complementary Protocols... 16

2.5.1. SDP .. 16
2.5.2. RTP and RTCP.. 16

3. Mobility... 18
3.1. Types of Mobility Supported by SIP ... 19
3.2. Component Overview ... 19
3.3. Session Location... 20
3.4. Session Mobility .. 21

3.4.1. Mobile Node Control Mode.. 21
3.4.2. Session Handoff Mode.. 23
3.4.3. Bicasting Method .. 24

4. Framework.. 27
4.1. The Mobile Device.. 27

4.1.1. Hardware Configuration .. 27
4.1.2. Architecture.. 28
4.1.3. Operating System .. 28
4.1.4. Application Framework .. 29

4.2. The Development Environment.. 29
4.3. Cross-Platform Development .. 30

5. Method for Redirecting RTP Streams ... 31
5.1. Choosing the Best Approach to Session Mobility 31

5.1.1. Transfer Mode Comparison .. 31
5.1.2. Chosen Transfer Approach ... 33
5.1.3. Test Scenario ... 33

5.2. Implementation .. 35
5.2.1. Minisip Port ... 35
5.2.2. Adaptation of Minisip .. 39

v

5.2.3. GUI for the Motorola Phone ... 39
6. Analysis.. 41

6.1. Evaluation ... 41
6.2. Analysis.. 41

6.2.1. Port and adaptation of Minisip .. 41
6.2.2. RTP transfer approach ... 46

6.3. Study .. 48
6.3.1. Transfer Response Time.. 49
6.3.2. Media Independency... 49

7. Conclusion... 52
8. Future Work ... 53
References .. 54
Appendix A ... 57
Appendix B ... 59

vi

Table of Figures

Figure 1.1: Smartphone Marketshare – Q3/2006 2
Figure 1.2: Task Overview.. 3
Figure 2.1: User Agent Behaviour ... 6
Figure 2.2: Proxy Server Scenario .. 8
Figure 2.3: Registar Server Scenario ... 9
Figure 2.4: Redirect Server Scenario ... 10
Figure 2.5: SIP Transactions .. 14
Figure 2.6: SIP Dialog ... 15
Figure 3.1: Mobility Scenario ... 20
Figure 3.2: Control Node Mode Call Flow... 22
Figure 3.3: Session Handoff Mode Call Flow ... 23
Figure 3.4: NAT traversal using RTP Proxy ... 25
Figure 4.1: Front and Back Motorola E680i... 27
Figure 5.1: Test Scenario.. 35
Figure 5.2: Obtaining the toolchain .. 36
Figure 5.3: Toolchain environment variables.. 36
Figure 5.4: Library Dependence .. 37
Figure 5.5: Library installation steps .. 37
Figure 5.6: Minisip binary installation steps.. 37
Figure 5.7: Exports content.. 38
Figure 5.8: Mount command .. 38
Figure 6.1: Environment variables in the phone 42
Figure 6.2: Phone’s wireless configuration .. 43
Figure 6.3: Ser execution ... 43
Figure 6.4: Minisip textUI execution... 44
Figure 6.5: SER’s contact database .. 44
Figure 6.6: Minisip textUI call usage .. 45
Figure 6.7: Test 1 Simple Call.. 45
Figure 6.8: Test 1 Statistics ... 46
Figure 6.9: Minisip textUI mobileTransfer usage 46
Figure 6.10: Test 2 RTP transfer ... 47
Figure 6.11: Test 2 Statistics ... 48
Figure 6.12: Media independency Test .. 50

vii

Acronyms

GUI Graphical User Interface
HTTP Hyper-Text Transfer Protocol
IMS IP Multimedia Subsystem
IP Internet Protocol
LAN Local Area Network
MLI Mobile Linux Initiative
NAT Network Address Translation
OSDL Open Source Development Labs
PSTN Public Switched Telephone Network
RTCP Real Time Control Protocol
RTP Real Time Protocol
SDP Session Description Protocol
SER SIP Express Router
SIP Session Initiation Protocol
SLP Service Location Protocol
STUN Simple Traversal of UDP through NAT
TURN Traversal using Relay NAT
UA User Agent
UPnP Universal Plug and Play
VoIP Voice Over IP
WiFi Wireless-Fidelity
3G Third Generation
3GPP 3rd Generation Partnership Project
3PCC Third Party Call Control

1

1. Introduction

Transferring media streams from one endpoint to another is a widely used technique in
both conventional and IP telephony. This thesis project proposes another approach of
using this technique in a new environment. A user desires to transfer a video stream
from his handheld device to a large display in the room which he has just walked into.
In addition, it is possible to transfer the audio streams to high quality speakers in the
room where the user has just entered.

IP Multimedia Subsystem [1] (IMS) is a standardised Next Generation Networking
architecture for telecom operators and is rapidly becoming the de facto standard for
real-time multimedia communications services. It uses Voice-over-IP (VoIP), which is
based on the Session Initiation Protocol (SIP), and runs over the standard Internet
Protocol (IP). Although IMS was originally specified for third generation (3G) mobile
networks, it also provides a service deployment architecture for fixed or wireless
networks, such as Wireless Local Area Networks (WLANs), and the public Internet [2].
IMS defines open interfaces for session management, access control, mobility
management, service control, and billing. This allows the network operator to offer a
managed SIP network, with all the carrier-grade attributes of the switched circuit
network, but at a lower cost and with increased flexibility. In addition, the use of SIP as
a common signalling protocol allows independent software developers to leverage a
broad range of third party application servers, media servers, and SIP-enabled end user
devices to create next generation services.

1.1. Linux Smart Phones

Manufacturers are increasingly turning to Linux as a strategic platform to deliver more
capable mobile devices, increase flexibility, speed time-to-market, and lower costs.

Open Source Development Labs [3] (OSDL), a global consortium dedicated to
accelerating the adoption of Linux and open source software, has announced that a
Chinese handset manufacturer, Datang Mobile [4] has joined OSDL as an active
member of the Mobile Linux Initiative (MLI). Figure 1, using data extracted from the
Symbian [5] web page, shows that Linux's share of the smartphone market is around 22
percent in Q3 of 2006.

2

59,70% 22,00%

0% 50% 100%

Smartphone Marketshare - Q3/2006

Symbian OS

Linux

Palm OS

Windows Mobile

RIM

Figure 1.1: Smartphone Marketshare – Q3/2006

It is predicted that the mobile Linux handset market share will continue to grow,
eclipsing SymbianOS. Using Linux as the operating system along with the GNU tool
and other tool chains provides developers with a platform which they can easily develop
applications for.

In this thesis project, a SIP application will be developed for an ARM-Linux
environment. Motorola [6] has provided some tools to develop applications on their
smartphone. The specific Linux phone used in this thesis project is the Motorola E680i.
However, this is not the only Linux phone in the market. A complete list can be found at
Linux devices web page [7].

1.2. Overview of the Thesis Project

This thesis project is focused on the development of new services in a mobile SIP
environment. Specifically, the service is a variant of Session Mobility using RTP
diversion (i.e. redirecting one or more RTP streams to new end points). This service will
be described in detail in chapter three, among different techniques that could be used to
realize this service. An important part of this thesis is an examination of each technique
in order to decide which approach is the most suitable. An introduction to SIP, SDP,
and RTP are given in sections 2.1, 2.5.1, and 2.5.2 respectively. Figure 1.2 shows the
task which this thesis project addresses. It is not simply session mobility – since it is
only the RTP stream which is being redirected to another device and not the control of
the session. The discovery of new devices which could be the target of the migration is
not considered in this thesis project – as this is work of other thesis projects.

3

Figure 1.2: Task Overview

Once the means for transferring the RTP streams have been chosen, it is necessary to
build a framework for this service in a mobile SIP environment. To achieve this, a
mobile device from Motorola is used. This Motorola phone is Linux-based and will be
examined in great detail in chapter four. The main part of this task was to port Minisip
[8], a SIP User Agent (UA), to the ARM-Linux architecture of this mobile device in
order to be able to carry out experiments.

Minisip is a SIP user agent like many others, but what differentiates it from others UAs
is its focus on security. Moreover, Minisip is available for a number of different
operating systems, such as: Linux for PCs, Linux Familiar for the IPAQ PDA, Windows
XP, and soon Windows Mobile 2003 SE. These features and the possibility of video
support, makes Minisip a great platform to extend to support RTP mobility.

Once the framework has been designed, it was necessary to adapt Minisip to the
capabilities of the mobile device. This primarily required adapting the Graphical User
Interface (GUI) to the specific of this mobile devices and implementing the RTP
transfer service.

Finally, based upon some test scenarios a number of conclusions are drawn. These
examine if the technique chosen did in fact meet the stated requirements.

4

2. Session Initiation Protocol

The Session Initiation Protocol (SIP) is an application-layer control protocol designed
for creating, modifying, and terminating sessions with one or more participants. These
sessions include Internet telephone calls with multimedia contents and multimedia
conferences. SIP was specified in several RFCs, but the most important is the RFC 3261
[9], which contains the core protocol specification. In November 2000, SIP was
accepted as a 3rd Generation Partnership Project [10] (3GPP) signalling protocol and a
permanent element of the IMS architecture (see chapter 1). The SIP protocol is widely
used as signalling protocol for VoIP [11].

SIP was designed (as many other successful Internet protocols) with the following
goals:

Extensibility the design takes into consideration future growth. SIP has to be able
to support new scenarios, new multimedia services, and new uses

Flexibility if new circumstances, environments, or purposes occur during a
session, the protocol has the ability to adapt to them

Scalability scaling from small or home office deployments to large-scale
telecommunications networks

Personal mobility can be achieved because SIP transparently supports name mapping
and redirection services. Thus users can be accessible with a single identifier despite
their network location and despite their using more than one device. Note that in this
thesis we will be concerned with moving the media streams and not the session (for
details see section 3.4); however, a user can take advantage of SIP’s support for
personal mobility to change which device they are using for controlling their session.

SIP is used in multimedia communications for:

User location specification of the end system to be used for a session

User availability specification of the desire of the called party to start a session

User capabilities specification of the media and media parameters to be used in
a session

Session setup establishment of session parameters at both called and calling
party

Session management transfer or termination of a session, modifying session
parameters, and invoking services

5

SIP’s main purpose is simply to enable a communication session; it is not a general
purpose protocol. Communicating devices utilize other protocols such as Session
Description Protocol (SDP) and Real-Time Transport Protocol (RTP) for their actual
communication.

SDP specifies a format for describing streaming media parameters. It is used by each of
the communicating endpoints in order to express its preferences and capabilities for a
session. Note that new SDP exchanges can occur during a session to change which
streams are sent, where they are sent, and to indicate which CODECs and other
parameters are to be used.

RTP provides real time transport of the multimedia stream as created by one or more
CODECs. RTP defines a standardized packet format for delivering media, such as audio
or video, over the Internet. RTP supports the task of splitting, encapsulating, and
transmitting multimedia data, as well as via RTCP providing means to monitor the
transmission quality (delay, jitter, bandwidth...). Details of RTP are presented in section
2.5.2

SIP is based upon an end-to-end-oriented architecture; hence it is very scalable because
it requires only a simple core. In fact SIP messaging only occurs at the setup of a
session, during modification of a session, or at the termination of a session. Hence the
signalling is proportional to the number of sessions and not to the duration of a session.
Additionally, SIP is independent of the type of session, be it voice, video, timed text,
etc. Moreover, SIP’s naming scheme allows for a highly distributed architecture. These
features are the basis of SIP scalability which enables a given SIP infrastructure to
support a very large number of simultaneous sessions.

The Public Switched Telephone Network (PSTN) differs from SIP and its end-to-end
approach because all the state is stored in the network rather than in the end-devices.
Hence in the PSTN end-points have very limited functionality and any additional
functionality is limited to that provided by the network infrastructure. It is for this
reason that in traditional PSTNs new services are very hard to implement. While the
aim of SIP is to provide similar functionality as traditional PSTNs, but to enable third
parties to implement new services easily.

Finally, SIP builds upon lessons learned from the HyperText Transfer Protocol (HTTP)
protocol [12]. HTTP is probably the most successful and widely used protocol in the
Internet. HTTP in turn was based on the encoding of message headers from RFC 822
[13], which has been shown to be robust and flexible over many years.

2.1. SIP Network Elements

A typical network will contain more than one type of SIP element (as shown in figure
2.2). The simplest configuration uses only two user agents that send SIP messages
directly to each other. The basic SIP network elements, which will be described below,
are user agents, proxies, registrars, and redirect servers.

6

SIP entities are identified within a domain using a SIP URI (Uniform Resource
Identifier). A SIP URI consists of a user name part and a domain part, delimited by the
“@” (at) character. SIP URIs are very similar to e-mail addresses and because these
names are resolved in different ways it is possible to use the same URI for both e-mail
and SIP communication.

2.1.1. User Agents

RFC 3261 defines the SIP endpoints as User Agents, which are combinations of user
agent clients (UACs) and user agent servers (UASs). The UAC is the only entity in a
SIP network that is able to create an original request. On the other hand, the UAS
receives requests and sends back responses. SIP UAs can be implemented in hardware
such as IP phone handsets and gateways or in software as softphones running on a
computer.

User agents can behave as a UAC or a UAS because they usually contain both entities.
A user agent from a calling endpoint behaves as a UAC when it sends an INVITE
request and receives responses to this request. A user agent from a called endpoint
behaves as a UAS when it receives the INVITE and sends responses. However, if the
called endpoint decides to send a BYE message to terminate the session, then both user
agents simply change roles. Thus, the user agent that has sent the BYE message behaves
as a UAC and the other user agent behaves as a UAS receiving it and sending back a
response.

Figure 2.1: User Agent Behaviour

Figure 2.1 illustrates the behaviour explained above; here every user agent endpoint acts

7

as both a UAC and UAS. However, it is possible to have a UA which only implements
the UAS behaviour - hence it can never initiate a SIP session. For example a network
attached loudspeaker might only implement a SIP UAS.

2.1.2. SIP Servers

Even though the UA contains a server component, when most developers talk about SIP
servers, they are referring to server roles usually played by centralized hosts on a
distributed network.

2.1.2.1. Proxy Server

In a SIP network, the infrastructure may include a number of network hosts known as
proxy servers. Given such an infrastructure, each UA can send messages to a proxy
server and depend upon this proxy to forward the messages appropriately. Proxy servers
play a very important role in such a SIP infrastructure because they can route session
invitations depending on the location, authentication, accounting, or other attributes of
the endpoints. Additionally, they simplify the configuration of UAs, much as the use of
a default router simplifies the configuration of individual network attached computers.

The main task of a proxy server is to route session invitations to an endpoint while
observing the preferences of both the caller and callee. In many cases, the session
invitation may be routed by a set of proxies until the actual location of the called party
is found. Finally, when the session invitation is delivered directly to the called party by
the last proxy, the endpoint will accept or decline this invitation.

Proxies can be classified as outbound or inbound. Outbound proxies route messages
generated within a local domain to an external domain. While, inbound proxies deliver
incoming messages to the user’s proxy – to which the user can delegate some
processing (for example to enable context-aware call dispatch as described by Alisa
Devlic [14] and Sergi Laencina [15]).

Each of these proxy servers can be stateless or stateful.

Stateless
proxies

are very simple message forwarding entities. They forward messages
according to some basic rules without being aware of any session state
(i.e., they only use the information that is in the SIP message headers).
As a consequence, they are very fast and can be used as load-balancers,
message translators, or basic routers. On the other hand, disadvantages
appear in message retransmissions and in lack of functionality to
perform more advanced routing techniques as forking or recursive
proxying.

8

Stateful
proxies

Are more complex than stateless proxies. When a request is received,
stateful proxies create and maintain state until the transaction finishes.
Some transactions, especially those created by INVITE, can last quite a
long time. As a result, the performance of a stateful proxy is more
limited because these proxies must maintain the state for the duration of
the transactions and it takes a finite amount of space to store this state.
Additionally, it takes time to retrieve this state when a message is to be
handled.

The ability to associate SIP messages with a transaction gives stateful proxies some
interesting features such as:

Forking abilities when a message is received it is possible to send out two or
more instances of this message

Absorption of
retransmissions

the proxy knows from the transaction state if it has already
received the same message or if a decision has already been
made concerning how to handle this transaction

Most SIP proxies today are stateful and their configuration is usually very complex.
They often perform accounting, forking, and offer some sort of NAT traversal aid. All
of these features require a stateful proxy.

A typical scenario where a proxy server is deployed is illustrated in the following
diagram.

Figure 2.2: Proxy Server Scenario

9

In this scenario, Alice uses the SIP URI sip:bob@b.com to call Bob. Alice’s UA does
not know how to route the invitation itself, but it is configured to send all outbound
traffic to company A’s SIP server. This proxy server discovers that the user Bob’s URI
is in the domain of another company (company B). As a result, the invite has to be
forwarded to the other company’s proxy server. To do this, proxy A sends a request to a
DNS server to find the SIP server associated with the domain “b.com”. The DNS server
returns the location of proxy B thus proxy A can forward the invitation to proxy B if
proxy B is aware of Bob’s current location, can forward this invitation to Bob’s user
agent. If proxy B does not know Bob’s current location, it returns an error message to
Alice, via each of these proxies – hence these proxies know that the transaction can not
complete, thus it no longer needs to keep state information about this transaction.

2.1.2.2. Registrar Server

In order for proxy B in the above scenario to know about Bob’s location it has to be told
this location by Bob’s UA. The registration process allows a SIP user to announce the
address of a UAS. At least once such UAS must be registered in order to be reachable.
When a UA starts, it sends a REGISTER message containing a contact header with this
UA’s network location (i.e., an IP address and port of at least one interface) to a
Registrar server. A Registrar server now knows where to find this SIP user within the
specified SIP domain.

Figure 2.3 shows a typical SIP Registration. A register message is sent to the Registrar.
The Registrar extracts the user’s account name and authentication, along with the UA’s
location information and if the request is properly authenticated it stores the location
information for this account into the location database. If the UA’s authentication was
successful and the database update was successful then the Registrar sends a
confirmation to the user agent; otherwise it sends an error message.

Figure 2.3: Registar Server Scenario

10

Every registration has a limited life span. The REGISTER request includes an Expires
header that establishes the user-to-location binding duration. The UA should renew its
registration before it expires if it wishes to continue to be available.

2.1.2.3. Redirect Server

A Redirect Server is an entity that accepts a SIP request, maps the address into zero or
more new addresses, and returns these addresses to the requestor. Unlike a proxy server,
it does accept calls but only generates SIP responses that instruct the UAC to contact
another SIP entity. The basic actions of a redirect server are shown in figure 2.4.

Figure 2.4: Redirect Server Scenario

2.2. SIP Messages

SIP messages are text using UTF-8 coded strings, compliant with the Unicode standard
[16]. Each message in SIP is usually transported in a separate UDP datagram. However,
SIP messages can be transmitted over several transport protocols, such as UDP, TCP,
SCTP, or TLS (secure TCP). SIP messages are composed of a first line, which indicates
the type of the message. Following this is one or more headers, which carry important
protocol information and optionally a body section, which can carry any type of
payload, but often is used to carry a session description using SDP. SIP messages can be
divided into two types: requests and responses. Requests are usually used to initiate
some action or inform the recipient of the request about an event. On the other hand,
replies are used to confirm the reception and processing of requests and contain the
status of the requested processing.

11

2.2.1. SIP URIs

A SIP URI identifies a communications resource. It also contains enough information to
initiate and maintain a communication session with a resource due to SIP’s routing
scheme. The general format of a SIP URI is:

sip:user:password@host:port;uri-parameters?headers

As noted earlier, a SIP URI identifies a user at a host or within a SIP domain and might
also carry special parameters required for the communication session. SIP URIs can be
found in many sections and headers of SIP messages because they are a key element of
SIP messages. It is the translation of these URIs to specific address, ports, and
parameters to UAs which gives SIP its power.

2.2.2. SIP Requests

The first line of each request starts with the method name. The most commonly used
methods in SIP are:

INVITE requests another SIP UA to establish a new media session or to modify

an existing session
BYE requests a UA to terminate an established session
ACK acknowledges the reception of a response
CANCEL cancels a previously sent request
REGISTER provides information about the location of a SIP UA to the SIP

network

In addition, in order to implement new services such as Presence or Instant Messaging,
new methods have been defined as SIP extensions. Some of these less commonly used
messages are: INFO, OPTIONS, SUBSCRIBE, NOTIFY, UPDATE, MESSAGE,
REFER, PRACK, and COMMET.

Finally, a typical SIP request is shown. The first part indicates the method, the second
the headers, and in the third the body – a simply SDP session description is given.

INVITE sip:bob@b.com SIP/2.0 Method

Via: SIP/2.0/UDP 10.20.30.40:5060 Headers
From: Alice <sip:alice@a.com>;tag=589304
To: Bob <sip:bob@b.com>
Call-ID: 8204589102@example.com
CSeq: 1 INVITE
Contact: <sip:alice@a.com>
Content-Type: application/sdp
Content-Length: 141

12

v=0 Body containing SDP
o=alice 2890844526 2890844526 IN IP4 10.20.30.40
s=Session SDP
c=IN IP4 10.20.30.40
t=3034423619 0
m=audio 49170 RTP/AVP 0
a=rtpmap:0 PCMU/8000

2.2.3. SIP Responses

A SIP response is a reply from an UA or a proxy server due to a request message. Every
request must be replied to except ACK requests, which do not need replies. Responses
differ from requests in their first line, which contains the SIP protocol version (usually
SIP/2.0) of the sender, a reply code, and reason phrase. The reply code is a number
between 100 and 699 and indicates the purpose of the response. Responses can be
divided into six groups:

1xx provisional responses - carry provisional information about the processing of
a request. The sender must stop re-transmitting the request upon reception of
a provisional response.

2xx positive final responses. A final response indicates the result of the
processing of the associated request. Final responses also terminate
transactions.

3xx These responses indicate redirections. For example, a new user location or
alternative service to complete the call. Redirection responses are usually
sent by proxy servers. When a proxy receives a request and cannot process
it, it will send a redirection response to the calling parting indicating a new
location which the calling party might want to try. It is up to, the calling
party to send a new invitation request to the new location given. Redirection
responses are final.

4xx negative final responses. This type of response means that the problem was
caused by he calling party. The request could not be processed because it
contains bad syntax or cannot be fulfilled at that server.

5xx negative final responses to notify the calling party about a server failure. The
request is apparently valid, but the server failed to fulfil it. Clients should
usually retry the request later.

6xx when a request cannot be fulfilled at any server. This response is usually sent
by a server that has definitive information about a particular user.

In addition to the response code, the first line also contains the reason phrase, which
expresses the response in a human readable way.

13

The request to which a particular response belongs is identified using the CSeq header
field. This header field also contains the method of corresponding request. A typical
response received when a user agent tries to INVITE another party is the following:

SIP/2.0 200 OK Method

From: Alice <sip:alice@a.com>;tag=589304 Headers
To: Bob <sip:bob@b.com>;tag=314159
Call-ID: 8204589102@example.com
CSeq: 1 INVITE
Contact: <sip:bob@b.com>
Content-Type: application/sdp
Content-Length: 140

v=0 Body containing SDP
o=Bob 2890844527 2890844527 IN IP4 10.20.30.41
s=Session SDP
c=IN IP4 10.20.30.41
t=3034423619 0
m=audio 3456 RTP/AVP 0
a=rtpmap:0 PCMU/8000

2.2.4. SIP Headers

SIP headers are very similar to HTTP headers in both syntax and semantics. Messages
use headers to specify a caller, callee, the path of the message, type and length of
message body, and so on. The order of appearance within the headers sections is
generally of no importance, except for the Via field, which always has to be at an early
position. The most common headers are:

Allow Lists the set of methods supported by the resource identified by

the Request-URI
Call-ID Uniquely identifies a dialog
Call-Info Provides additional information about a caller o callee.
Contact Provides URL(s), where the user can be found for further

communications.
Content-Length Indicates the size of the message body sent to the recipient.
Content-Type Indicates the media type of the message body sent to the

recipient
CSeq Uniquely identifies a request within a Call-ID.
Encryption Specifies that the content has been encrypted.
From Indicates the initiator of the request.

14

Route Determines the route taken by a request.
Subject Indicates the nature of a call.
To Specifies the recipient of the request.
Via Indicates the path taken by the request so far.
WWW-Authenticate Announces the client to send authorization information.

2.3. SIP Transactions

SIP messages are sent independently over the network, but are arranged into
transactions. A transaction is a sequence of SIP messages exchanged between SIP
network elements. A transaction is formed by a single request and all responses to that
request, including zero or more provisional responses and one or more final responses.
The purpose of the transactions in SIP is to achieve some degree of reliability for
inherently unreliable protocols, such as UDP.

INVITE transactions are special because they might not include an ACK message. If the
final response was not a 2xx response, then the ACK response is included in the
transaction. Meanwhile, if the final response was a 2xx response, then the ACK is not
considered part of the transaction. The reason for this difference is the importance of
delivery of all 200 OK messages. These messages usually carry a description of a
session in SDP, and it is vitally important that this message is received by the other
party. Therefore, user agents retransmit 200 OK responses until they receive an ACK.
Also note that only responses to INVITE are retransmitted.

Figure 2.5: SIP Transactions

15

Every SIP message received at a stateful entity is matched against existing transactions,
in order to determine whether it is a new request or a retransmission from a UAS, a
response to a pending transaction, or even a misrouted response to a UAC.

For transaction matching, a transaction identifier is needed each message. This identifier
is called the branch parameter, and it resides in the Via header.

2.4. SIP Dialogs

The purpose of the SIP protocol is to establish sessions between endpoints. The most
important message used to establish such sessions is the INVITE. When a session is
created via an INVITE, SIP internally creates a structure called a dialog. Dialogs are
only created through a limited set of messages (currently: INVITE, SUBSCRIBE, and
REFER), other messages such as REGISTER are strictly transactional.

Dialogs are identified by their call-ID, from tag, and to tag. All the messages with these
three pieces of information belong to the same dialog. Dialogs facilitate the proper
sequencing and routing of SIP messages between user agents. CSeq is used to order
messages within a dialog. In fact, the CSeq number identifies a transaction within a
dialogue.

Figure 2.6: SIP Dialog

A dialog is composed of a sequence of transactions, in any direction, thus dialogs have a
longer life span than transactions. When a Dialog is created at each endpoint, it is
necessary to set up some state information. In case of INVITE dialogs, the BYE
message is used to terminate the dialog, thus finishing the established multimedia
session. In a SUBSCRIBE or a REFER dialog, in order to finish the dialog the NOTIFY
message is used.

16

2.5. Complementary Protocols

As noted before, SIP’s purpose is to establish a communication session possible. End-
points then use other protocols such as SDP, RTP, and RTCP for their actual
communication.

2.5.1. SDP

SDP specifies a format for describing media parameters to be used in a SIP session. It is
described in RFC 4566 [17].

SDP is used within SIP to specify what kind of media, CODEC(s), addresses, and ports
are available to be used in a session. Note that not all of these media, CODEC(s), etc.
will necessarily be used in a session – but the SDP specifies which ones can potentially
be used. SDP is included in the body of a SIP message. SDP messages can be divided
into three categories of information:

- Session data and information to receive media (addresses and ports)
- Time description
- Media description comprising the session

2.5.2. RTP and RTCP

The Real-time Transport Protocol defines a standardized packet format for delivering
media such as audio and video. In addition, the Real-time Transport Control Protocol
provides out-of-band control information for an associated RTP flow.

RTP and RTCP were developed by the Audio-Video Transport Working Group of the
IETF and initially was described in RFC 1889, now RFC 3550. RTP carries data that
has real-time properties; while RTCP is used to monitor the quality of service and to
obtain information about the participants in an ongoing session. The services provided
by RTP are:

- Payload identification (which CODEC(s) were used)

- Sequence numbering

- Time stamping

- Delivery monitoring

The RTP protocol usually uses UDP to provide multiple connections between two
entities, although RTP could use another transport protocol. It is important to note that
RTP neither provides a means to provide a guaranteed QoS nor assumes the underlying
network delivers packets in order.

17

RTCP periodically sends control packets to all session participants. Every RTP channel
using port number N has its own RTCP protocol channel with port number equal to
N+1.The services provided by the RTCP are:

- Provides feedback on the RTP delivery

- Transports a constant identifier for the RTP source (CNAME)

- Advertises the number of session participants which is used to adjust the RTP
data transmission rate

- Carries session control information used to identify the session participants

18

3. Mobility

Mobile devices have been improving over the years; present devices include many
features for IP-based multimedia communications. On the other hand these devices are
still limited in terms of bandwidth, display size, and computational power. They still do
not conveniently support user mobility. There is not yet a seamless transition between
devices, such as stationary IP multimedia endpoints, hardware IP phones,
videoconferencing units, and softphones. As explained in the last chapter, SIP has been
chosen by the 3GPP as its standard for session establishment in the IMS and SIP is
being deployed in both hardware and software IP multimedia clients. Therefore it is
desirable to specify an architecture for seamless mobility for SIP [18].

In order to obtain a SIP-based seamless transition, two different methods have been
proposed: third-party call control (3PCC) and the REFER method. They will each be
explained in detail in the following sections. A new architecture has been proposed to
achieve session mobility using these methods.

The main objective of this thesis project is to allow a mobile node to discover available
devices and to include these devices into an active session (while not changing the locus
of control of the session). To accomplish this objective, two main components are
defined:

Service Location Learning what devices are available area and their capabilities
Session Mobility during a session with a remote device, to transfer an active

media service to one or more devices

We will first introduce these components and then indicate why they are not sufficient
to solve the problem which we pose - due to the constraint that we do not wish to
change the locus of control - hence rather than session mobility we actually want to
simply redirect the RTP streams and not move the session. This is because the user may
want to redirect the streams to other devices and because some of the devices to which
the user will redirect RTP streams may not even have a user interface - so in this later
case there would not be any ability to control the sessions. To address the later case we
will describe how session retrieval can be performed.

The discovery protocol proposed for this architecture is the Service Location Protocol
(SLP) [19]. SLP is a service discovery protocol that allows devices to find services in a
local area network without a prior configuration.

Session mobility requires the following:

Interoperability every SIP-compliant device should work together with any

other compliant device and should be capable of handling
session transfers

Backward
Compatibility

both mobility-enhanced and basic devices should be available
as targets for a transfer

19

Flexibility differences in devices capabilities, e.g. different CODECs used
in a session should be addressed

Seamlessness session transfer should be as transparent as possible for users

3.1. Types of Mobility Supported by SIP

SIP supports personal mobility and can be extended to support terminal, service, and
session mobility. Each of these will be described below.

Terminal mobility allows mobile hosts to move between different subnets and still be
reachable by other devices and to continue any ongoing session(s). Terminal mobility
requires that SIP can establish a connection either at the start of a new session (pre-call)
or in the middle of a session (mid-call). In the first case, the mobile device has to
register its new IP address, to continue being reachable. The technique used in the
second situation is to inform the communication peers about the new IP address. To do
this the mobile device sends a new INVITE with updated information in the SDP body
indicating the new IP address.

Session mobility allows a user to preserve a session while moving from one device to
another. SIP provides two solutions, using third-party call control and the REFER
method.

Personal mobility allows a user to be identified by the same logical address, even when
the user is using different devices. The solution used by SIP involves forking proxies,
which make the user’s selection of their device transparent to a third party.

Service mobility allows a user to use a set of services independently of the device or the
network attachment points. SIP utilizes a home server that stores the personal
information profile for a user. If a user wants a service from a given device, the device
contacts the home server. This provides access to all the relevant details about this user,
along with the authorized set of services.

3.2. Component Overview

Session mobility involves five basic entities: The Correspondent Node (CN), the Mobile
Node (MN), the local devices, an SLP Directory Agent (DA), and, optionally, a
Transcoder.

The Correspondent Node is a basic multimedia endpoint being used by a remote
participant. It could be for instance, a SIP UA. A Mobile Node is a mobile device
incorporating a SIP UA with SIP-handling and device discovery capabilities. Local
devices are located in the user’s local environment; upon discovery they can be used in
the current session. Basic devices include an IP phone without special capabilities, but
with a SIP UA. The SLP Directory Agent is aware of devices – and knows their location
and capabilities. Finally SIP-based transcoding services might be necessary in order to
translate between format media streams.

20

Figure 3.1: Mobility Scenario

Figure 3.1 illustrates all the components involved during session mobility. First of all, a
Mobile Device with advanced SIP capabilities is exchanging media (via RTP) with a
Correspondent Node in a media session. When the Mobile Device arrives at a new
network, it asks the SLP Directory about what services are available and finds a Local
Device suitable for the media stream it wishes to send or receive. Then, the Mobile
Device sends to its SIP proxy a transfer request that depends on the transfer mode. The
SIP proxy sends an INVITE to the Local Device and to a proxy that is able to reach the
Correspondent Node. The Transcoder (not shown) might be used if the Local Device
does not fulfil the Correspondent Node media requirements.

3.3. Session Location

Peer discovering is a requirement for mobile devices to achieve session mobility.
Bluetooth is a direct method used by many devices to discover peers in close proximity
(for limitations of this discovery method see the thesis of Cécile Ayrault [20]). Other
methods are centralized, such as the Service Location Protocol. The main advantage of
these different methods is the discovery of devices at different location granularities. On

21

the other hand, they have the disadvantage of requiring mobile devices to discover their
location in order to perform such queries. However, a number of service discovery
protocols are based upon a local broadcast – so the co-location with the other
device/service is implicit.

3.4. Session Mobility

In this section several issues concerning session mobility will be explained in detail,
specifically transfer and retrieval differences, media transfer possibilities, and the
transfer modes.

Transfer and retrieval of a session are an important part of session mobility. A transfer
moves the current session from one device to one or more other devices. While,
retrieval means to remotely transfer a current session from a remote device to the local
device. For instance, if a user discovers a large display using his mobile device, the
video media stream could be transferred to this display. However, when the user and
their mobile device leave this room, the media session should return to the mobile
device. After this retrieval the communication session continues using the device’s own
display.

Session media streams may either be transferred to a single device or be split across
several devices. In the last example, when the user discovered a large display and
transferred the video media stream, the video stream was the only media stream
transferred – thus the audio stream remained at his or her mobile device. However, this
audio (output) stream could be transferred to a local amplifier and speaker system. This
was possible because it is possible to independently transfer each direction of a full-
duplex communication to one or more devices.

In order to transfer media sessions there are two different modes: Mobile Node Control
mode and Session Handoff mode. In addition there is a third mode called RTP bicasting
- this involves another entity, a RTPproxy. The following sections will describe each of
these modes

3.4.1. Mobile Node Control Mode

Using Mobile Node Control transfer mode, the mobile node uses third-party call
control. This establishes sessions between other nodes, hence the use of term third
party. A node updates its session with the CN, using a new set of SDP parameters to
establish media sessions between the CN and each device to which media streams are
being transferred. The main disadvantage of this technique is that it requires the mobile
node to remain active in order to maintain the sessions – this may consume resources
(particularly power battery).

Figure 3.2 shows the Mobile Control transfer mode following Third Party Call Flow as
specified in the RFC 3725 [21]. This is the simplest mode because it requires no
manipulation of the SDP by the mobile node and works for any media types supported

22

by the endpoints. We have assumed that there is not a timeout problem, as the endpoints
should answer immediately.

Figure 3.2: Control Node Mode Call Flow

Initially, MN sends a SIP INVITE (1) request to the local device (here labelled as
“Local”), without an SDP body, requesting a new session to be established. As a
consequence, the local device responds with a 200 OK (2) with an SDP body that
includes the address and ports it will use for any media, and also a list of CODEC(s) it
supports for each type of media. Next, the MN sends a RE-INVITE (3) to the CN in
order to send it the updated session description. This request contains the local device’s
media parameters in the SDP body. Note, that the MN might change the local device’s
SDP depending on the type of media that it wishes to transfer to the CN. Afterwards,
the CN sends a response (4) and includes, in its SDP body, the media parameters that it
will use; these might be different from those used in the present session. Finally the MN
acknowledges each endpoint, but in the local device’s acknowledge (6) it sends the SDP
information concerning the relevant stream to/from the CN. Finally a RTP session (7) is
established directly between the local device and CN.

When multiple devices are involved in a transfer it may be necessary to make a small
modification to the above call flow. In order to split a session across multiple devices,
the MN establishes a new session with each local device using a separate INVITE
request. As a result, the MN updates the existing session with the CN with a SDP body
that combines the media parameters of the multiple devices to be involved in the
transfer. Finally the CN responds with its parameters and the MN has to send the
relevant information to each of the respective nodes.

Next there is an example of SDP used in a multiple devices scenario with multiple
combined media parameters (such as audio and video).

23

v=0
m=audio 48400 RTP/AVP 0
c= IN IP4 audio_dev.example.com
a=rtpmap:0 PCMU/8000
m=video 58400 RTP/AVP 34
c= IN IP4 video_dev.example.com
a=rtpmap:34 H263/90000

Finally if the MN needs to retrieve the session, it has to send a new INVITE to the CN
with its own address in the parameters, this will cause the media streams to return to the
MN. Subsequently, it sends a BYE to each local device in order to tear down these
previous sessions.

3.4.2. Session Handoff Mode

Session Handoff Mode is based on the SIP REFER method. This method was described
in RFC 3515 [22] and indicates that the recipient, identified by a Request-URI, should
contact a third party using information from the request. Refer-To is a request header
field that only appears in a REFER request. This header provides an address for the
third party.

Figure 3.3 illustrates how a transfer is performed using a REFER request. Once the
transfer is completed the “referer” does not belong to the session anymore. However,
using the retrieve method that will be explained in next section it is possible to recover
the session.

Figure 3.3: Session Handoff Mode Call Flow

24

First, the MN sends a REFER request (1) to the local device. The header Refer-To
contains information about the URI of the CN. When the local device receives the
request it should ask for user confirmation (assuming that the request is well-formed). If
the refer is confirmed by the MN, then the local device will send a 202 accepted
response (2). Next the local device sends a NOTIFY request (3) in order to inform the
MN about the status of the reference. Then, the local device sends an INVITE request
(5) with the “Replaces” header. This header identifies an existing session that should be
replaced by the new session. The following responses correspond to the confirmation of
the new invitation (6) and the acknowledgement (7) per part by the local device. After
the ACK is sent to CN, another NOTIFY request (8) is sent to the MN. This message
informs the MN of status the refer. As a result, the MN sends a BYE message (10) to
the CN because the transfer has been successful. At this point the MN is no longer part
of the session and need not remain powered on.

Unfortunately, a transfer to multiple devices using this mode is not as easy as in the
Control Node approach. Splitting a session requires multiple media sessions to be
established between the CN and local devices, without the MN controlling the
signalling. This could be achieved using several REFER requests to local devices,
referring each one separately to the CN. The problem is that currently there is no
standard way to associate multiple sessions with a single call in SIP. As a result, each
session between a local device and CN will be treated as a separate call and this does
not fulfil the seamlessness requirement (as stated at the beginning of the chapter).

Finally in order for the MN to recover the session it is necessary to initiate another
session with the CN to replace the current session. The MN needs to receive a REFER
from the local device, in order to recover the old session. This can be achieved if the
user can use the local device’s interface to cause it to send a REFER to the MN.
Otherwise, it is possible to recover the session using a “Nested REFER” (RFC 3892
[23]). A nested REFER is based on indicating in the header Refer-To an URI indicating
the original REFER method. Then, when the local device receives this request, it
automatically sends a REFER to the MN and the session retrieval can be performed.

3.4.3. Bicasting Method

This method is not based on any SIP extension; instead it uses a new entity to support
the mobile SIP scenario. This new entity is called an RTP Proxy. The RTP Proxy is a
symmetric proxy designed to be used in conjunction with a SIP proxy, such as SIP
Express Router (SER) [24]. This SIP Proxy has to be able to rewrite SDP bodies in SIP
messages that it processes. This approach of rewriting SDP has already been used quite
a bit, as SIP does not work well with NATs, thus sometimes communication through a
NAT is not possible, however, using a RTP Proxy is one possible solution (along with
others, such as Simple Traversal of UDP through NAT (STUN) servers [25], Universal
Plug and Play (UPnP) [26], or Traversal using Relay NAT (TURN) [27]).

Figure 3.4 shows the RTP Proxy integration with a SIP Proxy and how these achieve
NAT traversal.

25

Figure 3.4: NAT traversal using RTP Proxy

Alice and Bob are in two different networks domains, where Alice is behind a NAT.
The SIP messages are the same as usual. However, when the SIP Proxy receives the
first SIP message, it detects that Alice is behind a NAT, thus it initiates communication
with an RTP Proxy. It communicates to this RTP proxy Alice’s IP address and port. The
RTP proxy responds with the IP address and port which should be given to the called
party. Given this information the SIP proxy rewrites the SDP body of the INVITE and
forwards it to Bob. Bob’s behaviour is the same as usual, thus if Bob is available and
wishes to accept the call his UA responds with a 200 OK message. When the SIP proxy
receives this message, it sends the IP address and port number information from Bob’s
SDP to the RTP Proxy. In response the RTP proxy returns a new IP address and port
which Alice should use. This SIP proxy rewrites the SDP body and forwards this
message to Alice. Finally, Alice sends an ACK response that is forwarded to Bob via
the SIP Proxy.

The assumption here is that the RTP Proxy is able to reach each end-user and that it can
match the IP address and port information, so that when it receives an RTP stream from
Alice, is able to relay the stream to the port and IP address that Bob is listening to. For
details of a similar approach see the thesis of Gustav Söderström [28].

Bicasting replicates the RTP stream at the RTP Proxy. This can be used to support a soft
handover [29] when the location of the mobile node is not clear. For example, the RTP
Proxy can send the RTP stream through different networks, such as WLAN and GPRS.
Thus it is possible to ensure that the mobile node will receive the RTP stream despite
the location and connectivity of the mobile node.

This approach can be adopted to support session mobility – where it offers benefits
which are not possible with the other approaches. This Bicasting mode is useful in a

26

number of different situations, e.g., when the MN wants to keep the RTP stream when
doing a transfer. Another possibility occurs when the MN situation is not clear and there
are many devices to transfer media to. In such a situation it would be possible to
replicate the RTP stream to several devices, thus reaching the selected device.

To achieve these objectives, the MN has to be able to directly communicate with the
RTP Proxy or do so through a SIP proxy.

27

4. Framework

This chapter presents the framework used for the thesis project. This framework is
based on a mobile device, a development environment, some software development
kits, and some adaptation to the Minisip UA in order to provide suitable session
mobility – as required in the mobile SIP scenario given in section 3.2.

4.1. The Mobile Device

In this section, an overview of the Motorola Linux phone will be given. The specific
Motorola phone which I have used is model E680i. This phone can be currently found
in the Asian market. The specific phone used in this study was enabled as a developer’s
phone at the company’s research laboratory. The phone has a PDA form factor (109 x
53.8 x 25 mm) with a touchpad based screen. Further details of the phone are given in
the next subsection.

Figure 4.1: Front and Back Motorola E680i

4.1.1. Hardware Configuration

The E680i phone’s hardware description [30] is:

CPU Intel Xscale Bulberde revision 7 (PXA 270) 312MHz CPU, with

support for OMA’s digital rights management (DRM) Phase 1
RAM 32 MB
Flash Memory 50 MB of internal end user memory
Weight 133g

28

An essential part of the hardware configuration is the phone’s display. The display’s
characteristics are:

Screen Resolution 320 x 240 pixels
Screen Dimensions 320 x 240 mm viewing area
Pixel Pitch 0.156 mm pitch, square
Color Depth 16 bits
Maximum Colors 65K colors

4.1.2. Architecture

The architecture of the E680i is ARM-based [31] (as noted above the CPU is a PXA
270). ARM CPUs have become the de facto standard by powering the majority of high
end mobile devices, due to the following features:

- Algorithms can be implemented efficiently, thus reducing CPU, memory, and
power requirements.

- High performance core – which can provide significant processing power when
needed.

- Wide range of software tools.
- Low power consumption (with support for various power saving mechanisms).
- Low cost of silicon.
- Wide support for related hardware, software components, lots of developers,

etc..

This architecture has three layers: application, service, and driver layers. All layers are
Linux-based; however the application layer includes both a Java Virtual Machine and an
Application Manager.

The main layer, upon which this thesis is focused is the application layer where the
Minisip UA will run , this in turn depends on the underlying, Service layer, specifically
the APIs related with the graphical user interface, connectivity, multimedia, system, and
network.

4.1.3. Operating System

The Motorola phone runs an embedded Montavista Linux Consumer Electronics
Edition 3.0 [32] (MVLCEE) and has the following features:

Linux Linux kernel version 2.4.20 with Bulverde support package
OS services memory management, interrupts and exceptions, kernel

synchronization, process management, file systems,
networking, etc.

Standard drivers USB, UART, SPI, I2C, Flash drivers, GPIOs, power
management, audio drivers etc

29

BusyBox V1.1.1

As it has been detailed before, the Motorola phone has 50MB of free space for
useutilities, 32 MB of RAM and has the possibility to expand its storage space using an
SD memory expansion slot.

4.1.4. Application Framework

The EzX GUI framework is based on the Trolltech’s Qt Embedded GUI toolkit [33].
The current version available on the Motorola phone is 2.3.8. QT is a cross-platform
application development framework widely used for the development of GUI programs.
Some QT-based applications are the KDE desktop project [34] and web browser Opera
[35]. QT uses standard C++ but can also be used by programmers using other languages
such as, Python, Ruby, Java, and etc.

The services provided by QT are the following:

- Inter object communication using Signals and Slots.
- Events
- GUI primitives such as buttons, combo-boxes, scrollbars, etc
- Advanced user interface controls such as list views, progress bars, etc
- Window and Dialog Manager

4.2. The Development Environment

EzX is used to provide a smart phone. Such a device combines the features of a PDA,
an internet appliance, and a multimedia player. EzX is a software development
environment where application developers can use the tools and interfaces provided by
the software development kit to develop their own application to run on EzX phones.

The development environment has been built to run on a PC running Linux with Kernel
2.4 or above. In order to set up this environment some basic knowledge of Linux is
necessary. Moreover, some knowledge of cross-platform development is useful to build
applications for an architecture such as ARM. In the next section, the required cross-
platform basic knowledge will be explained.

The EzX software development kit also includes a plug-in for the Eclipse IDE tool [36].
Eclipse is an open source platform-independent software development environment for
creating internet applications. Eclipse offers an IDE with a Java compiler and a full

30

model of the Java source files. Eclipse employs plugins in order to provide all of its
functionality, in contrast to some other IDEs where such functionality is typically hard-
coded. For example using plug-ins eclipse can be extended to support programming
languages such as C, C++, and Python. In this case we have used it to support the
development of Minisip in C++.

The Eclipse plug-in integrates an EzX Montavista tool chain into Eclipse and also
supports onboard debugging via Eclipse using a remote gdb-server. For further
information about software components required, installation and configuration, and
how to onboard debugging via the USB or WiFi links, it is necessary to have access to
the Motorola internal document provided with this software development environment.

4.3. Cross-Platform Development

To generate code for the phone, I used a cross-compiler. A cross-compiler is a compiler
capable of creating executable code for a platform different than the one on which the
cross-compiler is running. This technique is particularly useful when it is necessary to
compile for a platform that is not accessible or is not convenient or difficult to compile
on (as is the case with embedded systems, on microcontrollers with a minimal amount
of memory).

For cross-platform development a toolchain is needed to build the cross-compiled
executable. A toolchain is a set of utilities that are used to create another executable.
These tools are usually used in a chain, so that the output of each tool becomes the input
for the next. A simple software development toolchain consist of a text editor for editing
source code, a compiler and a linker to transform source code into an executable
program, and libraries to provide interfaces to the operating system.

When building cross compilation tools, usually there are two different systems
involved: the system on which the tools will run, and the system for which the tools
generate code.

- The system on which the tools will run is called the host system
- The system for which the tools generate code is called the target system.

Here we have used a compiler which runs on a GNU/Linux system and generates ELF
programs for an ARM embedded system. In this case the GNU/Linux system is the host
and the ARM ELF system is the target.

It is possible to create a cross-compiler with several GNU Tools, such as gcc [37],
binutils [38], and uclibc [39], but it can be a difficult to configure the tool chain
properly. Another alternative is to use a toolchain already created from another person.
Toolchain for arm-processors include the one provided with the EzX SDK, the one
recommended by the Minisip authors [40].

31

5. Method for Redirecting RTP Streams

Chapter 3 has given an overview of several ways to implement session mobility in a
mobile SIP environment. In this chapter we examine which technique is most suitable
for the purposes of this thesis project.

Once the transfer method had been selected, it is important to decide how to implement
it, in order to accomplish the objectives of this thesis project. The methodology will be
explained in great detail in section 5.2.

5.1. Choosing the Best Approach to Session Mobility

We begin with an evaluation of all three approaches. The advantages and disadvantages
of each approach will be detailed. Next we describe a specific approach that has been
selected for this thesis project. Finally we will describe a test scenario that will be used
to evaluate our selection.

Bicasting has been excluded as it is not a SIP based solution and because it requires the
addition of a new network node. However, we emphasize that it could be used together
with the approach which is selected; but this remains for future work.

5.1.1. Transfer Mode Comparison

In this section a comparison between Mobile Node Control Mode (3PPC) and Handoff
Mode (REFER) will be performed. The objective is to find the method that best fulfils
the requirements of this thesis project. First we consider the requirements for this
service:

Media independent The solution should be independent of the media transferred

in the session
Mobile environment The solution has to be suitable for use in a mobile

environment
Simplicity The solution should be as simple as possible due the resource

limitations at the end points
Low response time The solution should be fast and not depend on the response

time of the end points
Scalable The solution should support as many participants as possible
Easy integration of
new services

The addition of new features should be easy

32

The selected choice should fulfil as many requirements as possible. The advantages and
disadvantages of the two transfer modes are shown in the following table.

Table 5.1

3PCC
Advantages Disadvantages

Simple MN remains active as a central point
No changes in SDP Timeout problem
Works with any kind of media INVITE without SDP
Multiple device transfers Used in midcall control

REFER
Advantages Disadvantages

Decentralized SIP entities have to support REFER
No timeout problem Endpoints more complex
 No Multiple device transfers

The principal 3PCC advantage is that is very simple approach and it does not need any
extension of the SIP protocol to work. Another advantage is that no SDP body changes
are necessary and it works with any kind of media - as long as this media is supported
by both parties. Finally it is possible to perform multiple device transfers using a new
session for each.

The main drawback of using 3PCC is that it requires a central point of control, in this
case the MN, which might be not desirable. It is important to note that the MN is a
mobile device with limited resources (such as battery power), so using this approach,
the signalling of the session will still be controlled by the MN - as a consequence MN
resources will be used. There is also a problem of timeout as already explained in
section 3.4.1. It has been reported that some UAs do not behave as expected when they
receive an INVITE without a SDP body. Finally 3PCC can only be used during
midcalls.

On the other hand, the main advantage of using REFER method is its decentralized
architecture. The MN need not take part in the signalling for the session once the media
is transferred. Thus, the MN’s resources will be saved. Moreover the timeout problem is
solved using the SUBSCRIBE and NOTIFY requests that will inform the MN of the
current situation.

However, as it has been explained before, the REFER request is an extension of the SIP
protocol, so not all the SIP entities support this feature. Moreover, the endpoints have to
be more complex because of this decentralized architecture. Finally it is not possible to
make multiple device transfers using this approach.

Finally a resources comparison will be performed. As explained before the 3PCC
approach consumes more resources than the REFER approach. When redirecting RTP
streams, there are three possibilities:

- Being the central control point of the redirection with RTP and SIP support
- Being the central control point of the redirection with only SIP support
- Not being part of the transfer any more.

33

The first approach was discarded because it has high resource consumption due to the
RTP redirection and the SIP signalling. The second approach, known as 3PCC, has the
advantages of mantaining control of the session and it has lower resource consumption
because the RTP redirection work has been transferred to another device. Finally the
third approach, known as REFER, has minor resource consumption compared to the
other two, but the device still has to listen in order to recover the control of the session
if and when desired.

5.1.2. Chosen Transfer Approach

The approach that best fulfils the requirements is Mobile Node Control Mode (3PCC).
This technique is much simpler than the REFER method. This is particularly important
as most current UAs, do not implement the REFER extension. Minisip has implemented
this extension, but still is in development. Additionally, the timeout issue is not a
problem because in the proposed scenario there will not be any delay due to a UA. The
media independence is very useful because not only can an audio stream be transferred,
but so can a video stream. Thus makes it possible to start watching a video via the
mobile phone and when it discovers a large screen display, it could send the video
stream to this large display’s UA. Note that since there is likely to be a significant
difference in the total resolution of this new display another video stream might be
selected by the source. Moreover, most prestored video sequences are likely to be
available in multiple formats - due to the wide spectrum of devices and the very large
differences in the data rates required for different resolution displays.

The main drawback of this approach is that the MN is the central point of
communication. Thus signalling still will be continued to be received as was explained
in the previous section. However SIP signalling is used at the beginning of the
communication, while the RTP media is being exchanged the signalling is not used so
often. Thus, it is possible for the MN to spend most of its time in sleep mode – and only
waking (perhaps once every 100ms) to listen if there is signalling traffic or not.

Therefore, 3PCC fulfils the requirements. However, is still necessary to check the
behaviour of the UAs to see what happens when they receive an INVITE without SDP
and to measure the latency of the transfer. These issues will be evaluated in a test
scenario, as described in next section.

5.1.3. Test Scenario

This analysis evaluates the chosen transfer approach (see section 5.1.2). In addition, we
examine the behaviour of different UAs when they receive an INVITE without SDP and
measure the response time of the transfer requests.

34

The entities that are involved in this scenario and their configurations are:

IP address: public address obtained by DHCP
Port: 5060
UA: Minisip for ARM

 SIP: 1006@130.237.15.221
IP address: 130.237.15.233
Port: 5060
Version: 0.94

 Mode: Proxy + Register
IP address: 130.237.15.222
Port: 5060
Cisco IP Phone model 7960 series

 SIP: 1005@130.237.15.222
IP address: 130.237.15.247
Port: 5060
UA: Xlite 3.0

 SIP: 1000@130.237.15.247

IP address: 130.237.15.233

Port: 427

All the IP addresses of the entities are public in order to avoid any NAT problems
(hence avoiding the need to use a STUN server or an RTP Proxy). Figure 5.1 shows the
desired behaviour of the UAs, Proxy, and Discovery Server. The call flow starts with a
media session between the Cisco IP Phone and the Motorola phone. Once, the mobile
node E680i discovers that there is another device (a softphone indicated as Local) to
continue the session, it initiates the transfer mechanism.

35

Figure 5.1: Test Scenario

As explained in the transfer method section, the E680i phone acts as a central point of
the communication. After the transfer the RTP media is sent by the Cisco IP phone
directly to the SIP UA although the SIP signalling control point is still the E680i
smartphone.

5.2. Implementation

In this section, a detailed methodology for implementing the selected soluiton will be
presented. The steps involved in the implementation are:

- Port a preliminary version of Minisip to the Motorola Linux phone.
- Adapt the Minisip source code to implement the selected transfer approach.
- Create a GUI for Minisip using the SDK provided by Motorola.

Each of these steps will be divided into subtasks. In the subsequent sections each of
these subtasks will be described.

5.2.1. Minisip Port

We began by porting a stable version of Minisip to the Linux phone. Although this
preliminary version might have reduced features and only used on a text user interface it
established the basic SIP UA functionality for this platform.

36

To generate the necessary executable code required the utilization of a toolchain. There
are several toolchains for the ARM platform. The Minisip project recommended the
utilization of a toolchain from HandHelds.org. This toolchain can be retrieved as shown
below:

Figure 5.2: Obtaining the toolchain

Another toolchain that can be used to build binaries for this phone is the toolchain
provided by the EzX SDK from Motorola.

Both toolchains require setting some system environment variables in order to be able to
compile and link code for this Linux phone. In the EzX SDK this process is done by an
configuration script.

Figure 5.3: Toolchain environment variables

Minisip UA is based upon several libraries. In order to compile the final binary it is
necessary to first compile and install each library correctly. The libraries which Minisip
is based on are:

- libmutil
- libmcrypto
- libmnetutil
- libmikey
- libmstun
- libmsip
- libminisip

The order of compilation and installation is important because some libraries have
dependences on previous ones. The proper compile and installation is shown in figure
5.4. This figure does not depict libmcrypto and libmstun because they are not part of the
core framework.

export PATH=/path_where_the_toolchain_is/bin:$PATH
export PKG_CONFIG_PATH=/path_where_the_toolchain_is/lib/pkgconfig
export CC=arm-linux-gcc
export CXX=arm-linux-g++
export AS=arm-linux-as
export AR=arm-linux-ar
export NM=arm-linux-nm
export LD=arm-linux-ld
export RANLIB=arm-linux-ranlib
export LDSHARED="arm-linux-gcc -shared"

oscar@ccsmot:/home/oscar> wget http://www.handhelds.org/download/projects/
toolchain/arm-linux-gcc-3.3.2.tar.bz2

37

Figure 5.4: Library Dependence

In order to compile and install each library, the steps to follow are to connect to the
relevant directory for this library, then:

Figure 5.5: Library installation steps

There is a special library, libmcrypto that depends upon another library outside the
Minisip project. This external library is Openssl [41] and libmcrypto requires a version
0.97b or greater. The Motorola SDK provided version 0.98b.

When all the libraries are correctly installed, then the Minisip binary can be built. The
steps to build a simple statically link version with only the command line interface
(“text GUI”) are:

Figure 5.6: Minisip binary installation steps

./bootstrap

./configure --host=arm-linux --prefix=/path_where_the_toolchain_is/
--enable-textui --disable-gtk --enable-static

make && make install

./bootstrap

./configure --host=arm-linux --prefix=/path_where_the_toolchain_is/

make && make install

38

The binary has been built in same part of the file system where the toolchain is. Once
the binary has been linked it is time to upload it to the phone using, e.g. an NFS server
to share directories between the computer and the phone or a file transfer program. As
Linux distributions have a NFS server as a default service, it is often only necessary to
start it. Before starting it, it is important to modify the file “/etc/exports” to specify the
directory where the executable file is to be found mounted file system. Note that is also
possible to export more of the file tree, but for our purposes that is not necessary.

Figure 5.7: Exports content

The Motorola debug directory will be exported as a mounting point. The address
192.168.1.2 is the IP address of the phone, this and the parameters allow the phone to
mount this directory and to read and write files to this directory. Note that it is useful to
make this directory writeable in order to store debugging and test information on the
cross compiling host - as it generally has lots of storage space (unlike the phone itself).
An advantage of having these files on this host is that they can easily be processed with
other tools when debugging.

When using this NFS shared folder we had a problem with IP fragmentation. This
problem can be solved using the following parameters when mounting the NFS
filesystem:

- wsize: 1024
- rsize: 1024

The phone also requires some configuration. A folder named “ide” should be created in
“/tmp” (which is a writable directory), and the following command issued to mount the
remote directory on the phone at the specified mount point (/tmp/ide).

Figure 5.8: Mount command

The command mount is called specifying the type of the file system to mount as type
nfs. The address 192.168.1.1 is the IP address of the host computer followed by the
name of the path to the directory which is to be mounted. The second path specifies the
mount point on the phone.

Some Linux distributions have a software firewall activated by default. In such cases is
necessary to configure the firewall to permit the necessary communication (additionally
you will need to have the NFS services mountd, lock, statd, and quotad use fixed ports –

mount -t nfs -o nolock,hard 192.168.1.1:/export/home/oscar/Motorola
/debug tmp/ide

The contents of /etc/exports is:
/home *(rw,sync)
/home/oscar/Motorola/debug 192.168.1.2(rw,async,no_root_squash)

39

so you know which ports to let through; For directions in configuring these to use fixed
port numbers see [42]).

Alternatively because the phone is generally attached to the development host by a USB
cable it may be reasonable to simply turn off all the firewall filtering on this interface or
at least all the filtering relevant to packets to and from the IP address of the phone.

5.2.2. Adaptation of Minisip

The last step is to adapt Minisip to the phone’s architecture and features. There are
several issues to consider in this process:

- Providing the basic functions of Minisip
- Develop a transfer feature
- Communication with a SLP server
- Adapt the QT GUI to support both an interface to Minisip and to control the

transfer process

Once Minisip has been ported to the phone’s ARM platform, it did work as expected.
Although the phone and the PC system environments are relatively similar, i.e., both are
Linux-based, there will be incompatibility problems, such as properly accessing the
media system of the phone.

To develop the transfer feature it is necessary to create a manager which is aware of the
phone’s session status.

In this thesis we will assume that some other system provides a list of devices and their
capabilities (as this is being developed in another set of theses). Thus we will simply
offer the user a choice of a set of devices with different capabilities - these will be
retrieved from a configuration file.

Finally, the last task was to adapt or implement new QT GUI with both the Minisip and
transfer control functions. This subtask will be described in the following section.

5.2.3. GUI for the Motorola Phone

Another step is to develop a graphical user interface for the Motorola phone. The
phone’s SDK is based on QT 2.3.8, but with some new class implementations
specifically designed for this phone.

The easy way to implement this GUI is to use the Eclipse integrated development
system and the plug-in to upload and debug the code to the phone, as it was described in
chapter four.

40

The main objective was to develop a simple GUI, even though it might not have all the
functionalities of the original GUI. However, there are many features that must be
supported in order to test Minisip in a SIP mobile environment. These functions are:

Basic call handling Basic call functions, such as making a call and hanging-up,

in order to interact with other end points
Discovery of devices Session mobility requires discovery of devices to transfer

the RTP stream to.
Configuration dialog A basic configuration dialog is required to configure SIP

features, such as SIP-URI, password, SIPPRoxy, and port.
Transfer capabilities A means of controlling the transfer service is necessary to

transfer RTP streams from one device to another.
Debug dialog Debuging information about call processing is necessary to

be aware of the media handling operations.

The GUI should take advantage of the features of the phone’s screen, for example using
the touch screen, emulated keyboard, or handwriting recognition. Although a QT GUI
exists for Minisip, has not been utilized or kept in synchronisation with developments
for some time. However, it might be possible to adapt or reuse some functions
previously developed. Unfortunately at the time of the writing of this report the
implementation of the GUI has not been completed.

41

6. Analysis

In this chapter we will analyse the RTP method selected. Afterwards, we will study if
this method fulfils the requirements proposed in chapter five. However, before doing
the analysis we will explain how we are going to evaluate what we have done.

6.1. Evaluation

In this section we will explain how the analysis will be performed and how we are
going to evaluate this RTP transfer approach.

In the analysis section, we will discuss the porting and adaptation of Minisip to the
Motorola Linux phone and also the RTP redirection using the selected approach.
Concerning porting Minisip, an explanation about the tools used and the problems
encountered will be given. With regard to the RTP redirection approach, we will check
if the behaviour of those endpoints is the expected from the 3PCC RTP approach
explained in section 3.4.1. To verify this, a normal transfer will be performed and all the
traffic will be captured with a sniffing tool, in this case Ethereal [43]. The scenario will
be the same as was detailed in section 5.1.3.

To evaluate the RTP method transfer we will consider the requirements that were
proposed in section 5.1.1. Mainly we will study the following requirements

Transfer response time Several transfers will be performed in order to obtain a

mean time between the first INVITE and the last 200 OK.
Media independency A codec that is not supported by the MN will be used in

order to check for media independency.

6.2. Analysis

To analyze the RTP redirection approach, initially it was necessary to port a preliminary
version of Minisip to the Motorola Linux phone, as explained in section 5.2.1.

6.2.1. Port and adaptation of Minisip

This port has not been an easy task because when the Minisip project started, it was
developed initially on x86 Linux systems. Later, the project was moved to different
platforms, such as familiar Linux, ARM, Windows, and recently to Windows Mobile
[44].

42

The process followed to port Minisip to the Motorola Linux phone was explained in
section 5.2.1. The tools used were mainly two different toolchains.

We started the process using the tool chain that was proposed by the Minisip project,
i.e. the one from Handhelds.org. During the compilation of the libraries we encountered
different incompatibilities that were successfully resolved. Finally we obtained the
compiled libraries and the binary with a textUI of Minisip. To upload it to the phone we
used the NFS shared folder and we modified the following environment variables in the
phone.

Figure 6.1: Environment variables in the phone

LD_LIBRARY_PATH is an environment variable that tells “ld” where to find libraries
if they are not where it expects them. As we have uploaded all the libraries to the NFS
shared folder in /tmp/ide we have to update this variable. If the port were included in the
flashed file system of the phone, that libraries and executable could be placed where
libraries and executables normally reside.

HOME is another environment variable that tells where the user’s home directory is. In
our case we have set the home to be the same NFS shared folder, so that the Minisip
textUI executable could find the Minisip configuration file.

Once the setup was complete, we tried to execute the binary, but the execution failed, it
appeared to be an error. We tried to do remote debugging to detect where the execution
error was, but little information was obtained.

Then, we decided to use the toolchain provided by the Motorola EzX SDK. The
procedure was the same that with the other toolchain, several other incompatibilities
were found and resolved. Finally the libraries and the Minisip textUI binary were built
using this toolchain and were uploaded to the phone using the NFS shared folder.

Now we could execute the Minisip textUI binary in the shell of the phone without
problems. In order to configure Minisip there is a configuration file, an example is
shown in the Appendix [A],

Before executing Minisip it is necessary to configure the wireless interface from the
phone. As it is explained in chapter four, there is an SD slot; into this slot we have
placed an SDio card with IEEE 802.11b support. The configuration commands are
shown in figure 6.2:

#export LD_LIBRARY_PATH=/tmp/ide:/lib:/usr/lib
#export HOME=/tmp/ide

43

Figure 6.2: Phone’s wireless configuration

In addition, the Sip Express Router (SER) will be started in a server in order to register
this Minisip UA and also act as a proxy for signalling sessions.

Figure 6.3: Ser execution

The configuration file from SER is shown in the Appendix [B]. It is a simple
configuration file, every UA can register and there is no need for password.

Finally we will start the Minisip textUI binary execution.

ser
Listening on
 udp: 130.237.15.233 [130.237.15.233]:5060
 tcp: 130.237.15.233 [130.237.15.233]:5060
Aliases:
 tcp: ccsmot:5060
 tcp: ccsmot.wireless.kth.se:5060
 udp: ccsmot:5060
 udp: ccsmot.wireless.kth.se:5060

#iwconfig eth0 essid Default mode Managed
#dhcpcd eth0
dhcpcd: MAC address = 00:e0:00:de:5a:6b
dhcpcd: SetDHCPDefaultRoutes=1
DhcpOptions.len[routersOnSubnet] = 4
dhcpcd: setting default route to \uffff
dhcpcd: your IP address = 130.237.15.221
dhcpcd: orig hostname = (none)
dhcpcd: your hostname = dhcp015221.wireless.kth.se
dhcpcd: orig domainname = (none)
dhcpcd: your domainname = wireless.kth.se

44

Figure 6.4: Minisip textUI execution

It is possible to check in the SER if the user agent has registered successfully as shown
in figure 6.5.

Figure 6.5: SER’s contact database

serctl ul show
Dumping all contacts may take long: are you sure you want to
proceed? [Y|N] y
===Domain list===
---Domain---
name : 'location'
size : 512
table: 0xb5ed1ed8
d_ll {
 n : 2
 first: 0xb5ed3ee0
 last : 0xb5ed3fe8
}
...Record(0xb5ed3fe8)...
domain: 'location'
aor : '1006'
~~~Contact(0xb5ed4028)~~~ 
domain    : 'location' 
aor       : '1006' 
Contact   : 'sip:1006@130.237.15.221:5060;transport=UDP' 
Expires   : 793 
q         : 
Call-ID   : '744687153@130.237.15.221' 
CSeq      : 101 
User-Agent: 'Minisip' 
received  : '' 
State     : CS_NEW  
Flags     : 0 
next      : (nil) 
prev      : (nil) 
~~~/Contact~~~~ 
.../Record...

./minisip_textui

Starting MiniSIP TextUI ... welcome!

Creating TextUI
Minisip: 1
Minisip: 2
Library: file not found
SipIdentity::SipIdentity : created identity id=1
SipIdentity::setSipProxy: autodetect is false; userUri=
1006@130.237.15.233; transport = UDP; proxyAddr=130.237.15.233;
proxyPort=5060
SipIdentity::setProxy: else ...
SipProxy:setProxy(str) : addr = <sip:
130.237.15.233:5060;transport=UDP>
SipIdentity::setProxy: manual sipproxy success ...
Minisip is using IP = 130.237.15.221

To auto-complete, press <tab>. For a list of commands, press <tab>.
…

45

Once we have checked that the binary works and that the configuration file, hence the
UA has successfully registered with the SER proxy, it is possible to perform a call
between to endpoints. Here we will call the user 1005 – who is registered at the Cisco
IP Phone.

Figure 6.6: Minisip textUI call usage

The configuration of the endpoints is the same as shown in the test scenario in section
5.1.3 page number 35.

We have started a SIP communication between the MN and the CN. The following
diagram shows the network packets sent over the wireless interface. We have used a
tool called SipScenario [45], which uses the capture of a sniffer tool to create a visual
scenario.

Figure 6.7: Test 1 Simple Call

Figure 6.7 shows the SIP messages exchanged between different endpoints and a SIP
proxy. The MN starts the communication sending an INVITE(1) to the CN, but this
request is special because it does not have any SDP. The behaviour of the MN is as
expected, but when it receives the 200OK(8), it sends an ACK(9) with the SDP
information that should have been in the first INVITE. This test corroborates the
expected behaviour of the MN with the SIP signalling and thus the behaviour of the CN
when receives an INVITE without and SDP. In chapter three, we discussed that some
UAs have a strange behaviour when they receive such an INVITE; this test does not
such an incompatibility.

Nevertheless, the audio quality of the call was not good. We have checked the statistics
of the RTP streams using the Ethereal tool. The results are shown in figure 6.8.

Usage: call <userid>
IDLE$ call 1005

46

Figure 6.8: Test 1 Statistics

The highlighted stream corresponds to the stream from the CN to the MN. This stream
seems correct, there were not any packets lost and the jitter is very small (with a mean
of 0.10ms). On the other hand, for the second stream that is sent from the MN to the
CN, there were some packets lost and the jitter is very high (around 120 ms). In
addition, the number of packets sent are very small (approximately 6 times fewer) in
comparison with the packets sent in the other stream.

To understand this behaviour we wrote several small applications that read and write
from the audio devices. The results of these applications were satisfactory. Minisip uses
a circular buffer to decouple the reading and writing of received packets on their way to
the audio device driver and from the audio device driver on their way to becoming
packets. It seems that there is not synchronization when accessing to this buffer in this
port (which has not shown up in any of the other ports). Although the sound quality is
poor the RTP stream is created, and it is possible to perform the transfer using the
3PCC.

To perform this transfer a new command has been added the textUI interface. Some
additional classes have been created in order to support two dialogs at the same time. In
next section there is another test that shows how the transfer has been achieved.

6.2.2. RTP transfer approach

In this section the 3PCC transfer approach will be analysed. To test this approach we
will use the same scenario from section 5.1.3. The entities have exactly the same
configuration as in last section.

To invoke this new functionality it is necessary to use the following command, where
the first user is the location to where the RTP will be redirected and the second user is
the user to transfer.

Figure 6.9: Minisip textUI mobileTransfer usage

The next diagram shows the packets sent to each of the endpoints.

Usage: mobileTransfer <transferTo>-<transferred>

IDLE$ mobileTransfer 1005-1000

47

Figure 6.10: Test 2 RTP transfer

48

The endpoints behave as expected from the 3PCC section. It is noticeable that the Cisco
IP Phone sends up to three 200 OKs before it receives the ACK with the SDP. The time
to complete the transfer is about 5.59 seconds. This is partially due to the delay between
when the phone starts ringing (at this point the phone sends 180 response) and at time
the user picks up the phone (at this point the phone sends the 200 OK). Hence this delay
is attributed to the end user. In addition there is some additional delay due to the
utilization of a SIP proxy that resends every SIP message. This delay is approximately
100µseconds per message.

 Figure 6.11: Test 2 Statistics

Figure 6.11 shows the statistics of the RTP streams in this RTP transfer test. The first
thing noticeable is that there are four streams instead of the expected two from the CN
and Local endpoints. These additional streams should not appear. The MN still assumes
that these packets belong to it. The quality of the call is good despite these extra
streams. The first and third streams representing the traffic from the LOCAL to the CN
endpoint and from the CN to the LOCAL endpoint have almost the same number of
packets, there are no lost packets, and the jitter is quite low.

These additional streams should be eliminated by changing the source code of Minisip.
Based upon the low quality of the last call, there is any kind of bad implementation in
the Minisip running on the Motorola Linux phone that results in the poor quality just as
experienced in test 1.

6.3. Study

The previous section has shown the 3PCC transfer using Minisip in a mobile scenario
with a Motorola Linux phone. In this section, we will discuss if this approach fulfils the
requirements previously stated. To study these requirements two tests will be performed
as explained in section 6.1.

49

6.3.1. Transfer Response Time

We begin by estimating the mean transfer time. This transfer time begins with the first
INVITE sent by the MN and ends with the last ACK received by the LOCAL endpoint.
As explained before there is some extra delay due to the end user and the utilization of a
SIP proxy in the scenario.

In order to estimate the mean transfer time, ten transfer tests have been completed and
recorded. This test is the same as that the test described in section 6.2.2.

Table 6.1
First INVITE (sec) Last ACK (sec) Difference (sec)

22.278 27.36 5.082
6.32 11.34 5.02

15.316 20.221 4.905
11.427 16.441 5.014
9.373 14.418 5.045

16.771 21.592 4.821
12.019 16.679 4.66
10.023 15.152 5.129
13.654 18.632 4.978
11.629 16.543 4.914

Finally the mean transfer time is estimated using the following equation.

onds
stsNumberOfTe

encesTimeDiffer
erTimeMeanTransf sec9568,4== ∑

The mean transfer time is small and acceptable although it depends directly upon the
endpoints of the transfer. This delay could be reduced if the UA implemented an auto
response feature (sometimes called automatic answer). This feature could be used in
streaming media servers, for example when you place a call on hold and should be
redirected to a Asterisk [46] server which plays some audio to let the other end user
know that the call has been placed on hold.

6.3.2. Media Independency

In this section we will check the features of 3PCC and at the same time verify that the
requirement of our transfer approach, specifically media independency, works in our
scenario. For this test, different CODEC(s) have been used in the endpoints.

50

IP address: public obtained by DHCP
Port: 5060
UA: Minisip for ARM

 SIP: 1006@130.237.15.221 CODEC G.711
IP address: 130.237.15.233
Port: 5060
Version: 0.94

 Mode: Proxy + Register
IP address: 130.237.15.247
Port: 5060
UA: Xlite 3.0

 SIP: 1005@130.237.15.210 CODEC GSM

The CODEC GSM is the CODEC used in the GSM communications; it has a bit rate of
13kbps instead of the 64kbps of G.711; although the sampling rate is the same, i.e. 8
KHz.

Next, as in the other tests, we will use the tool SipScenario to create a diagram showing
the SIP messages.

Figure 6.12: Media independency Test

Figure 6.12 shows the behaviour of the MN when using a unsupported CODEC. The
SIP communication starts as a normal transfer, but when the MN receives the 200
OK(7) with the SDP information about the CODEC used, it has an strange behaviour.
As configured our Minisip did not recognize this CODEC and sends a BYE(8) message.
The transfer can not be accomplished because we are not using a compatible CODEC.
Finally there are some messages sent by the LOCAL device about a Call or Transaction
that does not exist. In the BYE(8) message sent by the MN there is an erroneous header.

51

Hence the transfer was not accomplished; Minisip does support several other
CODEC(s) including GSM, via plug-ins. However, even though Minisip (as configured)
does not support the CODEC of the transfer, it should have worked because the MN
node is simply acting as a central point rather than as an end point.

The problem is basically that Minisip only supports one dialog per command. If you are
on a call you can not make another request to another device, because still is not
supported. Minisip was developed to check every response and not to resend it as a
central point. Hence the problem about unsupported CODEC, if it is not supported,
Minisip aborts the communication

52

7. Conclusion

In this thesis project we have ported a preliminary version of Minisip to a Motorola
Linux phone based on an ARM platform. We have encountered several problems due to
the lack of experience of porting such as large project to a handheld device. Moreover
there were several possible alternatives to perform the porting and we had to decide
what was must suitable given to our porting experience.

Next we decided what kind of RTP transfer approach was best for our own purposes.
Several methods have been studied, but only one has been selected and implemented.
3PCC was selected instead of the REFER method or the RTP bicasting method because
it better fulfilled the requirements that were stated when the thesis project started.
Although 3PCC has not fulfilled all the requirements, we believe that it is a good
choice.

Finally a modification of the source code of Minisip was made. In this modification, a
transfer approach using 3PCC was developed. We have studied how Minisip works and
we have developed a simple application that performs this transfer. We encountered
difficulties when understanding the source code because our limited experience in C++.

Along this thesis project, we have acquired experience about how to start a project and
perform it step by step from the initial idea to the final report. The idea seemed very
ambiguous at the beginning, but once we move forward in our thesis project it began to
take shape and became more concrete. The resulting transfer method has shown that it
can function in the real world and meet the basic requirements.

Although all the objectives have been accomplished, if I had to repeat the project I
would have made a better project plan.

53

8. Future Work

Several tasks can be suggested for future work. Due to limitations of time they were not
possible to complete as part of this thesis project. Firstly the RTP transfer approach
developed using the source code of Minisip should be modified. We have used the
CALL service and we have adapted this service to achieve our goals. In the future a new
TRANSFER service should be independently developed. It is necessary to use a
different state machine than the used in the CALL service because the requirements of
this new service are different than the requirements of the CALL service.

As explained in section 6.3.2 Minisip only supports only dialog per command. This
limitation does not meet the media independency requirement. The new TRANSFER
service should support more than one dialog per command. In addition, it would be
interesting to enable a video CODEC to send video to and perhaps even from the phone.

When we ported Minisip to the Motorola Linux phone, we encountered several
difficulties and overcame all but one of them: the audio quality of the call is very poor.
It would be interesting to improve audio quality.

Finally the creation of a GUI using the SDK provided by Motorola is another important
task, as this would make the system much easier to use by the typical user. We started to
create such a GUI, but due to time limitations the other tasks concerning redirecting the
RTP streams and testing this had greater priority. This GUI could use the features of the
Motorola Linux phone to execute Minisip using the touchscreen and handwriting
recognition.

54

References

[1] Wikipedia. IP Multimedia Subsystem. Last access February 2007.
http://en.wikipedia.org/wiki/IP_Multimedia Subsystem

[2] IMS Converged Services Gateway. Last access February 2007.
http://www.sipcenter.com/sip.nsf/html/WEBB6BWJL4/$FILE/IMS_Converg
edSvcGateway.pdf

[3] OSDL Mobile Linux Initiative. Press release, October 28, 2006.
http://old.linux-
foundation.org/newsroom/press_releases/2006/2006_nov_28_beaverton.html

[4] Datang Mobile. Last access February 2007.
http://www.datangmobile.cn/en/AboutUs/Introduction.htm

[5] Symbian OS. Last access February 2007.
http://www.symbian.com/

[6] Motorola. Last access February 2007.
http://www.motorola.com

[7] LinuxDevices. Last access February 2007.
http://linuxdevices.com

[8] Minisip UA. Last access February 2007.
http://www.minisip.org/

[9] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R.
Sparks, M. Handley, E. Schooler. RFC 3261. SIP: Session Initiation Protocol.
June 2002.
http://www.ietf.org/rfc/rfc3261.txt

[10] Generation Partnership Project. Last access February 2007.
http://www.3gpp.org/

[11] IP Telephony CookBook. Last access February 2007
http://www.terena.nl/activities/iptel/contents1.html

[12] HTTP Protocol. Last access February 2007.
http://www.w3.org/Protocols/

[13] David H. Crocker. RFC 822. Standard for the format of ARPA Internet text
messages. August 13, 1982.
http://www.ietf.org/rfc/rfc0822.txt

[14] Alisa Devlic, Context-Addressed Communication Dispatch, Royal Institute
of Technology, Department of Communication Systems, 2006.
http://web.it.kth.se/~devlic/thesis.pdf

[15] Sergi Laencina, Model driven context awareness, Masters Thesis, Royal
Institute of Technology, Department of Communication Systems, February
2007.
ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS/070130-
Sergi_Laencina_Verdaguer-with-cover.pdf

[16] Unicode Standard. Last access February 2007.
http://unicode.org/

[17] Internet Engineering Tasking Force. Last access February 2007.
http://www.ietf.org/

55

[18] R. Shacham, H. Schulzrinne, S. Thakolsri, W. Kellerer. November 2006.
Draft-shacham-sipping-session-mobility-03.
http://www.ietf.org/internet-drafts/draft-shacham-sipping-session-mobility-
03.txt

[19] E. Guttman, C. Perkins, J. Veizades, M. Day. RFC 2608. Service Location
Protocol. June 1999.
http://www.rfc-editor.org/rfc/rfc2608.txt

[20] Cecile Ayrault, Service discovery for personal area networks, Masters Thesis,
Royal Institute of Technology, Department of Communication Systems,
August 2004.
ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS/040826-
Cecile_Ayrault-with-covers.pdf

[21] J. Rosenberg, J. Peterson, H. Schulzrinne, G. Camarillo. RFC 3725. Best
Current Practices for Third Party Call Control (3pcc) in the Session Initiation
Protocol (SIP). April 2004.
http://www.ietf.org/rfc/rfc3725.txt

[22] R. Sparks. RFC 3515. The Session Initiation Protocol (SIP) Refer Method.
April 2003.
http://www.ietf.org/rfc/rfc3515.txt

[23] R. Sparks. RFC 3892. The Session Initiation Protocol (SIP) Referred-By
Mechanism. September 2004.
http://www.ietf.org/rfc/rfc3892.txt

[24] RTP Proxy. Portaone RTP Proxy. Last access February 2007.
http://www.voip-info.org/wiki-Portaone+rtpproxy

[25] STUN. Last access February 2007.
http://www.voip-info.org/wiki-STUN

[26] UPNP. Universal Plug and Play. Last access February 2007.
http://en.wikipedia.org/wiki/Universal_Plug_and_Play

[27] Adrian Georgescu. TURN. Best practices for SIP NAT traversal. Last Access
February 2007.
http://mediaproxy.ag-projects.com/NATtraversal-BestPractices.pdf

[28] Gustav Söderström, Virtual networks in the cellular domain , Masters Thesis,
Royal Institute of Technology, Department of Communication Systems,
February 2003.
ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS/030211-
Gustav_Soderstrom.pdf

[29] Soft Handover. UMTS handover. Last access February 2007.
http://www.umtsworld.com/technology/handover.htm

[30] Motorola E680i specifications. Last access February 2007.
http://developer.motorola.com/products/handsets/e680i/

[31] ARM architecture. Processor core overview. Last access February 2007.
http://www.arm.com/products/CPUs/index.html

[32] Montavista. Motorola phones run Montavista. Last access February 2007.
http://www.mvista.com/dswp/stories/motorola.html

[33] QT. Trolltech. Last access February 2007.
http://www.trolltech.com/products/qt

[34] KDE project. Last access February 2007.
http://www.kde.org/

[35] Opera Web Browser. Last access February 2007.
http://www.opera.com/

56

[36] Eclipse IDE. Last access February 2007.
http://www.eclipse.org/

[37] GCC. Last access February 2007.
http://gcc.gnu.org/

[38] Binutils. Last access February 2007.
http://www.gnu.org/software/binutils/

[39] Uclibc. Last access February 2007.
http://uclibc.org/

[40] Handelds Toolchain. Last access February 2007.
http://www.handhelds.org/geeklog/index.php

[41] OpenSSL project. Last access February 2007.
http://www.openssl.org/

[42] Configuring NFS under Linux for Firewall Control. Last access February
2007.
http://www.lowth.com/LinWiz/1.09/notes/nfs_help.php

[43] Ethereal. Last access February 2007.
http://www.ethereal.com/

[44] Cesc SantaSusana. Port of Minisip to Windows Mobile 2003
[45] SipScenario. Last access February 2007.

http://www.iptel.org/~sipsc/
[46] Asterisk. Last access February 2007.

http://www.asterisk.org/

57

 Appendix A

An example of Minisip configuration file – as used on the Linux phone.

<version>
 3
</version>
<network_interface>
 eth0
</network_interface>
<account>
 <account_name>
 My account
 </account_name>
 <sip_uri>
 1006@130.237.15.233
 </sip_uri>
 <proxy_addr>
 130.237.15.233
 </proxy_addr>
 <register>
 yes
 </register>
 <proxy_port>
 5060
 </proxy_port>
 <proxy_username>
 1006
 </proxy_username>
 <proxy_password>
 1006
 </proxy_password>
 <pstn_account>
 no
 </pstn_account>
 <default_account>
 yes
 </default_account>
 <secured>
 no
 </secured>
 <ka_type>
 psk
 </ka_type>
 <psk>
 Unspecified PSK
 </psk>
 <certificate>
 </certificate>
 <private_key>
 </private_key>
 <ca_file>
 </ca_file>
 <dh_enabled>
 no
 </dh_enabled>
 <psk_enabled>
 no
 </psk_enabled>

58

 <check_cert>
 yes
 </check_cert>
</account>
<tcp_server>
 yes
</tcp_server>
<tls_server>
 no
</tls_server>
<local_udp_port>
 5060
</local_udp_port>
<local_tcp_port>
 5060
</local_tcp_port>
<local_tls_port>
 5061
</local_tls_port>
<sound_device>
 /dev/dsp16
</sound_device>
<mixer_type>
 spatial
</mixer_type>
<codec>
 G.711
</codec>
<phonebook>
 file:///tmp/ide/.minisip.addr
</phonebook>

59

Appendix B

SER configuration file used for the tests in this thesis.

debug=3
fork=yes
log_stderror=no

listen=130.237.15.233 # INSERT YOUR IP ADDRESS HERE
port=5060
children=4

dns=no
rev_dns=no
fifo="/tmp/ser_fifo"

loadmodule "/usr/local/lib/ser/modules/sl.so"
loadmodule "/usr/local/lib/ser/modules/tm.so"
loadmodule "/usr/local/lib/ser/modules/rr.so"
loadmodule "/usr/local/lib/ser/modules/maxfwd.so"
loadmodule "/usr/local/lib/ser/modules/usrloc.so"
loadmodule "/usr/local/lib/ser/modules/registrar.so"

modparam("usrloc", "db_mode", 0)
modparam("rr", "enable_full_lr", 1)

route {

 # --
 # Sanity Check Section
 # --
 if (!mf_process_maxfwd_header("10")) {
 sl_send_reply("483", "Too Many Hops");
 break;
 };

 if (msg:len > max_len) {
 sl_send_reply("513", "Message Overflow");
 break;
 };

 # --
 # Record Route Section
 # --
 if (method!="REGISTER") {
 record_route();
 };

 # --
 # Loose Route Section
 # --
 if (loose_route()) {
 route(1);
 break;
 };

 # --

60

 # Call Type Processing Section
 # --
 if (uri!=myself) {
 route(1);
 break;
 };

 if (method=="ACK") {
 route(1);
 break;
 } else if (method=="REGISTER") {
 route(2);
 break;
 };

 lookup("aliases");
 if (uri!=myself) {
 route(1);
 break;
 };

 if (!lookup("location")) {
 sl_send_reply("404", "User Not Found");
 break;
 };

 route(1);
}

route[1] {
 # --
 # Default Message Handler
 # --
 if (!t_relay()) {
 sl_reply_error();
 };
}

route[2] {
 # --
 # REGISTER Message Handler
 # --
 if (!save("location")) {
 sl_reply_error();
 };
}

www.kth.se

COS/CCS 2007-10

