Adaptive Context Aware Services

o

L,
XAVIER RONDE-OUSTAU EFKTHS

{E VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Master of Science Thesis
Stockholm, Sweden 2006

COS/CCS 2006-4

Adaptive Context Aware Services

Xavier Rondé-Oustau

27 June 2006

School of Information and Communication Technology (ICT)
Royal Institute of Technology (KTH)

Stockholm, Sweden

Industrial Advisor ~ Theo Kanter, Ericsson/KTH

Examiner Gerald Q. Maguire Jr

Abstract

Context information is information that describes the user's context. The goal of the Adaptive
Context Aware Services (ACAS) project is to enable applications to use context information in order
to adapt their behaviour to the user and his environment without requiring the user to manually
change/manage parameters. While the concept of linking context aware entities together to form a
logical "context network" was introduced earlier in the project, some questions regarding context
information discovery and the discovery of context aware entities were previously unanswered.

The goal of this thesis was to design and evaluate such a context network -- allowing entities to
discover each other and exchange information regarding their services and context information. For
this purpose, a "Context Entity Registrar" has been developed allowing entities to register, thus they
can easily be found by other entities who can query this registrar.

During the design of this proposed solution, a special focus has been given to the performance
of the registrar, especially how it scales when answering a large number of requests, in order to
validate the design's potential as a solution to context aware entity discovery. Measurements have
shown that this proposed solution scales well, making it a key element of a context network.

Discovery of other entities and of context information play an important role to determine the
performances of a context aware implementation. This masters thesis addresses first the issue of the
architecture of the context network and then some tests to measure the performances of the proposed
solution.

Sammanfattning

Context information &r information som beskriver anvindarens omgivning. Adaptive Context
Aware Services (ACAS) projektet har som mal att mojliggora applikationer att anvinda kontext
information fOr att anpassa sitt beteende till anvédndaren och dess miljo, utan att krdva att anviindaren
ska sitta eller hantera alla parametrar manuellt. ACAS projektet har tidigare infort konceptet "context
network" som forbinder context aware enheter. Det finns dock kvar nagra obesvarade fragor angaende
upptickt av context information och av context aware enheter.Trots att sittet att linka ihop kontext-
medvetna enheter for att forma ett logiskt 'kontext nitverk' introducerades tidigare i projektet, finns
det kvar nagra obesvarade fragor angaende upptickt av kontext information och upptickt av kontext-
medvetna enheter.

Examensarbetets mal &r att utforma och utvirdera ett sadant kontextnétverk som ger enheterna
mojlighet att upptidcka varandra och utbyta information om tjanster och context information. Darfor
utvecklades "Context Entity Registrar" sa att enheterna kan registrera sig for att kunna bli upptickta
av andra enheter som kan gora forfragningar till detta register.

Under designen av denna foreslagna 16sning har sirskild fokus lagts pa registrens prestanda,
speciellt avseende skalbarhet med avseende pa antalet forfragningar for att validera designens
potential som 16sning for kontext-medveten upptidckt av enheter. Métningar har visat att 10sningen
skalar bra vilket gor kontext registret till ett nyckelelement i ett kontextnétverk.

Upptikten av andra enheter och av kontextinformation har en viktig roll 1 att bestimma en
kontext-medveten implementations prestanda. Detta examensarbete kommer forst att behandla
kontext-nétverkets arkitektur och direfter nagra testerna for att méta prestanda i den foreslagna
16sningen.

i

Acknowledgements

First of all, I would like to thank Prof. Gerald Q. Maguire Jr., my examiner, for the patience
and the support he provided me with during the whole length of the thesis. As well, thanks to Dr.
Theo Kanter, my industrial advisor, who gave an industrial perspective to this thesis.

I would like to thank all my colleagues in the lab, that were always here to help and to discuss
problems I encountered, Alessandro Sacchi, Carlos Marco Arranz, Younes Oukhay, and Alisa Devlic.
I hope that I have not disturbed their work with my questions!

During this thesis, I also had the chance to be part of a wonderful team, the XVIII
International “Jazzers” BEST Board with whom I have been working very closely for the development
of the Board of European Students of Technology. Thanks Elina, Jiji, Michal, Nadinak, and Susan for
your support and understanding when I was not fully available when working on this thesis.

Enfin, pendant la rédaction de ce mémoire de fin d'études et durant la totalité de mes études,
mes parents, ma soeur et mes grands-parents m'ont toujours été d'un soutien exceptionnel de maniere
a me donner les moyens de parvenir a étudier et a m'investir dans BEST tout en developpant mes
capacités a exercer en tant qu'ingénieur responsible dans le futur, et c'est tout naturellement que je
tiens a les en remercier vivement.

1l

Table of Contents

L INETOAUCTION. ...ttt ettt et et esab e st e e s it e s bt e sabe e e bt e e st e e ssbeenaneesabeesbeeeane 1
2. CONLEXE AWATE SEIVICES. ...ceuvteurieuiertientieteetestt et et ettestee st e et e e it e s bt e bt eatesbeesae e st st essbesbee st ease et eeneenaeenne 2
2.1 Sensors and APPIICALIONS.cccveeriierieeiie et eieesteerteeriteeteeeteesebeeseaeeteeesseessseesaseenssesnseesnseesanes 2
2.2 ConteXt INFOrMAtION.cooiiiiiiiiiiiie et ettt et et e e s e e 3

2.3 Example of COonteXt AWATE SEIVICES.ccuuieriitiriiiiiiiienite et eiteeite st e eite et e st e sbae e e sabeeesaees 4
2.3.1 The WhichJacket SErviCe.........cocueeviiiiiriiiiiiiiieieeeerceee e 4

2.3.2 The Wher€TOEAL SEIVICE.covviiriiiiiiiieniieeteeiteetest et 5

3. Context Information ManagemeNL..............ceeiruieiiiiiirieieeieete ettt sttt st se et saeeeaes 6
3.1 Context Manager as a link between sensors and applications...........c..ccoeeveeveniienienieeneenenniene 6

3.2 Managing SUDSCIIPLIONS. ...ccuuteiteertierttenieeeitesteesteesittesteesbeeeuteesbeesabeesabeesaseessbeesaseesseesnseenans 7
3.2.1 Application INEETTACE.ccc.eiriiiiiiiiii ettt et 7

3.2.2 SeNSOT AdAPLOT.ccciieeiiieiie ettt eite et eteeeteetteeteeeaeestaeessaeessaeeeseessseesssessseesnseessneenns 8

3.2.3 Context Management ENtity..........ccoecveiiiiiieiieeiiecieesie ettt 8

3.3 POlICY MANAZEIMENL.......cuviiiiiiiiieiieieetieteet ettt ettt st n e et seee st eneenesane e 9

4. CONLEXE INEIWOTK. ...c.eeiiiiiiiiieiteet ettt et e st et et e et e st e st e e abeesabeesaneennreens 10
4.1 What 1S @ ConteXt NEtWOTK.......c.coiuiiiiiiiiiiiieietese ettt 10

4.2 Discovery of ConteXt ENTIIES.eiriiiirieeiiieriierie ettt st se e e beesebeeseeenaaee e 12
4.2.1 Discovery of Context Entities using a Context Registrar...........ccocceeeviieeniieeniiecnnnneen. 12

4.2.1.1 Open PUbliC REZISIIAT..........coiiiiiiiiiiiiaiiieteeeecee et 12

4.2.1.2 Restricted Public Re@IStIar...........cccueeiiiiiiiiiiiiieiieeee et 13

4.2.1.3 Open Private REZISIIAT........ccueeviiiiiieiiieiiieeieeteeeeeete et 14

4.2.1.4 Restricted Private REIStIar.........ccocuvieiieriiieniieeieeeieeeie e 15

4.2.2 Discovery of Context Entities without using a Context Registrar............c.ccceevvveerennene 15

4.3 Joining a Context Network through a registrar............coccevveeiienieniiniieeeeeeee e 16

4.4 Discovery of a Context REZISIIAL........cc.cocuiriiiriiiiiinieeieneeeeeeee et 17
4.4.1 When joining a subnetwork or @ LAN........c.cooiiiiiiiiiiiieeiiecieeeteee et 17

4.4.2 When joining a proprietary NEtWOTK............cccvueerruiirriieeiiienieeeiee e eniee e 18

4.4.3 Using an external dIrECTOTY.........eeruiiriiiiiiiiiiieerte ettt ettt et 18

4.4.4 Manually entering a registrar addreSSes.covveeruieeniiiiniieniieeniee et 18

5. Testing the ConteXt REISIAT.........cciuiiriieiieiieeteeie ettt ettt et e e bt e s bt e st e e s beensneenseeens 19
5.1 Timeline fOr @ TEISIIAtION.ceetieriieriiieiieertte ettt e st te et te st eebe e et eesbeesabeesabeesnbaesnseesaseenas 19
5.1.1 Description Of the €XPEriMENnt..........cccuerieriiriiiiriirienieeieee ettt ettt e 19

5.1.2 Presentation of the tiMEIINe...........ccoeiiiiiiiiiiiiiiieee e 21

5.1.3 Analysis Of the TESULLS.......cooiiiiiiiiiee et 25

5.2 Reponse tO @ DUISt Of TEQUESES.cccuutiruiiiriieiiee ettt ettt ettt et et e et e s sate e st e sbeeeaeeas 25
5.2.1 TESt ENVITONIMENL.euteeiieriieiieeiteette st ett ettt eat et eab e et eabeeabeeabeebe e beebeesseenseenaees 26

5.2.2 Understanding which information is processed and how: with ethereal..................... 26

5.2.3 Which information are processed and how: with command line information............. 28

5.2.4 Errors and problems during the tests.......cocuveviiriiriiiniiinieneceeeeeeeeeeeee e 28

5.2.5 Test: 500 requests burst routed via INLETNEL.........cccueeerveerieerieeiie e 29

5.3 Response to @ high L0ad..........oooiiiiiiiiiiii ettt 30
53100 @LAN. ..ottt ettt et eaaas 30

5.3 2 OVEI INLETNEL. ...ttt ettt sttt st e e 31

5.3.3 SOME CONCIUSIONS.c..eitiiiiriiiiieiecie ettt ettt st sr e e s 34

6. CONLEXt BNty DISCOVEIY..ccuutiiiiiiiiiiiitieiie ettt ettt ettt e sttt e st e e sabeesabeeebeeenneeas 35

iv

6.1 Context ENtity DESCIIPON.ccueeieuiieiieeiiieeieeeiee et eteesee et esteeeteeesiaeessteeesaeesnseesnnseennseas 35

7. Context Information DISCOVETY......cc..oviiriiriiriiieiieiiesteee ettt sttt 37
7.1 OWL as a solution for Context Information Management............c.ccceeveevveerceeniieeneeneenceeenneenne. 37

7.2 REASONING ADOUL CONEXL...ceuuvieiiieririeriieeiieeniteesiteetteesteeesaeeeseesseesseesseessseesssessssesssseesseessseenns 38
7.2.1 Example Of @ SUDSCIIPHON:uieriieiriiieriiiesieeeiee et eiieeeiee e e e saeesaeeeaeeenseeesaeennneesaeeas 38

7.2.2 EXPlAINATION. ..coutiiiiiiieiieiiecieee ettt ettt st n e e nae e 39

7.2.3 Reasoning by the CONEXt MANAZET.........cc.eeveeriiirieieneeeeeeeree e 39

7.3 Context DIiSCOVETY “IN CRATN......ccoiuiiiiiiiiiiee ettt st e e bee e s 40

8. Conclusions and fULUIE WOTK.........cc.evuieiiriiriiriee ettt 41
8.1 CONCIUSIONS. ...ttt ettt et e bt e bt et e bt e st e bbesbe e be e bt enbeenbeenneens 41

8.1 FULUIE WOTK. ..ottt ettt bte et e st e sbee st e et e e saree e 41
REIEIEINICES. ...ttt sttt ettt et et e b e e b naees 43

Index of Figures

Figure 1: Schema of the "WhichJacket SErviCe".........ccccooiiriiiiiiiinieiieeeeeee e 4
Figure 2: Schema of the "WhereTOEat ServiCe"...........coviiiiiiiiiiiiiiiieeieee et 5
Figure 3: transformation of context InfOrmation.c.ueeierierierieniienieeeee e 6
Figure 4: Structure of @ CONteXt MANAZET.........coouteuiiiirieeie ettt et see e 8
Figure 5: Context Network and REZISLIAL............cooiiiiiiiiiiiiieieeeeere st 11
Figure 6: Context Network Interface in a Context Management Entity...........ccccccevveenieineecneeccieennnen. 11
Figure 7: Schema of a 2-way handshake tranSmission............c.ceecueivieeriienienienieeeeneeeeeecee e 20
Figure 8: Model of Registration Timeline. Left: 12 frames case; Right: 13 frames case...................... 22

Figure 9: Registration timeline using experimental timestamps (left: 12 frames ; right: 13 frames)....23

Figure 10: The number of threads running simulaneously
(X: time in us - Y: number of threads running on the re@iStrar)...........ccceeeueeerieeniieeniieniieeee e 29

Figure 11: The number of thread running simultanously (X: time in ps - Y: number of threads running
ON ThE TEEISIIAT).c...eueieiiiite ettt ettt et e be e st e st e sae e s e e st e et e saneeaneeneeneenneens 32

Figure 12: The number of threads running simultaneously as a function of time.
(X: time in us - Y: number of threads running on the re@iStrar)..........cccveevveerieeriieenieeeiie e e 33

Figure 13: OWL interfaces in ACAS middIEWare...............cooueiiiieiiiiiniiiiieieeee e 38

vi

Index of Tables

Table 1: Statistical results for the timeline of a registration (when 13 frames are sent)........................ 22
Table 2: Statistical results for the timeline of a registration (when 12 frames are sent).............c.c........ 23

Table 3: Statistical results for the timeline of a registration on a LAN (when 12 frames are sent)....... 25

Table 4: Example of data imported from Ethereal.............ccccoeiiieiiiiniiieiicee e 26
Table 5: Average Timestamps for Key Frames...........ccoooveiriiiiiiiiiiiiiececeeee e 30
Table 6: Actual Registration and Total INtervals...........cccueervieniiiiniiieiiieeiee e 30

vil

1. Introduction

The development of adaptive context aware services is highly dependant on how context
information can be discovered and accessed by an application (that in most cases is not executing on
the device(s) that have such context information). When the context information to be used is known a
priori by the application, then it is possible to access it directly; using for example a known network
address. However, a goal for context aware services is to take advantage of information that is not
known a priori. Therefore the challenge is to discover such information.

The ACAS project (Adaptive Context Aware Services [1]) has developed as part of its
middleware the concept of a Context Network. This network links Context Entities together, in order
to ease the discovery and transmission of context information. In order to achieve such goals, Context
Entities should register with Context Entity Registrars so that the discovery of such registrars leads to
the discovery of other entities and of the context information that is available via such context
entities. The result of adding Context Registrars is an exponential increase in context information for a
given communication effort, rather than a cost which is linear in the number of potential context
sources.

Beyond the discovery of information, a goal of the ACAS project platform is to support the
development of context aware services. However, the focus of this thesis is facilitating the discovery
of context sources via the introduction of context registrars, rather than a context aware service itself.

The first chapter presents context services, their particularities and some examples in order to
better understand the kind of services that the ACAS plateform tries to support. The second chapter
deals with the context information management within the ACAS architecture, how context
information transits from its source to the application that needs it. The following chapters present the
context network and especially the context registrar, the element that is the centre of the context
network. Its performance is analysed in the fifth chapter. The last chapters broaden the scope of the
thesis to examine key issues regarding context information discovery, specifically entity discovery and
reasoning about context.

2. Context Aware Services

Traditional electronic services often are organised following a client-server model: the client
sends requests to a server that replies with answers. The user usually enters requests manually. A
service that is more evolved can substitute a machine or process for the user. In this case, a computer
automatically generates a request based on some parameters, user command, etc. Consider a request
for a webpage. The user can directly enter the IP address of a website and get the page from the server
(providing this computer implements a webpage content delivery service, i.e., is a web server). But
the user can also enter the URL. The browser automatically generates a DNS request (to a DNS
server) in order to learn which IP address this URL should be directed to.

For these traditional services, requests are triggered by the user. In contrast, context aware
services take as input information that is likely to change in a non-deterministic manner, at any time.
For example an air conditioner adapts its behaviour based upon the temperature of the room where it
is in order to maintain the target temperature. Context Services work the same way. The development
of communication tools has made it both possible and affordable to have the source of context
information (such as temperature, position, etc.) at a different place from where this information is
used, typically where the service is provided.

The main goal of context aware services is to facilitate seamless adaptation and to enable users
of mobile devices by limiting the interaction required between the user and the services and devices.
In other words, the aim is to provide more intelligent services and devices, focused on users' needs,
preferences, and current context. Detailed studies and examples of such services can be found in [2].

2.1 Sensors and Applications

Context Aware Services extensively use information provided by sensors. One category of
sensors is physical sensors. These sensors (together with their associated device drivers) are sources of
physical information such as luminosity or temperature. A well defined driver is essential in order to
be able to exploit the information generated by such sensors. What does a temperature mean if not
sent together with its measurement unit? Thus the source of sensor information has to both provide
the sensor values and additional information necessary to utilize this value (such as units, time of
measurement, validity of the measurement, precision/confidence, ...).

A sensor can also synthesize information coming from several sensors, such as combining data
from two images of the same scene in order to extract depth information. This is called sensor fusion .
The sensor that provides this depth information, derived from the two images is a virtual sensor as it
doesn't directly sense this information. The advantage of using sensor fusion is that the aggregation of
information can be computed outside of the devices that need this info and sensor fusion can produce
information which no single sensor is able to directly sense. (which reduces the resources that these
devices need.)

In addition to physical sensors, there exist also software sensors producing information such as
CPU utilization, list of active processes, maximum bandwidth of a link and its current utilizations. A
key software sensor is the service sensor as it provides information about the different services
available on a device. Once a device is discovered, one can therefore find out which services can be
accessed and used. This is closely related to the concepts of self-description in both programming
languages and device discovery (such as Sun's JINI [3][4]).

Applications can use this sensor information in different ways. For example, an application
that is supposed to display a level of grey that is proportional to the noise level would need to
regularly update their knowledge of the noise level information in order to update the level of grey
displayed. The updating of this sensor information can be scheduled. On the other hand, we can have
applications whose behaviour is event-triggered. Consider a simple application that displays green
when the noise level is less than a predefined value and red otherwise, the sensor would send to the
application an update only when the noise level exceeds a predifined threshold. Efficient
communication between sensors and applications is a central part of the platform being developed by
the ACAS project.

2.2 Context Information

Context Aware Services are composed of applications and sensors that exchange context
information. The difference between raw sensor data and context information is that context
information is to be understood by external devices and their applications. The ACAS project uses an
XML based description of a context element [5]. The different fields of a context element are the
following:

id A unique identifier.

value The value of a property of some entity.

datatype The datatype of the value, like integer, real, string or XML.

unit The property to which the value refers.

entity-reference The URI to the entity which the context element describes.

time Time and date when the value was captured or composed.

source uri The URI to the entity which captured or composed the context element.
source content Optionally a description that explains the context element.

Here is an example of a context element:

<acas:contextelement id="123¢">
<acas:value datatype="integer"
unit="temperature/kelvin">292</acas:value>
<acas:entity-reference rel="acas:dsv.su.se/k2/r7741/t"/>
<acas:time>Sat Apr 24 00:05:21 CEST 2004</acas:time>
<acas:source uri="uri:acas:dsv.su.se/k2/csf/apax"/>
</acas:contextelement>

Of course, as for all language supposed to explain something, words should be part of a well
defined ontology shared between all devices that can have access to the system. This ontology enables
all parts of the context network to understand each other. (See section 7.1) for further details of this
ontology.) ACAS doesn't define a single ontology, but only defines a limited number of words and
concepts for testing purposes and illustration. More details about the ACAS Context Description
Language can be found in [6].

2.3 Example of Context Aware Services

2.3.1 The WhichJacket Service

Temperature sensor
SmEmmmm— ‘ """

1
! User's Device 1
1| Sensor Adaptor !

i
: # Context Element :
! -
i it Quer User preferences | |
' | Context Manager ' Subscription to uery | prefere :
: Temperature Context i for choosing jackets | :
i Information WhichJacket :
! local Service . A
! | Service Interface Service Request Query Statllc Dat?base with :
: (Window...) User Interface list of jackets '
1 .

Figure 1: Schema of the "WhichJacket Service"

This is an example of a potential service that would use temperature and weather information in order

to give recommendation about which jacket to take before going out. The user maps their list of
jackets to different temperature intervals and different weather. When requested, the service would
match a jacket with the current outside temperature and expected weather resulting in
recommendations of which jacket the user should take with them. The major context information in
this case is produced by a physical sensor (a temperature sensor).

2.3.2 The WhereToEat Service.

1 1 ! 1
1 : z
1 GPS sensor 1 ! o !
; ! : Booking list | |
" ; i 1
! GPS Adaptor 1 : Context Element :
1 1 ! 1
I : i ; 1
! $ Context Element : : Opemng hours :
1 1 1 1
1 z :
1 1 Subscription to Position Context Element # :
i Context Manager - : Context Information 1 I M 1
: i WhereToEat Subscription to Context Manager i
i ! Service Provider Restaurants (Restaurant) !
1 | Service Interface ! Service Request . Context Information :
! | (intemet browser...) | 1 UserInterface : i
1 1 1 1
e i
User's Device Restaurant

Figure 2: Schema of the "WhereToEat Service"

This service uses location information concerning the user's current location and matches this
information with a database of restaurants. More advanced versions of this service could make
restaurant suggestion based on user's agenda, preferences, prices, etc. The ACAS platform allows the
service provider to access my location (context information) and some other software sensors such as
my agenda and preferences in order to select the appropriate restaurant recommendation(s). Such a
service could be further extended by providing detailed instructions about how to get to the selected
restaurants, based upon my current position, the weather, errands along the way etc.

Context Aware Services can use a broad range of context information. The challenge is to
make the discovery of information and services efficient as well as enable the different entitiesto both
efficiently communicate and to understand each other.

3. Context Information Management
3.1 Context Manager as a link between sensors and applications

The Context Manager is an intelligent program/agent whose purpose is to provide applications
with the context information that they need. It is a link between the sensors and the applications as
well as with the other entities of a context network [7].

The link between a Context Manager and a sensor is defined by the sensor
developer/manufacturer. Just as a sensor requires some drivers to communicate with a computer, it
also needs an interface to the context manager in order to communicate within the context network.
ACAS defines the interfaces between the ACAS middleware and third-part sensors. The basic
requirement is that gross information output by the sensor must be converted into an understandable
context element as described in section 2.2. Other information and behaviours should be defined, such
as the frequency of refresh, the possibility to get fresh info when requested, etc.

Understandable
Info for OS*

Gross
Information

Context
Element ~

Sensor System Driver Sensor Adaptor Context Manager

*OS = Operating System

Figure 3: transformation of context information

The link between applications that use context information and a context manager is in many
ways similar to the link between a context manager and a sensor. An API is defined so that ACAS-
compliant applications can communicate with the Context Manager using this API. Here again, the
application developer must use the context manager API in order to communicate with the Context
Manager. This API mainly specifies how an application can subscribe to some context information,
how to forumate the requests, how to handle replies, etc.

The context manager also needs to communicate with other entities when looking for specific
context information. An application that needs real time information about the temperature in
Stockholm requires the context manager to find the correct information. Currently, we have some
specific ways to get this information, i.e. the application connects to a predefined server that has such
information. However, ACAS wishes to enable an application that doesn't know where the temperature
in Stockholm can be found, to still manage to access this value and to use it. This will be developed
later on in section 7.2.1; but in this section, we will examine the role that the context manager has to
play in this context information discovery.

The third type of link provided by a context manager is a “forwarding link”. When a request
from an application cannot be resolved locally, it is sent to other context managers that are likely to
resolve it. To which context managers and how it is forwarded depends on the implementation and
how the discovery process occurs, which information is available, etc. This will be briefly explained
in section 7.3.

3.2 Managing Subscriptions

As a context manager is linked to both sensors and software, a subscription from applications
must be handled and understood before being processed and passed on to the “management part” of
the manager. The Management Center of the manager aims to optimize the processing of
subscriptions and communicates directly with the sensor adapter of the context manager. We therefore
have 3 distinct parties involved in managing subscriptions. Each of them is described below.

Context Aware Entity (CME)

Context
Manager

Applications

3.2.1 Application Interface

An application makes requests using the Tryton Subscription Language [8]. It indicates which
information is needed and under which conditions (for example, when it changes, every 2 minutes,
etc.). The challenge is to label the needed information in such a way that it can be understood by the
context manager and retrieved either locally or remotely. See the paragraph regarding Ontology in
section 7.1. The conditions are easier to formalise as they are mainly tests (equality, comparision) and
variables such time (if a sensor is embedded in a device) or other characteristics. An example of a
Tryton Subscription could be:

IF (ContextInfo.unit==*sine”) AND (ContextInfo.value < -0.3333) THEN
CREATE (eref=a.eref,
unit="text/plain”,
value="below”)
END

The IF part gives the condition and the CREATE initialises a context element. The context
manager must first understand what “ContextInfo” is, look for it, and send information to the
application context elements of the form defined by CREATE when the condition is true [8].

3.2.2 Sensor Adaptor

The sensor must communicate to the context manager which information it can provide and
the format of the context element it can provide. The context manager must then appropriately label
the sensor information to make it accessible from the outside of the device. For example, an
temperature sensor would call itself “temperature” and the context manager would need to add some
properties, for example, “owner = Xavier Rondé-Oustau”, “location = IBM T30 laptop number #”...

It is also important the the context manager knows the format of the data it communicates. For
a temperature sensor, it needs specifically to know the unit (°C, °K, °F) so that other applications or
context managers can adapt information from this sensor.

3.2.3 Context Management Entity

The “Managing Part” is a focal point that gathers and handles subscriptions coming from the
local device as well as from outside. When a subscription cannot be handled locally, it is forwarded to
other context managers that are likely to handle this request and if they can't, then the request is
forwarded further until it either times out or reaches the maximum number of forwarding hops
allowed.

Inside the Context Managemenet Entity, there are three main subentities: the Context Refiner,
the Context Repository, and the Subscription Manager. A more detailed description of these
components can be found in [9].

Context Management Entity (CME)

1
i i
! —
- [a -
i c Subscription -] < ﬂli
i ontext Manager 2| i
: Refiner * ERE Applications
; g
1 1
! y Context Server = |1
i > o | < |
1 'g S 1
! Context g 2! Local
! Repository g Sensors
' e —!
1 o 1
; t <
i 2
[5)
E External Context = *:—> Context
N . x
; Information Service < % l Network
i O |
: '

Figure 4: Structure of a Context Manager

The Context Repository stores the latest contextual information it has delivered. For example,
if I have an application that receive updates every minute from sensors A and B, a copy of the value of
A and B every minute will be stored in the Context Repository. When a second application subscribes
to sensors B and C, a new subscription is set for the C sensor while this second application will get

information from the repository, that will be updated depending on registration from both
applications. Therefore, the load on the sensor will be less as it will not need to serve each individual
request from an application, but only the requests from the Context Management Entity that will act
on behalf of all the applications. This Context Repository can also be useful to quickly answer
requests without accessing the sensor, by acting as a cache.

The Context Refiner is used to process complex requests that cannot be handled directly by the
Context Manager. It breaks complex requests into smaller requests that can be handled independantly.
The resulting subscriptions are then sent to the relevant context managers or handled locally. The local
Context Manager then computes the answer to the original request by aggregating context information
coming from answers to these subsequent subscriptions. (see also section 7.2).

The advantage of using a Context Refiner is that you can outsource the handling of the request
to another context manager that will issue the necessary subscriptions to the relevant sensors, bearing
the cost of the transmissions, bearing the costs of the local processing to come up with the final result,
and simply sending this result to the original requesting entity. This feature is particularly useful for
context managers embedded in mobile entities (as today these entities frequently have limited
computation and communication capacities).

The first role of the subscription manager is to keep track of all the requests that have been
issued by local applications and to keep track of when the application must be updated. It also handles
the subscriptions coming directly from the applications or the Context Refiner, if the requests need to
be refined, to be forwarded to other context managers. Finally, the last important role of the
subscription manager is to forward state changes of the local sensors that other context managers or
applications have subsriptions with. This means that if a subscription requests “warn me when value
of sensor A becomes positive”, the subscription manager of the context manager attached to A will
track A for values becoming positive, using the sensor adaptor interface.

3.3 Policy management

The final role of the context manager unit is to enable policy based management, i.e., which
local application can have access to which data, which local context information can be accessed by
whom, who holds ownership of which data, how can owners of context information manage policies
etc. That is the main purpose of this module withing the Context Manager [6].

Policy management is therefore enforced between the applications and the subscription
manager or by the refiner and the subscription management in case a subscription needs to be refined.
This ensures that the Subscription Manager only processes subscriptions from legitimate applications
running on legitimate computers accessed by legitimate users.

However, the ACAS project has not yet developed a policy management mechanism. Any
policy manager that already exists can be used for controlling access to a precisely defined resource
by a well defined application. Authentication mechanisms already exist and their development is
beyond the scope of this project.

4. Context Network
4.1 What is a Context Network

A context network is a logical network that supports discovery and exchange of context
information between context aware modules like sensors, context information producers, service
providers, applications, the nodes of a context network are therefore mainly the context aware entities
themselves and the purpose of such a Context Network is to link them. More generally, a Context
Network gathers entities that have discovered each other and can now interact with each other.

There are two main approaches to establish such a Context Network. First, the peer-to-peer
approach. It consists of having each node playing a role of client or server. Each context entity
supplies context information and/or it can requests such information from other nodes of the network.
Learning about nodes and their characteristics is done without a central node; meaning that if a node
doesn't respond it doesn't prevent the network from functioning with the remaining nodes. This
methods avoid having “a single point of failure”. New nodes added to the network means new
resources to be shared with the other entities, often adding both processing and bandwidth. The
drawbacks of such an architecture are due to the lack of structured means to find routes, nodes,
available information and services, even if some techniques exist to speed up the process, the lack of a
central server makes it more difficult to reach performance close to that of client/server architectures
for both discovery and routing.

Thus the second approach is a client/server architecture, as presented briefly above. A new
entity joining a network would first register with a server and all communications, such as service
discovery or context information discovery, would go through some central server(s). Clients are
typically active, sending requests while the servers are passive, simply listening for and answering
these requests. The contrast with a peer-to-peer solution is obvious. The failure of a main server is
likely to interrupt servce for many clients. Moreover, each additional client will consume some extra
resources from the server with regard to bandwidth, power, processing time, memory, On the other
hand, servers are useful in order to be able to list registered clients registered, to find available
information and services, etc.

ACAS decided to use an hybrid peer-to-peer solution (see Figure 5) in order to benefit from
the strength of both solutions. The idea is that there is a central server that performs some minimal
operations in order to speed up context information discovery as well as discovery of context aware
entities present in the same network. This central server, called “a Context Registrar” is the first thing
that a context aware entity will look for when trying to join a network — so that it can register its
presence. The Context Registrar then maintains a list of registered entities and can disclose all or part
of this list upon request; the response will depend on the entity requesting such a list. Thus Context
Aware Entities can easily learn who is on the network and then perform service and information
discovery systematically or in some other way.

10

\

Context
Registrar

Figure 5: Context Network and Registrar

The Context Network can easily be compared to a “Context Aware” guest checking into a hotel
using the hotel's registrar. The hotel's registrar keeps track of all the guests and their address. If
another guest gave prior authorisation to the hotel, the concierge can disclose his address to the
“Context Aware” guest which can allow them to exchange information or propose services to each
other.

Even though the Context Registrar performs only basic registration, it is important to know
how it behaves when the number of registrations increases, in order to identify the limitations of this
approach, just as in any other client/server system. This thesis proposes a design for such a context
registrar and evaluates if this solution is viable or if we should find another solution to perform
context aware entity and/or context information discovery.

Figure 6 details a proposed registrar client inside the CME that would handle access to the
Context Network. The External Context Information Service Manager contains modules to register to
different Context Registrars, to find out registrars' addresses, to manage the different registrations and
reregistrations; it contains therefore the “registrar client” that has been developed in this test
implementation. This entity therefore maintains links with other CMEs either directly or through
registrars.

Context Context
Refiner Repository
Y

s EEE I EEE I mEEE - EE—Emm—rm——— 1
1 1
! !
i ' Subscription to 4:_>
: External Context | = L
. Externgl Conte)la - Information o | < H
! |Information Service == !
' Manager g | 2 i
1 1
i | g%
1 D‘? 9 :
1 =
: _| Context Information S I > Context
i Discovery - b Network
: External Context ;
! Information Service :

Figure 6: Context Network Interface in a Context Management Entity

11

The Context Information Discovery module maintains a list of available context information
and context services available in the context networks the device is part of. It can also point to other
entities maintaining such lists and performing the actual search and indexing of available services and
information. This could be the case when the handheld device has limited
computation/communication/storage capabilities: the “working module” could be placed in the
infrastructure, such as in a personal server, the handheld device only communicates to the personal
server addresses of CMEs discovered in the context network. The realization can also be mixed, for
example external CMEs not reachable from the personal server are taken care of locally while other
CMEs are taken care of by the personal server.

The second role of the External Context Information Service Manager is to match needs from
local applications, coming from the refiner, with available external context information. Once the
relevant information has been found, it passes on to the third module - the “Subcription to External
Context Information” Module - the address of the CME holding the information and the description of
the information needed by the refiner. This module takes care of subscribing to context information
and outputs them in the local Context Repository. For local applications, it is therefore transparent
whether context information is found locally or not. More information about Context Information
Discovery can be found in section 7.

4.2 Discovery of Context Entities

Context Networks are hybrid networks using a central Context Registrar to keep track of
entities on the network which are registered to the Context Registrar. This is the easiest and simpliest
way to discover entities in such a network.

However, a Context Network can also be seen as a entity-centric network. In fact, an entity
doesn't necessarly need to go through a registrar to discover other entities to exchange context
information or services with. Additionally an entity can be a node in several different Context
Networks that together form the entity's Context Network.

4.2.1 Discovery of Context Entities using a Context Registrar

A Context Registrar contains registrations from different Context Entities. However due to
some privacy issues, registrars can play several different roles regarding whom they accept
registrations from and whom they send replies to - each of these rolesthat will be analysed below. One
can also refer to [10] for examples of scenarios for the use of adaptive context aware applications. The
following uses of registrars can easily be linked to the case studies of [10].

4.2.1.1 Open Public Registrar

In this case, a registrar openly shares all information about all entities registered with it. It is
not necessary that an entity is registered in order to access the list of registered entities. The registrar
provides a public service that gives addresses of context managers. Additionally, any entity can also
register with this registrar.

12

Examples from the current Internet of such behaviour include public community lists. I can
see who is on the list, I can contact them, I don't need to register, and I can register if I want to be
contacted later on. For example, a community of volunteer translators, that anyone can register to join,
and anyone can contact them for free translations.

Such a registrar could be used to create a “volunteer community” of entities which interact
with each other, but especially those that wish to interact, with external entities.

The main advantage of such a registrar is that it is easy to administer and to maintain. There is
no special operation to perform on the context entities; neither on the registrar itself (to allow new
entities to register) or to the clients who wish to register. By default, all clients will gain access to the
registrar, then easily discover each other.

The main issues regarding such a registrar is that it is very sensitive to denial of service attacks
due to a lack of control of the registering entities. An attacker could easily generate many dummy
registrations to keep the registrar busy, and prevent anyone from successfully using this registrar.
There is no way to know who is behind the address of a registered entity, nor is there control of the
quality or truth of information provided. Therefore, such a registrar might not be suitable for use on a
public network.

However, this kind of registrar would be particularly useful for devices belonging to a closed
network controlled by a limited set of trusted users. For example, for a set of devices using only short
range connectivity interfaces, the risk for interference from a hacker is very minimal or perhaps even
non-existent. Such a registrar would allow easy connectivity of devices belonging to these users — for
example, to form a personal area context network. The registrar would indeed be publicly accessible
by any entity on the network. If it is hard or impossible for an unauthorised entity to access this
physical network, privacy and trust are ensured through these mechanisms and the legitimate users
can benefit from the openness of such registrar. When a new context aware device is bought by the
user, there is no need to add settings within the context manager of this device or inside the registrar
to make it connect to this Context Network using this open public registrar.

4.2.1.2 Restricted Public Registrar

By a Public Registrar, I mean a Registrar that can be accessed by any entity, to get information
about registered entities. Restricted indicates that registration is restricted to some entities only.

A good exemple can be the yellow pages. Everybody, even if not registered, can get access to
the addresses contained in this phone book in order to contact them. However, in order to register (to
create an entry in this phone book), one has to pay a subscription fee and sign a contract with a phone
operator and hence have the phone operator's authorization to be listed in these pages, also when such
phone books are edited by independent directory publishers. Thus there is a process that restricts
registration to this phone book even though it is for public use.

Such a Restricted Public Registrar can be used as directory for some services. There could be a
registrar that only shops from a shopping centre can register to, allowing users' applications to monitor
all kinds of special offers on a selected among these shops and service providers: i.e., those located
within a defined shopping area.

13

The main advantage of this Restricted Public Registrar is to have quality control process to
ensure that the quality of the list of addresses and enforce their common characteristics. This way, a
context manager can learn something about these registered entities simply by learning from one
entity, the registrar itself.

However, this control process means that some operations need to be carried out on the
registrar and/or another entity in order to add a new entity to its database of registered entities. This
can be costy and difficult to manage.

This kind of registrar could be advantageous in closed subnetworks: only entities from the
subnetwork can register to the registrar while all entities from the main network would be able to
access information from this subnetwork. The owner of the subnetwork or its administrator would
guarantee the relevance of registered entites to the registrar and a new entity would be seamlessly
registered as soon as it connects to this subnetwork. This reduces maintenance costs of the context
network by matching it to a physical network.

4.2.1.3 Open Private Registrar

This Registrar requires prior registration before being able to access address of other registered
entities. However, registration is open and any entity can join, as long as it agrees to contribute to the
Context Network by sharing the address of its context manager. Privacy is still controlled within the
registrating context manager itself and there is no prior requirement for sharing context information
with others, just to give others the opportunity to contact this context manager in exchange for
receiving the benefit to contact other entities.

A good example could be a community sharing (legally) files over the internet. In order to get
access to the address of the other members of the community, one must first register and allow others
to contact you. The files that a member wants to share depend on the user. Some communities could
put requirements such as sharing at least 1 GB of files, but this doesn't mean the access is not open.
By open, I mean that access is anonymous and open to any entity that meets the requirements, without
necessiting authorisation.

The main advantage of this approach is that entities contribute at least a minimum to the
context network by accepting to be queried via the registrar. However, as there is no control over the
entities registering, problems due to denial of service can be very serious, just as in the case of Open
Public Registrars.

However, applications for communities can be very interesting. Many scenarii regarding the
use of mobile devices in the future emphasize the community aspect, the ability to momentansously
join a community, for example, in an airport while waiting for a plane, in order to meet people or find
something interesting to do based on context and available services/possibilities existing at this
moment.

14

4.2.1.4 Restricted Private Registrar

This registrar is of course a combination of the cases (1) when an entity needs to be registered
to access addresses of registered entities, and (2) the registration is restricted to some entities. Here
again, we are still operating at without privacy: all registered addresses are available to all entities that
registered.

Currently, this system exists for group services such as those proposed by Yahoo!. Once I am a
legitimate member of the group, I can learn who is connected as well as receive additional services
through the another member of the group.

Using a group registrar makes it easy for groups to secure their context network by controlling
the way the registrar can be accessed. This context network gives members of the group the possibility
to freely exchange context information as by definition, only entities registered to the group registrar
belong to the group.

Services to groups can be provided by entities that are not group members (member = an
individual) but could be an "associated group member", an entity allowed to register to the "group
registrar” and share services with them. From an ACAS point of view, it doesn't make any difference
if a context aware service is provided by a group member or by a thirdy part. Context information that
such a "group service entity" could provide is the number of buddies online and available. I can
subscribe to this information to learn how big my group currently is.

Of course, as this information is derived from context information coming from the group members,
one can simply subscribe to availability (sensors) of each member and locally compute the number of
available entities. However, instead of doing this refinement in each entity, it could be done once by
the "group service entity" that would be continuously connected to the group's registrar.

Security is also ensured as in this case if the group service entity doesn't respond anymore,
entities can still come up with this refined solution themselves while waiting for the group service
entity to function again. As soon as it is functional, they can outsource context information refinement
and subscription to this group entity, leaving more local resources available for other purposes.

4.2.2 Discovery of Context Entities without using a Context Registrar

An entity can use other discovery methods to discover other entities to exchange context
information with. Even if discovery through acontext registrar should be widespread within the
ACAS infrastructure, other discovery processes could be used by context aware entity. For example,
C. Ayrault has described how Bluetooth discovery processes could be well adapted to local context
aware entities [11]. Diego Delgado presents in [12] an evaluation of a Service Peer Discovery
Protocol that could be used in order to detect context aware entities without using registrars.

One can also cache addresses of discovered entities it discovers for later use, while not being

guaranteed to be able to connect later, for example when caching addresses of local entities and
changing locations, these entities might not be reachable.

15

4.3 Joining a Context Network through a registrar

Once a Context Aware entity has discovered a Context Registrar (see section 6), it uses a first
set of rules to find out what to do with this registrar. There is a configuration file, using a XML [13]
structure and defining some attributes for registars as well as a default handling of registrars. In our
implementation (see related source code), it's the file RegistClientConf.xml. The attributes of each
registrar, including the default_configuration, are the expiry time of a registration and the time after
which the client performs an automatic reconnection (an update of the existing registration). The
value 0 means that there is no automatic reconnection, i.e., once the registration has expired, then a
new one needs to be requested “manually”.

In our implementation, we use a predefined list of addresses of potential registrars as the
discovery of a registrar has not been tested and evaluated since it is very network dependant. The
client therefore parses the list of registrars and matches it with the configuration parameters as
described above to build a list of new registration requests.

The client goes through this list and sends each registration request to the corresponding
registrar. The structure of a registration request is based on SIP registration requests [14], adapted to
the ACAS infrastructure and looks like this:

- Registration Type
* REGISTER (for new registration),
* UPDATE (to update an already-existing registration), or
* REMOVE (to remove an already-existing registration).

- Address of the Context Manager to Register
This is mainly for the case of a context manager who does not register directly but through a
proxy or an entity that handles registrations on behalf of context managers. However, in our
implementation, we have not considered this case, thus and this address is de facto equal to the
address of the context manager registrating with the Context Registrar.

- Registration ID
This is an identification for the registration. It is randomly choosen upon the first registration
and with any update uses this Registration ID to refer to an existing registration. It is used both
by the client and Context Registrar in order to log changes and update registration when
needed, as well as for cancelling registration.

- Sequence ID
This is a number that is incremented each time there is an update or a cancellation of a
registration (e.g. for a same Registration ID). This is done in order to order the registration
requests and responses chronologically.

- Expiry Time
This is the time a registration will be valid, from the moment it is accepted, in seconds.

16

The registrar analyses the request and either sends an acknowledgement message to the client
or sends an alternative registration proposition if the request was not valid. Both client and registrar
use rules and a request sent or accepted by the client must follow these rules, and the same on the
registrar side. In our implementation, the rules are defined in the classes RegisterMessage whose
method isValid() returns true if the RegisterMessage satisfies the conditions defined in the method
and false otherwise. In the experiments, unless otherwise specified, conditions on expiry times are set
so that no first request satisfies the Registrar's rules, thus each counterproposition sent by the
Registrar satisfies the rules of the clients so that we simulate a 4-way handshake transaction between
the Client and the Registrar.

Of course, if a counterproposition from the registrar doesn't satisfy rules dicted by the client,
then the client sends another proposition and so on until the maximum number of iterations is
exceeded. However, in a realistic case, the client will first ask for the rules of the registrar (if those are
public), and then compute a request satisfying both the client's and registrar's rules or abort, resulting
in a maximum 4-way handshakes transaction, as tested in the following experiments. A client can also
store parameters of registrars it gets to know so that, when registrating to a same registrar, it can
directly compute a request that is likely to be accepted as it would follow the rules previously stored
along other parametres if the registrar.

4.4 Discovery of a Context Registrar

As it has been presented above, the use of registrars is an efficient way to join a context
network and discover new entities while minimizing the use of resources (such as time, bandwidth and
processing): as one can learn a lot from a single query to the registrar. However, this also means that
the registrar must be discovered. Below are several examples of how a registrar can be discovered
depending on situations (as illustrated by scenarios).

4.4.1 When joining a subnetwork or a LAN

This case typical occurs when a user accesses a network he has never visited before. It could
be when visiting a friend, going to a shop, in a conference center, etc. The first thing such a user does,
generally in an automated manner, it's to send a DHCP request in order to configure its connection
parameters. Such DHCP request returns an IP address, a network mask, DNS server addresses, etc. It
is reasonable to have the DHCP server also provide addresses of local registrars allowing the user to
query these registrars and to register.

DNS allows registering services attached to a domain. A reverse DNS query for the local
subnetwork lists services available on the subdomain given that they are known to the local DNS
server and that they depend on it to resolve the request [15]. However, in order to be useful, the client
needs to understand that this “name” is that of a context registrar and not another service, similarly to
other services that use standardised names and ports. The server itself doesn't need to have a
standardised domain name in order to be resolved, only that its description of the DNS server needs to
be standardised. We can compare this to resolving the local SMTP server of a subdomain: it can have
the name “mail.mysubnetwork.net” or “smtp.mysubnetwork.net” but the record of this SMTP server
must be standardized.

17

4.4.2 When joining a proprietary network

Some networks can be protected in such a way that the administrator sets up its own protocol,
specific to the network, to give access to the network to authorised users. This is the case when using
a GSM network for example, the operator can include in the preliminary handshake information about
an available registrar (for example for a specific cell). The user is not proactively looking for this
registrar but receives the information directly upon joining a network using some private means as
opposed to open DHCP requests.

4.4.3 Using an external directory

The registrar can also be considered a service that can be advertised and searched for on an
internet, for example by querying to a directory to return a list of registrars that meet some criteria.
The user can then register with or query these registrars.

4.4.4 Manually entering a registrar addresses

One can also manually enter a registrar addresses that have been discovered through other
ways. This is the option we choosed in these experiments. The registrar addresses are stored in an
XML file that is used by the client to connect to these registrars.

In this ACAS prototype, users can define preferences regarding registrars, which ones to
connect to, when, in which circumpstances, etc. The ‘“registrating engine” inside the context
management entity matches the list of registrars the user can connect to, from the discovery process,
and the preferences in order to register when specified by the user.

18

5. Testing the Context Registrar

The Context Registrar is the central element of the context network that aims at speeding
context information discovery as well as service discovery. The tasks of this registrar are to handle
registration requests from users, store information, and answer requests regarding registered entities.
This section is dedicated to tests of the registrar for handling registration requests in order to find what
limits might pertain to an implementation of this registrar is running on typical computers. The three
areas of focus are: average response to an isolated request, response to different bursts of requests, and
behaviour under a high load of requests.

5.1 Timeline for a registration

Before testing the registrar in different situations, it is important to examine how it reacts to a
single registration request in order to etablish a base timeline and to see where most of the time is
spent, how long the request takes, etc. This experiment was carried out under two different conditions:
first on a local area network (LAN) and then remotely via the internet, with the client and the servers
being a few kilometers distant from each other, on separate networks linked by Internet. The registrar I
have implemented uses TCP [17] in order to ensure reliability at the cost of the TCP overhead
compared to UDP.

5.1.1 Description of the experiment

The client used for this test is a bit different from the normal client. It has been modified to
send a new registration request every 2 seconds (since a simple preliminary test showed, it takes a lot
less than one second to complete a registration). Therefore by sending requests at such an interval, we
are confident that they won't overlap each other when no network failure (retransmission, packets
getting lost,...) happens.

A first test was performed and all requests were answered without overlapping with each other,
under similar conditions so that we can average the results. Another test was made with 200 requests
and some problems started to occur such as retransmissions due to network failures resulting in
shuffling of the requests, which we wanted to avoid.

Since it requires manual operation to “clean” these data and since we want to have an average
normal timeline (disregarding some exceptional network conditions), a value of 100 sequences was a
good trade off between “clean data” and the statistical relevance (the standard deviation of the
processing time was around 3 ms out of an average of 15 ms response time). Of these 100, only 2
requests had an unusual behaviour, the first request (that initialise the client and the registrar) and
another which had one frame more than the others, due to a late ACK sent by the registrar.

By averaging the times of the request/response for these 100 requests (reseting the time to zero

for each initial frame, i.e. the TCP SYN frame), we have a good estimate of both processing and
transmission times.

19

The registrar was running on a laptop, an IBM T30 1800 MHz, running Debian Sarge with
Kernel 2.6.12-1-686 using a java 1.4 environment, located in the north of Stockholm on Tele2's
broadband access network. The modified client was running on a server in the lab at the
Wireless@KTH building. The client was running on a Dell server with an Intel XEON 2800 MHz
processor and running Suse 9.3 with Kernel 2.6.11-4-21.9.

On both client and registrar, a network analyser, ethereal [16], was running in order to capture
the packets exchanged by both entities. This way we can measure how much time is required at each
side in order to process an incoming message and to send a relevant response. The delay D caused by
the network can also be approximated by 1.421 ms as will be explained in the next paragraph. In fact,
ethereal on the client sets time = 0 when the first socket is open whereas on the registrar, ethereal sets
time = 0 when it actually gets the first frame from the client. In order to align the timeline of events on
both registrar and client, it is necessary to figure out the offset between both ethereal captures, e.g. to
find what time it is on the client when the time at the registrar is set to zero, this is the transmission
time for a packet.

An approximation of such a delay D has been made by averaging over the whole sequence the
durations of all possible round trips (Client/Registrar) that have been calculated using the following
formula:

Client Registrar
X
’ \
Yo
/ Y,
X

X, /
3 \ "

Figure 7: Schema of a 2-way handshake transmission

The round trip delay T can be approximated by the following:
T; = (x1-x0)-(y1-yo)
T; = (x2-x0)-(y2-yo)
T5 = (ys-yi)-(x3-x1)
Ty = (y3-y2)-(x3-y2)

To find an approximate value of 7, we simply average the different 7;. We can generalize it (it can be
easily demonstrated using recursion) that for A (set of frames sent by the client to the registrar) and B

Z Yi—X; in—yz

(set of frames sent by the registrar to the client), 7 —ic4 4 i€B where N, and N; are the
N N

A B

number of frames within A and B.
In order to find D, we assume that the channel is symetric so that 7=2D.

20

mailto:Wireless@KTH

5.1.2 Presentation of the timeline

The results we get from ethereal at each network interface is a list of relative times when a
network activity has been detected at the port of the registrar, TCP port 54321. Besides these
timestamps, ethereal also captures other information such as IP addresses, protocols, packet length,
and information about the packet. It takes as its time origin, the time that the first network activity on
port 54321 was detected. Of course, as we capture traffic at the registrar interface or at the client
interface using two separate computers, timing relative to activity on port 54321 does not have the
same meaning. At the registrar interface, the network card is actually listening to the client on port
54321 while at the client interface, the network card sends packets to the registrar on the port 54321
from a local port.

First of all, we can notice that the client sends the first packet from port P and the second from
port P+1, the third from port P+2 etc. Thus, we can pair requests with responses simply by looking at
the client port that was used. That is because the TCP standard that doesn't allow a port to be reused
before a certain time after the socket has been closed in order to avoid interference with delayed
retransmissions with a new connection.

By looking at the results, it appears that it sometimes requires 13 frames and sometimes 12 in

order to have the full registration completed. A short analysis of the packets transmitted and captured
by ethereal leads to the two following registration models:

21

1T TCP SYN 5 I TCP SYN s
. . = 1 =
L 0
TCP SYN ACK I = TCP SYN ACK <+ =
. / £ . / S
o o
- TCP ACK 2 - - TCP ACK et
I B I
TCP ACK T TCP ACK 1T
o PSH 2" reg.” s i PSH “2 reg.” 5
1 S 1 [
P ACK ® P ACK 7]
(=2 {@)]
. + 3 _ 1 3
[am (am

PSH “ACAS O 5 PSH “ACAS OK 4

PSH “ACAS ACK” . . PSH “ACAS ACK” 4
+TCP ACl +TCP AC

TCP FI A B TCPF .
[TCP FIN + TCP ACK
— SH

— \TWSH
+TCP ACK of FIN - . TCP ACK of FI 1
TCPAC —+ TCPAC =+

Figure 8: Model of Registration Timeline. Left: 12 frames case; Right: 13 frames case.

End of TCP
connection
End of TCP
connection

The analysis of the results has been performed using a spreadsheet application
(OpenOffice.org 2.0) to import the output of ethereal, using both client and registrar data. The offset
of the times at the registrar has been corrected using the delay we found above. In order to average the
timestamps, we separate the 12-frame-registrations from the 13 frame-registrations. We have then 60
(resp. 38) measurements of the times when each frame is sent and received by client and registrar, in
each model. We can compute an average for each specific frame of the protocol. This results can be
found in Tables 1 and 2.

frame N°| # frames| avg. (client) us | avg. (registrar) us

1 38 0 1329.55
2 38 2670.05 1384.34
3 38 2696.47 4066.34
4 38 3128.47 5044

5 38 6641.53 5154.82
6 38 10178.26 8204.55
7 38 10194.26 11525.84
8 38 11087.76 12362.11
9 38 13883.37 12812.61
10 38 14269.08 12925.37
11 38 13981.03 15325.42
12 38 16624.97 15350.76
13 38 14285.45 15742.47

Table 1: Statistical results for the timeline of a registration (when 13 frames are sent)

22

frame N°| # frames| avg. (client) us| avg. (registrar) us
1 60 0 1493.87
2 60 2715.92 1548.4
3 60 2742.02 4138.05
4 60 3155.48 5161.05
5 60 6509.48 5278.73
6 60 9182.85 7488.23
7 60 9198.52 10646.95
8 60 10059.17 11530.73
9 60 13198.98 11931.67
10 60 13218.07 12043.7
11 60 13373.18 14857.95
12 60 16146.95 14883.22

Table 2: Statistical results for the timeline of a registration (wWhen 12 frames are sent)

Explaination of the tables:

—x 2716

—4— 3.156

—f— 6510
—4— 9.183
X 919

—f— 10.059

|— 13.218
[— 13.373

—f— 16.147

\ (ms)

Figure 9: Registration timeline using experimental timestamps (left: 12 frames ; right: 13 frames)

— 2.742

[— 13.199

The first column identifies the type of the frame within the registration process, as shown in

Figure 9.

The second column gives the number of frame in the sample (after having “cleaned” the data)
The third column gives the average timestamps for each frame, measured on the client
The forth column gives the average timestamps for each frame, measured on the registrar

SYN

/SYNAGK/
ACK

SH “1* message”

/ 7.488 —
PSH “2™ message”

\ACK\
PSH “OK”

PSH “ACK” +

FIN ACK
FIN ACK

/ACK/

1494 4
1548 —4—

4.138 —4—

5.161 ——
5.278 —4—

10.647—f—
11.531——
11.932——

12.044 —4—

14.858 ——
14.883 34—

(mS)v

TCP initialisation

Registration

End of TCP
connection

—f— 0.00

2.670

3.128

6.642
10.178
—f— 10.194

—f— 11.088

SYN

y

2.697

ACK

PSH “2™ message”

ACK

PSH “OK”

PSH “ACK” + ACK

ACK

. FIN ACK
FIN ACK

ACK

1.330 —
1.384 —

4,066 —

TCP initialisation

5.044 —
5.155 —

8.205 —

11.526
12.362—
12.812—

12.925—

15.325—
15.350—

15.742 —

(mS)v

Registration

End of TCP

connection

23

TCP initialisation block

The first packet that is sent is the first step in establishing a TCP connection between the client
on a port that changes from request to request. Note that the registrar always listens on port 54321 to
incoming TCP connection requests. The registrar answers with an acknowledgement that the intial
packet has been received by sending a packet with both the ACK and a SYN message to establish a
connection from its side. The client replies with an ACK thus completing the initialization of the TCP
connection. That is the normal TCP 3-way handshake for connection initialisation.

The processing times are very small in comparison to the network delay since it takes only
65ps for the registrar and 26ps for the client to send back these ACK packets.

Registration

This part describes the actual registration of the client to the registrar. The client sends first a
registration message described in section 4.3, on port 54321 on which a registrar is listening. The
registration is explicitly made so that it is not accepted by the registrar — who in turn proposes an
alternative, in order to siumulate a 4-way handshake as explained in section 4.3. The client accepts the
proposal by sending an “OK” message to the registrar confirming the registration in its internal
database by sending an “ACAS ACK” message. Note that this ACK is different from the TCP ACK
that acknowledges the reception of a TCP packet whereas this “ACAS ACK” is a TCP message (of
type “PSH”).

End of TCP Connection

The connection is closed first at server side. Just after the ACAS ACK message is sent, the
registrar sends a FIN message to the client to inform it that the connection can be closed. The registrar
enters the “FIN WAIT-1" state, waiting for a similar FIN message from the client in order to
synchronise the closure of the connection.

The client, upon reception of the ACAS ACK message closes the connection and sends a FIN
message together with the acknowledgement of the ACAS ACK. It enters “LAST-ACK” state, waiting
for the Registrar to acknowledge the reception of this FIN message. The client also sends an
acknowledgement of the Registrar's FIN as soon as it gets it. Since the Registrar sends consecutively
this ACAS ACK and the FIN message, the client can acknowledge both messages at the same time
together with its own FIN message. This explains why the closure of the TCP connection can be done
sometimes with 3 and sometimes with 4 messages, depending upon if the first FIN message received
by the client is acknowledged or not together with the second FIN sent by the client. In fact, if the FIN
message from the registrar arrives before the ACAS ACK or around that time, the client sends three
messages in one: its own FIN, the ACK to the ACAS ACK, and the ACK to the registrar's FIN.

Once the two FIN and two ACK messages have been exchanged, the client and the registrar
need to wait for twice the MSL (Maximum Segment Lifetime, the time a TCP segment can exist in the

internetwork system. This is defined to be 2 minutes by default in the IETF RFC 793).

More information regarding TCP protocol can be found in[17] and in the RFC 793 [18].

24

5.1.3 Analysis of the results

The main conclusions we can draw from this experiment is that the actual processing time of a
request at the registrar is very low compared to delays in a public network and the potential
retransmissions that might be needed. The exact processing time of a request by the Registrar cannot
be calculated using this timeline since it does not take into account other processes that are running on
this machine. However both the processing time upper bound and lower bound can be measured - we
can assume that the minimum is the actual processing time it takes for the Registrar to answer a TCP
message from the client; while the maximum represents the processing time plus the time the process
had to wait to get the processor due to the demands of other processes.

When a client is situated far from the registrar, i.e.,not on the same local network, the
maximum total processing time is about 4 ms. In this case a Registrar could deal with a continuous
high load of registrations at approximately 250 requests per second (based upon the upper bound of
the processing time). This will be however tested further in the next section dealing with the response
of the Registrar to a burst of registration requests.

When a client is situated on the same LAN as the registrar, the performance is somehow
different since the transmission delays are minimal (See Table 3). However the processing times are
similar, especially regarding frame 6, sent by the registrar 3.3 ms after frame 5 which is of the same
order of time as when client and registrar communicate through Internet (2.2 / 3.1 ms).

frame N°| # frames | avg. (client) us | avg. (registrar) us

1 13 0 111.54
2 13 190.46 154.38
3 13 215.46 325.31
4 13 604.85 750.85
5 13 813 777.62
6 13 4137.23 4082.31
7 13 4153.77 4271.92
8 13 5126.69 5238.46
9 13 5414.38 5347.23
10 13 5431.85 5421.54
11 13 5551.08 5659.15
12 13 5675.31 5678

Table 3: Statistical results for the timeline of a registration on a LAN (when 12 frames are sent)

5.2 Reponse to a burst of requests

In the previous section, we have seen how the registrar behaves for isolated registration
requests in two different situations: first when the client and the registrar are on the same LAN, and

25

when they are attached to different networks that are linked by Internet. In this section, the focus is to
identify how the registrar handles different sizes of bursts, how much time it takes to answer all these
requests, how many errors occur, etc. The goal is to understand how this registrar scales, if the
response time grows linearly when the load on the server increases or if it grows exponentially. For
this purpose, we measure the average time for a request to be answered for different kinds of bursts. In
the last section we saw that we can expect the registrar to handle more than 333 requests per second in
case of a continuous uniform flow of requests. This section will determine first if it is true when the
requests occur in bursts.

5.2.1 Test environment

To carry out these measurements, we use a similar test configuration as previously: the
registrar still runs on the IBM T30 1800 MHz and the requests are generated by the Dell station
located in KTH. The laptop will be located at first time in the same KTH Lab, i.e., on the same small
local network area, and in the second test it will be located on Tele2's broadband access network, a
few kilometers away from Kista, linked to KTH's network by internet. This way we simulate the
situation when a context aware device joins a local network, as well as the situation when a context
aware device connects to a registrar through internet.

The client is set to very quickly start new threads that initialize, in each of them, a TCP socket
to send registration messages and handle response from the registrar.

5.2.2 Understanding which information is processed and how: with ethereal

Two kinds of information can be extacted from each test. The first one requires ethereal to
capture each TCP packet that is going through the client's network interface. Most of the header of
each frame is then imported into a spreadsheet application, specifically OpenOffice.org Calc 2.0. The
most important information are the port numbers, the time the capture occured and the packet
lengthes.

No | Time |Address Source|PortSrcl Address Destination [Port Ds{ Prot.| Length |Info
3279| 0.713432 | 130.237.15.247 | 2381 213.100.40.6 54321 |TCP| 66 [2381>54321[ACK] Seq=1 Ack=1 Win=5840 Len=0 TSV=59337378 TSER=118481297
3280| 0.713535 | 213.100406 | 54321 | 130.237.15.247 | 2382 |TCP| 74 |54321> 2382 [SYN,ACK]Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 TSV=118481297 TSER4
3281] 0.713550 | 130.237.15.247 | 2382 213.100.40.6 54321 | TCP| 66 [2382>54321 [ACK] Seq=1 Ack=1 Win=5840 Len=0 TSV=59337378 TSER=118481297
3282 0.714211 | 130.237.15.247 | 2349 213.100.40.6 54321 | TCP| 428 [2349>54321 [PSH, ACK] Seq=1 Ack=1 Win=5840 Len=362 TSV=59337379 TSER=11848129)
3283| 0.714487 | 130.237.15.247 | 2350 213.100.40.6 54321 | TCP| 428 2350 > 54321 [PSH, ACK] Seq=1 Ack=1 Win=5840 Len=362 TSV=59337379 TSER=11848129
3284/ 0.714655 | 130.237.15.247 | 2351 213.100.40.6 54321 | TCP| 428 [2351>54321 [PSH, ACK] Seq=1 Ack=1 Win=5840 Len=362 TSV=59337379 TSER=11848129)
3285(0.714667 | 213.10040.6 | 54321 | 130.237.15247 | 2383 |TCP| 74 |54321 >2383[SYN, ACK] Seq=0 Ack=1 Win=5792 Len=0 MSS=1460 TSV=118481297 TSER
3286 0.714691 | 130.237.15.247 | 2383 213.100.40.6 54321 |TCP| 66 [2383>54321 [ACK] Seq=1 Ack=1 Win=5840 Len=0 TSV=59337379 TSER=118481297
3287 0.714696 | 213.100406 | 54321 130.237.15.247 2311 |TCP| 72 |54321> 2311 [PSH, ACK] Seq=364 Ack=369 Win=6864 Len=6 TSV=118481299 TSER=59337,
3288 0.714712 | 213.10040.6 | 54321 130.237.15.247 2311 |TCP| 66 |54321>2311[FIN, ACK] Seq=370 Ack=369 Win=6864 Len=0 TSV=118481299 TSER=593373

Table 4: Example of data imported from Ethereal

The registration messages and the ACAS ACK messages are identified and sorted by using the
particular length of their packets. Here, the registration messages contain more than 400 bytes and the
ACAS ACK messages contain exactly 72 bytes and no other message sent using this registration
protocol also contains exactly 72 bytes. We also track the FIN messages by analysing the information

26

field of each frame that contains “FIN” when this message is sent on the network. When such a
message is sent, it means that the registration was successful.

It is important to identity the ACAS ACK and FIN messages as these are sent if and only if the
registration was successful. Since ethereal drops frames especially as the load increases, it is
important to know if a missing “ACAS ACK” for example means that the registration didn't work or if
the packet has been received but not captured by the analyser. For a 5% drops ratio, we have only a
0.013% probability (i.e., 0.05*%0.05*%0.05) that all three “closing packets” are dropped by ethereal
which is small enough to be neglected, especially since we have drops ratios below 5% most of the
time (Ethereal displays the number of frames that went through a network interface and that could not
be captured).

Registrations are identified by the port number used by the client. A port number is reserved
until a certain delay (Maximum Segement Length) has elapsed (see section 5.1.2). Therefore, when a
TCP connection has been initiated on port P by the client, the next connection in the burst happens too
soon to reuse this port number, hence it uses port P+1.The available ports for the Dell computer range
from 1024 until 29999.

The data imported into the spreadsheet are processed by a macro that indexes in a separate
sheet all frames from a given TCP connection, i.e., a registration request, using the port number of the
client as the differenciating criteria. In one row, we have the port (request identifier) followed by some
timestamps and the number of frames exchanged on this socket.

The timestamps extracted by this macro for each TCP connection are the following:

the time when the first packet has been sent (a TCP SYN)

the time when the first registration message has been sent

the time when an ACAS ACK has been received

the FIN message sent by the registrar

the FIN message sent by the client

the time of the last packet sent on the socket (usually an ACK to a FIN)

We can compute the time when the socket was open by subtracting the first timestamp from
the last one. We can also compute the actual registration time by subtracting the second timestamp
from the third one.

The FIN timstamps are extracted in order to figure out whether or not a registation was
successful, as some packets are dropped by the analyser. As explained abover, when a FIN message is
sent, it means that the registration has been accepted as it occurs after the registrar sent the ACAS
ACK. If on the sheet output by the macro one notices a line with blank timestamps for ACAS ACK,
FIN1, and FIN2, it means certainly that the registration was not successful.

The numerical results I have calculated are the average of the registration times (including

TCP overhead and excluding it), the average proportion of TCP overhead time in the total registration
time, and for each average the standard deviation to describe how spread the registrations times are.

27

5.2.3 Which information are processed and how: with command line information

As explained above, the client consists of a main thread whose function is to start new threads
that handle the registration requests. Just before the loop, the client writes to the standard output (the
command line window from where it is run) a timestamp. At each ACAS ACK is received, the client
increments a counter of successfully handled requests (it does not take into account TCP closing
overhead). The main thread also displays a timestamp as soon as all the burst requests have been sent,
then exits the loop. It also displays the number of ACAS ACK received so far. It does not wait for the
last request to be answered, it just gives an indication about how many requests were answered while
the client was sending the burst. Timestamps at both the beginning and the end of the burst allow us to
find out an approximate rate at which the registrar was answering registration requests.

This information gives a good lower bound of the performance of the registrar. The difference
between these two timestamps is actually bigger than the effective time used to handle a number of
requests that is higher than the one displayed since they are displayed strictly before the first request is
sent and strictly after the number of answered requests is displayed. However, due to the location of
these instructions inside the main thread, it immediately gives a good estimate, of the performance of
the registrar, without having to use ethereal and other tools.

The limitation of these results is that it is not possible to sort requests that take an
extraordinary long time to be completed and the last requests that have been sent by the client. This is
where the ethereal data above have an advantage, identifying worst cases and individual average time,
1.e. how long it takes for one request to be handled in such a burst situation whereas the timestamps
and accounting for ACK requests gives an indication regarding the maximum number of requests
handled by time unit at full load.

5.2.4 Errors and problems during the tests

The main problem during these tests using ethereal is that for such a high traffic load, ethereal
cannot capture all the frames and some frames are droped by this analysis tool. Even if it displays how
many frames are droped, it is difficult to find out which frames are missing. However, it is not really
critical in these experiments. The source of information used here always had less than 0.2% dropped
frames when the final analysis is carried out, e.g. by importing data into a spreadsheet and running
macros on it. For an average of 14 frames per registration, losses could affect at most 2.8% of the
registrations. Moreover if a dropped frame is not the first SYN message from the client nor the last
ACK from any entity, it doesn't have any effect on the time measurements, at most it can affect the
“effective registration time” but this is not the main measurement result from these tests. As explained
above, tracking the FIN messages gives a good accuracy even in the rare cases when the last ACK (for
total duration) or the ACAS ACK (for actual registration duration) are dropped.

The impact of such dropped frames can therefore roughly be estimated to be much less than

one percent which is very acceptable in comparison to the variance of the transportaion delays or
other delays due to thread scheduling.

28

5.2.5 Test: 500 requests burst routed via internet

The first test used a burst of 500 registration requests, sent as fast as possible by the client. The
configuration “via internet” means that the client was running in Kista while the registrar was running
in the north of Stockholm, both hosts being interconnected through internet.

The first result we get is the number of requests handled between the beginning of the client's
loop and its end. It took to the client 869 ms to send the 500 requests and meanwhile it got 240 ACAS
ACK back from the registrar. This means that the registrar, can handle at least 276 requests per second
under such a load. This confirms the results found regarding the timeline (see Figure 9) since the
registrar takes around 4 ms to process the request (in addition to the transmissions client/registrar) in
similar conditions (network, computers, operating systems).

Using the data from ethereal, we can also calculate the number of threads that are
simultaneously handled by the registar. We use the data extracted by the macro performing the first
analysis and listing various timestamps (see Table 4). We extract the timestamps corresponding to the
first and to the last packets transmitted for each registration. The first timestamps are chronologically
ordered in the first column, the last timestamps are chronologically ordered in the second column,
independently. We assume that a socket is open (and therefore a thread is open on both client and
registrar) at time ¢ when ¢ belongs to the interval [first timestamp; last timestamp]. A simple macro
merges the two columns of timestamps, incrementing the number of threads index when a first packet
is transmitted, decrementing this index when a last “FIN” packet is transmitted. The distribution can
be found in Figure 10 .

300

275

250

225

200 \

il
125 1
ool

|

ol |

25 LLk

I
0 5000000 10000000 15000000 20000000

Figure 10: The number of threads running simulaneously
(X: time in us - Y: number of threads running on the registrar)

29

The maximum, 276, is reached exactly when the client has just sent its 500th request, after 869
ms. Most of the requests are quickly processed after this time. The parts of the graph that are slightly
horizontal for some time mean that the registrar is waiting for retransmission for several requests. The
TCP protocol doubles the interval between two retransmission requests explaining these large delays
for the very few requests left at the end. This is not due to the registrar, but to the network used, as in
all public network applications.

Since the number of threads increases linearly until there are no new connections, this means
that the registrar was not saturated and could certainly handle more connections at the same time.

First Packet | Registration Packet| ACAS ACK Packet | FIN Reg-Client| FIN Client-Reg| Last Packet
Average Timestamp (us) | 496465.49 1181245.77 1440597.32 1451416.14 1492504.71 1568146.93
Standard Deviation (us) | 246471.55 1620731.17 1774233.36 1789860.76 1828259.84 1868766.67

Table 5: Average Timestamps for Key Frames

The results from the detailed analysis can be found in Tables 5 and 6. It takes an average of
roughly one second for a request to be processed when sent together with 499 others within the same
second. However, the dispersion is quite high meaning that if many requests are processed within a
very short time, some others take much longer to be processed.

actual registration | total request time | actual/total time
average time (us) 258300.91 1071681.44 0.24
standard deviation (us) 818974.18 1834389.76

Table 6: Actual Registration and Total Intervals

These results show that it is possible to handle with good user performances 500 requests sent
within the same second. There are not many cases when such a burst of requests could actually
happen. It would mean that all passengers of a Boeing 747 would try to connect to a registrar within
the same second upon arrival. Such a synchronisation of the registrations is not likely to happen as it
takes at least a few seconds for everybody to get their mobile phones and start them.

5.3 Response to a high load

5.3.10naLAN

On the LAN within the lab, in the second test the client sent 50000 requests to the registrar.
The purpose of such a test is to study the behaviour of the registrar under extreme loads, if it can
answer requests in a reasonable time, if errors occur, if some requests are not handled, etc. The
purpose here is not to make a detailed analysis of the data collected since it would be impossible due
to the large number of frames expected, between 600000 and 700000 depending on the kind of
network on which we run this experiment.

30

In this situation, it is particularly appropriate to use approximate total handling time with
timestamps located in the client before and after the loop that initiates sessions. It took for example 73
seconds to send the 50000 requests and within these 73 seconds, 49822 requests have been processed
by the registrar, without error or failure. This gives an average of 683 successtul registrations per
second under such a continous high load, which confirms our prediction in the beginning, that the
registrar should be able to handle more than 250 requests per second knowing only the response to
individual isolated requests.

The situations in which there could be burst of requests are typically when a large group of
users tries to connect to the registrar at the same time, following a particular event. For example, after
a conference, when a plane has landed, etc. For a group of 2000 users that would all want to connect
exactly in the same second (quite unlikely as discovery of the registrar would spread the registration
requests over a larger period), it would take only 3 seconds on a fast and efficient local area network,
using even rather an old machine to run the server. We don't need to investigate further this LAN case
of LAN, the requirements in the most exigeant realistic situations are significantly lower than the
system's capacity.

5.3.2 Over Internet

e 5000 requests burst from Dell server to IBM laptop

Under the same conditions as in section 5.2.5, the client (running on the Dell server) generates
a burst of requests sent to the registrar (running on the old IBM laptop). The size of the burst in this
experiment is 5000. In 13.235 seconds, the client manages to send 2243 requests, but errors occur for
2757 requests that cannot be sent “java.net.SocketException: Too many open files”. This error occurs
on the client side, when trying to open a new socket.

Among the requests that went through, the client received 2067 ACAS ACK in 13.235
seconds, which gives an average of 156 requests handled per second. Even if it is less than in the 500
requests burst case, it is still a good performance for realistic situations. The problem is that half of the
requests did not get through. But as we have seen, it seems to come from limitations of the computer
simulating clients, that cannot handle so many threads.

The calculation of the number of threads handled by the client, using a similar method as in
section 5.2.5, shows that there is a flat range when the client has continously 1000-1061 threads
opened. (see Figure 11) and cannot exceed this limit.

This is due to the per-process file handle limit that was set to 1024 in the linux kernel and that
prevents the client opening open more than 1024 files simultaneously. However, this is also due to the
fact that the client cannot close thread fast enough in order to open new ones. The reason for this
could be that the registrar cannot handle requests fast enough, hence it is keeping sockets open for too
long. Since each thread has to open a socket, the limit on the number of simultaneous files open also
limits the number of threads that can be created.

We will test this hypothesis by inverting the roles of these computers. If the performance of

the IBM laptop running the client are much worse for a similar burst, it means that we certainly
reached limitations on client side since the registrar should run better on a faster computer.

31

We will test the second hypothesis also by inverting the computers (SuSE Linux for the Dell,
Debian Linux for the IBM). We will then try to find out the maximum number of sockets the IBM, as

client, can open.

If the performances are better by running the client on a slower computer (the IBM) and the
registrar on a faster one (the Dell), it means that the performances of the registrar and of the computer

that suports it are dominant.

s S

0 10000000 20000000 30000000

Figure 11: The number of thread running simultanously (X: time in us - Y:
number of threads running on the registrar)

e 5000 requests burst from IBM laptop to Dell server
The second phase of the experiment is to run the same code one knt

mt he onh other computers, to determine where the preformance limitations limitation comes from,
thus the test occurs under the same network conditions. In order not to overload the client running on
the relatively slow IBM laptop, ethereal is only run on the Dell server that also hosts the registrar in

this experiment.

In 13.231 seconds, the client sends 5000 requests and gets 4153 ACAS ACK messages back.
No error have been observed. The performance are still very high since the registrar handles 313
requests per second.

32

The maximum number of threads for this configuration is shown on the Figure 12 and is 701.
As there were no errors, it means that there was no saturation of the server and that it handled requests
fast enough to cope up with such a burst. The fact that the number of threads mainly increases
throughout this experiment proves that the client still manages to send requests faster than what the
registrar can handle them despite the fact that the computer hosting the registrar (the Dell server) has
a much faster processor and a lot more memory available compared to the previous scenario.

The performance is much better in this configuration which means that the limitations are not
bound due to the performance of the client running on the fast machine but they were due to hardware
limitations of the registrar, when it was running on the old laptop.

700
650
600
550
500
450
400 \
350 i
300 @ M
250 L u"\
200
150 K
100
50

0 T I \
0 20000000 40000000 60000000

—

1

Figure 12: The number of threads running simultaneously as a function of time.
(X: time in us - Y: number of threads running on the registrar)

e 50 000 requests burst from IBM laptop to Dell Server

Since there were no errors in the previous experiment, we increased the load by a factor of ten
times. In 124 seconds, the client sent 50000 requests, received 48158 ACAS ACK, there were 887 “too
many open files” errors, and 17 time outs (set at 30 seconds). The performance is excellent as we
reached almost an optimal use of the registrar, with few errors and a very high continous load. It
handled an average of 388 requests per second.

In this experiment, Ethereal captured over 600 000 frames which makes an analysis using a
spreadsheet impossible, even if we use filter to keep only interesting frames to calculate the number of

threads: it would require keeping at least 100000 frames.

However, it is possible to estimate of the maximum number of threads that the client can
handle. As long as the client keeps on sending requests on average faster than the registrar can

33

process, the number of threads mainly increases. Some requests are also finishing all the time which
means that even if the server could accept a new registration as soon as one request finishes and keep
a constant number of threads running, at a maximum, due to internal scheduling of tasks, many
requests can be cleared before it processes new incoming threads, which explains why we don't have a
strictly constant number of threads at saturation, but instead, having a range of number of threads

Once the client sents all the registration requests, already 48158 were finished (as it received
the ACAS ACK), a few of these wee still active in the “TCP FIN” state. While 904 requests failed (we
get this number through a counter when errors are handled and reported on the standard output).
There are at least 50000-(48158+904)=938 requests still pending and as many threads running. Taking
into account the fact that not all ACAS ACK have been already properly closed with the TCP
FIN/FIN/ACK handshake, there should be roughly 1000 threads running on the client and as many on
the server (since one thread on client = one socket = one thread on server). This confirms the
limitation inside the kernel as the per-process filehandler was also set to 1024.

5.3.3 Some conclusions

The performance of the registrar is surely linked to the performance of the computer it runs
on. The limitation is the per-process file handle that can easily be changed in the configuration file
/etc/security/limits.conf. The Registrar is also limited by this parameter. Having a high limit means
that the Registrar will be able to accept many requests at the same time, but it will take more time for
each request to be answered which could result in some timing out, which results in more
retransmissions, etc.

This experiment was also a good illustration of how much performances depends on hardware
and software configurations. For the same test of 5000 requests, a poor configuration will not manage
to support the load while a more recent computer will manage without any problem. Thus
dimensioning of the server will be important if the load is expected to be high, but what a high load is
changes continually with increasing server performance.

This experiment also showed that a good server running the registrar can almost handle 50000
requests in 2 minutes. This is more than enough for normal application, if we consider clients
registering regularly every 10 minutes, it means the this registrar would be able to handle 250 000
clients, when running on a standard server, without any specific optimisation. This means that the
registrar scales well enabling it to be adopted as a solution for context entity discovery.

34

6. Context Entity Discovery

In order to discover context information, an entity must first discover other entities that hold
context information. A first way to find such entities is to query the registrar that will send back a list
of addresses as described in section 4.2.1. There are then several solutions to get to learn which
context information an entity B shares with another entity A that has just joined the network. The
information this entity A would need are the headers of the context elements (more or less everything
except the changing value, from entity B. However, if an entity holds a lot of different context
information, it would mean lots of traffic to other entities that doesn't bring anything to B and only
costs power and resources. Moreover, at each update of the list of context information available on
device B, it would generate a high load on the device B that needs to update all the other devices that
subscribe to B in order to be automatically updated.

It is possible for a context aware device to generates a list of locally available context
information and context services. This list can also be seen as context information since it can be
updated by the device at any time. An application could therefore subscribe to be updated when this
list changes.

A way to overcome this high communication load can be to use a context information broker,
that would gather information from the entities of the network and answer query from these entities.
However, this client/server architecture suffers from its centralisation (if it fails, context information
cannot be discovered anymore) and requires significat resources such as bandwidth, memory, and
processing.

The solution seems to be once again hybrid between a peer-to-peer solution and a client/server
solution as well as it should be open in order to allow different discovery processes to be used, such as
the Bluetooth discovery process mentioned earlier [11]. However, there are also ways to improve this
solution by relying more on the context registrar, so that an entity can more easily access the entities
that are the most likely to hold the required information.

6.1 Context Entity Description

A user could set up a public profile for his entity so that other users could learn from this
description and determine if the entity might hold the context information they are looking for. This
information could include location, owner, type of device, brand and model, accessories, operating
system,

This profile could be uploaded to the registrar together with the registration information and
be retrieved by other entities querying the registrar. This would give the following advantages:

- queries to the registrar could be targetted and only selected contacts would be returned

- users would not query entities randomly, but rather based on their description

Not all the descriptions should be detailed in the public profile, for example, the references to

a computer would give enough information to another entity to query a database containing detailed
information regarding harware specifications, sensors, capabilities (screen resolution...) or

35

performances. Such standard information would be centralised on dedicated servers and databases
such as those of the manufacturer.

Such profiles would take advantage of using a semantic language like OWL. This would allow
entities to use these OWL relationships in order to precisely identify the devices that would be the
target of their context information requests. This would limit the traffic generated by optimizing the
information management of context entities, instead of browsing through lots of different
heterogenous information.

36

7. Context Information Discovery

ACAS aims at implementing middleware that manages context information on behalf of the
applications. This includes for example looking for sources of context information, analysing and
understanding available information, as well as understanding requests from applications and serving
these requests.

In the ACAS infrastructure, context aware application programmers would have to ensure
compatibility and communication with the ACAS middleware by using an ACAS API (Application
Programming Interface). The same goes for context information sources developers/manufacturers.
The challenge for this middleware is therefore to understand the needs of the applications and the
description of context information. It becomes clear that there should be a standardized vocabulary
used by these three layers.

The second requirement on this middleware is to be able to perform some reasoning regarding
requests and informations, to establish logical connections between words such as inclusion,
disjunction, etc.

7.1 OWL as a solution for Context Information Management

For these reasons mentioned above, the OWL ontology language seems to be well suited to be
used within ACAS infrastructure. OWL is a recommendation from the W3C (World Wide Web
Consortium) to become a standard for the sementic web [19]. It relies on the XML structure, used for
information description, and adds on the top of that a sementic layer to describe meaning of words and
of word sequence to a machine.

OWL not only defines a group of words but builds relationships using special logical
connectors such as “intersection”, “union”, “negation”, “inclusion” and “implication”. It is based on
strict deduction from rules and hypothesis. As long as these rules and hypothesis are true, then the

results of the OWL processing can also be trusted.
For example: an airbus is an airplane & A380 is an airbus => A380 is an airplane.

One of OWL's main strength is the possibility to import ontologies much like a java
programme can import other Java classes or libraries that are understood by the the main programme.
OWL works in a similar way, defining methods to access objects as well as operators and static
variables. Entities can therefore query for understanding or perform a translation in case there is an
OWL document that cannot be interpreted locally ensuring greater interoperability. The fact that an
OWL ontology is based on deduction, makes translation automatic as long as the translator can
understand both ontologies. In this case, this “translator” is built on a superontology that includes and
links both ontologies.

Ideally, in ACAS, the context manager would have to deal only with OWL objects that would

describe context information from sensors, subscription requests from applications etc. This is already
compatible with the choosen “context element” structure (see 2.2) also based on XML. OWL would

37

be used in order to give meaning to the tags and their arguments that are the actual description of the
context element whereas the values enclosed between some XML tags describes a state of the sensor
that 1s not necessarly meaningfull in an OWL ontology.

OWL would therefore be involved at the interface between applications and context manager
and between sensors and context manager.

Applications

OWL reasoning/understanding

ACAS Middleware

OWL reasoning/understanding

Sensors / Sources of context information

Figure 13: OWL interfaces in ACAS middleware

7.2 Reasoning about context

The first example of reasoning we will consider is OWL reasoning, applied to context
information management. As explained above, it deals with the tags of the context element, or the
context information description sent in subscriptions. By looking for subclasses and superclasses, of
this elements, the context manager can find out if there are information that could answer the requests
of the application.

7.2.1 Example of a subscription:

An application needs information about “temperature in Stockholm”. It sends a subscription
describing this context information, it could have this form, using XML. The syntax is not strict and
having a good comprehensive information structure would require important researches, therefore
these example should be considered as illustrative and not as proposition of data structure.

<subscription>
<context_information>

<label = local_temperature>
<value>Temperature</value>
<where>Stockholm</where>
<unit>Celcius</unit>

</label>

<label = local_time>
<value>Time</value>
<unit>yyyy:mm:dd:hh:mm:ss</unit>

</label>

38

</context_information>
<subscription_rules>

IF (context_information.local_temperature.value < 0) AND
(context_information.local_time.value < 2006:03:31:08:00:00) AND
(context_information.local_time.value.mm = 30) THEN

CREATE (eref=a.eref,

unit=“text/plain”,
value=*“FREEZING ALERT#)

END

</subscription_rules>
</subscription>

7.2.2 Explaination

The first part aims as declaring the different context information involved in the request. For the
temperature, the value that is interesting is the temperature. The rest describe some properties of the
temperature, like the unit and the location. For the time, we are specifying the unit (which is more a
format in that case). This is important to notice that the “value” is not automatic and needs to be
specified.

The second part consists of the tryton rules to handle the subscription, using attributes of the context
information described above. It tells the context manager to update the application when the
temperature is lower than 0 until 31 March 2006, with updates every full hour (mm=0).

Example of a sensor that produces such kind of context elements:

<contextelement id="123c">
<value datatype="integer"
unit="kelvin"
type="temperatur">272</value>
<entity-reference rel="acas:dsv.su.se/k2/r7741/t"/>
<time>Sat Apr 24 01:00:21 CEST 2004</time>
<source uri="uri:acas:dsv.su.se/k2/csf/apax"/>
<location datatype = “string”>S6dermalm</location>
<contextelement>

7.2.3 Reasoning by the context manager

The OWL reasoning would look for some subclasses of “Stockholm™ such as “Norrmalm”,
“Sodermalm”, etc. The logic of OWL would lead to conclude that “information in S6dermalm are
also relevant information about Stockholm”. This context element can therefore be analysed further.
Still using OWL reasoning, the appelation “temperature” is equivalent to ‘“temperatur”
(correspondance English/Swedish). This context element can be further investigated. Last OWL
reasoning element, the unit of the temperature: Kelvin belongs to the upperclass “temperature/unit” as
well as Celcius. An OWL relationship can establish that values in Kelvin are 273.15 higher than values
in Celcius.

39

The second part is reasoning about context which means to apply rules based on context elements and
their states. This context element indicates a temperature below 0°C (after conversion by the context
manager), in Stockholm (since Sodermalm is in Stockholm), before the date written in the rules of the
request, at a time that qualifies to update the application. The context manager will therefore process
the code that is in the “IF THEN ENDIF” section and update the application. This part is called
“context reasoning”.

7.3 Context Discovery “in chain”

This is a concept that already exists in peer-to-peer networks, but it is a key feature of Context
Networks regarding context information discovery. The principle is that a request coming from outside
can be rerouted by an entity. This feature, combined to the previous one, can enhance the chances for
an entity to find the needed context information, each time profiting from OWL analysis of the
profile. In order to avoid indefinite forwarding, some time-out can be implemented, making a request
expire after some time, as well as a maximum number of hops between context entities.

It is important to make a distinction between the use of OWL for reasoning about context
information, and the use of OWL for using information about devices.

e The first thing for a Context Manager to do is to analyse the subscription request (this has been
presented in the last section). What does the application need, what could be satisfying, etc.

e The purpose of reasoning about device information is to efficiently route requests by knowing
in advance how probable it is that a remote device can process the request (for example, the
device belongs to a group to which the user has access), that the device has the relevant source
of context information (this phone is an Ericsson AB1234, and by looking up in an Ericsson
handset characteristics public database, that this device has a temperature sensor, ...).

e Remote devices accepting the request will then analyse it, using OWL reasoning, and refine it
in order to find out how to solve it, if part of it should be forwarded, etc.

e Remote devices then apply OWL reasoning to the information about other devices in order to
efficiently route the new requests, that are derivated from the original requests after having

been through the refiner.

e This loop can continue until some mechanism stops it.

40

8. Conclusions and future work

8.1 Conclusions

The first purpose of this masters thesis was to evaluate what was lacking in order to enable
context information discovery through the discovery of context aware entities. We proposed to use a
registrar that would keep track of the different users registrating on the context network, giving them
the possibility to find out who else is registered to this context network.

This registrar can have several uses depending on the context network it serves. Depending on
its use it can therefore also be a central piece of the context network, profiding other services such as
authentication, access control, profiles & presence information, etc.

The second step was to evaluate the scalability of such a registrar, i.e., whether it can support
high loads, how high, and based on which parameters. The results here were excellent since even a
basic and non-optimised JAVA implementation of the registrar running on a normal server can handle
around 50000 registrations in 2 minutes. Other scenarios (for example when running the registrar on a
more recent computer) have confirmed the dependence on the hardware and software configurations
that were used, but showed that even with old hardware (such as my 4 years old IBM laptop), the
performance was satisfactory enough for most possible applications (with one registrar and 50000
persons registering within 2 minutes , for example, in an airport, in a congress centre, etc.).

Finally, the last part of the thesis was to document different possibilities for context
information discovery, how it can benefit from the registrar, what are the basic principles underlying
reasoning, etc. This part aims to become a starting point for further research towards a viable platform
for large-scale context information networks, such as pursued in FP6 Ambient Networks [20].

8.1 Future Work

Although the registrar scales well when it has to handle registration requests, it has not been
tested regarding answers to requests regarding registered entities, their information, etc. We have seen
that a registrar can be used at different levels, the basic level being to keep track of registered entities,
to update the list, and to publish it so that any entity can learn the address of any other entities
registered. However, we might assign extra tasks to the registrar in order for it to play a central role in
the discovery of context information and services. It could gather information/characteristics about
registered devices, it could find out which are the most relevant devices to route subscriptions to, it
could route requests as well instead of sending back a list of possible entities, For all these
applications, it is not sure yet whether it scales or not, nor what could be a realistic load. It depends
very much on what context aware application and services will be created.

There could be different architectures in order to have a better performing registrar, while

handling both registrations and complex requests. There could be different machines that are
synchronized (which rate, how... these are good questions to answers), we could have also databases

41

different from the machines handling registrations and anwsering requests etc. The main problem a
single registrar could have is to be overloaded with too many databases accesses and too much
processing. How to solve this would be a challenge in order to have registrars working on large scales,
like companies, network operators etc.

An other area to explore would be reasoning about context information and context entities.
Even though there are some standards, they could certainly be adapted in order to answer problems
specific to context information. The main problem is to characterise an information one is looking for,
which properties it should have, how to formulate such characteristics etc. The next problem is to
establish a match between requested information and available ones and especially to measure the
quality of such match. It is likely that not all the characteristics of the required information can be
found and thus approximative solutions would be given. Finding a way to evaluate the relevance of the
results returned to the applications is important in order to give an indication to the user about the
accuray of the application/results.

Finally, all the policy and privacy issues need to be carefully analysed, how to set up trust
mechanisms in order to check the information that is not controlled by the owner of the application
using the information. This can have a large impact on the quality of service as well as on the
reliability of the service if information cannot be checked or authenticated.

42

References

[1] ACAS, homepage of the project: http://psi.verkstad.net/acas/, accessed on June 17" 2006.

[2] J. Kolari et al. "Context Aware Services for Mobile Users. Technology and User Experiences",
Espoo 2004. VTT Publications 539. ISBN 951-38-6396-4. Available at
http://virtual.vtt.fi/inf/pdf/publications/2004/P539.pdf on June 17" 2006.

[3] S. Oaks and H. Wong, Jini in a Nutshell, Oreilly, March 2000.

[4] Jini online ressources, http://www.sun.com/jini, accessed on June 17" 2006.

[5] A. Wennlund, "Distributed Context-Aware Support", Department of Microelectronics and
Information Technology (IMIT), Royal Institute of Technology (KTH), September 2004.

[6] C-G Jansson et al. "Context Data Distribution. Concepts and Approaches in the ACAS Project”,
Royal Institute of Technology, May 2004.

[7] F. Kilander, "Distributed Context Data Management", Department of Computer and Systems
Sciences, Royal Institute of Technology (KTH) and Stockholm University, January 2005. It can be
found at http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-165/ , MCMP '05 First
International Workshop on Managing Context Information in Mobile and Pervasive Environments
Proceedings of the First International Workshop on Managing Context Information in Mobile and
Pervasive Environments May 9, 2005, Ayia Napa, Cyprus

[8] C-G Jansson et al. "Context Middleware for Adaptive Services in Heterogeneous Wireless
Networks", Vehicular Technology Conference, 2005. VTC 2005-Spring. 2005 IEEE 61st Volume 5,
Issue , 30 May-1 June 2005 Page(s): 2954 -2958 Vol. 5.

[9] C-G Jansson et al., "Mobile Middleware for Adaptive Personal Communication", chapter VIL.f in
P. Corradi and A. Bellavista, "The handbook of mobile middleware", CRC Press, to be published in
September 2006.

[10] Mobilife: "Initial Scenarios, Requirements and Guidelines: User-Centred Approach for the
Design of Future Mobile Services and Applications", IST-2004-511607 MobiLife, DO6b/D1.1b,
February 2006.

[11] C. Ayrault "Service Discovery for Personal Area Networks" Master's Thesis, Royal Institute of
Technology (KTH), Deparment for Microelectronics and Information Technology, July 2004.

[12] D. Delgado "Implementation and Evaluation of the Service Peer Discovery Protocol" Master's
Thesis, Royal Institute of Technology (KTH), Deparment for Microelectronics and Information
Technology, May 2004.

[13] XML specifications, http://www.w3.org/XML,, accessed on June 17 2006.
[14] J. Rosenberg et al. "SIP: Session Initiation Protocol", RFC 3261, IETF, June 2002.

[15] A. Gulbrandsen, et al. "A DNS RR for specifying the location of services (DNS SRV)". RFC
2782, IETF, February 2000.

[16] Ethereal, Network Protocol Analyser, http://www.ethereal.com, accessed on June 17" 2006.
[17] D. Corner "Internetworking with TCP/IP", Prentice Hall, June 2005.
[18] "Transmission Control Protocol", REC 793, September 1981

43

http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-165/M
http://www.ethereal.com/
http://www.w3.org/XML
http://www.sun.com/jini
http://virtual.vtt.fi/inf/pdf/publications/2004/P539.pdf
http://psi.verkstad.net/acas/

[19] "Web Ontology Language" http://www.w3.0rg/2004/OWL/, accessed on June 17" 2006.

[20] N. Niebert “The Ambiant Network Architecture”, MOCCA WWI Symposium, Yokouka, Japan,

March 2006. Can be found under “presentations” on
http://www.wireless-world-initiative.org/Mocca WWI Symposium Japan 2006/

44

http://www.wireless-world-initiative.org/Mocca_WWI_Symposium_Japan_2006/
http://www.w3.org/2004/OWL/

COS/CCS 2006-4

www.kth.se

	1. Introduction
	2. Context Aware Services
		2.1 Sensors and Applications
		2.2 Context Information
		2.3 Example of Context Aware Services
	 		2.3.1 The WhichJacket Service
	 		2.3.2 The WhereToEat Service.

	3. Context Information Management
	 	3.1 Context Manager as a link between sensors and applications
	 	3.2 Managing Subscriptions
			3.2.1 Application Interface
			3.2.2 Sensor Adaptor
	 		3.2.3 Context Management Entity

	 	3.3 Policy management

	4. Context Network
	 	4.1 What is a Context Network
	 	4.2 Discovery of Context Entities
			4.2.1 Discovery of Context Entities using a Context Registrar
	 		4.2.1.1 Open Public Registrar
	 		4.2.1.2 Restricted Public Registrar
	 		4.2.1.3 Open Private Registrar
	 		4.2.1.4 Restricted Private Registrar

		4.2.2 Discovery of Context Entities without using a Context Registrar

	 	4.3 Joining a Context Network through a registrar
	 	4.4 Discovery of a Context Registrar
			4.4.1 When joining a subnetwork or a LAN
	 		4.4.2 When joining a proprietary network
	 		4.4.3 Using an external directory
	 		4.4.4 Manually entering a registrar addresses

	5. Testing the Context Registrar
	 	5.1 Timeline for a registration
	 		5.1.1 Description of the experiment
	 		5.1.2 Presentation of the timeline
			5.1.3 Analysis of the results

		 	5.2 Reponse to a burst of requests
	 		5.2.1 Test environment
	 		5.2.2 Understanding which information is processed and how: with ethereal
	 		5.2.3 Which information are processed and how: with command line information
	 		5.2.4 Errors and problems during the tests
	 		5.2.5 Test: 500 requests burst routed via internet

	 	5.3 Response to a high load
	 		5.3.1 On a LAN
	 		5.3.2 Over Internet
			5.3.3 Some conclusions

	6. Context Entity Discovery
	 	6.1 Context Entity Description

	7. Context Information Discovery
		7.1 OWL as a solution for Context Information Management
		7.2 Reasoning about context
		7.2.1 Example of a subscription:
		7.2.2 Explaination
		7.2.3 Reasoning by the context manager

		7.3 Context Discovery “in chain”

	8. Conclusions and future work
	 	8.1 Conclusions
	 	8.1 Future Work

	References

