
Master of Science Thesis
Stockholm, Sweden 2006

COS/CCS 2006-14

F R A N Z M A Y E R

Adding NTP and RTCP
to a SIP User Agent

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Adding NTP and RTCP to a SIP User Agent

Franz Mayer

In Partial Fulfillment

of the Requirements for the

Master of Science in

Information Systems and Management

Advisor and Examiner: G.Q. Maguire Jr.

Department of Communication Systems
Royal Institute of Technology (Kungliga Tekniska Högskolan, KTH)

Stockholm, June 19th 2006

Adding NTP and RTCP to a SIP User Agent i

Abstract
With its enormous potential Voice over Internet Protocol is one of the latest buzzwords in

information technology. Despite the numerous advantages of Voice over IP, it is a major technical
challenge to achieve a similar call quality as experienced in the ordinary Public Switched Telephone
Network.

This thesis introduces standardized Internet protocols for Voice over IP, such as Session
Initiation Protocol (SIP), Real-time Transport Protocol (RTP), in its background chapter. In order to
provide better Quality of Service (QoS) Voice over IP applications should support a feedback
mechanism, such as the Real-time Control Protocol (RTCP), and use accurate timing information,
provided by the Network Time Protocol (NTP). Additionally this thesis considers synchronization
issues in calls with two and more peers.

After a rather academic overview of Voice over IP, the open source real-time application
“minisip”, a SIP user agent, and its operation and structure for handling audio streams will be
introduced. Minisip was extended by an implementation of NTP and RTCP to provide a test
platform for this thesis.

A clear conclusion is that the addition of global time helps facilitate synchronization of multiple
streams from clients located any where in the network and in addition the ability to make one-way
delay measurements helps SIP user agents to provide better quality audio to their users.

Sammanfattning
Röst över IP, eller Internettelefoni baserad på “Voice over Internet Protocol” (VoIP), har med

sin stora potential blivit ett av de senaste modeorden inom informationsteknologin. Vid sedan av ett
antal fördelar med VoIP så innebär det en stor teknisk utmaning att uppnå en likadan
samtalskvalitet som i det vanliga, fasta, telenätet.

I den här uppsatsen beskrivs hur tjänstevalitet för VoIP kan förbättras genom att noggrant
tidssynkronisera de (två eller flera) klienter som deltar i ett telefonsamtal. För detta krävs dels en
återkopplingsmekanism, såsom “Real-time Control Protocol” (RTCP), samt en gemensam
tidsuppfattning i de inblandade klienterna, vilket kan uppnås med hjälp av “Network Time
Protocol” (NTP). Dessa protokoll, liksom de övriga Internet-standarder som VoIP baseras på
(såsom “Session Initiation Protocol” (SIP) och “Real-time Transport Protocol” (RTP), beskrivs
inledningsvis i uppsatsen.

För studien har en SIP-klient baserad på öppen källkod använts (“Minisip”), och utökats med
NTP och RCTP funktionalitet för att testa den föreslagna förbättringen av VoIP. En tydlig slutsats
är att kännedom om en “global tid” möjliggör synkronisering av multipla ljudströmmar från klienter
som befinner sig på olika nätverk. Möjligheten att mäta paketfördröjningen (envägs) bidrar också
till en förbättrad ljudkvalitet.

Adding NTP and RTCP to a SIP User Agent ii

Table of Contents

1 Introduction ... 1
1.1 Organization of this report... 1

2 Background: Voice over IP...3
2.1 The minisip user agent... 3

2.2 Session Initiation Protocol – SIP... 4

2.3 Real-time Transport Protocol – RTP... 5
2.3.1 RTP Mixers and Translators.. 6

2.4 Synchronization in Voice over IP ... 7
2.4.1 Intrastream Synchronization.. 7
2.4.2 Interstream Synchronization.. 8

2.5 Network Time Protocol – NTP.. 9
2.5.1 NTP Data Format...10
2.5.2 Time Synchronization with NTP... 11
2.5.3 Using NTP... 12

2.6 RTP Control Protocol – RTCP.. 15
2.6.1 Sender Report – SR..16
2.6.2 Further RTCP Reports... 18
2.6.3 RTCP Packet Format... 18
2.6.4 RTCP Transmission Interval... 19

2.7 RTP Control Protocol Extended Reports – RTCP XR.. 19

3 The program “minisip”...21
3.1 Using minisip... 21

3.2 Minisip's architecture... 22
3.2.1 Start-up...22
3.2.2 Calling Procedure.. 22
3.2.3 RTCP Packet Structure.. 25

3.3 RTP sequence order and packet loss..26

3.4 Using NTP in minisip.. 27

Adding NTP and RTCP to a SIP User Agent iii

4 Testing.. 29
4.1 Test setup... 29

4.2 Test results... 30

4.3 Further tests..31

5 Conclusion and Future Work...33
5.1 Conclusion... 33

5.2 Future Work... 33

References...35

Appendix A. Diagrams.. 36

Appendix B. Minisip code excerpts..38

B.1 Excerpts of NTP and NTPtimestamp.. 38

B.2 Excerpts of RTCP code... 39

B.3 Configuration File “.minisip.conf”..42

Appendix C. Hands-On reference.. 44

C.1 Nistnet... 44

C.2 Programming Environment... 45

C.3 Programs Used.. 47

Adding NTP and RTCP to a SIP User Agent iv

List of Figures
Figure 2.1: Hierarchical structure of an SIP application , such as minisip.. 3
Figure 2.2: SIP session setup example with SIP trapezoid.. 5
Figure 2.3: Playout scheduling problem...7
Figure 2.4: Example of clock skew.. 8
Figure 2.5: Interstream synchronization errors.. 9
Figure 2.6: Timeline of NTP message exchange..12
Figure 2.7: NTP synchronization... 13
Figure 2.8: Snapshot of captured NTP packets in Ethereal..15
Figure 2.9: Example of a RTCP compound packet..19
Figure 3.1: minisip start-up sequence...22
Figure 3.2: Call-setup procedure.. 23
Figure 3.3: Audio Media System of minisip.. 24
Figure 3.4: Audio Media System including RTCP.. 24
Figure 3.5: RTCP Packet Structure in minisip... 25
Figure 3.6: Exemplary time line for arrived RTP packets..26
Figure 3.7: NTP class structure.. 28
Figure 4.1: Test setup with a NIST Net server...29
Figure 4.2: RTCP packet in ethereal.. 31
Figure A.1: Structure of an SIP User Agent, such as minisip, and its subsystems............................ 36
Figure A.2: RTCP Packet Structure in minisip including SDES structure in more detail................. 37

List of Tables
Table 2.1: RTP fixed header fields...6
Table 2.2: NTP Message Header..10
Table 2.3: RTCP Sender Report (SR) Packet...16
Table 2.4: XR Packet Format... 20
Table 2.5: Format of an extended report block.. 20
Table 3.1: Names as used in minisip vs. RFC-3550...25
Table 3.2: Exemplary time table based on Figure 3.6..27
Table 3.3: Structure of NTP timestamps.. 27
Table 4.1: Test results...30

Adding NTP and RTCP to a SIP User Agent v

List of Terms
CODEC Coder / Decoder
CSRC Contributing Source Identifier(s)
DHCP Dynamic Host Configuration Protocol
DLRR Delay since Last Receiver Report
DLSR Delay since Last Sender Report
GPL GNU General Public Licence
GPS Global Positioning System
GUI Graphical User Interface
Hz Hertz
IM Instant Messaging
IP Internet Protocol
LSR Last Sender Report
LSW Least Significant Word
ms Millisecond
µs Microsecond
MSW Most Significant Word
NIST U.S. Nation Institute of Standards and Technology
ns Nanosecond
NTP Network Time Protocol
OS Operating System
PPM Part Per Million
PSTN Public Switched Telephone Network
QoS Quality of Service
RR Receiver Report
RTC Real-Time Clock
RTCP Real-time Control Protocol
RTCP XR RTP Control Protocol Extended Reports
(S)RTP (Secure) Real-time Transport Protocol
RTT Round Trip (Delay) Time
SDES Source Description
SIP Session Initiation Protocol
SR Sender Report
SSRC Synchronization Source Identifier

Adding NTP and RTCP to a SIP User Agent vi

SVN Subversion
TCP Transmission Control Protocol
TTL Time To Live
UA User Agent
UDP User Datagram Protocol
URI Uniform Resource Identifier
UTC Universal Time Coordinated
VoIP Voice over Internet Protocol
WLAN Wireless Local Area Network
XR Extended Reports

Adding NTP and RTCP to a SIP User Agent 1
Chapter 1 Introduction

1 Introduction
Internet telephony - also known as “Voice over Internet Protocol”, “Voice over IP” or “VoIP” -

is becoming more and more popular. VoIP is easy to use and can used even without a computer,
since various companies, such as Cisco Systems, offers VoIP telephones. Many consumers and
companies are switching now from the Public Switched Telephone Network (PSTN) to VoIP,
because it offers a stable, secure, and low cost way to communicate. Besides, it provides additional
services, such as Instant Messaging (IM), video conferencing, sending files, calling landline
numbers at affordable rates, and much more. Therefore the market for VoIP products and its
potential for users is growing enormously.

However, providing a continious flow of voice through a network, such as the Internet, is the
main challenge of VoIP. For an interactive dialogue it is important that the speech is in order and
arrives on time, so that participants can understand each other and can react (i.e. answer
appropriately). To achieve a similar quality to the ordinary PSTN sufficient bandwidth, correct
timing, and a feedback mechanism are needed.

Without an internet connection to transfer audio data through the Internet, Voice over IP can not
exist. However, even a very large bandwidth does not guarantee that audio packets are played in
time at the receiving peer's speaker (or headphones). When other applications use most of the
bandwidth, there might not be enough bandwidth for transmitting the session's audio packets, thus
the audio-quality might suffer. To check if the packets are received in sufficient time a feedback
mechanism is necessary to ensure Quality of Service (QoS).

When communicating with more than one peer, as in conference calls, timing of packets is
important. The standard VoIP audio protocol, Real-Time Protocol (RTP, see Section 2.3), only
provides relative timestamps, i.e. the timing is not done with respect to global time. Therefore
clocks of all the participants should be synchronized to provide accurate RTP timestamps; this can
be achieved by using the Network Time Protocol (NTP, see Section 2.5). In Section 2.4 we will
take a closer look at the synchronization problem in VoIP calls.

The Real-Time Control Protocol (RTCP, see Section 2.6) provide QoS feedback for the RTP
traffic to each RTP receiver. RTCP requires NTP timestamps to relate events to global time; this
can then be used to calculate network delay, for example for using different CODECs [21],
re-sampling (via dynamic time wraping), or re-ordering audio packets.

1.1 Organization of this report
Chapter 2 provides the necessary background information concerning Voice over IP and its

underlying protocols, e.g., Session Initiation Protocol (SIP, Section 2.2), Real-time Transport
Protocol (RTP, Section 2.3), Network Time Protocol (NTP, Section 2.5), RTP Control Protocol
(RTCP, Section 2.6), and RTP Control Protocol Extended Reports (RTCP XR, Section 2.7).
Furthermore Section 2.4 considers intrastream and interstream synchronization.

Chapter 3 introduces the real-time application minisip. Section 3.1 describes how minisip can be
used on top of Microsoft's Windows XP. The structure and operations of minisip, especially those
for media streams, is described in Section 3.2. Measuring packet loss and checking sequence
ordering will be discussed in Section 3.3. Finally, Section 3.4 presents the implementation of NTP
in minisip.

Chapter 4 tests the code developed in the course of this thesis. Section 4.1 describes the test
setup used for verifying the RTCP implementation, while Section 4.2 evaluates the resulting

Adding NTP and RTCP to a SIP User Agent 2
Chapter 1 Introduction

performance via these tests. Section 4.3 concerns further tests, for example for conference calls and
video calls.

Chapter 5 presents some conclusions and describes future work building upon this thesis.

Adding NTP and RTCP to a SIP User Agent 3
Chapter 2 Background: Voice over IP

2 Background: Voice over IP
This chapter introduces the main standards for Voice over Internet Protocol (VoIP) for use by real-
time applications. The general structure of VoIP applications, such as minisip, and its subsystems
are depicted in Figure 2.1:

This thesis mainly focuses on the Media subsystem, which handles all audio and video
processing. The User Interface (UI), Policy, and Framework1 subsystems are described in more
detailed in [5]. Furthermore security will not be discussed, as this has been extensively described in
numerous theses [12].

First of all, minisip will be briefly introduced (section 2.1) - for a deeper analysis see chapter 3.
In section 2.2, the Session Initiation Protocol (SIP) is described. The core protocol for VoIP media
streams, the Real-time Transport Protocol (RTP) is described in section 2.3. In section 2.4
synchronization issues in VoIP are discussed, which leads to the introduction of the Network Time
Protocol (NTP) in Section 2.5. In sections 2.6 and 2.7 a number of protocols to support Quality of
Service (QoS) and transfer of additional information are described.

2.1 The minisip user agent
minisip2 is a SIP soft phone application developed by the Telecommunication Systems Lab in

cooperation with the Center for Wireless Systems (Wireless@KTH) at the Royal Institute of
Technology (“Kungliga Tekniska Högskolan”, KTH) in Kista, Sweden. The application is available
as open source under the terms of a GNU General Public Licence (GPL) [12].

minisip provides a way to communicate in a secure way with other internet users based on
Session Initiation Protocol (SIP). Alternative applications, such as Skype3, include additional
services, i.e. instant messaging and a highly developed graphical user interface (GUI).

1 In some minisip documents, such as [5], the framework subsystem is called “inter-subsystem communication”.

2 For more information see http://www.minisip.org/.

3 SkypeTM is a Skype Technologies S.A. product. For more information see http://www.skype.com/

Figure 2.1: Hierarchical structure of an SIP application , such as minisip

http://www.minisip.org/
http://www.skype.com/

Adding NTP and RTCP to a SIP User Agent 4
Chapter 2 Background: Voice over IP

2.2 Session Initiation Protocol – SIP
There are a growing number of applications that require an exchange of data between session

participants. The Session Initiation Protocol (SIP) defines a means for creation, modification, and
termination of such sessions involving two or more participants. The session initiated by SIP can
provide applications with real-time multimedia, i.e. enabling multiple Internet endpoints (user
agents) to locate prospective session participants and to create sessions. SIP supports registration,
invitation to sessions, and other requests [15].

SIP functionality has five different facets:
1. User location determines the location of an end point using an Uniform Resource

Identifier (URI) - called a SIP URI.

2. User availability determines the willingness of the called party (user agent) to receive a
call.

3. User capabilities determines selection of media and media parameters.

4. Session setup establishes session parameters for both called and calling party.

5. Session management provides for the transfer and termination of sessions, modification of
session parameters, invocation of services, etc.

Figure 2.2 shows the basic functions of SIP: Consider that somebody wants to place a call to the
cisco1 SIP phone physically located in the wireless lab using a minisip client, the calling user agent
(in this case minisip) has to determine the location of the remote end point (facet 1).

To determine the callee's location minisip asks a SIP proxy (in this case iptel.org) to find the
location of the SIP phone named cisco1 (based upon its SIP URI – sip: cisco1@130.237.15.222).
We see that. minisip (UA1) sends an INVITE request to its proxy (in F1), which forwards the
invitation to the remote proxy (in F2). The proxy of minisip (iptel.org) returns the state of enquiry
(Trying in F3) and the remote proxy (kth.org) contacts the remote user agent (UA2) indicating that
there is an incoming call from minisip (with F4). When UA2 has been located, then the SIP phone
will start ringing (step F6) and this information will be transmitted to minisip (in messages F7, F8).

mailto:cisco1@130.237.15.222

Adding NTP and RTCP to a SIP User Agent 5
Chapter 2 Background: Voice over IP

If UA2 is willed to accept the call (facet 2), it will send a message (OK in F9), which will be
transmitted through the proxies of both parties (see F10 & F11). UA1 will send an acknowledge
message to UA2 (F12), and from this point on the two user agents will exchange the mutually
agreed media data directly (i.e., peer-to-peer) as a media session.

When describing the operation of SIP, the SIP trapezoid is often mentioned. This means that
only the SIP signalling messages (steps 1..14 mentioned above) are transferred through proxies, but
all session media will be transferred directly between the peers.

2.3 Real-time Transport Protocol – RTP
The Real-time Transport Protocol (RTP) defines a standardized packet format for end-to-end

network transport of media and usually utilizes the User Datagram Protocol (UDP) as its transport
protocol. It is widely used for media applications such as interactive audio and video. RTP itself
does not provide a defined Quality of Service (QoS) or guarantee timely delivery of packets. It
does, however, provide the necessary timing and packet sequencing information to enable an
ordered and continuous real-time data stream. RTP is further separated into the two components:
RTP and Real-time Control Protocol (RTCP) [1], [17]. A basic introduction to these protocols can
be found in [1], whereas [17] is the full specification for RTP.

Figure 2.2: SIP session setup example with SIP trapezoid; based on [15]

Adding NTP and RTCP to a SIP User Agent 6
Chapter 2 Background: Voice over IP

Table 2.1: RTP fixed header fields [17]

0 8 16 31

V=2 P X CC M PT sequence number

timestamp

synchronization source (SSRC) identifier

contributing source (CSRC) identifier(s)
...

V (2 bits) version, identifies the version of RTP, currently 2
P (1 bit) padding bit
X (1 bit) extension bit
CC (4 bits) CSRC count, contains the number of CSRC identifiers that follow the

fxed header
M (1 bit) marker bit
PT (7 bits) payload type, identifies the format of the RTP payload and determines its

interpretation by the application
Table 2.1 shows the structure of a fixed RTP header. The 16 bit RTP sequence number is

incremented by one for each RTP packet and should be initialized with a random (unpredictable)
number to make it more robust against attacks. It can be used to detect packet loss and to restore
packet sequence [17].

The 32 bit RTP timestamp specifies the sampling instant, which must be derived from a clock
that increments monotonically and linearly. The clock needs a certain minimum resolution to
calculate network delay variation (jitter) and to synchronize the RTP data stream. As with the RTP
sequence number the initial value should be randomly chosen for security reasons. The RTP
timestamp is then incremented by one for each sample, so when an audio application reads blocks
containing 160 samples (e.g. a 20ms voice packet at a sampling rate of 8,000 Hz), the timestamp
should be increased by 160 for each block4.

The synchronization source (SSRC) identifier is a random 32-bit number, which is unique within
a RTP session. There can be a list of up to 15 contributing sources (CSRC) identifiers, each of
which is 32-bits long. Information about contributing sources is used to avoiding mixing a source in
multiple times or sending a source its own traffic.

After the fixed header (Table 2.1) extensions and the RTP payload, the actual data field follows.

2.3.1 RTP Mixers and Translators
Not every participant of a conference has the same environment; they might differ in bandwidth,

security, or be using another network protocol. Therefore two types of intermediaries are necessary
to ensure portability and scalability: mixers and translators.

4 Note: while doing silence suppression the clock continues to increment, even though the sequence number will not
increase – as RTP packets are not being sent, although samples continue to be made.

Adding NTP and RTCP to a SIP User Agent 7
Chapter 2 Background: Voice over IP

If a conference has participants with more limited bandwidth than other participants, a mixer
should be installed prior to the low-bandwidth area. This mixer collects all incoming audio packets,
then resynchronizes and transcodes the data into a lower-bandwidth packet stream. These packets
are sent to lower-bandwidth participants, who may receive a reduced quality audio stream, but are
still able to participate in the conference - despite their limited network connectivity. However, all
other participants can send and receive the higher quality audio [17].

Many participants may use an application-level firewall that blocks IP packets. In this case, for
each participant using a firewall, two translators are installed, one on each side of the firewall. The
outside translator forwards all packets through a secure IP connection to the inside translator,
which sends packets to all participants of the internal network. Additionally, translators can be used
to translate the media data from one format to another - thus all the participants do not need to use
the same coder/decoder (CODEC).

2.4 Synchronization in Voice over IP
For Voice over IP (VoIP), synchronization of media streams is essential to real-time

communication. There are basically two different kinds of synchronization: intrastream and
interstream synchronization [6].

2.4.1 Intrastream Synchronization
The goal of intrastream synchronization, also known as playout scheduling, is to play an ordered

and continous media stream. It depends on hiding both packet loss and end-to-end delay variations
(jitter) [6]. Figure 2.3 illustrates the problem of intrastream synchronization.

Figure 2.3: Playout scheduling problem [6], where
T is time to the next packet (also know as the sampling period),
n1 is the network delay, and
pn is when the packet is to be played.

Adding NTP and RTCP to a SIP User Agent 8
Chapter 2 Background: Voice over IP

There are various algorithms for intrastream synchronization most relying on timing information
in form of timestamps. As described in section 2.3, RTP provides information on packet ordering
(sequence number) and a relative delay (RTP timestamp).

2.4.2 Interstream Synchronization
While intrastream synchronization is packet orientated, interstream synchronization attempts to

preserve the temporal relationship of two or more streams. For voice calls it has been shown that
synchronization errors less than ±120ms are generally not noticeable [6]. Basically there are four
reasons for synchronization errors:

➢ Clock skew

➢ Different initial collection times

➢ Different initial playback times

➢ Network delay variation (i.e., jitter)

Clock skew

When clocks tick at different speeds the result will be a gradual shift in synchronization. In
Figure 2.4, for example, a sender sends packets while sampling at 8,000 Hertz (Hz), but receiver 1's
clock ticks slightly slower. Therefore the playout of the received samples takes longer, which can
lead to buffer overflow, because the sender produces more samples per unit time than receiver 1 is
able to play in the same amount of absolute time. Whereas if the clock of receiver 2 is faster, the
result will be a lack of samples to play. Usually clock skew is negligible compared to network
delay, but may still be significant and thus require resampling of the samples before playout. When
for example a clock deviates ± 0.5% from the original clock (e.g. sender's clock), slower clocks
will play the sample at a sample rate of 8,040 of the original one and faster ones at a rate of 7,960
samples. Therefore every 200th packet, approximately every 4th second, the real-time application
will either miss one packet (receiver 2) or have one packet too much in the buffer (receiver 1).

Different initial collection times

In distributed media sessions, synchronization is often required in conference calls or video
games, for example. However, if the clocks are not synchronized, then the time when the

Figure 2.4: Example of clock skew

Adding NTP and RTCP to a SIP User Agent 9
Chapter 2 Background: Voice over IP

transmission begins can differ; such as s1 and s2 in Figure 2.5.

Different initial playback times

In a conference every participant should hear the sample at the same time in order to have a
continous discussion, which is perceived by all listeners as the same. Unfortunately, the playback or
playout time can differ at receiver's side, shown as r1 and r2 in Figure 2.5 due to different network
delays, jitter, or packetization (shown as collection delay in Figure 2.5) This so-called group
synchronization can generally be achieved through a feedback meachanism, such as the RTP
Control Protocol (RTCP, see section 2.6) provides. Once all participants have sent their feedback,
everyone can adjust their buffer to accommodate the largest amount of jitter. Using global time, for
example via Network Time Protocol (NTP, see section 2.5), the absolute playout time could be
determined and each packet played at a specific global time!

Network delay variation

Different media streams take different routes, which can lead to varying delays; shown in Figure
2.5 as n1 and n2, thus resulting in different delays.

2.5 Network Time Protocol – NTP
The specification of the Network Time Protocol (NTP) is currently available in Version 3 of

RFC-1305 and has been created to provide a mechanism to synchronize and coordinate time
distribution [11].

In order to allow nodes attached to the network to accurately learn what time it is requires either
that each node have its own accurate source of time or to learn about the current time from others
via the network. In this section we will consider the second method in detail and describe exactly
how information concerning time is transmitted over the network and how it is interpreted by the
receivers. However, first we need to introduce some important terms [11], [20]:

Figure 2.5: Interstream synchronization errors; based on [6],
where

sn is the time when sending an audio packet,
rn is the time when the audio packet is received,
ec is the collection error, and
ep is the playout error.

Adding NTP and RTCP to a SIP User Agent 10
Chapter 2 Background: Voice over IP

Resolution is the smallest possible increase of time allowed by your clock; NTP provides a
resolution about 200 picoseconds (= 0.2 nanosecond).

Precision is the smallest possible increase of time that can be computed by a program.
Accuracy determines how close a certain clock is to an official time reference such as Universal

Time Coordinated (UTC).
Stability of a clock is how well it can maintain a constant frequency. The frequency of the typical

clock hardware, however, is never exactly correct. Even a slight frequency error of 0.0012% or 12
PPM (Part Per Million) would cause such a clock to be off by roughly one second per day [20].

Stratum is a classification of NTP servers and their time quality, which includes Precision,
Accuracy, and Stability.

A Reference Clock is a clock with a very high accuracy, which is typically a very expensive
atomic clock. The Global Positioning System (GPS) utilizes a notion of time derived from atomic
clocks and broadcasts this timing information by modulating a very long pseudo-random sequence.
Such reference clocks are referred in NTP as stratum 0 since they provide the highest possible time
quality.

2.5.1 NTP Data Format
NTP utilizes several different messages, all of these messages use the same header. The NTP

Message Header is shown in Table 2.2.

Table 2.2: NTP Message Header [11]

0 8 16 31

LI VN mode stratum poll precision

root delay (32)

root dispersion (32)

reference identifier (32)

reference timestamp (64)

originate timestamp (64)

receive timestamp (64)

transmit timestamp (64)

authenticator (optional) (96)

All NTP timestamps are represented as a 64-bit unsigned fixed-point number with an implied
fraction point between the two 32-bit halves. The first 32-bits are the integer part and represents the
seconds starting from 0.00 o'clock in January the 1st 1900. The second 32-bits are the fraction part,
which splits each second into the exact resolution of NTP (2-32 second ~ 0.2 ns).

Adding NTP and RTCP to a SIP User Agent 11
Chapter 2 Background: Voice over IP

LI (2 bits) Leap Indicator, for an impending leap second, which should be inserted
or deleted respectively

VN (3 bits) Version Number, which is currently 3 for NTP
mode (3 bits) indicating the broadcast mode
stratum (8 bits) indicating the stratum-level of the NTP-server
Poll (8 bits) indicates the Poll Interval
Precision (8 bits) indicating the precision of the local clock
Root Delay indicates the total round trip delay
Root Dispersion indicates the maximum error relative to the primary reference source
Reference Clock
Identifier

identifies the particular reference clock

Reference Timestamp local time when the local clock was last updated
Originate Timestamp local time when the peer sent the latest NTP message
Receive Timestamp local time when the NTP message from the peer arrived
Transmit Timestamp local time, at which the NTP message departed the sender
Authenticator When the NTP authentication mechanism is implemented, this contains

the authenticator information.

2.5.2 Time Synchronization with NTP
Synchronization of time is done through several packet exchanges, each a request and reply pair,

as it can be seen in Figure 2.6 below. When a client sends a request to a NTP server, the client
stores its own local time (Originate Timestamp) into the NTP packet. When the server receives the
packet, it will store its own local time of reception (Receive Timestamp) into the packet, and puts its
local time (Transmit Timestamp) just before the packet will be transmitted back to the client. When
the client receives the packet it will compute its own local time once more to estimate the round trip
time (delay) [20]. This procedure has to be done several time to estimate delays in network. This
allows the local node to compute the local clock offset.

Adding NTP and RTCP to a SIP User Agent 12
Chapter 2 Background: Voice over IP

There are different reasons and various terms for time differences between client and server. We
define below terms following the terminology of [11], [20]:

Round Trip Delay Time (RTT) is the time required for the packet to be sent and for the response
to be received. It can be defined as the time between when the request packet was sent and the when
reply packet is received.

Offset is a time difference between two clocks.
Skew is the frequency difference between two clocks.
Clock Offset represents the amount by which to adjust the local clock to bring it into

correspondence with the reference clock.
Dispersion is the maximum offset error (difference between local and reference clock).

2.5.3 Using NTP
Most operating systems (OS) - such as Microsoft's Windows5, Linux derivates, etc. - supports NTP
as a client and / or as a server. The structure of synchronizing NTP in an intranet might be as shown
in Figure 2.7.

5 WindowsTM is a Microsoft product. For more information see http://www.microsoft.com/windows/.

Figure 2.6: Timeline of NTP message exchange

http://www.microsoft.com/windows/

Adding NTP and RTCP to a SIP User Agent 13
Chapter 2 Background: Voice over IP

Microsoft's Windows versions XP and 2000 include the Windows Time Service6, which supports
NTP. To synchronize time, either double click on the Windows' clock (usually in the buttom right
of the screen) and click “Update now” in the “Internet Time” tab or type the following Windows
command7:

C:\>w32tm /resync /rediscover
To see the current offset of the local clock type the following command:

C:\>w32tm /monitor /computers:ntp1.kth.se
ntp1.kth.se [130.237.48.28]:
 ICMP: 1ms delay.
 NTP: +1.3863246s offset from local clock
 RefID: ntp1.sth.netnod.se [192.36.144.22]

After a short while it should say: “The time has been successfully synchronized with [...]”. If it
was not successful, it could be one of several reasons: First of all it could be that the firewall of the

6 See Control Panel > Administrative Tools > Services.

7 To start the Windows' command line interface click on start > Run ...

Figure 2.7: NTP synchronization

Adding NTP and RTCP to a SIP User Agent 14
Chapter 2 Background: Voice over IP

personal computer (PC) blocks UDP port 123, which NTP uses. This can be checked with the
following Windows' command:

C:\>netstat -an |find "123"
If operating in a network - such as university or company network - it is likely that port 123 is

blocked. This may be due to performance or security reasons. Using the internal NTP server saves
network resources (i.e. traffic) and avoids having an open port; many peer-to-peer applications try
to "tunnel out" past the firewall using standard application ports. If the port is blocked, then the
internal NTP server has to be used, which can be found out either by asking the system
administrator or by performing a network lookup8:

C:\>nslookup
Default Server: res2.ns.kth.se
Address: 130.237.72.200

> search ntp19

Server: casio.ite.kth.se
Address: 130.237.48.28
Aliases: ntp1.kth.se, ntp2.ite.kth.se
*** ntp1 can't find search: No response from server

The default NTP server10 can be set as followed:
C:\>net time /setsntp:ntp1.kth.se,ntp2.ite.kth.se

To check parameters regarding NTP, type11:
C:\>w32tm /dumpreg /subkey:parameters

To automatically allow changes the Windows' Time service has to be restarted:
C:\>net stop w32time && net start w32time

The settings of the current time service as described in [10], can be listed with following
command:

C:\>w32tm /dumpreg /subkey:config
By default the time client performs periodical checks every 45 minutes until time

synchronization has been successful three consecutive times; then the period is set to once every
8 hours [9].

Meinberg12 provides a more sophisticated NTP client and server, both hardware and software.
Meinberg's NTP Time Server Monitor can be useful for monitoring time throughout applications.
To get an idea of the contents of a NTP packet it is sufficient to capture packets with ethereal
(Figure 2.8).

8 Note that you either have to know the local name server or enable DHCP. If DHCP is enabled can be checked with
command ipconfig -all. Listed commands work with an enabled DHCP.

9 Note: When searching “ntp1” you are searching for server, which contains “ntp1” as a subdomain name (so any
“ntp1” in the second-level domain, e.g. “kth.se”, will be found). It does not have to be a NTP server, but it is very
likely.

10 One or more NTP servers can be specified, each separated by a comma (without any spaces). As described in
section 2.5, time should be synchronized based upon several servers.

11 This shows the registry entries of the Windows Time services with the stated subkey.

12 Meinberg Funkuhren; for more information see http://www.meinberg.de/.

http://www.meinberg.de/

Adding NTP and RTCP to a SIP User Agent 15
Chapter 2 Background: Voice over IP

Figure 2.8: Snapshot of captured NTP packets in Ethereal, the highlighted field is the originate timestamp13

2.6 RTP Control Protocol – RTCP
In real-time applications it is essential for the senders to understand packet loss and delay.

Therefore a primary function of the RTP control protocol (RTCP) is to provide feedback on the
quality of the corresponding RTP session. To enable these two streams to be easily associated
RTCP runs on another port and this port by convention is one greater than corresponding RTP port
number.

RTCP defines the following packet types [17]:
➢ Sender Report – SR

➢ Receiver Report – RR

➢ Source Description Items – SDES

➢ End of participaction – BYE

➢ Application-specific functions – APP

Each of these will be described in the following subsections.

13 How to interpret this timestamp is covered in section 3.4.

Adding NTP and RTCP to a SIP User Agent 16
Chapter 2 Background: Voice over IP

2.6.1 Sender Report – SR
The sender report provides statistics of transmission and reception from participants that are

active senders, which actively transmits RTP packets; in an interactive call both are active senders,
but in case of a radio only the radio station is an active sender.

Table 2.3: RTCP Sender Report (SR) Packet [17]

0 8 16 31

header V=2 P RC PT=SR=200 length

SSRC of sender

sender info NTP timestamp, most significant word (MSW)

NTP timestamp, least significant word (LSW)

RTP timestamp

sender's packet count

sender's octet count

report block 1 SSRC_1 (SSRC of first source)

fraction lost cumulative number of packets lost

extended highest sequence number received

interarrival jitter

last SR (LSR)

delay since last SR (DLSR)

report block 2 SSRC_2 (SSRC of second source)

...

extensions profile-specific extensions

The SR packet consists of three sections:

Section 1: Header (64 bits / 2 words)

V (2 bits) version, identifies the version of RTP, currently 2
P (1 bit) padding bit
RC (5 bits) reception report count
PT (8 bits) packet type, for Sender Report it is 200
length (16 bits) the length of the RTCP packet in 32-bit words minus one

Adding NTP and RTCP to a SIP User Agent 17
Chapter 2 Background: Voice over IP

SSRC (32 bits) synchronization source identifier for the originator of this SR packet.

Section 2: Sender Info (160 bits / 5 words)

The second section, the sender info summarizes the data transmission from the sender (SSRC),
mentioned in the header. It provides the following information:

NTP timestamp
(64 bits)

local clock time as a NTP timestamp (see Section 2.5) with MSW
representing seconds and LSW representing microseconds

RTP timestamp
(32 bit)

corresponds to the same time as the NTP timestamp (above), but in the
same units and with the same random offset as the RTP timestamps in
data packets

sender's packet count
(32 bits)

total number of RTP data packets transmitted by the sender

sender's octet count
(32 bits)

total number of payload octets (i.e., not including header or padding)
transmitted in RTP data packets

Section 3: Report Block(s) (192 bits / 6 words for each block)

The third section contains zero or more reception report blocks providing the information listed
below:

SSRC_n (32 bits) source identifier, where n stands for the nth reception report block
fraction lost (8 bit) fraction of RTP data packets lost since the previous SR

fraction lost=
packetslost

packetsexpected
(2.1)

cumulative number of
packets lost (24 bits)

cumulative number of packets lost since reception has begun
cumulative packets lost= packetsexpected− packetsreceived (2.2)

extended highest
sequence number
received (32 bits)

extended highest sequence number received; the first 16 bits contain the
sequence number cycle14 of the corresponding RTP sequence number,
which are represented by the last 16 bit

interarrival jitter
(32 bits)

The inter arrival jitter (network delay variation) estimates the statistical
variance of the delay between each RTP packet, expressed in RTP
timestamp units.
First the difference D between RTP packets sent and arrived has to be
calculated:

D i−1 , i =Darrived packets−Dsent packets=Ri−1−Ri−S i−1−S i (2.3)

where:
Ri is the time (in RTP timestamp units) of the arrival of packet i
Si is the RTP timestamp of packet i
After that the interarrival jitter J should be calculated for each data
packet i arrived from source SSRC_n:

14 When the RTP sequence number get to its end, there will be another RTP sequence number generated; these cycles
of new initiation of RTP sequence numbers will be stored in the variable of sequence number cycle. Effectively this
extended the sequence number field to 32 bits (i.e., 16 + 16).

Adding NTP and RTCP to a SIP User Agent 18
Chapter 2 Background: Voice over IP

J i = J i−1∣D i−1, i∣−J i−1
16 (2.4)

where:
J(i) is the current inter arrival jitter value
The jitter must be calculated as shown in Formula 2.4 to allow profile-
independent monitors [17].

LSR (32 bits) last SR timestamp; time (middle 32 bit of NTP timestamp) of the most
recent RTCP sender report (SR)

DLSR (32 bits) delay since last SR expressed in units of 1/65536 seconds, between
receiving the last SR packet from source SSRC_n and sending this
reception report block; if no SR has been received yet, the DLSR-field is
set to zero

2.6.2 Further RTCP Reports
Receiver Report – RR

Provides statistics of reception from participants that are not active senders. The format is the
same as the SR packet except that the sender info is missing and the packet type field is set to 201
(i.e. Receiver Report).

Source Description Items – SDES

The SDES packet contains of a header and zero or more chunks containing SDES items. There
are several possible source descriptions, starting with CNAME (Canonical End-Point Identifier),
NAME, EMAIL, PHONE, and a few more. The CNAME item is very important, because it should
provide a unique and a persistent transport-level identifier of the sender's source. It should be
derived algorithmically with the format user@host, so that a third-party (e.g. the service provider)
can monitor the flow of RTP packets15.

BYE: Indicates end of participation

The BYE packet indicates that one or more sources are no longer active [17].

APP: Application-specific functions

The APP packet should be used for testing and application-specific functions [17].

2.6.3 RTCP Packet Format
As shown in Figure 2.9 a RTCP compound packet can contain several different RTCP packets

and is enveloped in a lower layer protocol, such as UDP. The compound packet has to start with a
report packet (SR or RR) and it has to contain a SDES packet with a valid CNAME. Furthermore
there should only be one compound packet per report interval and an implementation of RFC-3550
should ignore incoming RTCP packet with unknown types [17].

15 Note that this assumes that the RTCP packets are not encrypted or tunneled.

Adding NTP and RTCP to a SIP User Agent 19
Chapter 2 Background: Voice over IP

2.6.4 RTCP Transmission Interval
The RTCP traffic should be small relative to the primary function (sending RTP data packets)

and should be known for each participant, so that it can be included in the bandwidth specification.

SendingInterval minimum(in sec)= 360
bandwidth in kilobits per sec (2.5)

The fixed minimum interval of sending RTCP packets should be 5 seconds, but it should be
adjusted to the bandwidth of the RTCP sender as shown in Formula 2.5. So the minimum can be
less than 5 seconds for a high bandwidth connection [17]. As it can be seen with Ethereal, the
throughput of RTP packets is 10,700 bytes per second (50 packets with 214 bytes each), whereas a
RTCP packet containing only a Sender Report has only 94 bytes (18,8 bytes per second with a 5-
seconds interval) [21].

2.7 RTP Control Protocol Extended Reports – RTCP XR
The RTP Control Protocol Extended Reports (RTCP XR) enhances RTCP. RTCP XR defines

seven block types, which can be divided into three categories:
A. Packet-by-packet block types

1. Loss Run Length Encoding (RLE) Report Block
2. Duplicate RLE Report Block
3. Packet Receipt Times Report Block

B. Reference time information block types
1. Receiver Reference Time Report Block
2. Delay since last Receiver Report (DLRR) Report Block

C. Summary metric block types
1. Statistics Summary Report Block
2. VoIP Metrics Report Block

In this thesis we will only introduce categories B and C; for further information about category A
see [7].

Figure 2.9: Example of a RTCP compound packet [17]

Adding NTP and RTCP to a SIP User Agent 20
Chapter 2 Background: Voice over IP

Table 2.4: XR Packet Format [7]

0 8 16 31

V=2 P reserved PT=XR=207 length

SSRC of sender

report block(s)

An XR packet consists of a RTP-version field, a padding flag, 5 bits reserved for future
definition, packet type field (XR = 207), a length field, SSRC field, and report block(s).

Table 2.5: Format of an extended report block [7]

0 8 16 31

BT type-specific block length

type-specific block contents

Each report block consist of a 8-bit block type field (BT), another 8-bit type-specific definition, a
16bit block length field, and the type-specific block contents, which are as follows [7]:

The Receiver Reference Time Report Block (BT=4) allows non-senders to send NTP timestamps,
which indicates their wall clock time when the block was sent.

The DLRR Report Block (delay since the last Receiver Report, BT=5) extends RTCP, so that
non-senders can calculate round trip times (RTT). It extends RCTP's DLSR mechanism and uses a
similar format.

The Statistics Summary Report Block (BT=6) carries additional information about lost packets,
jitter measurements, and time-to-live (TTL) values, which can be useful for network management.

The VoIP Metrics Report Block (BT=7) provides packet loss and discard metrics, delay metrics,
analog metrics, and more.

Adding NTP and RTCP to a SIP User Agent 21
Chapter 3 The program “minisip”

3 The program “minisip”

3.1 Using minisip
As introduced in section 2.1, minisip is a softphone application for calling SIP-based phones or

other computers with an SIP application, i.e. it is a SIP user agent (UA). Under Microsoft's
Windows operating system minisip is currently available with a command line interface; just
recently a user interface version has become available.

Before starting it is necessary to configure the SIP settings in the configuration file
“.minisip.conf“ (it should be in [Project-Folder]\Project\minisip\debug\). In this configuration file
you have to specify your SIP proxy (e.g. sip:kth@iptel.org16), your user name (e.g. kth) and
password. There are many variables in .minisip.conf, such as CODECs, UDP, and TCP ports, and
much more that can be specified to control the configuration of this client; for a detailed sample
configuration file see Listing 8 in the Appendix.

After starting minisip it should display the following message:
Register to proxy iptel.org OK
IDLE$

Now you can use the call-command to call a SIP phone of your choice, for example:
IDLE$ call cisco1@130.237.15.222

16 You can register for an account at the SIP proxy http://www.iptel.org/.

http://www.iptel.org/

Adding NTP and RTCP to a SIP User Agent 22
Chapter 3 The program “minisip”

3.2 Minisip's architecture
This section introduces the basic architecture and essential procedures of minisip.

3.2.1 Start-up
As it can be seen in Figure 3.1, minisip will first create SipSoftPhoneConfiguration and

MinisipTextUI with its constructor (Minisip::Minisip). SipSoftPhoneConfiguration is
used as a global container for objects (e.g. a new NTP object) and global variables.

In Minisip::initParseConfig() all necessary objects for registering a SIP softphone will
be initialized; these objects are IpProvider, MediaHandler, Sip, and MessageRouter. Next
the configuration file .minisip.config will be parsed and saved in a new SipIdentity and an
object of class NTP is instantiated.

3.2.2 Calling Procedure
From objects Sip or DefaultDialogHandler the Session will be started for each call by

MediaHandler, which is the key class for handling media streams in minisip. As depicted in
Figure 3.2 the MediaHandler will first create a Session object and then initialize all necessary
objects for sending and receiving RTP and RTCP packets.

Figure 3.1: minisip start-up sequence

Adding NTP and RTCP to a SIP User Agent 23
Chapter 3 The program “minisip”

Figure 3.3 shows how minisip handles incoming and outgoing (S)RTP packets. A
RtpReceiver is instantiated for each incoming source (SSRC), but it can have one or more media
streams (MediaStreamReceiver). When a peer is sending both audio and video streams, minisip
has to handle two different streams from the same source.

On the sender's side there is only the MediaStreamSender, because minisip does not care if
2 streams are related to each other.

Figure 3.2: Call-setup procedure, where
StSt is the object of class StreamStatistics, and
NTP is the object of class NTP (which is stored in SipSoftPhoneConfiguration).

Adding NTP and RTCP to a SIP User Agent 24
Chapter 3 The program “minisip”

Figure 3.4 shows the upper level of Figure 3.3 in more detail. Besides RtcpSender and
RtcpReceiver another class (StreamStatistics) is needed to collect information of incoming
and outgoing streams for RTCP reports. RtcpSRManager processes each received RTP packet and
collects information necessary for the next RTCP packet. When the RTCP interval has been reached
RtcpSRManager gets information concerning sent RTP packets through StreamStatistics and
saves the necessary statistics for RtcpReceiver. When the RTCP packet (for a full class diagram
of RTCP packet see Figure A.2) has been built it will be sent by RtcpSender.

Figure 3.3: Audio Media System of minisip; figure based on [21] and [5]

Figure 3.4: Audio Media System including RTCP

Adding NTP and RTCP to a SIP User Agent 25
Chapter 3 The program “minisip”

3.2.3 RTCP Packet Structure
Minisip uses different naming for the RTCP compound packet and RTCP packet than those used

in RFC-3550 [17], as introduced in section 2.6.3. Table 3.1 shows the corresponding names.

Table 3.1: Names as used in minisip vs. RFC-3550

Naming in minisip Naming in RFC-3550

RtcpPacket RTCP compound packet (see 2.6.3)

RtcpReport RTCP packet (see 2.6.3)

RtcpReportReceptionBlock Report block (see 2.6.1)

Figure 3.5 shows the RTCP packet structure in minisip17. All classes in grey are implemented
and used by minisip, whereas classes with white background are available, but not yet fully
implemented.

17 A RTCP Packet Structure including SDES in more detail can be seen in Figure A.2 in the Appendix.

Figure 3.5: RTCP Packet Structure in minisip

Adding NTP and RTCP to a SIP User Agent 26
Chapter 3 The program “minisip”

RtcpPacket An object class for the compound RTCP packet as described in RFC-
3550 [17].

RtcpReport Inherits RtcpHeader and is inherited by various kind of report types, such
as RtcpReportSR, RtcpReportRR.

RtcpHeader Represents the header section of a RTCP report and is inherited by
RtcpReport.

RtcpReportSR Represents the Sender Report of RTCP. It inherits the RtcpReport and
thus also RtcpHeader.

RtcpReportRR Same structure as RtcpReportSR, but without the sender info.
RtcpReportSDES Represents the source description (SDES) of RTCP. It is inherited by

SDESChunk, which can be of a specific kind of SDES, such as CNAME,
EMAIL, etc. For a more detailed diagram in the sense of SDES, see
Figure A.2 in the Appendix.

RtcpReportSenderInfo Represents the sender info section of a RTCP Sender Report.
RtcpReport
ReceptionBlock

Represents the report block of a RTCP report.

3.3 RTP sequence order and packet loss
While calculating packet loss might at first seem to be a very simple computation there are

several things, which have to be considered when calculating packet loss:
1. sequence of RTP packets and their potential missorder (i.e., when they are received in the
wrong sequence)
2. inter packet jitter
3. new RTP sequence number cycle
4. real packet loss
The above points can also occur together; for example after a (long) inter packet jitter a packet

arrives in the wrong order (i.e., out of sequence), as depicted in Figure 3.6.

Figure 3.6: Exemplary time line for arrived RTP packets, where
tx is the exact timeout time
sx is the time sending a RTCP packet

Adding NTP and RTCP to a SIP User Agent 27
Chapter 3 The program “minisip”

Table 3.2: Exemplary time table based on Figure 3.6

RTCP packet sent received expected cum. lost fraction lost

s1 3 3 0 0

s2 6 7 1 64

s3 8 12 4 154

s4 11 13 2 0

First three packets are received in order at the receiver without any inter arrival jitter. The next
packet (#60), however, arrives after the last packet in order (#57). Packet 60 is out of order, because
it precedes packets 58 and 59, where the latter packet finally arrives after packet 60; therefore we
only actually lost a single packet. The fraction lost is calculated as shown in equation 3.1:

fraction lost=
cummulative losss2−cummulative losss1

expected packetss2−expected packetss1
∗256=1

4
∗256=64 (3.1)

Since fraction lost is represented as an 8 bit integer representing the fractional loss in units of
1/256, the fraction in equation 3.1 has to be multiplied by 256. At time s3 minisip would expect five
more packets (#62 - #66), but only two packets have been received, so there is a packet loss of three
packets since s2; since the start of the session five packets have been lost (cumulative lost). At time
s4 minisip get more packets than expected, thus the fraction lost would be negative, but a negative
fractional loss is not suitable and has to be replaced by a zero fraction loss. Note also that the
cumulative loss is decreasing and therefore correcting itself, because packets might arrive late (such
as packets 63 and 65 at t3), but the cumulative loss will be corrected next time (in this example at
t4).

3.4 Using NTP in minisip
As described in Section 2.5, all NTP timestamps are represented by an unsigned 64-bit fixed

point number. Table 3.3 shows how time is encoded in NTP format.

Table 3.3: Structure of NTP timestamps

0 15 31 47 63

integer-part (MSW) fraction-part (LSW)

The time shown in Figure 2.8 (May 9, 2006 11:51:32,8281 UTC) in NTP timestamp format is
encoded as (shown in binary, hexadecimal, and decimal):

1100 1000 0000 1011 0000 0000 1100 0100
C 8 0 B 0 0 C 4

3,356,164,292 (seconds)

1101 0100 0000 0000 0000 0000 0000 0000
D 4 0 0 0 0 0 0

3,556,769,792 (2-32 seconds)

The integer-part can just be handled as an ordinary 32-bit integer and represents seconds from
1900-01-01, 0:00:00,0000 UTC. The Least Significant Word (LSW) represents the fraction of a
second, measured in 2-32 seconds; equation 3.2 shows how to convert from LSW to microseconds

Adding NTP and RTCP to a SIP User Agent 28
Chapter 3 The program “minisip”

(µs):

s=LSW∗ 1
232=3,556 ,769 ,792∗ 1

4,294 ,967,296
=0.828125 seconds (3.2)

For RTCP the middle 32-bits of the NTP timestamp is needed for last sender report (LSR) and
delay since last sender report (DLSR) (see section 2.6.1); the LSR value of the time in Table 3.3
would be 12,899,328 (hex: 00C4 D400).

As depicted in Figure 3.7, the NTP timestamp is stored in an object class, named
NTPtimestamp, which is instantiated by the class NTP. Methods getFullNTPtimestamp() and
getNTPtimestamp() both return a Memory Reference (MRef), which is minisip's Smart Pointer
implementation [12]. Using template class MRef it is possible to check types of pointers and
therefore this is a safe way to access these references.

Class NTP gets a current time in microseconds from the package boost.Date [2], then converts
this into NTP format and saves it in a new object of type NTPtimestamp. Formerly ibmts – an
IBM18 timestamp – was used, but this has been depreciated, since it is “only” a timestamp and does
not implicitly get an accurate UTC time. Timestamps are normally used for comparision of two or
more points in time. Since we have different clocks in VoIP it is necessary to use a global time to
accurately compare times. Listing 3 in Appendix C.1 shows the C++ code for doing all computation
described in this section.

The smallest resolution of time provided by the built-in Real-Time Clock (RTC) in the computer
used for this thesis work, ccsser2, which is an Intel® 82801DB LPC Interface Controller 24C0, is
around 122 µs19. Therefore minisip can only provide an accuracy of about one eight millisecond on
an Intel® XeonTM CPU running at 2.80GHz [8].

18 IBMTM (International Business Machines) is a registered name; see http://www.ibm.com/ for more information

19 Machine ccsser2 is a Dell Precision 450 workstation.

Figure 3.7: NTP class structure

http://www.ibm.com/

Adding NTP and RTCP to a SIP User Agent 29
Chapter 4 Testing

4 Testing

4.1 Test setup
There are two machines (A and B) in this test, each is running minisip. The TCP/UDP traffic

goes through a NIST Net server20, which forwards every packet to the other peer (see Figure 4.1)
[13].

The NIST Net server has been configured to drop a certain amount of packets21:
cnistnet -a b2 a2 –-drop 7 –-up
cnistnet -a a2 b2 --drop 1 –-up

Thus approximately seven per cent of all packets from machine B (interface B2) to A (interface
A2) will be dropped by NIST Net and one per cent on the reverse path. The value of 1% has been
chosen to check if minisip will detect even small amounts of packet loss, and with an quite high
7% of loss we can check if the packet loss calculations are correct.

20 For a step-by-step instruction for test setup, see Appendix C.1.

21 To check if nistnet has been configured correctly type command cnistnet -R.

Figure 4.1: Test setup with a NIST Net server

Adding NTP and RTCP to a SIP User Agent 30
Chapter 4 Testing

4.2 Test results
This test was conducted to check if all fields of the RTCP packets have been computed correctly.

The most significant values are listed in Table 4.1, as extracted by Ethereal.

This test validated the field values in each RTCP packet. This validation was done by comparing
statistics provided by RTCP packets and by Ethereal RTP stream analysis; in addition to the
displayed fields, LSR and sender's packet count have been checked. RTCP packet # 3 from B2 was
dropped by NIST Net; to recognize loss of RTCP packets, the other peer has to check the DLSR
field. Therefore in RTCP packet #3 of A2 the DLSR is much higher than previously, because peer
A2 did not receive RTCP #3 from B2.

Since the values transmitted by RTCP has been identical with values captured by Ethereal, the
underlying RTCP code is working properly. A reason for a zero packet loss in packet #3 and #4 of
B2 might be that repeated packets has been dropped by NIST Net.

Table 4.1: Test results

RTCP # source
fraction lost DLSR

remark
in 1/256 in % in 1/65536 s in ms

1 B2 2 1.04% 2 0 0
1 A2 18 7.29% 14 3 072 47
2 B2 1 0.40% 3 325 526 4 967
2 A2 20 7.41% 33 4 096 63
3 B2 0 0.00% 3 324 214 4 947 not transmitted
3 A2 19 7.60% 52 331 776 5 063
4 B2 0 0,00% 3 326 183 4 977
4 A2 19 7.60% 71 1 024 16

cum.
lost

1st RTCP packet

Adding NTP and RTCP to a SIP User Agent 31
Chapter 4 Testing

Figure 4.2 shows RTCP packet # 4 of A2 as captured by Ethereal.

4.3 Further tests
With minisip 0.7.1 for Windows XP it is possible to make conference calls. The code which this

thesis is based on, however, is not yet able to make conference calls. Minisip kills the running
process with a “Debug error”, but the location and reason for this error could not be determined.
Since the minisip “trunk” is the current version most developers are working on and conference
calls are already implemented, it is reasonable to move the RTCP code into trunk. While previous
Master theses have been of a more experimental nature and the code was ported from using the
GNU compiler to using Microsoft's Visual Studio, the version of the code used in this thesis and
that of Xiaokun Yi has been saved in its own branch. Since this code branch was created, a lot of
development work has taken place on the trunk, hence implementing RTCP in trunk would enable
conference calls more easily than trying to understand the problems in the code underlying this
thesis. According to Erik Eliasson, a lead programmer of minisip, several changes are needed
before the RTCP code can be implemented in the trunk. Therefore the integration of RTCP code in
the current trunk version should be done by one of the minisip developers.

Figure 4.2: RTCP packet in ethereal

Adding NTP and RTCP to a SIP User Agent 32
Chapter 4 Testing

A video call would have been a valuable test especially for QoS, because minisip has to
distinguish between audio and video data. As it can be seen in Figure 3.3, minisip creates two
MediaStreamReceiver objects when receiving a video call: one stream for audio and one for
video. However, there is only one instance of RtpReceiver and therefore only one RtcpSender,
which means minisip calculates receiving statistics for each sender source (SSRC) and not for each
received stream! Since audio and video streams can transmitted through different network routes, it
may happen that the audio stream loses a lot of packets, while video has a perfect connection. This
situation cannot yet be distinguished by minisip22.

22 Note that it could not found out, how Skype or eyeBeam are handling this issue.

Adding NTP and RTCP to a SIP User Agent 33
Chapter 5 Conclusion and Future Work

5 Conclusion and Future Work

5.1 Conclusion
The objective of this thesis was to examine how to exploit a sense of global time in Voice over

IP. It is clear that this global time can be used for Quality of Service (QoS) and synchronization of
streams. This thesis has focused on the first of these uses in the context of RTCP.

NTP was selected as a global timebase, since it is a standardized protocol for over two decades
and provides all necessary mechanisms for getting knowledge of accurate global time. Since
spyware and hackers try to use standard ports, such as NTP's 123, to get through firewalls, even an
internet standard, such as NTP, might cause a security leak. Therefore most intranets have NTP
proxies, which synchronize with other NTP servers (see section 2.5). As a result there has to be
either a proxy NTP server inside the intranet or a GPS receiver can be used to locally get the correct
global time for use by an NTP server inside the intranet.

A full implementation of RTCP, which provides a valuable feedback mechanism for RTP
streams, requires NTP for analyzing delays and jitter. A big problem of RTCP, however, is
frequently an incomplete or limited implementation23 in VoIP software. This thesis provides a full
implementation of RTCP's Sender Report (SR), which is sufficient for an ordinary person-to-person
call. A challenge when adding RTCP to minisip has been connecting both, sending and receiving,
streams to provide the required statistical information (see section 3.2). This leads to the
introduction of the Stream Statistic class - which can interact with both the senders and receivers of
media streams.

5.2 Future Work
This thesis provides basic structures and methods for more sophisticated features, which are

described below.

Integrate RTCP and NTP in minisip trunk

As noted in section 4.3, conference calls do not work with the underlying code base used for this
thesis. Hence the next very important step involves integrating RTCP and NTP code into the current
version (maintained by subversion (SVN)), in which conference calls are working. Though it
sounds easy, it is not, because many people have changed quite a lot of code simultaneously. As a
result this integration should be done by one of the main minisip developers. Afterwards it should
be possible to check if RTCP is working properly in conference calls, video calls, and conference
video calls.

Implement RTCP RR, SDES, and XR

The basic procedure of sending and receiving RTCP packets has been implemented, but it should
be extended by enabling Receiver Reports (RR) for nodes that are only receivers and never senders,
source description (SDES), and extended Reports (XR). RR itself should not be a big problem,
because it has the same structure as SR, but without any sender info. The basic structure of SDES is
depicted in Figure A.2, but has not been implemented. Fortunately SDES and XR are not essential

23 For example, in X-Lite's free version RTCP is not fully implemented. It is only implemented in the commercial
version “eyeBeam” [3]. Skype [19] could have implemented RTCP fully, but this can only be analyzed by a Skype
peer, as all of the Skype traffic is encrypted.

Adding NTP and RTCP to a SIP User Agent 34
Chapter 5 Conclusion and Future Work

for QoS and only provides additional information about peers, but for a more sophisticated and user
friendly interface both should be implemented.

Evaluate RTCP

Currently minisip considers only packet loss statistics from RTCP packets for CODEC switching
(see [21]). Additionlly, RTCP could be used to adjust the playout buffer as described in section 2.4.
This should be evaluated in a future thesis. Additionally, the user interface could alert the user when
a certain amount of jitter or packet loss has been observed.

Synchronizing time through NTP automatically

Currently the NTP module only uses the value of the local clock, but does not check if this host's
clock is synchronized with some accurate time source. To be able to synchronize time, minisip
should discover potential NTP servers and then – if minisip has administrative rights – set the
synchronization source for NTP, as was done manually in section 2.5.3. When the clocks of all
participants provide accuracate time, then interstream synchronization could be realized, as
described in section 2.4. This work should probably occur in combination with the above work
concerning the playout buffer as the multiple sources could be synchronized via the time offsets
used in [14].

Adding NTP and RTCP to a SIP User Agent 35
Appendix

References
[1] Banerjee, K.: "Introduction to RTP A Made Easy Tutorial", 2005

http://geocities.com/intro_to_multimedia/RTP/
[2] Boost community: "Boost C++ Libraries", May 2006 - http://www.boost.org/
[3] CounterPath: "CounterPath product page", May 2006 - http://www.xten.com/
[4] Ebert, Jean-Pierre: "Energy-efficient Communication in Ad Hoc Wireless Local Area

Networks", Apr 2004 - http://edocs.tu-berlin.de/diss/2004/ebert_jeanpier
[5] Eliasson, Erik: "Minisip design overview", May 2006 - http://www.minisip.org/
[6] Elliot, Colm: "Stream Synchronization for Voice over IP Conference Bridges", 2004 -

ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS
[7] Friedman, et al.: "RTP Control Protocol Extended Reports (RTCP XR)", Jul 2003 -

http://www.faqs.org/rfcs/rfc3611.html
[8] Intel: "Intel(R) 82801 DB I/O Controller Hub 4 (ICH4) Datasheet", May 2002
[9] Microsoft: "Basic Operation of the Windows Time Service", Nov 2003 -

http://support.microsoft.com/?kbid=224799
[10] Microsoft: "Windows Time Service Tools and Settings", Mar 2003 -

http://technet2.microsoft.com/WindowsServer/en/Lib
[11] Mills, David L.: "Network Time Protocol (Version 3)", Mar 1992

http://www.faqs.org/rfcs/rfc1305.html
[12] Minisip community: "minisip website", May 2006 - http://www.minisip.org/
[13] Nation Institute of Standards and Technology, U.S.: “NIST Net home page”, Jul 2005

http://snad.ncsl.nist.gov/nistnet/
[14] Pardo, Ignacio Sánchez: "Spatial Audio for the Mobile User", 2005 -

ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS
[15] Rosenberg, et. al.: "SIP: Session Initiation Protocol", Jun 2002 -

http://www.faqs.org/rfcs/rfc3261.html
[16] Santasusana, Cardona: "MiniSIP Overview", Jun 2006 - http://www.minisip.org/doc/
[17] Schulzrinne, et al.: "RTP: A Transport Protocol for Real-Time Applications", Jul 2003 -

http://www.faqs.org/rfcs/rfc3550.html
[18] Shih, et. al.: "Wake on Wireless: An Event Driven Energy Saving Strategy [...]", Sep 2002 -

http://oscar.lcs.mit.edu/~eugene/research/papers/s
[19] Skype Limited: "Skype product page", May 2006 - http://www.skype.com
[20] Windl, et. al.: “The NTP FAQ and HOWTO”, Oct 2005

http://www.ntp.org/ntpfaq/NTP-a-faq.htm
[21] Yi, Xiaokun: "Adaptive Wireless Multimedia Services", May 2006 -

ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS

Adding NTP and RTCP to a SIP User Agent 36
Appendix

Appendix

Appendix A. Diagrams
This appendix contains additional and full page diagrams.

Figure A.1: Structure of an SIP User Agent, such as minisip, and its subsystems

Adding NTP and RTCP to a SIP User Agent 37
Appendix

Figure A.2: RTCP Packet Structure in minisip including SDES structure in more detail

Adding NTP and RTCP to a SIP User Agent 38
Appendix

Appendix B. Minisip code excerpts
This appendix shows essential code excerpts for implementing the methods described in this

thesis.

B.1 Excerpts of NTP and NTPtimestamp

/* to ensure that header file is not read twice ! */
#ifndef NTPTIMESTAMP_H
#define NTPTIMESTAMP_H

#include<config.h>
#include <libmutil/MemObject.h>

/** Object class representing NTP timestamps.
NTP_MSW - Most Significant Word: first 32 bits of NTP timestamp
NTP_LSW - Least Significant Word: second 32 bits of NTP timestamp
NTP_MID - mid 32 bits: last 16 bits of MSW and first 16 bits of LSW */
class NTPtimestamp : public MObject {

public:
/* public Constructors, Getters and Setters */

private:
uint32_t NTP_MSW;
uint32_t NTP_LSW;
uint32_t NTP_MID;

};

#endif
Listing 1: Header file of class NTPtimestamp

/* #ifndef and #includes */

class NTP : public MObject {
public:

/* public methods of class NTP are defined here */

private:
// 2^32 is equivalent to 4,294,967,296
static const uint64_t NTP_MULTIPLIER = 4294967296;
// from 1900 to 1970 it is 2,208,988,800 seconds
static const uint32_t SECONDS_1900_1970 = 2208988800;

};

#endif
Listing 2: Header file of class NTP

/** Full NTP timestamp in MSW and LSW, including MID (middle 32 bits).
*/

Adding NTP and RTCP to a SIP User Agent 39
Appendix

MRef <NTPtimestamp *> NTP::getFullNTPtimestamp() {
static ptime ptime_1970 = ptime(date(1970,1,1));
static ptime now;
static time_duration diff;

static uint16_t MSW16;
static uint16_t LSW16;
static uint32_t MID;

// get the current time from the clock in microsecond resolution
now = microsec_clock::universal_time();

diff = now - ptime_1970;

MRef <NTPtimestamp *> retNTP = new NTPtimestamp (
(uint32_t) (diff.total_seconds() + SECONDS_1900_1970),
(uint32_t) (((diff.total_microseconds() -

 (diff.total_seconds() * 1000000)) * NTP_MULTIPLIER) / 1000000));

// calculating middle 32-bits of NTP timestamp
MSW16 = (uint16_t) retNTP->getNTP_MSW();
LSW16 = (uint16_t) (retNTP->getNTP_LSW() >> 16);
MID = 0;
MID = MID | MSW16;
MID = (MID << 16) | LSW16;
retNTP->setNTP_MID(MID);

return retNTP;
}

Listing 3: Method getFullNTPtimestamp() of class NTP

uint64_t NTP::getMicroSeconds(MRef <NTPtimestamp *> ts) {
return (((uint64_t) ts->getNTP_MSW()) * 1000000) +

(((uint64_t) (ts->getNTP_LSW())) * 1000000) /
 NTP_MULTIPLIER;

}
Listing 4: Method getMicroSeconds(...) of class NTP

B.2 Excerpts of RTCP code
void RtpReceiver::run() {

MRef<SRtpPacket *> packet;

#ifdef RTCP_ENABLED
IPAddress *remoteAddress=NULL;
int32_t remotePort=0;

#ifdef NTP_ENABLED
static MRef <NTPtimestamp *> currentTs = ntp->getNTPtimestamp();

#endif
#endif

Adding NTP and RTCP to a SIP User Agent 40
Appendix

// begin while loop for receiving RTP packets
while(!kill) {

#ifdef RTCP_ENABLED
static RtcpPacket *rtcpPacket;

/* the statement next line is NOT working at this point, because
rtcpSender has not been created yet in MediaHandler !!!
Therefore first timeout is just 1 second. */

// static uint32_t rtcpInterval = rtcpSender->getRtcpInterval();

static uint64_t time = ntp->getMicroSeconds(currentTs);
static uint64_t timeout = time + 1000000;

// initialize more variables [...]

currentTs = ntp->getNTPtimestamp();
time = ntp->getMicroSeconds(currentTs);

// call not yet answered or no RTP packet received
if (time >= timeout && firstTime) {

timeout = time + rtcpSender->getRtcpInterval();
} else if (time >= timeout) {

rtcpSender->sendRtcpPacket();
currentTs = ntp->getNTPtimestamp();
time = ntp->getMicroSeconds(currentTs);
timeout = time + rtcpSender->getRtcpInterval();

}
#endif // RTCP_ENABLED

// code for receiving packets [...]
// TO DO:
// authenticate RTP packets; currently in MediaHandler

#ifdef RTCP_ENABLED
// **************************************
// RTP packet arrived
// calculate jitter, check seq-#, etc
rtcpSender->getRtcpSRManager().prepareSR(packet, time);

// first packet --> re-start timer [...]
#endif // RTCP_ENABLED

// handle RTP packet [...]
} // end while loop

} // end RtpReceiver::run
Listing 5: Method run() in class RtcpReceiver

Adding NTP and RTCP to a SIP User Agent 41
Appendix

void RtcpSRManager::jitterCalc(uint32_t RtpTimestamp, uint64_t time)
{ /** calculates jitter (max. 2147 seconds = 32 bit) */

static uint32_t oldRtpTimestamp = RtpTimestamp;
static uint64_t oldTime = time;
static double D; // Deviation

// calculate deviation; 1 sample = 125 microsec.
D = ((time - oldTime) / 125) - (RtpTimestamp - oldRtpTimestamp);

this->jitter = (this->jitter + (abs(D) - this->jitter)) / 16;

oldTime = time;
oldRtpTimestamp = RtpTimestamp;

}
Listing 6: Method jitterCalc(..) in class RtcpSRManager

RtcpReportSR *RtcpSRManager::createSenderReport() {
/** creates Sender Report (SR) */

// Declarations [...]

// Calculating lost and fraction lost
this->expected = this->max_seq - this->base_seq + 1;
this->cumulativeLost = (this->expected + this->expected_prior) -

(this->received + this->received_prior);
lost = (this->expected + this->expected_prior - lastExpected) -

(this->received + this->received_prior - lastReceived);

if ((this->expected - lastExpected) == 0 || lost <= 0) {
fraction = 0;

} else {
fraction = (float) lost / (float) (this->expected + this-

>expected_prior - lastExpected);
}
this->fractionLost = (uint8_t) (fraction * 256);
lastExpected = this->expected + this->expected_prior;
lastReceived = this->received + this->received_prior;

// Computing NTP timestamps
#ifdef NTP_ENABLED

LSR = ts->getNTP_MID();
ts = ntp->getFullNTPtimestamp();
if (sStt->getLSR() != 0) {

DLSR = ts->getMID_Diff(sStt->getLSR());
}

uint64_t rtp_diff = (ntp->calcDiff(ts, sStt->getNTPtimestamp()) /
125);

RtcpReportSR *sr=new RtcpReportSR(*(new RtcpReportSenderInfo(
sStt->getLastRtpTs() + rtp_diff,
sStt->getSPacketCount(),

Adding NTP and RTCP to a SIP User Agent 42
Appendix

sStt->getSOctetCount(),
ts->getNTP_MSW(),
ts->getNTP_LSW())
));

RtcpReportReceptionBlock *rb=new RtcpReportReceptionBlock();
#else

RtcpReportSR *sr=new RtcpReportSR(*(new RtcpReportSenderInfo(
sStt->getLastRtpTs(),
sStt->getSPacketCount(),
sStt->getSOctetCount(), 0,0)));

RtcpReportReceptionBlock *rb=new RtcpReportReceptionBlock();
#endif

// Setting RTCP packet
rb->set_rbssrc(this->ssrc_n);
rb->set_flost(this->fractionLost);
rb->set_cumlost(this->cumulativeLost);
rb->set_seqhigh(this->max_seq);
rb->setSeqHighCycle(this->cycles);
if (this->jitter < 0) {

rb->set_jitter(0);
} else {

rb->set_jitter((uint32_t) this->jitter);
}
rb->set_lsr(LSR); // Last SR timestamp
rb->set_dlsr(DLSR); // Delay since last SR timestamp (received

from RtcpReceiver!!)
sr->add_reception_block(rb);
sr->set_sender_ssrc(sStt->getSSRC());
sr->get_header().set_payload_type(200);

return sr;
}

Listing 7: Method createSenderReport() in class RtcpSRManager

B.3 Configuration File “.minisip.conf”
<version>

2
</version>
<account>

<account_name>
Franz Mayer

</account_name>
<sip_uri>

sip:kth@iptel.org
</sip_uri>
<proxy_addr>

iptel.org
</proxy_addr>
<register>

yes

Adding NTP and RTCP to a SIP User Agent 43
Appendix

</register>
<proxy_port>

5060
</proxy_port>
<proxy_username>

kth@iptel.org
</proxy_username>
<proxy_password>

password
</proxy_password>
<pstn_account>

no
</pstn_account>
<default_account>

yes
</default_account>

</account>
<tcp_server>

yes
</tcp_server>
<tls_server>

no
</tls_server>
<secured>

no
</secured>
<ka_type>

psk
</ka_type>
<psk>

Unspecified PSK
</psk>
<certificate>
</certificate>
<private_key>
</private_key>
<ca_certificate>
</ca_certificate>
<dh_enabled>

no
</dh_enabled>
<psk_enabled>

no
</psk_enabled>
<check_cert>

yes
</check_cert>
<local_udp_port>

5060
</local_udp_port>
<local_tcp_port>

5060
</local_tcp_port>
<local_tls_port>

Adding NTP and RTCP to a SIP User Agent 44
Appendix

5061
</local_tls_port>
<sound_device>

dsound:test
</sound_device>
<mixer_type>

spatial
</mixer_type>
<codec>

speex
</codec>
<phonebook>

file://C:\minisip_win32\Project\minisip\debug/.minisip.addr
</phonebook>

Listing 8: Sample configuration file (.minisip.conf)

Appendix C. Hands-On reference

C.1 Nistnet
1. Install nistnet24 as described in http://snad.ncsl.nist.gov/nistnet/install.html
2. Configurate nistnet

2.1. Load nistnet module with either of the following commands25:
a) insmod nistnet
b) modprobe nistnet

2.2. Start nistnet with cnistnet -u
2.3. Check if nistnet is running with cnistnet -G

3. Configure nistnet server (on Linux)
3.1. Set each interface to the correct IP address:

a) ifconfig eth0 {C1,192.168.3.1}
b) ifconfig eth2 {C2,192.168.2.2}

3.2. Set routing table
a) Check route table with route -n
b) route add -net 192.168.3.0 netmask 255.255.255.0 gw 192.168.3.1

dev eth0
c) route add -net 192.168.2.0 netmask 255.255.255.0 gw 192.168.2.2

dev eth2
3.3. Set IP forward flag: echo “1” > /proc/sys/net/ipv4/ip_forward

24 Note: nistnet is only available for Linux.

25 Note: usually insmod should work, but if nistnet is not listed by the command lsmod, try modprobe.

http://snad.ncsl.nist.gov/nistnet/install.html

Adding NTP and RTCP to a SIP User Agent 45
Appendix

4. Configure Windows clients
4.1. Set connection settings26

a) IP address should be the ones defined in Figure 4.1 (A2 or B2 respectively)
b) Subnet mask should be 255.255.255.0
c) There should be no entry in Default Gateway for the LAN network.

4.2. Change routing tables with Windows Commands:
a) Check routing table with netstat -r or route print
b) On A2: route add 192.168.3.0 mask 255.255.255.0 192.168.2.2

metric 2 if [PCI Fast Ethernet Adapter]
c) On B2: route add 192.168.2.0 mask 255.255.255.0 192.168.3.1

metric 2 if [PCI Fast Ethernet Adapter]
4.3. Other important network issues

a) It is ESSENTIAL that every other network interfaces is disabled (if you have two or
more network interfaces). Otherwise minisip will create error message
“SipMessageTransport: sendmessage: exception thrown!” and will not
be able to send or receive any RTP packet!

b) Check firewall for blocked ports, programs etc. To be sure that the firewall is not
interfering turn firewall off.

5. Configure minisip
5.1. Delete the entries of tags in .minisip.conf:

a) <sip_uri>
b) <proxy_addr>

6. Start minisip: call test@{192.168.3.2,192.168.2.1}

C.2 Programming Environment
This appendix describes how to set up a Visual Studio 8.0 project, as has been used in this thesis.

To do so, it is necessary to have access to a working Visual Studio project, such as minisip on
ccsser2 in the ccslab at KTH.

1. Needed files from folders (for the sake of compability files should be saved in same folders)
1.1. C:\minisip_win32\
1.2. C:\OpenSSL\
1.3. C:\DX\Include\dsound.h
1.4. C:\DX\Lib\x86\dsound.lib, dxguid.lib
1.5. C:\boost_1_33_1\boost\
1.6. C:\boost_1_33_1\bin\boost\libs\date_time\

2. Configure header and include path Tools > Options; Projects and Solutions > VC++

26 To be found in Control Panel > Network Connections > Connection Interface > Properties > TCP/IP Internet
Protocol.

Adding NTP and RTCP to a SIP User Agent 46
Appendix

Directories
2.1. add include-paths

a) [Project-Folder]\minisip\include\
b) [Project-Folder]\lib*\include\
c) [OpenSSL-Folder]\include\
d) path to dsound.h
e) path to boost directory in C:\boost_1_33_1\

2.2. add library-paths
a) [Project-Folder]\Project\lib*\debug\
b) [OpenSSL-Folder]\lib\VC\static\
c) path to dsound.lib and dxguid.lib
d) path to boost directory:

C:\boost_1_33_1\bin\boost\libs\date_time\build\libboost_date_time.lib\vc-
8_0\debug\threading-multi\

3. Building project
3.1. This has only be done, when there have been any changes. If minisip project has been

copied from a working environment, e.g. ccsser2, step 4 can be skipped.
3.2. Rebuild (Build > Rebuild) the following projects in the right order; this have to be done

only if the solution has not been built yet
3.3. Note: Rebuild does build the project from the scratch, whereas Build does only build the

changes!
3.4. Note: You have to put the corresponding include path for each project at top2, e.g.

compiling [Project-Folder]\Project\libmutil you have to put [Project-
Folder]\libmutil\include at the top of all included files of minisip – these has to be done
before starting to build each project!

3.5. Building order:
a) [Project-Folder]\Project\lib*
b) [Project-Folder]\Project\minisip

4. Configure minisip settings in file C:\minisip_win32\Project\minisip\debug\minisip.conf
5. System paths

5.1. check if you have set the system variable HOME27 to
C:\minisip_win32\Project\minisip\debug

5.2. and restart Visual Studio
6. Now you should be able to run it (Debug > Start (Without) Debugging)

27 Can be found in Control Panel > System > Environment Variables

Adding NTP and RTCP to a SIP User Agent 47
Appendix

C.3 Programs Used
The following programs has been used throughout this Master thesis:

➢ Writing Master thesis

 OpenOffice for writing and diagrams
http://www.openoffice.org/

 EventStudio 2.5 for sequence diagrams
http://www.eventhelix.com/EventStudio/

 Poseidon for UML for class diagrams
http://gentleware.com

 Microsoft Office Visio Professional 2003 for further diagrams
http://office.microsoft.com/

➢ Programming and Testing

 Microsoft Visual Studio 2005
http://msdn.microsoft.com/visualc/

 minisip – open-source SIP soft phone
http://www.minisip.org/

 NIST Net – network emulator
http://snad.ncsl.nist.gov/nistnet/

 Ethereal Version 0.99.0 – network protocol analyzer
http://www.ethereal.com/

http://www.ethereal.com/
http://snad.ncsl.nist.gov/nistnet/
http://www.minisip.org/
http://msdn.microsoft.com/visualc/
http://office.microsoft.com/
http://gentleware.com/
http://www.eventhelix.com/EventStudio/
http://www.openoffice.org/

www.kth.se

COS/CCS 2006-14

	1Introduction
	1.1Organization of this report

	2Background: Voice over IP
	2.1The minisip user agent
	2.2Session Initiation Protocol – SIP
	2.3Real-time Transport Protocol – RTP
	2.3.1RTP Mixers and Translators

	2.4Synchronization in Voice over IP
	2.4.1Intrastream Synchronization
	2.4.2Interstream Synchronization
	Clock skew
	Different initial collection times
	Different initial playback times
	Network delay variation

	2.5Network Time Protocol – NTP
	2.5.1NTP Data Format
	2.5.2Time Synchronization with NTP
	2.5.3Using NTP

	2.6RTP Control Protocol – RTCP
	2.6.1Sender Report – SR
	Section 1: Header (64 bits / 2 words)
	Section 2: Sender Info (160 bits / 5 words)
	Section 3: Report Block(s) (192 bits / 6 words for each block)

	2.6.2Further RTCP Reports
	Receiver Report – RR
	Source Description Items – SDES
	BYE: Indicates end of participation
	APP: Application-specific functions

	2.6.3RTCP Packet Format
	2.6.4RTCP Transmission Interval

	2.7RTP Control Protocol Extended Reports – RTCP XR

	3The program “minisip”
	3.1Using minisip
	3.2Minisip's architecture
	3.2.1Start-up
	3.2.2Calling Procedure
	3.2.3RTCP Packet Structure

	3.3RTP sequence order and packet loss
	3.4Using NTP in minisip

	4Testing
	4.1Test setup
	4.2Test results
	4.3Further tests

	5Conclusion and Future Work
	5.1Conclusion
	5.2Future Work
	Integrate RTCP and NTP in minisip trunk
	Implement RTCP RR, SDES, and XR
	Evaluate RTCP
	Synchronizing time through NTP automatically
	References

	Appendix A. Diagrams
	Appendix B. Minisip code excerpts
	B.1 Excerpts of NTP and NTPtimestamp
	B.2 Excerpts of RTCP code
	B.3 Configuration File “.minisip.conf”

	Appendix C. Hands-On reference
	C.1 Nistnet
	C.2 Programming Environment
	C.3 Programs Used

