
Master of Science Thesis
Stockholm, Sweden 2007

COS/CCS 2007-04

I V A N G L A U S E R

Improving Alarm Interoperability with
External Systems for a

Wearable Command Unit
Using Service-Oriented Architecture

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Improving Alarm Interoperability with
External Systems for a Wearable Command
Unit Using Service-Oriented Architecture

Ivan Glauser
glauser@kth.se

Royal Institute of Technology
Stockholm, Sweden

A Master of Science thesis project performed at
Saab Security Systems, Järfälla

Examiner: Gerald Q. Maguire Jr., ICT/KTH

Industry Advisor: Fredrik Öström, Saab Security Systems

This version was last updated 15 February 2007

Department of Communication Systems (CoS),
Royal Institute of Technology (KTH), Stockholm, Sweden.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

i

Abstract

This thesis investigates different aspects of implementing a Service-Oriented Architecture
(SOA) for an alarm and crisis management system called Wearable Command Unit (WCU)
developed by Saab Security Systems.

The WCU system must be able to integrate easily with external systems in order to move
into new markets and survive as a product. The focus of this report is a general solution for
communicating alarm information from external systems to the WCU. A given requirement
was that the solution must be based on SOA. Therefore, the concept of SOA is investigated
and its applicability is considered for the WCU architecture.

A design proposal based on a combination of open information and communication
technologies was made to show how WCU may use SOA to receive alarm information from
external systems. The design proposal was evaluated by a load test as well as comparing its
conformance to SOA. The load test showed that the proposed solution can process
incoming messages at a rate of 2 ms per message when client and server are run on the same
machine. The result of the comparison showed that the WCU can, with small modifications,
apply a SOA.

While this thesis has only investigated the use of SOA in the context of alarm information,
there is a clear trend toward integrating information for diverse systems to enable users to
have better quality information. Providing first responders with the information that they
need, when and where they need it can enable them to save lives, save property, and reduce
the risk to the public of incidents.

An important result from this thesis is the observation that a system that needs to integrate
with many distinct systems can be better prepared if made SOA conformant. This requires
the system to have an interface towards other systems based on platform independent
protocols. Systems such as the WCU, which are based on Windows Communication
Foundation (WCF), can easily add such an interface by configuring WCF in an appropriate
way.

Key Words: SOA, .NET, WCF, Web Services, alarm system, XML.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

ii

Sammanfattning

Detta examensarbete undersöker olika möjligheter att implementera Service-Oriented
Architecture (SOA) för ett larm- och krishanteringssystem kallat Wearable Command Unit
(WCU) utvecklat av Saab Security Systems.

För att kunna nå nya marknader och utvecklas som produkt, är det viktigt att WCU-systemet
på ett enkelt sätt kan integreras med externa system. Detta examensarbete fokuserar på att ta
fram en generell lösning för att kommunicera larminformation från externa system till WCU.
Ett förbestämt krav var att lösningen måste vara baserad på SOA. Begreppet SOA
undersöks och dess tillämpningsbarhet för WCU undersöks.

Ett designförslag baserat på en kombination av öppna informations- och kommunikations-
teknologier gjordes för att visa hur WCU kan använda SOA för att ta emot larminformation
från externa system. Designförslaget utvärderades genom ett belastningstest, samt genom att
jämföra dess konformitet med SOA. Belastningstestet visade att designförslaget kan processa
inkommande larm i en hastighet av 2 ms per meddelande när klienten och servern körs på
samma maskin. Resultatet av jämförelsen visade att WCU kan, med små modifieringar,
implementera en SOA.

Detta examensarbete har endast undersökt användandet av SOA vad gäller larminformation,
men det finns även en klar tendens mot att integrera annan information ifrån olika system
för att på så sätt ge användare av systemet kvalitativ information. Genom att ge framskjutna
enheter lämplig information, när och där de behöver det, kan de bli bättre förberedda på att
rädda liv och egendom, och samtidigt minska olycksrisken för allmänheten.

Ett viktigt resultat från detta examensarbete är iakttagelsen att ett system som behöver
integreras med många andra olika system kan bli bättre förberett genom att göra det SOA-
baserat. För att ett system ska vara SOA-baserat krävs att det har ett gränssnitt baserat på
plattformsoberoende protokoll mot andra system. System som WCU, som är baserade på
Windows Communication Foundation (WCF), kan med lätthet lägga till ett sådant gränssnitt
genom lämplig konfigurering av WCF.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

iii

Acknowledgements

I would first of all like to thank my examiner and supervisor professor Gerald Q. Maguire Jr.
for his valuable guidance, encouragement and assistance. I would also like to thank the WCU
design team at Saab Security Systems for providing me with material and information about
the WCU system. Special thanks go out to Fredrik Öström for giving me valuable guidance
in my work and a continuous flow of feedback, and David Andersen for giving me feedback
and comments on the report. I would also like to thank my opponent Mikael Corp for
reviewing my work and providing me with valuable comments. Finally I would like to thank
my friend Patrick Carroll for proofreading parts of the report.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

iv

Table of Contents

PART I – INTRODUCTION & METHOD 1

1 INTRODUCTION 1
1.1 BACKGROUND INFORMATION 1
1.2 PROBLEM SPECIFICATION 2
1.3 TARGET GROUP 2
1.4 THESIS OUTLINE 3
1.5 THESIS STRUCTURE 4
2 METHOD 5
2.1 INITIAL PHASE 5
2.2 RELATED WORK PHASE 5
2.3 COMPARISON PHASE 5
2.4 DESIGN PROCESS PHASE 5
2.5 EVALUATION PHASE 6

PART II – INITIAL SURVEY 7

3 DEFINITION OF SOA 7
3.1 INTRODUCTION TO SOA 7
3.2 EXISTING SOA DEFINITIONS 8
3.2.1 Object Management Group (OMG) SOA Definition 8
3.2.2 World Wide Web Consortium (W3C) SOA Definition 8
3.2.3 OpenGroup SOA Definition 9
3.3 THE OASIS SOA REFERENCE MODEL 10
3.3.1 Conformance Guidelines 11
3.4 KEY CONCEPTS OF SOA 12
3.4.1 Essential Components of a SOA 12
3.4.2 Essential Properties of a SOA 14
3.4.3 What Makes SOA Different From Traditional Software? 14
3.5 WHEN TO USE SOA 14
3.6 BENEFITS OF USING SOA 14
3.7 SOA METRICS DEFINED 15

4 DESCRIPTION OF THE WEARABLE COMMAND UNIT 16
4.1 WHAT IS THE WEARABLE COMMAND UNIT? 16
4.1.1 WCU Server 17
4.1.2 WCU Clients 17
4.2 ARCHITECTURE OVERVIEW 19
4.3 ALARMS 20
4.4 INTERNAL ALARM COMMUNICATION 22
4.5 USE CASES 23
4.5.1 Alarm Report in a Surveillance System (Internal Alarm) 23
4.5.2 SOS Emergency Alarm (External Alarm) 23
4.5.3 Incoming CAP Alarm (External Alarm) – Extended Functionality 23
5 RELATED WORK 24
5.1 INTEROPERABILITY SOLUTION IN WCU 1.2 24

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

v

5.2 RELATED SYSTEMS 25
5.2.1 Motorola Public Safety and Fire Service Solutions 25
5.2.2 LogMate Alarm Management System 25
5.2.3 Sun Ridge Systems Integrated Public Safety Software 25
5.2.4 Tiburon Public Safety Solutions 25
5.3 ALARM HANDLING 26
5.3.1 Human-Machine Interface 26
5.3.2 False Alarms 26
6 WCU ALARMS FROM A SOA PERSPECTIVE 28
6.1 SOA DEFINITION REVISITED 28
6.2 THE WCU INTERNAL ALARM COMMUNICATION 28

PART III - PROPOSED DESIGN 30

7 ARCHITECTURAL OVERVIEW 31
7.1 ARCHITECTURAL OVERVIEW 31
8 WCF CONFIGURATION 33
8.1 WCF BINDINGS 33
8.2 WEB SERVICE DISCOVERY IN WCF 34
8.3 WEB SERVICE DESCRIPTION IN WCF 34
8.4 WEB SERVICE SECURITY IN WCF 34
8.5 HOSTING OF WEB SERVICES IN WCF 35

9 DATA MODEL FOR ALARM INTEROPERABILITY 36
9.1 GLOBAL JUSTICE EXTENSIBLE MARKUP LANGUAGE 36
9.2 EMERGENCY DATA EXCHANGE LANGUAGE 36
9.3 VEHICULAR EMERGENCY DATA SET 37
9.4 COMMON ALERTING PROTOCOL 37

PART IV – EVALUATION 38

10 EVALUATION 38
10.1 EVALUATION OF THE SOLUTION TO THE FIRST PROBLEM 38
10.2 EVALUATION OF THE SOLUTION TO THE SECOND PROBLEM 38
10.2.1 Load Test 38
10.2.2 CAP 40
10.2.3 Short comings of the Proposed Solution 40
10.2.4 Advantages of the Proposed Solution 40

PART V – CONCLUSIONS & FUTURE WORK 42

11 CONCLUSIONS 42
12 FUTURE WORK 44

REFERENCES 45

PUBLICATIONS 45

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

vi

WEB-PAGES 48

APPENDICES 50

APPENDIX A – SOA DEFINITIONS 50
APPENDIX B – WCF AND WEB SERVICES 52
APPENDIX C – OBJECT MODELS AND SCHEMAS 54
C.1 CAP V1.1 XML OBJECT MODEL 54
C.2 EDXL XML OBJECT MODEL 55
C.3 WCU OBJECT XML SCHEMA 56
C.4 SOS INFOSERVER XML SCHEMA 57

APPENDIX D – MICROSOFT BIZTALK™ SERVER 60
D.1 Server Architecture 60
D.2 Adapters and Accelerators 61
D.3 Orchestrations and Business Rules Engine 61
D.4 Management and Monitoring 61
D.5 Supported Platforms and Software Requirements 62
D.6 Integration with Other Software 62
D.7 Security Aspects 62
D.8 Microsoft BizTalk Server 2006 Conclusions 62
D.9 Microsoft BizTalk Server 2006 Adapters 63

APPENDIX E – CAP TO WCU TRANSLATION 65
APPENDIX F – EVALUATION RESULTS 68

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

vii

List of Figures

FIGURE 1:1 – REPORT STRUCTURE ..4
FIGURE 3:1 – OBJECT MANAGEMENT GROUP SOA DEFINITION [36]..8
FIGURE 3:2 – WORLD WIDE WEB CONSORTIUM SOA DEFINITION [37] ..9
FIGURE 3:3 – OPEN GROUP SOA DEFINITION [38] ...10
FIGURE 3:4 – OASIS SOA CONFORMANCE GUIDELINES [1] ..11
FIGURE 3:5 – CONCEPTUAL MODEL OF SERVICE-ORIENTED ARCHITECTURE ...13
FIGURE 3:6 – SOA METRICS ..15
FIGURE 4:1 – WCU MAIN COMPONENTS ...16
FIGURE 4:2 – WCU COMMAND & CONTROL CLIENT GUI PROTOTYPE ..17
FIGURE 4:3 – WCU FIELD CLIENT GUI PROTOTYPE ..18
FIGURE 4:4 – WCU CONNECTIVITY OVERVIEW...20
FIGURE 4:5 – WCU ALARM CLASS DIAGRAM ..21
FIGURE 5:1 – WCU SOS ALARM INTERFACE ...24
FIGURE 7:1 – ARCHITECTURAL OVERVIEW OF PROPOSED DESIGN ..31
FIGURE 9:1 – CAP INTERFACE IN WCU ..37
FIGURE C:1 – CAP XML OBJECT MODEL [21] ..54
FIGURE C:2 – EDXL XML OBJECT MODEL [20]...55
FIGURE C:3 – WCU WCUOBJECT/WCUMAPOBJECT/INDICATION ELEMENT ..56
FIGURE D:1 – MICROSOFT BIZTALK™ SERVER ENGINE [15]..60

List of Tables

TABLE 1:1 – THESIS OUTLINE ...3
TABLE 4:1 – SERVICES PUBLISHED AT WCU SERVER ...22
TABLE 6:1 – SOA DEFINITION REVISITED...28
TABLE 10:1 – PROCESSING TIME PER MESSAGE IN MILLISECONDS ...39
TABLE 10:2 – PROCESSING TIME IN SECONDS FOR SENDING 1000 MESSAGES IN PARALLEL39
TABLE B:1 – MICROSOFT WCF STANDARD BINDINGS (MSDN.MICROSOFT.COM) ...52
TABLE B:2 – BASIC PROFILE 1.1 CORE WEB SERVICES STANDARDS ..53
TABLE D:1 – BIZTALK SERVER 2006 ACCELERATORS ...61
TABLE D:2 – MICROSOFT BIZTALK SERVER 2006 ADAPTERS ..63
TABLE E:1 – CAP TO WCU TRANSLATION TABLES ..65
TABLE F:1 – PROCESSING TIME IN SECONDS, BASED UPON A NUMBER OF TEST MESSAGES68

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

viii

Acronyms and Abbreviations

ISP Internet Service Provider

SOA Service-Oriented Architecture

SOAP Simple Object Access Protocol

SSL Secure Socket Layer

TLS Transport Layer Security

VPN Virtual Private Network

WCF Windows Communication Foundation

WCU Wearable Command Unit

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

1

Part I – Introduction &
Method

1 Introduction

This thesis project was done at Saab Security Systems, Järfälla, as a part of a Master of
Science degree in Information and Communication Technology.

This thesis project utilizes a combination of information and communication technologies to
solve the problem of integrating information from external sources for presentation to fixed
and mobile users.

1.1 Background Information
The Wearable Command Unit (WCU) is a system developed by Saab Security Systems for
communication and distribution of information. This system distributes information to
enable common situation awareness and includes built-in, customizable alarm and case
management as well as reporting tools. Mobile and stationary users receive position and
status updates which are displayed as a dynamic map. Each user can easily initiate verbal and
textual communication with other users [18]. There is also support for Automatic Vehicle
Location (AVL) and video. The system is sold to various customers with different needs,
and the number of customers is constantly growing.

As the WCU system has grown, several problems with the core architecture have emerged.
Difficulties integrating with other systems, as well as difficulties to extend it with new
functionality have proven hard to overcome. Because of this, work with a second generation1
of the system has already begun. The new version aims to improve the core architecture in
order to make the system more stable as well as more adaptable to future requirements.

Since the system is still under development several questions in the design process remain
unsolved. One such question is how to enable the system to better integrate with other
systems; are there any standard solutions that can be used?

Different types of information may need to be interchanged depending on what type of
system the WCU is to integrate with. Examples of such information are video, telemedicine

1 For the rest of this paper the term WCU refers to the second generation of WCU (version 2.0) unless stated
otherwise

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

2

(medical status and medical advice), sensor data (for detection, identification, and tracking),
positions (personnel, vehicles, and assets), unit status, and maps [22].

This thesis project has focused on alarm information and how WCU may exchange such
information with external systems. Alarm information refers to the description of alerts and
warnings in the public safety domain. This also includes alerts and warnings automatically
generated by sensors. The proposed design described in this thesis may, with small
modifications also be used for exchanging other types of information. However, how this is
to be done is not presented in this paper as it is outside the scope of this work.

1.2 Problem Specification
A property desired in the new version of the WCU is that it should be based on Service-
Oriented Architecture (SOA). This need emerged on one hand for marketing reasons, but
also because it would improve the extensibility of the system by facilitating integration with
other systems. The WCU is based on Microsoft’s Windows Communication Foundation
(WCF), which itself implements the concept of services. However, the definition of SOA is
vague (see chapter 3), thus an investigation was needed in order to determine whether or
how the WCU actually relates to SOA. As previously stated in section 1.1, the focus of this
investigation was primarily how to communicate alarm information.

In the earlier version of the WCU (version 1.2) there is a solution for communicating alarm
information between the WCU and an external system (see section 5.1). However, this earlier
system implemented a problem specific solution that proved to be difficult to integrate with
other systems. In addition, we expect that the need for a more general solution for WCU 2.0
will emerge as the system expands into new markets. The new solution should be based on
SOA in order to conform to the requirements explained in the previous paragraph.

Another question is how the different systems may achieve a common understanding of the
alarm information sent between them? How should data be represented in order for both
parties to understand each other properly? These questions are of great importance in order
to avoid misinterpretation of the information, as well as avoiding the need for problem
specific solutions in the future.

1.3 Target Group
This thesis is aimed at those involved in SOA adoption, such as companies, vendors,
consultants, and researchers. Those involved in public safety systems may also find the
content of this thesis valuable. The final results should guide Saab Security Systems and
other companies and organizations in further investigation of how communication of alarm
information could be implemented using a SOA. However, the main focus is supporting
Saab Security Systems in their continuing development of the WCU system.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

3

1.4 Thesis Outline
Table 1:1 presents an overview of this thesis. Part I includes an introduction (this chapter)
and a description of the method that was used during the work of this thesis. Part II investi-
gates the concept of SOA and WCU, describes related work, and how the WCU alarm
functionality is related to SOA. Part III presents a proposed design, including a description
of the architecture and the software used. In Part IV the evaluation of the proposed design is
presented. Part V presents conclusions and suggestions of future work.

Table 1:1 – Thesis outline

Part I: Introduction & Method

 Chapter 1 gives an introduction and presents the background to this thesis.

 Chapter 2 describes the method that was used during the work of this thesis.

Part II: Initial Survey

 Chapter 3 presents the concept and the metrics used for evaluation of SOA.

 Chapter 4 gives an overview of the WCU system.

 Chapter 5 presents related work and systems.

 Chapter 6 describes how the WCU alarm functionality is related to SOA.

Part III: Proposed Design

 Chapter 7 gives an architectural overview of the proposed design.

 Chapter 8 describes how WCF was configured for the proposed design.

 Chapter 9 describes alarm data models.

Part IV: Evaluation

 Chapter 10 presents the evaluation of the proposed design.

Part V: Conclusions & Future Work

 Chapter 11 concludes and summarizes this report.

 Chapter 12 suggests future work.

References & Appendices

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

4

1.5 Thesis Structure
Each arrow in Figure 1:1 represents a connection between chapters. Chapter 1 and chapter 2
give an overview over the problem area and the method used in this thesis. The information
presented in chapters 3 and 4 is essential for chapter 5. The evaluation made in chapter 6 is
based on all the previous chapters. Chapter 7 gives an architectural overview of the proposed
design and should be read before chapter 8 and chapter 9. Part III is essential in order to
fully understand the evaluation in chapter 10. Finally, the conclusions presented in chapter
11 are recommended to read before chapter 12, where suggestions for future work are
presented.

Figure 1:1 – Report structure

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

5

2 Method

This thesis project was structured in five phases as follows.

2.1 Initial Phase
The main focus of the initial phase was to gain a deeper insight into the concept SOA, as
well as to understand the WCU’s architecture.

The concept SOA was investigated and the metrics that were used for the comparison with
WCU were defined. This step required extensive study of literature as well as an examination
of existing definitions of SOA.

The second part of this phase consisted of studying and describing the WCU system. Since
this thesis main focus is on the alarm functionality of the WCU this is described in greater
detail (see section 4.3 and section 4.4). Another important part was to understand the
communication taking place inside the WCU system. This helped to determine if the
proposed design should concentrate on the central WCU Server or upon the WCU clients.
One external system, the SOS InfoServer has previously been integrated with the WCU.
How this connection was made was also studied in this phase.

2.2 Related Work Phase
The related work phase concentrated on identifying similar existing systems. Both alarm
systems, systems in the public safety domain, and general SOA-based systems were
investigated. Also general ideas and documentation about how to use alarm services in public
safety were studied. This included identification of alarm service vendors and service
consumers, as well as how alarms are handled in general.

2.3 Comparison Phase
This phase consisted of making a comparison between the WCU system and the definition
of SOA made in the initial phase. A comparison was made considering the internal
communication of the WCU as well as with the existing solution for connecting the WCU to
the external CoordCom system [17]. Suggestions of how to improve the conformance to the
SOA definition were made based upon these two comparisons.

2.4 Design Process Phase
The design process phase consisted of two steps:

The first step was to study the software to be used for implementation of the design
proposal. This included Microsoft’s Windows Communication Foundation (WCF) as well as
the Microsoft BizTalk Server. The analysis of Microsoft’s BizTalk Server has been moved to

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

6

Appendix D. This is after a decision was made by the author of this thesis to exclude it from
the proposed design. This decision was based upon the result of the analysis.

Another component of this step included identifying existing standard protocols and
specifications concerning exchanging public safety information between different systems.
Of particular interest were standards for describing alarms in public safety.

The second step consisted of creating a design proposal for how the WCU can improve its
interoperability with other systems, in particular presenting a solution for making the
integration with other alarm systems less problem specific in the future. A prototype of the
proposed design was then implemented using the software studied in the first step of this
phase.

2.5 Evaluation Phase
The evaluation phase consisted of a conformance comparison between the proposed design
and the SOA definition given in the initial phase. Additional aspects in the proposed design;
such as scalability, security, and performance was also evaluated. The performance test was
mainly to get a rough estimation of how fast alarm messages could be received and
processed. The result showed that the proposed design will not constitute a bottleneck in the
system. However, a more accurate research with real life alarm statistics should be done
before deciding for sure that the design will hold for the desired performance constraints.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

7

Part II – Initial Survey

3 Definition of SOA

This chapter gives an overview of SOA and the key concepts associated with it. Although
SOA can be applied to a variety of architectural concepts and domains, this thesis will only
consider SOA from a software perspective.

3.1 Introduction to SOA
Service-Oriented Architecture, commonly abbreviated SOA, is a concept that has gained
extensive attention in software development communities in recent years. It has been
applied, and claimed to be applied, in a broad area of applications and domains. This has
lead to a variety of definitions.

To give a generalized definition of SOA, one could say that it is a paradigm or framework
for organizing and exchanging information using services. In contrast to a classical
architecture that focuses on classes, data, and process models the center of attention is
services, their interfaces, and the interaction between these services.

The problem of integrating divergent distributed systems is not new. Both DCOM2 and
CORBA3 are two of the first technologies tackling this problem. However, although they
also wanted to achieve platform independence, they targeted application objects rather than
services and processes as SOA does. In an object-oriented paradigm, data is tightly
bounded to its processing while in a service-oriented paradigm data and its processing is
separated.

Because SOA has received so much attention recently it has become even more difficult to
explain or define. Because no general definition exists, the diversity of areas in which it is
applicable has grown. Recently an attempt to stop this process of an escalating number of
diverse definitions was made by the OASIS consortium. They have created a SOA Reference
Model that seeks to unify SOA by introducing a common semantics into an abstract
framework for implementing SOA. Important parts and conclusions from this model are
presented in section 3.3.

The reminder of this chapter is as follows. Section 3.2 describes three existing SOA
definitions. Section 3.3 describes the OASIS SOA Reference Model. Section 3.4 focuses on
the key concepts of SOA. Section 3.5 describes when to use SOA. Section 3.6 discusses the

2 Distributed Component Object Model, introduced by Microsoft in 1996
3 Common Object Request Broker Architecture, introduced by OMG in 1990

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

8

benefits of SOA, and in Section 3.7 the SOA metrics that will be used in this thesis are
defined and presented.

3.2 Existing SOA Definitions
The number of SOA definitions is nearly as many as its implementations. A range of
participants from large consortiums to enterprises and individuals have made their
contribution. Most definitions have much in common, but use different words or concepts
for what could be seen as the same underlying content. Among the more established are the
definitions given by the standardization organizations of OMG, W3C, and OpenGroup that
are presented in this section4. An interpretation of the content and meaning is made for each
definition.

3.2.1 Object Management Group5 (OMG) SOA Definition
The definition by OMG [36] in Figure 3:1 states that a SOA must contain providers and
consumers of services. The first bullet says that participants in the SOA system must not depend on
each other, e.g. a failure in one part should not affect other parts of the system. There should
also be no or little technological dependency between participants. The contracts set in the
system have to be followed in order to participate, and to allow for “a variety of technologies to be
used”, standard protocols have to be used in the communication interfaces between the
participants.

“Service Oriented Architecture is an architectural style for a community of providers and
consumers of services to achieve mutual value, that:

• Allows participants in the communities to work together with minimal co-
dependence or technology dependence

• Specifies the contracts to which organizations, people and technologies must
adhere in order to participate in the community

• Provides for business value and business processes to be realized by the
community

• Allows for a variety of technologies to be used to facilitate interactions within
the community”

Figure 3:1 – Object Management Group SOA definition [36]

3.2.2 World Wide Web Consortium6 (W3C) SOA Definition
The W3C definition [37] in Figure 3:2 states that a SOA must contain services, e.g. programs,
processes, etc. that are described in “terms of what it does”. The internal implementation of
services should be hidden from external users, and the interaction with services is provided

4 For more definitions of SOA see Appendix A
5 An international, open membership, not-for-profit computer industry consortium
6 An international consortium with over 500 members: leading industries, research and development institutes,
standardization organizations, and governments. W3C is working to develop protocols and guidelines that
ensure long-term growth for the Web.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

9

in terms of message exchange. The semantics of a service and a description of all information
necessary to interact with a service must be described in a way interpretable by machines. To be
independent of underlying platform and technology, messages and interfaces between
participating parts must be based on standardized format (protocols).

“A Service Oriented Architecture (SOA) is a form of distributed systems architecture that
is typically characterized by the following properties:

• Logical view: The service is an abstracted, logical view of actual programs,
databases, business processes, etc., defined in terms of what it does, typically
carrying out a business-level operation.

• Message orientation: The service is formally defined in terms of the messages
exchanged between provider agents and requester agents, and not the
properties of the agents themselves. The internal structure of an agent,
including features such as its implementation language, process structure and
even database structure, are deliberately abstracted away in the SOA: using
the SOA discipline one does not and should not need to know how an agent
implementing a service is constructed. A key benefit of this concerns so-called
legacy systems. By avoiding any knowledge of the internal structure of an
agent, one can incorporate any software component or application that can be
"wrapped" in message handling code that allows it to adhere to the formal
service definition.

• Description orientation: A service is described by machine-processable meta
data. The description supports the public nature of the SOA: only those details
that are exposed to the public and important for the use of the service should
be included in the description. The semantics of a service should be
documented, either directly or indirectly, by its description.

• Granularity: Services tend to use a small number of operations with relatively
large and complex messages.

• Network orientation: Services tend to be oriented toward use over a network,
though this is not an absolute requirement.

• Platform neutral: Messages are sent in a platform-neutral, standardized
format delivered through the interfaces. XML is the most obvious format that
meets this constraint.”

Figure 3:2 – World Wide Web Consortium SOA definition [37]

3.2.3 OpenGroup7 SOA Definition
The OpenGroup’s SOA definition [38] in Figure 3:3 states that a service must be self-
contained, e.g. it must constitute “a complete and independent unit in and of itself” [45]. How
a service is implemented should be hidden from the outside. Only what is necessary to interact
with it should be available to its users. The interface of a service, the policies and rules of
interacting with it, and what the outcome of using it will be, must be described to other parts. To

7 A vendor- and technology-neutral consortium, whose vision is to “enable access to integrated information
within and between enterprises based on open standards and global interoperability”

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

10

be independent of underlying infrastructure and implement “location transparency”, open
standard protocols in the interfaces must be used.

“Service-Oriented Architecture (SOA) is an architectural style that supports service
orientation.

Service orientation is a way of thinking in terms of services and service-based
development and the outcomes of services.

A service:
Is a logical representation of a repeatable business activity that has a specified outcome
(e.g., check customer credit; provide weather data, consolidate drilling reports)

• Is self-contained
• May be composed of other services
• Is a “black box” to consumers of the service

An architectural style is the combination of distinctive features in which architecture is
performed or expressed.

The SOA architectural style has the following distinctive features:

• It is based on the design of the services – which mirror real-world business
activities – comprising the enterprise (or inter-enterprise) business
processes.

• Service representation utilizes business descriptions to provide context (i.e.,
business process, goal, rule, policy, service interface, and service
component) and implements services using service orchestration.

• It places unique requirements on the infrastructure – it is recommended that
implementations use open standards to realize interoperability and location
transparency.

• Implementations are environment-specific – they are constrained or enabled
by context and must be described within that context.

• It requires strong governance of service representation and implementation.
• It requires a “Litmus Test", which determines a “good service”.”

Figure 3:3 – Open Group SOA definition [38]

3.3 The OASIS SOA Reference Model
The Organization for the Advancement of Structured Information Standards8 (OASIS)
consortium has created a SOA Reference Model [1] that strives to preserve a common
understanding of SOA. It is an attempt to unify important concepts of existing SOA

8 A non-profit, international consortium founded in 1993 that drives the development, convergence, and
adoption of e-business standards

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

11

implementations and guide architects in implementing SOA. At the time of writing this is an
official OASIS Committee Specification, one level below a full OASIS standard.

The idea behind the SOA Reference Model is to use it as an abstract framework to build
concrete SOA implementations. The model also contains Conformance Guidelines to help
architects and others to decide whether their work is conformant.

3.3.1 Conformance Guidelines
Figure 3:4 shows the conformance guidelines as presented in [1]:

“Any design for a system that adopts the SOA approach will

• Have entries that can be identified as services as defined by this Reference Model9
• Be able to identify how visibility is established between service providers and

consumers
• Be able to identify how interaction is mediated
• Be able to identify the effect of using services is understood
• Have descriptions associated with services
• Be able to identify the execution context required to support interaction
• Be able to identify how policies are handled and how contracts may be modeled

and enforced.”

Figure 3:4 – OASIS SOA conformance guidelines [1]

Each one of the statements in Figure 3:4 are explained below:

The first statement; “have entries that can be identified as services as defined by this Reference Model”,
indicates that a SOA approach will have services. In [1] a service is described as “the means
by which the needs of a consumer are brought together with the capabilities of a provider”.

The second statement indicates that a SOA approach will “be able to identify how visibility is
established between service providers and consumers”. According to [1] visibility is satisfied when
participating parts can interact with each other. For interaction to be possible, both parties
have to be reachable, be aware of each other, and be willing to interact.

The third statement indicates that a SOA approach will “be able to identify how interaction is
mediated”. How interaction is mediated requires that information of how to interact with a
service can be found by any participant in the system. This requires that information about
how to connect to and use a service must be described in a way interpretable by its
consumers.

The effect of using a service has to be described in a way that can be found and interpreted
by its consumers. This is the content of the fourth statement: “be able to identify the effect of using
services is understood”.

9 See [1] Section 3.1

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

12

The next statement indicates that a SOA approach will “have descriptions associated with services”.
Service description is necessary in order for participants to understand what a service is and
what will be the result of invoking it. The description must be described with semantics
interpretable by all participants in the system according to [1].

The next statement in Figure 3:4 is “Be able to identify the execution context required to support
interaction”. The execution context is described in [1] as an agreement of protocols, semantics,
policies and other conditions that describe how a service can and may be used by what
participants. It can be a temporary connection or a well-defined coordination that can be
reused. Different instances of the same service are distinguished by their execution context.
The execution context also involves the interpretation of data, e.g. a particular string has a
particular meaning in a service interaction in a particular execution context.

The last statement indicates that a SOA approach will “Be able to identify how policies are handled
and how contracts may be modeled and enforced”. Policies are described in [1] as the constraints or
conditions on the use, deployment or description of a service as defined by any participant.
This includes aspects such as security, privacy, manageability, Quality of Service and so on. A
contract on the other hand is defined as the agreement by two or more parties, not necessary
arrived at by a mechanism that is a part of an SOA. Both policies and contracts may or may
not be presented in a form that permits automated interpretation.

3.4 Key Concepts of SOA
The following key concepts are the result of an analysis of selected definitions as well as a
variety of publications and other sources. One important source was the OASIS SOA
Reference Model [1]. The terms and designations used could be exchanged with others as
long as their significance is preserved. The concepts presented here should be seen in
relation to the work presented in this thesis and not as a universal description of what SOA
must or should contain.

3.4.1 Essential Components of a SOA
Every SOA requires the existence of a service, a service provider, a service consumer, a
service registry, and a service description. How these components are described or
implemented vary, but the main idea is that services are implementations of functions,
procedures, or similar and that providers and consumers interact with each other by using
these implementations. The service description is needed in order for participants to
dynamically find and bind to services that have been published in the service registry.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

13

Figure 3:5 – Conceptual model of Service-Oriented Architecture

A service provider publishes (publish) a service to the service registry. A service consumer sends a request
(find) and searches the service registry for a service it needs by providing a keyword or a service name. Finally,
the service consumer receives the location of the service and connects (binds) to the service provider. [2], [13],
[23].

Services
A service is an abstract concept that can be defined in a numerous ways [3], [4]: one general
definition applicable to this thesis is “a unit of work to be performed on behalf of a
participating party.” Functions, procedures, and applications can all be seen as services or a
set of services [23].

Service provider and service consumer
A service provider can be seen as an autonomous participant in the system that implements a
service and makes it available. A service consumer can be seen as a participant in the system
by consuming a service. Whether a participant has the role of a provider or a consumer
depends only on the actions performed by the participant at the moment of interaction [12].

Service registry (broker)
A service registry is needed for participants to know where to look for services and service
descriptions. The registry works as a “matchmaker between service requestor and service
provider” [23]. It stores an association between a name and a description, and the address
and location details for a named service [5].

Service description (policies and contracts)
A service description is needed in order to regulate the access and security of services as well
as under what conditions interaction with a service can be done. It is essential since it
describes what a service will do10, what data must be passed to the service, and what data is
to be expected in return. Policies and contracts [1] are also a part of the service description.
The service description should be described in a generally available way and be accessible to
all parties.

10 E.g. what the result will be of invoking the service (as the internal implementation of the service should be
hidden from outside)

Service
Registry

Publish a service description Find a service

 Bind to a service Service
Consumer

Service
Provider

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

14

3.4.2 Essential Properties of a SOA
The key issue in the success of SOA is its independence from the underlying network
architecture and its ability to integrate other systems. All service interfaces, and hence
implicitly the services, must be universally available to all participants in the system11. By
agreeing upon a common message and data model, services can interconnect independently
of the underlying technology and internal service implementation. Services should be self
contained, that is they should always provide the same functionality independent of other
services [6]. This allows for a stable and flexible system where a component failure does not
necessarily mean that another parts of the system fail.

3.4.3 What Makes SOA Different From Traditional Software?
In [7], three fundamental differences that SOA possesses in contrast to traditional software
are described: “Standard-based Interoperability”, “Dynamic Composition via Discovery”,
and “Dynamic Governance and Orchestration”. Standard-based Interoperability refers to the
use of standard protocols in the interfaces and communication. Dynamic Composition via
Discovery refers to the fact that composition and discovery of services can be carried out at
runtime. Dynamic Governance and Orchestration refers to the possibility of dynamic
scheduling of the execution of services by the use of policies and coordination controllers.

Traditional systems do not have self-describing functionality as they lack the service
description provided in SOA. The only description in traditional systems is normally
information contained as comments in the code, and these are generally not machine-
interpretable.

3.5 When to Use SOA
It should be much easier for a service requestor to understand the contract of a service than
to implement the service itself. This is an important aspect since the service requestor does
not have to care about the implementation of the service [8].

Service implementation within applications is often not as beneficial as in and between larger
systems (e.g. enterprises) [13]. This comes about naturally since the problems to be solved in
small scale systems and applications usually can be solved in a more cost effective way
without using services. That is, the strength of SOA comes in application integration.

3.6 Benefits of Using SOA
Generally there are two main benefits of implementing a SOA. They are based on the fact
that SOA uses open standard protocols for exchanging data, and that processing and data
are separated. This leads to a system which is highly dynamic in several aspects.

Most stand-alone systems have a problem integrating with other systems. Specialized code
has to be written to transform and manipulate data in order to transfer the data between

11 As long as this does not contradict any policy in the system

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

15

applications. The use of standard protocols for information exchange and data makes
integration less troublesome.

There is no need to rewrite entire applications to implement SOA. An existing application
can be used as a service by providing a SOA-based interface on top of it. SOA-based
systems are also highly extensible, that is, allow for new services, changes to services, or new
versions of services during runtime (without interfering with the rest of the system). This is
achieved by using policies and versioning to distinguish execution context.

Once a service has been described and published, it can be accessed and interacted with by
all participants in the system that adhere to the policy associated with the service.

SOA can take the advantage of data flow computation and context-aware [9] systems to
allow for automation of tasks and interactions between participants and services. Thus
services can be dynamically composed based upon the user's current context and services
need only be invoked when there is data for them to process.

The possibility of switching between redundant services at runtime makes the system more
adaptable and stable. Rules of how to compare services [6] are beneficial for this. High
reliability and load balancing can also be achieved by using redundant services and, or service
registries [10], [11].

3.7 SOA Metrics Defined
The definition of SOA metrics in Figure 3:6 is based upon the material presented in this
chapter.

A SOA must have self-contained services that adhere to a service description describing
what it does, how to interact with it, and what the outcome of using it will be. This
information must be presented in a machine-interpretable format that is generally accessible
to all potential consumers of the service.

The internal implementation of a service is hidden from external users, and all interaction
with it must be done via its interface using message exchange. The interfaces must be based
on standard protocols so that they are independent of the specific underlying technology.

Figure 3:6 – SOA metrics

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

16

4 Description of the Wearable Command Unit

This chapter gives a general overview of the Saab Security System’s Wearable Command
Unit: what it is, what its architectural looks like, its main components, how the internal alarm
communication operates, and some example use cases. This thesis will only consider version
2.0 of the WCU. This version of the system is currently under development at Saab Security
Systems.

4.1 What is the Wearable Command Unit?
Saab Security System’s Wearable Command Unit (WCU) is a system for communication and
information distribution between mobile and stationary nodes [14]. Its main purpose is for
use in crisis management to establish “situation awareness” among its users. By situation
awareness it is meant that all of the users should be able to have a common understanding of
what the situation is, where users and objects in their environment are, what the status of
these users and objects is, etc. The core components of the WCU system (showed in Figure
4:1) are the WCU Server, the Command & Control Client, the Field Client, and the
Smartphone Client.

WCU Server

Command & Control Client

Smartphone ClientField Client

Figure 4:1 – WCU main components

The WCU is designed to be used in crisis management on both a local level as well as by
authorities on an international level. One of the main markets for the WCU is in public
safety. By providing rapid information distribution, alarm management, and other support,
the involved parties and authorities can get a quick overview of the situation. Other target
markets are surveillance of restricted areas and buildings; for example at airports, mines, and
harbors.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

17

4.1.1 WCU Server
The WCU Server has the role of distributing messages between participating clients. This is
controlled by subscription rules as well as a set of roles associated with each client. The
WCU Server also handles authentication in the system. This means that no client can
connect without first authenticating and registering with the server. The WCU Server is
accessed and managed via a web based interface.

Version 2.0 of the server, which at the moment is evolving at Saab Security Systems, will not
be a pure centralized message broker. This is since subscription rules and other information
is kept locally on the server instead of retrieving this information from a database. This is
due to performance reasons and time constraints in the development process. In the planned
version 2.1 of the system this is to be changed, making it a true message broker.

4.1.2 WCU Clients
WCU clients are built using a plug-in architecture. That is, most of the functionality such as
maps, video interaction, and logging is derived from plug-ins. This makes it easy to
customize the product for specific needs among different customers.

4.1.2.1 Command & Control Client
The purpose of the Command & Control Client is to manage and control resources, units,
and alarms in the system. This type of client generally runs on a stationary machine. This
client displays a map indicating incoming alarms and events, as well as related information
(positions, messages, photos, video, etc.).

Figure 4:2 – WCU Command & Control Client GUI prototype

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

18

Figure 4:2 shows an early prototype of the WCU Command & Control Client graphical user
interface (GUI). At the top is a menu for accessing basic functionality, as well as plug-in
specific menus. A ToolBar Tray, providing tools and functionality for the currently loaded
plug-ins can be found below the menu. A TabControl View is found to the left below the
ToolBar Tray. This is where plug-ins have the option to display their main user interface.
The selected tab view (VirtualEarthPlugin) in the figure shows a map of a suburb of
Stockholm. The red marker indicates an active alarm. The StackPanel View to the right lists
status values for each of the currently loaded plug-ins.

4.1.2.2 Field Client
The WCU Field Client is normally run on a mobile Tablet PC or laptop equipped with a
GPS receiver. This type of client is mainly used in vehicles or out in the field by a
commander or similar manager. The Field Client receives alarms and missions from the
WCU Server depending on its role and subscription status (as set in the Command &
Control Client). New alarms may also be generated by the Field Client. In this case the alarm
is sent to the WCU Server which redistributes it to the other relevant clients. The map in the
Field Client GUI displays the exact location of all resources associated with the same alarm.
All annotations that are drawn on the map are immediately distributed to all participating
parties.

Figure 4:3 – WCU Field Client GUI prototype

Figure 4:3 shows an early prototype of the WCU Field Client GUI. All buttons and text in
the figure are in Swedish. The center of attention is the map in the middle displaying alarms,

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

19

available units (which may be a guard, fire truck, police officer …), different type of sensors,
and other location related information. To the left of the map are buttons for displaying
mission and log information, for starting a chat, annotating the map, and for adapting the
GUI for night usage by changing its colors. In the bottom left hand corner are also
indicators of whether the client is currently connected to the network, to the server, and if
GPS is activated. The right side of the figure displays buttons for navigating the map as well
as setting this client’s status. At the bottom are buttons for navigating to, or searching for a
specific address, displaying a map, showing the best route to a location, and logging out.

The map view shown displays the area near the Öresund bridge. The red triangle indicates
the location of dangerous materials (farlig gods) that are being transported across the bridge.
This transport is being over seen by seven helicopter based units. Each of these units is
labeled on the map. An annotation (marked “Point of no Return”) which starts two or three
piers out from the shore (near Lernacken on the Swedish coast) indicates that the goods
transport must move past this area and once past cannot return.

4.1.2.3 Smartphone Client
The Smartphone Client can be seen as a thin Field Client. It receives and reports back alarms
in the same way that the Field Client does. Its role in the system as well as its subscription
rules are also managed by the Command & Control Client. It has only the most essential
functionality due to the limited display of the handset. This includes GPS positioning,
message exchange, and alarm report generation. The Smartphone Client is used mainly by
personnel on foot.

4.2 Architecture Overview
All of the code for the WCU is written in C# on top of the Microsoft .NET Framework 3.0
using Visual Studio 2005. The Command & Control Client and the Field Client are running
Microsoft’s Windows XP operating system with the service package 2 (SP2) fixes. The
Smartphone Client runs Microsoft’s Windows CE, and the WCU Server is running
Microsoft’s Windows Server 2003.

Figure 4:4 gives an overview of the connectivity in the WCU system. The mobile Field Client
and the Smartphone Client are connected through GPRS or 3G packet data services to an
internet service provider (ISP). The Command & Control Client may also be connected
through GPRS or 3G, but is normally connected to the WCU Server via a fixed line. This
internet service provider may place a Network Address Translation (NAT) between the local
mobile network and the Internet. In addition there may be another NAT between the ISP
and the wireless network provider.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

20

Figure 4:4 – WCU connectivity overview

In the earlier version of WCU (version 1.2) a VPN server is used for providing security and
tunneling between the WCU clients and the WCU Server as they communicate over the
public network. Since problems have been encountered with the current solution – sessions
are lost as mobile clients move out of range – the WCU 2.0 design team is considering
alternative VPN solutions that will support session consistency and network roaming.
Outside of the VPN is a firewall located; providing security between the intranet and
Internet.

The system is centralized, which means that all communication between WCU clients has to
go via the WCU Server. For example, if a client wants to send an image-file to another client
it must first send it to the WCU Server which will forward it to the intended recipient. A
centralized solution was chosen for several reasons: the design team wanted to log all events
in the system in a central log, and it was also much more straightforward and less time consuming to
build a centralized solution than to build a complex distributed solution. Since the system is
much about providing “common situation awareness”, a majority of the information is
consistent between clients. Keeping this information in a centralized location facilitates the
work of maintaining it up-to-date among participants. Downsides of using a centralized
solution are among others performance, cost, and reliability issues.

4.3 Alarms
WCU uses a centralized solution with a WCU Server that handles and distributes alarms to
subscribing clients. All alarms in WCU are represented as Indication objects12. An Indication
object has properties such as alarm type (such as fire and security) and priority. The
Indication class inherits the WcuMapObject class, which in turn inherits the atomic
WcuObject class. Both the WcuMapObject class and the WcuObject classes are abstract

12 See Appendix C and section C.3

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

21

classes. The WcuMapObject class has location based properties such as coordinates,
geometry, symbols and location. The atomic WcuObject has properties such as begin time,
end time, name, id, and text. There is also a special designed class called ExternalIndication
that is aimed at describing external systems. This class inherits the Indication class and has
properties such as ExternalSystem and ExternalSystemId. An overview of the alarm
representation in WCU can be seen in Figure 4:5.

Figure 4:5 – WCU alarm class diagram

There are also other classes that can be used for describing parts of an alarm in the WCU.
One such class is the WcuFile class, whose purpose is to describe different types of files that
can be a part of the system. These classes also inherit the atomic WcuObject abstract class.

Depending on what role a WCU client is associated with as it authenticates with the system,
it is given a number of predefined subscriptions and capabilities. When the WCU Server
receives an alarm it makes a selection from the clients that have the appropriate
subscriptions and redistributes the alarm message to those clients. The selection of client(s)
depends on the content of the alarm as well as other system state information, such as the
status of each client.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

22

4.4 Internal Alarm Communication
WCU internal communication is defined as the communication taking place between the
WCU Server and WCU clients in the system.

The Microsoft Windows Communication Foundation (WCF) is used for all communication
taking place within the WCU network. WCF is based on the concept of services and support
several types of bindings (wire-level agreements)13. More about bindings in WCF can be
found in section 8.1. There is also support for constructing custom bindings. Table 4:1 lists
the services involved in the minimum required communication taking place when a client
sends a new Indication (alarm) to the WCU Server. All services except for the
“authentication” service use the netMsmqBinding, a queued and asynchronous binding that
uses the Microsoft Message Queuing (MSMQ) protocol.

Table 4:1 – Services published at WCU Server
Service Name Description Binding Host
Authentication service Used by clients to login to or logout from the WCU

Server
netTcpBinding Server

Subscription service Used by clients to subscribe to new and updated
objects and events

netMsmqBinding Server

Notification service Used by clients to inform the WCU Server of all its
known objects

netMsmqBinding Server

Publishing service Used by clients to publish new or updated objects netMsmqBinding Server
WcuObject publishing
service

Used by server for sending back WcuObject
information

netMsmqBinding Client

Among the services published by the WCU Server are: an “authentication service” for
authenticating clients connecting to and disconnecting from the system, a “subscribing
service” that clients make use of to get a notification every time the server receives a new or
modified object, a “notification service” that clients use to inform the WCU Server of all its
known objects, and a “publishing service” for publishing new objects to the server. The
reason the client host the “WcuObject publishing” service is that the MSMQ protocol does
not support duplex communication. A client uses this service to receive WcuObject
information from the server.

A client that connects with the server must begin with calling the “authentication” service
and set up a channel to all other services required in order to initiate communication. This
includes sending information about all its known objects to the WCU Server through the
“notification” service. After this has been done, the client may use the “publishing” service
to publish new objects to the server. This service implements a method that accepts different
types of WCU objects (for example an Indication). As the method receives a new WCU
object, the server forwards a copy of the object to every client that is registered as a
subscriber to this type of object. This is done by the WCU Server by calling the “WcuObject
publishing” service on the WCU clients.

13 A complete list of supported bindings can be found in Appendix B

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

23

4.5 Use Cases

4.5.1 Alarm Report in a Surveillance System (Internal Alarm)
1. A security guard on duty discovers a broken card reader.
2. The event is reported by the guard via a WCU client. This involves creating and

sending an alarm to the WCU Server.
3. The system automatically selects what action to carry out depending on the report

and other information. If the system can not decide what to do it will inform an
operator stationed at a Command & Control Client.

4. One or more WCU clients can be associated with an alarm event.
5. The alarm report is sent together with other information to the WCU clients

associated with this alarm.
6. When one of these clients reports that the cause for the alarm has been addressed (in

this case the reader is repaired or replaced), then the alarm is dismissed and reported
back to the Command & Control Client.

4.5.2 SOS Emergency Alarm (External Alarm)
1. An emergency alarm about an accident is received by the SOS Infoserver.
2. The WCU Server receives the alarm via CoordCom, the WCU Mail Server, and the

WCU Client as showed in Figure 5:1.
3. An XML-file14 attached to the email contains all information about the alarm, such as

the location of the accident as well as which resources needed to be dispatched. The
WCU Server uses this information to dispatch the relevant resources.

4. All involved WCU clients can communicate with each other as well as with the
central Command & Control Client as long as the alarm is active. Interaction may
include exchanging messages, video, sound, and other media. Supporting
information such as relevant laws, medical advice, etc, may be retrieved directly from
databases or via the WCU Server15.

5. When the alarm is dismissed, a cancellation of the alarm is sent to all participating
parties from SOS Alarm and a case log is created and saved by the WCU Server.

4.5.3 Incoming CAP Alarm (External Alarm) – Extended
Functionality16

1. A sensor connected to an external system is registering a suspected movement within
an alert zone.

2. The external system generates a Common Alert Protocol (CAP) [21] alert message
and sends this message to a WCU client. The message contains the address of a
video source associated with the alert zone.

3. The WCU client translates the CAP alert message to WCU-format and sends it to
the WCU Server which in turn informs the appropriate WCU clients.

4. The WCU clients can then decide what action to carry out. When the alarm has been
terminated the WCU client informs the WCU Server.

14 See section C.4
15 How this type of functionality is to be implemented depend on the core WCU 2.0 architecture which at the
moment of writing still is under construction
16 See section 9.4

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

24

5 Related Work

Section 5.1 describes how the earlier version of WCU (version 1.2) was connected to an
external system. The remaining part of this chapter (section 5.2 and 5.3) describes solutions
for how SOA could have been and may be used for implementing alarm interoperability in
public safety and surveillance systems.

5.1 Interoperability Solution in WCU 1.2
The WCU Server in WCU version 1.2 accepts only incoming alarms represented as WCU-
objects. To receive alarms in other formats from external systems, a specially designed WCU
client is used as a translating bridge between the two systems. The only external system that
WCU 1.2 has been integrated with is Ericsson’s CoordCom [17], which is a system for Call
Taking and Dispatching with decision support used by Swedish SOS [17]. To distribute
information about alarms to the public, CoordCom uses a SOS InfoServer based on FTP.

Figure 5:1 – WCU SOS alarm interface

Figure 5:1 shows the chain of events involved in the dispatch of a new SOS alarm. For each
new alarm that is created in CoordCom, the InfoServer uploads an XML-file17 to a
designated directory at the WCU FTP Server. The XML-file contains information about the
dispatched alarm, such as dispatched vehicles, severity of the alarm, etc. As soon as a new

17 See section C.4

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

25

file is copied to the directory at the WCU FTP Server an event is triggered, making the WCU
Alarm Client load and parse the file. From the information in the XML-file the WCU Alarm
Client creates a new WCU-formatted alarm18 and sends this to the WCU Server. The WCU
Server in turn distributes the alarm to the relevant Field Clients.

5.2 Related Systems
Organizations, companies, and authorities have started to see the potential of integrating
public safety systems and surveillance systems. This has lead to a number of emerging
solutions on the market. A selection of these systems is named below.

5.2.1 Motorola Public Safety and Fire Service Solutions
Motorola provides a suite of solutions within the public safety and fire service domain.
Among these is the Motorola Computer Aided Dispatch (CAD) [43] software built on
Microsoft’s Windows 2003 OS. It is a system for automatically dispatching alarms to one or
more public safety agencies via a wide area network. It uses ESRI’s ArcGIS software to map
alarms to geospatial data [24]. It includes capabilities such as incident priorities, resource
management, system status, management plans, automated routing, and location information
including hazard data, mapping, and automatic vehicle location.

5.2.2 LogMate Alarm Management System
The LogMate Alarm Management System (AMS) [40] is a software application for archiving
plant alarms and event information. It is built on the Microsoft’s .NET platform and uses a
Microsoft SQL Server database. The system consists of two other components in addition to
the database: a “Capture” component that is responsible for collecting alarm and events and
parsing this information into the database, and a Web service interface – built on Microsoft’s
Internet Information Services (IIS) – that provides clients with both local and remote access
to the database [25]. There is also a customizable filter for defining how the information that
is collected by the “Capture” component is parsed into the fields in the database.

5.2.3 Sun Ridge Systems Integrated Public Safety Software
Sun Ridge Systems [42] provides a collection of integrable systems within the public safety
domain. This includes a computer aided dispatch system for managing incidents events and
units, a Law Enforcement Records Management System for access and tracking police data
records, a Mobile Computer Field System with touch-screen, status reporting, information
retrieval, and loging, and a Pocket PC for access to person and vehicular information,
reports, mug shots, and incident information. There is also support for automatic vehicle
location where the location of dispatched vehicles is displayed on a map. All movements on
the map are recorded which makes it possible to replay and analyze real-time scenarios.

5.2.4 Tiburon Public Safety Solutions
Tiburon provides a set of software solutions within the public safety domain [44]. The suite
of software include a computer aided dispatch solution for law enforcement and fire fighting
with mapping, automatic vehicle location, and incident management, and a field automation

18 See section C.3

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

26

system for officers and fire personnel in field, that includes reporting tools, emergency
notification, unit and incident status, and file transfer.

5.3 Alarm Handling
How to present alarms to operators as well as to recognize and discard false or irrelevant
alarms is of great important for life-critical alarm systems in public safety [28]. An example
of when irrelevant alarms can cause problem is if a fire starts in a building and several
sensors start sending a large amount of alarm messages containing more or less the same
information. In these cases it is important to filter the duplicate alarm information and to
present only what is relevant (in this particular situation) to the operator receiving the alarm
[34].

Another important issue is to have well trained operators that are prepared to handle all type
of incoming alarms. That is, all alarms or pattern of alarms should have a pre-defined
response [34]. The operators must also understand all the information and terminology
presented on-screen [28].

All alarms should be saved and logged in a database available to the operators of the system
[42]. In this way operators can decide what action to carry out depending on how terminated
alarms where previously handled.

It is very important to set intelligent priorities on both alarms and the access of resources in
order to avoid conflicts [22]. These priorities should not be fixed but should be adapted
based upon a specific situation. The priority of incoming alarms depending on severity is an
example of this dynamic adaptation.

A number of characteristics are presented in [34] as it comes to alarms: relevance (they
should have an operational value), uniqueness (not duplicated), they should not be obsolete,
prioritized (to inform the operator of which alarm that is of highest importance), easy to
understand, identifying the occurred problem, and focusing on the most important issues.

5.3.1 Human-Machine Interface
How alarms are presented to a human user becomes increasingly important as the number of
alarms and the rate of alarms increase. By prioritizing alarms, the operator can lower the
number of alarms that they need to deal with at one time.

In [40] users are presented with a customizable data grid containing triggered alarms and
events. Colors, filters, and rules for sorting the rows can be adapted to the specific needs of a
particular situation. In [34] attributes of a good alarm list message are presented. These are
among others: usage of known nomenclature, consistent abbreviations, consistent
hierarchical message structure, and a clear identification of the occurred condition.

5.3.2 False Alarms
In 2005, 98 percent of the automatic fire alarms and burglary alarms received by the Swedish
SOS Alarm Center where false alarms [39]. This clearly indicates how important it is to
include intelligent false alarm filtering in these kinds of systems. The earlier a false alarm can

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

27

be stopped the lower the cost of handling it. However, all alarms that are not false alarms
must reach their intended recipient. It is important to note that filtering out alarms which
should have propagated can lead to even more devastating costs.

By combining alarm and event data with statistics, malfunctioning sensors can be identified
and unnecessary alarms can be reduced. Collected statistics is also good for analyzing trends
in the system. Examples of this kind of functionality can be found in [40].

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

28

6 WCU Alarms from a SOA Perspective

This chapter describes how the WCU alarm communication is related to SOA as it was
defined in Chapter 3. The SOA definition in Figure 3:6 is compared to how the WCÚ
internal alarm communication is implemented (as described in section 4.4) and how the
WCU external alarm interface (described in section 5.1) is implemented.

6.1 SOA Definition Revisited
From the SOA definition in Figure 3:6 one can conclude the following:

Table 6:1 – SOA definition revisited

1. A SOA must:
a. Contain one or more services.

2. A service must:

a. Be self-contained.
b. Hide its internal implementation from external users.
c. Adhere to a service description.
d. Interact through its interface using message exchange.

3. The service description must:

a. Describe what the service does.
b. Describe how to interact with the service.
c. Describe what the outcome of the service will be.
d. Be presented in a machine-interpretable format.
e. Be accessible to all potential consumers of the service.

4. The service interface must:

a. Be based on standard protocols to allow for independence from the
underlying technology.

The remaining part of this chapter will investigate how the statements in Table 6:1 relate to
the WCU alarm communication.

6.2 The WCU Internal Alarm Communication
As described in section 4.4 alarms in the WCU system are represented as WCU objects that
are sent between the WCU Server and WCU clients. To accomplish this communication, a
number of services are published. All but the “authentication” service are implemented in
WCF using the NetMsmqBinding.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

29

The services published at the WCU server have to be executed in a predefined sequence in
order to authenticate and initiate communication with the system. This does not however
imply that they are dependent on any other parts for their particular functionality; hence they
are self-contained. They also hide their internal implementation from external users since
they can only be interacted with through their well-defined interface. WCF uses message
exchange (SOAP messages) to accomplish this interaction. All potential consumers that have
network access to the services and adhere to the rules stated in the service contract may
access the services.

In WCF every service is associated with an endpoint containing an address of the service
location, a contract describing what the service does and what the outcome of using it will
be, and a binding which defines how to interact with the service. This information is
presented in a machine-interpretable way, where the format depends upon the binding that
has been associated with the service.

The last statement in Table 6:1 says that “a services interface must be based on standard
protocols to allow for independency of underlying technology”. Since the NetMsmqBinding
is used for communication, clients that want to interact with such a service are enforced to
use this protocol. The SOAP messages in the NetMsmqBinding are optimized to use a
binary format only readable by WCF. This makes the internal communication in the WCU
work well since all components are built using WCF. However, problems will arise when it
comes to integration with external systems running on other platforms.

MSMQ is only available on Microsoft platforms. Programming interfaces that support
MSMQ are .NET Framework, C/C++ library, and a COM library. Although third-party
solutions exist; no MSMQ interface is included in other programming languages as a
standard. This makes MSMQ unsuitable for cross-platform interaction.

Part III of this thesis presents a design proposal for a SOA-based solution to how WCU may
solve interoperability issues with external systems.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

30

Part III - Proposed Design

The previous chapter concluded that WCU 2.0 does not comply with SOA due to the fact
that it uses optimized messages in binary format for internal communication. To make WCU
conform to the SOA definition given in section 3.7, it will have to implement services that
have a platform independent interface.

Another design issue is whether the existing services provided by WCU should change their
bindings to ones that do not optimize the messages using a binary format, or if WCU should
provide other services, specific for external systems? Something that strongly speaks for
providing services specific for external systems is that the existing services in WCU are very
tight connected to the system; with predefined workflows, authentication and subscription
rules, etc. Such aspects should not be of concern to an external party whose only purpose is
to send in information (alarms) to the WCU system. Another reason is that by allowing an
external system to use the internal WCU services, that system will be given the same
permissions and abilities in the system as any other WCU client. That is, there will be a loss
of control of information entering and leaving the system.

The idea of the WCU design team is to make the WCU Server consistent, and instead have
as much of the logic as possible in the clients. In this way, changes to the system can easily
be made without exchanging or modifying the server. Different customers sending in alarm
information to a service on the WCU Server might require different workflow schemes. By
placing the logic outside of the server (in a WCU client), these workflows can be adapted
and changed without any modification of the server implementation.

Since WCU-formatted alarms are tightly connected to the WCU system, a standardized
format, or data model for describing and exchange alarm information with other systems is
to prefer. This would also allow the WCU system, as well as other systems to be exchanged
and modified without having to concern about interoperability issues regarding the alarm
data model.

The following chapters are as follows: Chapter 7 describes the architectural overview of the
proposed design, Chapter 8 describes the software that was used in the design, more specific
how WCF was configured, and Chapter 9 explains how the data model interoperability
problem is addressed in the proposed design.

As a part of this thesis project was also a survey made to decide whether to use Microsoft
BizTalk Server for implementing a SOA based interface. The result from this study as well as
the reasons for not selecting it as an alternative solution is given in Appendix D.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

31

7 Architectural Overview

As described in section 5.1 the WCU version 1.2 used a client as a gateway to communicate
with other systems. Such an approach is preferred for WCU 2.0 as well due to the reasons
given in section 6.2. This makes a WCU client, instead of the WCU Server responsible for
interoperability with external systems. The client may independently from the rest of the
system implement its own interfaces and logic, while still maintaining an unmodified
connection with the WCU Server, in the same way other WCU clients do.

As previously described in section 4.1.2 the WCU clients are based on a plug-in architecture.
This facilitates building an interface to enable communication with external systems. The
alarm plug-in, whose implementation is described in more detail in Chapter 8, will in this
thesis be referred to as the “WS Alarm plug-in”.

7.1 Architectural Overview
Figure 7:1 gives an architectural overview of the design proposal. A WCU client running the
WS Alarm plug-in works as a gateway for external system. The plug-in has an interface
which is built to accept non-WCU-formatted alarms. The WCU client is preferably
connected to the WCU Server through a LAN as showed in Figure 7:1, but the option of
connecting though GPRS/3G via the VPN tunnel is also possible19.

Figure 7:1 – Architectural overview of proposed design

19 Explained in section 4.2

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

32

The problems with having the WCU client run the WS Alarm plug-in on a GPRS/3G
connection are several: first of all, all traffic would have to go via the VPN tunnel. This
would mean that the external system would have to send the alarm messages via the VPN
tunnel through an ISP Network Address Translation (NAT) to the WCU client. The WCU
client would then have to translate the message to a WCU object interpretable by the WCU
and send this back to the WCU Server through the VPN tunnel.

The other option is to connect the WCU client running the WS Alarm plug-in directly to the
WCU Server via LAN. This avoids the delay associated with GPRS/3G and greatly reduces
network traffic. No port forwarding is needed either since the external system can connect
directly to the WCU client’s public IP. This option is preferable and should be used when
possible.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

33

8 WCF Configuration

WCU 2.0 is built on the Microsoft .NET 3.0 platform and all communication is based on the
Windows Communication Foundation (WCF) as described in section 4.4. WCF has support
for building platform independent communication solutions. This is achieved by selecting
the appropriate service bindings as well as other parameters. A proposal of how WCF should
be configured for the WS Alarm plug-in is described below.

8.1 WCF Bindings
One of the requirements of the service which is to accepting incoming alarm messages from
external systems is that it must use platform independent protocols on both transport and
message level. It should also implement some level of security since the external system may
connect to the service through a public network.

The goal of the Windows Communication Foundation (WCF) is to put all Microsoft
distributed technologies in a single package. It supports communication with among others:
.NET Remoting, ASP.NET Web Services (ASMX), and WS-* standards. WCF provides nine
system-provided bindings20, and also has the ability to create custom bindings. To be able to
support interoperability between different platforms other than Microsoft, WCF provides
the BasicHttpBinding and the WSHttpBinding, both operating using SOAP over HTTP.
WSDualHttpBinding and WSFederationHttpBinding also operate using SOAP over HTTP.
However, they provide additional functionality (duplex contracts and sessions, and federated
security) that will not be required in the proposed design solution.

The binding BasicHttpBinding represents the “Basic Profile 1.1” provided by the Web
Services Interoperability Organization (WS-I) [50]. It covers the core Web services
standards21 and includes support for messaging, description, discovery, and security of Web
services. The “Basic Profile 1.1” is designed for services with a direct connection with its
clients and where SSL is relied upon for security [26]. Security in this binding is disabled by
default, but it can be configured for either message level or transport layer security.

The binding WSHttpBinding represents the WS-* standards and extends the
BasicHttpBinding by adding functionality such as reliable sessions, transactions, transport
security, and SOAP security. The WS-* standards are the result of the effort of large
organizations and consortiums including OASIS and W3C. This binding has security on the
message level by default, but transport level security may also be enabled. Message level
security is achieved by [49] the use of Web Services Security SOAP Message Security (WS-
Security) [30], WS-Trust [31], WS-SecureConversation [32], and WS-SecurityPolicy [36].

WCF, as mentioned earlier also provides the option to create custom bindings. However, the
binding BasicHttpBinding fulfills all of the requirements presented in the beginning of this
subsection.

20 See Table B:1, Appendix B
21 See Table B:2, Appendix B

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

34

8.2 Web Service Discovery in WCF
There exist different mechanisms for Web service discovery. These range from sending the
service description as a file, to using the more sophisticated and dynamic Universal
Description, Discovery, and Integration (UDDI) [47] registry. The tradeoffs are between
functionality and simplicity. The binding BasicHttpBinding in WCF supports both a WSDL
repository and UDDI registries.

A WSDL repository primarily uses HTTP GET to retrieve the service description published
on a Web site. It is a static solution that provides little flexibility, as the service consumer
generally has to know the location of the published service in advance.

A UDDI registry is on the other hand a much more sophisticated method of publishing and
discovering web service descriptions. There exist two types of UDDI registries: public and
private. Private registries are more common and are mostly used in intranets. Compared to a
WSDL repository, the UDDI registries add extra functionality, such as subscription to
changes in the registry, security, replication, and implementation of policies. To use UDDI
with WCF, Microsoft’s Windows Server 2003 is required for hosting the registry.

The proposed design will be based on a service receiving alarms in a non-WCU format.
Although there are several advantages to using UDDI, there will be little or no need for such
a solution in the proposed design. This is because only one service will be published, and the
external solutions will know in advance the location of that service. SOA is used in this
solution mainly to tackle the integration problems. Thus a static WSDL repository is
sufficient. The option to build a solution based on UDDI is discussed in section 12.

8.3 Web Service Description in WCF
WCF implements the Web Services Description Language (WSDL) [46] which is the de-
facto standard for describing Web services. It contains information about a service such as
its address, its binding, a description of its operations, and what data is to be communicated
with the service. WSDL descriptions for methods (in a published service) can be generated
automatically in WCF, and fetched by others using a simple HTTP/GET request. This is
achieved by setting the httpGetEnabled attribute equal to “true” in the service binding.

8.4 Web Service Security in WCF
The binding BasicHttpBinding in WCF is targeted at the WS-I Basic Profile [48] and
includes support for: no security, HTTPS security [29], SOAP security [30], or HTTPS
security with SOAP credentials.

Transport level security (HTTPS) does only support hop-to-hop security and is dependent
on the transport protocol (HTTP). It supports streaming and is generally better as it comes
to performance. Message security provides end-to-end security over SOAP intermediaries
and is dependent on the WS-Security specification.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

35

As described in section 7.1 may the WS Alarm plug-in communicate over an insecure public
network with an external system. This implies that the exchanged information must be
protected in some way from others than the intended recipient. Implementing WS-Security
would introduce a dependency for all communicating parties and make the system more
dependent on a specific technology. Implementing transport security on the other hand
might not be enough if SOAP intermediaries will be used in communication.

Since the WS Alarm plug-in will communicate over a public internet it may not be know of
the route that the received alarm message has taken. If SOAP intermediaries are used or not
used should not be of concern to the WCU system. This implies that message (SOAP)
security should be used in the proposed solution. In WCF this is achieved by setting
SecurityMode element to Message, and setting the MessageCredentialType property to appropriate
value. The proposed design will use the UserName value since this will cover the security
requirements that the system have today.

8.5 Hosting of Web Services in WCF
There are four different ways of hosting a Web service in WCF via: a Managed Application,
a Managed Windows Service, Internet Information Services (IIS), or in Windows Process
Activation Service (WAS).

The Managed Application is the most flexible of the four, since no additional software or
infrastructure is needed. The service and its endpoint are embedded directly inside the
application code. The option to host a service as a Managed Windows Services gives the
control of the services’ lifetime to the operating system. For example the service can be
configured to run automatically as the system boots up. To host a service in IIS requires that
IIS is installed and configured properly. IIS only has support for HTTP protocols. WAS is a
generalization of IIS that works with protocols other then HTTP. This solution requires
installation and configuration of WAS activation components.

Since the service will run from a plug-in in a WCU client, it will be hosted in a managed
application. This avoids the need to run IIS or WAS on the WCU client.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

36

9 Data Model for Alarm Interoperability

Although different systems can integrate and communicate using SOA, they may still have
difficulties understanding each other due to the need to interpret data more precisely. For
this purpose open standards have been developed around exchanging and interpreting alarm
information.

9.1 Global Justice Extensible Markup Language
The Global Justice Extensible Markup Language (XML) Data Model (Global JXDM) [41]
was developed by the Global ISWG22's XML Structure Task Force (XSTF). It is a data
reference model for exchanging information within the justice and public safety
communities. It consists of a data model (JXDM), a data dictionary (JXDD), and an XML
schema [19], [41]. Global JXDM is a large23 specification with detailed elements about
accident types, incident types, insurance information, etc. The specification is targeted at use
in the U.S. and includes many U.S.-, and Canada-specific elements.

Because Global JXDM describes an extensive amount of information compared to the
WCU-format, and since it is mainly targeted at the American market, it is not a very
appropriate candidate for the WCU system. A subset of the specification could be used (for
example the alert subset in the model) but a more appropriate specification would be to
prefer if found.

9.2 Emergency Data Exchange Language
The Emergency Data Exchange Language (EDXL) [20] is a standard developed by OASIS
for routing emergency messages to recipients. It acts as a container and may carry any kind
of payload (for example one or more VEDS or CAP messages, see sections 9.3 and 9.4
below). Among the supported capabilities are distribution type, geography, incident, sender
ID, and recipient ID [19].

EDXL is used as envelop for routing other emergency messages, and not for describing
alarm information. Thus, if it is to be used in the proposed solution another specification
would be needed in conjunction with EDXL. This option was considered, but it turned out
that sufficient information (message sender ID, sent time) for determining the destination of
alarm messages was already provided by the specification chosen for the proposed solution
(see section 9.4 below). WCU support for EDXL messages is further discussed in section 12
about future work.

22 Global Justice Information Sharing Initiative's (Global) Infrastructure and Standards Working Group
23 The .xsd file alone is 2,69 MB

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

37

9.3 Vehicular Emergency Data Set
The Vehicular Emergency Data Set (VEDS) [27] is a standard proposed by the ComCARE
Alliance24 CAN Data Set Working Group for describing emergency information for
vehicular emergencies as XML. There are currently discussions about harmonizing VEDS
data elements with Global JXDM, as well as whether to incorporate VEDS into the EDXL
process or not [27].

9.4 Common Alerting Protocol
The Common Alerting Protocol (CAP) [21] is a standard developed by OASIS for
exchanging alert information. It is based on XML and supports capabilities such as geo-
positions, multiple languages, updates, cancellations, facility for audio and video, and digital
encryption. Among the organizations and companies that currently are using CAP are the
U.S. Department of Homeland Security and the U.S. National Weather Service25.

A minor flaw of the CAP protocol is that it does not use pure data-centric XML, something
that would have been preferred. On the other hand does it provides a standard for
describing alarm information and ensure information consistency between interacting
parties.

The CAP protocol promises to be able to convert “to and from all kind of sensor and
alerting technologies” [21]. If the external system can not describe its alarm information in
CAP format it will also be difficult to describe it in WCU format. This makes CAP a good
candidate for exchanging alarm information with other systems.

Figure 9:1 – CAP interface in WCU

Figure 9:1 show an external system sending an alarm described in CAP-format to the WS
Alarm plug-in running on a WCU client. As the plug-in receives a CAP message it translates
it to a WCU Object, and sends it to the WCU client framework. The framework takes care
of forwarding the WCU Object to the WCU system.

The CAP specification was created with the intention to be compatible with variety of
systems. Thus many of the elements will never be used during the CAP to WCU translation.
However, a number of elements in the CAP specification are required. A table of a proposed
translation between CAP and WCU Object can be found in Appendix E.

24 A US advocacy coalition of 100 member organizations dedicated to advancing emergency response
25 Other CAP users can be found at: http://www.incident.com/cookbook/index.php/Who_Is_Using_CAP

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

38

Part IV – Evaluation

10 Evaluation
The main goal of this thesis was to provide solutions for two main problems:

The first was to make a definition of SOA as well as to compare this definition to WCU. The
evaluation of this step is described in section 10.1.

The second problem was to propose a general solution of how WCU may exchange alarm
information with other systems. This solution had to conform to the definition of SOA
given in this thesis. The evaluation of this, second problem is described in section 10.2.

10.1 Evaluation of the Solution to the First Problem
The SOA metrics given in 3.7 are based on common elements extracted from several SOA
definitions [36], [37], [38] made by a number of large standardization organizations. The
metrics [1] created by OASIS, as well as other papers and publications were important
resources to develop this set of metrics.

The comparison that was made can be seen as a comparison between the SOA definition in
section 3.7 and a specific configuration of WCF. The outcome of this comparison is very
much dependent on how SOA was defined in the previous stage. However, it was shown
that the solution proposed was not conformant as it was too platform dependent.

10.2 Evaluation of the Solution to the Second Problem

10.2.1 Load Test
To estimate the performance of the proposed design, a CAP alarm generator client was built.
This client connected to the service published by the WS Alarm plug-in and sent an alarm in
CAP format to it. The clock was started just before the first message was sent from the
alarm generator client, and stopped immediately after the last message had been received and
translated to WCU format by the WS Alarm plug-in. The messages were sent from the alarm
generator client using a for-loop. Time was measured using System.DateTime.Now.Ticks in
.NET. This clock has an approximate resolution of 10 milliseconds [25]. Both the alarm
generator client and the WCU client running the WS Alarm plug-in were executed as
Windows executables locally on the same machine. The reason two separated machines were
not used was due to time constraints in the evaluation phase. The test machine had an Intel
Pentium processor running at 2.8 GHz and 1GB of RAM, and the operating system was
Microsoft Windows XP Professional with SP2 installed.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

39

A complete list with the values of the measurements can be found in Appendix F. The
number of messages (iterations in the for-loop) was varied between 1000 messages and 1
message. The first measured value was removed due to the initialization process done the
first time a connection occurs to a service.

Table 10:1 – Processing time per message in milliseconds
Number of Messages 1000 600 400 200 100 50 20 1
Processing time per message (ms) 2.7 2.5 2.7 2.8 3.1 3.8 6.3 62.6

Table 10:1 shows the median time divided by the number of messages that was sent in each
category. As can be seen is there little delay even when 1000 messages were sent. To test
whether the time was constrained by the sender or the receiver of the alarm message an
additional test performed, measuring the time it took to send 1000 messages (1000 iterations
of the for-loop). The result of the measurement showed that this time was exactly the same
as the time it took from that the first message was sent until the last message was received
and processed by the WS alarm plug-in. This indicates that the for-loop at the sender-side
was the bottleneck in the performed test. To verify this, another test was carried out where
two alarm generator clients where started, each one sending 1000 messages each at
approximately the same time.

Table 10:2 – Processing time in seconds for sending 1000 messages in parallel

WS Alarm plug-in
Test Iteration

Alarm Generator Client 1

Alarm Generator Client 2 1000 msg. 1000 msg.

1 2.942 3.083 1.888 1.809
2 3.304 3.099 1.793 1.730
3 3.319 3.083 1.778 1.699
4 3.256 3.068 1.778 1.683
5 3.225 3.005 1.872 1.746

Median value 3.256 3.083 1.793 1.730

Table 10:2 shows the result for the test when two alarm generator clients sent 1000 messages
each at approximately the same time to the WS Alarm plug-in. The median time it took for
the WS Alarm plug-in to receive 1000 messages was reduced from the earlier 2.7 seconds
(see Table 10:1) to approximately 1.8 seconds. This confirms that the bottleneck in the
earlier performance evaluation was the sender (alarm generator client). The time it took to
send alarms from the alarm generator client also increased. This is because the sender now
needs to wait for the service at the WS Alarm plug-in to be available in order to send a new
message.

The evaluation test described above was done mainly to estimate whether the proposed
solution may introduce a bottleneck to the system or not. The systems that today are known
to be candidates for integration with WCU have a maximum alarm generation of around
1000 messages during a period of 24 hours. Future demands may however require the WCU
to receive and handle a much larger number of alarms than today. A more precise
performance measurement would be required in such a case.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

40

10.2.2 CAP
It was proposed that a translation be made between WCU format and CAP, as well as
between CAP and other alarm formats in general. As mentioned in section 9.4 the CAP
protocol is able to convert “to and from all kinds of sensor and alerting technologies” [21].
This was not evaluated in this thesis, but assumed to be true. Whether alarm information is
conformant to CAP is something that has to be checked for each specific system. This thesis
concentrated on making a translation between CAP and WCU format. All elements in the
CAP protocol could not be matched to elements in the WCU format; however all mandatory
elements translated successfully. There are also some questions about the translation that
remain unsolved as the WCU architecture is still evolving.

One downside of using CAP is that it requires all other systems to use this specification. The
idea is however that this should be easier than understanding and using of the WCU-format.
The WCU-format is also very tight connected to the internal WCU system, something that
makes it less appropriate for use as a data model for exchanging alarm information with
other systems.

10.2.3 Short comings of the Proposed Solution
The proposed solution does not address how alarm messages and information is sent back
to the external system. The reason that this was not included in the proposed solution is that
there was no urgent need for such functionality. However, this could be done in several
ways: for example the external system may publish one or more services that the WCU
system can call. Another option is to have the WS Alarm plug-in publish a subscription
service that the external system listens to. In this way the external system will receive all
updates and other information that is needed. How this problem is to be solved depends
much on what information should be exposed for external systems as well as if this
information should be public for all participants, or private for a specific system.

If only one client running the WS Alarm plug-in is connected to an external system and one
server is used, there will be two single points of failure; compared to one single point of
failure if there had been no client and the same service would have been published by the
server instead. If the client fails, no alarms may be received from the other system.

The proposed solution does not include support for communication technologies other than
Web services. Although Web services can be implemented on most platforms, there might
be some systems that are unable to use this technology. Another issue that has not been
investigated in greater detail is how WCF’s implementation of Web services conforms to
how other vendors have implemented Web Services. Different tools for implementing Web
services may use arbitrary data types, and encode and structure messages in different ways
[35]. Thus in the future there is a need for interoperability testing.

10.2.4 Advantages of the Proposed Solution
Increased stability and load balancing may be achieved in the system by having several
parallel clients running the WS Alarm plug-in. Load balancing by having external systems
randomly alternate to which client it should send an alarm to, and increased stability by
resending an alarm to another client if the first one fails for some reason (i.e. can not be
reached or returns a error message).

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

41

Other partners can easily understand the data model for alarms and how to communicate
with WCU since a standard format (CAP) is used. The description of this standard format is
generally available in open documents.

It is easy to extend the plug-in with more services for accepting alarms in formats other then
CAP. And since the service is published at a client and not at the server, updates and new
functionalities can be added without disrupting the main system. All that the external system
will have to do is to temporarily change which client it should connect to.

The solution is SOA-based and built upon SOAP over HTTP. This is a technology that is
standardized and available for almost all common platforms. Additionally, a standardized
data model for describing alarms (CAP) is used, - making it easy for other systems to
understand how to communicate with WCU.

The solution is independent of the WCU Server. This allows the WCU Server to change
without affecting the interface to external systems.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

42

Part V – Conclusions &
Future Work

11 Conclusions

The proposed design presented in this thesis solves the problem of integrating different
alarm systems that might wish to send alarm information to the WCU. The solution is
general in that any other system may send alarm information to WCU, as long as this alarm
information is sent as a CAP message and the external system supports the Web service
standards WSDL and SOAP. The solution conforms to the SOA definition presented in
section 3.7.

WCF supports the concept SOA, but requires proper configuration to make it platform-
independent and conformant to the SOA definition given in this thesis. A suggestion of how
this can be made has been presented in the proposed solution.

By introducing a standard alarm protocol (CAP) between the WCU system and external
systems, the work of translating the alarm information was made easier. Since the WCU-
format is tightly connected to the WCU system, and not a stand alone alarm representation,
it would be difficult to use the CAP format internally in WCU. The idea is also that by using
CAP as an intermediate alarm representation, both the internal WCU-format as well as
external alarm formats may change their internal alarm data representation independently
from each other.

The proposed design presents a solution to how the WCU system may integrate smoothly
with other systems. This makes the product well prepared for an expansion on the markets,
as more and more systems will get connected to it. The solution presented in this thesis may
also be used as a foundation for constructing solutions with other types of information that
is to be exchanged.

The services in WCU use MSMQ for communicating internally in the system. The reason
this protocol was chosen was mainly to get reliability, message queuing, and asynchronous
communication. However, MSMQ as well a set of complicated initialization rules, makes it
difficult for systems running on other platforms to integrate with the WCU. One solution to
this problem could be to exchange the bindings in the WCU services to ones that support
platform independent communication. The load test performed as a part of this thesis
showed that such services can reach high performance demands. Another option of how to
make it easier for other systems to integrate with the WCU is to maintain the internal

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

43

architecture and provide an external interface to the system. An example of such a solution
was presented as a part of this thesis project.

The WCU system is based on a centralized architecture. A centralized system uses a single
point to where all participants connect to. Explicitly, all communication is dependent on the
centralized server. The idea behind Service-Oriented Architecture is to make it easier for
different parts of a system to exchange information with each other independently of the
other parts of the system. That is, by using a centralized architecture the WCU will be unable
to utilize some of the benefits that a SOA may provide. However, a SOA could be
implemented beneficial in such a system too by adding functionality (services) so that clients
also may connect to each other or to other parts of the system.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

44

12 Future Work

The solution presented in this thesis uses a static WSDL repository. This is sufficient for the
given problem. However, a UDDI registry has the benefit of providing a more flexible and
dynamic solution. Load-balancing and business logic are examples of functionality a UDDI
registry may provide. Another reason for implementing a UDDI registry is if the connection
should be dynamic and the external systems or clients using the provided services are not
known in advance.

The load test presented in section 10.2.1 showed that the proposed design fulfills the
performance requirements of WCU. However, these requirements might increase as the
system is connected to other systems with the possibility of generating a large number of
alarms. This possibility should be investigated by putting the WS Alarm plug-in under a
much higher load of alarms.

The proposed design does not address false alarms or the priority of alarms. Such
functionality could prove to be extremely beneficial if implemented correctly. However, how
this should be done is left for further research.

The proposed solution makes external systems dependent on the CAP protocol in order to
communicate with the WCU. However, this dependency can easily be broken by introducing
services that accept alarm messages in other formats. Examples of other alarm related
specifications are EDXL (presented in section 9.2) and VEDS (presented in section 9.3).
EDXL is used for routing alarm messages to appropriate recipients and may carry with it
one or more alarm messages in its body. Support for such a specification may come in handy
when several systems are communicating and the intended recipient is not known in
advance. VEDS is a specification for describing vehicular emergency information. Support
for this protocol could be beneficial if the WCU system is to be integrated with external
systems where vehicular related emergencies are common.

One demand that most likely will emerge is for other systems to subscribe to WCU alarms.
The presented solution does only handle incoming alarms in CAP-format. To send back
alarms, and to allow others to subscribe to CAP alarms, the solution needs to be extended.
This can be done in several ways. One solution is to have the external system publishing a
service to which the WCU connects. The external system could send the information about
the location of a service description in a CAP message to the WCU. In this way the WCU
may locate the service description, establish a connection and send back a CAP message.
Another way is to have the WCU (WS Alarm plug-in) providing a subscription service to
which other systems may subscribe. Which alternative that is to prefer or how this is to be
done is left for further investigation.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

45

References

Publications

[1] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and R. Metz, “Reference Model for

Service Oriented Architecture 1.0 – Committee Specification 1”, OASIS, 19 July
2006, Available at HTTP: http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=soa-rm, [Accessed 5 September
2006]

[2] Yih-Cheng Lee, Chi-Ming Ma, and Shih-Chien Chou, "A Service-Oriented
Architecture for design and development of middleware", In Proc. 12th Asia-Pacific
Software Engineering Conference (APSEC '05), December 2005, page 217-221, doi
10.1109/APSEC.2005.16

[3] R. Perrey, M. Lycett, “Service-Oriented Architecture”, in Proc. Applications and the
Internet Workshops, 27-31 Jan. 2003, pp. 116-119.

[4] S. Jones, “Toward an acceptable definition of service”, IEEE Software, Volume 22,
Issue 3, May-June 2005, pp. 87-93, doi 10.1109/MS.2005.80

[5] S. Vinoski, “Service Discovery 101”, Internet Computing, IEEE. Volume 7, Issue 1,
Jan.-Feb. 2003. pp. 69-71, doi 10.1109/MIC.2003.1167342

[6] Do Van Thanh and I. Jorstad, “A Service-Oriented Architecture framework for
mobile services”, in Proc. Advanced Industrial Conference on
Telecommunications/Service Assurance with Partial and Intermittent Resources
Conference/ E-Learning on Telecommunications Workshop,
AICT/SAPIR/ELETE 2005, 17-20 July 2005, pp. 65-70, doi 10.1109/AICT.2005.14

[7] W.T. Tsai, Chun Fan, Yinong Chen, R. Paul, and Jen-Yao Chung, “Architecture
classification for SOA-based applications”. Ninth IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed Computing, 24-26 April
2006, pp. 295-302, doi 10.1109/ISORC.2006.18

[8] H. Zhu, “Building reusable components with service-oriented architectures”, IRI -
2005 IEEE International Conference on Information Reuse and Integration, 15-17
Aug. 2005, pp. 96-101. doi 10.1109/IRI-05.2005.1506456

[9] D.R. de Almeida, C. de Souza Baptista, E.R. da Silva, C.E.C. Campelo, H.F. de
Figueiredo, Y.A. Lacerda, “A context-aware system based on service-oriented
architecture”, 20th International Conference on Advanced Information Networking

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

46

and Applications, Volume 1, 18-20 April 2006, pp. 205-120, doi
10.1109/AINA.2006.16

[10] M. Jiang, A. Willey, ”Service-Oriented Architecture for Deploying and Integrating
Enterprise Applications”, 5th Working IEEE/IFIP Conference on Software
Architecture, 06-10 Nov. 2005, pp. 272-273, doi 10.1109/WICSA.2005.60

[11] A. Uyar, W. Wu, H. Bulut, G. Fox, ”Service-oriented architecture for a scalable
videoconferencing system”, International Conference on Pervasive Services, 11-14
July 2005, pp. 445-448, doi 10.1109/PERSER.2005.1506564

[12] “Real-World SOA: Definition, Implementation and Use of SOA with CentraSite™”,
White Paper, Fujitsu Computer Systems Corporation and Software AG, 11 July 2006,
Available at HTTP: http://www.soaworks.com/pdf/White_Paper_CentraSite.pdf,
[Accessed 7 September 2006]

[13] M.P. Papazoglou, ”Service-oriented computing: concepts, characteristics and
directions”, in Proc. of the Fourth International Conference on Web Information
Systems Engineering, 10-12 Dec. 2003, pp. 3-12, doi 10.1109/WISE.2003.1254461

[14] J. Kessler, “Produktspecifikation WCU 2.0”, L/SC-06:0006, [Company confidential
document], Saab Security Systems, 11 September 2006

[15] D. Chappell, “Understanding BizTalk Server 2006”, Microsoft Corporation, August
2005, Available at HTTP:
http://download.microsoft.com/documents/australia/windowsserversystem/biztalk
2006/Understanding_BTS06.pdf, [Accessed 20 November 2006]

[16] “Security in BizTalk Server 2004”, White Paper, Microsoft, December 2003,
Available at HTTP:
http://www.microsoft.com/technet/prodtechnol/biztalk/2004/whitepapers/securit
y.mspx, [Accessed 20 November 2006]

[17] “CoordComTM Public Safety Communication Center”, Brochure, Ericsson
Microwave Systems AB, Available at HTTP:
http://www.sos112.info/ericsson/CoordCom%20PS-05%20Broschure%20lo.pdf,
[Accessed 20 November 2006]

[18] J. Kessler, “White Paper WCU 2.0”, [Company confidential document], Saab Security
Systems, 29 October 2006

[19] "A Framework for Justice Information Sharing: Service-Oriented Architecture
(SOA)", The Global Infrastructure/Standards Working Group, 9 December 2004,
Available at HTTP: http://it.ojp.gov/documents/20041209_SOA_Report.pdf,
[Accessed 20 November 2006]

[20] "Emergency Data Exchange Language (EDXL) Distribution Element, v 1.0", OASIS
Standard EDXL-DE v1.0, OASIS, 1 May 2006, Available at HTTP: docs.oasis-

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

47

open.org/emergency/edxl-de/v1.0/EDXL-DE_Spec_v1.0.pdf, [Accessed 20
November 2006]

[21] "Common Alerting Protocol, v 1.1", OASIS Standard CAP-V1.1, OASIS, October
2005, Available at HTTP: http://www.oasis-
open.org/committees/download.php/14759/emergency-CAPv1.1.pdf, [Accessed 20
November 2006]

[22] “C4ISR for Network-Oriented Defense”, White Paper, Ericsson, March 2006, doi:
284 23-3064 Uen Rev A, Available at HTTP:
http://www.ericsson.com/technology/whitepapers/3064_C4isr_b.pdf, [Accessed 20
November 2006]

[23] S. Graham, S. Simeonov, T. Boubez, G. Daniels, D. Davis, Y. Nakamura, and R.
Neyama, “Building Web Services with Java: Making Sense of XML, SOAP, WSDL
and UDDI”, 2 ed., Sams, June 28, 2004, ISBN: 0672326418

[24] “Computer Aided Dispatch Software”, Fact Sheet, Motorola, DJS-MCAD-1, 2004,
Available at HTTP:
http://www.motorola.com/governmentandenterprise/contentdir/en_US/Files/Pro
ductInformation/Motorola_CAD_final.pdf, [Accessed 20 November 2006]

[25] “LogMateAMS”, Brochure, TiPSIncorporated, Available at HTTP:
http://www.tipsweb.com/downloads/LogMateAMS_Brochure.pdf, [Accessed 16
November 2006]

[26] C. McMurtry, M. Mercuri, and N. Watling, “Microsoft Windows Communication
Foundation: Hands-On”, SAMS Publishing, May 26, 2006. ISBN 0-672-32877-1

[27] ComCARE Alliance, “Vehicular Emergency Data Set (VEDS) version 2.0”,
Recommendation, March 2004, Available at HTTP:
http://www.comcare.org/uploads/VEDS_2.0.pdf, [Accessed 19 December 2006]

[28] Health and Safety Executive (HSE), “Better Alarm Handling”, HSE information
sheet, Available at HTTP: http://www.hse.gov.uk/pubns/chis6.pdf, [Accessed 19
December 2006]

[29] Transport Layer Security Working Group – IETF, “The SSL Protocol Version 3.0”,
Internet-Draft, Available at HTTP: http://wp.netscape.com/eng/ssl3/draft302.txt,
[Accessed 21 December 2006]

[30] OASIS, Web Services Security: SOAP Message Security 1.1, Standard Specification, 1
February 2006, Available at HTTP: http://www.oasis-
open.org/committees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf, [Accessed 21 December 2006]

[31] S. Anderson, Et al, Web Services Trust Language (WS-Trust), February 2005,
Available at HTTP: ftp://www6.software.ibm.com/software/developer/library/ws-
trust.pdf, [Accessed 21 December 2006]

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

48

[32] S. Anderson, Et al, Web Services Secure Conversation Language (WS-
SecureConversation), February 2005, Availabel at HTTP:
ftp://www6.software.ibm.com/software/developer/library/ws-
secureconversation.pdf, [Accessed 21 December 2006]

[33] H. Lockhart, Et al, Web Services Federation Language (WS-Federation) Version 1.1,
December 2006, Available at HTTP:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-
Federation-V1-1B.pdf, [Accessed 21 December 2006]

[34] Railway Industry Advisory Committee (RIAC) Human Factors Working Group,
“Alarm Handling”, information sheet, Available at HTTP: http://www.rail-
reg.gov.uk/upload/pdf/hf-alarm-handling.pdf, [Accessed 16 January 2007]

[35] V. Paulsson, Web Service Interoperability Issues – From a .NET perspective, Master
of Science Thesis, IMIT/TSLAB, November 2005, Available at HTTP:
http://web.it.kth.se/~jm/theses/paulsson.pdf, [Accessed 25 January 2007]

Web-pages

[36] Open Management Group SOA definition, [online], Available at HTTP:

http://colab.cim3.net/cgi-bin/wiki.pl?OMGSoaGlossary, [Accessed 21 November
2006]

[37] World Wide Web Consortium SOA definition, [online], Available at HTTP:
http://colab.cim3.net/cgi-bin/wiki.pl?WwwCSoaGlossary, [Accessed 21 November
2006]

[38] OpenGroup SOA definition, [online], Available at HTTP:
http://www.opengroup.org/projects/soa/doc.tpl?gdid=10632, [Accessed 21
November 2006]

[39] Sveriges Radio, [online], Available at HTTP: http://www.sr.se/cgi-
bin/stockholm/nyheter/artikel.asp?artikel=740441, [Accessed 19 December 2006]

[40] TiPS Incorporated, [online], Available at HTTP:
http://www.tipsweb.com/products/logmate/, [Accessed 19 December 2006]

[41] Global Justice XML Data Model 3.0.3, [online], Available at HTTP:
http://it.ojp.gov/jxdm/3.0.3/index.html, [Accessed 19 December 2006]

[42] Sun Ridge Systems Inc. Integrated Public Safety Software , [online], Available at
HTTP: http://www.sunridgesystems.com/, [Accessed 19 December 2006]

[43] Motorola Computer Aided Dispatch (CAD) System, [online], Available at HTTP:
http://www.motorola.com/governmentandenterprise/northamerica/en-

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

49

us/public/functions/browsesolution/Browsesolution.aspx?navigationpath=id_803i/i
d_1423i/id_1292i, [Accessed 19 December 2006]

[44] Tiburon Inc., [online], Available at HTTP: http://www.tiburoninc.com/, [Accessed
20 December 2006]

[45] WordNet, Princeton University, [online], Available at HTTP:
http://wordnet.princeton.edu/perl/webwn?s=self-contained, [Accessed 20
December 2006]

[46] Web Service Description Language (WSDL), [online], Available at HTTP:
http://www.w3.org/TR/wsdl, [Accessed 21 December 2006]

[47] Universal Description, Discovery, and Integration (UDDI), [online], Available at
HTTP: http://www.uddi.org/, [Accessed 21 December 2006]

[48] Basic Profile Version 1.1, [online], Available at HTTP: http://www.ws-
i.org/Profiles/BasicProfile-1.1.html, [Accessed 21 December 2006]

[49] Security Overview, MSDN, Microsoft Windows SDK, [online], Available at HTTP:
http://msdn2.microsoft.com/en-us/library/ms735093.aspx, [Accessed 21 December
2006]

[50] Web Service Interoperability Organization (WS-I), [online], Available at HTTP:
http://www.ws-i.org/, [Accessed 21 December 2006]

[51] DateTime.Now property, MSDN, Microsoft, [online], Available at HTTP:
http://msdn2.microsoft.com/en-us/library/system.datetime.now.aspx, [Accessed 26
January 2007]

Appendices

Appendix A – SOA Definitions

OASIS26

Service Oriented Architecture (SOA) is a paradigm for organizing and utilizing distributed
capabilities that may be under the control of different ownership domains.

In general, entities (people and organizations) create capabilities to solve or support a
solution for the problems they face in the course of their business. It is natural to think of
one person’s needs being met by capabilities offered by someone else; or, in the world of
distributed computing, one computer agent’s requirements being met by a computer agent
belonging to a different owner. There is not necessarily a one-to-one correlation between
needs and capabilities; the granularity of needs and capabilities vary from fundamental to
complex, and any given need may require the combining of numerous capabilities while any
single capability may address more than one need. The perceived value of SOA is that it
provides a powerful framework for matching needs and capabilities and for combining
capabilities to address those needs.

Weopedia

(n.) Abbreviated SOA, an application architecture in which all functions, or services, are
defined using a description language and have invokable interfaces that are called to
perform business processes. Each interaction is independent of each and every other
interaction and the interconnect protocols of the communicating devices (i.e., the
infrastructure components that determine the communication system do not affect the
interfaces). Because interfaces are platform-independent, a client from any device using any
operating system in any language can use the service

26 The definition presented is a part extracted from [1]

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

51

TechEncyclopedia

(Service-Oriented Architecture) An umbrella term for a standardized interface between
software so that one program can utilize the functions (services) of another program. SOA
typically refers to Web services.

Formerly called a “distributed objects” architecture, the SOA term was coined at the turn
of the century as Web services were evolving. CORBA and DCOM are examples of earlier
SOAs. See Web services, CORBA and DCOM.

SearchWebServices.com

A service-oriented architecture (SOA) is the underlying structure supporting
communications between services. In this context, a service is defined as a unit of work to
be performed on behalf of some computing entity, such as a human user or another
program. SOA defines how two computing entities, such as programs, interact in such a
way as to enable one entity to perform a unit of work on behalf of another entity. Service
interactions are defined using a description language. Each interaction is self-contained and
loosely coupled, so that each interaction is independent of any other interaction.

Dearing, 2003

SOA takes the existing software components residing on the network and allows them to
be published, invoked and discovered by each other. SOA allows a software programmer to
model programming problems in terms of services offered by components to anyone,
anywhere over the network’’

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

52

Appendix B – WCF and Web Services

Table B:1 – Microsoft WCF Standard Bindings (msdn.microsoft.com)

Binding Interoperability
Security
(Default)

Session
(Default) Transactions Duplex

Encoding
(Default)

BasicHttpBinding Basic Profile 1.1 (None),
Transport,
Message, Mixed

None, (None) (None) n/a Text,
(MTOM)

WSHttpBinding WS Transport,
(Message),
Mixed

(None),
Transport,
Reliable
Session

(None), Yes n/a Text,
(MTOM)

WSDualHttpBinding WS (Message),
None

(Reliable
Session)

(None), Yes Yes Text,
(MTOM)

WSFederationHttpBinding WS-Federation (Message),
Mixed, None

(None),
Reliable
Session

(None), Yes No Text,
(MTOM)

NetTcpBinding .NET (Transport),
Message, None,
Mixed

Reliable
Session,
(Transport)

(None), Yes Yes Binary

NetNamedPipeBinding .NET (Transport),
None

None,
(Transport)

(None), Yes Yes Binary

NetMsmqBinding .NET Message,
(Transport),
Both

(None) (None), Yes No

NetPeerTcpBinding Peer (Transport) (None) (None) Yes

MsmqIntegrationBinding MSMQ (Transport) (None) (None), Yes n/a

Interoperability Names the protocol or technology with which the binding ensures interoperation.

Security Specifies how the channel is secured:
• None: The SOAP message is not secured and the client is not authenticated.
• Transport: Security requirements are satisfied at the transport layer.
• Message: Security requirements are satisfied at the message layer.
• Mixed: Claims are carried in the message; integrity and confidentiality

requirements are satisfied by the transport layer.

Session Specifies whether this binding supports session contracts.

Transactions Specifies whether transactions are enabled.

Duplex Specifies whether duplex contracts are supported. Note this feature requires support for
Sessions in the binding.

Encoding Specifies the wire format of the message. Allowable values are:
• Text: for example UTF8.
• Binary
• MTOM: a method for efficiently encoding binary XML elements within the

context of a SOAP envelope.

Streaming Specifies whether the message streaming is supported.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

53

Table B:2 – Basic Profile 1.1 Core Web Services Standards
Core Web service standards included in the Basic Profile 1.1 provided by the Web Services
Interoperability Organization
SOAP 1.1
WSDL 1.1
UDDI 2.0
XML 1.0 (Second Edition)
XML Schema Part 1: Structures
XML Schema Part 2: Data types
RFC2246: The Transport Layer Security Protocol Layer Version 1.0
RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile
RFC2616: Hypertext Transfer Protocol 1.1
RFC2818: HTTP over TLS Transport Layer Security
RFC2965: HTTP State Management Mechanism
The Secure Sockets Layer Protocol Version 3.0

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

54

Appendix C – Object Models and Schemas

C.1 CAP v1.1 XML Object Model

Figure C:1 – CAP XML Object Model [21]

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

55

C.2 EDXL XML Object Model

Elements in boldface are mandatory; asterisks (*) indicate that multiple instances are
permitted [20].

Figure C:2 – EDXL XML Object Model [20]

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

56

C.3 WCU Object XML Schema

complexType Indication

diagram

Figure C:3 – WCU WcuObject/WcuMapObject/Indication Element

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

57

C.4 SOS InfoServer XML Schema

<?xml version="1.0" encoding="utf-8"?>
<xs:schema elementFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="CaseFolder" nillable="true" type="CaseFolder" />
 <xs:complexType name="CaseFolder">
 <xs:complexContent mixed="false">
 <xs:extension base="DBCaseFolder">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="Logs" type="ArrayOfLog" />
 <xs:element minOccurs="0" maxOccurs="1" name="Case" type="Case" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DBCaseFolder">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="CallCenterId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="CallCenterName" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseFolderId" type="xs:int" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseFolderStatusId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="CaseFolderStatus" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="IncidentCommander" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="MedicalIncidentOfficer" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfLog">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="Log" nillable="true" type="Log" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Log">
 <xs:complexContent mixed="false">
 <xs:extension base="DBCaseFolderLog" />
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DBCaseFolderLog">
 <xs:sequence>
 <xs:element minOccurs="1" maxOccurs="1" name="Created" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="LogRowTypeid" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="LogText" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="OrderNo" type="xs:int" />
 <xs:element minOccurs="1" maxOccurs="1" name="RowCancelled" type="xs:boolean" />
 <xs:element minOccurs="1" maxOccurs="1" name="RowCancelledTime" type="xs:dateTime" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Case">
 <xs:complexContent mixed="false">
 <xs:extension base="DBCase">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="Missions" type="ArrayOfMission" />
 <xs:element minOccurs="0" maxOccurs="1" name="Logs" type="ArrayOfLog" />
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DBCase">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="PersonFirstName" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="SexId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="SexName" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="AgeMeasureTypeId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="AgeMeasureTypeName" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="Age" type="xs:int" />
 <xs:element minOccurs="1" maxOccurs="1" name="DiagnosisId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="DiagnosisName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PhoneNumberCountryCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PhoneNumberAreaCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PhoneNumber" type="xs:string" />

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

58

 <xs:element minOccurs="0" maxOccurs="1" name="PersonStreet" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonStreetNo" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonBlock" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonEntrance" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonFloor" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonApartment" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonLocality" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="PersonMunicipalityId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonMunicipalityName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonPostCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonCommunity" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonNote" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="StreetNo" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Block" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Entrance" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Floor" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Apartment" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="PublicPlace" type="xs:boolean" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToStreetNo" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToBlock" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToEntrance" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToFloor" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToApartment" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToCommunity" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="ObjectTiedDatetime" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="ServiceCaseStartTime" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="ServiceCaseEndTime" type="xs:dateTime" />
 <xs:element minOccurs="0" maxOccurs="1" name="AddressNote" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="AlarmArrivalTime" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="AlarmCategoryId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmCategoryName" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="AlarmCatOrderNo" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmDetectorCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmDetectorText" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmEventCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmEventText" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmHandlingTypeName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmOriginalCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmResetCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmResetStatusName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmSectionCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmSectionText" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="AlarmSimulated" type="xs:boolean" />
 <xs:element minOccurs="1" maxOccurs="1" name="AlarmStatusId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmTransmitterCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmTransmitterPartCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="AlarmTransmitterTypeCode" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseId" type="xs:int" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseIndex1" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="CaseIndex1Name" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseIndex2" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="CaseIndex2Name" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseIndex3" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="CaseIndex3Name" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="CaseIndexComment" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="CasePriority" type="xs:int" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseStatusId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="CaseStatus" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="CaseTypeArea" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="CaseTypeId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="Casetype" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Community" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ComplCategoryText" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ContractNumber" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="Created" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="Finished" type="xs:dateTime" />
 <xs:element minOccurs="0" maxOccurs="1" name="FinishedBy" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="HandOverTime" type="xs:dateTime" />
 <xs:element minOccurs="0" maxOccurs="1" name="Locality" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="MunicipalityId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="MunicipalityName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ObjectName" type="xs:string" />

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

59

 <xs:element minOccurs="0" maxOccurs="1" name="Orderer" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="PersonName" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="PickUpTime" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="PositionModified" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="PositionRefSystemId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="PostCode" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="Preordered" type="xs:boolean" />
 <xs:element minOccurs="0" maxOccurs="1" name="RouteDirections" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="SocialSecurityNumber" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Street" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToCaseTypeArea" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToLocality" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="ToMunicipalityId" type="xs:int" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToMunicipalityName" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToPostCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ToStreet" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="CustomerNumber" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="Urgent" type="xs:boolean" />
 <xs:element minOccurs="1" maxOccurs="1" name="XCoordinate" type="xs:double" />
 <xs:element minOccurs="1" maxOccurs="1" name="YCoordinate" type="xs:double" />
 <xs:element minOccurs="1" maxOccurs="1" name="ZCoordinate" type="xs:double" />
 <xs:element minOccurs="0" maxOccurs="1" name="StatusName" type="xs:string" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ArrayOfMission">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="unbounded" name="Mission" nillable="true" type="Mission" />
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="Mission">
 <xs:complexContent mixed="false">
 <xs:extension base="DBMission" />
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="DBMission">
 <xs:sequence>
 <xs:element minOccurs="0" maxOccurs="1" name="StationCode" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="FalseAlarm" type="xs:boolean" />
 <xs:element minOccurs="0" maxOccurs="1" name="FalseAlarmReasonCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="ForeignCountyName" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="ForeignCountyTransport" type="xs:boolean" />
 <xs:element minOccurs="1" maxOccurs="1" name="LastStatusReport" type="xs:dateTime" />
 <xs:element minOccurs="1" maxOccurs="1" name="Mileage" type="xs:int" />
 <xs:element minOccurs="1" maxOccurs="1" name="MissionStarted" type="xs:dateTime" />
 <xs:element minOccurs="0" maxOccurs="1" name="ResourceCode" type="xs:string" />
 <xs:element minOccurs="0" maxOccurs="1" name="Status" type="xs:string" />
 <xs:element minOccurs="1" maxOccurs="1" name="StatusId" type="xs:int" />
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

60

Appendix D – Microsoft BizTalk™ Server

Microsoft’s BizTalk™ Server 2006 is based on an XML Framework and is primarily for
Business Process Management27 (BPM) and application integration. It does not by itself add
any new protocols but relies on XML and XML Schemas. BizTalk™ uses an internal XML-
format for all communication that takes place inside the server.

D.1 Server Architecture
The BizTalk™ Server consists of two main parts: a messaging component (MessageBox) and
an orchestration (logic) component [15]. The messaging component is for communication
with other systems by using adapters, while the orchestration component provides all the
logic. Three additional components are a business rules engine, a monitoring tool for the
engine and orchestrations, and an authentication facility for mapping authentication
information for use with non-Windows based systems. On top of this is a non-technical
business activity monitoring tool, as well as a tool for set up and managing business activity
services.

Figure D:1 – Microsoft BizTalk™ Server engine [15]

Figure D:1 describes the core functionality of the BizTalk™ Server engine. The receive
pipeline consist of four stages of message processing; decode, disassemble, validate, and
resolve party. When a message has been processed it is sent to the MessageBox. The
message is then sent to the orchestration subscribing to the corresponding message and then
processed according to the orchestration rules and sent to the send pipeline. The send

27 Automation of manual processes and the subsequent optimization of those processes

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

61

pipeline consist of a pre-assemble stage, an assemble stage, and an encoding stage. Interested
readers are referred to [15] for a more detailed description of the core engine.

D.2 Adapters and Accelerators
Microsoft BizTalk uses adapters and accelerators. Adapters are used to extend functionality
by enabling the Microsoft BizTalk Server to connect to other servers and applications. At the
moment 23 application and technology adapters are supported. Among the most interesting
are adapters for IBM DB2, Microsoft Windows file system, FTP, HTTP, POP3, SMTP,
SOAP, SQL, and Web Services. See Appendix B for a complete list of available adapters.

The so called accelerators in Microsoft BizTalk Server are used to provide developers with
tools, data schemas, and processes to make development within these areas less time
consuming. Table 7.1 lists the five accelerators available at the moment.

Table D:1 – BizTalk Server 2006 Accelerators
Accelerator Explanation
Cactus GDS

The Global Data Synchronization (GDS) Network is a consortium of
interoperable data pools and a global registry (the GS1 Global Registry™)
that enable companies around the globe to exchange standardized and
synchronized supply chain data with their trading partners.28

HIPAA

The Health Insurance Portability and Accountability Act of 1996 (HIPAA)
compliance is a health insurance act used in the United States.

HL7

Health Level Seven was founded in 1987 and is from august 2006 an ISO
standard framework for exchange, integration, sharing, and retrieval of
health information.

SWIFT

The Society for Worldwide Interbank Financial Telecommunication
(SWIFT) is an industry-owned co-operative supplying standardized
messaging services and interface software to financial institutions.

RosettaNet

RosettaNet is a globally supported organization that develops universal
standards for the supply chain.

D.3 Orchestrations and Business Rules Engine
The logic of business processes can be implemented without any programming using a
graphical tool. This allows non-technical persons to be more active in the business process
and to implement these as orchestrations. For developers, Microsoft BizTalk also has
graphical tools for creating XML Schemas, for defining translations (using XSLT) between
those schemas, and for implementing the logic of business processes.

D.4 Management and Monitoring
BizTalk™ has an administration console which provides monitoring machines and the
engine to keep a record of what is going on as well as reporting failures.

28 See www.gs1.org

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

62

D.5 Supported Platforms and Software Requirements
Microsoft Windows 2000, Microsoft Windows XP, or Microsoft Windows Server 2003 is
required to run Microsoft BizTalk™ Server 2006. To use databases Microsoft SQL Server
2000 or 2005 is required. Since the BizTalk Server 2006 is based on .NET Framework 2.0
Microsoft’s Visual Studio is required for the development of services.

D.6 Integration with Other Software
While Visual Studio may be used for developing Web Services, Microsoft BizTalk Server
2006 is more for orchestrating them into business processes. To use Windows
Communication Foundation with Microsoft BizTalk instead of ASP .NET Web Services, an
adapter is available for download.

D.7 Security Aspects
In Microsoft BizTalk security is achieved by protecting the privacy of the system elements;
authenticating the information, participants, and processes that enter and leave the system;
and authorizing the access to and use of resources in the system [16].

D.8 Microsoft BizTalk Server 2006 Conclusions
The Microsoft BizTalk Server 2006 provides many functions and a user-friendly interface for
designing and implementing service orchestration and interoperability with other systems. Its
strengths come with large systems that have many interacting parts and where business logic
or other logic is involved in the exchange of messages. However, for simple systems with
only one or a few interacting parts and where there is no complex orchestration needed, the
same functionality can without difficulty be created without the use of Microsoft’s BizTalk
Server.

Microsoft’s BizTalk Server could be configured to communicate alarm information directly
with the WCU Server and at the same time provide several interfaces outwards. This would
however mean that BizTalk has to perform all authorization issues in the same way that
WCU clients does, something that is difficult to achieve since BizTalk has no support for
stateful mode. This is unless BizTalk-specific services are introduced at the WCU Server.
This is however something that is not desired since the idea is to keep the server lightweight.

Another reason for not using Microsoft BizTalk Server in the proposed design is the price
associated with it. A higher cost for the WCU system would lead to fewer potential
customers, something that is avoided if possible.

The final conclusion is that Microsoft’s BizTalk Server will not be used in the proposed
design.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

63

D.9 Microsoft BizTalk Server 2006 Adapters

Table D:2 – Microsoft BizTalk Server 2006 Adapters29
Adapter Description Supported Versions

SAP Enables exchange of Intermediate Document (IDOC),
BAPI, and Request for Comments (RFC) messages
between BizTalk Server and an SAP R/3 system.

SAP R/3 4.x and R/3
6.20 (Enterprise)

PeopleSoft Enterprise Enables exchange of Component Interface (CI) messages
between BizTalk Server and a PeopleSoft system.

PeopleTools Versions
8.17.02, 8.43, and 8.45

JD Edwards OneWorld
XE

Enables exchange of Business Function messages
between BizTalk Server and a JD Edwards OneWorld
system.

B7.3.3.3 with SP23

JD Edwards
EnterpriseOne

Enables exchange of Business Function messages
between BizTalk Server and a JD Edwards
EnterpriseOne system.

8.10 with Tools Release
8.94

ODBC Adapter for
Oracle Database

Enables reading and writing information from and to an
Oracle Server database.

Oracle 8i (8.1.6.0), 9i
(9.2.0.1), or 10g

Siebel eBusiness
Applications

Enables exchange of Business Components and Business
Service messages between BizTalk Server and a Siebel
eBusiness Application.

6.2.1 with patch 110 or
higher, 7.0, 7.5.*, 7.7.*,
and 7.8.*

TIBCO Rendezvous Enables exchange of XML and binary data format
messages between BizTalk Server and TIBCO
Rendezvous.

7.3

TIBCO Enterprise
Message Service

Enables exchange of XML and binary data format
messages between BizTalk Server and a TIBCO EMS
server providing a tightly integrated and reliable
application infrastructure.

4.2

Host Applications* Enables data exchange between BizTalk Server and IBM
mainframe zSeries (CICS and IMS) and midrange iSeries
(AS/400) server programs.

Not applicable

IBM DB2* Enables reading and writing information from and to
IBM mainframe DB2 for z/OS, IBM midrange
DB2/400, and IBM DB2 Universal Database for open
platforms (AIX, Linux, Solaris, and Windows).

Not applicable

Host Files* Enables data exchange between BizTalk Server and IBM
mainframe zSeries VSAM datasets and IBM midrange
iSeries AS/400 physical files.

Not applicable

WebSphere MQ (Client
Based)*

Enables exchange of messages between BizTalk Server
and IBM WebSphere MQ using the WebSphere MQ Base
Client (non-transactional) or WebSphere MQ Transaction
Extended Client APIs.

5.3 with Fix Pack 10 or
higher and 6.0 with Fix
Pack 1.1 or higher

WebSphere MQ Enables exchange of messages between BizTalk Server
and IBM WebSphere MQ.

5.3 with Fix Pack 10 or
higher and 6.0 with Fix

29 See www.microsoft.com/biztalk for latest version

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

64

Adapter Description Supported Versions

Pack 1 or higher

MSMQ/MSMQT Enables sending and receiving messages by using BizTalk
Message Queuing (MSMQT), an implementation of the
Microsoft Message Queue (MSMQ) protocol that sends
and receives MSMQ messages to and from the Message
Box database.

2.0 and 3.0

Base EDI Enables sending and receiving messages by using the
American National Standards Institute (ANSI) X-12 and
Electronic Data Interchange for Administration,
Commerce, and Trade (EDIFACT) standards.

Not applicable

FILE Enables reading from and writing to files in the Microsoft
Windows file system.

Not applicable

FTP Enables exchange of files between BizTalk Server and
FTP servers.

Not applicable

HTTP Enables sending and receiving information by using
HTTP. The BizTalk Server 2004 engine exposes one or
more URLs to enable other applications to send data to it,
and it can use this adapter to send data to other URLs.

Not applicable

POP3 Enables receiving messages from a POP3 mailbox into
BizTalk Server by using the POP3 protocol.

Not applicable

SMTP Enables sending messages between BizTalk Server and an
SMTP gateway by using Simple Mail Transfer Protocol
(SMTP).

Not applicable

SOAP Enables sending and receiving messages by using SOAP
over HTTP enabling BizTalk Server to interact in a Web
services world.

Not applicable

SQL Enables reading and writing information from and to a
Microsoft SQL Server database.

Not applicable

Web Services
Enhancements (WSE)
2.0

Enables more secure Web services (WS-Security, WS-
Trust, WS-SecureConversation, WS-SecurityPolicy, and
WS-Policy) with BizTalk Server 2004.

2.0

Windows SharePoint
Services

Enables the exchange of XML and binary messages
between BizTalk Server and SharePoint document
libraries.

Windows SharePoint
Services 2.0 with Service
Pack 2

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

65

Appendix E – CAP to WCU Translation

Elements marked with boldface in the following tables (Table E:1) indicate that the
corresponding element is required by the CAP protocol. The information presented in
Table E:1 might come to change since the specification for the internal WCU architecture is
still under development.

Table E:1 – CAP to WCU Translation Tables
alert Definition WCU Object
identifier The identifier of the alert

message
Maps to ExternalIndication.ExternalIndicationId

sender The identifier of the sender
of the alert message

Maps to ExternalIndication.ExternalSystemName

sent The time and date of the
origination of the alert
message

Maps to ExternalIndication.Sent

status The code denoting the
appropriate handling of the
alert message

Actual, Exercise, System, Test, Draft. WCU Plug-in will make
decisions from this value (Only Actual, Exercise and System will
be forwarded to WCU)

msgType The code denoting the
nature of the alert message

Alert (NewObject), Update (Update referred ExternalIndication),
Cancel (Delete?), Ack (Not used), Error (Not used).
Decide action for WCU.

source The text identifying the
source of the alert message

Maps to ExternalIndication.ExternalSource

scope The code denoting the
intended distribution of the
alert message

All messages are public in WCU.

restriction The text describing the rule
for limiting distribution of
the restricted alert message

All messages are public in WCU.

addresses The group listing of
intended recipients of the
private alert message

All messages are public in WCU.

code The code denoting the
special handling of the alert
message

Not used in Wcu internally.

note The text describing the
purpose or significance of
the alert message

Primarily for Cancel and Error messages. Not used in WCU
internally.

references The group listing identifying
earlier message(s)
referenced by the alert
message

Used for decisions on msgType i.e. Update and Cancel.

incidents The group listing naming
the referent incident(s) of
the alert message

Not used in Wcu internally. This is done manually by operator.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

66

info Definition WCU Object
language The code denoting the language of the info subelement

of the alert message
Not used by WCU.

category The code denoting the category of the subject event of
the alert message

Maps to Indication. Indication
Type.

event The text denoting the type of the subject event of the
alert message

!?

responseType The code denoting the type of action recommended for
the target audience.

Not used Wcu internally.

urgency The code denoting the urgency of the subject event of
the alert message

Maps to
Indication.IndicationPriority

severity The code denoting the severity of the subject event of
the alert message

Maps to
Indication.IndicationPriority

certainty The code denoting the certainty of the subject event of
the alert message

Maps to
Indication.IndicationPriority

audience The text describing the intended audience of the alert
message

Not used by WCU.

eventCode A system specific code identifying the event type of the
alert message

Not used by WCU? Name value
parameter

effective The effective time of the information of the alert
message

Not used by WCU.

onset The expected time of the beginning of the subject
event of the alert message

Maps to WcuObject.BeginTime.

expires The expiry time of the information of the alert message Not used by WCU.
senderName The text naming the originator of the alert message Maps to ExternalSystem.Name
headline The text headline of the alert message Maps to WcuObject.Name
description The text describing the subject event of the alert

message
Maps to WcuObject.Text

instruction The text describing the recommended action to be
taken by recipients of the alert message

Not used by WCU.

web The identifier of the hyperlink associating additional
information with the alert message

Not used by WCU.

contact The text describing the contact for follow-up and
confirmation of the alert message

Not used by WCU.

parameter A system specific additional parameter associated with
the alert message

Not used by WCU.

resource Definition WCU Object
resourceDesc The text describing the type and content of the resource file Not used by WCU.
mimeType The identifier of the MIME content type and sub-type

describing the resource file
Maps to
WcuFile.MIMEType.

size The integer indicating the size of the resource file Not used by WCU.
uri The identifier of the hyperlink for the resource file Maps to WcuFile.FileName
derefUri The base-64 encoded data content of the resource file Mapps to WcuFile. File

byte[]
digest The code representing the digital digest (“hash”) computed

from the resource file
Maybe used for error check

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

67

area Definition WCU Object
areaDesc The text describing the affected area of the alert

message
Mapps to WCUObject.Text

polygon The paired values of points defining a polygon that
delineates the affected area of the alert message

Mapps to WcuMapObject.Geometry
Polygon property.

circle The paired values of a point and radius delineating
the affected area of the alert message

Mapps to WcuMapObject.Geometry
Polygon property.

geocode The geographic code delineating the affected area of
the alert message

Mapps to a Location object
(SwedishAddress or NamedArea)

altitude The specific or minimum altitude of the
affected area of the alert message

Not used by Wcu.

ceiling The maximum altitude of the affected area of the
alert message

Not used by Wcu.

Improving Alarm Interoperability with External Systems for a WCU Using SOA
Glauser, Ivan

KTH
15 February 2007

68

Appendix F – Evaluation Results

Table F:1 – Processing time in seconds, based upon a number of test messages

Number of sent messages Test Iteration
 1000 600 400 200 100 50 20 1

Not used 2.721604 1.736195 1.532857 0.766429 0.531808 0.484883 0.344111 0.265904

2 2.721604 1.548499 1.282595 0.578732 0.312828 0.187697 0.125131 0.078207
3 2.705962 1.532857 1.110539 0.56309 0.312828 0.203338 0.10949 0.062566
4 2.67468 1.532857 1.063615 0.56309 0.312828 0.203338 0.10949 0.062566
5 2.690321 1.548499 1.047974 0.56309 0.328469 0.187697 0.10949 0.078207
6 2.721604 1.532857 1.063615 0.56309 0.312828 0.187697 0.125131 0.062566
7 2.690321 1.517216 1.079257 0.56309 0.312828 0.187697 0.10949 0.062566
8 2.737245 1.517216 1.063615 0.56309 0.312828 0.187697 0.125131 0.062566
9 2.67468 1.517216 1.079257 0.578732 0.312828 0.187697 0.125131 0.062566
10 2.737245 1.517216 1.079257 0.56309 0.312828 0.187697 0.125131 0.078207

Median 2.705962 1.532857 1.079257 0.56309 0.312828 0.187697 0.125131 0.062566
Variance 0.000612 0.00017 0.005165 0.000476 0.000272 0.000476 0.00068 0.000612

www.kth.se

COS/CCS 2007-04

