A System for Management of
Semantic Data (Ontology
Components) in Semantic Web

MOHAMMAD REZA RAJAEI

Master of Science Thesis
Stockholm, Sweden 2007

ICT/ECS-2007-23

A System for Management of
Semantic Data (Ontology Components)

in Semantic Web

By

MOHAMMAD REZA RAJAEI
rajaei@kth.se

Royal Institute of Technology

Stockholm, Sweden

Supervisor and Examiner

VLADIMIR VLASSOV
vladv@kth.se

Associate Professor, PhD
(ECS/ICT/KTH)

Master of Science Thesis

Stockholm, Sweden 2007

ICT/ECS-2007-23

Abstract

Today, the information on the Web is designed for human
interpretation and it is not machine processable. Thus according to the
inventor of the Web, Tim Berners-Lee, the Web, has not achieved one

of its primitive goals: being useful for the machines.

In order to achieve this goal, Semantic Web is introduced as a vision for
the future of the Web. Its approach is to develop languages and
methods to express information on the Web in processable,
understandable, and useable forms for machines, as well as human
beings. In this approach, some standards and languages are defined by
W3C such as Resource Description Framework (RDF) as a data model
framework, RDF Schema as a vocabulary description language, and
Web Ontology Language (OWL) as a way to represent the explicit

meaning and relations of the terms used in vocabularies.

However, Semantic Web is still in its early steps and necessary tools are
required to facilitate dealing with Semantic Data and building Semantic
enabled applications. The main goal of this thesis is to develop a Web
based Ontology management system based on Jena Semantic Web
framework. The developed application, UltimateOMS, enables the users
to create, manipulate, and manage Semantic data and Ontology
components in forms of RDF, RDF Schema, and OWL through a web
based user interface. UltimateOMS will bring the necessary features
such as visualization graph of Semantic data, storing Semantic data in
different databases, together with many other features to facilitate the
process of managing Semantic data for users who deal with Semantic
data.

Keywords: Semantic Web, Semantic data, Ontology, RDF, RDF
Schema, OWL, UltimateOMS, Jena, IsaViz, Graphviz, JSP, Java

Servlet.

Acknowledgements

I would like to express my acknowledgment to my supervisor and
examiner, Associate Professor Vladimir Vlassov for his excellent support

and guidelines during this project.

I also would like to express my acknowledgment to Fredrick Lekarp for

his support during this project and my studies in Stockholm.

Most of all, I would like to thank my wife Mina for her constant support

and encouragement.

III

Table of Content

ADSETACE 1evvueiiiiieiiiiiie ettt ete s e e e e e e e eree e e e e e e eeaeeaees I
Acknowledgements.........coeeuueiiiiiiiiiiiiiiiieiee e e e III
1 Introductionc..veeeeiniiieie e 1
1.1 Backgroundcooooiiiiiiiie e 1
1.2 Motivation of the Project.......ccocoeiiiiiiiiiiiiiiiiiii e 3
1.3 Project Goals and SCOPEccovuumuiiiiiiiiiiiiiiiiiiiiiiiie e 3
1.4 Related WoOrKoooiimiiiii e, 4
1.5 Structure of the ThesiS.......cccoouiiiiiiiiiii)

2 Semantic WED.....cc.ueiiiiiiiiiiiieiciiee ettt e 7
2.1 OVEIVIEW ittt ettt e et e e e et e e e e eaeaanas 7
2.2 RAtionale ...o.oeeiiiiiiiiiiii e 8
2.3 Benefits coeiiiiiiiiie e 8
2.3.1 Knowledge integration..........ccoeeeeiiiiiiiiiiiiiiiiiiinnieiiiiiee e 9
2.3.2 Knowledge creation and storage............cccccevvuuinriiiiiiinnnnn.. 10
2.3.3 Knowledge searchingccccoevveiiiiiiiiiniiiiiiiiiinncciiiiiinn. 11
2.3.4 Knowledge inferenceccceevvvimimiiiiiiiiiiiniee 12
2.3.5 Knowledge perspectivescoouuieiiiiiiniiiiinneiiiieeeiiie e, 12

2.4 Semantic Web Stackcccuuuiiiiiiiiiiiiiieiiiiiiie e 13
2.5 RDF (Resource Description Framework)cccccevvuveeniniennnn 17
2.5. 1 OVEIVIEW ctiiiiiiiee ettt ettt e e e e s 17
2.5.2 BasiC CONCePtS civvuiiiiiieeiiiiiee e 18
2.5.3 Serialization Formats........ccccooovviiiiiiiiiiininiiiii e 22

2.6 RDF Schema (Resource Description Framework Schema) 22
2.6. 1 OVEIVIEW etiiiiiiiieee ittt ettt e e e e s 22
2.6.2 Modeling Primitives........ccccouuiiiiiiiiiiiiiiiieeiiiiiiiiee e 23

2.7 OWL (Web Ontology Language)c.ccceeeerureeeenuieernnneeennnnn 24
2.7 1 OVEIVIEW ctiiiiiiiieeiiiiiii ettt 24
2.7.2 SUDIANGUAZES ...uieeeeeeeeiiiiiiiiiiiiii e 25
2.7.3 Modeling Primitives........ccccouuiiiiiiiiiiiiiiiieeiiiiiiiiee e 26

2.8 RDF Query Languages.........uuuuuueueiuiiiinneiieiiiiiiiiiiiiiiiiiiiiiiiien 31
2.8.1 Various Query Languages...........ccceevuuiiveeiiiiiiiiiinneceeiiiinne. 32
2.8.2 SPARQL..outtiiiieeee e 32

2.9 Implemented applications.........cccooveiiiiiiiiiiiiiiiiiiiieeeii e, 34

3 Methodccvniiiiiiiiiii e e e e e e e e 35
3.1 POSItIONING eevviiiiiiiiiieii e 35
3.1.1 Business Opportunitycooeeuiviiiiiniiiiiiiieii e 35
3.1.2 Problem Statement..........ccooooiiiiiiiiiiiiiiiii 36
3.1.3 Product Position Statementcocoiiiiiiiniiiinii 36
3.2 Stakeholder and User Descriptions..........cccoeeeeviviieeiiineeeiinnnen. 37
3.2.1 Market Demographics..........oeeeiiiiiiiiiiiiiiiiiiiiiiin e 37
3.2.2 Stakeholder Summary..........oooeeeiiiiiiiiiiiiiiiiiiii e 38
3.2.3 USEr SUIMIMATY «ceevvuiinieiiiiiiiieee ettt eeeeieiiee e eeeaiiieeeeeeees 38
3.2.4 User Environment.........ccooeeiviiiiiiiiiniiiiiininci e 39
3.2.5 Stakeholder Profiles.......cccccooouiiiiiiiiiiiiiiiiii e 39
3.2.6 User Profilesccocoviiiiiiiiiiiiiiiie e 40
3.2.7 Key Stakeholder or User Needsccevvuiuiviriiiiiiiinnneenens 40
3.3 Product OVErvIEWcoeiiiiiiiiiiiiiieiiiiiie e 43
3.3.1 Product Perspective.......cccooviiiiiiiiiiiiiiiiiiiieiie e 43
3.3.2 Summary of Capabilitiescccoovviiiiriiiiiiiiiiieiiiiiiiieeeeees 44
3.3.3 Assumptions and Dependencies............ccouvvvieeeeeriiiiinnnnennns 45
3.4 Product Features......cooooviiiiiiiiiiiiiii e 46
3.5 ConStraiNtS . ceceu et 53
4 System DesigN.......ceeeeuuerriiiiriiiiieieiiie et eee e 55
4.1 JSP Technology and Java Servletscccccoevrmmmimmmiiiininnnnnnennn 55
4.2 Semantic Web Framework: Jena..........cccooeiiiiiiiiiiiinniiiinninnnnn.. 56
4.3 Databases ...ccuuiiiiniiiiieiie e 59
4.3.1 Denormalized Schema...........ccoeevvuiieiiiiiieiiiiiieeiiiieeeeiie e 60
4.3.2 TableS couuiiiiiie e 61
4.3.3 Supported Databasesccceeeviiiiiiiiiiiiiiiiiineee e 62
4.4 Graph Generator: Graphvizoeeveiiiiiiiiiiniiiiiiiiiee e 63
4.5 UltimateOMS Architectureccooeeiiiiiiniiiiiineiiiiee e, 64
4.5.1 JSP and Java Servlets frameworkcccoeeevviieeiiiinnnn. 65
4.5.2 JeIA i e e 65
4.5.3 Databasescc.oeiiiiiiiiiii e 66
4.5.4 GraphViZ..ooooieeiiiiiee e 66

5 Implementation......c.cccueviueiiiiiiiiiiiiie e 67

VI

5.1 Development Platformccooooiiiiiiiiiiiiiiie e, 67

5.2 System Configuration........cccccuuueeeiiiiiinniiniiiiiiiiiiiiie. 68
5.2.1 Databaseooiiiiiiiiiiiie e 69
5.2.2 Graph oo 69
D.2.3 USETS teuntiiieiiee ettt et 71

5.3 JSP and Java Servl0ets..........ooviiiiiiiiiiiiiniii e 71
5.3.1 Authentication........cccooeeeriiiiiiiiiieiiiiiiiieee e 72
5.3.2 Session Management..........ccooouuiiimmiiiiiiiiiiiineeee e, 72
5.3.3 Validation and Error Handling.............ccccoeeiiiiniiiinnnnnnn.. 75

5.4 Graph Visualizationccooeeiiiiiiiiiiiiiiiiie e 76
5.4.1 Graph Generatorcooevvveiiiiiiiiiie e 76
5.4.2 Graph VIEWErccooviiiiiiiiiiiiiie e 7

5.5 Management and Manipulationccoooeiiiiinniiiiiiniinn. 79
B.5. 1 MOAEIS v e 80
D.5.2 TTIPIES i 82
D.5.3 ClASSES tevuniiiiieeeiiiiee e 84
5.5.4 PTOPETtIes ..oouiiiiiiiiiiiii e 86
5.5, Individualsccooeviiiiiiiiii e 89

5.6 INFErencecoouiiiiiiiiiii e 90

D.7 QUETYIIEZ . ceeeiiiiiee et e e 91

5.8 User Interfaceoovviiiiiiiiiiiiiii e 92

5.9 Flow Dynamics......cooeiiiiiiiiiiiieiiiieeee e 94

6 Validationcocuiuiiiiiiir e e e e e 99
7 Conclusions and Future Workcccceveeiiiiiiiiiiiiiiiniiinnennnnee. 101
REfereNCEeS. .. civueiiiiiiie it e e e eaaes 103
ADPDPENAICES ..ovuirniiiiiiiiiie et e e e e e eaaaas 111
A - ADDreviationsS.......cccccccveieiiiiiiieiiiie i eaae 111
B - Use Case Model.......c.coeuniiiiiiniiiiiiiiiiiieiieeeceeeeeeeeeeieeaaaes 113

S I Y U] o) = TP 113

B.2 Use Case Diagrams...........uuuueeuiiiriiniiiiiiiiiiiiiiiiiiiiiiiiiieeeenn 113

B.3 Use Case Specificationseeeiiiiiniiiiiiiiiiiiiieeciie e, 120

C - UltimateOMS Screenshotscceeevvvevneiiiieieinniennerennnnennn. 157

VIII

List of Figures

Figure 2.1: Semantic Web Stack, from Tim Berners-Lee presentation for

Japan Prize, 2002 ... 13
Figure 2.2: RDF triple modeled as a directed graph......c........ccccnninnit. 18
Figure 2.3: RDF graph of examplecccooviiiiiiiiiiiiiiiici 20
Figure 2.4: Making a new RDF statement using reification.................. 21
Figure 4.1: JSP and Servlets, simplified architecture............c......cco..... 56
Figure 4.2: Jena2 architecturecccocviiiiiiiiiiiiiiii 58
Figure 4.3: Architecture of UltimateOMScooiiiiiiiiiiiiiiiiiiiinee, 64
Figure 5.1: Part of the System Configuration file of UltimateOMS 68
Figure 5.2: Part of the Session Bean used in UltimateOMS.................. 74
Figure 5.3: UltimateOMS visualization graph..........cccocooiiiiiiiiii 78
Figure 5.4: Sample of the dynamically generated Applet tags 79

Figure 5.5: Categorized menu groups in UltimateOMS for management
and manipulation of Semantic data...........ccocoovviiiiiiiiiiiiiii 80
Figure 5.6: Triples menu group in UltimateOMS for management and
manipulation of triples......cociiiiiiiii 82
Figure 5.7: Classes menu group in UltimateOMS for management and
manipulation of ClASSEScoiuuiiiiiii i 84
Figure 5.8: Properties menu group in UltimateOMS for management
and manipulation of properties........ccceivieiiiiiiiiii i 87

Figure 5.9: Individuals menu group in UltimateOMS for management

and manipulation of individualsccooeuiiiiiiiiiiiiii 89
Figure 5.10: Inference facilities in UltimateOMS.............ouvveieiininiiniiie 90
Figure 5.11: Query user interface of UltimateOMS............cccoeeieiiinnnnnns. 92
Figure 5.12: A part of the used Stylesheet in UltimateOMS................. 93
Figure 5.13: Designed layout for UltimateOMS user interfaces............. 94
Figure 5.14: UltimateOMS login pageccccceeiiiiimiiiiiiiiiiiiiieeneeeeeee 95
Figure 5.15: UltimateOMS models pageccccvvrviiiiiiiiiiiiiiiiineeeeeeee 97
Figure B.1: Application Administration Diagramc..cccccevvvvuueennnnnn. 114
Figure B.2: System Configuration Diagramcccccccvvimmiiiiiiniinnnnnn. 114
Figure B.3: User Authentication Diagram............cccccccvvimiimmiiininnnnnnnn. 115
Figure B.4: Model Diagramcoeeeiiiiiiiiiiiniiiiiiiiiieciiiiiieeeeceeiin, 115
Figure B.5: Model Graph Diagram...........ccocociiiiiiiiiiiiiiiiiin, 116

Figure B.6:
Figure B.7:
Figure B.8:
Figure B.9:
Figure B.10
Figure C.1:
Figure C.2:
Figure C.3:
Figure C.4:
Figure C.5:
Figure C.6:
Figure C.7:
Figure C.8:
Figure C.9:

Figure C.10:
Figure C.11:
Figure C.12:
Figure C.13:
Figure C.14:
Figure C.15:
Figure C.16:
Figure C.17:
Figure C.18:
Figure C.19:
Figure C.20:

Model Query Diagramccoouuuuiiereeiiiiiiiiieeeeeiiiiiiee e 116
Triple Diagramcooeeeiiiiiiiiiiiiiiiiiee e 117
Class Diagram.......coooeveiiiiiiiiiiiiiiiiiiiiii e 118
Property Diagram.......ccooevieiiiiiiiiiiineiiiinecei e 119
: Individual Diagramcccoooeeeiiiiiiiiiiiniii 119
UltimateOMS Models page.....cc.cuuvveeeiiiiiiiiiniiiiiiiiiinneeeenas 157
Uploading model page in UltimateOMS..........cccccceeeeeenns 158
Visualization graph in UltimateOMSccccccooeiiiiiinnnnnn. 158
Exporting model page in UltimateOMSc.o. 159
Querying model page in UltimateOMS ...t 159
Model query result page in UltimateOMS................ccce. 160
Model statistics page in UltimateOMS..........ccccccoeeeeiiienn 160
Inferring model page in UltimateOMScccccevvrinnnnnnn 161
UltimateOMS TripleS PAge ...coeeeeevneeeiiiieeeiiiieeeiiieeeeeiieees 161
Creating triple page in UltimateOMS...........cccccoeeeeeeie. 162
Triple browsing page in UltimateOMS..............cceeeennnn. 162
UltimateOMS Classes Page.......coceeeeeeiiiiriiiimiiiiiiiiaaennn. 163
Editing class page in UltimateOMS.........ccovvviireiiinnnnnnn. 163
Class detail page in UltimateOMS.............cceevviiiiinnennnni. 164
Creating class instance page in UltimateOMS................ 164
UltimateOMS Properties page.......couuvvveeeeiiiiiiineeeeeennnnnn. 165
Editing property page in UltimateOMScc........ 165
Property detail page in UltimateOMS.............coeeeerennnnn. 166
UltimateOMS Individuals page........ccccccevvivmmmimiinniinannnn. 166
Individual detail page in UltimateOMS.............cc..oeunnne.e. 167

List of Tables

Table 3.1: Capabilities of UltimateOMS

Table 4.1: Supported database engines and JDBC drivers by Jena2.... 63

Table B.1:
Table B.2:
Table B.3:
Table B.4:
Table B.5:
Table B.6:
Table B.7:
Table B.8:
Table B.9:

Table B.10:
Table B.11:
Table B.12:
Table B.13:
Table B.14:
Table B.15:
Table B.16:
Table B.17:
Table B.18:
Table B.19:
Table B.20:
Table B.21:
Table B.22:
Table B.23:
Table B.24:
Table B.25:
Table B.26:
Table B.27:
Table B.28:
Table B.29:
Table B.30:
Table B.31:

Use Case Install Application........ccccvvveeiiiiiiiiinneiiiiiiinn, 120
Use Case Create Default Configuration.............ccccceeeie. 121
Use Case Modify Application Configuration...................... 121
Use Case Startup Application.......c.ccceeeveeriiiiiiieeeeeriiiinnnn. 122
Use Case Shutdown Application..........ccceeevviiiiiieiiiiiiinnnnnn. 122
Use Case Create Database User.........ccoeeeiiiiiiiiiiiiniiiiinene. 123
Use Case Modify Database User........cccooeeivviieiiiiiineiiinnnenn. 123
Use Case Remove Database Usercccoeeevviiiiiiiiiniiiinnnne. 124
Use Case Modify Graph Parameters........ccccccoevveeviniinnnn..e. 125
Use Case Add New Database..........cccoevvviiiiieiiiiiiiiinneennnn, 126
Use Case Modify Database Parametersc...c..uun.. 126
Use Case Remove Database.........ccoeeeeviiiiiiiiiiiiiiiiiinneenini. 127
Use Case Loginccooiiiiiiiiimiiiiiiiiiiieeeeeeceeeceece, 127
Use Case LOogoutccoevviiiiiimiiiiiiiiiiieeeee e 128
Use Case Show ModelS........ocoeviiiiiiiriiiiiiiiiiieeeeiiiiiiee e 128
Use Case Create Modelccouuuiiiiriiiiiiiiiiiiiiiiiiiiieeeeees 129
Use Case Import Modelcooouuiiiiiiiiiiiiiiiiiiiiiiiiiee e, 130
Use Case Upload Modelccooevviiiiiiiiiiiiiiiiieiiiieeeeeiee e 130
Use Case Search Modelccoouuiiiriiiiiiiiiiiiiiiiiiiieeeeees 131
Use Case Select Modelcooeuiiiiiiieiiiiiiiiiieeeeiiiiiieeeeeee, 131
Use Case Export Modelcooouuiiiiiiiiiiiiiiiiiiiiiiieeeecs 132
Use Case Show Model Graph........cooceeeviiiiiiiiiiiiiiiiiineenenn, 133
Use Case Export Model Graphccoouvviiiieiiiiiiiiinneenen. 134
Use Case Query Model.........coooviiiiiiiiiiiiiiiiiieiiiiiiiiieeeeee 135
Use Case Export Query ResultS.......ccooeeeiiiiiiiiiiiniiiinnnnn, 135
Use Case Infer Modelccouveiiiiiieeiiiiineiiiiieeieiiee e 136
Use Case Show Model Statisticsccouvuiviveiiiiiiiiiineenenn. 137
Use Case Check Model Consistency..........oeeeeeeveveuieneenennn 138
Use Case Delete Modelocoovviiiiiiriiiiiiiiiiiieiiiiiiiieeeeees 138
Use Case Show TTipleS.....cooeeiiiiiiiiiieiiiiiiiiiiieeeeeiiiiiiee e 139
Use Case Create TTiplecoooeeeiiiiiieiiiiiiiiiiieeeeciiieeeeees 139

Table B.32:
Table B.33:
Table B.34:
Table B.35:
Table B.36:
Table B.37:
Table B.38:
Table B.39:
Table B.40:
Table B.41:
Table B.42:
Table B.43:
Table B.44:
Table B.45:
Table B.46:
Table B.47:
Table B.48:
Table B.49:
Table B.50:
Table B.51:
Table B.52:
Table B.53:
Table B.54:
Table B.55:
Table B.56:
Table B.57:
Table B.58:
Table B.59:
Table B.60:

XII

Use Case Search TTipleccoveiiiiiiiiiiiiiiiiiieeiiiiiieeeeeees 140
Use Case Browse Triples......coooiiiiiieiiiiiniiiiiiieiiiiiieeeiiees 141
Use Case Select Tripleooeeeiiiiiiiiiiniiiiiiiiiiieeeeciiiiee e 141
Use Case Edit Triple.....coooeiiiiiiiiiiieiiieeei e 142
Use Case Delete Triple......oooeeiiiiiiiiiriiiiiiiiiieeeeiiiiiieeeeeees 142
Use Case Show ClasSesccvvueeiiiiieeiiiiieeiiiieeeeiiiee e 143
Use Case Create Classooeeeeeviiiiiieeeiiiiiiiiieeeeeiiiiiiee e 143
Use Case Search Classooveiiiiiiiiiiiiniiiiiiieieiiieeeeie e 144
Use Case Select Class.......evvveiiiiiiiiiieeeieiiiiiiee e eeeeaes 144
Use Case Show Class Detailsoeeveviiieiiiiiiiiiiiiiniiiiens 145
Use Case Show Class TTiplesoeeeeeiiiiiiiiineeeiiiiiiieneeeeas 145
Use Case Create Instance For Classcccoeevvviieiiinnne. 146
Use Case Edit Classcovvviiiiiiiiiiieeiiiiiiiieeeeeeiiiiee e 147
Use Case Delete Class...cooeveuuieeiiiiiieeiiiieeeiiiieeeeiiieeeei e 147
Use Case Show Properties.........coeveeeeiiiiiiiiiiiiiiiiiiieeeeeeas 148
Use Case Create Property......ccccoooeeeeiiiiiiiiiiiiiiiiiiiieeeeees 148
Use Case Search Property.......cccoooeeeeiiiiiiiiiniiiiiiiiiiieeeeea, 149
Use Case Select Propertyccouuveeeeiiiiiiiiiiniiiiiiiiieeeeeees 149
Use Case Show Property Details........ccoouuviiiiiiiiiiiiinniin. 150
Use Case Show Property Triplescccoooviiveiiiiiiiiiineenenn. 150
Use Case Edit Propertyccccoovoiieeiiiiiiiiiiiiiiiiiiieeeeees 151
Use Case Delete Propertyc..uvveeeiiiiiiiiiiiiiiiiiiiiieeeeeees 152
Use Case Show Individualsooeveeiiiiiiiiiiiiiiiiiiiiinee, 152
Use Case Search Individual...........cocooeiiiiiiiiiiiiiiiiiinnennna, 153
Use Case Select Individual..........cooeveeiiiiiiiiiiiiiiiiiiiiineeeea, 153
Use Case Show Individual Detailscoeveeiiiiiiiinniinnn. 154
Use Case Show Individual Triplesccoevveeiiiiiiiiinennnn. 154
Use Case Edit Individualc..oiveiiiiiiiiiiiiiiiiiiiiiiieeeeees 155
Use Case Delete Individualooeeiiiiiiiiiiiiiiiiiiiii, 156

Chapter 1

Introduction

1.1 Background

“The Web was designed as an information
space, with the goal that it should be useful
not only for human-human communication,
but also that machines would be able to

participate and help.” [1]

Tim Berners-Lee, the inventor of World Wide Web

Today, most information on the Web is not machine processable and
therefore, according to the inventor of the Web, Tim Berners-Lee, this
Web which is widespread around the world now has not achieved one of

its primitive goals which was being useful for the machines.

A major obstacle to reach this goal was the fact that machines or
computers have different needs, comparing to human beings, in order for
them to “understand” the information on the Web. In fact, most
available information on the Web is mainly designed for human
interpretation, which makes it unusable for machines. Even the
information, which is derived from a structured database with
meaningful columns, is not well defined enough for a machine to be able
to understand and use it. Therefore, in order to achieve the Web’s

primitive goal, information on the Web needs to be expressed in a form

that machines would be able to understand it instead of simply

displaying it. [1]

In this concept, when the term “understand” for machines is used, it
does not imply to some artificial intelligence empowering machines with
magical abilities. In the contrary, it relies on today’s ordinary machines’
capabilities, which can perform well-defined operations based on well-

defined data to solve well-defined problems. [2]

In fact, Semantic Web approach does not need revolutionary machines,
which understand the human beings; it needs human beings to make
some extra effort to write the Web’s language in a better-defined way

that would make it possible for the machines to use the Web. [2]

Consequently, the Semantic Web approach is to develop languages and
methods to express information on the Web, which is processable,

understandable, and useable for machines as well as human beings.

The Semantic Web is a vision for the future of the Web. In this vision,
information is given explicit meaning, which makes it possible for
machines to perform integration, processing, and understanding of
information on the Web. [3]

An important component of Semantic Web, which is a way of
representing semantics and enabling them to be used by machines and
specifically by web applications, is called ontology. Ontology is a way of
giving explicit meaning to information by structuring and defining the
meaning of metadata. For each specific subject or area of knowledge,
ontology defines the terms, which are used to represent and describe
that subject. Moreover, ontology defines the relationships among the
basic concepts in areas of knowledge and also defines computer usable

definitions of those basic concepts. [4]

Using ontology, web applications would be able to understand the

semantics of documents and therefore become capable of processing,

performing integration, and understanding them. This will make the
Web useful and understandable for web applications and therefore

machines.

1.2 Motivation of the Project

Since Semantic Web is in its early steps, there is long way to make all
necessary standards of the Semantic Web. The W3C is currently
responsible for publishing Semantic Web standards and different wok
groups are currently working as part of the Semantic Web activity.
Meanwhile, different types of tools are provided based on published
Semantic Web standards by different vendors in order to fulfill users’

needs for creating and managing Semantic data.

Nevertheless, to the best of our knowledge, none of the existing solutions
provides a complete tool containing all required features for users
dealing with semantic data, which will result in a slow and timely cost

process.

The motivation of this project is to facilitate creating and management
of Semantic data by developing a new Web based application containing
all necessary features. The new system will bring all necessary functions
for managing semantic data in one place thus making it much easier for

users to create and manage their Semantic data.

1.3 Project Goals and scope

The goal of this project is to develop a Web based application based on
one of the existing frameworks for building Semantic Web applications.
The application will enable all users to create and manage their
Semantic data (Ontology components) in RDF, RDF Schema, and

OWL formats through a web based user interface and unlike the

existing tools; it provides the necessary features in one place to facilitate

process of managing Semantic data.

The developed application will provide different features such as
creating, uploading, and importing Semantic data including RDF
(Resource Description Framework) and OWL (Web Ontology
Language), storing Semantic data in different types of databases,
designing and editing capabilities of Semantic data (include creating,
editing, and deleting), inferring, querying, visualizing graph of Semantic
data.

Comparing the existing frameworks and the issues related to the

framework including the performance is out of the scope of this project.

1.4 Related Work

pOWL [5] and Sesame [6] are two web-based tools for managing
Semantic data and Protege [7] is one of the many client based ontology

editors and it is not web based.

pOWL is a web-based application for editing and managing knowledge
for Semantic Web, which is developed based on PHP and MySQL. It
supports browsing, editing, and querying of RDF Schema and OWL
ontologies but there is no facilities for storing Semantic data in different

databases, reasoning, and visualization graph of Semantic data.

Sesame is an open source framework for RDF and RDF Schema with
inferring and querying capabilities. Different types of storage system
such as relational databases, file systems, and in-memory can be used
along with Sesame. The web-based tool of Sesame includes browsing and
querying features without editing and managing capabilities of Semantic

data and visualization graph.

Protege is a well-known, sophisticated, and open source ontology editor
with support of RDF, RDF Schema, and OWL, which enables users to
create and manage Semantic data. Protege is a client-based tool and its
visualization capability is based on a simplified hierarchy structure and

does not visualize in form of graphs, nodes, and arches.

1.5 Structure of the Thesis

This thesis consists of seven chapters. First chapter briefly gives some
background information about Semantic Web, presents motivation of
the project, project goals, and finally introduces some related works.
Second chapter provides information regarding concepts of Semantic
Web including benefits of Semantic Web like knowledge integration,
knowledge searching and inferring. This chapter also describes RDF,
RDF Schema, OWL, and RDF query languages. Third chapter presents
vision document of the project and defines requirements and high-level
features of the developed tool. Chapter four reviews the technologies
and concepts related to the architecture of the software including JSP
technology and Java Servlets, Jena Semantic Web Framework, graph
visualization, and finally presents the architecture of the proposed
solution for implementing the Ultimate Ontology Management System
(UltimateOMS). Chapter Five includes some detail information about
the implementation of UltimateOMS including development platform,
system configuration, session management, graph visualization, and user
interface. Chapter six is about validation of the implemented use cases.
As a final point, chapter seven presents conclusion of the project and

gives some suggestion for future work.

Chapter 2

Semantic Web

2.1 Overview

Semantic Web is a project in the World Wide Web Consortium (W3C)
under the direction of the inventor of the Web, Tim Berners-Lee, where
a dedicated team works to improve, extend, and standardize the system.
According to him, evolving into Semantic Web is the way that the Web

can reach its full potential.

Semantic Web extends the capabilities of the Web by adding computer
processable meaning to it through the use of standards, mark-up
languages and related processing tools. Tim Berners-Lee defines
Semantic Web as follows: “Semantic Web is an extension of the current
Web in which information is given well-defined meaning, better enabling

computers and people to work in cooperation”. [9]

In Semantic Web, the idea is having the data defined and linked to each
other as a globally linked database and provide a universally accessible
platform that not only people, but also automated tools can share and
process data. This way the data can be effectively used for automation,

integration and also in order to reuse in different applications. [8] [9]

Although many languages, publications, and tools are already developed
and published, Semantic Web technology is still in its early stage and
despite the fact that the future of Semantic Web appears to be bright,
yet there is no general agreement about a promising direction or
characteristics of the early Semantic Web. [8] [10]

2.2 Rationale

Lack of a global system for publishing data in a way processable for any
system, makes it difficult to use the Web in large scale. Data is mostly
hidden in HTML documents which are only useful to some extend and

in some specific contexts and not useful for other contexts. [10]

Semantic Web makes it possible to publish data in a broadly
processable form. According to W3C, this will make more people willing
to publish data in this format and shortly the number of Semantic Web
applications will increase dramatically. These Semantic Web
applications would be useable for variety of tasks and helps to increase

the modularity of applications on the Web. [10]

2.3 Benefits

Currently, the Web is designed to be used by people and not by
computers and machines. Semantic Web makes the data in web pages
understandable for computers as well as human beings so the computers
would be able to search websites and perform actions in a standardized
way. This enables computers to utilize the enormous amount of services

and information on the web. [§]

Moreover, a lot of services that are already possible to implement in
current web will be much easier to implement with the standards

introduced in Semantic Web. [§]

The benefits of Semantic Web can be categorized as knowledge
integration, knowledge creation and storage, knowledge searching,
knowledge inference and knowledge perspective. Below is the description

of each category:

2.3.1 Knowledge integration

One of the important benefits of Semantic Web is information and
knowledge integration that it brings. In order to have knowledge
integration, the integration mechanism should have a distributed nature
itself; otherwise, the integration would not be possible. For example, it
is not realistic to hope to build a single database or XML file that
integrates all the information in the Internet. Only a distributed way of

integration is appropriate for the distributed nature of the Internet.

Location: A good information integration should have a mechanism to
let the user know where the data resides and should be able to reach it.
Semantic Web has addressed this issue by using the Uniform Resource
Identifier (URI). By labeling all the sources with URIs, Semantic Web
leverages from the benefits of this good old format and therefore all

Semantic Web sources are findable in their unique locations.

¢ Protocol: In order to interact with data, a protocol should be in
place to serve as an exchange language. Semantic Web uses
standard web protocols such as HI'TP, which is an easy flexible

exchange language based on request and response.

¢ Format: Semantic Web uses the OWL Web Ontology Language,
which is a standard data format based on Resource Description
Framework (RDF) and XML. The format is very comprehensive
and fulfilled the requirements of a distributed integration, which

are being comprehensive and translatable.

¢ Reliable: Information and knowledge integration needs to have a
mechanism to make sure the records are timely and reliable. Since
Semantic Web deals directly with the actual source of data, there
is no need for complex synchronization unless the due to the
performance or other requirements actual source of data would

not be used.

e Purpose: The challenge in knowledge integration is aligning the
data together with the purpose. It is easy to combine data
without the meaning attached to it. The beauty of Semantic Web
is in bringing the meaning together with the data and this makes
Semantic Web perfect for information and knowledge integration.
It makes it possible to treat the data for the real meaning that it

represents not just as meaningless bits. [11]

2.3.2 Knowledge creation and storage

Semantic Web encapsulates knowledge so it becomes easy to share
knowledge and also change or develop the knowledge no matter it is

your knowledge or someone else’s shared knowledge. [11]

Traditional databases, store and share “data” and the real knowledge or
meaning of that data is either in the application or in the mind of user.
The knowledge, which resides in the application is very specific to that
application’s use. Sharing application components is an attempt to share
the knowledge residing in the application. However since the
application’s knowledge is very narrow and specific to its own purpose,

this attempt fails in reality.

In Semantic Web, knowledge can grow in many ways.

¢ Horizontally: By adding new attributes or adding and peer

relationships, knowledge grows horizontally.

Adding “date of birth” to “person” which is an attribute of that
person or adding “manager” relationship between two
“employees” which is a peer relationship between them are

examples of horizontal growth of knowledge

e Vertically: Growing knowledge through inheritance is a vertical

growth.

10

For example, an “employee” is a type of “person”. “Person” has
some attributes like “name”, “place of birth”, and “employee” has
those attributes as well because it is a type of person. By adding
a new attribute to “person”, like “date of birth”, the same
attribute becomes added to the “employee” by inheritance. This
is a horizontal growth for “person” and a vertical growth for

“employee”.

¢ Constraints: Knowledge can grow by adding some constraints in

order to define the context.

For example a “person” can be defined as “tall” where “tall” is a

person taller than 170 cm.

Knowledge can be created, developed and can grow horizontally,
vertically or by constraints remotely from anywhere in the network by

referencing the knowledge using its URI. [11]

2.3.3 Knowledge searching

The goal of any knowledgebase is getting useful results for a search
operation whether it is a simple question or a complicated query.
Currently, there are two main ways for searching: database queries and

keyword matching.

Database queries are very powerful for searching in a well-known
structured environment of an individual database but useless outside

that specific structure of the database.

Keyword matching in the other hand is not coupled to any structure
but it can result in too many hits for a search and it is very weak in
answering specific questions. For example, a keyword search is useless in
answering: “who was the manager of the research department in March
2006”.

11

Semantic Web brings a compromise between those two methods. It uses
enough structure to support answering specific questions and also it has
enough flexibility so that it is not too much couples to the underlying
structure. Consequently, one does not need to know the structure

beneath, to be able to get good result for a search.

Queries are independent from the knowledge structure. Therefore, they
can stay the same even if the underlying knowledge structure keeps

changing. [11]

2.3.4 Knowledge inference

Semantic Web has the ability to fill in the missing pieces by deducting

from the related data.

For example, given that a person “Mary” refers to another person
“Mark” as her father, the system will infer that “Mark” has a daughter
“Mary”. This technique can bring very useful conclusions because it
deals with the meanings and semantics rather than data and bits. This
is a very unique characteristic and gives a big advantage over the

traditional systems. [11]

2.3.5 Knowledge perspectives

Semantic Web makes it possible to have knowledge aligned with one’s
specific needs and domain of interest. Traditional systems, force the user
to align himself/herself to the single point of view represented in that
specific system. However, Semantic Web enables selective integration of
knowledge and construction of new knowledge and as a result creating
new knowledgebase according to any need. This is possible by building

upon the existing knowledgebase or starting one from the scratch.

Knowledge perspective is the ultimate goal of Semantic Web. [11]

12

2.4 Semantic Web Stack

Semantic Web technologies are arranged into layers shown in Figure
2.1. The two base layers are technologies used in the current Web. The
next six layers build Semantic Web on those two inherited layers and
the top one adds trust and completes a Semantic Web of trust. The
complexity increases from the bottom to the top. The functionality of

higher layers depends on lower layers.

Trust
Proof
Logic
framework
1E
Rules _E T
c
2|2
Ontology i
RDF Schema
RDF M&S
XML Namespaces
T

Figure 2.1: Semantic Web Stack, from Tim Berners-Lee presentation for
Japan Prize, 2002

o Layer 1: URI and UNICODE

URIs are global identifiers that uniquely identify information.
Current Web uses URL while Semantic Web uses URIs. Unlike

URLs, URIs do not necessarily retrieve any information. Unicode

13

14

is a global character-encoding standard, which supports

international characters.

Those two technologies, Unicode and URI, which are taken from
the current web standards, provide the global characteristic, for
Semantic Web.

Layer 2: XML and Namespaces

Semantic Web should easily integrate with the current Web.
HTML does not have the ability to include everything needed for
Semantic Web. XML has more abilities and is superset of HTML.

Namespaces increase the modularity of XML and also increases
the ability to reuse XML vocabularies together with XML
schemas. In Semantic Web, Namespaces are used for the same

purpose.

Layer 3: RDF Model and Syntax

This is the first layer developed for Semantic Web specifically.
Semantic Web is built on RDF which itself is built on syntaxes
that use URIs to represent data. Semantic Web is about
representing data and not presenting data. This data
representation is usually in triple based structures that can be
stored in database or interchanged on the Web using a set of
syntaxes. These syntaxes, which are developed for this task, are
called Resource Description Framework (RDF). [10]

This layer is detailed in the subsection 2.5.

o Layer 4: RDF Schema

Despite the fact that RDF provides the tool to build semantic
networks, it does not provide all semantic network facilities
needed for Semantic Web. RDF Schema provides some facilities
to define metadata vocabularies similar to Object Oriented

constructs and also to implement them in a modular way similar
to XML schemas.

RDF Schema is detailed in section 2.6.

o Layer 5: Ontology

Generally, the representation of the terms and identifying their
relationships is called Ontology. OWL is the language developed
by World Wide Web Consortium for web ontologies, which makes
it possible to represent the meaning of terms that are used in
vocabularies and also relationships between those terms.
Metadata vocabularies defined in RDF Schemas can be considered

simplified ontologies.

OWL and Ontology is detailed in section 2.7.

o Layer 6: Rules

In this layer, dynamic knowledge is captured as a set of
conditions that must be fulfilled to be able to achieve the result or

the set of results in the rule.

The technology behind this layer is Semantic Web Rule Language
(SWRL), which is based on Rule Modeling Language or RuleML.
Similar to RuleML, SWRL is a very comprehensive language and

covers all sorts of rules including derivation, transformation, and

15

16

reaction rules. SWRL can specify queries and inferences in Web
ontologies and covers mappings between Web ontologies as well

as dynamic Web behaviors of workflows, agents, and services.

Layer 7: Logic

Semantic Web needs to have a powerful logical language for

inference. The purpose of this layer is providing the features of
First Order Logic (FOL).

There are some alternatives and different languages have been
considered. One of the first alternatives was RDFLogic, which
provides some extension to basic RDF. Another more recent one
is SWRL FOL, which is an extension of the rule language SWRL

to cover FOL features.

For Semantic Web to become expressive enough to help us in a
wide range of situations, it will become necessary to construct a

powerful logical language for making inferences.

Layer 8: Proof

The idea in this layer is to write down the proofs for the problem.
Using inference engine rather than the traditional way of black-
box principle used in computer programs, makes Semantic Web
open and therefore the inference engine can be asked to provide

proofs for the conclusion.

Layer 9: Trust

This layer uses all the layers below together with encryption and
signature in order to build the Semantic Web of trust. Encryption

and signature are technologies already available in current Web

and the trust layer makes use of them to be able to trustfully

bind statements with their responsible parts.

Therefore, the Semantic Web of trust will use Public Key
infrastructure, which is already in place and Semantic Web of
trust, might be able to contribute to this infrastructure by using a
more distributed structure and removing the rigidity, which is a

consequence of its hierarchical structure.

As a result of using the encryption and signature together with
this layer, trust engines can be constructed, which include
reasoning engines together with digital signatures. Using these
trust engines, the Semantic Web of trust can be developed where

rules can be trusted depending on the signer. [12]

2.5 RDF (Resource Description Framework)

This section presents a brief overview about the concepts of RDF. [16]

2.5.1 Overview

Resource Description Framework (RDF) is W3C proposed framework
for representing information, particularly metadata about Web resources
about resources, in the World Wide Web [17]. Using RDF information
can be exchanged easily between applications without loss of meaning.
This becomes important for those information that need to be processed

and not just displayed in a simple format like HTML.

RDF wuses URIs for identifying things in the Web and describes
resources with properties and property values pairs. As a result,
statements about resources can be represented in RDF as a graph
containing nodes and arcs in which arcs represent properties of resources

and nodes represent resources and property values [18].

17

The statements are expressed as simple triples like <S5,P,0> in RDF.
The triple <.5,P,0>, means that subject .5, which is a resource indicated
by URIs has property P, which is also a resource indicated by URIs
with value O and O is either a URI or literal value. Some basic
properties such as type and class are defined in RDF, RDFS, and OWL
[19].

2.5.2 Basic Concepts

As mentioned in section 2.2.1, the basic structure of any expression in
RDF is a triple statement consisting of a Subject, Predicate, and
Object. Each triple can be modeled as a directed graph using a node
and an arc diagram. A collection of triples is called RDF graph.

As shown in figure 2.2, each triple is modeled as a node-arc-node link in
which the Subject and Object are nodes and Predicate (or Property) is a

link that always points toward Object and describes the relationship
between Subject and Object.

Predicate
<>

Figure 2.2: RDF triple modeled as a directed graph

In RDF graph, a Subject node can be a URI reference or a blank node
and an Object node can be a URI reference, a blank node, a plain

literal, or a typed literal. Predicate or Property is only a URI reference
[17].

18

e A “URI” is a more general form of the URL (Uniform Resource
Locator) and can be used to identify anything that needs to be
referred. For example, below line is a URI:

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

e A “blank node” is a unique node without intrinsic name that can
be used in RDF statements.

e A “plain literal” is a string with an optional language tag, which
is used to identify values such as dates and numbers in lexical
format. For example the below line is a plain literal and indicates

that the string is expressed in English (en).

“This is a plain literal”@en

e A “typed literal” is a string with a URI datatype, which is used
to identify values by means of lexical format. For instance, the
below line is a typed literal indicates that datatype of the value

“20” is integer:

“20" " http://www.w3.0rg/2001/XMLSchema#int

As an example, consider the following RDF code:

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" >

<rdf:Description rdf:about="http://www.bogus.com/index.html">
<dc:creator rdf:resource="http://www.bogus.com/staffid/10"/>

</rdf:Description>
<rdf:Description rdf:about="http://www.bogus.com/staffid/10">

<foaf :name>Bob</foaf :name>

</rdf:Description>

19

</rdf :RDF>

The above RDF statements indicate that subject Attp://www.bogus-
.com/Iindex.html is created by object http://www.bogus.com/staffid/10
whose name is Bob. There are two different triples in the above
statements and each one has its own subject, predicate, and object. In
the first triple, the subject is Attp://www.bogus.com/index.html, the
predicate is http://purl.org/dc/elements/1.1/creator, and the object is
http://www.bogus.com/staffid/10. In the second triple the subject is A¢-
tp://www.bogus.com/staffid/10, the predicate is http://xmlns.com/foat-
/0.1/name, and the object is Bob.

The RDF statements discussed above are shown as RDF graph in figure
2.3.

http://www.bogus.com/ ind@

http:/'purl.org/dc/elements/1.1/creator

http:/fiwww.bogus.com/staffid/10

http:fixmins.com/foaff0.1/name

Boh

Figure 2.3: RDF graph of example

Sometimes it is necessary to describe other RDF statements using RDF.

For instance, some RDF applications need to keep information about

20

who made RDF statements, when statements were made. RDF
introduces “Reification”, which is a way to provide description of the
statements using RDF built-in vocabulary consisting of the type
rdf:Statement, and properties rdf:subject, rdf:predicate, and rdf-object
[18].

As a result, by using reification, RDF statements can be used as a
resource in other statements allowing nested statements in RDF graph
[20]. Figure 2.4 shows an example of a reification statement used in
order to make a new statement. In this example, staff member with
identifier 20, http://www.bogus.com/staffid/20, claims that the creator
of the HTML page Ahttp://www.bogus.com/index.html is staff member
with identifier 10, http://www.bogus.com/staffid/20 whose name is
Bob.

@w.bng us.com/staffid/20

http:ifwww.bogus.comiterms/claims

Y

http::!ww.hngus.comflnd@

lhttp:ﬂpurl,nrg!d clelements/1.1/creator

http:/lwww. bogus.com/staffid/10

http:ifxmins.comffoaf/0.1/name

A J

Bob

Figure 2.4: Making a new RDF statement using reification

21

2.5.3 Serialization Formats

RDF graphs can be encoded in different formats. The W3C has defined
an XML based syntax for RDF graphs called RDF/XML, which is the
standard interchange format on Semantic Web. An example of this
format is mentioned in the example of section 2.2.2, which is expressed
in RDF/XML. A complete description of the RDF/XML syntax
specification is available on the W3C web site [21].

RDF/XML is not the only format for encoding RDF graphs, there are
some other plain text formats such as N-Triples [22], Turtle (Terse RDF
Triple Language) [23], and Notation3 [24].

2.6 RDF Schema (Resource Description

Framework Schema)

2.6.1 Overview

RDF is a standard for building data models and it is necessary to have
another layer for building specific vocabulary for those data models.
RDF Schema is introduced by W3C as RDF’s vocabulary description
language. RDF Schema vocabulary descriptions are written in RDF and
allow designer to define the vocabulary, which is used by RDF data
model [25].

RDF Schema contains some predefined semantic terminology such as
Class and subClassOf where using subClassOf property allows
expressing the hierarchy of classes. As an example, if “Person” is defined
as a class, “Staffs of a bogus company” is defined as a subClassOf of the
“Person”, and “Bob” is defined a “Staffs of a bogus company”, then due
to the semantics of the RDF Schema, it is implicitly true that “Bob” is

also type of the “Person”.

22

The core vocabulary in RDF Schema is defined in a namespace called
rdfs, which is identified by the URI http://www.w3.org/2000/01,/rdt-

schema.

2.6.2 Modeling Primitives

This section presents the main classes, properties, and constraints of
RDF Schema. A complete description of these primitives can be found
in the W3C web site [25].

¢ Main classes: Main classes in RDF Schema are rdfs:Resource,
rdf-Property, and rdfs:Class. The class rdfs:Resource is the class
of everything that is described by RDF. Therefore, all of the
resources in RDF are instances of the class rdfs:Resource. The
class rdf:Property is the class of all RDF properties and is itself
an instance of the rdfs:Class. Concepts are defined using
rdfs:Class in RDF Schema. Besides, the class rdfs:Class is the

class of those resources in RDF that are RDF classes.

e Main properties: Main properties in RDF Schema are
rdfs:subClassOf, rdfs:subPropertyOf, and rdf‘type. All of them are
instances of rdf:Property. The property rdfs:subClassOf is used to
state hierarchy between classes, which means that, instances of
one class are also instances of another one. The property
rdfs:subPropertyOf is used to state hierarchy between properties,
which means if a resource is related by one property it is also
related by another one. The property rdf:type is used to identify
that a resource is related to a class and it is an instance of the

class.

e Main constraints: Main constraints in RDF Schema are
rdfs:domain and rdfsirange. Both of them are instances of
rdf-Property. The property rdfs:domain states that any resource

with a given property is an instance of one or more specific class.

23

For instance, the triple P rdfs:domain C' states that the subjects
of triples are instances of class C'if those triples’ predicates are P.
The property rdfs:range states that all allowed values of a
property are instances of one or more specific classes. For
instance, the triple P rdfscrange C' states that the objects of

triples are instances of class C'if those triples’ predicated are P.

2.7 OWL (Web Ontology Language)

This section presents a brief overview about the concepts of the OWL.

2.7.1 Overview

OWL is a language for defining Web ontologies [26]. OWL is the
recommendation of W3C to make Web resources more processable for
applications by adding information about the resources. OWL is used in
cases that information in documents needs to be processed by

applications, rather than only being displayed to humans.

OWL makes it is possible to represent the meaning of terms that are
used in vocabularies and also relationships between those terms.
Generally, the representation of the terms and identifying their
relationships is called Ontology. Using additional vocabulary along with
formal semantics, OWL provides more facilities than XML, RDF, and
RDF Schema for expressing meaning and semantics. As a result, it has
more abilities for representing machine interpretable contents. [27] [3]
[28]

OWL is the revision of the earlier languages OIL (Ontology Inference
Layer) [29] and DAML+OIL (DARPA Agent Markup Language) [30].

24

2.7.2 Sublanguages

OWL provides three sublanguages OWL Lite, OWL DL, and OWL Full

which are designed for use of specific users and communities [3].

OWL Lite: OWL Lite is designed for those users who need a
classification hierarchy and simple constraints. For example, it
supports cardinality constraints but only permits 0 or 1 for
cardinality values. Quick migration from thesauri and taxonomies
are possible using OWL Lite and because it has lower complexity
than OWL DL, providing tools for supporting OWL Lite is

simple.

OWL DL: OWL DL is proper for those users who need maximum
expressiveness with computational completeness and decidability.
“Computational completeness” means that all deductions are
computable and decidability means that all computations process
will be finished in finite time. OWL DL contains all of the OWL

constructs with some certain restrictions of usage.

OWL Full: OWL Full is proper for those users who need
maximum expressiveness and the syntactic freedom of RDF.
However, there is no guarantee for computational completeness

and not all conclusions are guaranteed to be computable.

There are some relations between these sublanguages in terms of legal

expressions and valid conclusions. Each sublanguage is an extension of

its predecessor and the following relations are true [3]:

Each legal OWL Lite ontology is a legal ontology in OWL DL.

Each valid OWL Lite conclusion is a valid conclusion in OWL
DL.

Each legal OWL DL ontology is a legal ontology in OWL Full.

25

e FEach valid OWL DL conclusion is a valid conclusion in OWL
Full.

Every OWL document including OWL Lite, OWL DL, and OWL Full is
a RDF document. Also all RDF documents are OWL Full documents
but only some of them will be legal OWL Lite or OWL DL documents.

2.7.3 Modeling Primitives

This section briefly reviews modeling primitives of OWL according to
the W3C documents [27], [31]. OWL ontology is a RDF graph, which is
consisting of some RDF triples. Like RDF graph, OWL ontology can be
written in different formats and RDF /XML syntax is the popular one.

The built-in vocabulary in OWL is associated with a namespace called
“owl” and comes from OWL namespace “http://www.w3.org/2002/07-
Jowl”. MIME (Multi-purpose Internet Mail Extension) type of the OWL
documents is “application/rdf+xml” and for file extension, either “.rdf”

or “.owl” is recommended.

“Classes” in OWL are described through “class descriptions” and there

are six types of them:

e (lass identifier: describes a class through a “class name” which is
represented as a URI reference. For instance, <owl:Class
rdf:ID="Person"/> describes a class called Person but it does not
tell much about the class Person. “Class axioms” are used to state
necessary characteristics of a class. OWL contains three
constructs for class axioms including rdfs:subClassOf, owl:equiv-
alentClass, and owl:disjointWith. The rdfs:subClassOf construct
states hierarchy between classes and owl:iequivalentClass
construct states that class extensions of two class descriptions are

exactly same. The owl:disjointWith construct states that class

26

extensions of two class descriptions have no members in common.

The following code is an example of using owl:disjoint With:

<owl:Class rdf:about="#Man">
<owl:disjointWith rdf:resource="#Woman"/>

</owl:Class>

Enumeration: describes a class by an exhaustive collection of
individuals that form the instances of that class. As an example

the following syntax defines a specific class of colors:

<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Blue"/>
<owl:Thing rdf:about="#Red"/>
<owl:Thing rdf:about="#Green"/>
</owl:oneOf>

</owl:Class>

Property restriction: describes an anonymous class of all
individuals that fulfill the property restriction. OWL has two
types of property restrictions including “value constraints” and
“cardinality constraints”. A value constraint puts constraints on
the range of property while cardinality constraint puts constraints
on the number of values that a property can take. There are
different types of value constraints and cardinality constraints in
OWL. For example, by using value constraint “allValueFrom” the
following code describes an anonymous OWL class of all
individuals in which the property “hasParent” can only have

values from class “Person”:

<owl:Restriction>
<owl:onProperty rdf:resource="#hasParent" />
<owl:allValuesFrom rdf:resource="#Person" />

</owl:Restriction>

Intersection: describes a class as an intersection of two or more

class descriptions. For example, the following code describe a

27

28

class, which is an intersection of two class descriptions, both have
two containing two individuals. The result will be a class with one

individual, “Blue”.

<owl:Class>
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Blue" />
<owl:Thing rdf:about="#Red" />
</owl:oneOf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Blue" />
<owl:Thing rdf:about="#Green" />
</owl:oneOf>
</owl:Class>
</owl:intersectionOf>

</owl:Class>

Union: describes an anonymous class as a union of two or more
class descriptions. As an example the following code describes an
anonymous class with three individuals including “Blue”, “Red”,

and “Green” using union descriptions:

<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Blue" />
<owl:Thing rdf:about="#Red" />
</owl:oneOf>
</owl:Class>
<owl:Class>
<owl:oneOf rdf:parseType="Collection">
<owl:Thing rdf:about="#Blue" />
<owl:Thing rdf:about="#Green" />

</owl:oneOQf>

</owl:Class>
</owl:unionOf>

</owl:Class>

¢ Complement: describes a class containing those individuals that
do not belong to another class. As an example, the expression

“Female” can be expressed as the following code:

<owl:Class>
<owl:complementOf>
<owl:Class rdf:about="#Male"/>
</owl:complementOf>

</owl:Class>

“Properties” in OWL are available in two main categories including
“object properties” and “datatype properties”. Object properties are
used to link individuals to individuals and datatype properties are used
to link individuals to data values. For example, <owl:0ObjectProperty

rdf:ID="hasParent"/> defines property “hasParent” as an object

property.

There are also property axioms in OWL for defining additional
characteristics of properties. OWL contains different constructs for
property axioms including RDF Schema constructs, property relational
constructs, global cardinality constraints, and logical property
characteristics. RDF Schema constructs consist of rdfs:subPropertyOf,

rdfs:domain, and rdfs:range are described in section 2.3.2.

Property relational constructs consist of owl:equivalentProperty and
owl:inverseOf. The owl:equivalentProperty construct states that the
property extensions of two properties are same. The owl:iinverseOf
construct states the inverse relation between two properties. For
example, the following code defines inverse relation between properties
“hasChild” and “hasParent”:

29

<owl:0ObjectProperty rdf:ID="hasChild">
<owl:inverseOf rdf:resource="#hasParent"/>

</owl:ObjectProperty>

Global cardinality constraint constructs consist of owl:Functional-
Property and owl:InverseFunctionalProperty. The owl:FunctionalPro-
perty construct states that a property can only have one value for each
instance. For example, the following axiom states that the property
“idNumber” is functional because every person can have only one id

number:

<owl:ObjectProperty rdf:ID="idNumber">
<rdf:type rdf:resource="&owl;FunctionalProperty" />
<rdfs:domain rdf:resource="#Person" />
<rdfs:range rdf:resource="#ID" />

</owl:ObjectProperty>

The owl:InverseFunctionalProperty construct is used to state that a
property is inverse functional. It means that the object of the property

statement can uniquely determine the subject.

Logical property characteristics constructs consist of owl:TransitivePro-
perty and owl:SymmetricProperty. The owl:TransitiveProperty is used
to state that a property is transitive. It means that when pairs (x,y) and
(v,2z) are instances of the property, then the pair (x,z) is an instance of
that property. The owl:SymmetricProperty is used to state that a
property is symmetric. It means that when a pair (x,y) is an instance of

the property, then (y,x) is also an instance of that property.

“Individuals” in OWL are defined by individual axioms. There are two
types of individual axioms including class membership and individual
identity. An individual can be introduced by declaring it as a member of
a class. For example, the axiom <Color rdf:ID="Blue"/> indicates that

individual “Blue” is a member of class “Color”.

There are three individual identity constructs in OWL including

owl:sameAs, owl:differentFrom, and owl:AllDifferent which are used to

30

state some facts about the individual’s identity. The owl:sameAs
construct states that two different URIs refer to the same individual.
The owl:differentFrom construct states that two URIs refer to the
different individuals. For example, the following code states that there

are two different colors:

<Color rdf:ID="Blue"/>
<Color rdf:ID="Red">
<owl:differentFrom rdf:resource="#Blue"/>

</Color>

Finally owl:AllDifferent construct states that all declared individuals in
the list are all different. As an example, the following code declares that
all three URIs are different colors:

<owl:AllDifferent>
<owl:distinctMembers rdf:parseType="Collection">
<Color rdf:about="#Blue"/>
<Color rdf:about="#Red"/>
<Color rdf:about="#Green"/>
</owl:distinctMembers>
</owl:AllDifferent>

2.8 RDF Query Languages

RDF query language is used to get information out of a knowledgebase
and manipulate stored data in RDF format. It allows end users and
developers to write desired queries and consume the query results across
broad range of information on the Web. Several languages have been
proposed for querying RDF documents and SPARQL is introduced as a
standard query language for RDF documents by W3C.

31

2.8.1 Various Query Languages

Several query languages such as RQL (RDF Query Language), SeRQL
(Sesame RDF Query Language), SquishQL, RDFPath, Versa, TRIPLE,
DAML+OIL Query Language, RDQL, RDFQL, N3, iTQL, RStar,
SPARQL, and so on have been introduced for RDF documents.

All of the mentioned query languages were intended to provide a proper
query language for RDF documents. Some of them including RQL,
SeRQL, TRIPLE, RDQL, N3, and Versa have been described and

compared in “A Comparison of RDF Query Languages”, reference [32].

2.8.2 SPARQL

SPARQL is the standard RDF query language and data access protocol
introduced by W3C for easy accessing to RDF documents in Semantic
Web. It is defined in connection with RDF data model and works with
any data source that can be expressed by RDF. The SPARQL query
language provides syntax and semantics for getting information from
RDF graphs. It provides some facilities to extract information in various
forms such as URIs, blank nodes, and plain and typed literals. It also
has facilities to extract RDF sub graphs and construct new RDF graphs

using information in the queries [33].

Matching graph patterns is the basis of SPARQL query language. The
simplest basic graph pattern can be a triple pattern like RDF triple with
variables instead of subject, predicate, and object. These graph patterns
can be used as basic patterns for RDF graphs in order to retrieve query
results. There is no inference in the SPARQL query language and it

only queries the information in RDF graphs.

As an example, consider the following RDF data, which is presented in

section 2.2.2:

32

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:foaf="http://xmlns.com/foaf/0.1/" >

<rdf:Description rdf:about="http://www.bogus.com/index.html">
<dc:creator rdf:resource="http://www.bogus.com/staffid/10"/>

</rdf:Description>

<rdf:Description rdf:about="http://www.bogus.com/staffid/10">
<foaf:name>Bob</foaf:name>

</rdf:Description>

</rdf :RDF>

The following example shows a simple SPARQL query to find the
“name” of the staff member 10 from the information in the above given
RDF graph.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name

WHERE

{

<http://www.bogus.com/staffid/10> foaf:name ?name .

}

In the above code, PREFIX foaf defines namespace of vocabulary
http://xmlns.com/foaf/0.1/, SELECT clause of the query identifies
variable “name” which is the query result, and WHERE clause of the
query contains one triple pattern. The result of query based on the

mentioned RDF graph will be:

A complete description of the SPARQL query language is available on
W3C site [33].

33

2.9 Implemented applications

Some of the implemented applications based on Semantic Web are
briefly explained in this section as a sample of Semantic Web

applications.

e Friend of a Friend (FoaF): Friend of a Friend (FoaF) project is
one of the popular implemented applications of Semantic Web. It
is about describing people, relationships among them and the
things they have created in the form of a machine-readable web.
FOAF is implemented on the basis of RDF and defined using

OWL in order to share data between different environments. [13]

¢ BigBloZoo: BigBlogZoo is a Semantic Web Browser in which
around 70,000 News feeds and Blogs, which are called channels,
have been categorized using the DMOZ' Schema. This information
is in machine-readable XML format. The BigBlogZoo allows a
web user to search and browse those channels and save the results

as channels. [14]

¢ Piggy Bank: Piggy Bank is a new free plug-in and an extension to
the Firefox web browser, which makes it as a Semantic Web
browser. Existing information and web scripts on the web are
extracted and translated into RDF information and stored on the
web user’s local computer using Piggy Bank. Therefore, this
information can be used independently in other contexts in more

useful ways. [8] [15]

! Another name for the Open Directory Project (ODP): the largest human edited directory of
the Web which is maintained by a community of volunteer editors. For more information see:

http://www.dmoz.org/

34

Chapter 3

Method

This chapter presents the vision document of the project. It is written
based on the vision template of Rational Unified Process (RUP) [34].
The Rational Unified Process is an iterative framework for software
development process, which is created by the Rational Software
Corporation [35], [36].

The goal of this chapter is to collect and define high-level features and
needs of the Ultimate Ontology Management System (UltimateOMS).
This section focuses only on the required capabilities of the stakeholders
and users, and why these needs exist. The details of how UltimateOMS
fulfills these needs are described in the use case specifications in

appendix B.

3.1 Positioning

3.1.1 Business Opportunity

This software will be a new ontology management system based on
Jena, which is an open source java framework for building Semantic
Web applications. The new tool will enable users to create and manage
their semantic data (ontology components) using the web based user

interface.
The new tool will bring necessary functions for managing semantic data

in one place thus making it much easier for users to create and manage

ontology components.

35

3.1.2 Problem Statement

The problem of

The lack of proper tool for creating and
managing of semantic data (ontology

components)

Affects

Users dealing with semantic data

The impact of which is

A slow and costly timely process to create

and manage semantic data

A successful

would be

solution

Developing a new application in which all
necessary functions are provided in one
place in order to facilitate creating and

managing of semantic data

3.1.3 Product Position Statement

For Users dealing with semantic data

Who Want to create and manage semantic data
(ontology components)

“Ultimate Is a software product

Ontology

Management

System

36

(UltimateOMS) ”

That Facilitate creating and managing of semantic
data by providing all necessary functions in

one place

Unlike The current exciting tools for creating and
managing semantic data, which do not
provide all required features for users dealing

with semantic data

Our product Provides an ultimate ontology management
system with all necessary functions in one
place in order to facilitate creating and
managing semantic data (ontology

components)

3.2 Stakeholder and User Descriptions

This section describes the profile of the stakeholders and users of the
Ultimate Ontology Management System and the key problems that
should be addressed by the proposed solution. There are two types of
users of UltimateOMS: Administrator, and Users.

3.2.1 Market Demographics

The target market for this system includes all users who deal with
semantic data and intend to create, manage, use, and even share

semantic data in the Web.

37

3.2.2 Stakeholder Summary

The following summary list, presents all identified stakeholders in the

system.

Description

Responsibilities

Administrator

Administrators

of the system

Ensures that the system will meet
the needs of the ontology
management system, who has to
install and manage the application,
maintain databases, and modify

system configuration

User

End users of the

system

Represents the interests of the users
and ensures that the system will

meet the needs of system end users

3.2.3 User Summary

The following summary list, presents all identified users in the system.

Description

Stakeholder

Administrator | Installs and manages application, self-represented
maintains databases, and modifies
system configuration

User Creates and manages semantic self-represented

data (ontology components)

38

3.2.4 User Environment

Users will require a web browser such as “Mozilla Firefox” and
“Internet Explorer” in order to interact with system for creating and

managing their semantic data.

3.2.5 Stakeholder Profiles

The following lists describe each identified stakeholder in the system.

o Administrator:

Description Individuals who are administrators of the system

Type The administrator is an expert user who knows detail

information about the application

Responsibilities The administrator is responsible for reviewing system

requirements

Success Criteria Ability to maintain the application

Involvement Requirements reviewer
Comments / None
Issues

39

o User:

Description Individual who is an end user of the system dealing with

semantic data

Type The User is a primary and end user of the system

Responsibilities The User ensures that the system will be acceptable to

users in terms of provided features and ease of use

Success Criteria Ability to work easily with system and create and

manage semantic data

Involvement Provides reviews of preliminary version of software in

order to fix problems

Comments / None

Issues

3.2.6 User Profiles

User profiles are covered under the previous section.

3.2.7 Key Stakeholder or User Needs

The following list describes the main concerns and needs of the system’s

stakeholders and users.

40

USTH [EENisa%

Concerns

Current

Solution

Proposed Solutions

Integrated Creating and | Currently Users would like to
Ontology managing of |users must | have integrated
Manageme semantic data | use different | application in which
nt System is a slow, tools in order | all necessary functions
costly and to create and | are provided in one
timely process | manage their | place in order to
semantic facilitate creating and
data managing of semantic
data
Web based E Maintaining a | Using web | Using web based
user £ | new version of | based application technology
interface : software in application
client side is | technology
costly
Ease of use o% Ability to Using Designing a new user
= provide standard friendly web interface
navigations in | navigations
user interface | in web
interface
Storing o% Ability to store | Storing data | Storing data in
semantic = semantic data |in different | different databases
data in in different databases using JDBC in Java
different databases using JDBC | applications
databases in Java
applications

41

Visualizati E Ability to Currently Providing graph
on of = make graph of | users must | facilities seamless in
semantic the generated | different application by using
data semantic data | types of tools | Graphviz as a graph
to create | generator
semantic
data and
generate
graph
Scalability § Ability to store | Using a | Supporting different
£ | hug number of | scalable types of databases for
- semantic data | database different types of user
records in requirements
database
Security § User data Using Using database
=) appropriate security mechanisms,
. security like identifying system
mechanism users as database users

provided in
web
technology

and database

or any identity
management system
that the database

supports such as using
LDAP directories

42

3.3 Product Overview

This section delivers a high-level view of UltimateOMS capabilities,

interfaces to the external Semantic Web Framework and supported

back-end databases, and Graph Generator System.

3.3.1 Product Perspective

UltimateOMS leverages from the existing Semantic Web Framework,

Jena and its supported back-end databases, and graph generator system

as shown graphically in the figure 3.1.

-
Request
UltimateOMS
\h I
Jena
MySOL

Graphviz

Figure 3.1: UltimateOMS high-level diagram

UltimateOMS will consist of server components, which reside on

UltimateOMS server. The server components use the Jena APIs and

interact with Graphviz for generating graph, which are both resided on

43

the same server as UltimateOMS resides on. However, databases can be

installed on either different servers or the same server, which is used for
UltimateOMS.

There is no specific client component in UltimateOMS because it is a
web based application. The users may access UltimateOMS from their
PC either through the LAN or through Internet using a web browser. A
valid username and password 1is required in order to access
UltimateOMS.

3.3.2 Summary of Capabilities

The following table identifies the main capabilities of UltimateOMS in

terms of benefits and features.

Customer Benefit Supporting Features

Easy and convenient | Users may access the ontology management
access system from anywhere through Internet

using a web browser

Secure access A valid username and password is required

in order to gain access to UltimateOMS

Easy to use A user friendly web based user interface
makes it very easy to users for managing

Semantic data

44

Fasy to manage and

manipulate Semantic data

UltimateOMS the

functions in one place in order to facilitate

provides necessary

creating, manipulating, and managing

Semantic data (ontology components)

Broad choice for backend

system

Users may store and manage their semantic

data in different types of databases

Visualization graph of

Semantic data

UltimateOMS provides

seamless in application by using Graphviz as

graph facilities

a graph generator

Querying Semantic data

and exporting the result

Users may query Semantic data using
querying by

UltimateOMS and export the query results

facilities provided

Inferring Semantic data

Users may infer Semantic data using

inferring facilities provide by UltimateOMS

Table 3.1: Capabilities of UltimateOMS

3.3.3 Assumptions and Dependencies

The following outlined assumptions and dependencies are related to the
capabilities of UltimateOMS:

e [t is assumed that a correct version of Java platform, Standard
Edition, J2SE 1.5 or higher is installed on UltimateOMS server.

e It is assumed that an application server such as Tomcat, JBoss, or

Oracle Internet Application Server is installed on UltimateOMS

server.

45

e The current version of Jena, at the moment Jena-2.5.2, is included
in UltimateOMS package.

e It is assumed that a proper version of Graphviz is installed on
UltimateOMS server.

e It is assumed that all required databases are installed and configured
on either different servers or the same server, which is used for
UltimateOMS.

3.4 Product Features

This section defines and briefly describes the features of UltimateOMS.
Features are the high-level capabilities of the system that are essential
to give benefits to the users. Each feature will be described in detail in
the use case model. For more information regarding use case model see

appendix B.

o Modify UltimateOMS System Configuration

The system shall allow the administrator to modify system
configuration file. It includes some parameters related to
databases and graph. The administrator can modify the

configuration file for the following actions:

¢ Adding new database
¢ Modifying database parameters
¢ Removing database

¢ Modifying graph parameters

46

o Logon

Users shall provide a valid username and password and specify an
available database for access to UltimateOMS. Administrators
will assign usernames and passwords to the wusers. These
usernames and passwords should match the database

usernames/passwords.

o Show and Search Models

The system shall display all available users’ models, which already
exist in the connected database, as a list to the users. The system
shall also allow the users to search for a specific list of models
stored in the connected database by typing some part of desired
model’s name. The system shall display all the filtered models as
a list to the user in which model’s names contain the user typed

part.
o Create, Import, and Upload Model

The system shall allow the users to create an empty model in
connected database, import a model in different formats from
anywhere in Internet into the connected database, and upload
a model in different formats from local file system into the
connected database by providing all necessary information. The

new model shall be displayed in Show Model list.

o Select a Default Model

The system shall allow the users to select a default model from

the list of existing models in database in order to work with it.

47

48

Export Model

The system shall allow the users to export the default model from
the connected database in different formats into local file system
by providing all necessary information. The users shall be asked
to specify a local directory path in which the export-

ed model will be saved.

Show and Export Model Graph

The system shall enable the wusers to view graph of
the default model by parsing the default model and sending
a proper file to Graphviz. The generated Graphviz file shall be
displayed to the users using a java applet application. The system
shall also allow the users to export the generated model graph in
different formats into local file system by providing all necessary
information. The users shall be asked to specify a local directory

path in which the exported graph of model will be saved.

Query Model and Export Query Results

The system shall enable the users to query the model from the
connected database by providing desired SPARQL query. The
system shall display all the query results as a list to the user. The
system shall also allow the users to export the query results in
different formats into local file system by providing all necessary
information. The users shall be asked to specify a local directory

path in which the exported query results of model will be saved.

Infer Model

The system shall enable the users to infer the model from the
connected database using different available types of “Reasoner”

or “Generic Rule Reasoner” by providing all necessary

information. The inferred results shall be saved in the connected

database as a new model with the specified name.

Show Model Statistics

The system shall enable the users to see all statistics information
of the model.

Check Model Consistency

The system shall enable the users to check the model consistency
in the connected database by providing all necessary information.

The generated report shall be displayed to the users.

Delete Model

The system shall enable the users to delete a selected model from

the connected database.

Show and Search Triples

The system shall display all the existing triples of the model as a
list to the wusers. The system shall also allow the users to
search for a specific list of triples of model by typing some part of
the desired triple’s subject name, predicate name, object name,
or all of them. The system shall display all of the filtered triples

of the model as a list to the user.

Browse Triples
The system shall enable the users to browse triples of a selected

resource in model. The system shall display all the filtered triples

of the model as three different lists to the user in which triples’

49

50

subject name, predicate name, or object name is equal to the

selected resource.

Select Triple

The system shall allow the users to select a triple from the list of

existing triples in model in order to deal with it.

Create, Edit, and Delete Triple

The system shall allow the users to create a triple for model by
providing all necessary information, edit a selected triple of model
by modifying all necessary information, and delete a selected

triple from model.

Show and Search Classes

The system shall display all the existing classes of the model as a
list to the users. The system shall also allow the users to
search for a specific list of classes of model by typing some part of
the desired classes’ name. The system shall display all the filtered
classes of the model as a list to the user in which classes’ names

contain the user typed part.

Select Class

The system shall allow the users to select a class from the list of

existing classes in model in order to deal with it.

Create, Edit, and Delete Class

The system shall allow the users to create a class for model by

providing all necessary information, edit a selected class of model

by modifying all necessary information, and delete a selected class

from the model.

Create Instance for Class

The system shall allow the users to create an instance for a

selected class by providing all necessary information.

Show Class Details

The system shall enable the users to see all categorized detail

information of the selected class.

Show Class Triples

The system shall enable the users to see all the existing triples of

the selected class as a list.

Show and Search Properties

The system shall display all the existing properties of the model
as a list to the users. The system shall also allow the users to
search for a specific list of properties of the model by typing some
part of desired properties’ name. The system shall display all
the filtered properties of the model as a list to the user in which

properties’ names contain the user typed part

Select Property

The system shall allow the users to select a property from the list

of existing properties in model in order to deal with it.

51

92

Create, Edit, and Delete Property

The system shall allow the users to create a property for model by
providing all necessary information, edit a selected property of
model by modifying all necessary information, and delete a

selected property from model.
Show Property Details

The system shall enable the users to see all categorized detail

information of the selected property.
Show Property Triples

The system shall enable the users to see all the existing triples of

the selected property as a list.

Show and Search Individuals

The system shall display all the existing individuals of the model
as a list to the users. The system shall also allow the users to
search for a specific list of individuals of model by typing some
part of desired individuals’ name. The system shall display all
the filtered individuals of the model as a list to the user in which

individuals’ names contain the user typed part

Select Individual

The system shall allow the users to select an individual from the

list of existing individuals in model in order to deal with it.

o Edit and Delete Individual
The system shall allow the users to edit a selected individual of

model by modifying all necessary information and delete a

selected individual from model.

o Show Individual Details

The system shall enable the users to see all categorized detail

information of the selected individual.

o Show Individual Triples

The system shall enable the users to see all the existing triples of the

selected individual as a list.

3.5 Constraints

In addition to the mentioned assumptions and dependencies in Section

3.4.3, the following constraints apply to UltimateOMS:

e The system shall not have any dependency to any specific operating

system.

e The system reliability and performance in terms of response time are
limited to the reliability and performance of the Jena Semantic Web

Framework.

53

o4

Chapter 4

System Design

This chapter reviews the technologies and concepts related to the
architecture of the application, and finally presents the architecture of
the proposed solution for implementing Ultimate Ontology Management
System (UltimateOMS).

4.1 JSP Technology and Java Servlets

JavaServer Pages (JSP) technology makes Web developers capable of
rapidly developing and maintaining platform independent web based
applications. JSP technology separates the business logic from user
interface design, enabling user interface designers to change page design
and layout without changing the business logic. The logic, which
generates the page contents, is encapsulated in the specific tags in JSP
files. The application business logics can reside in the server in the form

of Java Beans components, which are accessible by JSP pages tags.

Java Servlets are server side and platform independent components that
can be used to extend Web server -capabilities with minimum

maintenance and overhead.

JSP technology and Java Servlets can be used together in order to
develop platform independent applications which have enhanced
performance, separated business logic and user interface design, and

ability to extend into enterprise applications. [37]

A simplified architecture of JSP and Java Servlets technologies [44] are

shown in figure 4.1.

95

Server

JSP or Servlets
Request/Response

Client requests are
intercepted here

Browser or Client

I-:-: uses or instantiates >>

[i —o{]

Database

Browser or Client

Figure 4.1: JSP and Servlets, simplified architecture

4.2 Semantic Web Framework: Jena

Jena is an open source Java framework for building Semantic Web
applications developed by the Hewlett-Packard Company. Jena
framework provides Application Program Interfaces (API) for RDF,
RDFS, OWL, and SPARQL and also includes a rule based inference
engine [38].

Jena has a simple abstraction of the RDF graph as an interface, which
facilitates implementations of in-memory, database-backed, and inferred
graphs. Persistence for RDF graphs is implemented by Jena database
subsystem using back-end relational databases and through JDBC
connections [19]. Therefore, using provided Jena model interfaces, users

can store RDF graphs in different supported relational databases.

96

The latest version of Jena, Jena 2.5.2, supports MySQL, HSQLDB,
PostgreSQL, Oracle, Apache Derby, and Microsoft SQL Server
databases [39).

Jena2 is the second generation of the Jena that complies with the
revised RDF specification. As shown in Graph Layer in figures 4.2, the
RDF graph is the heart of the Jena2 [5]. The Graph Layer design, which
is based on the RDF Abstract Syntax [17], is minimal and
implementation is done as much as possible in other layers. Therefore, it
is possible to have a range of different implementations for Graph
Layer. Jena2 provides different types of implementations for Graph

Layer such as in-memory and persistence triples stores.

o7

-,
(Ontology Models
~
'(rMuduI Layer
m Meadel Resource
AP layer
Jenal compatibility
Statement —
h | ¥
e B
EnhGraph Layer
v | \ 4
EnhGraph EnhNode
MNodes in context M |
Polymorphism I |
equality |
LY | 1 | A
= l ' ™y
Graph Layer * | *
Graph Mode
Fast-Path Qluery i
Reification Triple
L A
materialized graphs virtual graphs
in-memary ; : ;
D (Inrernng] [gaph unlur]
S0L database

Figure 4.2: Jena2 architecture

EnhGraph Layer is an intermediate layer between both the Model and
Ontology Layers and the Graph Layer. The EnhGraph provides
multiple simultaneous views of graphs and nodes, which can be used by
Model and Ontology APIs. In Jena, all states are kept within the Graph

and the other presentation layers are stateless. [40]

Due to compatibility with Jenal, I/O is done in the Model Layer. Model
API, which is the primary abstraction of the RDF Graph in Jenal, is

98

maintained in Jena2. The Model API provides a complete set of
methods for applications in order to operate on both the Graph and
Nodes within graphs. [40]

Jena is a leading Semantic Web programmers’ toolkit, which is in
widespread use [41]. It is available for download from SourceForge®. In
order to keep compatibility with ongoing W3C standards and also
provide much richer APIs, Jena still is under development. Support is

provided through the Jena-dev mailing® list on Yahoo.

4.3 Databases

Considering the fact that users usually deal with large amount of
semantic data, it is necessary to provide a mechanism for users in order
to store and retrieve this data in an efficient way. The good choice is to
use the conventional RDBMS databases. To do this efficiently, a very
good option is to choose a Semantic Web framework, which provides not
only the APIs for storing and retrieving Semantic data but also supports

wide ranges of relational databases.

Jena has the APIs for storing and retrieving Semantic data and also
supports persistent storage of RDF data in a wide range of relational
databases. [39] Jena provides many APIs and java interfaces such as
Model and Query to access and manipulate stored RDF data in
databases. Moreover, for consistency reasons, applications are not
allowed to access the stored data in databases directly and Jena
provides all necessary APIs for dealing with stored data instead of

accessing it directly.

2 SourceForge.net is a centralized location for open source software developers to control and
manage software development.

3 Mailing list of Jena-dev is: jena-dev@groups.yahoo.com

99

4.3.1 Denormalized Schema

Storing triples is the widely used scheme for storing RDF statement in
relational databases. Jena uses this approach to store each RDF
statement, including subject, predicate, and object, as a single row in
the Statement Table, which has three columns corresponding to them.
In addition to those three columns, the Statement Table has another

column indicating if the object of that statement is a literal or a URIL.

Jenal uses normalized schema approach, which uses less storage space
in databases. In normalized approach, the literals and resources of all
statements are stored in Literal Table and Resource Table. Therefore,
Statement Table stores references to the values of resources and literals
instead of storing their value directly. As a result, in this approach less
space is used; because the literals and URI resource values are only
stored once but used several times. However because retrieving a
statement requires a join on three different tables, the performance will

be affected as the number of statements increase. [19] [40] [42]

In order to have efficient retrieval, Jena2 uses demoralized schema
approach, which is a hybrid approach of normalized and standard triple
store. Using this approach in Jena2, short literals and URI resources will
be stored directly in the Statement Table. However, long literals and
URI resource are only stored once and only the references will be stored

in the Statement Table similar to the approach in Jenal.

Jena2’s approach uses more storage space than Jenal, but it has better
response time and it is better in terms of space-time trade off. The
threshold length for short value versus long value is 256 by default, but
it is configurable and it is possible to change it to adjust the space-time

trade off in different type of applications.

60

4.3.2 Tables

This section presents briefly the database tables, which are used in

Jena2. More information regarding to the details of table designs is

available in “Jena2 Database Interface - Database Layout”, reference

[42].

There are two different types of tables in Jena2: Statement Tables and
System Tables.

o Statement Tables

Jena2 uses Statement Tables in order to store asserted statements

and reified statements. There are two different tables as following:

Asserted Statement Table

This table holds asserted statements for one or more
graphs. By default, statements of each graph are stored in
its own statement table, which name has the form
Jena_GiTj _Stmt. In this form 7is graph identifier and ; is

table counter for graph.

Reified Statement Table

This table holds reified statements for one or more graphs.
By default, reified statements of each graph are stored in
its own reified statement table, which name has the form
Jena_GiTj Reif. In this form 7 is graph identifier and ; is

table counter for graph.

o System Tables

Jena2 uses System Tables in order to store metadata and long values

for literals and resources. There are six different tables as following:

61

e System Statement Table

This table, Jena_Sys Stmt, holds system metadata such as
configuration parameters and table names for graphs for
the Jena2.

Long Literals Table

This table, Jena_Long Lit, holds the literals that are long

to store directly in statement tables.

Long Resources Table

This table, Jena Long URI, holds the resources that are

too long to store directly in statement tables.

Prefixes Table

This table, Jena_ Prefix, holds common URI prefixes in

order to minimize used space in database.

Graph Table

This table, Jena_Graph, holds the name and unique

identifier for user graphs.

Lock Table

This table, Jena_Mutex, holds some information, which are
used internally in Jena2 in order to implement some critical

sections.

4.3.3 Supported Databases

Currently the latest version of Jena, Jena 2.5.2, supports the databases
which are listed in the table 4.1. The table also lists the JDBC drivers,
which are compatible with Jena2. [39]

62

Database Engine JDBC Driver

HSQLDB 1.8.0

MySQL 4.1.11 . .

MySQL 5.0.18 JDBC driver versions: 3.0, 3.1, 5.0
PostgreSQL 7.3 JDBC driver 7.3
PostgreSQL 8.0 JDBC driver 8.0

Apache Derby 10.1

Oracle 10 XE Oracle ojdbc14 driver (thin driver)

10.2.0.2

Oracle 9i Release 2 Oracle ojdbc14 driver (thin driver)
10.2.0.2

Oracle ojdbc14 driver (thin driver)
Oracle 10g Release 2 10.2.0.2

Microsoft SQL Server 2005 Express | Microsoft SQL Server 2005 JDBC
SP1 Driver

Microsoft SQL Server 2000 Microsoft SQL Server 2005 JDBC
Microsoft SQL Server Desktop Driver

Edition jTDS version 1.2

Table 4.1: Supported database engines and JDBC drivers by Jena?2

4.4 Graph Generator: Graphviz

Visual representation of RDF data is the easiest way for users in order
to understand the structure of RDF data. To fulfill this goal, visual
graph of RDF data has to be generated using a graph visualization

software.

Graphviz (Graph Visualization Software), initiated by AT&T Research
Labs, is an open source software for generating visual graphs. Graphviz
can generate diagrams by taking descriptions of graphs in a simple text

file. It also provides very useful features for diagrams such as colors and

63

fonts and also it can save them in different formats such as PNG, SVG
and Postscript. [43]

Graphviz has several graph layout programs such as “dot”, “neato and
fdp”, “twopi”, and “circo” in order to generate different types of
diagrams. There are also some different types of viewers such as
“dotty”, “tcldot”, “WebDot”, “Grappa”, “ZGRViewer”, and “Mac OS
X graphviz” for different types of needs and environments. The latest
version of Graphviz for different environments are available to download

from www.graphviz.org.

4.5 UltimateOMS Architecture

The following diagram (see figure 4.3) shows the proposed architecture

of UltimateOMS in order to fulfill user needs presented in chapter 3.

UltimateOMS

Graphviz

JavaSever Pages (JSP)
and

Java Serviats
HTTP Request Java Beans
& Response

[Jena Semantic Web Framework J

\ B v,

v

(JDBC Drivers)
I
J0oggogy

MySQL HSOLDB PosigreSQL Oracle Apache Microsoft

Derby SOL Server
Databases

Web Browser

Figure 4.3: Architecture of UltimateOMS

64

4.5.1 JSP and Java Servlets framework

As shown in the architecture in Figure 4.3, the JSP and Java Servlets
technologies are used together in order to develop UltimateOMS. Both
JSP and Java Servlets are server side components that reside on an

Application Server such as Tomcat, JBoss, Oracle Application Server.

Users’ requests are collected by JSP and Java Servlets using HTTP
Requests. The proper business logic, depending on the type of the
request, will be executed using either Java Beans or Java Servlets. The
operation results will be sent to users with HTTP Responses using JSP
pages. Those JSP pages are the presentation layer and contain HTML

tags and dynamic contents.

Because UltimateOMS is a web based application, there is no specific
client component for clients. The users may access UltimateOMS from
their PC either through the LAN or through Internet using a web
browser. However, a valid username and password is required in order
to access UltimateOMS.

Interaction between users and UltimateOMS will be carried out through

HTTP protocol in order to send users requests and receive responses.

4.5.2 Jena

UltimateOMS leverages from Jena Semantic Web framework, in order
to enable users with creating, manipulating, and managing Semantic

data. Jena resides on the same server as UltimateOMS resides on.

Depending on users’ requests and business logics, Jena APIs will be used
by Java Beans, Java Servlets, and JSP pages in order to fulfill users’
demands on Semantic data management including create, store, retrieve,

manipulate, and more.

65

4.5.3 Databases

Databases are used by Jena Semantic Web framework in order to store
and retrieve Semantic data. Jena supports wide range of databases such
as MySQL, HSQLDB, PostgreSQL, Oracle, Apache Derby, and
Microsoft SQL Server, as mentioned in the Section 4.3.3, through JDBC
drivers. Required databases can be installed and configured on either

different servers or the same server as UltimateOMS.

4.5.4 Graphviz

In order to generate visual graph of the Semantic data, UltimateOMS
will interface with Graphviz. Graphviz resides on the same server as
UltimateOMS. Both Graphviz and UltimateOMS use a shared area in
the server in order to keep temporary files, which are used to
communicate with each other. In our case, the shared area is a specific
directory, which is accessible by both Graphviz and UltimateOMS.

Depending on users’ requests for displaying or exporting graphs of
Semantic data, Java Beans and Java Servlets will interact with the
layout program of Graphviz, which is “dot” in our case, in order to

generate the visual graph.

In case of displaying the generated graph in web browsers,
UltimateOMS will send the generated graph to users through a Java
applet application. In this case, web browsers in client side have to be

Java enabled in order to load the Java applet and display the graph.

66

Chapter 5

Implementation

In order to fulfill the specified user needs in chapter 3, a software
prototype has been developed. This chapter presents detail information
about the implementation of UltimateOMS whose architecture is shown

in figure 4.3.

5.1 Development Platform

The development platform was Windows XP Professional SP2. The
code of the prototype was developed in “Oracle JDeveloper Version
10.1.3.17, which is a free integrated development environment, [45]
using “Java Platform, Standard Edition Version 5.0” [46]. During the
code development, both “embedded OC4J* in Oracle JDeveloper” [47]

and “Apache Tomcat Version 5.5” [48] were used as Application Server.

As mentioned in chapter 4, “Jena APIs Version 2.5.2” [38] was used as
Semantic Web Framework for Java. Both “Oracle Database 10g Express
Edition” [49] and “MySQL Version 5.0” [50] databases were used during

the code development in order to store and retrieve Semantic data.

“Graphviz Version 2.12”7 [43] was used as visual graph generator for
Semantic data and “Applet version of IsaViz” [51] was used as graph

viewer.

All above mentioned tools and softwares are free and available to

download from the corresponding web sites.

* 0C4J (Oracle Containers for J2EE) is the core J2EE runtime component of Oracle

Application Server. See reference [47].

67

5.2 System Configuration

This section describes the provided method for administrators to
configure UltimateOMS. The administrators define end users and also

modify system configuration file.

UltimateOMS enables administrators to modify system configuration by
providing a configuration file. The configuration file name is
systemConfig.xml, which is placed in web application root directory
beside the JSP files. The configuration file is a XML file including some
parameters related to the graph and available databases as shown in

figure 5.1.

<xml werzion="1.0" ehcoding="wihdows-1252" 2=
<SystemConfig-
“Databaselist>
<datahase>-
<description-Ny30L< /descriptions-
1AMy 3 0L fid-
Zdriver>coh.hysqgl. Jdbe.Drivers /drivers
<url>jdbcimysgl: //localhost/test /furls-
< /databaze>-

<database:-
<description-Oracle< /description-
<id=0tacles Ad-
<driverxoracle.jdbeo.driver. OracleDriver< /driver:-
urlxjdbec:oracle: thin: Borcl</ urls
< /databaze:-
< /DPatabaselist>
<GraphParameters:>
<GRAPH PAHEL. WIDTH>1000</GRAPH PAHMEL, WIDTH:
<GRAPH PAHEL. HETGHT600</GRAPH PAHEL, HETGHT-
<SERVLET THMP DIR-D: /SemanticWeb/Tltimate0M3/public_html /temp< /SERVLET THMP DIR
<SERVLET TMP DIR RLIRS-temp/</SERVLET TMP DIR ALIAS>-
<GRAPH VIZ BOOT>D: /Program Files/ATT/Graphviz</GRAPH VIZ ROOT>-
<GRAPH VIZ PATH-D:/Program Files/ATT/Graphviz/bin/dot.exe</GRRAFH VIZ PATH-
<GRAPH VIZ FONT DIR-D: /Program Filez/ATT/Graphwiz< /GRAPH VIZ FOHT DIR-
< /GraphParameters:
< /SystemConfig-

Figure 5.1: Part of the System Configuration file of UltimateOMS

68

5.2.1 Database

As mentioned in Section 4.3.3, a wide range of databases is supported
by Jena Semantic Web framework. Therefore, depending on the end
users choice, the administrator would be able to install and configure

necessary databases.

Administrators can easily add new databases to UltimateOMS and
remove them from UltimateOMS by modifying database parameters in
system configuration file as shown in the DatabaseList section in figure
5.1.

The database parameters in the system configuration file are:

description: a brief description about the database

id: the name of the database which is used in Jena

driver: proper driver of the database

url: URL of the database

UltimateOMS will use the above parameters in order to connect to the
database. The administrator will have a choice to install required
databases either on the same server as UltimateOMS or on separate

Servers.

5.2.2 Graph

UltimateOMS will interface with Graphviz in order to generate visual
graph of the Semantic data. Consequently, Graphviz has to be installed
on the same server as UltimateOMS resides on. The administrator can
easily provide Graphviz installed path directory to UltimateOMS by
modifying identified parameters in the system configuration file. Since,
both Graphviz and UltimateOMS use a shared area in the server in

order to keep temporary files for communicating with each other,

69

specific parameters are also provided in the system configuration file
and the administrator can modify them. In our case, the shared area
would be a specific directory, which is accessible by Graphviz and
UltimateOMS.

There are also some parameters in system configuration file for setting

the width and height of the panel in which graph will be shown.

All mentioned graph parameters are in the GraphParameters section as

shown in figure 5.1.

The graph parameters in system configuration file are:

e GRAPH PANEL WIDTH= The width of the panel in which the
graphs will be shown (in pixel).

e GRAPH PANEL _HEIGHT The height of the panel in which the
graphs will be shown (in pixel).

o SERVLET TMP_DIR: The temporary directory path, which is used

to save the graph temporary files.

e SERVLET TMP DIR_ALIAS. Alias which is defined in application
server and it is a URL mapping in order to access SERVLET TM-
P_DIR contents by application server.

e GRAPH VIZ _ROOT Path of Graphviz root directory.
o GRAPH VIZ PATH Path of the dot.exe directory in Graphviz.

e GRAPH VIZ FONT DIR: Path of the font directory in Graphviz.

70

5.2.3 Users

The administrator defines the end users of UltimateOMS by creating
users in databases. By using database administration’s tool and logging
in database with admin role, the administrator would be able to create
database users. Created database users are application’s end users and
they can access UltimateOMS by logging in to the application through
the login page. Therefore, end users of UltimateOMS directly depend on
defined database users and by removing a specific database user, that

user is no longer able to access UltimateOMS.

For authenticating a user, UltimateOMS tries to establish a database
connection using provided username, password, and type of the
database. If the user is a valid user in the specified database, then user
will have access to UltimateOMS. Otherwise, the authentication process

will fail and user will be informed by proper messages.

5.3 JSP and Java Servlets

All the features and user requirements, which are specified in Use Case
Models in Appendix B, are implemented using JSP and Java Servlets
technologies. All user interfaces are designed by JSP technology using
JSP Standard Tags, HTML Tags, “Jakarta Input Tag Library” [52],
and CSS (Cascade Style Sheets).

UltimateOMS business logics are implemented using Java Servlets and
Java Beans except for some cases in which the business logic is simple

where it is implemented within JSP pages.
Jena APIs are used when it is necessary to deal with Semantic data.

UltimateOMS implementation consists of 65 JSP pages, 25 Java Classes

including Java Servlets and Java Beans, one Cascade Style Sheets, and

71

one system configuration file. All the Java Classes reside in Java

Package named se.kth.ict. ultimateoms.

5.3.1 Authentication

Authentication is done using username and password provided by
administrators. Using Login Page end users enter their usernames and
passwords and identify the database, to which they want to connect.
UltimateOMS authenticates end users by establishing a database
connection using received information. If the database connection is
successfully established then the user is a valid user in the specified

database and the user will have authorization to access UltimateOMS.

If the authorization was successful, UltimateOMS will create a new
Session Bean for connected user in order to store session data and

status. The Session Management is presented in section 5.3.2.

Using SSL (Secure Socket Layer) protocol it is quite possible to make
communication between end users and UltimateOMS more secure. Since
the security was not the crucial part of UltimateOMS, this part it is not

implemented.

5.3.2 Session Management

All the information and status related to the connected user are kept in
a Session Bean. By storing session data in the Session Bean,
UltimateOMS can keep track of the connected users’ requests. The
Session Bean is a Java Class and named SessionBean.java in
UltimateOMS package. It will be created for each connected end user

and is used in almost all JSP pages using the following JSP Tag:

<jsp:useBean id="session Bean"
class="se.kth.ict.ultimateoms.SessionBean"

scope="session"/>

72

As shown in the JSP Tag, the scope of the Session Bean is Session,
which means that the created Session Bean is valid as long as the
session between client web browser and UltimateOMS Application
Server is not expired. If end users do not have interaction with
UltimateOMS for specific amount of time, which is adjustable in the
Application Server, the Session Bean will be expired for security reasons

and the end users will be forwarded back to the Login Page.

The Session Bean consists of some Java variables and Setter/Getter
methods in order to set the variables and get the variables respectively.
The Session Bean keeps some data such as uwusername, password,
databaseName, and all other requires data, which are necessary for

UltimateOMS. A small part of the Session Bean is shown in figure 5.2.

73

private String userName:
private String password:
private String databaselNane:

public woid setUserName (3tring walue) {
userlame = walue;

}
public 3tring getUserName () {
return userName ;

public wvoid setPassword(3tring walue) {
password = walue;

}
public String getPassword() {
return password;

public void setDatabaseNane (3tring walue) §
databaselamne = walue;

+
public 3tring getDatabaselName (] {
return databaseName;

Figure 5.2: Part of the Session Bean used in UltimateOMS

The Session Bean also keeps the parameters of the system configuration
file, which are specified by the administrator. By keeping the system
configuration parameters in the Session Bean, UltimateOMS accesses
the file system once for each user. By using this method, it is not
necessary to read the system configuration file for each user request.

This method optimizes the performance of the application.

Setting system configuration parameters in the Session Bean will be
done once for each user during the authentication process by using
provided methods in Util Java Class, which is part of UltimateOMS
package. For instance, the setGraphSettings method in Util Class reads

74

the system configuration file, systemConfig.xml, in order to parse the
XML file and set the proper variables in the Session Bean. Therefore,
whenever it is necessary to have the graph parameters in UltimateOMS,

the value of the related variable in the Session Bean will be used.

5.3.3 Validation and Error Handling

The user data are validated both in the client side and in the server

side.

In client side, the validation is done using JavaScripts. JavaScripts will
check user data in some cases and alert users if validation error is found.
For instance, if the value of a specific field in HTML form cannot be
empty, the proper JavaScript makes sure that specified field is not

empty before sending it to UltimateOMS.

The server side validations are done in the Java Servlets and Java

Beans depending on the related business logic.

UltimateOMS uses JSP framework error handler in order to handle the
raised exceptions and errors in the application. In our case a specific
JSP error handler page, errorPage.jsp, is responsible for catching the
raised exceptions in the application and showing the proper message to
the end users. Each JSP page identifies its error handler using the
errorPage attribute in the following JSP Tag:

<%@ page language="java" contentType="text/html;

charset=150-8859-1" errorPage="/errorPage.jsp"%>

There is also an Exception Java Class defined in UltimateOMS in order
to throw a new exception in application explicitly. Whenever it is
necessary, the business logics in UltimateOMS can throw a new
exception with a proper message by using UltimateOMSFException Java
Class in order to show a specific error to the end user. Those explicit

exceptions will be caught and shown to the end user by errorPage.jsp.

75

5.4 Graph Visualization

This section describes the method used in UltimateOMS for generating

and displaying visual graph of Semantic data.

5.4.1 Graph Generator

As mentioned earlier, UltimateOMS will interface with Graphviz in
order to generate visual graphs of Semantic data. The method used in
UltimateOMS is the same as the method used in W3C for generating
visual graphs, which is demonstrated in a Java Servlet example,
ARPServiet.java that implements W3C RDF validation service [53]. In
addition to the RDF validation, this Java Servlet parses the RDF data

using Jena APIs and generate visual graph using Graphviz.

Some parts of the ARPServiet.java were used as a base code, some
modifications were made, and a new Java class, Graph.java, was made
to fulfill the graph requirements in UltimateOMS. In Graph class, the
identified model that contains Semantic data is parsed using Jena APIs
in order to extract all resources such as subjects, predicates, and objects.
During the parsing process, a graph description file will be generated as
an input file for Graphviz. The generated graph description file will be
stored in a specific directory, which is accessible by both UltimateOMS
and Graphviz. As mentioned in the Section 5.2.2, the directory path can
be set and identified using graph parameters in the system configuration
file.

The suitable layout program of Graphviz, which is “dot” in our case,
will be executed using Java Runtime Class in order to generate visual
graph. By executing a command, Graphviz will take the generated
graph description file as an input and generate visual graph as SVG
(Scalable Vector Graphics) format. The generated SVG file will be

stored in the shared directory.

76

If the end user intention was seeing the generated graph in a web
browser, Graph class will send the generated SVG file to the user
through a Java Applet application, which is described in Section 5.4.2.

There is also the option to export the generated graph in different
formats. In order to generate and export user’s desired graph format, a
Java Servlet class, GraphExportServiet.java, will parse the identified
model that contains the Semantic data in the way described earlier. In
this case instead of generating SVG format, Graph Export Serviet class
will execute the layout program of Graphviz, “dot”, with proper
parameters in order to generate the desired graph format. The generated

visual graph will be sent to the user.

The visual graph of the Semantic data can be generated and exported in

the following formats:

e PNG (Portable Network Graphics)
® SVG (Scalable Vector Graphics)
e GIF (Graphics Interchange Format)

e PostScript

5.4.2 Graph Viewer

As mentioned in the Section 5.4.1 when the end user intention is seeing
the generated visual graph in a web browser, SVG format of the
generated graph will be sent to the user through a Java Applet
application (see figure 5.3). Therefore, it is necessary to provide a user
interface for the end users allowing them to have smooth zooming and

navigation in the graph.

77

(= Model graph - Windows Internet Explorer

& G | Eodel reph fd - B @ - [Page GTooks - 7

Welcome, sw [Logout] You have connected to the MySQL [Select other datab

UGLCIESN Triples | Classes | Properties | Individuals

gli hitp/fwww bogus.com R
Selected model http:/hwww.bogus.com
Export following graph as: j_[’NG _'f_j export graph

- Isaviz (ZVTH)

¢
Applet org.wic. Isaviz, applet. IsvBrowser started & Local intranet Hi00% v

Figure 5.3: UltimateOMS visualization graph

IsaViz [51] is a visual environment that provides these capabilities. Since
the end users need a visual environment in their web browsers, Applet
version of the IsaViz is used in UltimateOMS. As a result, after
generating SVG format of visual graph, using the method described in
the Section 5.4.1, dynamic Applet tags will be generated in HTML and
sent to the end users. In the client side, the web browser will load the
Applet application, which is identified in the received Applet tags, and
displays the generated visual graph.

Sample of the dynamically generated Applet tags is shown in figure 5.4.

78

<applet code="org.w3c.IzaViz.applet.IsvBrowser.class"
archive="izaviz.jar,zvtm.jar,xercesInpl. jar xnlPacrserAPIs. jar"”
codebage="http: f/localhost: 8985 /UltinatedMs/1ib™
width="1000" height="6500">

<paran names"type” valuss"applicationfx-java-applet:versionsl.q4" />

<parah names"scriptable” valuss"false”/>

<paramn names="widch” wvalue="1000"/>

<param name="height"” wvalue="600"/>

<param name=""svgFile” walue="http://localhost:8988/Ulcinave0M5/ tenp /graph 1. swg™ />

<fapplet>
Figure 5.4: Sample of the dynamically generated Applet tags

As shown in the figure 5.4, the class of the Applet is indicated in code
attribute. archive attribute contains all Java Archives that are necessary
for running the Applet. The generated SVG format of the visual graph
is identified as a parameter, which is the input for the Applet. In
addition, the width and height of the panel in which graph will be
shown, are indicated as input parameters for the Applet. As mentioned
in the Section 5.2.2, the administrator identifies these parameters by

using graph parameters in the system configuration file.

5.5 Management and Manipulation

UltimateOMS provides the necessary features for management and
manipulation of Semantic data using Jena APIs. Those features are
accessible from several menu items. In order to make it a user-friendly
interface, those menu items are categorized under five menu groups:
Models, Triples, Classes, Properties, and Individual, as shown in figure
5.5.

79

(= Models page - Windows Internet Explorer

@)~ |[E e tfocalhost ne0p mimsteots/doLogin.sp SIS £~

% de |[Emodetpsge B~ 8 & e - Gosk - 7
~

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

m Triples l Classes | Properties | Individuals

I < Select a default model > v | select |

Existing Medels in database:

Total number of models: 35 Model

Select "Model” and ... [show graph] [show statistics] [check consistency] [export] [query] [infer] [delete]

Model

hitp:fiwww bogus.com

hitp:iiwww.mindswap._org/2004/owl-3/1. 1/AmazonBookPrice.owl
http:fiwww. mindswap.org/2004/owl-s/1.1/BNPrice. owl
hittp:ffwww. mindswap_org/2004/owl-s/1.1/BabelFishTranslator. owl
http:/fwww. mindswap.org/2004/owl-s/1.1/BookFinder.owl
http:dfwww.mindswap_org/2004/owl-s/1_1/BookPrice owl
hitp:diwww. mindswap.org/2004/owl-s/1.1/CurrencyConverter. owd
hittp:fiwww.mindswap._org/2004/owl-s/1. 1/Dictionary. owl

000000000
W e N B W R s .

http:/iwww. mindswap.org/2004/owl-s/1.1/DisplayURL.owl

O 10. http:fiwww. mindswap._org/2004/owl-s/1. 1/FindCheaperBook. owl

11. hitp:/iwww. mindswap.org/2004/owi-s/1. 1/FindLatLong.owl

O 12 http:#iwww. mindswap_org/2004/owl-s/1_1/FrenchDictionary. owl
v

HTHE * 2 QJLMWN 10w =

Figure 5.5: Categorized menu groups in UltimateOMS for management
and manipulation of Semantic data

5.5.1 Models

In UltimateOMS RDF, RDF Schema, and OWL files are called Models,
which are stored in databases. As shown in figure 5.5 the menu group
Models contains features for management of models such as creating

new model in the database, uploading and importing an existing RDF,
RDF Schema, or OWL files as a new model.

Furthermore, additional features are provided inside the page to
facilitate managing and manipulating models. These additional features
include: searching for specific models in database, selecting a default
model to manipulate, showing visualization graph of a model, showing
statistics about a model (including the number of triples, classes,
properties, and individuals), checking model consistency, exporting a
model (in the formats of RDF/XML, Notation3/N3, and N-Triples),
querying model using SPARQL, inferring model with different types of

inference provided by Jena, and deleting model from database.

80

Graph visualization, inference, and querying features are described in

sections 5.4, 5.6, and 5.7 respectively.

In order to create a new model in UltimateOMS, the method
createModel, which is in ModelMaker interface of Jena APIs, is used.
ModelMaker interface contains some methods for creating new models
or opening previously created models. To create a new model in the
database, it is necessary to create an instance of ModelMaker interface,
which directly creates models in database or opens existing models in

database.

ModelFactory class in Jena can be used to create our desired
ModelMaker. The following code display how to create a ModelMaker

using mentioned methods:

Class.forName (databaseDriver) ;
dbConnection = new DBConnection (databaseURL, userName,
password, databaseName);

modelMaker = ModelFactory.createModelRDBMaker (dbConnection);

In the above code, a new connection to the desired database is
established using constructor DBConnection, which is available in
DBConnection class of Jena APIs. Using the established connection,
createModelRDBMaker method in ModelFactory can create a
ModelMaker. This way, by creating ModelMaker and using proper
methods of ModelMaker, we can create new models in database or open

existing models in database.

UltimateOMS uses read method of Model interface from Jena APIs in
order to import or upload RDF, RDF Schema, or OWL files as new
models in databases. It also uses write method of Model interface for
exporting the existing models in databases in form of a file in a selected
format. Model Interface is defined in package com.hp.hpl. jena.rdf.model
and provides some methods for dealing with models such as read (for
reading RDF, RDF Schema, or OWL files) and write (for writing all

statements in models as a file). UltimateOMS supports different file

81

formats like RDF/XML, Notation3/N3, and N-Triples for importing or
uploading a file as a new model and also for exporting an existing model
as a file.

5.5.2 Triples

Each model in UltimateOMS consists of a set of statements. Because
each statement has three parts (subject, predicate, and object), it is
simply called ¢riple in UltimateOMS. As shown in figure 5.6, the menu
group, 7Triples, contains some features for managing and manipulating
triples, which include creating a new triple in a model, editing an
existing triple in a model, deleting a triple from a model, browsing

triples, and searching specific triples.

(= Triples page - Windows Internet Explorer

G_\:-:" ~ | [hetp: ocan irnateOMS triphes. jsp | 42] | Bl
W H | Erves pooe [l B - B - - [rrege - GhTock - 7
~
Welcome, sw [Logout] You have connected to the MySQL [Select other database]
| Models BTN Classes | Properties | Individuals
| hitp:/fwww bogus.com b

Selected Model: http:/iwww.bogus.com

Triples of the selected model:

Total number of tiples: 13 Search: |All 9 |

Subject Predicate Object Edit Delete

1. hitp:fiwww bogus.com/Table http:/Fwww. w3 org/1999/02/22-rdf-syntax-ns#type http:/fwww.w3.0rg2002/07/owi#Class edit delete

2. http://www_bogus.com/Color hitp:/fwww w3 ong/ 1999/02/22-rdf-syntax-nsitype http:/fwww w3 .org/2002/07/owiRClass edit delete

3. http:fiwww bogus. comicolorhlame hittp:/fwww w3 org/1999/02/22-rdf-syntax-ns#type hittp:/fwww w3 org/2002/07/owi#DatatypeProperty edit delete

4. hitp:ffwww bogus.com/colotName http:/fwww.w3.0rg/2000/01/rdf-schema#domain http:/fwww.bogus.com/Color edit delete

5. http:ffwww bogus.com/colorMame http:/fwww. w3.0rg/2000/01/rdf-schema#range hittp: /v w3.org/2001XMLSchema#string edit delete

6. http:/iwww.bogus.commasColor http:/fwww. w3.0rg/ 1999/02/22-rdf-syntax-ns#type http:/fwww.w3.0rgl2002/07/owi#ObjectProperty edit delete

7. http:/fwww_bogus com/asColor http:/Fwwew. w3 org 2000001 /rdf-schema®kdomain hitp:/fwww_bogus.com/Table edit delete

8. http:fiwww bogus. com/asColor http:/Faww. w3.0rg/2000/01/rdf-schema#range http:/fwww.bogus.com/Color edit delete

9. hittp:/iwww bogus. com/blue http:/Fwww. w3.0rg/1999/02/22-rdf-syntax-ns#type http:/fwww.bogus.com/Color edit delete

10. http:ffwww bogus com/blue http:/fwww_bogus com/colorilame blue edit delete

11, http:fiwww bogus comitablel hittp: /P w3 org 1999/02/22-rdf-syntax-ns#type http:/fwww_bogus com/Table edit delete

12. http-/fwww.bogus comitable1 hitp:/fwww.bogus.com/asColor hitp:/fwww.bogus.com/blue edit delete

13. httpfiwww bogus cam/Table http:/Ferw w3.org/2000/01/rdi-schema#isDefinedBy Reza edit delete

e e B S iiews

__‘J‘MMV

% Local intranet 100 -

Figure 5.6: Triples menu group in UltimateOMS for management and
manipulation of triples

For creating a new triple in a model, UltimateOMS uses provided
methods of the Model interface from Jena APIs. In the triple creation

form, users provide necessary information about the triple including

82

subject, predicate, and object either by typing or by selecting from a
pop-up window. The pop-up window will be created by listResources.jsp
and contains the list of existing resources in the model as well as
vocabulary terms of RDF, RDF Schema, and OWL.

RDF, RDF Schema, and OWL vocabularies as well as datatype
definitions for the XML Schema datatypes are defined in a class called
Vocabulary in UltimateOMS. When the vocabulary terms or XML
Schema datatypes are needed, UltimateOMS uses the appropriate
defined methods such as GetRDFVocabulary, GetRDFSVocabulary,
GetOWLVocabulary, and GetXSDDatatypesin Vocabulary class.

When UltimateOMS receives the provided information about the
subject, predicate, and object, a new triple will be generated in the
model using Jena APIs. As an example, the following code shows how to

create a triple using provided methods of the Model interface:

Resource resource = model.createResource (subject);

Property property = model.createProperty(predicate);

Literal literal = model.createTypedLiteral (object, dataType);

Statement stmt = model.createStatement (resource, property,
literal);

model .add (stmt) ;

In the above code, a new resource for subject of the triple will be
created in the model using createResource method of Model interface.
Using createProperty method, a new property will be created in the
model as predicate of the triple. Since we wanted to create a typed
literal as object of the triple, createlypedLiteral method is used in
above code. By having a new resource for subject, new property for
predicate, and new literal for object and using createStatement method,
a new triple will be created and added to the model using add method
of UltimateOMS.

83

Although there is no API for editing the triples in Jena, but editing a
triple is achievable by simply removing the old triple and creating the

new one with modified values for subject, predicate, and object.

5.5.3 Classes

Classes are used to build basic concepts in ontology. As shown in figure
5.7, the menu group Classes, includes some features for managing and
manipulating of classes. It includes creating a new class in a model,
editing an existing class in a model, deleting a class from a model,

creating a new instance for a class, showing detail information about a

class, showing related triples, and searching for specific classes.

(= Classes page - Windows Internet Explorer

v'+',. x
»

3« B - o~ Page = (FTook =

A
Welcome, sw [Logout] You have connected to the MySQL [Select other database]

Models | Triples Classes Properties Individuals |

hitp:/fwww. mindswap.org/2004/owl-s/1.1/AmazonB ookPrice.owl v

Selected Model: hitp:/iwww.mindswap.org/2004/owl-sM1.1/AmazonBookPrice.owl

Classes of the selected model:

Total number of classes: 76 Class

Select "Class™ and ... [create instance] [show detail] [show triples] [edit] [delete]

Class Subclass Of
http:/fwww.daml org/senicesiowd-s/1. 1/Process owl#Result
http:/fwww.daml.org/senices/ow-s/1_1/Process owl#Repeat-Until
http:/fwww. daml org/senicesiond-s/1 1/Process owl#Binding
hittp:/fwww.isi.edu/~pan/damitime/time-entry. IThing
hitp:fiwww daml org/senices/owd-s/1_1/Process owl#Any-Order
hitp:/fwww.daml.org/senices/owl-s/1.1/Process.owl#Sequence
hitp:fiwwew.daml_org/zenices/owl-s/1_1/Process owlinput http:fiwww. daml org/senices/owl-s/1.1/Process owl#Paramaeter
hitp://www daml. org/senices/owl-s/1.1/Process. owl#ControlConstructBag
http:/iwww.daml. org/senices/owl-s/1. 1/Process. owl#ControlConstruct

. hitp:/fwww daml org/senicesiowl-s/1 1/Process owl#ControlConstructList

D - T - T "SI PR XS P

11. http:/fwww.daml. org/senices/owl-s/1.1/Process owl#OutputBinding hitp:/fwww.daml org/senices/owl-s/1.1/Process

A it Mhinsnss Ansal armiesnisne ol ait 4Dosmnn subil Than Sl

|

Sl Ri00% -

g)C)OOOOOOOOOO

Figure 5.7: Classes menu group in UltimateOMS for management and
manipulation of classes

To create a new class in a model, UltimateOMS uses the methods of

OntModel interface of Jena APIs. In the class creation form, users

provide necessary information about the class, including class’s

84

properties constraints (minimum and maximum cardinality), class’s
axioms (including subClassOf, superClassOf, equivalent, and disjoint),
class’s descriptions (including intersection, union, and complement), and
class’s meta-information (like labels, comments, and annotation

properties).

UltimateOMS lists all available properties of a class in class creation
form and users can identify the cardinality constraints of them. In
addition, values for class’s axioms and class’s descriptions should be
selected from a new pop-up window. The pop-up window will be created

by listClasses.jsp and contains a list of all existing c/asses in a model.

When UltimateOMS receives provided information about the class, the
new class will be generated in the model using the Jena APIs. As an

example, the following code shows how a class is created using methods
of OntModel interface of Jena APIs:

Model model = modelMaker.openModel (selectedModel) ;

OntModelSpec spec = new OntModelSpec (OntModelSpec.OWL_MEM) ;

spec.setBaseModelMaker (modelMaker) ;

OntModel ontModel = ModelFactory.createOntologyModel (spec,
model) ;

newClass = ontModel.createClass(className) ;

In the above code, existing mode/ in the database will be opened by
modelMaker in order to create a new class. Since we want to create an
ontology class, a new ontology model, ontModel, has to be created on
top of the model using createOntologyModel method of ModelFactory
class. To create and ontology model it is necessary to specify the type of
ontology. This can be done using the class, OntModelSpec, and
identifying the type of ontology as OWL. After having the ontology
model, ontModel, a new ontology class will be created and added to the

model using createClass method of OntModel interface.

85

Although there is no API for editing the classes in Jena, editing a class
is achievable by removing the class’s old information and adding a new

one with modified value.

Similar to the technique used for creating a class, UltimateOMS uses
methods of OntModel interface of Jena APIs in order to create an
Instance of a class in a model Instances are called Individuals in
UltimateOMS. In the instance creation form, the user provides necessary
information about the instance including instance’s properties and
instance’s meta-information (like labels, comments, and annotation
properties). All the available properties of a class will be properties of
the instance. Therefore, UltimateOMS lists those properties in the
Instance creation form and users can identify values for the properties
by either typing (when the range of property is literal or typed literal)
or by selecting from a list (when the property range is a list of instances

for a specific class).

The instances, which were created for each class in each specific model,

are available under /ndividuals menu group in UltimateOMS.

5.5.4 Properties

As shown in figure 5.8, the menu group -called Properties in
UltimateOMS includes some features for management and manipulation
of the properties such as creating a new property (either object property
or datatype property) in a model, editing an existing property in a
model, deleting a property from a model, showing detail information
about a property, showing related triples, and searching for specific

properties.

86

(= Properties page - Windows Internet Explorer

@:,L R . m Ay =TI Bl
% 4 |[Epropertes page fi- B & - [rPage - Grok~ "
: ~
Welcome, sw [Logout] You have connected to the MySQL [Select other database]
| Models | Triples [Classes G ECEM Individuals
i | htp:Jfwww.bogus com v [select ||
Selected Model: hitp:/iwww.bogus.com
Properties of the selected model:
Total number of properties: 3 Property
Select "Property” and ... [show detail] [show triples] [adit] [delete]
Property Domain Range
O 1. http:fiwww bogus com/colorame http:ffwww bogus. com/Calor hitp:/fwww. w3.0rg/2001/ XML Schematstring
O 2. hitp-/fwww bogus com/tableMName hittp:/iwww. bogus.com/Table hittp:/iwwew.w3.0rg/20010MLSchema#string
O 3. hitp-fiwww bagus com/masColor http:/fwww. bogus comiTable hitp:/fwww bogus. corm/Color
Wwzr-a? s e e At 8 P
Done S Local intranet F100% -

Figure 5.8: Properties menu group in UltimateOMS for management
and manipulation of properties

For creating a new property in a model, UltimateOMS uses some
methods of OntModel interface of Jena APIs. In the property creation
form, users provide necessary information regarding a property,
including property’s domains and ranges, property’s characteristics
(including functional, inverse functional, transitive, and symmetric),
property’s axioms (including subPropertyOf, superPropertyOf,
equivalent, and inverse), and property’s meta-information (like labels,

comments, and annotation properties).

Properties can be defined as a datatype property or object property.
Values for property domains in both cases have to be selected from a
pop-up window, which is created by ZistClasses.jsp in UltimateOMS and
contains the list of all existing classes in a model. If the property is an
object property, then the range of property is a class and like domain,

its values have to be selected from a new pop-up window.

87

In case of defining datatype property, range values can be selected from
a list, which contains XML Schema datatypes. As mentioned earlier in
section 5.5.2, UltimateOMS uses method GetXSDDatatypes of class

Vocabulary in order to create the list.

Values for property’s axioms have to be selected from another pop-up
window, which is created by /listProperties.jsp in UltimateOMS and

contains list of all existing properties in a model.

When UltimateOMS receives provided information about the property,
the new property will be generated in the mode/ using the Jena APIs.
As an example, the following code shows how to create a datatype

property using methods of the OntModel interface from Jena APIs:

Model model = modelMaker.openModel (selectedModel) ;

OntModelSpec spec = new OntModelSpec (OntModelSpec.OWL_MEM) ;

spec.setBaseModelMaker (modelMaker) ;

OntModel ontModel = ModelFactory.createOntologyModel (spec,
model) ;

newProperty = model.createDatatypeProperty (property);

In the above code, the existing model/ in the database will be opened by
modelMaker in order to create a new property. Since we want to create
an ontology property, a new ontology model, ontModel, has to be
created in the way described in section 5.5.3. After having the ontology
model (ontModel), a new ontology datatype property will be created
and added to the model using createDatatypeProperty method of
OntModel interface.

There is no API for editing properties in Jena, but editing a property is

achievable by removing the property’s old information and adding the

new ones with modified values.

88

5.5.5 Individuals

As shown in figure 5.9, Individuals menu group in UltimateOMS
includes some features for management and manipulation of the
Individuals such as editing an existing individual in a model, deleting an
individual from a model, showing detail information about an

individual, showing related triples, and searching for specific individuals.

= Individuals page - Windows Internet Explorer

PR R o st somammamcicaont 3 4111 -

W & [t fr B v hpage - GhTock e
~

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

Triples LT Individuals

| hitp:/fwww.bogus.com

Selected Model: hitp:/iwww.bogus.com
Individuals of the selected model:

Total number of indriduals: 3 Indvidual
Select "Individual” and ... [show detail] [show triples] [edit] [delete]
Individual Instance of

O 1. httpfiwww bogus com/table1 http:/fwww.bogus com/Table

) 2. hitp/ivww. bogus com/blue hitp:/fwww.bogus.com/Calor

O 3. httpe/iwwew. bogus.comired hittp:/fwww_bogus.com/Calor

wzr e e N - o
Done: S Local intranet H100% -

Figure 5.9: Individuals menu group in UltimateOMS for management
and manipulation of individuals

As mentioned in section 5.5.3, using the features in Classes Menu group
of UltimateOMS we can create an instance (individual) of a class in a
model. The created individuals can be edited using individual creation

form.
Although there is no API for editing the individuals in Jena, editing an

individual is achievable by removing the individuals old information

and adding the new ones with modified values.

89

5.6 Inference

UltimateOMS provides inference facilities using different supported
built-in types of “Reasoner” and “Generic Rule Reasoner” of Jena. As

shown in figure 5.10, various types of reasoners are available in Jena.

(= Infer model - Windows Internet Explorer

= J
— r ~ r =
Gﬂ' o v | g ocaly L n—y irderModel, ded=hitpot 305 2F 3 2F v bogus. com ¥ 4 X 2=
W & | [incer model = - - [rPage - ChTock v
| =
Welcome, sw [Logout] You have connected to the My SQL [Select other database)

LGP Triples | Classes | Properties | Individuals

| hitp:fwww bogus.com v | select |

If "data model™ and "schema model” are the same, just select data model and leave schema model.

Select data model hitp:fwww bogus.com v:
Select schema model | < Selecta default model —> v:

Select reasoner type: | Generic Rule Reasoner v

Generic Rule Reasonar
) | OWL Micro Reasoner
Save inferred results as { WL Mini Reasoner
OWL Reasoner

Rules for generic rule res ROFS Default Reasoner
ROFS Full Reasoner

|RDFS Simple Reasoner
Transitive Reasoner

Done N Local intranet Hoow v

Figure 5.10: Inference facilities in UltimateOMS

Users can infer an existing model/ in the database by using an
appropriate reasoner and storing inferred results as a new model in the

database for further usage. Currently Jena supports the following

reasoners:

° Generic Rule Reasoner
e OWL, OWL Mini, OWL Micro Reasoners
e RDF'S Rule Reasoner

° Transitive Reasoner

90

Generic rule reasoner supports user-defined rules. RDFS rule reasoner
implements subset of RDFS entailments. OWL, OWL mini, and OWL
micro reasoners support a set of useful but incomplete implementation
of OWL Lite. Transitive reasoner supports only transitive and

symmetric properties of rdfs:subPropertyOf and rdfs:subClassOf.

Although Jena does not provide complete and sophisticated reasoners, it
allows ranges of inference and reasoner engines to be plugged into it by
providing DIG interface. The Jena DIG interface makes it possible to
use external reasoners such as Racer, Pellet, and FaCT, which support
DIG standard.

UltimateOMS only supports the built-in supported reasoners in Jena
and adding external reasoners to system using DIG interface is

suggested as a future work of this project.

5.7 Querying

Jena supports SPARQL as a standard RDF query language. Query
APIs in Jena are mainly located in com.hp.hpl jena.query package.
UltimateOMS uses these APIs in order to provide query facilities for
users. Users can see the query results online using valid SPARQL query
or they can export query results into local file system in different

formats.

Figure 5.11 shows query user interface of UltimateOMS.

91

(= Query model - Windows Internet Explorer [LI[EE

G & - [Ervinchotsumonsimaconsion e, sompage=aueryhodel sptemdsi=bipnanzruzrummbops.con] 4] (X | | |2

W 4 | uery mode =] B -8 - & G- ook - "
~

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

UGLLUIEEN Triples | Classes | Properties | Individuals

8l hitp:/fwww.bogus.com -

Selected model http:/hwww.bogus.com

SPARQL query

Select x 2z
Where {?x ?y 7z}

@ Show query results

O Export query results as :.I.\-l-.TripIss v

% Local intranet 0% v

Figure 5.11: Query user interface of UltimateOMS

The SPARQL query results can be exported in the following formats:
e N-Triples
e Notation3/N3

° RDF/XML
° Text File
° XML File

5.8 User Interface

This section presents the designed user interface of UltimateOMS. All
user interfaces are designed using JSP technology and JSP Standard
tags, HTML tags, “Jakarta Input Tag Library”, and CSS (Cascade
Style Sheets).

92

CSS is a Stylesheet Language used for describing HTML, XHTML, and
XML documents and allows a flexible design options. A default CSS is
used in all user interfaces of UltimateOMS and it can easily be changed

by administrators in order to make different Stylesheets.

A part of the used CSS is shown in figure 5.12.

J,-'?Hf
Common elements
*w_l,-'
body {
margin: 0px Jpx:
font:583% arial helvetica,clean,sans-serif:;
color:black;
background-color: $££££1E;

SEE

Menu Tahs

*1:_.,-'

div.menu {
margin-top: . Senm;
height:2.1len;
bhorder-style:solid;
border—width:0 0 1px 0;
background-color: #737373;
bhorder-hottom-color: #7373735;

Figure 5.12: A part of the used Stylesheet in UltimateOMS

The designed layout for all user interfaces consists of four different
sections including Header, Menu, Content, and Footer. As illustrated in
figure 5.13, Header section contains information regarding connected

user and database.

93

(= Models page - Windows Internet Explorer

G\“:' [0 bt fhocalhest 8080/ Ukimat sOMS models. fo7 showP age=2 v 4| P~

& 40 |[Emodels page B - B - g v [irPage - {FToss - T

q sw [Logout] Hea'der You have connected to the MySQL [Select other dat

Models Properties | Individuals

Ilp'.l’ bogus.com bt

Existing Models in database:

Total number of modela~35

Model

.. [show graph] [show statistics] [check consistency] [export] [query] [infer] [delete]

hittp:/iwww. mindswap. org/2004/owl-s/1. 1/Weatherdnfo.owl
O 26. htp:/iwww. mindswap.org/2004/owl-s/1. 1/ZipCodeDistance. owl

O 27. hitp:/fwww. mindswap org/2004/owi-s/1. 1/ZipCodeFinder owl

O 28. http:/fwww. mindswap org/2004/owl-s/1.1/ZipCodeF orecasts owl Content
O 29. hitp:/fwww.mindswap.org/2004/owl-s1.1/ZipCodelnfo. owl

O 30. http:/hwww. mindswap.org/2004/owl-s/1. 1/ZipCodeSupplier. owd

hitp:/fwww.mindswap.org/2004/owd-s/1. 1/ZipCodeTemp.owl
32. hittp:/iwww. p.org/2004/owl-s/1. 1/getC: owl

. http:/fwww.mindswap.org/2004/owlfunding

p.org/2004/owl/ projects
org/2004/owl/mind

First Previous <1|2|>

MW ectmmmmmeenems Yena

Dane & Local inkranet FHI00%

Figure 5.13: Designed layout for UltimateOMS user interfaces

Menu section contains menus and submenus items, which are provided
to the end users in order to use UltimateOMS. Content section displays
the dynamic contents, depends on the end user’s requests. Footer

section contains copyright information and some logos.

5.9 Flow Dynamics

As an example, this section examines the use case Login and describes
the performed steps by UltimateOMS in order to accomplish
authorization process. This use case is described in detail in Appendix
B.

94

In order to access, UltimateOMS end users have to login through the

Login page as shown in figure 5.14.

(= UltimateOMS-Login Page - Windows Internet Explorer

F =
K9 o - [mmsiocabost:sos0/inatecttsiindex. 0 vt % pl-

W 4 |[EuimatectsLogn Page - B & - [Page - GhTock -

Welcome to the Ultimate Ontology Management System
(UltimateOMS)

User name.
Password

Database: | MyS0L et
MySQL
Oracle
[Microsoft SQL Server
PostgreSaL
Apache Derby
HSQLDE

S ——— :

st"‘ Copyright © 2007 Mohammad Reza Rajeel. All Rights Reserved, ('\r.....:;:b
ol R D F r i il ey Jenc

Done | i ;_.{I..ocdr\tra\et ;‘Iﬂ.ﬁ. =

Figure 5.14: UltimateOMS login page

Login Page, index.jsp, is a JSP file and when it is being loaded,
following actions take place. An instance of the
se.kth.ict.ultimateoms.SessionBean, which is sessionBean, is created as a
Session Bean in order to keep all necessary information regarding user
requests and application states. The next step is loading available
databases from the system configuration file, systemConfig.xml, in order
to display to the wusers. This process is done using method
getDatabaseList, member of Util class, by accessing the system
configuration file and parsing the databases parameters. Returned list of
the available databases are stored in the Session Bean in order to be
used in further steps. At this point, all the necessary HTML codes and
JavaScripts are generated and sent as a Login Page to the user through
HTTP Response.

95

The end user can select one of the available databases and enter his/her
username and password in the proper fields. Since username and
password cannot be empty when pressing connect button, provided
JavaScript will check the value of those fields before sending them to
the server. If JavaScript validation was successful, the entered field will
be sent to the server with HT' TP Request.

The Application Server will forward received HTTP Request to
doLogin.jsp, which is responsible for authorization process in
UltimateOMS. By receiving HTTP Request in doLogin.jsp, the
username, password, and selected database will be stored in Session

Bean using following JSP Tags:

<jsp:setProperty name="sessionBean" property="databaseName"
param="database"/>

<jsp:setProperty name="sessionBean" property="userName"
param="userName" />

<jsp:setProperty name="sessionBean" property="password"

param="password"/>

The above JSP tags, populate the proper variables in the Session Bean
with the wvalues passed through HTTP Request. At this point,
doLogin.jsp tries to establish a database connection to the selected
database. This process is done using com.hp.hpl.jena.db.DBConnection
Java class that is provided by Jena APIs. DBConnection takes database
driver, username, password, and database name as input parameters

and tries to establish a JDBC connection with specified database.

If the database connection is successfully established and the user is a
valid user in the specified database the user will have authorization to
access UltimateOMS. The established database connection will be stored
in a Session Bean in order to use in further operations. After this step,
other variables in the Session Bean including graph parameters that are
accessible from the system configuration file, will be initialized and the
user will be forwarded to the Models page using the JSP tag,

<jsp:forward page="models.jsp"/>. Models page as shown in ﬁgure

96

5.15 is the page that includes all available models in the connected

database.

/= Models page - Windows Internet Explorer

G@' ._hilp:.r e oLt 5 v T] =

WG v poge = BB @ P ok "
~

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

Models Individuals

I <- Selecta default model > v | select |

Existing Models in database:

Total number of models: 35 Modet: |

Select "Model” and ... [show graph] [show statistics] [check consistency] [export] [query] [infer] [delete]

Model
O 1. hitpifwww. bogus com
O 2. httpiiwww. mindswap_org/2004/owl-s1_1/AmazonBookPrice. owl
O 3. httpdwww. mindswap.org/2004/owl-5/1. 1/BNPrice. owl
O 4. http:/fwww.mindswap.org/2004/owl-s/1. 1/BabelFishTranslator.owl
O 5. http.fiwww. mindswap.org/2004/owl-s/1. 1/BookFinder.owl
O 6. http:ifwww. mindswap_org/2004/owl-s/1_1/BookPrice. owl
O 7. hitp:ffwww. mindswap.org/2004/owi-s/1. 1/CurrencyConverter. awl
© 8. http:fiwww. mindswap._org/2004/owl-s/1. 1/Dictionary. owl
O 9. hitpoffwww. mindswap.org/2004/owl-s/1. 1/DisplayURL owl
O 10. http:fiwww. mindswap._org/2004/owl-s/1. 1/FindCheaperBook. owl
O 11, hitpffwww. mindswap.org/2004/owi-s/1.1/FindLatLong.owd
O 12. httpffwww. mind org/2004/owl-s/1. 1/FrenchDictionary. owl

ey -~ s

Dane %J Local intranst 0 v

Figure 5.15: UltimateOMS models page

If database connection is not established for any reason, like invalid
username and password, DBConnection will throw an exception. The
thrown exception in doLogin.jsp will be handled by JSP error handler
page, errorPage.jsp, and the proper message with reason of the login

failure will be sent to the user.

97

Chapter 6

Validation

According to the mentioned development platform in section 5.1, the
following use cases have been implemented. For further details about

the use cases, see appendix B.

e System configuration creation and modification including modifying
database parameters, adding new database, removing database, and

modifying graph parameters
e User authentication including login and logout

e Model management including showing, creating, importing,
uploading, searching, selecting, exporting, showing graph, exporting
graph, querying, exporting query results, inferring, showing

statistics, checking consistency, and deleting

e Triple management including showing, creating, searching, browsing,

selecting, editing, and deleting

e (Class management including showing, creating, searching, selecting,
showing details, showing triples, creating instance, editing, and

deleting

e Property management including showing, creating, searching,

selecting, showing details, showing triples, editing, and deleting

e Individual management including showing, searching, selecting,

showing details, showing triples, editing, and deleting

The application installation, starting up, and shutting down use cases
do not require implementation. Because, for installing UltimateOMS,

administrator deploys the application’s WAR file into the installed

99

Application Server using provided tools in Application Server. In
addition, by wusing management tools of Application Server,

administrator can start up and shut down UltimateOMS.

Similarly, creating, modifying, and removing database users use case do
not require implementation. Because by using database administration’s
tool and logging in database as an admin role, administrator would be
able to create, modify, and remove database’s users, which are also
UltimateOMS users.

All of the mentioned implemented use cases in the above have been
passed the functionality tests without any significant programming
error. All implementation and optimization issues are considered during
the implementation of the use cases for two different types of Web

browsers: Internet Explorer Version 7 and Mozilla Firefox Version
2.0.0.1.

All of the use cases have been tested from different machines using two
different mentioned Web browsers. All of them fulfilled their expected
behavior and passed the functionality tests with different types of data

without any error.
Regarding the reliability and performance of UltimateOMS, in terms of

response time, it is limited to the reliability and performance of the Jena

Semantic Web Framework as mentioned in section 3.5.

100

Chapter 7

Conclusions and Future Work

One of the primitive goals of the Web was making the information
processable for machines. However, today information on the Web is
designed for human interpretation and it is not machine processable. In
order to achieve the Web’s primitive goal, information on the Web
needs to be expressed in a form that machines would be able to
understand it instead of simply displaying it and this is exactly the goal
of Semantic Web.

Having the vision that Semantic Web is the future of the Web, and
taking into account that Semantic Web is still in early steps, it is vital
to provide sophisticated tools for users who intend to share machine
processable data in the Web by creating, managing, and publishing
Semantic data. Nevertheless, almost none of the existing solutions
provide a complete tool containing the required features for dealing with

Semantic data. This results in a slow and timely process.

In this project, a Web based tool called UltimateOMS was developed
that facilitates creating and managing Semantic data in RDF, RDF
Schema, and OWL formats. Unlike existing tools, the developed tool
brings the necessary functions for creating, manipulating, and managing
Ontology components in one place thus making it much easier for users

to deal with Semantic data.

UltimateOMS is based on Jena, which is a Java framework for building
Semantic Web applications, and is developed using JSP and Java
Servlets technology. UltimateOMS gives different options for storing
Semantic data in different databases including MySQL, HSQLDB,
PostgreSQL, Oracle, Apache Derby, and Microsoft SQL Server. It also

provides necessary features for generating visualization graphs of the

101

Semantic data using Graphviz, the graph visualization software, and
displays them using applet version of the IsaViz in web browsers. The
generated visualization graph can also be exported in different formats
such as PNG, SVG, GIF, and PostScript in order to be used in different

tools.

In addition, UltimateOMS has the necessary features in order to create,
manipulate, and manage Semantic data as well as features for querying

and inferring Semantic data.

A future work of this thesis can be to extend the inferring capability of
UltimateOMS by adding external reasoner engines such as Racer, Pellet,
and FaCT. Jena currently has its own reasoning engine with limited
inferring capabilities. This suggestion can be implemented using DIG

interface of Jena that makes it possible to add external reasoners.

Another future work can be using SSL protocol between the end user
and UltimateOMS in order to make the communication more secure. In
order to increase the security in the cases that the database server is
separate from the UltimateOMS server, SSL protocol can also be used

between those two servers as well.

102

References

[1] Tim Berners-Lee, A roadmap to the Semantic Web, September 1998,
http: //www.w3.org/Designlssues/Semantic.html (last accessed: October
2006)

[2] Nature Publishing Group, Nature Debates: Scientific publishing on

the 'semantic web’, http://www.nature.com/nature/debates/e-

access/Articles/bernerslee.htm (last accessed: October 2006)

[3] Deborah L. McGuinness, Frank van Harmelen eds., OWL Web
Ontology Language Overview, W3C Recommendation, 10 February
2004, http://www.w3.org/ TR /owl-features/ (last accessed: October
2006)

[4] Jeff Heflin ed., Web Ontology Language (OWL) Use Cases and
Requirements, W3C Recommendation, 10 February 2004,

http: //www.w3.org/TR/webont-req/ (last accessed: October 2006)

[5] pPOWL - Semantic Web Development Platform,
http://powl.sourceforge.net/ (last accessed: October 2006)

[6] Sesame, http://www.openrdf.org/ (last accessed: October 2006)

[7] Stanford, The Protégé Ontology Editor and Knowledge Acquisition
System, http://protege.stanford.edu/ (last accessed: October 2006)

[8] Wikipedia, the free encyclopedia, Semantic Web,
http://en.wikipedia.org/wiki/Semantic' Web (last accessed: October
2006)

[9] James Hendler, Tim Berners-Lee and Eric Miller, “Integrating
Applications on the Semantic Web’, Journal of the Institute of

103

Electrical Engineers of Japan, Vol 122(10), October, 2002, p. 676-680.,
http://www.w3.org/2002/07 /swint

[10] The Semantic Web: An Introduction,
http: //infomesh.net/2001 /swintro/ (last accessed: October 2006)

[11] Semantic Web Benefits and Demonstration,
http://refapp.semwebcentral.org/tutorial /guided-
tour/guidedtourbenefits.html (last accessed: October 2006)

[12] Roberto Garcia Gonzalez, “A Semantic Web approach to Digital
Rights Management”, PhD Thesis, Universitat Pompeu Fabra,
Barcelona, November 2005

http://rhizomik.net/ “roberto/thesis/Thesis.pdf (last accessed: October
2006)

[13] The Friend of a Friend (FOAF) project, http://www.foaf-
project.org/ (last accessed: October 2006)

[14] BigBlogZoo, http://www.bigblogzoo.com/ (last accessed: October
2006)

[15] Piggy Bank, http://simile.mit.edu/wiki/Piggy Bank (last accessed:
October 2006)

[16] World Wide Web Consortium (W3C), Resource Description
Framework (RDF), http://www.w3.org/RDF/ (last accessed: October
2006)

[17] Graham Klyne, Jeremy Carroll, eds., Resource Description
Framework (RDF): Concepts and Abstract Syntax, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR/rdf-
concepts/ (last accessed: October 2006)

104

[18] Frank Manola, Eric Miller, eds., RDF' Primer, W3C
Recommendation, 10 February 2004, http://www.w3.org/ TR /rdf-
primer/ (last accessed: October 2006)

[19] Kevin Wilkinson, Craig Sayers, Harumi Kuno, Dave Reynolds,
“FEfficient RDF Storage and Retrieval in JenaZ’, First International
Workshop on Semantic Web and Databases, Berlin, Germany, 7
September 2003, http://www.hpl.hp.com/techreports/2003/HPL-2003-
266.pdf (last accessed: October 2006)

[20] Jeen Broekstra, “Storage, Querying and Inferencing for Semantic
Web Languages’, PhD Thesis, Vrije Universiteit, 4 July 2005,

://wwwis.win.tue.nl/"j i is-final.zip (last accessed:
October 2006)

[21] Dave Beckett, ed., RDF/XML Syntax Specification (Revised), W3C
Recommendation, 10 February 2004, http://www.w3.org/TR /rdf-

syntax-grammar/ (last accessed: October 2006)

[22] Jan Grant, Dave Beckett, eds., RDF Test Cases, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR /rdf-
testcases/ (last accessed: October 2006)

[23] Dave Beckett, Turtle - Terse RDF Triple Language, 10 February
2004, http://www.dajobe.org/2004/01/turtle/ (last accessed: October
2006)

[24] Tim Berners-Lee, Notation3 (N3) A readable RDF syntax, 1998,
http: //www.w3.org/Designlssues/Notation3 (last accessed: October
2006)

[25] Dan Brickley, R.V. Guha, eds., RDF Vocabulary Description
Language 1.0: RDF Schema, 10 February 2004, W3C Recommendation,
http: //www.w3.org/ TR /rdf-schema/ (last accessed: October 2006)

105

[26] World Wide Web Consortium (W3C), Web Ontology Language
(OWL), http://www.w3.org/2004/OWL/ (last accessed: October 2006)

[27] Michael K. Smith, Deborah McGuinness, Raphael Volz, Chris
Welty eds., OWL Web Ontology Language Guide, W3C
Recommendation, 10 February 2004, http://www.w3.org/ TR /owl-
guide/ (last accessed: October 2006)

[28] Wikipedia, the free encyclopedia, Web Ontology Language,
http: //en.wikipedia.org/wiki/Web Ontology Language (last accessed:
October 2006)

[29] Ontology Inference Layer (OIL), http://oil.semanticweb.org/ (last
accessed: October 2006)

[30] Dan Connolly, Frank van Harmelen, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, Lynn Andrea Stein, DAML~+QOIL
(March 2001) Reference Description, 18 December 2001,
http://www.w3.org/TR/daml+oil-reference (last accessed: October
2006)

[31] Mike Dean, Guus Schreiber eds., Frank van Harmelen, Jim Hendler,
Ian Horrocks, Deborah L. McGuinness, Peter F. Patel-Schneider, Lynn
Andrea Stein, OWL Web Ontology Language Reference, W3C
Recommendation, 10 February 2004, http://www.w3.org/TR /owl-ref/
(last accessed: October 2006)

[32] Peter Haase, Jeen Broekstra, Andreas Eberhart, Raphael Volz, “A
Comparison of RDF Query Languages’, Proceedings of the 3rd
International Semantic Web Conference (ISWC2004), 7-11 Nov. 2004,
Hiroshima, Japan, http://www.aifb.uni-karlsruhe.de/WBS/pha /rdf-
query/rdfquery.pdf (last accessed: October 2006)

[33] Eric Prud’hommeaux, Andy Seaborne, SPARQL Query Language
for RDF, W3C Working Draft, 4 October 2006,

106

http: //www.w3.org/ TR /rdf-sparql-query/ (last accessed: November
2006)

[34] Rational Unified Process: Vision Artifact,
http: //www.ts.mah.se/RUP/RationalUnifiedProcess/process/artifact /ar

“vsion.htm (last accessed: November 2006)

[35] Wikipedia, the free encyclopedia, /BM Rational Unified Process,
http://en.wikipedia.org/wiki/Rational Unified Process (last accessed:
November 2006)

[36] IBM Rational Software, http://www-

306.ibm.com /software/rational/ (last accessed: November 2006)

[37] JavaServer Pages Overview,
http://java.sun.com/products/jsp/overview.html (last accessed:
November 2006)

[38] Jena Semantic Web Framework,
http: //jena.sourceforge.net /index.html (last accessed: February 2007)

[39] Jena Relational Database Backend,
http: //jena.sourceforge.net /DB /index.html (last accessed: January
2007)

[40] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds,
Andy Seaborne, Kevin Wilkinson, “Jena: Implementing the Semantic
Web Recommendations’, Digital Media Systems Laboratory, HP
Laboratories Bristol, 24 December 2003,
http://www.hpl.hp.com/techreports/2003/HPL-2003-146.pdf (last
accessed: November 2006)

[41] Semantic Web Research at HP Labs,
http://www.hpl.hp.com/semweb/ (last accessed: November 2006)

107

[42] JenaZ2 Database Interface - Database Layout,
http: //jena.sourceforge.net /DB /layout.html (last accessed: January
2007)

[43] Graphviz — Graph Visualization Software,

http://www.graphviz.org/ (last accessed: November 2006)

[44] Sun Developer Bookshelf-Books: JavaServer Pages,

http://java.sun.com/developer/Books/javaserverpages/Chapl2.pdf (last

accessed: November 2006)

[45] Oracle JDeveloper — Official Home Page,
http://www.oracle.com/technology/products/jdev/index.html (last
accessed: November 2006)

[46] Java Platform, Standard Edition (J2SE 5.0),
http: //java.sun.com/j2se/1.5.0/ (last accessed: November 2006)

[47] Oracle Containers for Java (OC4J),

http: //www.oracle.com/technology /tech/java/oc4j/index.html (last

accessed: November 2006)

[48] Apache Tomcat, http://tomcat.apache.org/ (last accessed:
November 2006)

[49] Oracle Database 10g Express Edition,
http: //www.oracle.com/technology /products/database/xe/index.html
(last accessed: November 2006)

[50] MySQL AB, http://www.mysql.com/ (last accessed: November
2006)

[61] IsaViz: A Visual Authoring Tool for RDF,
http: //www.w3.0org/2001/11/IsaViz/ (last accessed: November 2006)

108

[62] The Jakarta Taglibs Project,
http: //jakarta.apache.org/taglibs/index.html (last accessed: November

2006)

[63] CVS log for java/classes/org/w3c/rdf/examples/ARPServiet.java,
http: //dev.w3.org/cvsweb/java/classes/org/w3c/rdf/examples/ ARPSer

vlet.java (last accessed: November 2006)

109

110

Appendices

A - Abbreviations

API Application Program Interface

CSS Cascade Style Sheets

DAML DARPA Agent Markup Language
EAR Enterprise Archive

EJB Enterprise Java Bean

FoaF Friend of a Friend

FOL First Order Logic

GIF Graphics Interchange Format
Graphviz Graph Visualization Software
HTML HyperText Markup Language

I/0 Input/Output

J2EE Java 2 Platform, Enterprise Edition
J2SE Java Platform, Standard Edition
JDBC Java Database Connectivity

JSP JavaServer Pages

LAN Local Area Network

LDAP Lightweight Directory Access Protocol
MIME Multi-purpose Internet Mail Extension
0C4J Oracle Containers for J2EE

OIL Ontology Inference Layer

OWL Web Ontology Language

PC Personal Computer

PHP PHP Hypertext Preprocessor

PNG Portable Network Graphics

RDF Resource Description Framework

RDF Schema Resource Description Framework Schema
RDFS Resource Description Framework Schema
RuleML Rule Markup Language

111

RUP Rational Unified Process

SeRQL Sesame RDF Query Language

SSL Secure Socket Layer

SVG Scalable Vector Graphics

SWRL Semantic Web Rule Language

SWRL FOL Semantic Web Rule Language First Order Logic
Turtle Terse RDF Triple Language
UltimateOMS Ultimate Ontology Management System
URI Uniform Resource Identifier

URL Uniform Resource Locator

W3C World Wide Web Consortium

WAR Web Archive

XHTML Extensible HyperText Markup Language
XML Extensible Markup Language

112

B - Use Case Model

B.1 Actors

There are two different types of actors in UltimateOMS application.

e Administrator

The term Administrator applies to a person who is in charge of
application. Generally, Administrator creates and modifies
application’s default configuration file, maintains databases, and
also defines and modifies application’s users in databases.

e User

The term User applies to anyone, who is defined by Administrator
as a valid user in application, using the application in order to

create and manage semantic data (ontology components).

B.2 Use Case Diagrams

The following figures show the use case diagrams of UltimateOMS.

113

Create Default Configuration

Modify Database User

-

Create Database User

&
\

'r
/

Install Application

%

Startup Application

Shutdown Application

Remove Datahase User

Modify Application Configuration

Figure B.1: Application Administration Diagram

Administrator

/
/!

Modify Graph Parameters

Add New Datahase

Modify Database Parameters

Remove Database

114

Figure B.2: System Configuration Diagram

Logout

Login

Figure B.3: User Authentication Diagram

Upload Model

Show Models

Delete Moclel

Select Model
Export Model
e =
T
Show Moclel Statistics et Import Moclel
Show Madel Graph /’ X Create Model
/ N
/’ ™,
/l \\
// \\\
\,
/ ,
/// \\\
Check Madel Consistency Infer Moclel
Query Maodel Search Model

Figure B.4: Model Diagram

115

S User®,

Select Model Export Model Graph Show Model Graph

Figure B.5: Model Graph Diagram

Query Model Select Model Export Query Results

116

Figure B.6: Model Query Diagram

Delete Triple

Create Triple

Select Triple

Browse Triples

Search Triple

’)
/!
/
S/
af’
g Ecit Triple
f’f i
l!Jser '-\ .
\ ~—
e
Select Model
.\‘
\\
N
Show Triples

Figure B.7: Triple Diagram

117

Edit Class

Delete Class

Create Instance For Class

Create Class

Show Class Details

Search Class

Select Class

Select Model

Show Class Triples

Show Classes

118

Figure B.8: Class Diagram

Edlit Property Select Property

7 7
b i

Search Property \ Show Property Details

Show Properties E e Delete Property

Select Model Show Property Triples

Create Property

Figure B.9: Property Diagram

Edlit Inclividual Show Individual Details
=, s
*, i
, d
\ Py
rd
“, P
., P
“, //
\\) Y
Delete Indivicual \\ // Show Individual Triples
<L \ y
" User
/A AN
i *,
5,
- ;- \\ -
Show Individuals 'l 4 ™, { Select Individual
A \\
7 ,
; A
I ™,
A Y
A \\
/’ S
/ *,
Y
I ™,
! ™,
4 ",
Jf \\
Select Model Search Individual

Figure B.10: Individual Diagram

119

B.3 Use Case Specifications

The following tables show the use case specifications of UltimateOMS.

Use Case Install Application

Stakeholder
Administrator

Goal of Primary Actor

Installing the application

Preconditions

Java Platform, Standard Edition (J2SE 1.5) is already installed and
configured in server.

An Application Server such as Tomcat, JBoss, Oracle internet
Application Server (Oracle iAS), and so on is already installed and
configured in server.

Scenario

Administrator deploys application’s EAR or WAR file into the installed
Application Server using provided tools in Application Server. In
order to have graph facilities in

application, Administrator also has to install Graphviz in server.

Table B.1: Use Case Install Application

Use Case Create Default Configuration

Stakeholder
Administrator

Goal of Primary Actor

Creating default configuration file which is used by application
Preconditions

Application is already installed in server.

Application is shut down.

Scenario

120

Administrator creates default configuration file which is used by
application. To do so, Administrator has to create systemConfig.xml. It
includes some parameters related to databases and graph. By default

when application is deployed, systemConfig.xml is automatically created

and Administrator has to modify it.

Table B.2: Use Case Create Default Configuration

Use Case Modify Application Configuration

Stakeholder
Administrator

Goal of Primary Actor

Modifying default configuration file which is used by application
Preconditions

Application is already installed in server.

Application is shut down.

Scenario

Administrator modifies configuration file, i.e. systemConfig.xml which is
used by application. It includes some parameters related to databases
and graph. Administrator modifies the configuration file for the
following action:

Adding new database

Modifying database parameters

Removing database

Modifying graph parameters
Table B.3: Use Case Modify Application Configuration

121

Use Case Startup Application

Stakeholder
Administrator

Goal of Primary Actor
Starting up the application in order to use

Precondition
Application is already installed in server.

Scenario
Administrator starts up the installed Application Server in which the

application has been deployed. By starting up the Application Server,

the application automatically will be started up.

Table B.4: Use Case Startup Application

Use Case Shutdown Application

Stakeholder
Administrator

Goal of Primary Actor
Shutting down the application in order to modify configuration file or
maintain database

Precondition

Application is already started up.

Scenario

Administrator shuts down the installed Application Server in which the

application has been deployed. By shutting down the Application

Server, the application automatically will be shut down.

Table B.5: Use Case Shutdown Application

122

Use Case Create Database User

Stakeholder
Administrator
Goal of Primary Actor

Creating database user

Preconditions
Database is already installed in server.

Application is already installed in server.

Scenario

Administrator defines application’s users by creating users in database.

By using database administration’s tool and logging in database as an

admin role, Administrator could be able to create database’s users.

Created database’s users are application’s users and they

can use application by logging in application through login page.
Table B.6: Use Case Create Database User

Use Case Modify Database User

Stakeholder
Administrator

Goal of Primary Actor
Modifying database user

Preconditions

Database is already installed in server.
User is already created in database.
Application is already installed in server.

Scenario
Administrator modifies application’s users by modifying users in

database. By using database administration’s tool and logging in
database as an admin role, Administrator could be able to modify

database’s users. Modified database’s users are application’s users and

they can use application by logging in application through login page.
Table B.7: Use Case Modity Database User

123

Use Case Remove Database User

Stakeholder
Administrator

Goal of Primary Actor

Removing database user

Preconditions

Database is already installed in server.
User is already created in database.
Application is already installed in server.

Scenario
Administrator removes application’s wusers by removing users in

database. By wusing database administration’s tool and logging in
database as an admin role, Administrator could be able to remove
database’s users. Removed database’s users are no longer application’s

users and they are not able to use application.

Table B.8: Use Case Remove Database User

Use Case Modify Graph Parameters

Stakeholder
Administrator

Goal of Primary Actor

Modifying graph parameters in configuration file

Precondition

Graphviz is already installed in server.

Scenario

Administrator modifies graph parameters in application’s configuration
file, i.e. systemConfig.xml.

Graph parameters are:

GRAPH_PANEL_WIDTH:

The width of panel in which graph will be shown (in pixel).
GRAPH_PANEL_HEIGHT:

The height of panel in which graph will be shown (in pixel).

124

SERVLET_TMP_DIR:

Temporary directory path, which is used to save graph temporary
files.

SERVLET_TMP_DIR ALIAS:

Alias which is defined in application server. It is a URL map in
order to access the SERVLET TMP DIR contents by application

server.
GRAPH_VIZ_ROOT:

Path of the Graphviz root directory.
GRAPH_VIZ_PATH:

Path of the dot.exe directory in Graphviz.
GRAPH_VIZ_FONT_DIR:

Path of the font directory in Graphviz.

Table B.O: Use Case Modity Graph Parameters

Use Case Add New Database

Stakeholder
Administrator

Goal of Primary Actor

Adding database parameters in configuration file

Precondition

New database is already installed and configured.

Scenario

Administrator adds new database parameters in application’s
configuration file, i.e. systemConfig.xml.

Database parameters are:
® description: brief description of the new database.
e id: the name of database which is used in Jena.
® driver: driver of the new database.

e url: url of the new database.

Different types of databases which are currently supported built in Jena

2.5.2, are as the following list:

125

MySQL

HSQLDB

Apache Derby
PostgreSQL

Oracle

Microsoft SQL Server

Table B.10: Use Case Add New Database

Use Case Modify Database Parameters

Stakeholder
Administrator

Goal of Primary Actor

Modifying database parameters in configuration file

Precondition

Database is already installed and configured.

Scenario

Administrator modifies database parameters in application’s
configuration file, i.e. systemConfig.xml.

Database parameters are:

¢ description: brief description of the new database.
e id: the name of database which is used in Jena.
e driver: driver of the new database.

e url: url of the new database.

Different types of databases which are currently supported built in Jena
2.5.2, are as the following list:

MySQL

HSQLDB

Apache Derby

PostgreSQL

Oracle

Microsoft SQL Server

Table B.11: Use Case Modify Database Parameters

126

Use Case Remove Database

Stakeholder
Administrator

Goal of Primary Actor

Removing database parameters in configuration file

Precondition
Database is already uninstalled or it is not longer supported.

Scenario
Administrator removes related database parameters in application’s
configuration file, i.e. systemConfig.xml.

Database parameters are:

¢ description: brief description of the new database.
e id: the name of database which is used in Jena.
e driver: driver of the new database.

e url: url of the new database.
Table B.12: Use Case Remove Database

Use Case Login

Stakeholder
User

Goal of Primary Actor
Login to the application in order to manage semantic data

Preconditions
Application is running.

Database is already started up.

Scenario
User can login into different databases, which are provided by

Administrator. By receiving username, password, and selected database
, application will check if the User is a valid user in selected database. If
succeed, a new session will be created to the User and application’s
main page will be forwarded to the User. If not,
User will be informed the reason of login failure through returned

message from the application.
Table B.13: Use Case iogin

127

Use Case Logout

Stakeholder
User

Goal of Primary Actor

Logout from the application
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario
User can logout from application by sending a request to the
application. In this case, application will destroy User’s session and

application’s login page will be forwarded to the User.

Table B.14: Use Case Logout

Use Case Show Models

Stakeholder
User

Goal of Primary Actor

Viewing list of models stored in the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario
User can see list of models stored in the connected database by sending
a request to the application. Application will return all the existing

models stored in the connected database as a list to the User.

Table B.15: Use Case Show Models

128

Use Case Create Model

Stakeholder
User

Goal of Primary Actor

Creating an empty model in the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario
User can create an empty model in the connected database by providing

all necessary information in the “model create form”. By receiving
provided information for model, application will go through
model creation’s business logics and create it if there was no wrong data
or unexpected exception. User will be informed the result of operation

through returned message from the application.
Table B.16: Use Case Create Model

Use Case Import Model

Stakeholder
User

Goal of Primary Actor
Importing a model from anywhere in Internet into the connected

database

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario
User can import a model from anywhere in Internet into the connected

database by providing all necessary information in the “model import
form”. By receiving provided information for importing model,

application will go through model importation’s business logics and

129

import it from specified URL if there was no wrong data or unexpected
exception. User will be informed the result of operation through

returned message from the application.

The following file formats can be imported into the connected database:
RDF /XML

N-Triples

Notation3 /N3

Table B.17: Use Case Tmport Model

Use Case Upload Model

Stakeholder
User

Goal of Primary Actor

Uploading a model from local file system into the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario
User can upload a model from local file system into the connected

database by providing all necessary information in the “model upload
form”. By receiving provided information for uploading model,
application will go through model uploading’s business logics and upload
it from specified local directory path if there was no wrong data or
unexpected exception. User will be informed the result of operation

through returned message from the application.

The following file formats can be uploaded into the connected database:
RDF /XML

N-Triples

Notation3 /N3

Table B.18: Use Case Upload Model

130

Use Case Search Model

Stakeholder
User

Goal of Primary Actor

Searching for specific models stored in the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

Scenario
User can search for a specific list of models

stored in the connected database by typing some part of desired models’
name and sending a request to the application. Application will return
all the filtered models, stored in the connected database, as a list to the

User in which models’ names contain the User typed part.

Table B.19: Use Case Search Model

Use Case Select Model

Stakeholder
User

Goal of Primary Actor

Selecting a default model from the list of existing models in database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

There is at least one model already existing in database.

Scenario
User selects a default model from the list of existing models in database

in order to deal with it.

Table B.20: Use Case Select Model

131

Use Case Export Model

Stakeholder
User

Goal of Primary Actor
Exporting a selected model from the connected database into the

local file system

Preconditions
Application is running.

Database is already started up.
User has already logged in the application.
A default model has been selected.

Scenario
User can export the default model from the connected database into

local file system by providing all necessary information in the “model
export form”. By receiving provided information for exporting model,
application will go through model exportation’s business logics and
export it from connected database if there was no wrong data or
unexpected exception. User will be asked to specify a local directory

path in which the exported model will be saved.

The default model can be exported as following formats:
RDF /XML

N-Triples

Notation3 /N3

Table B.21: Use Case Export Model

132

Use Case Show Model Graph

Stakeholder
User

Goal of Primary Actor

Viewing graph of a selected model
Preconditions

Application is running.

Database is already started up.

Graphviz is already installed.

User has already logged in the application.
A default model has been selected.

Scenario
User can see graph of the default model by sending a request to the

application. Application will parse the default model and generate a proper
input file for Graphviz.

By sending generated input file to the Graphviz and executing it, applicati
on will receive the generated output file from Graphviz. The received
file by application will be input file for a java applet application, which
will be sent to the User as a graph. Therefore, application will return the

graph of the default model to the User through loading java applet.
Table B.22: Use Case Show Model Graph

Use Case Export Model Graph

Stakeholder
User

Goal of Primary Actor
Exporting graph of a selected model from the connected database into

the local file system

Preconditions
Application is running.

Database is already started up.
Graphviz is already installed.
User has already logged in the application.

133

A default model has been selected.

Scenario
User can export graph of the default model from the connected database

into local file system by providing all necessary information in the
"model’s graph export form”. By receiving provided information for
exporting model’s graph, application will go through
model’s graph exportation’s business logics and export it if there was no
wrong data or unexpected exception. User will be asked to specify a

local directory path in which the exported graph of model will be saved.

The default model’s graph can be exported as following formats:
PNG (Portable Network Graphics)

SVG (Scalable Vector Graphics)

GIF (Graphics Interchange Format)

PostScript

Table B.23: Use Case Export Model Graph

Use Case Query Model

Stakeholder
User

Goal of Primary Actor

Querying a selected model from the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario
User can query the default model from the connected database by

providing desired SPARQL query in the “model query form”. By
receiving provided information for querying model, application will go

through model query’s business logics and query it if there was no

wrong data or unexpected exception. Application will return all

134

the query results as a list to the User.

Table B.24: Use Case Query Model

Use Case Export Query Results

Stakeholder
User

Goal of Primary Actor
Exporting query results of a selected model from the connected database

into the local file system

Preconditions
Application is running.

Database is already started up.
User has already logged in the application.
A default model has been selected.

Scenario
User can export query results of the default model from the connected

database into local file system by providing all necessary information in
the “model’s query results export form”. By receiving provided
information for exporting model’s query results, application will go
through model’s query results exportation’s business logics and export it
if there was no wrong data or unexpected
exception. User will be asked to specify a local directory path in which

the exported query results of model will be saved.

The default model’s query results can be exported as following formats:
N-Triples

Notation3 /N3

RDF /XML

Text File

XML File

Table B.25: Use Case Export Query Results

135

Use Case Infer Model

Stakeholder
User

Goal of Primary Actor

Inferring a selected model from the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario
User can infer the default model from the connected database by

providing all necessary information in the “model infer form”. By
receiving provided information for inferring model, application will go
through model inferring’s business logics and infer it, using different
types of “Reasoner” or “Generic Rule Reasoner”, if there was no wrong
data or unexpected exception. The inferred results will be saved in
connected database as a new model with a name, which is specified by
User in “model infer form”. User will be informed the result of operation

through returned message from the application.

Different types of reasoner, which are currently supported built in Jena
2.5.2, are as the following list:

Generic Rule Reasoner

OWL Micro Reasoner

OWL Mini Reasoner

OWL Reasoner

RDF'S Default Reasoner

RDFS Full Reasoner

RDFS Simple Reasoner

Transitive Reasoner

Table B.26: Use Case Infer Model

136

Use Case Show Model Statistics

Stakeholder
User

Goal of Primary Actor

Viewing statistics of a selected model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.
A default model has been selected.

Scenario
User can see statistics of the default model by sending a request to the

application. Application will return all statistics information of the
default model to the User.

Table B.27: Use Case Show Model Statistics

Use Case Check Model Consistency

Stakeholder
User

Goal of Primary Actor

Checking a selected model consistency in the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has been selected.

Scenario
User can check the default model consistency in the connected database

by providing all necessary information in the “check model consistency
form”. By receiving provided information for checking model
consistency, application will go through model consistency checking’s
business logics and generate a report if there was no unexpected

exception. User will be informed the result of operation through

137

returned message from the application.

Table B.28: Use Case Check Model Consistency

Use Case Delete Model

Stakeholder
User

Goal of Primary Actor

Deleting a selected model from the connected database
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

One of the models of connected database has been selected.

Scenario
User can delete a selected model by sending a request to the application.

Application will delete selected model from the connected database.
User will be informed the result of operation through returned message

from the application.

Table B.29: Use Case Delete Model

Use Case Show Triples

Stakeholder
User

Goal of Primary Actor
Viewing list of triples of default model

Preconditions
Application is running.

Database is already started up.
User has already logged in the application.
A default model has already been selected.

Scenario

138

User can see list of triples of the default model by sending
a request to the application. Application will return all the existing

triples of the default model as a list to the User.
Table B.30: Use Case Show Triples

Use Case Create Triple

Stakeholder
User

Goal of Primary Actor

Creating a triple for default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.
A default model has already been selected.

Scenario
User can create a triple for default model by providing all necessary

information in the “triple create form”. By receiving provided
information for triple, application will go through triple creation’s
business logics and create it if there was no wrong data or unexpected
exception. User will be informed the result of operation through

returned message from the application.
Table B.31: Use Case Create Triple

139

Use Case Search Triple

Stakeholder
User

Goal of Primary Actor

Searching for specific triples of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.
A default model has already been selected.

Scenario
User can search for a specific list of triples of default model by typing

some part of desired triples’ subject name, predicate name, object
name, or all of them and sending a request to the application.
Application will return all the filtered triples of the default model as a
list to the User in which triples’ subject name, predicate name, object

name, or all of them contain the User typed part.

Table B.32: Use Case Search Triple

Use Case Browse Triples

Stakeholder
User

Goal of Primary Actor
Browsing triples of a selected resource in default model

Preconditions
Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

A resource in default model has been selected.

Scenario

User can browse triples of a selected resource in default model by
sending a request to the application. Application will return all
the filtered triples of the default model as a three different list to the

140

User in which triples’ subject name, predicate name, or object name is

equal to the selected resource.

Table B.33: Use Case Browse Lriples

Use Case Select Triple

Stakeholder
User

Goal of Primary Actor

Selecting a triple from the list of existing triples in default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one triple already existing in default model.

Scenario
User selects a triple from the list of existing triples in default model in

order to deal with it.

Table B.34: Use Case Select Triple

Use Case Edit Triple

Stakeholder
User

Goal of Primary Actor

Editing a selected triple of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.
A default model has already been selected.

One of the triples of default model has been selected.

141

Scenario
User can edit a selected triple of default model by modifying all

necessary information in the “triple edit form”. By receiving modified
information for triple, application will go through triple modification’s
business logics and modify it if there was no wrong data or unexpected
exception. User will be informed the result of operation through

returned message from the application.

Table B.35: Use Case Edit 'Triple

Use Case Delete Triple

Stakeholder
User

Goal of Primary Actor

Deleting a selected triple from default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the triples of default model has been selected.

Scenario
User can delete a selected triple by sending a request to the application.

Application will delete a selected triple from default model.
User will be informed the result of operation through returned message

from the application.

Table B.36: Use Case Delete Triple

142

Use Case Show Classes

Stakeholder
User

Goal of Primary Actor

Viewing list of classes of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.
A default model has already been selected.

Scenario
User can see list of classes of the default model by sending

a request to the application. Application will return all the existing

classes of the default model as a list to the User.
Table B.37: Use Case Show Classes

Use Case Create Class

Stakeholder
User

Goal of Primary Actor
Creating a class for default model

Preconditions
Application is running.

Database is already started up.
User has already logged in the application.
A default model has already been selected.

Scenario
User can create a class for default model by providing all necessary

information in the “class create form”. By receiving provided
information for class, application will go through -class creation’s
business logics and create it if there was no wrong data or unexpected
exception. User will be informed the result of operation through

returned message from the application.

Table B.38: Use Case Create Class

143

Use Case Search Class

Stakeholder
User

Goal of Primary Actor

Searching for specific classes of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario
User can search for a specific list of classes of default model by typing

some part of desired classes’ name and sending a request to the
application. Application will return all the filtered classes of the

default model as a list to the User in which classes’ names contain the

User typed part.

Table B.39: Use Case Search Class

Use Case Select Class

Stakeholder
User

Goal of Primary Actor

Selecting a class from the list of existing classes in default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one class already existing in default model.

Scenario
User selects a class from the list of existing classes in default model in

order to deal with it.

Table B.40: Use Case Select Class

144

Use Case Show Class Details

Stakeholder
User

Goal of Primary Actor
Viewing details information of a selected class

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario
User can see detail information of a selected class by sending

a request to the application. Application will return all categorized

detail information of the selected class to the User.

Table B.41: Use Case Show Class Details

Use Case Show Class Triples

Stakeholder
User

Goal of Primary Actor

Viewing list of triples of a selected class

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario

User can see list of triples of a selected class by sending a request to the
application. Application will return all the existing triples of the selected

class as a list to the User.
Table B.42: Use Case Show Class Triples

145

Use Case Create Instance For Class

Stakeholder
User

Goal of Primary Actor

Creating instance for a selected class

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario
User can create an instance for a selected class by providing all

necessary information in the “instance create form”. By receiving
provided information for instance, application will go through
instance creation’s business logics and create it if there was no wrong
data or wunexpected exception. User will be informed the result of

operation through returned message from the application.
Table B.43: Use Case Create Instance For Class

Use Case Edit Class

Stakeholder
User

Goal of Primary Actor

Editing a selected class of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario

146

User can edit a selected class of default model by modifying all
necessary information in the “class edit form”. By receiving modified
information for class, application will go through class modification’s
business logics and modify it if there was no wrong data or unexpected
exception. User will be informed the result of operation through

returned message from the application.

Table B.44: Use Case Edit Class

Use Case Delete Class

Stakeholder
User

Goal of Primary Actor

Deleting a selected class from default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the classes of default model has been selected.

Scenario
User can delete a selected class by sending a request to the application.

Application will delete selected class from default model.
User will be informed the result of operation through returned message

from the application.

Table B.45: Use Case Delete Class

147

Use Case Show Properties

Stakeholder
User

Goal of Primary Actor

Viewing list of properties of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.
A default model has already been selected.

Scenario
User can see list of properties of the default model by sending

a request to the application. Application will return all the existing

properties of the default model as a list to the User.
Table B.46: Use Case Show Properties

Use Case Create Property

Stakeholder
User

Goal of Primary Actor
Creating a property for default model

Preconditions
Application is running.

Database is already started up.
User has already logged in the application.
A default model has already been selected.

Scenario
User can create a property for default model by providing all necessary

information in the “property create form”. By receiving provided
information for property, application will go through property creation’s
business logics and create it if there was no wrong data or unexpected
exception. User will be informed the result of operation through

returned message from the application.

Table B.47: Use Case Create f’roperty

148

Use Case Search Property

Stakeholder
User

Goal of Primary Actor

Searching for specific properties of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

Scenario
User can search for a specific list of properties of default model by

typing some part of desired properties’ name and sending
a request to the application. Application will return all the filtered

properties of the default model as a list to the User in which properties’

names contain the User typed part.
Table B.48: Use Case Search Property

Use Case Select Property

Stakeholder
User

Goal of Primary Actor

Selecting a property from the list of existing properties in default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one property already existing in default model.

Scenario
User selects a property from the list of existing properties in default

model in order to deal with it.

Table B.49: Use Case Select Property

149

Use Case Show Property Details

Stakeholder
User

Goal of Primary Actor

Viewing details information of a selected property
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario
User can see detail information of a selected property by sending

a request to the application. Application will return all categorized

detail information of the selected property to the User.

Table B.50: Use Case Show Property Details

Use Case Show Property Triples

Stakeholder
User

Goal of Primary Actor

Viewing list of triples of a selected property
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario
User can see list of triples of a selected property by sending

a request to the application. Application will return all the existing

triples of the selected property as a list to the User.
Table B.51: Use Case Show Property Triples

150

Use Case Edit Property

Stakeholder

User

Goal of Primary Actor

Editing a selected property of default model

Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario

User can edit a selected property of default model by modifying all
necessary information in the “property edit form”. By receiving modified
information for property, application will go through
property modification’s business logics and modify it if there was no
wrong data or unexpected exception. User will be informed the result of
operation through returned message from the application.

Table B.52: Use Case Edit Property

Use Case Delete Property

Stakeholder
User

Goal of Primary Actor

Deleting a selected property from default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the properties of default model has been selected.

Scenario

151

User can delete a selected property by sending a request to the
application. Application will delete selected property from default
model. User will be informed the result of operation through returned

message from the application.

Table B.53: Use Case Delete Property

Use Case Show Individuals

Stakeholder
User

Goal of Primary Actor

Viewing list of individuals of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.
A default model has already been selected.

Scenario
User can see list of individuals of the default model by sending

a request to the application. Application will return all the existing

individuals of the default model as a list to the User.

Table B.b4: Use Case Show Individuals

Use Case Search Individual

Stakeholder
User

Goal of Primary Actor

Searching for specific individuals of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

152

Scenario
User can search for a specific list of individuals of default model by

typing some part of desired individuals’ name and sending
a request to the application. Application will return all the filtered
individuals of the default model as a list to the User in which

individuals’ names contain the User typed part.

Table B.bb: Use Case Search Individual

Use Case Select Individual

Stakeholder
User

Goal of Primary Actor
Selecting an individual from the list of existing individuals in default

model

Preconditions
Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

There is at least one individual already existing in default model.

Scenario
User selects an individual from the list of existing individuals in default

model in order to deal with it.
Table B.56: Use Case Select Individual

153

Use Case Show Individual Details

Stakeholder
User

Goal of Primary Actor

Viewing details information of a selected individual
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario
User can see detail information of a selected individual by sending

a request to the application. Application will return all categorized

detail information of the selected individual to the User.

Table B.57: Use Case Show Individual Details

Use Case Show Individual Triples

Stakeholder
User

Goal of Primary Actor

Viewing list of triples of a selected individual
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario
User can see list of triples of a selected individual by sending

a request to the application. Application will return all the existing

triples of the selected individual as a list to the User.

Table B.58: Use Case Show Individual Triples

154

Use Case Edit Individual

Stakeholder
User

Goal of Primary Actor

Editing a selected individual of default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario
User can edit a selected individual of default model by modifying all

necessary information in the “individual edit form”. By receiving
modified information for individual, application will go through
individual modification’s business logics and modify it if there was no
wrong data or unexpected exception. User will be informed the result of

operation through returned message from the application.
Table B.59: Use Case Edit Individual

155

Use Case Delete Individual

Stakeholder
User

Goal of Primary Actor

Deleting a selected individual from default model
Preconditions

Application is running.

Database is already started up.

User has already logged in the application.

A default model has already been selected.

One of the individuals of default model has been selected.

Scenario
User can delete a selected individual by sending a request to the

application. Application will delete selected individual from default
model. User will be informed the result of operation through returned

message from the application.
Table B.60: Use Case Delete Individual

156

C - UltimateOMS Screenshots

The following figures show some screenshots of UltimateOMS.

(= Models page - Windows Internet Explorer

2k

.vjv(, *
fi- 80 @ [Oree - Grook- 7

-~

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

UGLEIESN Triples | Classes | Properties | Individuals

< Selecta default model --» - _

Existing Models in database:

Total number of models: 35 Model: |]

Select "Model” and ... [show graph] [show statistics] [check consistency] [export] [query] [infer] [delete]

Model
O 1. hitp:fiwww. bogus.com
O 2. httpcfiwww mindswap._org/2004/owl-s/1. 1/AmazonBookPrice. owl
O 3. httpe/iwww. mindswap.org/2004/owl-s/1. 1/BNPrice. owl
O 4. mtp:/iwww. mindswap._org/2004/owl-s/1 . 1/BabelFighTranslator owl
O 5. hitpoffwww. mindswap.org/2004/owl-5/1, 1/BookFinder.owl
O 6. http:/iwww.mindswap._org/2004/owl-s/1.1/BookPrice owl
O T, httpefiwww. mindswap.org/2004/owl-s/1 . 1/CurrencyConverter. awl
O 8. http:fiwww. mindswap._org/2004/owl-s/1. 1/Dictionary. owl
O 9. http/iwww. mindswap.org/2004/owl-s/1. 1/DisplayURL owl
O 10 http:/fwww.mindswap.org/2004/cwl-s/1. 1/FindCheaperBook.owl
O 11, hitp:fiwww. mindswap.org/2004/owl-s/1. 1/FindLatLong. owl
O 12 http:/iwww.mind: org/2004/owl-s/1.1/FrenchDicti y.owl

o~ aa i

-
MAAAGY L ks dim am i 5

Done: S Local intranet 0% -

Figure C.1: UltimateOMS Models page

157

/= File upload page - Windows | et Explorer

G"\v | B o nocains d.ip 8] [#2] [] [so0se [[#]-

w R |Eﬁn|dudnm ._ B - B v [rPage - GhTods - 7
~

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

UGLCIESN Triples | Classes | Properties | Individuals

upload model d <~ Select a default model >] m

Model name {base URI): | |

Select file: | Browse...

Verify data before pracessing

Automatically load owlimports

upload model

wazr el

& Local intranet Riow - .,l;

Figure C.2: Uploading model page in UltimateOMS

hitp: fflocalhost B0E0/kimsteOMS floadPage. jspTrage=sh del=h o2F . bogus. w4 x|
W W | s gresh [f2 - B - @ - [rPage s GhTos e 7
~
Welcome, sw [Logout] You have connected to the MySQL [Select other datab

Models i i Individuals

gl| hitp://www bogus.com b

Selected model: http:/iwww.bogus.com
Export fallowing graph as: | PNG v [_exportgraph |

- Isaviiz (ZVTH)

hitp:iwwew.wl.or g19990222 rdf-syntax-nsiype
et e

hitpilveveie.w3.0 GHISINZ2 rdi-syntax-nsdtype '
£

‘Applet org.wac. Isaiiz. applet.IsvBrowsar started & Local intranst

Figure C.3: Visualization graph in UltimateOMS

158

/= Export model - Windows Internet Explorer

O@. | hutp: fnocaliost aosanRimsteOMS loadPage. fsppage =expor

=hitp3A%2F %2, bogus. com o] [#2 [%] [5000

B8
f2- B - [rrage GhToos -

w |Ewm

~
Welcome, sw [Logout]

You have connected to the MySQL [Select other database]

UGLCIESN Triples | Classes | Properties | Individuals

Selected model http:/hwww.bogus.com

Export type: |N-Triples »
Notation3/N3

© Evotoleprmn

 Export all of the contents of the model {including inferred

imp d from other d.

 Copyright
Done:

S Local intranet F100% - .:le

Figure C.4: Exporting model page in UltimateOMS

Internet Explorer

hitp: [flocalhost 8060 /LitimateOMSfloadPage. 5p7page=queryModel s Fouzh o [##] [%] [5000
w & |EMM =

Welcome, sw [Logout]

~
You have connected to the MySQL [Selact other database]
Models Individuals
hitp:/fwww bogus.com 5] @
Selected model: http:/fwww.bogus.com
SPARQL query:
Select ?x 7z
Where {?x 7y 7z}
@ Show query results
O Export query results as: _Tl-TripIss v__
»
%4 Local intranst 0w v

Figure C.5: Querying model page in UltimateOMS

159

(= Query Results - Windows Internet Explorer []& |X

G - [Emminocabontsuoonsimsconsidocuenyiodl o & (2] [x] [co00e |2

w |EMM _ f2- B - [rrage GhToos -
~

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

UGLCIESN Triples | Classes | Properties | Individuals

http:/fwww.bogus.com v
[Go back]
Query:
Select 7x 7z Where {?x %y 72}
Results:
x z
1. http:/fwww.bogus.com/Table httpe/iwww. w3.org/2002/07/owi#Class
2. hitp:/fwww.bogus.com/Color hittpc/iwww. w3 org/2002/07/owl# Class
3. http:fiwww bogus comicolorilame hittp:/www w3 org/2002/07/owi#DatatypeProperty
4. hitp:/fwww.bogus.com/coloflame http:/fwww.bogus.com/Color
5 http:ffwww bogus comicoloriame hittpe/www w3 org/2001/XMLSchema®string
6. httpfiwww bogus.com/asColor hittp:/iwww. w3, 0rg/2002/0T/owi# ObjectProperty
7. hitp:/fiwww.bogus. com/MasColor hitp:/fwww.bogus.com/Table
8 hitp:fiwww bogus cem/hasColor hittp:/iwww_bogus com/Color
9. hitp:/fiwww bogus.comiblue httpe/fwww. bogus.com/Color
10. http:/fwww bogus com/blue blue
11. http:/fiwew bogus.comitable http:fiwww bogus. com/Table
12. http:/iwww bogus comitablel hitp:/iwww.bogus.com/blue
13. http:fiwww bogus com/Table Reza
Query retumed 13 results. ~
Done: S Local intranet i -

Figure C.6: Model query result page in UltimateOMS

Welcome, sw [Logout] You have connected to the MySQL [Select other database]

Models Individuals

hitp:fwww. mindswap.org/2004/owt-s/1.1/Dictionary.owl v

[Go back]

Statistics of the model: hitp:/h ind: g/2004/owl-sM.1/Dictionary.owl

Triples: 50 [Show triples]
Classes: 100 [Show classes]
Properties: 162 [Show properties]
Individuals: 28 [Show indniduals]

’\&n—w‘:-&
3 Framework

%4 Local intranst 0w v

%

V. Zared o
Done

Figure C.7: Model statistics page in UltimateOMS

160

IENE
-8 &-GE

Page « {3 Took =

~

Welcome, sw [Logout] You have connected to the My SQL [Select other database]

U\GLEIESN Triples | Classes | Properties | Individuals

ol

If "data model™ and "schema model” are the same, just select data model and leave schema model.

Select data model: | hitpi/fwww bogus.com v
Select schema model: | <~ Selecta default model --> v

Select reasoner type: | Generic Rule Reasoner v

) owL
Save inferred results 3540WL Mi
| OWL Reasoner
Rules for generic rule re1' RDFS Default Reasoner
RODFS Full Reasoner
"|RDFS Simple Reasoner
Transitive Reasoner

Done S Local intranet H100% v

Figure C.8: Inferring model page in UltimateOMS

IBE

8][4][]
= BB @ e ook "
~

Welcome, sw [Logout] You have connected to the MySQL [Selact other database]
Triples Individuals
show friples d hitp/fwww bogus.com) m

Selected Model: http:/iwww.bogus.com

Triples of the selected model:

Total number of triples: 13 Search: | All o [| [search]

Subject Predicate Object Edit Delete

1. http:fiwww bogus.com/Table http:/fwww. w3.org/1999/02/22-rdf-syntax-ns#type hitp:/fwww.w3.0rgl2002/07/owi¥Class edt delete

2. http:/fwww bogus.com/Color hittp:Faww. w3 org/1999/02/22-rdf-syntax-ns#type http:/fwww w3 .org/2002/07/owi#Class edit delete

3. http:fiwww bogus. comicolorhlame hittp:/fwww w3 org/1999/02/22-rdf-syntax-ns#type http:/fwww. w3.0rg/2002/07/owt#DatatypeProperty edit delete

4. http:ffwwwi bogus.com/coloriame http:/fwww.w3.0rg/2000/0 1/rdf-schema#domain http:/fwww._bogus.com/Color edit delete

5 http-fiwww bogus comicoloriame hittp:/fwww w3.0rg/2000/01/rdf-schemakrange: hittp:/fww. w3.org/2001/XML Schematstring edit delete

6. http:fiwww bogus.com/asColor hittp:/Fwww. w3.orgl1999/02/22-rdf-syntax-ns#type hittp:/fwww._w3.org/2002/07/owi#ObjectProperty edit delete

7. http:/ffwww bogus com/MasColor hitp:/fuwww. w3 ong/2000/01/rdf-schema®domain hitp:/fwww_bogus.com/Table edit delete

8. http:fivww bogus.com/asColor hittp:/Fwww. w3.org/2000/01/rdf-schematrange http:/fwww._bogus com/Color edit delete

9. hitp:fiwww bogus.com/blue Ittp:/Fwnerw. w3 org1999/02/22-rdf-syntax-ns#type hittp:/fwww_bogus. com/Color edit delete

10. http:/fwww bogus com/blue http:/fwww_bogus com/colorName blue edit delete

11, http:ffwew bogus. comitablel http:/fwww. w3, org1999/02/22-rdf-syntax-ns#type http:/fwww.bogus com/Table edit delete

12. hitp:/iwww bogus. comitable1 http:/fwww. bogus. com/hasColor http:/fwww_bogus.com/blue edit delete

13. http:fiwww bogus. com/Table http:Fwvww w3.org 2000/01/rdf-schema®isDefinedBy Reza edit delete ||
== |
y=—rees il P = e . L .Lll-ﬂﬁﬂb

& Local intranet i -

Figure C.9: UltimateOMS Triples page

161

vi‘y x |

% gt |[Ecrosto rple poge] BB - ree s Gk - 7

Welcome, sw [Logout]

‘You have connected to the My SQL [Select other database]

Individuals

{~ List of resources - Windows Internet Explorer

Selected Model: Mtp-liwaw. bogus.com

R of the selected model:
Selected model: http:/iwww.bogus.com i T = | [Feach]
Subject: [select] | 4 1q
. T 1. hitp fhwwe w3 org/ 1990222 18- syrtan- nsBAR
Predicate: | | [501Ct] | 5 pispoihwwm w3 0rgi1999/02722 10 syetan-nssBiag
- 3. hitpciwwe w3 org/ 1 99W0B2 2 syrax-nasfinst
Object: 4. httpc/wwe w3 org/ 199902221 syrias-ns#list
L [s2l2ct] | 5 g i w3 org1998102/22 r symta st
6. hitpihwww. w3 orgH30302/22 1o symtax-nsobject
Object type T, hitp: v, w3 org/ 199902221 syrax-nadpeedicate
8. hitpcihwwew w3 org/ 19990222 -symtanc-nadPropety
O Resource O ?Ialn literal . @ Typed literal | e e oA & s |
Lang: | | DataType: | AnyURI v 10. htpo/hasi w3, org 199900222 108 symiax ns#Seq

1. it v org 199902224 syriax-ne#Statement
12 httphwww w3 org 199902220 syriax-nefsubject
13, hitpfiwwew w3 0rg1999/02/22 r-syrtax-nsitype

14 hitp: e w3 org199002/22-188-aymtax-nethalue

15, hitp M w org 2000401/ chemafClass

16. hitp-fhwww. w3 org/2000001/rd-schemafcomement

A7 _hitn s wd or 0000 /e chamagtnntainas b
— Cl
azrledt] DT
S Local intranet H100% v
=

Figure C.10: Creating triple page in UltimateOMS

G@' hitp: flocalh JURimateOMS{b iples. jspre. T e Table 3| [##] [%] [5000 |lo-
* & |Erestromer [B - B - - [chpoge - GhTocs - 7
~
Welcome, sw [Logout] You have connected to the MySQL [Select other database]
Triples Individuals
hitp:/fwww bogus.com v
[Go back]
Triples of: http:/fwww bogus com/Table
Triples with selected value as subject:
Total number of triples: 2
Subject Predicate Object Edit Delete
1. - hitp:fiwwew. w3.org/ 199%/02/22rdf-syntax-nsitype hittp: v w3_org/2002/07/owlBClass adit delete
2= http:/wwew. w3 00/01/rdf-sch isDefinedBy Reza edit delete
Triples with selected value as predicate:
Total number of triples. 0
Subject Predicate Object Edit Delete
no statement has been found
Triples with selected value as object:
Total number of triples: 2
Subject Predicate Object Edit Delete
A btte Thassnss bamies s lbasi™alae bt fhasinis o aem FINNN N fedf L 4. i i Anlaba !
Done %4 Local intranst 00w v

Figure C.11: Triple browsing page in UltimateOMS

162

G@'@) [#2][x] [5ooge |2
W & Umespm |_] f v B - oo~ hpage - (Took

-~
Welcome, sw [Logout] You have connected to the MySQL [Select other database]

Ul Classes Individuals

hitp:/fwww.mindswap.org/2004/owl-s/1.1/AmazonBaokPrice.owl v

Selected Model: hitp:/iy indswap.org/2004/owls/1.1/A BookPrice.owl
Classes of the selected model:

Total number of classes: 76 Class: | || search
Select "Class™ and ... [create instance] [show detail] [show triples] [edit] [delete]

Class Subclass Of
O 1. hitp/iwww.daml org/senicesiowl-s/1.1/Process owl#Result

O 2. hitp/iweww.daml org/senices/owl-s/1.1/Process. owl#Repeat-Until

O 3. httpiwww. daml org/senices/ond-s/11/Process owl#Binding

O 4. hitp/iwww.isi.edu/~p imeftime-entry. IThing

O 5. hitp/iwww. daml org/senices/owl-s/1_1/Process owl#Any-Order

O 6. hitp:/iwww.daml.org/senices/ow-s/1 1/Process owl¥#Sequence

O 7. hitp:/iwww. daml org/zenicesiowl-s/1_1/Process owliinput http:fiwww. daml org/senices/owl-s/1.1/Process owl#Paramaeter
O 8. hitp:/iweww.daml.org/senices/owl-s/1. 1/Process. owt#ControlConstructBag

O 9. http:/iwww.daml.org/senices/owl-s/1.1/Process owi#ControlConstruct

© 10. hitp:/iweww daml org/senices/owl-s/1 1/Process owl#ControlConstructList

O 11, hitp/iwww daml. org/senices/iowl-s/1.1/Process owl#OutputBinding hitp:/fwww. daml org/serices/owl-s/1.1/Process owi#Binding
AT hites Phesias dnenl semissninaeiasd ol 4iDemnnne sl Than Elas :
Dore S Local intranet o v

Figure C.12: UltimateOMS Classes page

Go B JimateOMS fedRClass 63 2F To2F v, BOQUS. COMAL2ZF Table vl 4] %] [Goog: llol-
f I r =

w & |Ecl:dasspage l - e v ik Page » () Took +
-~

Welcome, sw [Logout] You have connected to the My SQL [Select other database]

Classes indiiduls

Selected model: http:fiwww.bogus.com T ———
r Solaciod Model hixp:ihwrers bogus. com
Class: [hiip:ffwww bogus com/Table Classars of the selected model;
Properties Tonal srmber of classes: 2 Class
" Cardinality
o min max L Class
1 1. [g v boge. comiTatie:
http:/iwww. bogus com/tableName | | L | 2. [Mtp e boges. comColer
hittp:/fwww bogus com/masColor __| |
Class Axioms
Subclass of Superclass of Equivalent Disjoint
|
[_‘ L J ‘ 4 -
[select] [clear] [select] [clear] [select] [clear] [select] [clear]
Class Descriptions
Intersection Union Complement
| ‘ ‘ | -
& Local intranet #100% v
—

Figure C.13: Editing class page in UltimateOMS

163

Windows Internet Explor [|.‘:-| |><

O"\' | petos calts UkimateC d.5p7class=HHtp -3 2% 2Fwwew. sl org s 2Fservices T 2Fowks962F 1. 1% ¥ | 4 || K| 5o |[2]=

| s detais [=] B - B - - [rrege - GhTok - 7
~
Welcome, sw [Logout] You have connected to the MySQL [Select other database]
L0 Ciasses
show classes d http:ffwww.mindswap.org/2004/owl-s/1.1/AmazonBoo kPrice. owl -] m
[Go back]
Details of class: http //www daml org/senices/owl-s/1 1/Process owliEnput [view triples]
Subclass of:
« http:/fwww.daml.org 1 1-s/1. 1/P £ P [ew detail]
Instances:
« hatp:fiwww mindswap org/2004/owl-s/1. 1/AmazonBookPrice owl#Bookinfo [view detail]
Declared properties:
« http:/iwww. daml.org/senices/owl-3/1.1/Process awl#collapse [view detail]
o http:/iwww daml org/senices/owl-s/1.1 ding owl#wsdlinputMessageP'arts [view detail]
» hitp:/iwww. daml.org/senvi n. ing.owl#xsitTransfe i ing [view detail]
« hatp:/ipur org/den IbibliographicCitation [view detail]
+ hittp:/iwww.daml.org/senices/owl-s/1.1/Profile. owi#hasOutput [view detail]
« hatpcfipur org/defelements/1 1/description [iew detail]
« hittp://pur_org/dciterms/abstract [view detail]
« httpfipur org/defelements/1 1/date [view detail]
« hitp:/ipud org/dc/elements/1. 1ititle [wew detail]
« hitp:/ipur org/de/elements/1.1/identifier [view detail]
+ hittp:/fpur_org/dc/elements/1. 1/source [wew detail]
« hntp:/iweww. daml org/senvices/owl-s/1.1/Senice owlisDescribedBy [view detail]
« hitp:/iwww.daml.org/send wi-s1.1 i i#wsdlQuiputMessagePants wew detail] v
Dune & Local intranet i -

Figure C.14: Class detail page in UltimateOMS

a’.‘ - hitp: fflocath PP A Ofahtte, 5 bogus. coms2FTable] [##]] [o0s |lol-

w & |EMMM ._ fit - B - - [ikPog - ChTook -
~

Welcome, sw [Logout] You have connected to the MySQL [Selact other database]

Triples | Classes Individuals

[Go back]

Selected model: http:/fwww.bogus.com

Indmidual: [hmfm.bogus.conmhlai
Instance of | hitp:/fwww.bogus.com/Table

Properties
Name Value

http-//www bogus. comAtableName [table1

hitp:/fwww bogus.com/blue
http:ifwww bogus com/asColor ||hitp:jfwww bogus comjred
clear]
Individual metainformation
Comments Labels
Language Comment Language Label

|
|

Done % Local intranst 0w v

Figure C.15: Creating class instance page in UltimateOMS

164

BB

= B8 @ v Grok- "

-~
Welcome, sw [Logout] You have connected to the MySQL [Select other database]

Models | Triples | Classes [Rat il Individuals |

Selected Model: hitp:/iwww.bogus.com
Properties of the selected model:
Total number of properties: 3 Property: | | [[search |
Select "Property” and ... [show detail] [show triples] [edif] [delete]
Property Domain Range
© 1. http:/hweew bogus. comicoloriame hittp:/fwwew. bogus. com/Color

hitp:/fwww.w3.0rg/2001/XMLSchema#string
hittp:/iwww. w3 org/2001/XMLSchema#string
http:ifwww bogus com/Table http:fiwww bogus com/Color

O 2. hitp:/iwww.bogus.com/tableName

hittp:/fwww. bogus com/Table
O 3. hitp:fiwww.bagus.commMasCaolor

Done S Local intranet R100% v

Figure C.16: UltimateOMS Properties page

Edit property page - Windows Internet Explorer

O@ - W:Im;mwmw-ﬂmwww.m.mm

] [#2 [%] [s000 | el
w & |E£ﬂnrmnm _|

By - B - [eege - GhTock e T

~
Welcome, sw [Logout] You have connected to the MySQL [Selact other database]

Triples | Classes [T S

Selected model: http:/iwww.bogus.com

Propenty: | hitp:/jwww.bogus.com/hasColor

Property domains and ranges

Domains Ranges
Damains | ® Object property
heep:/fwww . bogu o 7 |
s.com/Table J :f;g;é:‘;:;h““ |
[select] [clear] [E¥1E y
[clear] [select] [clear]
Property Characteristics
Functional Inverse functional Transitive Symmetric
] O O O
Property Axioms
Subproperty of Superproperty of Equivalent Inverse

£

& Local intranet i -

Figure C.17: Editing property page in UltimateOMS

165

(= Property details - Windows Internet Explorer

G@, [b pocan -

2P 2P, bogus. coms2FhasColor

& & A =

Welcome, sw [Logout]

8 52)) [|

i - - [Page - ChTods = 7

Models | Triples | Classes BI(CTWCN(EES m

show properties

]
You have connected to the MySQL [Select other database]

[Go back]

Details of property: http:/iwww. bogus.com/masColor [wew tnples]

hitp:/fwww.bogus.com 45 _

Domains:

« http:fiwww bogus. com/Table [view detail]
Ranges:
» http:ffwww.bogus.com/Color [view detail]
Declaring classes:

+ hitpfiwww bogus comiTable [vew detail]

RDF types:

« http:fwww w3.0rgi2002/07/owirObjectProperty

Qo R100% - .;.5

Figure C.18: Property detail page in UltimateOMS

Welcome, sw [Logout]

 Individuals page ernet Explorer
OO0 - Ewwimcr e 8 9]] [cooe |
W G (vt pooe]

Triples Individuals

show individuals

Selected Model: http:/fwww.bogus.com
Individuals of the selected model:

Total number of indniduals: 3

Select "Individual” and ... [show detail] [show triples] [edif] [delete]

Individual
o1 m.#:.f.m.bogus.camﬂablel
O 2. hitp:/iwww.bogus.com/blue
O 3. hitp:fiwww. bagus.comired

S
You have connected to the MySQL [Select other database]

hitp:/fwww.bogus.com 45 _
Indhidual: | |[Lsearch |
Instance of
hittp:/iwww. bogus com/Table

hittp:/fwww_bogus com/Color
hittp:/fwww_bogus com/Calor

S Local intranet . H100% ~

Figure C.19: UltimateOMS Individuals page

166

/= Individual details - Windows

G0 - [Eroiloabosmmiamscorsinavubst s

o 2Fwm o comizrtablel x

W | el detais =]

fi- 8

&~ [chPage + (FTock - 7

Welcome, sw [Logout]

Models | Triples | Classes | Properties B[\ ITETES

show individuals

[Go back]

Details of individual: http./fwww bogus. comitable [view triples]

You have connected to the MySQL [Select other database]

hitp[fwww bagus.com v | select |

Is defined by:
* Reza
See also:
+ table?
Instance of:
« hittp:/fwww. bogus com/Table [view detail]
Properties:

http:/fwww bogus.com/masColor [vew detail]
http:/fwww bogus com/tableName [view detail]

Value
hitp:/fwww bogus.com/blue
tablel

Figure C.20: Individual detail page in UltimateOMS

167

