

A System for Management of

Semantic Data (Ontology

Components) in Semantic Web

M O H A M M A D R E Z A R A J A E I

Master of Science Thesis

Stockholm, Sweden 

ICT/ECS--

A System for Management of

Semantic Data (Ontology Components)

in Semantic Web

By

M O H A M M A D R E Z A R A J A E I

rajaei@kth.se

Royal Institute of Technology

Stockholm, Sweden

S u p e r v i s o r a n d E x a m i n e r

V L A D I M I R V L A S S O V

vladv@kth.se

Associate Professor, PhD

(ECS/ICT/KTH)

Master of Science Thesis

Stockholm, Sweden 

ICT/ECS--

 I

AbstractAbstractAbstractAbstract
Today, the information on the Web is designed for human

interpretation and it is not machine processable. Thus according to the

inventor of the Web, Tim Berners-Lee, the Web, has not achieved one

of its primitive goals: being useful for the machines.

In order to achieve this goal, Semantic Web is introduced as a vision for

the future of the Web. Its approach is to develop languages and

methods to express information on the Web in processable,

understandable, and useable forms for machines, as well as human

beings. In this approach, some standards and languages are defined by

W3C such as Resource Description Framework (RDF) as a data model

framework, RDF Schema as a vocabulary description language, and

Web Ontology Language (OWL) as a way to represent the explicit

meaning and relations of the terms used in vocabularies.

However, Semantic Web is still in its early steps and necessary tools are

required to facilitate dealing with Semantic Data and building Semantic

enabled applications. The main goal of this thesis is to develop a Web

based Ontology management system based on Jena Semantic Web

framework. The developed application, UltimateOMS, enables the users

to create, manipulate, and manage Semantic data and Ontology

components in forms of RDF, RDF Schema, and OWL through a web

based user interface. UltimateOMS will bring the necessary features

such as visualization graph of Semantic data, storing Semantic data in

different databases, together with many other features to facilitate the

process of managing Semantic data for users who deal with Semantic

data.

Keywords:Keywords:Keywords:Keywords: Semantic Web, Semantic data, Ontology, RDF, RDF

Schema, OWL, UltimateOMS, Jena, IsaViz, Graphviz, JSP, Java

Servlet.

 III

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements

I would like to express my acknowledgment to my supervisor and

examiner, Associate Professor Vladimir Vlassov for his excellent support

and guidelines during this project.

I also would like to express my acknowledgment to Fredrick Lekarp for

his support during this project and my studies in Stockholm.

Most of all, I would like to thank my wife Mina for her constant support

and encouragement.

 V

Table of ContentTable of ContentTable of ContentTable of Content

AbstractAbstractAbstractAbstract .. IIII

AcknowledgementsAcknowledgementsAcknowledgementsAcknowledgements..IIIIIIIIIIII

1 In1 In1 In1 Introductiontroductiontroductiontroduction..1111

1.1 Background .. 1

1.2 Motivation of the Project... 3

1.3 Project Goals and scope ... 3

1.4 Related Work ... 4

1.5 Structure of the Thesis... 5

2 Semantic Web2 Semantic Web2 Semantic Web2 Semantic Web..7777

2.1 Overview .. 7

2.2 Rationale .. 8

2.3 Benefits .. 8

2.3.1 Knowledge integration... 9

2.3.2 Knowledge creation and storage .. 10

2.3.3 Knowledge searching ... 11

2.3.4 Knowledge inference .. 12

2.3.5 Knowledge perspectives ... 12

2.4 Semantic Web Stack .. 13

2.5 RDF (Resource Description Framework) 17

2.5.1 Overview.. 17

2.5.2 Basic Concepts .. 18

2.5.3 Serialization Formats... 22

2.6 RDF Schema (Resource Description Framework Schema) 22

2.6.1 Overview.. 22

2.6.2 Modeling Primitives... 23

2.7 OWL (Web Ontology Language) ... 24

2.7.1 Overview.. 24

2.7.2 Sublanguages ... 25

2.7.3 Modeling Primitives... 26

2.8 RDF Query Languages... 31

2.8.1 Various Query Languages.. 32

2.8.2 SPARQL.. 32

 VI

2.9 Implemented applications... 34

3 Method3 Method3 Method3 Method ..35353535

3.1 Positioning ... 35

3.1.1 Business Opportunity .. 35

3.1.2 Problem Statement.. 36

3.1.3 Product Position Statement .. 36

3.2 Stakeholder and User Descriptions... 37

3.2.1 Market Demographics.. 37

3.2.2 Stakeholder Summary.. 38

3.2.3 User Summary ... 38

3.2.4 User Environment.. 39

3.2.5 Stakeholder Profiles ... 39

3.2.6 User Profiles .. 40

3.2.7 Key Stakeholder or User Needs ... 40

3.3 Product Overview .. 43

3.3.1 Product Perspective... 43

3.3.2 Summary of Capabilities ... 44

3.3.3 Assumptions and Dependencies... 45

3.4 Product Features.. 46

3.5 Constraints ... 53

4 System Design4 System Design4 System Design4 System Design..55555555

4.1 JSP Technology and Java Servlets .. 55

4.2 Semantic Web Framework: Jena.. 56

4.3 Databases ... 59

4.3.1 Denormalized Schema.. 60

4.3.2 Tables .. 61

4.3.3 Supported Databases ... 62

4.4 Graph Generator: Graphviz ... 63

4.5 UltimateOMS Architecture .. 64

4.5.1 JSP and Java Servlets framework 65

4.5.2 Jena ... 65

4.5.3 Databases .. 66

4.5.4 Graphviz .. 66

5 Implementation5 Implementation5 Implementation5 Implementation ..67676767

 VII

5.1 Development Platform ... 67

5.2 System Configuration... 68

5.2.1 Database .. 69

5.2.2 Graph .. 69

5.2.3 Users .. 71

5.3 JSP and Java Servlets.. 71

5.3.1 Authentication... 72

5.3.2 Session Management.. 72

5.3.3 Validation and Error Handling.. 75

5.4 Graph Visualization ... 76

5.4.1 Graph Generator ... 76

5.4.2 Graph Viewer .. 77

5.5 Management and Manipulation ... 79

5.5.1 Models ... 80

5.5.2 Triples ... 82

5.5.3 Classes ... 84

5.5.4 Properties .. 86

5.5.5 Individuals ... 89

5.6 Inference ... 90

5.7 Querying... 91

5.8 User Interface ... 92

5.9 Flow Dynamics... 94

6 Validation6 Validation6 Validation6 Validation ..99999999

7 Conclusions and Future Work7 Conclusions and Future Work7 Conclusions and Future Work7 Conclusions and Future Work .. 101101101101

ReferencesReferencesReferencesReferences.. 103103103103

AppendicesAppendicesAppendicesAppendices .. 111111111111

A A A A ---- AbbreviationsAbbreviationsAbbreviationsAbbreviations.. 111111111111

B B B B ---- Use Case ModelUse Case ModelUse Case ModelUse Case Model.. 113113113113

B.1 Actors... 113

B.2 Use Case Diagrams... 113

B.3 Use Case Specifications .. 120

C C C C ---- UltimateOMS ScreenshotsUltimateOMS ScreenshotsUltimateOMS ScreenshotsUltimateOMS Screenshots .. 157157157157

 VIII

 IX

List of FiguresList of FiguresList of FiguresList of Figures

Figure 2.1: Semantic Web Stack, from Tim Berners-Lee presentation for

Japan Prize, 2002 .. 13

Figure 2.2: RDF triple modeled as a directed graph 18

Figure 2.3: RDF graph of example .. 20

Figure 2.4: Making a new RDF statement using reification.................. 21

Figure 4.1: JSP and Servlets, simplified architecture 56

Figure 4.2: Jena2 architecture ... 58

Figure 4.3: Architecture of UltimateOMS ... 64

Figure 5.1: Part of the System Configuration file of UltimateOMS 68

Figure 5.2: Part of the Session Bean used in UltimateOMS.................. 74

Figure 5.3: UltimateOMS visualization graph 78

Figure 5.4: Sample of the dynamically generated Applet tags 79

Figure 5.5: Categorized menu groups in UltimateOMS for management

and manipulation of Semantic data... 80

Figure 5.6: Triples menu group in UltimateOMS for management and

manipulation of triples... 82

Figure 5.7: Classes menu group in UltimateOMS for management and

manipulation of classes .. 84

Figure 5.8: Properties menu group in UltimateOMS for management

and manipulation of properties.. 87

Figure 5.9: Individuals menu group in UltimateOMS for management

and manipulation of individuals .. 89

Figure 5.10: Inference facilities in UltimateOMS................................... 90

Figure 5.11: Query user interface of UltimateOMS 92

Figure 5.12: A part of the used Stylesheet in UltimateOMS................. 93

Figure 5.13: Designed layout for UltimateOMS user interfaces............. 94

Figure 5.14: UltimateOMS login page ... 95

Figure 5.15: UltimateOMS models page .. 97

Figure B.1: Application Administration Diagram 114

Figure B.2: System Configuration Diagram .. 114

Figure B.3: User Authentication Diagram... 115

Figure B.4: Model Diagram ... 115

Figure B.5: Model Graph Diagram.. 116

 X

Figure B.6: Model Query Diagram .. 116

Figure B.7: Triple Diagram ... 117

Figure B.8: Class Diagram... 118

Figure B.9: Property Diagram... 119

Figure B.10: Individual Diagram... 119

Figure C.1: UltimateOMS Models page... 157

Figure C.2: Uploading model page in UltimateOMS........................... 158

Figure C.3: Visualization graph in UltimateOMS 158

Figure C.4: Exporting model page in UltimateOMS 159

Figure C.5: Querying model page in UltimateOMS 159

Figure C.6: Model query result page in UltimateOMS........................ 160

Figure C.7: Model statistics page in UltimateOMS............................. 160

Figure C.8: Inferring model page in UltimateOMS 161

Figure C.9: UltimateOMS Triples page... 161

Figure C.10: Creating triple page in UltimateOMS............................. 162

Figure C.11: Triple browsing page in UltimateOMS........................... 162

Figure C.12: UltimateOMS Classes page... 163

Figure C.13: Editing class page in UltimateOMS................................ 163

Figure C.14: Class detail page in UltimateOMS.................................. 164

Figure C.15: Creating class instance page in UltimateOMS................ 164

Figure C.16: UltimateOMS Properties page .. 165

Figure C.17: Editing property page in UltimateOMS 165

Figure C.18: Property detail page in UltimateOMS............................ 166

Figure C.19: UltimateOMS Individuals page....................................... 166

Figure C.20: Individual detail page in UltimateOMS.......................... 167

 XI

List of TablesList of TablesList of TablesList of Tables

Table 3.1: Capabilities of UltimateOMS ... 45

Table 4.1: Supported database engines and JDBC drivers by Jena2 63

Table B.1: Use Case Install Application.. 120

Table B.2: Use Case Create Default Configuration............................. 121

Table B.3: Use Case Modify Application Configuration...................... 121

Table B.4: Use Case Startup Application.. 122

Table B.5: Use Case Shutdown Application.. 122

Table B.6: Use Case Create Database User... 123

Table B.7: Use Case Modify Database User.. 123

Table B.8: Use Case Remove Database User 124

Table B.9: Use Case Modify Graph Parameters.................................. 125

Table B.10: Use Case Add New Database... 126

Table B.11: Use Case Modify Database Parameters 126

Table B.12: Use Case Remove Database ... 127

Table B.13: Use Case Login .. 127

Table B.14: Use Case Logout .. 128

Table B.15: Use Case Show Models... 128

Table B.16: Use Case Create Model .. 129

Table B.17: Use Case Import Model ... 130

Table B.18: Use Case Upload Model ... 130

Table B.19: Use Case Search Model .. 131

Table B.20: Use Case Select Model ... 131

Table B.21: Use Case Export Model ... 132

Table B.22: Use Case Show Model Graph... 133

Table B.23: Use Case Export Model Graph .. 134

Table B.24: Use Case Query Model... 135

Table B.25: Use Case Export Query Results....................................... 135

Table B.26: Use Case Infer Model ... 136

Table B.27: Use Case Show Model Statistics 137

Table B.28: Use Case Check Model Consistency................................. 138

Table B.29: Use Case Delete Model .. 138

Table B.30: Use Case Show Triples... 139

Table B.31: Use Case Create Triple .. 139

 XII

Table B.32: Use Case Search Triple .. 140

Table B.33: Use Case Browse Triples.. 141

Table B.34: Use Case Select Triple ... 141

Table B.35: Use Case Edit Triple.. 142

Table B.36: Use Case Delete Triple... 142

Table B.37: Use Case Show Classes .. 143

Table B.38: Use Case Create Class ... 143

Table B.39: Use Case Search Class ... 144

Table B.40: Use Case Select Class... 144

Table B.41: Use Case Show Class Details ... 145

Table B.42: Use Case Show Class Triples ... 145

Table B.43: Use Case Create Instance For Class 146

Table B.44: Use Case Edit Class ... 147

Table B.45: Use Case Delete Class .. 147

Table B.46: Use Case Show Properties.. 148

Table B.47: Use Case Create Property.. 148

Table B.48: Use Case Search Property.. 149

Table B.49: Use Case Select Property ... 149

Table B.50: Use Case Show Property Details...................................... 150

Table B.51: Use Case Show Property Triples 150

Table B.52: Use Case Edit Property ... 151

Table B.53: Use Case Delete Property .. 152

Table B.54: Use Case Show Individuals .. 152

Table B.55: Use Case Search Individual.. 153

Table B.56: Use Case Select Individual ... 153

Table B.57: Use Case Show Individual Details 154

Table B.58: Use Case Show Individual Triples 154

Table B.59: Use Case Edit Individual ... 155

Table B.60: Use Case Delete Individual .. 156

 1

Chapter 1Chapter 1Chapter 1Chapter 1

1111IntroductionIntroductionIntroductionIntroduction

1.11.11.11.1 BackgroundBackgroundBackgroundBackground

“The Web was designed as an information

space, with the goal that it should be useful

not only for human-human communication,

but also that machines would be able to

participate and help.” [1]

Tim Berners-Lee, the inventor of World Wide Web

Today, most information on the Web is not machine processable and

therefore, according to the inventor of the Web, Tim Berners-Lee, this

Web which is widespread around the world now has not achieved one of

its primitive goals which was being useful for the machines.

A major obstacle to reach this goal was the fact that machines or

computers have different needs, comparing to human beings, in order for

them to “understand” the information on the Web. In fact, most

available information on the Web is mainly designed for human

interpretation, which makes it unusable for machines. Even the

information, which is derived from a structured database with

meaningful columns, is not well defined enough for a machine to be able

to understand and use it. Therefore, in order to achieve the Web’s

primitive goal, information on the Web needs to be expressed in a form

 2

that machines would be able to understand it instead of simply

displaying it. [1]

In this concept, when the term “understand” for machines is used, it

does not imply to some artificial intelligence empowering machines with

magical abilities. In the contrary, it relies on today’s ordinary machines’

capabilities, which can perform well-defined operations based on well-

defined data to solve well-defined problems. [2]

In fact, Semantic Web approach does not need revolutionary machines,

which understand the human beings; it needs human beings to make

some extra effort to write the Web’s language in a better-defined way

that would make it possible for the machines to use the Web. [2]

Consequently, the Semantic Web approach is to develop languages and

methods to express information on the Web, which is processable,

understandable, and useable for machines as well as human beings.

The Semantic Web is a vision for the future of the Web. In this vision,

information is given explicit meaning, which makes it possible for

machines to perform integration, processing, and understanding of

information on the Web. [3]

An important component of Semantic Web, which is a way of

representing semantics and enabling them to be used by machines and

specifically by web applications, is called ontology. Ontology is a way of

giving explicit meaning to information by structuring and defining the

meaning of metadata. For each specific subject or area of knowledge,

ontology defines the terms, which are used to represent and describe

that subject. Moreover, ontology defines the relationships among the

basic concepts in areas of knowledge and also defines computer usable

definitions of those basic concepts. [4]

Using ontology, web applications would be able to understand the

semantics of documents and therefore become capable of processing,

 3

performing integration, and understanding them. This will make the

Web useful and understandable for web applications and therefore

machines.

1.21.21.21.2 Motivation of Motivation of Motivation of Motivation of thethethethe Project Project Project Project

Since Semantic Web is in its early steps, there is long way to make all

necessary standards of the Semantic Web. The W3C is currently

responsible for publishing Semantic Web standards and different wok

groups are currently working as part of the Semantic Web activity.

Meanwhile, different types of tools are provided based on published

Semantic Web standards by different vendors in order to fulfill users’

needs for creating and managing Semantic data.

Nevertheless, to the best of our knowledge, none of the existing solutions

provides a complete tool containing all required features for users

dealing with semantic data, which will result in a slow and timely cost

process.

The motivation of this project is to facilitate creating and management

of Semantic data by developing a new Web based application containing

all necessary features. The new system will bring all necessary functions

for managing semantic data in one place thus making it much easier for

users to create and manage their Semantic data.

1.31.31.31.3 Project Goals Project Goals Project Goals Project Goals andandandand scope scope scope scope

The goal of this project is to develop a Web based application based on

one of the existing frameworks for building Semantic Web applications.

The application will enable all users to create and manage their

Semantic data (Ontology components) in RDF, RDF Schema, and

OWL formats through a web based user interface and unlike the

 4

existing tools; it provides the necessary features in one place to facilitate

process of managing Semantic data.

The developed application will provide different features such as

creating, uploading, and importing Semantic data including RDF

(Resource Description Framework) and OWL (Web Ontology

Language), storing Semantic data in different types of databases,

designing and editing capabilities of Semantic data (include creating,

editing, and deleting), inferring, querying, visualizing graph of Semantic

data.

Comparing the existing frameworks and the issues related to the

framework including the performance is out of the scope of this project.

1.41.41.41.4 Related WorkRelated WorkRelated WorkRelated Work

pOWL [5] and Sesame [6] are two web-based tools for managing

Semantic data and Protege [7] is one of the many client based ontology

editors and it is not web based.

pOWL is a web-based application for editing and managing knowledge

for Semantic Web, which is developed based on PHP and MySQL. It

supports browsing, editing, and querying of RDF Schema and OWL

ontologies but there is no facilities for storing Semantic data in different

databases, reasoning, and visualization graph of Semantic data.

Sesame is an open source framework for RDF and RDF Schema with

inferring and querying capabilities. Different types of storage system

such as relational databases, file systems, and in-memory can be used

along with Sesame. The web-based tool of Sesame includes browsing and

querying features without editing and managing capabilities of Semantic

data and visualization graph.

 5

Protege is a well-known, sophisticated, and open source ontology editor

with support of RDF, RDF Schema, and OWL, which enables users to

create and manage Semantic data. Protege is a client-based tool and its

visualization capability is based on a simplified hierarchy structure and

does not visualize in form of graphs, nodes, and arches.

1.51.51.51.5 StructureStructureStructureStructure of the Thesis of the Thesis of the Thesis of the Thesis

This thesis consists of seven chapters. First chapter briefly gives some

background information about Semantic Web, presents motivation of

the project, project goals, and finally introduces some related works.

Second chapter provides information regarding concepts of Semantic

Web including benefits of Semantic Web like knowledge integration,

knowledge searching and inferring. This chapter also describes RDF,

RDF Schema, OWL, and RDF query languages. Third chapter presents

vision document of the project and defines requirements and high-level

features of the developed tool. Chapter four reviews the technologies

and concepts related to the architecture of the software including JSP

technology and Java Servlets, Jena Semantic Web Framework, graph

visualization, and finally presents the architecture of the proposed

solution for implementing the Ultimate Ontology Management System

(UltimateOMS). Chapter Five includes some detail information about

the implementation of UltimateOMS including development platform,

system configuration, session management, graph visualization, and user

interface. Chapter six is about validation of the implemented use cases.

As a final point, chapter seven presents conclusion of the project and

gives some suggestion for future work.

 7

Chapter 2Chapter 2Chapter 2Chapter 2

2222Semantic WebSemantic WebSemantic WebSemantic Web

2.12.12.12.1 OverviewOverviewOverviewOverview

Semantic Web is a project in the World Wide Web Consortium (W3C)

under the direction of the inventor of the Web, Tim Berners-Lee, where

a dedicated team works to improve, extend, and standardize the system.

According to him, evolving into Semantic Web is the way that the Web

can reach its full potential.

Semantic Web extends the capabilities of the Web by adding computer

processable meaning to it through the use of standards, mark-up

languages and related processing tools. Tim Berners-Lee defines

Semantic Web as follows: “Semantic Web is an extension of the current

Web in which information is given well-defined meaning, better enabling

computers and people to work in cooperation”. [9]

In Semantic Web, the idea is having the data defined and linked to each

other as a globally linked database and provide a universally accessible

platform that not only people, but also automated tools can share and

process data. This way the data can be effectively used for automation,

integration and also in order to reuse in different applications. [8] [9]

Although many languages, publications, and tools are already developed

and published, Semantic Web technology is still in its early stage and

despite the fact that the future of Semantic Web appears to be bright,

yet there is no general agreement about a promising direction or

characteristics of the early Semantic Web. [8] [10]

 8

2.22.22.22.2 RationaleRationaleRationaleRationale

Lack of a global system for publishing data in a way processable for any

system, makes it difficult to use the Web in large scale. Data is mostly

hidden in HTML documents which are only useful to some extend and

in some specific contexts and not useful for other contexts. [10]

Semantic Web makes it possible to publish data in a broadly

processable form. According to W3C, this will make more people willing

to publish data in this format and shortly the number of Semantic Web

applications will increase dramatically. These Semantic Web

applications would be useable for variety of tasks and helps to increase

the modularity of applications on the Web. [10]

2.32.32.32.3 BenefitsBenefitsBenefitsBenefits

Currently, the Web is designed to be used by people and not by

computers and machines. Semantic Web makes the data in web pages

understandable for computers as well as human beings so the computers

would be able to search websites and perform actions in a standardized

way. This enables computers to utilize the enormous amount of services

and information on the web. [8]

Moreover, a lot of services that are already possible to implement in

current web will be much easier to implement with the standards

introduced in Semantic Web. [8]

The benefits of Semantic Web can be categorized as knowledge

integration, knowledge creation and storage, knowledge searching,

knowledge inference and knowledge perspective. Below is the description

of each category:

 9

2.3.12.3.12.3.12.3.1 Knowledge integrationKnowledge integrationKnowledge integrationKnowledge integration

One of the important benefits of Semantic Web is information and

knowledge integration that it brings. In order to have knowledge

integration, the integration mechanism should have a distributed nature

itself; otherwise, the integration would not be possible. For example, it

is not realistic to hope to build a single database or XML file that

integrates all the information in the Internet. Only a distributed way of

integration is appropriate for the distributed nature of the Internet.

Location: A good information integration should have a mechanism to

let the user know where the data resides and should be able to reach it.

Semantic Web has addressed this issue by using the Uniform Resource

Identifier (URI). By labeling all the sources with URIs, Semantic Web

leverages from the benefits of this good old format and therefore all

Semantic Web sources are findable in their unique locations.

• ProtocolProtocolProtocolProtocol: In order to interact with data, a protocol should be in

place to serve as an exchange language. Semantic Web uses

standard web protocols such as HTTP, which is an easy flexible

exchange language based on request and response.

• FormatFormatFormatFormat: Semantic Web uses the OWL Web Ontology Language,

which is a standard data format based on Resource Description

Framework (RDF) and XML. The format is very comprehensive

and fulfilled the requirements of a distributed integration, which

are being comprehensive and translatable.

• ReliableReliableReliableReliable: Information and knowledge integration needs to have a

mechanism to make sure the records are timely and reliable. Since

Semantic Web deals directly with the actual source of data, there

is no need for complex synchronization unless the due to the

performance or other requirements actual source of data would

not be used.

 10

• Purpose:Purpose:Purpose:Purpose: The challenge in knowledge integration is aligning the

data together with the purpose. It is easy to combine data

without the meaning attached to it. The beauty of Semantic Web

is in bringing the meaning together with the data and this makes

Semantic Web perfect for information and knowledge integration.

It makes it possible to treat the data for the real meaning that it

represents not just as meaningless bits. [11]

2.3.22.3.22.3.22.3.2 Knowledge creation and storageKnowledge creation and storageKnowledge creation and storageKnowledge creation and storage

Semantic Web encapsulates knowledge so it becomes easy to share

knowledge and also change or develop the knowledge no matter it is

your knowledge or someone else’s shared knowledge. [11]

Traditional databases, store and share “data” and the real knowledge or

meaning of that data is either in the application or in the mind of user.

The knowledge, which resides in the application is very specific to that

application’s use. Sharing application components is an attempt to share

the knowledge residing in the application. However since the

application’s knowledge is very narrow and specific to its own purpose,

this attempt fails in reality.

In Semantic Web, knowledge can grow in many ways.

• HorizontallyHorizontallyHorizontallyHorizontally: By adding new attributes or adding and peer

relationships, knowledge grows horizontally.

Adding “date of birth” to “person” which is an attribute of that

person or adding “manager” relationship between two

“employees” which is a peer relationship between them are

examples of horizontal growth of knowledge

• Vertically: Vertically: Vertically: Vertically: Growing knowledge through inheritance is a vertical

growth.

 11

For example, an “employee” is a type of “person”. “Person” has

some attributes like “name”, “place of birth”, and “employee” has

those attributes as well because it is a type of person. By adding

a new attribute to “person”, like “date of birth”, the same

attribute becomes added to the “employee” by inheritance. This

is a horizontal growth for “person” and a vertical growth for

“employee”.

• ConstraintsConstraintsConstraintsConstraints: Knowledge can grow by adding some constraints in

order to define the context.

For example a “person” can be defined as “tall” where “tall” is a

person taller than 170 cm.

Knowledge can be created, developed and can grow horizontally,

vertically or by constraints remotely from anywhere in the network by

referencing the knowledge using its URI. [11]

2.3.32.3.32.3.32.3.3 Knowledge searchingKnowledge searchingKnowledge searchingKnowledge searching

The goal of any knowledgebase is getting useful results for a search

operation whether it is a simple question or a complicated query.

Currently, there are two main ways for searching: database queries and

keyword matching.

Database queries are very powerful for searching in a well-known

structured environment of an individual database but useless outside

that specific structure of the database.

Keyword matching in the other hand is not coupled to any structure

but it can result in too many hits for a search and it is very weak in

answering specific questions. For example, a keyword search is useless in

answering: “who was the manager of the research department in March

2006”.

 12

Semantic Web brings a compromise between those two methods. It uses

enough structure to support answering specific questions and also it has

enough flexibility so that it is not too much couples to the underlying

structure. Consequently, one does not need to know the structure

beneath, to be able to get good result for a search.

Queries are independent from the knowledge structure. Therefore, they

can stay the same even if the underlying knowledge structure keeps

changing. [11]

2.3.42.3.42.3.42.3.4 Knowledge inferenceKnowledge inferenceKnowledge inferenceKnowledge inference

Semantic Web has the ability to fill in the missing pieces by deducting

from the related data.

For example, given that a person “Mary” refers to another person

“Mark” as her father, the system will infer that “Mark” has a daughter

“Mary”. This technique can bring very useful conclusions because it

deals with the meanings and semantics rather than data and bits. This

is a very unique characteristic and gives a big advantage over the

traditional systems. [11]

2.3.52.3.52.3.52.3.5 Knowledge perspectivesKnowledge perspectivesKnowledge perspectivesKnowledge perspectives

Semantic Web makes it possible to have knowledge aligned with one’s

specific needs and domain of interest. Traditional systems, force the user

to align himself/herself to the single point of view represented in that

specific system. However, Semantic Web enables selective integration of

knowledge and construction of new knowledge and as a result creating

new knowledgebase according to any need. This is possible by building

upon the existing knowledgebase or starting one from the scratch.

Knowledge perspective is the ultimate goal of Semantic Web. [11]

 13

2.42.42.42.4 Semantic Web StSemantic Web StSemantic Web StSemantic Web Stackackackack

Semantic Web technologies are arranged into layers shown in Figure

2.1. The two base layers are technologies used in the current Web. The

next six layers build Semantic Web on those two inherited layers and

the top one adds trust and completes a Semantic Web of trust. The

complexity increases from the bottom to the top. The functionality of

higher layers depends on lower layers.

Figure 2.1: Semantic Web Stack, from Tim Berners-Lee presentation for

Japan Prize, 2002

� Layer 1: URI and UNICODE

URIs are global identifiers that uniquely identify information.

Current Web uses URL while Semantic Web uses URIs. Unlike

URLs, URIs do not necessarily retrieve any information. Unicode

 14

is a global character-encoding standard, which supports

international characters.

Those two technologies, Unicode and URI, which are taken from

the current web standards, provide the global characteristic, for

Semantic Web.

� Layer 2: XML and Namespaces

Semantic Web should easily integrate with the current Web.

HTML does not have the ability to include everything needed for

Semantic Web. XML has more abilities and is superset of HTML.

Namespaces increase the modularity of XML and also increases

the ability to reuse XML vocabularies together with XML

schemas. In Semantic Web, Namespaces are used for the same

purpose.

� Layer 3: RDF Model and Syntax

This is the first layer developed for Semantic Web specifically.

Semantic Web is built on RDF which itself is built on syntaxes

that use URIs to represent data. Semantic Web is about

representing data and not presenting data. This data

representation is usually in triple based structures that can be

stored in database or interchanged on the Web using a set of

syntaxes. These syntaxes, which are developed for this task, are

called Resource Description Framework (RDF). [10]

This layer is detailed in the subsection 2.5.

 15

� Layer 4: RDF Schema

Despite the fact that RDF provides the tool to build semantic

networks, it does not provide all semantic network facilities

needed for Semantic Web. RDF Schema provides some facilities

to define metadata vocabularies similar to Object Oriented

constructs and also to implement them in a modular way similar

to XML schemas.

RDF Schema is detailed in section 2.6.

� Layer 5: Ontology

Generally, the representation of the terms and identifying their

relationships is called Ontology. OWL is the language developed

by World Wide Web Consortium for web ontologies, which makes

it possible to represent the meaning of terms that are used in

vocabularies and also relationships between those terms.

Metadata vocabularies defined in RDF Schemas can be considered

simplified ontologies.

OWL and Ontology is detailed in section 2.7.

� Layer 6: Rules

In this layer, dynamic knowledge is captured as a set of

conditions that must be fulfilled to be able to achieve the result or

the set of results in the rule.

The technology behind this layer is Semantic Web Rule Language

(SWRL), which is based on Rule Modeling Language or RuleML.

Similar to RuleML, SWRL is a very comprehensive language and

covers all sorts of rules including derivation, transformation, and

 16

reaction rules. SWRL can specify queries and inferences in Web

ontologies and covers mappings between Web ontologies as well

as dynamic Web behaviors of workflows, agents, and services.

� Layer 7: Logic

Semantic Web needs to have a powerful logical language for

inference. The purpose of this layer is providing the features of

First Order Logic (FOL).

There are some alternatives and different languages have been

considered. One of the first alternatives was RDFLogic, which

provides some extension to basic RDF. Another more recent one

is SWRL FOL, which is an extension of the rule language SWRL

to cover FOL features.

For Semantic Web to become expressive enough to help us in a

wide range of situations, it will become necessary to construct a

powerful logical language for making inferences.

� Layer 8: Proof

The idea in this layer is to write down the proofs for the problem.

Using inference engine rather than the traditional way of black-

box principle used in computer programs, makes Semantic Web

open and therefore the inference engine can be asked to provide

proofs for the conclusion.

� Layer 9: Trust

This layer uses all the layers below together with encryption and

signature in order to build the Semantic Web of trust. Encryption

and signature are technologies already available in current Web

 17

and the trust layer makes use of them to be able to trustfully

bind statements with their responsible parts.

Therefore, the Semantic Web of trust will use Public Key

infrastructure, which is already in place and Semantic Web of

trust, might be able to contribute to this infrastructure by using a

more distributed structure and removing the rigidity, which is a

consequence of its hierarchical structure.

As a result of using the encryption and signature together with

this layer, trust engines can be constructed, which include

reasoning engines together with digital signatures. Using these

trust engines, the Semantic Web of trust can be developed where

rules can be trusted depending on the signer. [12]

2.52.52.52.5 RDF (RDF (RDF (RDF (ResourceResourceResourceResource Description Framework) Description Framework) Description Framework) Description Framework)

This section presents a brief overview about the concepts of RDF. [16]

2.5.12.5.12.5.12.5.1 OverviewOverviewOverviewOverview

Resource Description Framework (RDF) is W3C proposed framework

for representing information, particularly metadata about Web resources

about resources, in the World Wide Web [17]. Using RDF information

can be exchanged easily between applications without loss of meaning.

This becomes important for those information that need to be processed

and not just displayed in a simple format like HTML.

RDF uses URIs for identifying things in the Web and describes

resources with properties and property values pairs. As a result,

statements about resources can be represented in RDF as a graph

containing nodes and arcs in which arcs represent properties of resources

and nodes represent resources and property values [18].

 18

The statements are expressed as simple triples like <S,P,O> in RDF.

The triple <S,P,O>, means that subject S, which is a resource indicated

by URIs has property P, which is also a resource indicated by URIs

with value O and O is either a URI or literal value. Some basic

properties such as type and class are defined in RDF, RDFS, and OWL

[19].

2.5.22.5.22.5.22.5.2 Basic ConceptBasic ConceptBasic ConceptBasic Conceptssss

As mentioned in section 2.2.1, the basic structure of any expression in

RDF is a triple statement consisting of a Subject, Predicate, and

Object. Each triple can be modeled as a directed graph using a node

and an arc diagram. A collection of triples is called RDF graph.

As shown in figure 2.2, each triple is modeled as a node-arc-node link in

which the Subject and Object are nodes and Predicate (or Property) is a

link that always points toward Object and describes the relationship

between Subject and Object.

Figure 2.2: RDF triple modeled as a directed graph

In RDF graph, a Subject node can be a URI reference or a blank node

and an Object node can be a URI reference, a blank node, a plain

literal, or a typed literal. Predicate or Property is only a URI reference

[17].

 19

• A “URI” is a more general form of the URL (Uniform Resource

Locator) and can be used to identify anything that needs to be

referred. For example, below line is a URI:

http://www.w3.org/1999/02/22-rdf-syntax-ns#type

• A “blank node” is a unique node without intrinsic name that can

be used in RDF statements.

• A “plain literal” is a string with an optional language tag, which

is used to identify values such as dates and numbers in lexical

format. For example the below line is a plain literal and indicates

that the string is expressed in English (en).

“This is a plain literal”@en

• A “typed literal” is a string with a URI datatype, which is used

to identify values by means of lexical format. For instance, the

below line is a typed literal indicates that datatype of the value

“20” is integer:

“20”^^http://www.w3.org/2001/XMLSchema#int

As an example, consider the following RDF code:

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:foaf="http://xmlns.com/foaf/0.1/" >

<rdf:Description rdf:about="http://www.bogus.com/index.html">

 <dc:creator rdf:resource="http://www.bogus.com/staffid/10"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.bogus.com/staffid/10">

 <foaf:name>Bob</foaf:name>

</rdf:Description>

 20

</rdf:RDF>

The above RDF statements indicate that subject http://www.bogus-

.com/index.html is created by object http://www.bogus.com/staffid/10

whose name is Bob. There are two different triples in the above

statements and each one has its own subject, predicate, and object. In

the first triple, the subject is http://www.bogus.com/index.html, the

predicate is http://purl.org/dc/elements/1.1/creator, and the object is

http://www.bogus.com/staffid/10. In the second triple the subject is ht-

tp://www.bogus.com/staffid/10, the predicate is http://xmlns.com/foaf-

/0.1/name, and the object is Bob.

The RDF statements discussed above are shown as RDF graph in figure

2.3.

Figure 2.3: RDF graph of example

Sometimes it is necessary to describe other RDF statements using RDF.

For instance, some RDF applications need to keep information about

 21

who made RDF statements, when statements were made. RDF

introduces “Reification”, which is a way to provide description of the

statements using RDF built-in vocabulary consisting of the type

rdf:Statement, and properties rdf:subject, rdf:predicate, and rdf:object

[18].

As a result, by using reification, RDF statements can be used as a

resource in other statements allowing nested statements in RDF graph

[20]. Figure 2.4 shows an example of a reification statement used in

order to make a new statement. In this example, staff member with

identifier 20, http://www.bogus.com/staffid/20, claims that the creator

of the HTML page http://www.bogus.com/index.html is staff member

with identifier 10, http://www.bogus.com/staffid/20 whose name is

Bob.

Figure 2.4: Making a new RDF statement using reification

 22

2.5.32.5.32.5.32.5.3 Serialization FormatsSerialization FormatsSerialization FormatsSerialization Formats

RDF graphs can be encoded in different formats. The W3C has defined

an XML based syntax for RDF graphs called RDF/XML, which is the

standard interchange format on Semantic Web. An example of this

format is mentioned in the example of section 2.2.2, which is expressed

in RDF/XML. A complete description of the RDF/XML syntax

specification is available on the W3C web site [21].

RDF/XML is not the only format for encoding RDF graphs, there are

some other plain text formats such as N-Triples [22], Turtle (Terse RDF

Triple Language) [23], and Notation3 [24].

2.62.62.62.6 RDF Schema (Resource Description RDF Schema (Resource Description RDF Schema (Resource Description RDF Schema (Resource Description

Framework Schema)Framework Schema)Framework Schema)Framework Schema)

2.6.12.6.12.6.12.6.1 OverviewOverviewOverviewOverview

RDF is a standard for building data models and it is necessary to have

another layer for building specific vocabulary for those data models.

RDF Schema is introduced by W3C as RDF’s vocabulary description

language. RDF Schema vocabulary descriptions are written in RDF and

allow designer to define the vocabulary, which is used by RDF data

model [25].

RDF Schema contains some predefined semantic terminology such as

Class and subClassOf where using subClassOf property allows

expressing the hierarchy of classes. As an example, if “Person” is defined

as a class, “Staffs of a bogus company” is defined as a subClassOf of the

“Person”, and “Bob” is defined a “Staffs of a bogus company”, then due

to the semantics of the RDF Schema, it is implicitly true that “Bob” is

also type of the “Person”.

 23

The core vocabulary in RDF Schema is defined in a namespace called

rdfs, which is identified by the URI http://www.w3.org/2000/01/rdf-

schema#.

2.6.22.6.22.6.22.6.2 Modeling PrimitivesModeling PrimitivesModeling PrimitivesModeling Primitives

This section presents the main classes, properties, and constraints of

RDF Schema. A complete description of these primitives can be found

in the W3C web site [25].

• Main classes: Main classes: Main classes: Main classes: Main classes in RDF Schema are rdfs:Resource,

rdf:Property, and rdfs:Class. The class rdfs:Resource is the class

of everything that is described by RDF. Therefore, all of the

resources in RDF are instances of the class rdfs:Resource. The

class rdf:Property is the class of all RDF properties and is itself

an instance of the rdfs:Class. Concepts are defined using

rdfs:Class in RDF Schema. Besides, the class rdfs:Class is the

class of those resources in RDF that are RDF classes.

• Main Main Main Main properties:properties:properties:properties: Main properties in RDF Schema are

rdfs:subClassOf, rdfs:subPropertyOf, and rdf:type. All of them are

instances of rdf:Property. The property rdfs:subClassOf is used to

state hierarchy between classes, which means that, instances of

one class are also instances of another one. The property

rdfs:subPropertyOf is used to state hierarchy between properties,

which means if a resource is related by one property it is also

related by another one. The property rdf:type is used to identify

that a resource is related to a class and it is an instance of the

class.

• Main constraints: Main constraints: Main constraints: Main constraints: Main constraints in RDF Schema are

rdfs:domain and rdfs:range. Both of them are instances of

rdf:Property. The property rdfs:domain states that any resource

with a given property is an instance of one or more specific class.

 24

For instance, the triple P rdfs:domain C states that the subjects

of triples are instances of class C if those triples’ predicates are P.

The property rdfs:range states that all allowed values of a

property are instances of one or more specific classes. For

instance, the triple P rdfs:range C states that the objects of

triples are instances of class C if those triples’ predicated are P.

2.72.72.72.7 OWL (Web Ontology Language)OWL (Web Ontology Language)OWL (Web Ontology Language)OWL (Web Ontology Language)

This section presents a brief overview about the concepts of the OWL.

2.7.12.7.12.7.12.7.1 OverviewOverviewOverviewOverview

OWL is a language for defining Web ontologies [26]. OWL is the

recommendation of W3C to make Web resources more processable for

applications by adding information about the resources. OWL is used in

cases that information in documents needs to be processed by

applications, rather than only being displayed to humans.

OWL makes it is possible to represent the meaning of terms that are

used in vocabularies and also relationships between those terms.

Generally, the representation of the terms and identifying their

relationships is called Ontology. Using additional vocabulary along with

formal semantics, OWL provides more facilities than XML, RDF, and

RDF Schema for expressing meaning and semantics. As a result, it has

more abilities for representing machine interpretable contents. [27] [3]

[28]

OWL is the revision of the earlier languages OIL (Ontology Inference

Layer) [29] and DAML+OIL (DARPA Agent Markup Language) [30].

 25

2.7.22.7.22.7.22.7.2 Sublanguages Sublanguages Sublanguages Sublanguages

OWL provides three sublanguages OWL Lite, OWL DL, and OWL Full

which are designed for use of specific users and communities [3].

• OWL Lite: OWL Lite: OWL Lite: OWL Lite: OWL Lite is designed for those users who need a

classification hierarchy and simple constraints. For example, it

supports cardinality constraints but only permits 0 or 1 for

cardinality values. Quick migration from thesauri and taxonomies

are possible using OWL Lite and because it has lower complexity

than OWL DL, providing tools for supporting OWL Lite is

simple.

• OWL DL: OWL DL: OWL DL: OWL DL: OWL DL is proper for those users who need maximum

expressiveness with computational completeness and decidability.

“Computational completeness” means that all deductions are

computable and decidability means that all computations process

will be finished in finite time. OWL DL contains all of the OWL

constructs with some certain restrictions of usage.

• OWL Full: OWL Full: OWL Full: OWL Full: OWL Full is proper for those users who need

maximum expressiveness and the syntactic freedom of RDF.

However, there is no guarantee for computational completeness

and not all conclusions are guaranteed to be computable.

There are some relations between these sublanguages in terms of legal

expressions and valid conclusions. Each sublanguage is an extension of

its predecessor and the following relations are true [3]:

• Each legal OWL Lite ontology is a legal ontology in OWL DL.

• Each valid OWL Lite conclusion is a valid conclusion in OWL
DL.

• Each legal OWL DL ontology is a legal ontology in OWL Full.

 26

• Each valid OWL DL conclusion is a valid conclusion in OWL
Full.

Every OWL document including OWL Lite, OWL DL, and OWL Full is

a RDF document. Also all RDF documents are OWL Full documents

but only some of them will be legal OWL Lite or OWL DL documents.

2.7.32.7.32.7.32.7.3 Modeling PrimitivesModeling PrimitivesModeling PrimitivesModeling Primitives

This section briefly reviews modeling primitives of OWL according to

the W3C documents [27], [31]. OWL ontology is a RDF graph, which is

consisting of some RDF triples. Like RDF graph, OWL ontology can be

written in different formats and RDF/XML syntax is the popular one.

The built-in vocabulary in OWL is associated with a namespace called

“owl” and comes from OWL namespace “http://www.w3.org/2002/07-

/owl”. MIME (Multi-purpose Internet Mail Extension) type of the OWL

documents is “application/rdf+xml” and for file extension, either “.rdf”

or “.owl” is recommended.

“Classes” in OWL are described through “class descriptions” and there

are six types of them:

• Class identifier: Class identifier: Class identifier: Class identifier: describes a class through a “class name” which is

represented as a URI reference. For instance, <owl:Class

rdf:ID="Person"/> describes a class called Person but it does not

tell much about the class Person. “Class axioms” are used to state

necessary characteristics of a class. OWL contains three

constructs for class axioms including rdfs:subClassOf, owl:equiv-

alentClass, and owl:disjointWith. The rdfs:subClassOf construct

states hierarchy between classes and owl:equivalentClass

construct states that class extensions of two class descriptions are

exactly same. The owl:disjointWith construct states that class

 27

extensions of two class descriptions have no members in common.

The following code is an example of using owl:disjointWith:

<owl:Class rdf:about="#Man">

 <owl:disjointWith rdf:resource="#Woman"/>

</owl:Class>

• EnumerationEnumerationEnumerationEnumeration: describes a class by an exhaustive collection of

individuals that form the instances of that class. As an example

the following syntax defines a specific class of colors:

<owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="#Blue"/>

 <owl:Thing rdf:about="#Red"/>

 <owl:Thing rdf:about="#Green"/>

 </owl:oneOf>

</owl:Class>

• Property restrictionProperty restrictionProperty restrictionProperty restriction: describes an anonymous class of all

individuals that fulfill the property restriction. OWL has two

types of property restrictions including “value constraints” and

“cardinality constraints”. A value constraint puts constraints on

the range of property while cardinality constraint puts constraints

on the number of values that a property can take. There are

different types of value constraints and cardinality constraints in

OWL. For example, by using value constraint “allValueFrom” the

following code describes an anonymous OWL class of all

individuals in which the property “hasParent” can only have

values from class “Person”:

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent" />

 <owl:allValuesFrom rdf:resource="#Person" />

</owl:Restriction>

• IntersectionIntersectionIntersectionIntersection: describes a class as an intersection of two or more

class descriptions. For example, the following code describe a

 28

class, which is an intersection of two class descriptions, both have

two containing two individuals. The result will be a class with one

individual, “Blue”.

<owl:Class>

 <owl:intersectionOf rdf:parseType="Collection">

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="#Blue" />

 <owl:Thing rdf:about="#Red" />

 </owl:oneOf>

 </owl:Class>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="#Blue" />

 <owl:Thing rdf:about="#Green" />

 </owl:oneOf>

 </owl:Class>

 </owl:intersectionOf>

</owl:Class>

• UnionUnionUnionUnion: describes an anonymous class as a union of two or more

class descriptions. As an example the following code describes an

anonymous class with three individuals including “Blue”, “Red”,

and “Green” using union descriptions:

<owl:Class>

 <owl:unionOf rdf:parseType="Collection">

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="#Blue" />

 <owl:Thing rdf:about="#Red" />

 </owl:oneOf>

 </owl:Class>

 <owl:Class>

 <owl:oneOf rdf:parseType="Collection">

 <owl:Thing rdf:about="#Blue" />

 <owl:Thing rdf:about="#Green" />

 </owl:oneOf>

 29

 </owl:Class>

 </owl:unionOf>

</owl:Class>

• ComplementComplementComplementComplement: describes a class containing those individuals that

do not belong to another class. As an example, the expression

“Female” can be expressed as the following code:

<owl:Class>

 <owl:complementOf>

 <owl:Class rdf:about="#Male"/>

 </owl:complementOf>

</owl:Class>

“Properties” in OWL are available in two main categories including

“object properties” and “datatype properties”. Object properties are

used to link individuals to individuals and datatype properties are used

to link individuals to data values. For example, <owl:ObjectProperty

rdf:ID="hasParent"/> defines property “hasParent” as an object

property.

There are also property axioms in OWL for defining additional

characteristics of properties. OWL contains different constructs for

property axioms including RDF Schema constructs, property relational

constructs, global cardinality constraints, and logical property

characteristics. RDF Schema constructs consist of rdfs:subPropertyOf,

rdfs:domain, and rdfs:range are described in section 2.3.2.

Property relational constructs consist of owl:equivalentProperty and

owl:inverseOf. The owl:equivalentProperty construct states that the

property extensions of two properties are same. The owl:inverseOf

construct states the inverse relation between two properties. For

example, the following code defines inverse relation between properties

“hasChild” and “hasParent”:

 30

<owl:ObjectProperty rdf:ID="hasChild">

 <owl:inverseOf rdf:resource="#hasParent"/>

</owl:ObjectProperty>

Global cardinality constraint constructs consist of owl:Functional-

Property and owl:InverseFunctionalProperty. The owl:FunctionalPro-

perty construct states that a property can only have one value for each

instance. For example, the following axiom states that the property

“idNumber” is functional because every person can have only one id

number:

<owl:ObjectProperty rdf:ID="idNumber">

 <rdf:type rdf:resource="&owl;FunctionalProperty" />

 <rdfs:domain rdf:resource="#Person" />

 <rdfs:range rdf:resource="#ID" />

</owl:ObjectProperty>

The owl:InverseFunctionalProperty construct is used to state that a

property is inverse functional. It means that the object of the property

statement can uniquely determine the subject.

Logical property characteristics constructs consist of owl:TransitivePro-

perty and owl:SymmetricProperty. The owl:TransitiveProperty is used

to state that a property is transitive. It means that when pairs (x,y) and

(y,z) are instances of the property, then the pair (x,z) is an instance of

that property. The owl:SymmetricProperty is used to state that a

property is symmetric. It means that when a pair (x,y) is an instance of

the property, then (y,x) is also an instance of that property.

“Individuals” in OWL are defined by individual axioms. There are two

types of individual axioms including class membership and individual

identity. An individual can be introduced by declaring it as a member of

a class. For example, the axiom <Color rdf:ID="Blue"/> indicates that

individual “Blue” is a member of class “Color”.

There are three individual identity constructs in OWL including

owl:sameAs, owl:differentFrom, and owl:AllDifferent which are used to

 31

state some facts about the individual’s identity. The owl:sameAs

construct states that two different URIs refer to the same individual.

The owl:differentFrom construct states that two URIs refer to the

different individuals. For example, the following code states that there

are two different colors:

<Color rdf:ID="Blue"/>

<Color rdf:ID="Red">

 <owl:differentFrom rdf:resource="#Blue"/>

</Color>

Finally owl:AllDifferent construct states that all declared individuals in

the list are all different. As an example, the following code declares that

all three URIs are different colors:

<owl:AllDifferent>

 <owl:distinctMembers rdf:parseType="Collection">

 <Color rdf:about="#Blue"/>

 <Color rdf:about="#Red"/>

 <Color rdf:about="#Green"/>

 </owl:distinctMembers>

</owl:AllDifferent>

2.82.82.82.8 RDF RDF RDF RDF QueryQueryQueryQuery Languages Languages Languages Languages

RDF query language is used to get information out of a knowledgebase

and manipulate stored data in RDF format. It allows end users and

developers to write desired queries and consume the query results across

broad range of information on the Web. Several languages have been

proposed for querying RDF documents and SPARQL is introduced as a

standard query language for RDF documents by W3C.

 32

2.8.12.8.12.8.12.8.1 Various Query LanguagesVarious Query LanguagesVarious Query LanguagesVarious Query Languages

Several query languages such as RQL (RDF Query Language), SeRQL

(Sesame RDF Query Language), SquishQL, RDFPath, Versa, TRIPLE,

DAML+OIL Query Language, RDQL, RDFQL, N3, iTQL, RStar,

SPARQL, and so on have been introduced for RDF documents.

All of the mentioned query languages were intended to provide a proper

query language for RDF documents. Some of them including RQL,

SeRQL, TRIPLE, RDQL, N3, and Versa have been described and

compared in “A Comparison of RDF Query Languages”, reference [32].

2.8.22.8.22.8.22.8.2 SPARQLSPARQLSPARQLSPARQL

SPARQL is the standard RDF query language and data access protocol

introduced by W3C for easy accessing to RDF documents in Semantic

Web. It is defined in connection with RDF data model and works with

any data source that can be expressed by RDF. The SPARQL query

language provides syntax and semantics for getting information from

RDF graphs. It provides some facilities to extract information in various

forms such as URIs, blank nodes, and plain and typed literals. It also

has facilities to extract RDF sub graphs and construct new RDF graphs

using information in the queries [33].

Matching graph patterns is the basis of SPARQL query language. The

simplest basic graph pattern can be a triple pattern like RDF triple with

variables instead of subject, predicate, and object. These graph patterns

can be used as basic patterns for RDF graphs in order to retrieve query

results. There is no inference in the SPARQL query language and it

only queries the information in RDF graphs.

As an example, consider the following RDF data, which is presented in

section 2.2.2:

 33

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:foaf="http://xmlns.com/foaf/0.1/" >

<rdf:Description rdf:about="http://www.bogus.com/index.html">

 <dc:creator rdf:resource="http://www.bogus.com/staffid/10"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.bogus.com/staffid/10">

 <foaf:name>Bob</foaf:name>

</rdf:Description>

</rdf:RDF>

The following example shows a simple SPARQL query to find the

“name” of the staff member 10 from the information in the above given

RDF graph.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?name

WHERE

{

 <http://www.bogus.com/staffid/10> foaf:name ?name .

}

In the above code, PREFIX foaf defines namespace of vocabulary

http://xmlns.com/foaf/0.1/, SELECT clause of the query identifies

variable “name” which is the query result, and WHERE clause of the

query contains one triple pattern. The result of query based on the

mentioned RDF graph will be:

A complete description of the SPARQL query language is available on

W3C site [33].

namenamenamename

“Bob”

 34

2.92.92.92.9 Implemented applicationsImplemented applicationsImplemented applicationsImplemented applications

Some of the implemented applications based on Semantic Web are

briefly explained in this section as a sample of Semantic Web

applications.

• Friend of a Friend (FoaF):Friend of a Friend (FoaF):Friend of a Friend (FoaF):Friend of a Friend (FoaF): Friend of a Friend (FoaF) project is

one of the popular implemented applications of Semantic Web. It

is about describing people, relationships among them and the

things they have created in the form of a machine-readable web.

FOAF is implemented on the basis of RDF and defined using

OWL in order to share data between different environments. [13]

• BigBloZoo: BigBloZoo: BigBloZoo: BigBloZoo: BigBlogZoo is a Semantic Web Browser in which

around 70,000 News feeds and Blogs, which are called channels,

have been categorized using the DMOZ1 Schema. This information

is in machine-readable XML format. The BigBlogZoo allows a

web user to search and browse those channels and save the results

as channels. [14]

• Piggy Bank:Piggy Bank:Piggy Bank:Piggy Bank: Piggy Bank is a new free plug-in and an extension to

the Firefox web browser, which makes it as a Semantic Web

browser. Existing information and web scripts on the web are

extracted and translated into RDF information and stored on the

web user’s local computer using Piggy Bank. Therefore, this

information can be used independently in other contexts in more

useful ways. [8] [15]

1 Another name for the Open Directory Project (ODP): the largest human edited directory of

the Web which is maintained by a community of volunteer editors. For more information see:

http://www.dmoz.org/

 35

Chapter 3Chapter 3Chapter 3Chapter 3

3333MethodMethodMethodMethod

This chapter presents the vision document of the project. It is written

based on the vision template of Rational Unified Process (RUP) [34].

The Rational Unified Process is an iterative framework for software

development process, which is created by the Rational Software

Corporation [35], [36].

The goal of this chapter is to collect and define high-level features and

needs of the Ultimate Ontology Management System (UltimateOMS).

This section focuses only on the required capabilities of the stakeholders

and users, and why these needs exist. The details of how UltimateOMS

fulfills these needs are described in the use case specifications in

appendix B.

3.13.13.13.1 PositioningPositioningPositioningPositioning

3.1.13.1.13.1.13.1.1 Business OpportunityBusiness OpportunityBusiness OpportunityBusiness Opportunity

This software will be a new ontology management system based on

Jena, which is an open source java framework for building Semantic

Web applications. The new tool will enable users to create and manage

their semantic data (ontology components) using the web based user

interface.

The new tool will bring necessary functions for managing semantic data

in one place thus making it much easier for users to create and manage

ontology components.

 36

3.1.23.1.23.1.23.1.2 Problem StatementProblem StatementProblem StatementProblem Statement

The problem of The lack of proper tool for creating and

managing of semantic data (ontology

components)

Affects Users dealing with semantic data

The impact of which is A slow and costly timely process to create

and manage semantic data

A successful solution

would be

Developing a new application in which all

necessary functions are provided in one

place in order to facilitate creating and

managing of semantic data

3.1.33.1.33.1.33.1.3 Product Position StatementProduct Position StatementProduct Position StatementProduct Position Statement

For Users dealing with semantic data

Who Want to create and manage semantic data

(ontology components)

““““Ultimate Ultimate Ultimate Ultimate

Ontology Ontology Ontology Ontology

Management Management Management Management

System System System System

Is a software product

 37

(UltimateOMS)(UltimateOMS)(UltimateOMS)(UltimateOMS) ” ” ” ”

That Facilitate creating and managing of semantic

data by providing all necessary functions in

one place

Unlike The current exciting tools for creating and

managing semantic data, which do not

provide all required features for users dealing

with semantic data

Our product Provides an ultimate ontology management

system with all necessary functions in one

place in order to facilitate creating and

managing semantic data (ontology

components)

3.23.23.23.2 Stakeholder and User DescriptionsStakeholder and User DescriptionsStakeholder and User DescriptionsStakeholder and User Descriptions

This section describes the profile of the stakeholders and users of the

Ultimate Ontology Management System and the key problems that

should be addressed by the proposed solution. There are two types of

users of UltimateOMS: Administrator, and Users.

3.2.13.2.13.2.13.2.1 Market DemographicsMarket DemographicsMarket DemographicsMarket Demographics

The target market for this system includes all users who deal with

semantic data and intend to create, manage, use, and even share

semantic data in the Web.

 38

3.2.23.2.23.2.23.2.2 Stakeholder SummaryStakeholder SummaryStakeholder SummaryStakeholder Summary

The following summary list, presents all identified stakeholders in the

system.

NameNameNameName DescriptionDescriptionDescriptionDescription ResponsibilitiesResponsibilitiesResponsibilitiesResponsibilities

Administrator Administrators

of the system

Ensures that the system will meet

the needs of the ontology

management system, who has to

install and manage the application,

maintain databases, and modify

system configuration

User End users of the

system

Represents the interests of the users

and ensures that the system will

meet the needs of system end users

3.2.33.2.33.2.33.2.3 User SummaryUser SummaryUser SummaryUser Summary

The following summary list, presents all identified users in the system.

NameNameNameName DescriptionDescriptionDescriptionDescription StakeholderStakeholderStakeholderStakeholder

Administrator Installs and manages application,

maintains databases, and modifies

system configuration

self-represented

User Creates and manages semantic

data (ontology components)

self-represented

 39

3.2.43.2.43.2.43.2.4 User EnvironmentUser EnvironmentUser EnvironmentUser Environment

Users will require a web browser such as “Mozilla Firefox” and

“Internet Explorer” in order to interact with system for creating and

managing their semantic data.

3.2.53.2.53.2.53.2.5 Stakeholder Profiles Stakeholder Profiles Stakeholder Profiles Stakeholder Profiles

The following lists describe each identified stakeholder in the system.

� Administrator:Administrator:Administrator:Administrator:

DescriptionDescriptionDescriptionDescription Individuals who are administrators of the system

TypeTypeTypeType The administrator is an expert user who knows detail

information about the application

ResponsibilitiesResponsibilitiesResponsibilitiesResponsibilities The administrator is responsible for reviewing system

requirements

Success CriteriaSuccess CriteriaSuccess CriteriaSuccess Criteria Ability to maintain the application

InvolvementInvolvementInvolvementInvolvement Requirements reviewer

Comments / Comments / Comments / Comments /

IssuesIssuesIssuesIssues

None

 40

� User:User:User:User:

DescriptioDescriptioDescriptioDescriptionnnn Individual who is an end user of the system dealing with

semantic data

TypeTypeTypeType The User is a primary and end user of the system

ResponsibilitiesResponsibilitiesResponsibilitiesResponsibilities The User ensures that the system will be acceptable to

users in terms of provided features and ease of use

SuSuSuSuccess Criteriaccess Criteriaccess Criteriaccess Criteria Ability to work easily with system and create and

manage semantic data

InvolvementInvolvementInvolvementInvolvement Provides reviews of preliminary version of software in

order to fix problems

Comments / Comments / Comments / Comments /

IssuesIssuesIssuesIssues

None

3.2.63.2.63.2.63.2.6 User Profiles User Profiles User Profiles User Profiles

User profiles are covered under the previous section.

3.2.73.2.73.2.73.2.7 Key Stakeholder or User NeedsKey Stakeholder or User NeedsKey Stakeholder or User NeedsKey Stakeholder or User Needs

The following list describes the main concerns and needs of the system’s

stakeholders and users.

 41

NeedNeedNeedNeed

P
rio

rity
P
rio

rity
P
rio

rity
P
rio

rity

ConcernsConcernsConcernsConcerns Current Current Current Current

SolutionSolutionSolutionSolution

Proposed SolutionsProposed SolutionsProposed SolutionsProposed Solutions

Integrated

Ontology

Manageme

nt System

H
ig
h

Creating and

managing of

semantic data

is a slow,

costly and

timely process

Currently

users must

use different

tools in order

to create and

manage their

semantic

data

Users would like to

have integrated

application in which

all necessary functions

are provided in one

place in order to

facilitate creating and

managing of semantic

data

Web based

user

interface

M
ed
iu
m

Maintaining a

new version of

software in

client side is

costly

Using web

based

application

technology

Using web based

application technology

Ease of use

H
ig
h

Ability to

provide

navigations in

user interface

Using

standard

navigations

in web

interface

Designing a new user

friendly web interface

Storing

semantic

data in

different

databases

H
ig
h

Ability to store

semantic data

in different

databases

Storing data

in different

databases

using JDBC

in Java

applications

Storing data in

different databases

using JDBC in Java

applications

 42

Visualizati

on of

semantic

data

H
ig
h

Ability to

make graph of

the generated

semantic data

Currently

users must

different

types of tools

to create

semantic

data and

generate

graph

Providing graph

facilities seamless in

application by using

Graphviz as a graph

generator

Scalability

M
ed
iu
m

Ability to store

hug number of

semantic data

records in

database

Using a

scalable

database

Supporting different

types of databases for

different types of user

requirements

Security
M
ed
iu
m

User data Using

appropriate

security

mechanism

provided in

web

technology

and database

Using database

security mechanisms,

like identifying system

users as database users

or any identity

management system

that the database

supports such as using

LDAP directories

 43

3.33.33.33.3 Product Product Product Product OverviewOverviewOverviewOverview

This section delivers a high-level view of UltimateOMS capabilities,

interfaces to the external Semantic Web Framework and supported

back-end databases, and Graph Generator System.

3.3.13.3.13.3.13.3.1 Product PerspectiveProduct PerspectiveProduct PerspectiveProduct Perspective

UltimateOMS leverages from the existing Semantic Web Framework,

Jena and its supported back-end databases, and graph generator system

as shown graphically in the figure 3.1.

Figure 3.1: UltimateOMS high-level diagram

UltimateOMS will consist of server components, which reside on

UltimateOMS server. The server components use the Jena APIs and

interact with Graphviz for generating graph, which are both resided on

 44

the same server as UltimateOMS resides on. However, databases can be

installed on either different servers or the same server, which is used for

UltimateOMS.

There is no specific client component in UltimateOMS because it is a

web based application. The users may access UltimateOMS from their

PC either through the LAN or through Internet using a web browser. A

valid username and password is required in order to access

UltimateOMS.

3.3.23.3.23.3.23.3.2 Summary of CapabilitiesSummary of CapabilitiesSummary of CapabilitiesSummary of Capabilities

The following table identifies the main capabilities of UltimateOMS in

terms of benefits and features.

Customer BenefitCustomer BenefitCustomer BenefitCustomer Benefit Supporting FeaturesSupporting FeaturesSupporting FeaturesSupporting Features

Easy and convenient

access

Users may access the ontology management

system from anywhere through Internet

using a web browser

Secure access A valid username and password is required

in order to gain access to UltimateOMS

Easy to use A user friendly web based user interface

makes it very easy to users for managing

Semantic data

 45

Easy to manage and

manipulate Semantic data

UltimateOMS provides the necessary

functions in one place in order to facilitate

creating, manipulating, and managing

Semantic data (ontology components)

Broad choice for backend

system

Users may store and manage their semantic

data in different types of databases

Visualization graph of

Semantic data

UltimateOMS provides graph facilities

seamless in application by using Graphviz as

a graph generator

Querying Semantic data

and exporting the result

Users may query Semantic data using

querying facilities provided by

UltimateOMS and export the query results

Inferring Semantic data Users may infer Semantic data using

inferring facilities provide by UltimateOMS

Table 3.1: Capabilities of UltimateOMS

3.3.33.3.33.3.33.3.3 Assumptions and DependenciesAssumptions and DependenciesAssumptions and DependenciesAssumptions and Dependencies

The following outlined assumptions and dependencies are related to the

capabilities of UltimateOMS:

• It is assumed that a correct version of Java platform, Standard

Edition, J2SE 1.5 or higher is installed on UltimateOMS server.

• It is assumed that an application server such as Tomcat, JBoss, or

Oracle Internet Application Server is installed on UltimateOMS

server.

 46

• The current version of Jena, at the moment Jena-2.5.2, is included

in UltimateOMS package.

• It is assumed that a proper version of Graphviz is installed on

UltimateOMS server.

• It is assumed that all required databases are installed and configured

on either different servers or the same server, which is used for

UltimateOMS.

3.43.43.43.4 Product Product Product Product FeaturesFeaturesFeaturesFeatures

This section defines and briefly describes the features of UltimateOMS.

Features are the high-level capabilities of the system that are essential

to give benefits to the users. Each feature will be described in detail in

the use case model. For more information regarding use case model see

appendix B.

� Modify UltimateOMS System Configuration

The system shall allow the administrator to modify system

configuration file. It includes some parameters related to

databases and graph. The administrator can modify the

configuration file for the following actions:

• Adding new database

• Modifying database parameters

• Removing database

• Modifying graph parameters

 47

� Logon

Users shall provide a valid username and password and specify an

available database for access to UltimateOMS. Administrators

will assign usernames and passwords to the users. These

usernames and passwords should match the database

usernames/passwords.

� Show and Search Models

The system shall display all available users’ models, which already

exist in the connected database, as a list to the users. The system

shall also allow the users to search for a specific list of models

stored in the connected database by typing some part of desired

model’s name. The system shall display all the filtered models as

a list to the user in which model’s names contain the user typed

part.

� Create, Import, and Upload Model

The system shall allow the users to create an empty model in

connected database, import a model in different formats from

anywhere in Internet into the connected database, and upload

a model in different formats from local file system into the

connected database by providing all necessary information. The

new model shall be displayed in Show Model list.

� Select a Default Model

The system shall allow the users to select a default model from

the list of existing models in database in order to work with it.

 48

� Export Model

The system shall allow the users to export the default model from

the connected database in different formats into local file system

by providing all necessary information. The users shall be asked

to specify a local directory path in which the export-

ed model will be saved.

� Show and Export Model Graph

The system shall enable the users to view graph of

the default model by parsing the default model and sending

a proper file to Graphviz. The generated Graphviz file shall be

displayed to the users using a java applet application. The system

shall also allow the users to export the generated model graph in

different formats into local file system by providing all necessary

information. The users shall be asked to specify a local directory

path in which the exported graph of model will be saved.

� Query Model and Export Query Results

The system shall enable the users to query the model from the

connected database by providing desired SPARQL query. The

system shall display all the query results as a list to the user. The

system shall also allow the users to export the query results in

different formats into local file system by providing all necessary

information. The users shall be asked to specify a local directory

path in which the exported query results of model will be saved.

� Infer Model

The system shall enable the users to infer the model from the

connected database using different available types of “Reasoner”

or “Generic Rule Reasoner” by providing all necessary

 49

information. The inferred results shall be saved in the connected

database as a new model with the specified name.

� Show Model Statistics

The system shall enable the users to see all statistics information

of the model.

� Check Model Consistency

The system shall enable the users to check the model consistency

in the connected database by providing all necessary information.

The generated report shall be displayed to the users.

� Delete Model

The system shall enable the users to delete a selected model from

the connected database.

� Show and Search Triples

The system shall display all the existing triples of the model as a

list to the users. The system shall also allow the users to

search for a specific list of triples of model by typing some part of

the desired triple’s subject name, predicate name, object name,

or all of them. The system shall display all of the filtered triples

of the model as a list to the user.

� Browse Triples

The system shall enable the users to browse triples of a selected

resource in model. The system shall display all the filtered triples

of the model as three different lists to the user in which triples’

 50

subject name, predicate name, or object name is equal to the

selected resource.

� Select Triple

The system shall allow the users to select a triple from the list of

existing triples in model in order to deal with it.

� Create, Edit, and Delete Triple

The system shall allow the users to create a triple for model by

providing all necessary information, edit a selected triple of model

by modifying all necessary information, and delete a selected

triple from model.

� Show and Search Classes

The system shall display all the existing classes of the model as a

list to the users. The system shall also allow the users to

search for a specific list of classes of model by typing some part of

the desired classes’ name. The system shall display all the filtered

classes of the model as a list to the user in which classes’ names

contain the user typed part.

� Select Class

The system shall allow the users to select a class from the list of

existing classes in model in order to deal with it.

� Create, Edit, and Delete Class

The system shall allow the users to create a class for model by

providing all necessary information, edit a selected class of model

 51

by modifying all necessary information, and delete a selected class

from the model.

� Create Instance for Class

The system shall allow the users to create an instance for a

selected class by providing all necessary information.

� Show Class Details

The system shall enable the users to see all categorized detail

information of the selected class.

� Show Class Triples

The system shall enable the users to see all the existing triples of

the selected class as a list.

� Show and Search Properties

The system shall display all the existing properties of the model

as a list to the users. The system shall also allow the users to

search for a specific list of properties of the model by typing some

part of desired properties’ name. The system shall display all

the filtered properties of the model as a list to the user in which

properties’ names contain the user typed part

� Select Property

The system shall allow the users to select a property from the list

of existing properties in model in order to deal with it.

 52

� Create, Edit, and Delete Property

The system shall allow the users to create a property for model by

providing all necessary information, edit a selected property of

model by modifying all necessary information, and delete a

selected property from model.

� Show Property Details

The system shall enable the users to see all categorized detail

information of the selected property.

� Show Property Triples

The system shall enable the users to see all the existing triples of

the selected property as a list.

� Show and Search Individuals

The system shall display all the existing individuals of the model

as a list to the users. The system shall also allow the users to

search for a specific list of individuals of model by typing some

part of desired individuals’ name. The system shall display all

the filtered individuals of the model as a list to the user in which

individuals’ names contain the user typed part

� Select Individual

The system shall allow the users to select an individual from the

list of existing individuals in model in order to deal with it.

 53

� Edit and Delete Individual

The system shall allow the users to edit a selected individual of

model by modifying all necessary information and delete a

selected individual from model.

� Show Individual Details

The system shall enable the users to see all categorized detail

information of the selected individual.

� Show Individual Triples

The system shall enable the users to see all the existing triples of the

selected individual as a list.

3.53.53.53.5 Constraints Constraints Constraints Constraints

In addition to the mentioned assumptions and dependencies in Section

3.4.3, the following constraints apply to UltimateOMS:

• The system shall not have any dependency to any specific operating

system.

• The system reliability and performance in terms of response time are

limited to the reliability and performance of the Jena Semantic Web

Framework.

 54

 55

Chapter 4Chapter 4Chapter 4Chapter 4

4444SystemSystemSystemSystem Design Design Design Design

This chapter reviews the technologies and concepts related to the

architecture of the application, and finally presents the architecture of

the proposed solution for implementing Ultimate Ontology Management

System (UltimateOMS).

4.14.14.14.1 JSP Technology andJSP Technology andJSP Technology andJSP Technology and Java Servlets Java Servlets Java Servlets Java Servlets

JavaServer Pages (JSP) technology makes Web developers capable of

rapidly developing and maintaining platform independent web based

applications. JSP technology separates the business logic from user

interface design, enabling user interface designers to change page design

and layout without changing the business logic. The logic, which

generates the page contents, is encapsulated in the specific tags in JSP

files. The application business logics can reside in the server in the form

of Java Beans components, which are accessible by JSP pages tags.

Java Servlets are server side and platform independent components that

can be used to extend Web server capabilities with minimum

maintenance and overhead.

JSP technology and Java Servlets can be used together in order to

develop platform independent applications which have enhanced

performance, separated business logic and user interface design, and

ability to extend into enterprise applications. [37]

A simplified architecture of JSP and Java Servlets technologies [44] are

shown in figure 4.1.

 56

Figure 4.1: JSP and Servlets, simplified architecture

4.24.24.24.2 Semantic Semantic Semantic Semantic WebWebWebWeb Framework: Jena Framework: Jena Framework: Jena Framework: Jena

Jena is an open source Java framework for building Semantic Web

applications developed by the Hewlett-Packard Company. Jena

framework provides Application Program Interfaces (API) for RDF,

RDFS, OWL, and SPARQL and also includes a rule based inference

engine [38].

Jena has a simple abstraction of the RDF graph as an interface, which

facilitates implementations of in-memory, database-backed, and inferred

graphs. Persistence for RDF graphs is implemented by Jena database

subsystem using back-end relational databases and through JDBC

connections [19]. Therefore, using provided Jena model interfaces, users

can store RDF graphs in different supported relational databases.

 57

The latest version of Jena, Jena 2.5.2, supports MySQL, HSQLDB,

PostgreSQL, Oracle, Apache Derby, and Microsoft SQL Server

databases [39].

Jena2 is the second generation of the Jena that complies with the

revised RDF specification. As shown in Graph Layer in figures 4.2, the

RDF graph is the heart of the Jena2 [5]. The Graph Layer design, which

is based on the RDF Abstract Syntax [17], is minimal and

implementation is done as much as possible in other layers. Therefore, it

is possible to have a range of different implementations for Graph

Layer. Jena2 provides different types of implementations for Graph

Layer such as in-memory and persistence triples stores.

 58

Figure 4.2: Jena2 architecture

EnhGraph Layer is an intermediate layer between both the Model and

Ontology Layers and the Graph Layer. The EnhGraph provides

multiple simultaneous views of graphs and nodes, which can be used by

Model and Ontology APIs. In Jena, all states are kept within the Graph

and the other presentation layers are stateless. [40]

Due to compatibility with Jena1, I/O is done in the Model Layer. Model

API, which is the primary abstraction of the RDF Graph in Jena1, is

 59

maintained in Jena2. The Model API provides a complete set of

methods for applications in order to operate on both the Graph and

Nodes within graphs. [40]

Jena is a leading Semantic Web programmers’ toolkit, which is in

widespread use [41]. It is available for download from SourceForge2. In

order to keep compatibility with ongoing W3C standards and also

provide much richer APIs, Jena still is under development. Support is

provided through the Jena-dev mailing3 list on Yahoo.

4.34.34.34.3 DatabasesDatabasesDatabasesDatabases

Considering the fact that users usually deal with large amount of

semantic data, it is necessary to provide a mechanism for users in order

to store and retrieve this data in an efficient way. The good choice is to

use the conventional RDBMS databases. To do this efficiently, a very

good option is to choose a Semantic Web framework, which provides not

only the APIs for storing and retrieving Semantic data but also supports

wide ranges of relational databases.

Jena has the APIs for storing and retrieving Semantic data and also

supports persistent storage of RDF data in a wide range of relational

databases. [39] Jena provides many APIs and java interfaces such as

Model and Query to access and manipulate stored RDF data in

databases. Moreover, for consistency reasons, applications are not

allowed to access the stored data in databases directly and Jena

provides all necessary APIs for dealing with stored data instead of

accessing it directly.

2 SourceForge.net is a centralized location for open source software developers to control and

manage software development.
3 Mailing list of Jena-dev is: jena-dev@groups.yahoo.com

 60

4.3.14.3.14.3.14.3.1 Denormalized SchemaDenormalized SchemaDenormalized SchemaDenormalized Schema

Storing triples is the widely used scheme for storing RDF statement in

relational databases. Jena uses this approach to store each RDF

statement, including subject, predicate, and object, as a single row in

the Statement Table, which has three columns corresponding to them.

In addition to those three columns, the Statement Table has another

column indicating if the object of that statement is a literal or a URI.

Jena1 uses normalized schema approach, which uses less storage space

in databases. In normalized approach, the literals and resources of all

statements are stored in Literal Table and Resource Table. Therefore,

Statement Table stores references to the values of resources and literals

instead of storing their value directly. As a result, in this approach less

space is used; because the literals and URI resource values are only

stored once but used several times. However because retrieving a

statement requires a join on three different tables, the performance will

be affected as the number of statements increase. [19] [40] [42]

In order to have efficient retrieval, Jena2 uses demoralized schema

approach, which is a hybrid approach of normalized and standard triple

store. Using this approach in Jena2, short literals and URI resources will

be stored directly in the Statement Table. However, long literals and

URI resource are only stored once and only the references will be stored

in the Statement Table similar to the approach in Jena1.

Jena2’s approach uses more storage space than Jena1, but it has better

response time and it is better in terms of space-time trade off. The

threshold length for short value versus long value is 256 by default, but

it is configurable and it is possible to change it to adjust the space-time

trade off in different type of applications.

 61

4.3.24.3.24.3.24.3.2 TablesTablesTablesTables

This section presents briefly the database tables, which are used in

Jena2. More information regarding to the details of table designs is

available in “Jena2 Database Interface - Database Layout”, reference

[42].

 There are two different types of tables in Jena2: Statement Tables and
System Tables.

� Statement Tables

Jena2 uses Statement Tables in order to store asserted statements

and reified statements. There are two different tables as following:

• Asserted Statement TableAsserted Statement TableAsserted Statement TableAsserted Statement Table

This table holds asserted statements for one or more

graphs. By default, statements of each graph are stored in

its own statement table, which name has the form

Jena_GiTj_Stmt. In this form i is graph identifier and j is

table counter for graph.

• Reified Statement TableReified Statement TableReified Statement TableReified Statement Table

This table holds reified statements for one or more graphs.

By default, reified statements of each graph are stored in

its own reified statement table, which name has the form

Jena_GiTj_Reif. In this form i is graph identifier and j is

table counter for graph.

� System Tables

Jena2 uses System Tables in order to store metadata and long values

for literals and resources. There are six different tables as following:

 62

• System Statement TableSystem Statement TableSystem Statement TableSystem Statement Table

This table, Jena_Sys_Stmt, holds system metadata such as

configuration parameters and table names for graphs for

the Jena2.

• Long LitLong LitLong LitLong Literals Tableerals Tableerals Tableerals Table

This table, Jena_Long_Lit, holds the literals that are long

to store directly in statement tables.

• Long Resources TableLong Resources TableLong Resources TableLong Resources Table

This table, Jena_Long_URI, holds the resources that are

too long to store directly in statement tables.

• Prefixes TablePrefixes TablePrefixes TablePrefixes Table

This table, Jena_Prefix, holds common URI prefixes in

order to minimize used space in database.

• Graph TableGraph TableGraph TableGraph Table

This table, Jena_Graph, holds the name and unique

identifier for user graphs.

• Lock TableLock TableLock TableLock Table

This table, Jena_Mutex, holds some information, which are

used internally in Jena2 in order to implement some critical

sections.

4.3.34.3.34.3.34.3.3 Supported DatabasesSupported DatabasesSupported DatabasesSupported Databases

Currently the latest version of Jena, Jena 2.5.2, supports the databases

which are listed in the table 4.1. The table also lists the JDBC drivers,

which are compatible with Jena2. [39]

 63

Database EngineDatabase EngineDatabase EngineDatabase Engine JDBC DriverJDBC DriverJDBC DriverJDBC Driver

HSQLDB 1.8.0

MySQL 4.1.11

MySQL 5.0.18
JDBC driver versions: 3.0, 3.1, 5.0

PostgreSQL 7.3

PostgreSQL 8.0

JDBC driver 7.3

JDBC driver 8.0

Apache Derby 10.1

Oracle 10 XE
Oracle ojdbc14 driver (thin driver)

10.2.0.2

Oracle 9i Release 2
Oracle ojdbc14 driver (thin driver)

10.2.0.2

Oracle 10g Release 2
Oracle ojdbc14 driver (thin driver)

10.2.0.2

Microsoft SQL Server 2005 Express

SP1

Microsoft SQL Server 2005 JDBC

Driver

Microsoft SQL Server 2000

Microsoft SQL Server Desktop

Edition

Microsoft SQL Server 2005 JDBC

Driver

jTDS version 1.2

Table 4.1: Supported database engines and JDBC drivers by Jena2

4.44.44.44.4 Graph Generator: GraphvizGraph Generator: GraphvizGraph Generator: GraphvizGraph Generator: Graphviz

Visual representation of RDF data is the easiest way for users in order

to understand the structure of RDF data. To fulfill this goal, visual

graph of RDF data has to be generated using a graph visualization

software.

Graphviz (Graph Visualization Software), initiated by AT&T Research

Labs, is an open source software for generating visual graphs. Graphviz

can generate diagrams by taking descriptions of graphs in a simple text

file. It also provides very useful features for diagrams such as colors and

 64

fonts and also it can save them in different formats such as PNG, SVG

and Postscript. [43]

Graphviz has several graph layout programs such as “dot”, “neato and

fdp”, “twopi”, and “circo” in order to generate different types of

diagrams. There are also some different types of viewers such as

“dotty”, “tcldot”, “WebDot”, “Grappa”, “ZGRViewer”, and “Mac OS

X graphviz” for different types of needs and environments. The latest

version of Graphviz for different environments are available to download

from www.graphviz.org.

4.54.54.54.5 UltimateOMS UltimateOMS UltimateOMS UltimateOMS ArchitectureArchitectureArchitectureArchitecture

The following diagram (see figure 4.3) shows the proposed architecture

of UltimateOMS in order to fulfill user needs presented in chapter 3.

Figure 4.3: Architecture of UltimateOMS

 65

4.5.14.5.14.5.14.5.1 JSP and Java Servlets framework JSP and Java Servlets framework JSP and Java Servlets framework JSP and Java Servlets framework

As shown in the architecture in Figure 4.3, the JSP and Java Servlets

technologies are used together in order to develop UltimateOMS. Both

JSP and Java Servlets are server side components that reside on an

Application Server such as Tomcat, JBoss, Oracle Application Server.

Users’ requests are collected by JSP and Java Servlets using HTTP

Requests. The proper business logic, depending on the type of the

request, will be executed using either Java Beans or Java Servlets. The

operation results will be sent to users with HTTP Responses using JSP

pages. Those JSP pages are the presentation layer and contain HTML

tags and dynamic contents.

Because UltimateOMS is a web based application, there is no specific

client component for clients. The users may access UltimateOMS from

their PC either through the LAN or through Internet using a web

browser. However, a valid username and password is required in order

to access UltimateOMS.

Interaction between users and UltimateOMS will be carried out through

HTTP protocol in order to send users requests and receive responses.

4.5.24.5.24.5.24.5.2 JenaJenaJenaJena

UltimateOMS leverages from Jena Semantic Web framework, in order

to enable users with creating, manipulating, and managing Semantic

data. Jena resides on the same server as UltimateOMS resides on.

Depending on users’ requests and business logics, Jena APIs will be used

by Java Beans, Java Servlets, and JSP pages in order to fulfill users’

demands on Semantic data management including create, store, retrieve,

manipulate, and more.

 66

4.5.34.5.34.5.34.5.3 DatabasesDatabasesDatabasesDatabases

Databases are used by Jena Semantic Web framework in order to store

and retrieve Semantic data. Jena supports wide range of databases such

as MySQL, HSQLDB, PostgreSQL, Oracle, Apache Derby, and

Microsoft SQL Server, as mentioned in the Section 4.3.3, through JDBC

drivers. Required databases can be installed and configured on either

different servers or the same server as UltimateOMS.

4.5.44.5.44.5.44.5.4 GraphvizGraphvizGraphvizGraphviz

In order to generate visual graph of the Semantic data, UltimateOMS

will interface with Graphviz. Graphviz resides on the same server as

UltimateOMS. Both Graphviz and UltimateOMS use a shared area in

the server in order to keep temporary files, which are used to

communicate with each other. In our case, the shared area is a specific

directory, which is accessible by both Graphviz and UltimateOMS.

Depending on users’ requests for displaying or exporting graphs of

Semantic data, Java Beans and Java Servlets will interact with the

layout program of Graphviz, which is “dot” in our case, in order to

generate the visual graph.

In case of displaying the generated graph in web browsers,

UltimateOMS will send the generated graph to users through a Java

applet application. In this case, web browsers in client side have to be

Java enabled in order to load the Java applet and display the graph.

 67

Chapter 5Chapter 5Chapter 5Chapter 5

5555ImplementationImplementationImplementationImplementation

In order to fulfill the specified user needs in chapter 3, a software

prototype has been developed. This chapter presents detail information

about the implementation of UltimateOMS whose architecture is shown

in figure 4.3.

5.15.15.15.1 DevelopmentDevelopmentDevelopmentDevelopment Platform Platform Platform Platform

The development platform was Windows XP Professional SP2. The

code of the prototype was developed in “Oracle JDeveloper Version

10.1.3.1”, which is a free integrated development environment, [45]

using “Java Platform, Standard Edition Version 5.0” [46]. During the

code development, both “embedded OC4J4 in Oracle JDeveloper” [47]

and “Apache Tomcat Version 5.5” [48] were used as Application Server.

As mentioned in chapter 4, “Jena APIs Version 2.5.2” [38] was used as

Semantic Web Framework for Java. Both “Oracle Database 10g Express

Edition” [49] and “MySQL Version 5.0” [50] databases were used during

the code development in order to store and retrieve Semantic data.

“Graphviz Version 2.12” [43] was used as visual graph generator for

Semantic data and “Applet version of IsaViz” [51] was used as graph

viewer.

All above mentioned tools and softwares are free and available to

download from the corresponding web sites.

4 OC4J (Oracle Containers for J2EE) is the core J2EE runtime component of Oracle

Application Server. See reference [47].

 68

5.25.25.25.2 System ConfigurationSystem ConfigurationSystem ConfigurationSystem Configuration

This section describes the provided method for administrators to

configure UltimateOMS. The administrators define end users and also

modify system configuration file.

UltimateOMS enables administrators to modify system configuration by

providing a configuration file. The configuration file name is

systemConfig.xml, which is placed in web application root directory

beside the JSP files. The configuration file is a XML file including some

parameters related to the graph and available databases as shown in

figure 5.1.

Figure 5.1: Part of the System Configuration file of UltimateOMS

 69

5.2.15.2.15.2.15.2.1 DatabaseDatabaseDatabaseDatabase

As mentioned in Section 4.3.3, a wide range of databases is supported

by Jena Semantic Web framework. Therefore, depending on the end

users choice, the administrator would be able to install and configure

necessary databases.

Administrators can easily add new databases to UltimateOMS and

remove them from UltimateOMS by modifying database parameters in

system configuration file as shown in the DatabaseList section in figure

5.1.

The database parameters in the system configuration file are:

• descriptiondescriptiondescriptiondescription: a brief description about the database

• idididid: the name of the database which is used in Jena

• driverdriverdriverdriver: proper driver of the database

• urlurlurlurl: URL of the database

UltimateOMS will use the above parameters in order to connect to the

database. The administrator will have a choice to install required

databases either on the same server as UltimateOMS or on separate

servers.

5.2.25.2.25.2.25.2.2 GraphGraphGraphGraph

UltimateOMS will interface with Graphviz in order to generate visual

graph of the Semantic data. Consequently, Graphviz has to be installed

on the same server as UltimateOMS resides on. The administrator can

easily provide Graphviz installed path directory to UltimateOMS by

modifying identified parameters in the system configuration file. Since,

both Graphviz and UltimateOMS use a shared area in the server in

order to keep temporary files for communicating with each other,

 70

specific parameters are also provided in the system configuration file

and the administrator can modify them. In our case, the shared area

would be a specific directory, which is accessible by Graphviz and

UltimateOMS.

There are also some parameters in system configuration file for setting

the width and height of the panel in which graph will be shown.

All mentioned graph parameters are in the GraphParameters section as

shown in figure 5.1.

The graph parameters in system configuration file are:

• GRAPHGRAPHGRAPHGRAPH_PANELPANELPANELPANEL_WIDTHWIDTHWIDTHWIDTH: The width of the panel in which the
graphs will be shown (in pixel).

• GRAPHGRAPHGRAPHGRAPH_PANELPANELPANELPANEL_HEIGHEIGHEIGHEIGHTHTHTHT: The height of the panel in which the
graphs will be shown (in pixel).

• SERVLETSERVLETSERVLETSERVLET_TMPTMPTMPTMP_DIRDIRDIRDIR: The temporary directory path, which is used

to save the graph temporary files.

• SERVLETSERVLETSERVLETSERVLET_TMPTMPTMPTMP_DIRDIRDIRDIR_ALIASALIASALIASALIAS: Alias which is defined in application

server and it is a URL mapping in order to access SERVLET_TM-

P_DIR contents by application server.

• GRAPHGRAPHGRAPHGRAPH_VIZVIZVIZVIZ_ROOTROOTROOTROOT: Path of Graphviz root directory.

• GRAPHGRAPHGRAPHGRAPH_VIZVIZVIZVIZ_PATHPATHPATHPATH: Path of the dot.exe directory in Graphviz.

• GRAPHGRAPHGRAPHGRAPH_VIZVIZVIZVIZ_FONTFONTFONTFONT_DIRDIRDIRDIR: Path of the font directory in Graphviz.

 71

5.2.35.2.35.2.35.2.3 UsersUsersUsersUsers

The administrator defines the end users of UltimateOMS by creating

users in databases. By using database administration’s tool and logging

in database with admin role, the administrator would be able to create

database users. Created database users are application’s end users and

they can access UltimateOMS by logging in to the application through

the login page. Therefore, end users of UltimateOMS directly depend on

defined database users and by removing a specific database user, that

user is no longer able to access UltimateOMS.

For authenticating a user, UltimateOMS tries to establish a database

connection using provided username, password, and type of the

database. If the user is a valid user in the specified database, then user

will have access to UltimateOMS. Otherwise, the authentication process

will fail and user will be informed by proper messages.

5.35.35.35.3 JSP and JSP and JSP and JSP and JavaJavaJavaJava Servlets Servlets Servlets Servlets

All the features and user requirements, which are specified in Use Case

Models in Appendix B, are implemented using JSP and Java Servlets

technologies. All user interfaces are designed by JSP technology using

JSP Standard Tags, HTML Tags, “Jakarta Input Tag Library” [52],

and CSS (Cascade Style Sheets).

UltimateOMS business logics are implemented using Java Servlets and

Java Beans except for some cases in which the business logic is simple

where it is implemented within JSP pages.

Jena APIs are used when it is necessary to deal with Semantic data.

UltimateOMS implementation consists of 65 JSP pages, 25 Java Classes

including Java Servlets and Java Beans, one Cascade Style Sheets, and

 72

one system configuration file. All the Java Classes reside in Java

Package named se.kth.ict.ultimateoms.

5.3.15.3.15.3.15.3.1 AuthenticationAuthenticationAuthenticationAuthentication

Authentication is done using username and password provided by

administrators. Using Login Page end users enter their usernames and

passwords and identify the database, to which they want to connect.

UltimateOMS authenticates end users by establishing a database

connection using received information. If the database connection is

successfully established then the user is a valid user in the specified

database and the user will have authorization to access UltimateOMS.

If the authorization was successful, UltimateOMS will create a new

Session Bean for connected user in order to store session data and

status. The Session Management is presented in section 5.3.2.

Using SSL (Secure Socket Layer) protocol it is quite possible to make

communication between end users and UltimateOMS more secure. Since

the security was not the crucial part of UltimateOMS, this part it is not

implemented.

5.3.25.3.25.3.25.3.2 Session ManagementSession ManagementSession ManagementSession Management

All the information and status related to the connected user are kept in

a Session Bean. By storing session data in the Session Bean,

UltimateOMS can keep track of the connected users’ requests. The

Session Bean is a Java Class and named SessionBean.java in

UltimateOMS package. It will be created for each connected end user

and is used in almost all JSP pages using the following JSP Tag:

<jsp:useBean id="session Bean"

 class="se.kth.ict.ultimateoms.SessionBean"

 scope="session"/>

 73

As shown in the JSP Tag, the scope of the Session Bean is Session,

which means that the created Session Bean is valid as long as the

session between client web browser and UltimateOMS Application

Server is not expired. If end users do not have interaction with

UltimateOMS for specific amount of time, which is adjustable in the

Application Server, the Session Bean will be expired for security reasons

and the end users will be forwarded back to the Login Page.

The Session Bean consists of some Java variables and Setter/Getter

methods in order to set the variables and get the variables respectively.

The Session Bean keeps some data such as username, password,

databaseName, and all other requires data, which are necessary for

UltimateOMS. A small part of the Session Bean is shown in figure 5.2.

 74

Figure 5.2: Part of the Session Bean used in UltimateOMS

The Session Bean also keeps the parameters of the system configuration

file, which are specified by the administrator. By keeping the system

configuration parameters in the Session Bean, UltimateOMS accesses

the file system once for each user. By using this method, it is not

necessary to read the system configuration file for each user request.

This method optimizes the performance of the application.

Setting system configuration parameters in the Session Bean will be

done once for each user during the authentication process by using

provided methods in Util Java Class, which is part of UltimateOMS

package. For instance, the setGraphSettings method in Util Class reads

 75

the system configuration file, systemConfig.xml, in order to parse the

XML file and set the proper variables in the Session Bean. Therefore,

whenever it is necessary to have the graph parameters in UltimateOMS,

the value of the related variable in the Session Bean will be used.

5.3.35.3.35.3.35.3.3 Validation and Error HandlingValidation and Error HandlingValidation and Error HandlingValidation and Error Handling

The user data are validated both in the client side and in the server

side.

In client side, the validation is done using JavaScripts. JavaScripts will

check user data in some cases and alert users if validation error is found.

For instance, if the value of a specific field in HTML form cannot be

empty, the proper JavaScript makes sure that specified field is not

empty before sending it to UltimateOMS.

The server side validations are done in the Java Servlets and Java

Beans depending on the related business logic.

UltimateOMS uses JSP framework error handler in order to handle the

raised exceptions and errors in the application. In our case a specific

JSP error handler page, errorPage.jsp, is responsible for catching the

raised exceptions in the application and showing the proper message to

the end users. Each JSP page identifies its error handler using the

errorPage attribute in the following JSP Tag:

<%@ page language="java" contentType="text/html;

 charset=ISO-8859-1" errorPage="/errorPage.jsp"%>

There is also an Exception Java Class defined in UltimateOMS in order

to throw a new exception in application explicitly. Whenever it is

necessary, the business logics in UltimateOMS can throw a new

exception with a proper message by using UltimateOMSException Java

Class in order to show a specific error to the end user. Those explicit

exceptions will be caught and shown to the end user by errorPage.jsp.

 76

5.45.45.45.4 GraphGraphGraphGraph Visualization Visualization Visualization Visualization

This section describes the method used in UltimateOMS for generating

and displaying visual graph of Semantic data.

5.4.15.4.15.4.15.4.1 Graph GeneratorGraph GeneratorGraph GeneratorGraph Generator

As mentioned earlier, UltimateOMS will interface with Graphviz in

order to generate visual graphs of Semantic data. The method used in

UltimateOMS is the same as the method used in W3C for generating

visual graphs, which is demonstrated in a Java Servlet example,

ARPServlet.java that implements W3C RDF validation service [53]. In

addition to the RDF validation, this Java Servlet parses the RDF data

using Jena APIs and generate visual graph using Graphviz.

Some parts of the ARPServlet.java were used as a base code, some

modifications were made, and a new Java class, Graph.java, was made

to fulfill the graph requirements in UltimateOMS. In Graph class, the

identified model that contains Semantic data is parsed using Jena APIs

in order to extract all resources such as subjects, predicates, and objects.

During the parsing process, a graph description file will be generated as

an input file for Graphviz. The generated graph description file will be

stored in a specific directory, which is accessible by both UltimateOMS

and Graphviz. As mentioned in the Section 5.2.2, the directory path can

be set and identified using graph parameters in the system configuration

file.

The suitable layout program of Graphviz, which is “dot” in our case,

will be executed using Java Runtime Class in order to generate visual

graph. By executing a command, Graphviz will take the generated

graph description file as an input and generate visual graph as SVG

(Scalable Vector Graphics) format. The generated SVG file will be

stored in the shared directory.

 77

If the end user intention was seeing the generated graph in a web

browser, Graph class will send the generated SVG file to the user

through a Java Applet application, which is described in Section 5.4.2.

There is also the option to export the generated graph in different

formats. In order to generate and export user’s desired graph format, a

Java Servlet class, GraphExportServlet.java, will parse the identified

model that contains the Semantic data in the way described earlier. In

this case instead of generating SVG format, Graph Export Servlet class

will execute the layout program of Graphviz, “dot”, with proper

parameters in order to generate the desired graph format. The generated

visual graph will be sent to the user.

The visual graph of the Semantic data can be generated and exported in

the following formats:

• PNG (Portable Network Graphics)

• SVG (Scalable Vector Graphics)

• GIF (Graphics Interchange Format)

• PostScript

5.4.25.4.25.4.25.4.2 Graph ViewerGraph ViewerGraph ViewerGraph Viewer

As mentioned in the Section 5.4.1 when the end user intention is seeing

the generated visual graph in a web browser, SVG format of the

generated graph will be sent to the user through a Java Applet

application (see figure 5.3). Therefore, it is necessary to provide a user

interface for the end users allowing them to have smooth zooming and

navigation in the graph.

 78

Figure 5.3: UltimateOMS visualization graph

IsaViz [51] is a visual environment that provides these capabilities. Since

the end users need a visual environment in their web browsers, Applet

version of the IsaViz is used in UltimateOMS. As a result, after

generating SVG format of visual graph, using the method described in

the Section 5.4.1, dynamic Applet tags will be generated in HTML and

sent to the end users. In the client side, the web browser will load the

Applet application, which is identified in the received Applet tags, and

displays the generated visual graph.

Sample of the dynamically generated Applet tags is shown in figure 5.4.

 79

Figure 5.4: Sample of the dynamically generated Applet tags

As shown in the figure 5.4, the class of the Applet is indicated in code

attribute. archive attribute contains all Java Archives that are necessary

for running the Applet. The generated SVG format of the visual graph

is identified as a parameter, which is the input for the Applet. In

addition, the width and height of the panel in which graph will be

shown, are indicated as input parameters for the Applet. As mentioned

in the Section 5.2.2, the administrator identifies these parameters by

using graph parameters in the system configuration file.

5.55.55.55.5 Management and Management and Management and Management and ManipulationManipulationManipulationManipulation

UltimateOMS provides the necessary features for management and

manipulation of Semantic data using Jena APIs. Those features are

accessible from several menu items. In order to make it a user-friendly

interface, those menu items are categorized under five menu groups:

Models, Triples, Classes, Properties, and Individual, as shown in figure

5.5.

 80

Figure 5.5: Categorized menu groups in UltimateOMS for management
and manipulation of Semantic data

5.5.15.5.15.5.15.5.1 ModelModelModelModelssss

In UltimateOMS RDF, RDF Schema, and OWL files are called Models,

which are stored in databases. As shown in figure 5.5 the menu group

Models contains features for management of models such as creating

new model in the database, uploading and importing an existing RDF,

RDF Schema, or OWL files as a new model.

Furthermore, additional features are provided inside the page to

facilitate managing and manipulating models. These additional features

include: searching for specific models in database, selecting a default

model to manipulate, showing visualization graph of a model, showing

statistics about a model (including the number of triples, classes,

properties, and individuals), checking model consistency, exporting a

model (in the formats of RDF/XML, Notation3/N3, and N-Triples),

querying model using SPARQL, inferring model with different types of

inference provided by Jena, and deleting model from database.

 81

Graph visualization, inference, and querying features are described in

sections 5.4, 5.6, and 5.7 respectively.

In order to create a new model in UltimateOMS, the method

createModel, which is in ModelMaker interface of Jena APIs, is used.

ModelMaker interface contains some methods for creating new models

or opening previously created models. To create a new model in the

database, it is necessary to create an instance of ModelMaker interface,

which directly creates models in database or opens existing models in

database.

ModelFactory class in Jena can be used to create our desired

ModelMaker. The following code display how to create a ModelMaker

using mentioned methods:

Class.forName(databaseDriver);

dbConnection = new DBConnection(databaseURL, userName,

password, databaseName);

modelMaker = ModelFactory.createModelRDBMaker(dbConnection);

In the above code, a new connection to the desired database is

established using constructor DBConnection, which is available in

DBConnection class of Jena APIs. Using the established connection,

createModelRDBMaker method in ModelFactory can create a

ModelMaker. This way, by creating ModelMaker and using proper

methods of ModelMaker, we can create new models in database or open

existing models in database.

UltimateOMS uses read method of Model interface from Jena APIs in

order to import or upload RDF, RDF Schema, or OWL files as new

models in databases. It also uses write method of Model interface for

exporting the existing models in databases in form of a file in a selected

format. Model Interface is defined in package com.hp.hpl.jena.rdf.model

and provides some methods for dealing with models such as read (for

reading RDF, RDF Schema, or OWL files) and write (for writing all

statements in models as a file). UltimateOMS supports different file

 82

formats like RDF/XML, Notation3/N3, and N-Triples for importing or

uploading a file as a new model and also for exporting an existing model

as a file.

5.5.25.5.25.5.25.5.2 TripleTripleTripleTriplessss

Each model in UltimateOMS consists of a set of statements. Because

each statement has three parts (subject, predicate, and object), it is

simply called triple in UltimateOMS. As shown in figure 5.6, the menu

group, Triples, contains some features for managing and manipulating

triples, which include creating a new triple in a model, editing an

existing triple in a model, deleting a triple from a model, browsing

triples, and searching specific triples.

Figure 5.6: Triples menu group in UltimateOMS for management and
manipulation of triples

For creating a new triple in a model, UltimateOMS uses provided

methods of the Model interface from Jena APIs. In the triple creation

form, users provide necessary information about the triple including

 83

subject, predicate, and object either by typing or by selecting from a

pop-up window. The pop-up window will be created by listResources.jsp

and contains the list of existing resources in the model as well as

vocabulary terms of RDF, RDF Schema, and OWL.

RDF, RDF Schema, and OWL vocabularies as well as datatype

definitions for the XML Schema datatypes are defined in a class called

Vocabulary in UltimateOMS. When the vocabulary terms or XML

Schema datatypes are needed, UltimateOMS uses the appropriate

defined methods such as GetRDFVocabulary, GetRDFSVocabulary,

GetOWLVocabulary, and GetXSDDatatypes in Vocabulary class.

When UltimateOMS receives the provided information about the

subject, predicate, and object, a new triple will be generated in the

model using Jena APIs. As an example, the following code shows how to

create a triple using provided methods of the Model interface:

Resource resource = model.createResource(subject);

Property property = model.createProperty(predicate);

Literal literal = model.createTypedLiteral(object, dataType);

Statement stmt = model.createStatement(resource, property,

 literal);

model.add(stmt);

In the above code, a new resource for subject of the triple will be

created in the model using createResource method of Model interface.

Using createProperty method, a new property will be created in the

model as predicate of the triple. Since we wanted to create a typed

literal as object of the triple, createTypedLiteral method is used in

above code. By having a new resource for subject, new property for

predicate, and new literal for object and using createStatement method,

a new triple will be created and added to the model using add method

of UltimateOMS.

 84

Although there is no API for editing the triples in Jena, but editing a

triple is achievable by simply removing the old triple and creating the

new one with modified values for subject, predicate, and object.

5.5.35.5.35.5.35.5.3 ClassesClassesClassesClasses

Classes are used to build basic concepts in ontology. As shown in figure

5.7, the menu group Classes, includes some features for managing and

manipulating of classes. It includes creating a new class in a model,

editing an existing class in a model, deleting a class from a model,

creating a new instance for a class, showing detail information about a

class, showing related triples, and searching for specific classes.

Figure 5.7: Classes menu group in UltimateOMS for management and
manipulation of classes

To create a new class in a model, UltimateOMS uses the methods of

OntModel interface of Jena APIs. In the class creation form, users

provide necessary information about the class, including class’s

 85

properties constraints (minimum and maximum cardinality), class’s

axioms (including subClassOf, superClassOf, equivalent, and disjoint),

class’s descriptions (including intersection, union, and complement), and

class’s meta-information (like labels, comments, and annotation

properties).

UltimateOMS lists all available properties of a class in class creation

form and users can identify the cardinality constraints of them. In

addition, values for class’s axioms and class’s descriptions should be

selected from a new pop-up window. The pop-up window will be created

by listClasses.jsp and contains a list of all existing classes in a model.

When UltimateOMS receives provided information about the class, the

new class will be generated in the model using the Jena APIs. As an

example, the following code shows how a class is created using methods

of OntModel interface of Jena APIs:

Model model = modelMaker.openModel(selectedModel);

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_MEM);

spec.setBaseModelMaker(modelMaker);

OntModel ontModel = ModelFactory.createOntologyModel(spec,

 model);

newClass = ontModel.createClass(className);

In the above code, existing model in the database will be opened by

modelMaker in order to create a new class. Since we want to create an

ontology class, a new ontology model, ontModel, has to be created on

top of the model using createOntologyModel method of ModelFactory

class. To create and ontology model it is necessary to specify the type of

ontology. This can be done using the class, OntModelSpec, and

identifying the type of ontology as OWL. After having the ontology

model, ontModel, a new ontology class will be created and added to the

model using createClass method of OntModel interface.

 86

Although there is no API for editing the classes in Jena, editing a class

is achievable by removing the class’s old information and adding a new

one with modified value.

Similar to the technique used for creating a class, UltimateOMS uses

methods of OntModel interface of Jena APIs in order to create an

instance of a class in a model. Instances are called Individuals in

UltimateOMS. In the instance creation form, the user provides necessary

information about the instance including instance’s properties and

instance’s meta-information (like labels, comments, and annotation

properties). All the available properties of a class will be properties of

the instance. Therefore, UltimateOMS lists those properties in the

instance creation form and users can identify values for the properties

by either typing (when the range of property is literal or typed literal)

or by selecting from a list (when the property range is a list of instances

for a specific class).

The instances, which were created for each class in each specific model,

are available under Individuals menu group in UltimateOMS.

5.5.45.5.45.5.45.5.4 PropertiesPropertiesPropertiesProperties

As shown in figure 5.8, the menu group called Properties in

UltimateOMS includes some features for management and manipulation

of the properties such as creating a new property (either object property

or datatype property) in a model, editing an existing property in a

model, deleting a property from a model, showing detail information

about a property, showing related triples, and searching for specific

properties.

 87

Figure 5.8: Properties menu group in UltimateOMS for management
and manipulation of properties

For creating a new property in a model, UltimateOMS uses some

methods of OntModel interface of Jena APIs. In the property creation

form, users provide necessary information regarding a property,

including property’s domains and ranges, property’s characteristics

(including functional, inverse functional, transitive, and symmetric),

property’s axioms (including subPropertyOf, superPropertyOf,

equivalent, and inverse), and property’s meta-information (like labels,

comments, and annotation properties).

Properties can be defined as a datatype property or object property.

Values for property domains in both cases have to be selected from a

pop-up window, which is created by listClasses.jsp in UltimateOMS and

contains the list of all existing classes in a model. If the property is an

object property, then the range of property is a class and like domain,

its values have to be selected from a new pop-up window.

 88

In case of defining datatype property, range values can be selected from

a list, which contains XML Schema datatypes. As mentioned earlier in

section 5.5.2, UltimateOMS uses method GetXSDDatatypes of class

Vocabulary in order to create the list.

Values for property’s axioms have to be selected from another pop-up

window, which is created by listProperties.jsp in UltimateOMS and

contains list of all existing properties in a model.

When UltimateOMS receives provided information about the property,

the new property will be generated in the model using the Jena APIs.

As an example, the following code shows how to create a datatype

property using methods of the OntModel interface from Jena APIs:

Model model = modelMaker.openModel(selectedModel);

OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_MEM);

spec.setBaseModelMaker(modelMaker);

OntModel ontModel = ModelFactory.createOntologyModel(spec,

 model);

newProperty = model.createDatatypeProperty(property);

In the above code, the existing model in the database will be opened by

modelMaker in order to create a new property. Since we want to create

an ontology property, a new ontology model, ontModel, has to be

created in the way described in section 5.5.3. After having the ontology

model (ontModel), a new ontology datatype property will be created

and added to the model using createDatatypeProperty method of

OntModel interface.

There is no API for editing properties in Jena, but editing a property is

achievable by removing the property’s old information and adding the

new ones with modified values.

 89

5.5.55.5.55.5.55.5.5 IndividualsIndividualsIndividualsIndividuals

As shown in figure 5.9, Individuals menu group in UltimateOMS

includes some features for management and manipulation of the

individuals such as editing an existing individual in a model, deleting an

individual from a model, showing detail information about an

individual, showing related triples, and searching for specific individuals.

Figure 5.9: Individuals menu group in UltimateOMS for management
and manipulation of individuals

As mentioned in section 5.5.3, using the features in Classes Menu group

of UltimateOMS we can create an instance (individual) of a class in a

model. The created individuals can be edited using individual creation

form.

Although there is no API for editing the individuals in Jena, editing an

individual is achievable by removing the individual’s old information

and adding the new ones with modified values.

 90

5.65.65.65.6 InferenInferenInferenInferencececece

UltimateOMS provides inference facilities using different supported

built-in types of “Reasoner” and “Generic Rule Reasoner” of Jena. As

shown in figure 5.10, various types of reasoners are available in Jena.

Figure 5.10: Inference facilities in UltimateOMS

Users can infer an existing model in the database by using an

appropriate reasoner and storing inferred results as a new model in the

database for further usage. Currently Jena supports the following

reasoners:

• Generic Rule Reasoner

• OWL, OWL Mini, OWL Micro Reasoners

• RDFS Rule Reasoner

• Transitive Reasoner

 91

Generic rule reasoner supports user-defined rules. RDFS rule reasoner

implements subset of RDFS entailments. OWL, OWL mini, and OWL

micro reasoners support a set of useful but incomplete implementation

of OWL Lite. Transitive reasoner supports only transitive and

symmetric properties of rdfs:subPropertyOf and rdfs:subClassOf.

Although Jena does not provide complete and sophisticated reasoners, it

allows ranges of inference and reasoner engines to be plugged into it by

providing DIG interface. The Jena DIG interface makes it possible to

use external reasoners such as Racer, Pellet, and FaCT, which support

DIG standard.

UltimateOMS only supports the built-in supported reasoners in Jena

and adding external reasoners to system using DIG interface is

suggested as a future work of this project.

5.75.75.75.7 QueryingQueryingQueryingQuerying

Jena supports SPARQL as a standard RDF query language. Query

APIs in Jena are mainly located in com.hp.hpl.jena.query package.

UltimateOMS uses these APIs in order to provide query facilities for

users. Users can see the query results online using valid SPARQL query

or they can export query results into local file system in different

formats.

Figure 5.11 shows query user interface of UltimateOMS.

 92

Figure 5.11: Query user interface of UltimateOMS

The SPARQL query results can be exported in the following formats:

• N-Triples

• Notation3/N3

• RDF/XML

• Text File

• XML File

5.85.85.85.8 UserUserUserUser Interface Interface Interface Interface

This section presents the designed user interface of UltimateOMS. All

user interfaces are designed using JSP technology and JSP Standard

tags, HTML tags, “Jakarta Input Tag Library”, and CSS (Cascade

Style Sheets).

 93

CSS is a Stylesheet Language used for describing HTML, XHTML, and

XML documents and allows a flexible design options. A default CSS is

used in all user interfaces of UltimateOMS and it can easily be changed

by administrators in order to make different Stylesheets.

A part of the used CSS is shown in figure 5.12.

Figure 5.12: A part of the used Stylesheet in UltimateOMS

The designed layout for all user interfaces consists of four different

sections including Header, Menu, Content, and Footer. As illustrated in

figure 5.13, Header section contains information regarding connected

user and database.

 94

Figure 5.13: Designed layout for UltimateOMS user interfaces

Menu section contains menus and submenus items, which are provided

to the end users in order to use UltimateOMS. Content section displays

the dynamic contents, depends on the end user’s requests. Footer

section contains copyright information and some logos.

5.95.95.95.9 Flow Flow Flow Flow DynamiDynamiDynamiDynamicscscscs

As an example, this section examines the use case Login and describes

the performed steps by UltimateOMS in order to accomplish

authorization process. This use case is described in detail in Appendix

B.

FooterFooterFooterFooter

ContentContentContentContent

MenuMenuMenuMenu

HeaderHeaderHeaderHeader

 95

In order to access, UltimateOMS end users have to login through the

Login page as shown in figure 5.14.

Figure 5.14: UltimateOMS login page

Login Page, index.jsp, is a JSP file and when it is being loaded,

following actions take place. An instance of the

se.kth.ict.ultimateoms.SessionBean, which is sessionBean, is created as a

Session Bean in order to keep all necessary information regarding user

requests and application states. The next step is loading available

databases from the system configuration file, systemConfig.xml, in order

to display to the users. This process is done using method

getDatabaseList, member of Util class, by accessing the system

configuration file and parsing the databases parameters. Returned list of

the available databases are stored in the Session Bean in order to be

used in further steps. At this point, all the necessary HTML codes and

JavaScripts are generated and sent as a Login Page to the user through

HTTP Response.

 96

The end user can select one of the available databases and enter his/her

username and password in the proper fields. Since username and

password cannot be empty when pressing connect button, provided

JavaScript will check the value of those fields before sending them to

the server. If JavaScript validation was successful, the entered field will

be sent to the server with HTTP Request.

The Application Server will forward received HTTP Request to

doLogin.jsp, which is responsible for authorization process in

UltimateOMS. By receiving HTTP Request in doLogin.jsp, the

username, password, and selected database will be stored in Session

Bean using following JSP Tags:

<jsp:setProperty name="sessionBean" property="databaseName"

 param="database"/>

<jsp:setProperty name="sessionBean" property="userName"

 param="userName"/>

<jsp:setProperty name="sessionBean" property="password"

 param="password"/>

The above JSP tags, populate the proper variables in the Session Bean

with the values passed through HTTP Request. At this point,

doLogin.jsp tries to establish a database connection to the selected

database. This process is done using com.hp.hpl.jena.db.DBConnection

Java class that is provided by Jena APIs. DBConnection takes database

driver, username, password, and database name as input parameters

and tries to establish a JDBC connection with specified database.

If the database connection is successfully established and the user is a

valid user in the specified database the user will have authorization to

access UltimateOMS. The established database connection will be stored

in a Session Bean in order to use in further operations. After this step,

other variables in the Session Bean including graph parameters that are

accessible from the system configuration file, will be initialized and the

user will be forwarded to the Models page using the JSP tag,

<jsp:forward page="models.jsp"/>. Models page as shown in figure

 97

5.15 is the page that includes all available models in the connected

database.

Figure 5.15: UltimateOMS models page

If database connection is not established for any reason, like invalid

username and password, DBConnection will throw an exception. The

thrown exception in doLogin.jsp will be handled by JSP error handler

page, errorPage.jsp, and the proper message with reason of the login

failure will be sent to the user.

 99

Chapter 6Chapter 6Chapter 6Chapter 6

6666ValidationValidationValidationValidation

According to the mentioned development platform in section 5.1, the

following use cases have been implemented. For further details about

the use cases, see appendix B.

• System configuration creation and modification including modifying

database parameters, adding new database, removing database, and

modifying graph parameters

• User authentication including login and logout

• Model management including showing, creating, importing,

uploading, searching, selecting, exporting, showing graph, exporting

graph, querying, exporting query results, inferring, showing

statistics, checking consistency, and deleting

• Triple management including showing, creating, searching, browsing,

selecting, editing, and deleting

• Class management including showing, creating, searching, selecting,

showing details, showing triples, creating instance, editing, and

deleting

• Property management including showing, creating, searching,

selecting, showing details, showing triples, editing, and deleting

• Individual management including showing, searching, selecting,

showing details, showing triples, editing, and deleting

The application installation, starting up, and shutting down use cases

do not require implementation. Because, for installing UltimateOMS,

administrator deploys the application’s WAR file into the installed

 100

Application Server using provided tools in Application Server. In

addition, by using management tools of Application Server,

administrator can start up and shut down UltimateOMS.

Similarly, creating, modifying, and removing database users use case do

not require implementation. Because by using database administration’s

tool and logging in database as an admin role, administrator would be

able to create, modify, and remove database’s users, which are also

UltimateOMS users.

All of the mentioned implemented use cases in the above have been

passed the functionality tests without any significant programming

error. All implementation and optimization issues are considered during

the implementation of the use cases for two different types of Web

browsers: Internet Explorer Version 7 and Mozilla Firefox Version

2.0.0.1.

All of the use cases have been tested from different machines using two

different mentioned Web browsers. All of them fulfilled their expected

behavior and passed the functionality tests with different types of data

without any error.

Regarding the reliability and performance of UltimateOMS, in terms of

response time, it is limited to the reliability and performance of the Jena

Semantic Web Framework as mentioned in section 3.5.

 101

Chapter 7Chapter 7Chapter 7Chapter 7

7777ConclusionsConclusionsConclusionsConclusions and Future Work and Future Work and Future Work and Future Work

One of the primitive goals of the Web was making the information

processable for machines. However, today information on the Web is

designed for human interpretation and it is not machine processable. In

order to achieve the Web’s primitive goal, information on the Web

needs to be expressed in a form that machines would be able to

understand it instead of simply displaying it and this is exactly the goal

of Semantic Web.

Having the vision that Semantic Web is the future of the Web, and

taking into account that Semantic Web is still in early steps, it is vital

to provide sophisticated tools for users who intend to share machine

processable data in the Web by creating, managing, and publishing

Semantic data. Nevertheless, almost none of the existing solutions

provide a complete tool containing the required features for dealing with

Semantic data. This results in a slow and timely process.

In this project, a Web based tool called UltimateOMS was developed

that facilitates creating and managing Semantic data in RDF, RDF

Schema, and OWL formats. Unlike existing tools, the developed tool

brings the necessary functions for creating, manipulating, and managing

Ontology components in one place thus making it much easier for users

to deal with Semantic data.

UltimateOMS is based on Jena, which is a Java framework for building

Semantic Web applications, and is developed using JSP and Java

Servlets technology. UltimateOMS gives different options for storing

Semantic data in different databases including MySQL, HSQLDB,

PostgreSQL, Oracle, Apache Derby, and Microsoft SQL Server. It also

provides necessary features for generating visualization graphs of the

 102

Semantic data using Graphviz, the graph visualization software, and

displays them using applet version of the IsaViz in web browsers. The

generated visualization graph can also be exported in different formats

such as PNG, SVG, GIF, and PostScript in order to be used in different

tools.

In addition, UltimateOMS has the necessary features in order to create,

manipulate, and manage Semantic data as well as features for querying

and inferring Semantic data.

A future work of this thesis can be to extend the inferring capability of

UltimateOMS by adding external reasoner engines such as Racer, Pellet,

and FaCT. Jena currently has its own reasoning engine with limited

inferring capabilities. This suggestion can be implemented using DIG

interface of Jena that makes it possible to add external reasoners.

Another future work can be using SSL protocol between the end user

and UltimateOMS in order to make the communication more secure. In

order to increase the security in the cases that the database server is

separate from the UltimateOMS server, SSL protocol can also be used

between those two servers as well.

 103

ReferencesReferencesReferencesReferences

[1] Tim Berners-Lee, A roadmap to the Semantic Web, September 1998,

http://www.w3.org/DesignIssues/Semantic.html (last accessed: October

2006)

[2] Nature Publishing Group, Nature Debates: Scientific publishing on

the ’semantic web’, http://www.nature.com/nature/debates/e-

access/Articles/bernerslee.htm (last accessed: October 2006)

[3] Deborah L. McGuinness, Frank van Harmelen eds., OWL Web

Ontology Language Overview, W3C Recommendation, 10 February

2004, http://www.w3.org/TR/owl-features/ (last accessed: October

2006)

[4] Jeff Heflin ed., Web Ontology Language (OWL) Use Cases and

Requirements, W3C Recommendation, 10 February 2004,

http://www.w3.org/TR/webont-req/ (last accessed: October 2006)

[5] pOWL - Semantic Web Development Platform,

http://powl.sourceforge.net/ (last accessed: October 2006)

[6] Sesame, http://www.openrdf.org/ (last accessed: October 2006)

[7] Stanford, The Protégé Ontology Editor and Knowledge Acquisition

System, http://protege.stanford.edu/ (last accessed: October 2006)

[8] Wikipedia, the free encyclopedia, Semantic Web,

http://en.wikipedia.org/wiki/Semantic˙Web (last accessed: October

2006)

[9] James Hendler, Tim Berners-Lee and Eric Miller, “Integrating

Applications on the Semantic Web”, Journal of the Institute of

 104

Electrical Engineers of Japan, Vol 122(10), October, 2002, p. 676-680.,

http://www.w3.org/2002/07/swint

[10] The Semantic Web: An Introduction,

http://infomesh.net/2001/swintro/ (last accessed: October 2006)

[11] Semantic Web Benefits and Demonstration,

http://refapp.semwebcentral.org/tutorial/guided-

tour/guidedtourbenefits.html (last accessed: October 2006)

[12] Roberto Garcia Gonzalez, “A Semantic Web approach to Digital

Rights Management”, PhD Thesis, Universitat Pompeu Fabra,

Barcelona, November 2005

 http://rhizomik.net/˜roberto/thesis/Thesis.pdf (last accessed: October

2006)

[13] The Friend of a Friend (FOAF) project, http://www.foaf-

project.org/ (last accessed: October 2006)

[14] BigBlogZoo, http://www.bigblogzoo.com/ (last accessed: October

2006)

[15] Piggy Bank, http://simile.mit.edu/wiki/Piggy˙Bank (last accessed:

October 2006)

[16] World Wide Web Consortium (W3C), Resource Description

Framework (RDF), http://www.w3.org/RDF/ (last accessed: October

2006)

[17] Graham Klyne, Jeremy Carroll, eds., Resource Description

Framework (RDF): Concepts and Abstract Syntax, W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/rdf-

concepts/ (last accessed: October 2006)

 105

[18] Frank Manola, Eric Miller, eds., RDF Primer, W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/rdf-

primer/ (last accessed: October 2006)

[19] Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave Reynolds,

“Efficient RDF Storage and Retrieval in Jena2”, First International

Workshop on Semantic Web and Databases, Berlin, Germany, 7

September 2003, http://www.hpl.hp.com/techreports/2003/HPL-2003-

266.pdf (last accessed: October 2006)

[20] Jeen Broekstra, “Storage, Querying and Inferencing for Semantic

Web Languages”, PhD Thesis, Vrije Universiteit, 4 July 2005,

http://wwwis.win.tue.nl/˜jbroekst/thesis/thesis-final.zip (last accessed:

October 2006)

[21] Dave Beckett, ed., RDF/XML Syntax Specification (Revised), W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/rdf-

syntax-grammar/ (last accessed: October 2006)

[22] Jan Grant, Dave Beckett, eds., RDF Test Cases, W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/rdf-

testcases/ (last accessed: October 2006)

[23] Dave Beckett, Turtle - Terse RDF Triple Language, 10 February

2004, http://www.dajobe.org/2004/01/turtle/ (last accessed: October

2006)

[24] Tim Berners-Lee, Notation3 (N3) A readable RDF syntax, 1998,

http://www.w3.org/DesignIssues/Notation3 (last accessed: October

2006)

[25] Dan Brickley, R.V. Guha, eds., RDF Vocabulary Description

Language 1.0: RDF Schema, 10 February 2004, W3C Recommendation,

http://www.w3.org/TR/rdf-schema/ (last accessed: October 2006)

 106

[26] World Wide Web Consortium (W3C), Web Ontology Language

(OWL), http://www.w3.org/2004/OWL/ (last accessed: October 2006)

[27] Michael K. Smith, Deborah McGuinness, Raphael Volz, Chris

Welty eds., OWL Web Ontology Language Guide, W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/owl-

guide/ (last accessed: October 2006)

[28] Wikipedia, the free encyclopedia, Web Ontology Language,

http://en.wikipedia.org/wiki/Web˙Ontology˙Language (last accessed:

October 2006)

[29] Ontology Inference Layer (OIL), http://oil.semanticweb.org/ (last

accessed: October 2006)

[30] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L.

McGuinness, Peter F. Patel-Schneider, Lynn Andrea Stein, DAML+OIL

(March 2001) Reference Description, 18 December 2001,

http://www.w3.org/TR/daml+oil-reference (last accessed: October

2006)

[31] Mike Dean, Guus Schreiber eds., Frank van Harmelen, Jim Hendler,

Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, Lynn

Andrea Stein, OWL Web Ontology Language Reference, W3C

Recommendation, 10 February 2004, http://www.w3.org/TR/owl-ref/

(last accessed: October 2006)

[32] Peter Haase, Jeen Broekstra, Andreas Eberhart, Raphael Volz, “A

Comparison of RDF Query Languages”, Proceedings of the 3rd

International Semantic Web Conference (ISWC2004), 7-11 Nov. 2004,

Hiroshima, Japan, http://www.aifb.uni-karlsruhe.de/WBS/pha/rdf-

query/rdfquery.pdf (last accessed: October 2006)

[33] Eric Prud’hommeaux, Andy Seaborne, SPARQL Query Language

for RDF, W3C Working Draft, 4 October 2006,

 107

http://www.w3.org/TR/rdf-sparql-query/ (last accessed: November

2006)

[34] Rational Unified Process: Vision Artifact,

http://www.ts.mah.se/RUP/RationalUnifiedProcess/process/artifact/ar

˙vsion.htm (last accessed: November 2006)

[35] Wikipedia, the free encyclopedia, IBM Rational Unified Process,

http://en.wikipedia.org/wiki/Rational˙Unified˙Process (last accessed:

November 2006)

[36] IBM Rational Software, http://www-

306.ibm.com/software/rational/ (last accessed: November 2006)

[37] JavaServer Pages Overview,

http://java.sun.com/products/jsp/overview.html (last accessed:

November 2006)

[38] Jena Semantic Web Framework,

http://jena.sourceforge.net/index.html (last accessed: February 2007)

[39] Jena Relational Database Backend,

http://jena.sourceforge.net/DB/index.html (last accessed: January

2007)

[40] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds,

Andy Seaborne, Kevin Wilkinson, “Jena: Implementing the Semantic

Web Recommendations”, Digital Media Systems Laboratory, HP

Laboratories Bristol, 24 December 2003,

http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf (last

accessed: November 2006)

[41] Semantic Web Research at HP Labs,

http://www.hpl.hp.com/semweb/ (last accessed: November 2006)

 108

[42] Jena2 Database Interface - Database Layout,

http://jena.sourceforge.net/DB/layout.html (last accessed: January

2007)

[43] Graphviz – Graph Visualization Software,

http://www.graphviz.org/ (last accessed: November 2006)

[44] Sun Developer Bookshelf-Books: JavaServer Pages,

http://java.sun.com/developer/Books/javaserverpages/Chap12.pdf (last

accessed: November 2006)

[45] Oracle JDeveloper – Official Home Page,

http://www.oracle.com/technology/products/jdev/index.html (last

accessed: November 2006)

[46] Java Platform, Standard Edition (J2SE 5.0),

http://java.sun.com/j2se/1.5.0/ (last accessed: November 2006)

[47] Oracle Containers for Java (OC4J),

http://www.oracle.com/technology/tech/java/oc4j/index.html (last

accessed: November 2006)

[48] Apache Tomcat, http://tomcat.apache.org/ (last accessed:

November 2006)

[49] Oracle Database 10g Express Edition,

http://www.oracle.com/technology/products/database/xe/index.html

(last accessed: November 2006)

[50] MySQL AB, http://www.mysql.com/ (last accessed: November

2006)

[51] IsaViz: A Visual Authoring Tool for RDF,

http://www.w3.org/2001/11/IsaViz/ (last accessed: November 2006)

 109

[52] The Jakarta Taglibs Project,

http://jakarta.apache.org/taglibs/index.html (last accessed: November

2006)

[53] CVS log for java/classes/org/w3c/rdf/examples/ARPServlet.java,

http://dev.w3.org/cvsweb/java/classes/org/w3c/rdf/examples/ARPSer

vlet.java (last accessed: November 2006)

 110

 111

AAAAppendicesppendicesppendicesppendices

A A A A ---- AbbreviationsAbbreviationsAbbreviationsAbbreviations

APIAPIAPIAPI Application Program Interface

CSSCSSCSSCSS Cascade Style Sheets

DAMDAMDAMDAMLLLL DARPA Agent Markup Language

EAREAREAREAR Enterprise Archive

EJBEJBEJBEJB Enterprise Java Bean

FoaFFoaFFoaFFoaF Friend of a Friend

FOLFOLFOLFOL First Order Logic

GIFGIFGIFGIF Graphics Interchange Format

Graphviz Graphviz Graphviz Graphviz Graph Visualization Software

HTMLHTMLHTMLHTML HyperText Markup Language

I/OI/OI/OI/O Input/Output

J2EEJ2EEJ2EEJ2EE Java 2 Platform, Enterprise Edition

J2SEJ2SEJ2SEJ2SE Java Platform, Standard Edition

JDBCJDBCJDBCJDBC Java Database Connectivity

JSPJSPJSPJSP JavaServer Pages

LANLANLANLAN Local Area Network

LDAPLDAPLDAPLDAP Lightweight Directory Access Protocol

MIMEMIMEMIMEMIME Multi-purpose Internet Mail Extension

OC4JOC4JOC4JOC4J Oracle Containers for J2EE

OILOILOILOIL Ontology Inference Layer

OWLOWLOWLOWL Web Ontology Language

PCPCPCPC Personal Computer

PHPPHPPHPPHP PHP Hypertext Preprocessor

PNGPNGPNGPNG Portable Network Graphics

RDFRDFRDFRDF Resource Description Framework

RDF SchemaRDF SchemaRDF SchemaRDF Schema Resource Description Framework Schema

RDFSRDFSRDFSRDFS Resource Description Framework Schema

RuleMLRuleMLRuleMLRuleML Rule Markup Language

 112

RUPRUPRUPRUP Rational Unified Process

SeRQL SeRQL SeRQL SeRQL Sesame RDF Query Language

SSLSSLSSLSSL Secure Socket Layer

SVGSVGSVGSVG Scalable Vector Graphics

SWRLSWRLSWRLSWRL Semantic Web Rule Language

SWRL FOLSWRL FOLSWRL FOLSWRL FOL Semantic Web Rule Language First Order Logic

TurtleTurtleTurtleTurtle Terse RDF Triple Language

UltimateOMSUltimateOMSUltimateOMSUltimateOMS Ultimate Ontology Management System

URIURIURIURI Uniform Resource Identifier

URLURLURLURL Uniform Resource Locator

W3CW3CW3CW3C World Wide Web Consortium

WARWARWARWAR Web Archive

XHTMLXHTMLXHTMLXHTML Extensible HyperText Markup Language

XMXMXMXMLLLL Extensible Markup Language

 113

B B B B ---- Use Case ModelUse Case ModelUse Case ModelUse Case Model

B.1B.1B.1B.1 ActorsActorsActorsActors

There are two different types of actors in UltimateOMS application.

• Administrator

The term Administrator applies to a person who is in charge of

application. Generally, Administrator creates and modifies

application’s default configuration file, maintains databases, and

also defines and modifies application’s users in databases.

• User

The term User applies to anyone, who is defined by Administrator

as a valid user in application, using the application in order to

create and manage semantic data (ontology components).

B.2B.2B.2B.2 Use Case DiagramsUse Case DiagramsUse Case DiagramsUse Case Diagrams

The following figures show the use case diagrams of UltimateOMS.

 114

Figure B.1: Application Administration Diagram

Figure B.2: System Configuration Diagram

 115

Figure B.3: User Authentication Diagram

Figure B.4: Model Diagram

 116

Figure B.5: Model Graph Diagram

Figure B.6: Model Query Diagram

 117

Figure B.7: Triple Diagram

 118

Figure B.8: Class Diagram

 119

Figure B.9: Property Diagram

Figure B.10: Individual Diagram

 120

B.3B.3B.3B.3 Use CasUse CasUse CasUse Case Specificationse Specificationse Specificationse Specifications

The following tables show the use case specifications of UltimateOMS.

Use Case Install Application

Stakeholder

Administrator

Goal of Primary Actor

Installing the application

Preconditions

Java Platform, Standard Edition (J2SE 1.5) is already installed and

configured in server.

An Application Server such as Tomcat, JBoss, Oracle internet

Application Server (Oracle iAS), and so on is already installed and

configured in server.

Scenario

Administrator deploys application’s EAR or WAR file into the installed

Application Server using provided tools in Application Server. In

order to have graph facilities in

application, Administrator also has to install Graphviz in server.

Table B.1: Use Case Install Application

Use Case Create Default Configuration

Stakeholder

Administrator

Goal of Primary Actor

Creating default configuration file which is used by application

Preconditions

Application is already installed in server.

Application is shut down.

Scenario

 121

Administrator creates default configuration file which is used by

application. To do so, Administrator has to create systemConfig.xml. It

includes some parameters related to databases and graph. By default

when application is deployed, systemConfig.xml is automatically created

and Administrator has to modify it.

Table B.2: Use Case Create Default Configuration

Use Case Modify Application Configuration

Stakeholder

Administrator

Goal of Primary Actor

Modifying default configuration file which is used by application

Preconditions

Application is already installed in server.

Application is shut down.

Scenario

Administrator modifies configuration file, i.e. systemConfig.xml which is

used by application. It includes some parameters related to databases

and graph. Administrator modifies the configuration file for the

following action:

Adding new database

Modifying database parameters

Removing database

Modifying graph parameters

Table B.3: Use Case Modify Application Configuration

 122

Use Case Startup Application

Stakeholder

Administrator

Goal of Primary Actor

Starting up the application in order to use

Precondition

Application is already installed in server.

Scenario

Administrator starts up the installed Application Server in which the

application has been deployed. By starting up the Application Server,

the application automatically will be started up.

Table B.4: Use Case Startup Application

Use Case Shutdown Application

Stakeholder

Administrator

Goal of Primary Actor

Shutting down the application in order to modify configuration file or

maintain database

Precondition

Application is already started up.

Scenario

Administrator shuts down the installed Application Server in which the

application has been deployed. By shutting down the Application

Server, the application automatically will be shut down.

Table B.5: Use Case Shutdown Application

 123

Use Case Create Database User

Stakeholder

Administrator

Goal of Primary Actor

Creating database user

Preconditions

Database is already installed in server.

Application is already installed in server.

Scenario

Administrator defines application’s users by creating users in database.

By using database administration’s tool and logging in database as an

admin role, Administrator could be able to create database’s users.

Created database’s users are application’s users and they

can use application by logging in application through login page.

Table B.6: Use Case Create Database User

Use Case Modify Database User

Stakeholder

Administrator

Goal of Primary Actor

Modifying database user

Preconditions

Database is already installed in server.

User is already created in database.

Application is already installed in server.

Scenario

Administrator modifies application’s users by modifying users in

database. By using database administration’s tool and logging in

database as an admin role, Administrator could be able to modify

database’s users. Modified database’s users are application’s users and

they can use application by logging in application through login page.

Table B.7: Use Case Modify Database User

 124

Use Case Remove Database User

Stakeholder

Administrator

Goal of Primary Actor

Removing database user

Preconditions

Database is already installed in server.

User is already created in database.

Application is already installed in server.

Scenario

Administrator removes application’s users by removing users in

database. By using database administration’s tool and logging in

database as an admin role, Administrator could be able to remove

database’s users. Removed database’s users are no longer application’s

users and they are not able to use application.

Table B.8: Use Case Remove Database User

Use Case Modify Graph Parameters

Stakeholder
Administrator

Goal of Primary Actor

Modifying graph parameters in configuration file

Precondition

Graphviz is already installed in server.

Scenario

Administrator modifies graph parameters in application’s configuration

file, i.e. systemConfig.xml.

Graph parameters are:

GRAPH_PANEL_WIDTH:

The width of panel in which graph will be shown (in pixel).

GRAPH_PANEL_HEIGHT:

The height of panel in which graph will be shown (in pixel).

 125

SERVLET_TMP_DIR:

Temporary directory path, which is used to save graph temporary

files.

SERVLET_TMP_DIR˙ALIAS:

Alias which is defined in application server. It is a URL map in

order to access the SERVLET˙TMP˙DIR contents by application

server.

GRAPH_VIZ_ROOT:

Path of the Graphviz root directory.

GRAPH_VIZ_PATH:

Path of the dot.exe directory in Graphviz.

GRAPH_VIZ_FONT_DIR:

Path of the font directory in Graphviz.

Table B.9: Use Case Modify Graph Parameters

Use Case Add New Database

Stakeholder

Administrator

Goal of Primary Actor

Adding database parameters in configuration file

Precondition

New database is already installed and configured.

Scenario

Administrator adds new database parameters in application’s

configuration file, i.e. systemConfig.xml.

Database parameters are:

• descriptiondescriptiondescriptiondescription: brief description of the new database.

• idididid: the name of database which is used in Jena.

• driverdriverdriverdriver: driver of the new database.

• urlurlurlurl: url of the new database.

Different types of databases which are currently supported built in Jena

2.5.2, are as the following list:

 126

MySQL

HSQLDB

Apache Derby

PostgreSQL

Oracle

Microsoft SQL Server

Table B.10: Use Case Add New Database

Use Case Modify Database Parameters

Stakeholder

Administrator

Goal of Primary Actor

Modifying database parameters in configuration file

Precondition

Database is already installed and configured.

Scenario

Administrator modifies database parameters in application’s

configuration file, i.e. systemConfig.xml.

Database parameters are:

• descriptiondescriptiondescriptiondescription: brief description of the new database.

• idididid: the name of database which is used in Jena.

• driverdriverdriverdriver: driver of the new database.

• urlurlurlurl: url of the new database.

Different types of databases which are currently supported built in Jena

2.5.2, are as the following list:

MySQL

HSQLDB

Apache Derby

PostgreSQL

Oracle

Microsoft SQL Server

Table B.11: Use Case Modify Database Parameters

 127

Use Case Remove Database

Stakeholder

Administrator

Goal of Primary Actor

Removing database parameters in configuration file

Precondition

Database is already uninstalled or it is not longer supported.

Scenario

Administrator removes related database parameters in application’s

configuration file, i.e. systemConfig.xml.

Database parameters are:

• descriptiondescriptiondescriptiondescription: brief description of the new database.

• idididid: the name of database which is used in Jena.

• driverdriverdriverdriver: driver of the new database.

• urlurlurlurl: url of the new database.

Table B.12: Use Case Remove Database

Use Case Login

Stakeholder

User

Goal of Primary Actor

Login to the application in order to manage semantic data

Preconditions

Application is running.

Database is already started up.

Scenario

User can login into different databases, which are provided by

Administrator. By receiving username, password, and selected database

, application will check if the User is a valid user in selected database. If

succeed, a new session will be created to the User and application’s

main page will be forwarded to the User. If not,

User will be informed the reason of login failure through returned

message from the application.

Table B.13: Use Case Login

 128

Use Case Logout

Stakeholder

User

Goal of Primary Actor

Logout from the application

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario

User can logout from application by sending a request to the

application. In this case, application will destroy User’s session and

application’s login page will be forwarded to the User.

Table B.14: Use Case Logout

Use Case Show Models

Stakeholder

User

Goal of Primary Actor

Viewing list of models stored in the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario

User can see list of models stored in the connected database by sending

a request to the application. Application will return all the existing

models stored in the connected database as a list to the User.

Table B.15: Use Case Show Models

 129

Use Case Create Model

Stakeholder

User

Goal of Primary Actor

Creating an empty model in the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario

User can create an empty model in the connected database by providing

all necessary information in the “model create form”. By receiving

provided information for model, application will go through

model creation’s business logics and create it if there was no wrong data

or unexpected exception. User will be informed the result of operation

through returned message from the application.

Table B.16: Use Case Create Model

Use Case Import Model

Stakeholder

User

Goal of Primary Actor

Importing a model from anywhere in Internet into the connected

database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario

User can import a model from anywhere in Internet into the connected

database by providing all necessary information in the “model import

form”. By receiving provided information for importing model,

application will go through model importation’s business logics and

 130

import it from specified URL if there was no wrong data or unexpected

exception. User will be informed the result of operation through

returned message from the application.

The following file formats can be imported into the connected database:

RDF/XML

N-Triples

Notation3/N3

Table B.17: Use Case Import Model

Use Case Upload Model

Stakeholder

User

Goal of Primary Actor

Uploading a model from local file system into the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario

User can upload a model from local file system into the connected

database by providing all necessary information in the “model upload

form”. By receiving provided information for uploading model,

application will go through model uploading’s business logics and upload

it from specified local directory path if there was no wrong data or

unexpected exception. User will be informed the result of operation

through returned message from the application.

The following file formats can be uploaded into the connected database:

RDF/XML

N-Triples

Notation3/N3

Table B.18: Use Case Upload Model

 131

Use Case Search Model

Stakeholder

User

Goal of Primary Actor

Searching for specific models stored in the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario

User can search for a specific list of models

stored in the connected database by typing some part of desired models’

name and sending a request to the application. Application will return

all the filtered models, stored in the connected database, as a list to the

User in which models’ names contain the User typed part.

Table B.19: Use Case Search Model

Use Case Select Model

Stakeholder

User

Goal of Primary Actor

Selecting a default model from the list of existing models in database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

There is at least one model already existing in database.

Scenario

User selects a default model from the list of existing models in database

in order to deal with it.

Table B.20: Use Case Select Model

 132

Use Case Export Model

Stakeholder

User

Goal of Primary Actor

Exporting a selected model from the connected database into the

local file system

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario

User can export the default model from the connected database into

local file system by providing all necessary information in the “model

export form”. By receiving provided information for exporting model,

application will go through model exportation’s business logics and

export it from connected database if there was no wrong data or

unexpected exception. User will be asked to specify a local directory

path in which the exported model will be saved.

The default model can be exported as following formats:

RDF/XML

N-Triples

Notation3/N3

Table B.21: Use Case Export Model

 133

Use Case Show Model Graph

Stakeholder

User

Goal of Primary Actor

Viewing graph of a selected model

Preconditions

Application is running.

Database is already started up.

Graphviz is already installed.

User has already logged in the application.

A default model has been selected.

Scenario

User can see graph of the default model by sending a request to the

application. Application will parse the default model and generate a proper

input file for Graphviz.

By sending generated input file to the Graphviz and executing it, applicati

on will receive the generated output file from Graphviz. The received

file by application will be input file for a java applet application, which

will be sent to the User as a graph. Therefore, application will return the

graph of the default model to the User through loading java applet.

Table B.22: Use Case Show Model Graph

Use Case Export Model Graph

Stakeholder

User

Goal of Primary Actor

Exporting graph of a selected model from the connected database into

the local file system

Preconditions

Application is running.

Database is already started up.

Graphviz is already installed.

User has already logged in the application.

 134

A default model has been selected.

Scenario

User can export graph of the default model from the connected database

into local file system by providing all necessary information in the

”model’s graph export form”. By receiving provided information for

exporting model’s graph, application will go through

model’s graph exportation’s business logics and export it if there was no

wrong data or unexpected exception. User will be asked to specify a

local directory path in which the exported graph of model will be saved.

The default model’s graph can be exported as following formats:

PNG (Portable Network Graphics)

SVG (Scalable Vector Graphics)

GIF (Graphics Interchange Format)

PostScript

Table B.23: Use Case Export Model Graph

Use Case Query Model

Stakeholder

User

Goal of Primary Actor

Querying a selected model from the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario

User can query the default model from the connected database by

providing desired SPARQL query in the “model query form”. By

receiving provided information for querying model, application will go

through model query’s business logics and query it if there was no

wrong data or unexpected exception. Application will return all

 135

the query results as a list to the User.

Table B.24: Use Case Query Model

Use Case Export Query Results

Stakeholder

User

Goal of Primary Actor

Exporting query results of a selected model from the connected database

into the local file system

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario

User can export query results of the default model from the connected

database into local file system by providing all necessary information in

the “model’s query results export form”. By receiving provided

information for exporting model’s query results, application will go

through model’s query results exportation’s business logics and export it

if there was no wrong data or unexpected

exception. User will be asked to specify a local directory path in which

the exported query results of model will be saved.

The default model’s query results can be exported as following formats:

N-Triples

Notation3/N3

RDF/XML

Text File

XML File

Table B.25: Use Case Export Query Results

 136

Use Case Infer Model

Stakeholder

User

Goal of Primary Actor

Inferring a selected model from the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario

User can infer the default model from the connected database by

providing all necessary information in the “model infer form”. By

receiving provided information for inferring model, application will go

through model inferring’s business logics and infer it, using different

types of “Reasoner” or “Generic Rule Reasoner”, if there was no wrong

data or unexpected exception. The inferred results will be saved in

connected database as a new model with a name, which is specified by

User in “model infer form”. User will be informed the result of operation

through returned message from the application.

Different types of reasoner, which are currently supported built in Jena

2.5.2, are as the following list:

Generic Rule Reasoner

OWL Micro Reasoner

OWL Mini Reasoner

OWL Reasoner

RDFS Default Reasoner

RDFS Full Reasoner

RDFS Simple Reasoner

Transitive Reasoner

Table B.26: Use Case Infer Model

 137

Use Case Show Model Statistics

Stakeholder

User

Goal of Primary Actor

Viewing statistics of a selected model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario

User can see statistics of the default model by sending a request to the

application. Application will return all statistics information of the

default model to the User.

Table B.27: Use Case Show Model Statistics

Use Case Check Model Consistency

Stakeholder

User

Goal of Primary Actor

Checking a selected model consistency in the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario

User can check the default model consistency in the connected database

by providing all necessary information in the “check model consistency

form”. By receiving provided information for checking model

consistency, application will go through model consistency checking’s

business logics and generate a report if there was no unexpected

exception. User will be informed the result of operation through

 138

returned message from the application.

Table B.28: Use Case Check Model Consistency

Use Case Delete Model

Stakeholder

User

Goal of Primary Actor

Deleting a selected model from the connected database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

One of the models of connected database has been selected.

Scenario

User can delete a selected model by sending a request to the application.

Application will delete selected model from the connected database.

User will be informed the result of operation through returned message

from the application.

Table B.29: Use Case Delete Model

Use Case Show Triples

Stakeholder

User

Goal of Primary Actor

Viewing list of triples of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

 139

User can see list of triples of the default model by sending

a request to the application. Application will return all the existing

triples of the default model as a list to the User.

Table B.30: Use Case Show Triples

Use Case Create Triple

Stakeholder

User

Goal of Primary Actor

Creating a triple for default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can create a triple for default model by providing all necessary

information in the “triple create form”. By receiving provided

information for triple, application will go through triple creation’s

business logics and create it if there was no wrong data or unexpected

exception. User will be informed the result of operation through

returned message from the application.

Table B.31: Use Case Create Triple

 140

Use Case Search Triple

Stakeholder

User

Goal of Primary Actor

Searching for specific triples of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can search for a specific list of triples of default model by typing

some part of desired triples’ subject name, predicate name, object

name, or all of them and sending a request to the application.

Application will return all the filtered triples of the default model as a

list to the User in which triples’ subject name, predicate name, object

name, or all of them contain the User typed part.

Table B.32: Use Case Search Triple

Use Case Browse Triples

Stakeholder

User

Goal of Primary Actor

Browsing triples of a selected resource in default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

A resource in default model has been selected.

Scenario

User can browse triples of a selected resource in default model by

sending a request to the application. Application will return all

the filtered triples of the default model as a three different list to the

 141

User in which triples’ subject name, predicate name, or object name is

equal to the selected resource.

Table B.33: Use Case Browse Triples

Use Case Select Triple

Stakeholder

User

Goal of Primary Actor

Selecting a triple from the list of existing triples in default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one triple already existing in default model.

Scenario

User selects a triple from the list of existing triples in default model in

order to deal with it.

Table B.34: Use Case Select Triple

Use Case Edit Triple

Stakeholder

User

Goal of Primary Actor

Editing a selected triple of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the triples of default model has been selected.

 142

Scenario

User can edit a selected triple of default model by modifying all

necessary information in the “triple edit form”. By receiving modified

information for triple, application will go through triple modification’s

business logics and modify it if there was no wrong data or unexpected

exception. User will be informed the result of operation through

returned message from the application.

Table B.35: Use Case Edit Triple

Use Case Delete Triple

Stakeholder

User

Goal of Primary Actor

Deleting a selected triple from default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the triples of default model has been selected.

Scenario

User can delete a selected triple by sending a request to the application.

Application will delete a selected triple from default model.

User will be informed the result of operation through returned message

from the application.

Table B.36: Use Case Delete Triple

 143

Use Case Show Classes

Stakeholder

User

Goal of Primary Actor

Viewing list of classes of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can see list of classes of the default model by sending

a request to the application. Application will return all the existing

classes of the default model as a list to the User.

Table B.37: Use Case Show Classes

Use Case Create Class

Stakeholder

User

Goal of Primary Actor

Creating a class for default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can create a class for default model by providing all necessary

information in the “class create form”. By receiving provided

information for class, application will go through class creation’s

business logics and create it if there was no wrong data or unexpected

exception. User will be informed the result of operation through

returned message from the application.

Table B.38: Use Case Create Class

 144

Use Case Search Class

Stakeholder

User

Goal of Primary Actor

Searching for specific classes of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can search for a specific list of classes of default model by typing

some part of desired classes’ name and sending a request to the

application. Application will return all the filtered classes of the

default model as a list to the User in which classes’ names contain the

User typed part.

Table B.39: Use Case Search Class

Use Case Select Class

Stakeholder

User

Goal of Primary Actor

Selecting a class from the list of existing classes in default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one class already existing in default model.

Scenario

User selects a class from the list of existing classes in default model in

order to deal with it.

Table B.40: Use Case Select Class

 145

Use Case Show Class Details

Stakeholder

User

Goal of Primary Actor

Viewing details information of a selected class

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario

User can see detail information of a selected class by sending

a request to the application. Application will return all categorized

detail information of the selected class to the User.

Table B.41: Use Case Show Class Details

Use Case Show Class Triples

Stakeholder

User

Goal of Primary Actor

Viewing list of triples of a selected class

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario

User can see list of triples of a selected class by sending a request to the

application. Application will return all the existing triples of the selected

class as a list to the User.

Table B.42: Use Case Show Class Triples

 146

Use Case Create Instance For Class

Stakeholder

User

Goal of Primary Actor

Creating instance for a selected class

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario

User can create an instance for a selected class by providing all

necessary information in the “instance create form”. By receiving

provided information for instance, application will go through

instance creation’s business logics and create it if there was no wrong

data or unexpected exception. User will be informed the result of

operation through returned message from the application.

Table B.43: Use Case Create Instance For Class

Use Case Edit Class

Stakeholder

User

Goal of Primary Actor

Editing a selected class of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario

 147

User can edit a selected class of default model by modifying all

necessary information in the “class edit form”. By receiving modified

information for class, application will go through class modification’s

business logics and modify it if there was no wrong data or unexpected

exception. User will be informed the result of operation through

returned message from the application.

Table B.44: Use Case Edit Class

Use Case Delete Class

Stakeholder

User

Goal of Primary Actor

Deleting a selected class from default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario

User can delete a selected class by sending a request to the application.

Application will delete selected class from default model.

User will be informed the result of operation through returned message

from the application.

Table B.45: Use Case Delete Class

 148

Use Case Show Properties

Stakeholder

User

Goal of Primary Actor

Viewing list of properties of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can see list of properties of the default model by sending

a request to the application. Application will return all the existing

properties of the default model as a list to the User.

Table B.46: Use Case Show Properties

Use Case Create Property

Stakeholder

User

Goal of Primary Actor

Creating a property for default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can create a property for default model by providing all necessary

information in the “property create form”. By receiving provided

information for property, application will go through property creation’s

business logics and create it if there was no wrong data or unexpected

exception. User will be informed the result of operation through

returned message from the application.

Table B.47: Use Case Create Property

 149

Use Case Search Property

Stakeholder

User

Goal of Primary Actor

Searching for specific properties of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can search for a specific list of properties of default model by

typing some part of desired properties’ name and sending

a request to the application. Application will return all the filtered

properties of the default model as a list to the User in which properties’

names contain the User typed part.

Table B.48: Use Case Search Property

Use Case Select Property

Stakeholder

User

Goal of Primary Actor

Selecting a property from the list of existing properties in default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one property already existing in default model.

Scenario

User selects a property from the list of existing properties in default

model in order to deal with it.

Table B.49: Use Case Select Property

 150

Use Case Show Property Details

Stakeholder

User

Goal of Primary Actor

Viewing details information of a selected property

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario

User can see detail information of a selected property by sending

a request to the application. Application will return all categorized

detail information of the selected property to the User.

Table B.50: Use Case Show Property Details

Use Case Show Property Triples

Stakeholder

User

Goal of Primary Actor

Viewing list of triples of a selected property

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario

User can see list of triples of a selected property by sending

a request to the application. Application will return all the existing

triples of the selected property as a list to the User.

Table B.51: Use Case Show Property Triples

 151

Use Case Edit Property

Stakeholder

User

Goal of Primary Actor

Editing a selected property of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario

User can edit a selected property of default model by modifying all

necessary information in the “property edit form”. By receiving modified

information for property, application will go through

property modification’s business logics and modify it if there was no

wrong data or unexpected exception. User will be informed the result of

operation through returned message from the application.

Table B.52: Use Case Edit Property

Use Case Delete Property

Stakeholder

User

Goal of Primary Actor

Deleting a selected property from default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario

 152

User can delete a selected property by sending a request to the

application. Application will delete selected property from default

model. User will be informed the result of operation through returned

message from the application.

Table B.53: Use Case Delete Property

Use Case Show Individuals

Stakeholder

User

Goal of Primary Actor

Viewing list of individuals of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario

User can see list of individuals of the default model by sending

a request to the application. Application will return all the existing

individuals of the default model as a list to the User.

Table B.54: Use Case Show Individuals

Use Case Search Individual

Stakeholder

User

Goal of Primary Actor

Searching for specific individuals of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

 153

Scenario

User can search for a specific list of individuals of default model by

typing some part of desired individuals’ name and sending

a request to the application. Application will return all the filtered

individuals of the default model as a list to the User in which

individuals’ names contain the User typed part.

Table B.55: Use Case Search Individual

Use Case Select Individual

Stakeholder

User

Goal of Primary Actor

Selecting an individual from the list of existing individuals in default

model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one individual already existing in default model.

Scenario

User selects an individual from the list of existing individuals in default

model in order to deal with it.

Table B.56: Use Case Select Individual

 154

Use Case Show Individual Details

Stakeholder

User

Goal of Primary Actor

Viewing details information of a selected individual

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario

User can see detail information of a selected individual by sending

a request to the application. Application will return all categorized

detail information of the selected individual to the User.

Table B.57: Use Case Show Individual Details

Use Case Show Individual Triples

Stakeholder

User

Goal of Primary Actor

Viewing list of triples of a selected individual

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario

User can see list of triples of a selected individual by sending

a request to the application. Application will return all the existing

triples of the selected individual as a list to the User.

Table B.58: Use Case Show Individual Triples

 155

Use Case Edit Individual

Stakeholder

User

Goal of Primary Actor

Editing a selected individual of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario

User can edit a selected individual of default model by modifying all

necessary information in the “individual edit form”. By receiving

modified information for individual, application will go through

individual modification’s business logics and modify it if there was no

wrong data or unexpected exception. User will be informed the result of

operation through returned message from the application.

Table B.59: Use Case Edit Individual

 156

Use Case Delete Individual

Stakeholder

User

Goal of Primary Actor

Deleting a selected individual from default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario

User can delete a selected individual by sending a request to the

application. Application will delete selected individual from default

model. User will be informed the result of operation through returned

message from the application.

Table B.60: Use Case Delete Individual

 157

C C C C ---- UltimateOMS UltimateOMS UltimateOMS UltimateOMS ScreenshotScreenshotScreenshotScreenshotssss

The following figures show some screenshots of UltimateOMS.

Figure C.1: UltimateOMS Models page

 158

Figure C.2: Uploading model page in UltimateOMS

Figure C.3: Visualization graph in UltimateOMS

 159

Figure C.4: Exporting model page in UltimateOMS

Figure C.5: Querying model page in UltimateOMS

 160

Figure C.6: Model query result page in UltimateOMS

Figure C.7: Model statistics page in UltimateOMS

 161

Figure C.8: Inferring model page in UltimateOMS

Figure C.9: UltimateOMS Triples page

 162

Figure C.10: Creating triple page in UltimateOMS

Figure C.11: Triple browsing page in UltimateOMS

 163

Figure C.12: UltimateOMS Classes page

Figure C.13: Editing class page in UltimateOMS

 164

Figure C.14: Class detail page in UltimateOMS

Figure C.15: Creating class instance page in UltimateOMS

 165

Figure C.16: UltimateOMS Properties page

Figure C.17: Editing property page in UltimateOMS

 166

Figure C.18: Property detail page in UltimateOMS

Figure C.19: UltimateOMS Individuals page

 167

Figure C.20: Individual detail page in UltimateOMS

