

A Scalable Autonomous File-based

Replica Management Framework

Dong Li

 Master of Science Thesis
 Stockholm, Sweden 2006
 ICT/ECS-2006-50

A Scalable Autonomous File-based

Replica Management Framework

 Dong Li

 Supervisor&Examiner
 Associate Professor Vladimir Vlassov
 (ECS/KTH)

 Master of Science Thesis
 Stockholm, Sweden 2006
 ICT/ECS-2006-50

Abstract
Data (file) replication is an important technology in the Data Grid that allows reducing

access time and improving fault tolerance and load balancing. Typical requirements to a

replica management system include QoS (efficiency) specified, for example, as an upper

bound on Round Trip Time; scalability, reliability, self-management and self-

organization, ability to maintain consistency of mutable replicas.

This thesis presents design and a prototype implementation of a scalable, autonomous,

service-oriented replica management framework in Globus Toolkit Version 4.0 using

DKS, which is a structured peer-to-peer middleware. The framework offers scalable and

self-organizing replica management service provided and consumed in a P2P network of

Grid nodes. The framework uses the ant – a social insect paradigm – and techniques of

multi-agent systems for collaborative replica selection. To validate and evaluate the

approach, a system prototype has been implemented in the GT4 environment using the

DKS P2P middleware. The prototype has profiled and tested on a computer cluster.

Acknowledgements
We are grateful to Professor Vladimir Vlassov for his help in the design and thesis
writing; to Mr. Konstantin Popov and Ali Ghodsi for help with the performance
evaluation and setting up test bed.

Table of Content
1 Introduction..- 1 -

1.1 Goals and Expected Results..- 3 -
1.2 Structure of the Thesis ..- 3 -

2 Background ..- 4 -
2.1 Peer-to-Peer (P2P) Computing ...- 4 -

2.1.1 Unstructured P2P ...- 5 -
2.1.2 Structured P2P ...- 5 -
2.1.3 Distributed K-ary System (DKS)...- 7 -

2.2 Globus Toolkit 4 ...- 9 -
2.3 Autonomic Computing..- 11 -
2.4 OGSI, WSRF and Grid ...- 12 -

3 Design ..- 15 -
3.1 System Design ..- 15 -

3.1.1 Location Information Component..- 16 -
3.1.2 Data Consistency Component..- 17 -
3.1.3 Data Transfer Component..- 17 -
3.1.4 Replica Selection Component..- 17 -
3.1.5 Statistics Component ...- 18 -

3.2 Replica Selection ..- 18 -
3.2.1 The Autonomous Ant...- 18 -
3.2.2 Replica Selection with the Help from the Ant ...- 19 -

3.3 Fault Tolerance, Scalability and Self-* Properties ...- 21 -
4 Related Work in Replica Management of the Data Grid...- 23 -

4.1 Replicas Location Service...- 23 -
4.2 Data Consistency ..- 25 -
4.3 Data Transfer ..- 26 -
4.4 Security Issues ..- 26 -
4.5 Higher Level Replica Management ..- 26 -

5 Prototype Implementations ..- 29 -
5.1 Data Consistency Component...- 29 -
5.2 Statistics Component ..- 30 -
5.3 Location Information Component...- 31 -

5.3.1 Replica Location Service ...- 31 -
5.3.2 Node Location Component ..- 32 -

5.4 Replica Selection Component...- 33 -
5.4.1 Agent Service...- 33 -
5.4.2 Notification Service ...- 35 -

5.5 The Components and The Corresponding Classes ...- 35 -
6 Profiling of Prototype ..- 36 -

6.1 Time Anatomy of Replica Selection...- 36 -
6.2 The Future Work in Performance Evaluation...- 38 -

7 Conclusions and Future Work ...- 39 -
8 Lists of Abbreviations..- 41 -
9 References..- 42 -
10 Appendixes ..- 46 -

Appendix A Java Doc ...- 46 -
Appendix B Use Cases..- 60 -
Appendix C WSDL Files ..- 61 -

C.1 Myagent.wsdl ...- 61 -
C.2 Notification.wsdl ..- 67 -
C.3 Statistics. wsdl..- 69 -
C.4 RLSDKS.wsdl ..- 72 -
C.5 AliveInfo.wsdl..- 76 -

Appendix D User Guides ..- 78 -

Table of Figures
Figure 1 A P2P Grid System based on Figure 6 from [12]...- 4 -
Figure 2 GT4 architecture schematic, including many components.............................- 10 -
Figure 3 DataGrid Architecture ..- 15 -
Figure 4 Main Components of Replica Management System- 16 -
Figure 5 Replica Selection ..- 20 -
Figure 6 Hierarchical RLS in the GT..- 24 -
Figure 7 Data Consistency Component Framework...- 30 -
Figure 8 Node Location Component Frameworks..- 33 -
Figure 9 Time consumption distribution for replica selection......................................- 38 -

Table of Tables

Table 1 Five normative specifications defined in the WSRF- 14 -
Table 2 Performance for selecting a replica ...- 37 -

 Chapter 1 Introduction

- 1 -

1 Introduction

The Grid, first brought forward by Ian Foster and Carl Kesselman, is the computing and
data management infrastructure that provides us with the ability to link together resources
as groups of complementary parts to support the execution of applications. The essences
of the Grid lay in three folds [1]. Firstly it is distributed. Its working environment could
be heterogeneous and dynamic. The second, it should use standard open general–purpose
protocols and interfaces. The third, nontrivial qualities of service should be delivered to
meet complex user demands.

The Grid can be divided into two categories according to application cases. One is the
Computational Grid, where large compute facilities are shared and computing intensive
jobs are sent to be executed at remote computational sites. The other is the Data Grid,
which emphasize applications that consume and produce large volumes of data. As far as
the Data Grid is concerned, a typical application case can have a large number of data
files distributed and replicated all around the globe. How to manage all these replicas is
not an easy task. We should consider heterogeneous and large scales such as wide area
network. Here when we talk about the replica, we mean the replica in the granularity of
file level. It is put in the shared storage space and exports to the outside user.

The principle functionality of replica management systems for the Data Grid is to
maintain and furnish information related to file replicas. Additionally we prefer that it
provides good scalability, some data consistency [2] among replicas according to the
application situation, and optimized replica distribution for reducing access time and so
on. A typical replica management contains the following basic elements.

• Information services, which could include replica location service, user access
history, metadata catalog and so on. For some services, such as metadata catalog,
centralized services could be accepted. But for others, such as Replica Location
Service (RLS), they are expected to be distributed to provide scalability and fault-
tolerance.

• Data transfer service, which provide file transfer among remote sites. Advanced
data transfer service, such as Reliable File Transfer (RFT) [7] supports data
transfer status information, transfer statistics, resuming transfer from the
checkpoint, etc.

• Security mechanism, including authentication and authorization for remote users
and secret, security communication. It may be required to provide securities for
the third party transfer, a very common use patterns in the replica management.

• Data consistency. There are different requirements for it in the Data Grid
according to the application case. For many scientific datasets accessed in a read-
only manner, they do not need data consistency at all. For writable files, different
levels of consistency may be considered.

Higher-level replica management components are constructed on top of these basic
elements, such as Replica Management Service (RMS) in the EU DataGrid [52], and

 Chapter 1 Introduction

- 2 -

Data Replica Service (DRS) [6]. This thesis work is such kind of higher-level replica
management system. With the help from the GridFTP [9], two components providing
information services (Replica Location Service and Node Location Component) and a
data consistency mechanism, our system provides the optimized replica selection for
users.

Regarding the security element, this paper will not pay much attention to it. In our system
we take advantage of simpleCA [56] in the Globus toolkit 4 (GT4) [3] to set up Globus
Grid Security Infrastructure (GSI) [5] for secret, tamper-proof, delegatable
communication between services. In addition [4] provide a survey on decentralized
security and the consequences of decentralized security among the Grid sites. Those
methods described in [4] will work as good alternatives.

In the data grids, especially those lied in the wide area network, both network traffic and
node status are dynamic. These presents challenges to the users who need to manage
large amount of files. In addition the management work, including the replica life time
management, the category maintaining, the data consistency among replicas, tend to be
complex and overwhelming for the people. Therefore we expect our replica management
system complies with the autonomic computing concepts. We expect components
manage themselves according to polices set by the user in advance.

The autonomic computing first invented by IBM [11], refers to the computing systems
that can manage themselves given high-level objectives from administrators. The
fundamental building blocks includes: self-configuration, self-healing, self-protection,
self-optimization and self-learning. We will show how our system works with these
principles and how new Grid nodes integrate as effortlessly as a new cell establishes itself
in the human body.

In our replica management system, we use a social insect paradigm called ant, which is a
complex adaptive system (CAS) [57]. CAS is commonly used to explain the behavior of
certain biological and social systems. It usually consists of a large number of relatively
simple autonomous computing units, or agents. With the help from ant we can deal with
the dynamics in the large scale Data Grid.

Most of the thesis work is implemented in the GT4, which supports Web Service (WS)
Resource Framework (WSRF), WS-addressing, WS-Notification, and other basic WS
specifications [8]. The WSRF proposal is a further evolution of Open Grid Services
Infrastructure (OGSI). It presents the functionality missing from Web services from a
Grid perspective [10]. With the WSRF implementation in the GT4, our services can
expose and manage state associated with services, back-end resources, or application
activities.

It is believed although peer-to-peer computing, grid computing, and web services arose
independently, they are similar in spirit and purpose. The thesis work takes advantage of
these technologies and we can see how they coalesce and cooperate in the later chapters.

 Chapter 1 Introduction

- 3 -

1.1 Goals and Expected Results
The purpose of this project includes:

(1) Study of web services and Grid, and structured overlay network with DHT
functionality;

(2) Development, implementation and evaluation of one replica management system.
Its main feature should emphasize scalability and autonomous.

Expected results of this project include:

(1) A survey of combination between Peer-to-Peer technology and the Data Grid;
(2) A survey of related work in replica management in the Data Grid.
(3) Analysis and comparison of some (most relevant) approaches observed in (1) and

(2);
(4) A vision of a scalable autonomous replica management system for the Data Grid;
(5) Architecture (including different services and protocols) of a replica management

system, its description;
(6) A prototype of a replica management system;
(7) An evaluation procedure (parameters, test bed, applications), results of evaluation

and their analysis.

1.2 Structure of the Thesis
Chapter 2 explains the technology background related to this work. A survey for the
current P2P middleware, including structured and unstructured, is given. The Distributed
K-ary System (DKS), which is a structured-overlay Peer-to-Peer (P2P) middleware used
in our system, is described in more details. We also give an overview of the GT4 at the
component-level. Then the concepts of autonomic computing are explained. At the end of
the chapter, we try to illustrate the relationship between the OGSI, WSRF and Grid.

Chapter 3 is the core of this thesis paper. It describes the system designs in great details.
The replica selection with the ant is presented as a use case.

Chapter 4 summaries related work done in the replica management system. It is explained
in the following five aspects, i.e. RLS, data consistency, data transfer, security issues and
higher-level replica management.

Chapter 5 talks about the implementation details.

Chapter 6 describes performance evaluation which emphasizes on the effects of different

design strategies and file access patterns on the system response time and efficiency.

Chapter 7 supplies a conclusion for our work and envisions future work which includes
possible system design improvements.

 Chapter 2 Background

- 4 -

2 Background

2.1 Peer-to-Peer (P2P) Computing
P2P systems provide a way to harness resource for a large number of autonomous
participants. In many cases, they are distributed Internet applications and form self-
organizing networks that are layered over the top of conventional Internet protocol and
have no centralized structure. The environment where P2P lies usually has millions of
users, dynamical network traffic and variant user membership. Therefore P2P in general
is characterized by massive scalability and global fault-tolerance.

P2P systems and Grid systems have spirits in common in that both systems have arisen
from collaboration among users with a diverse set of resources to share. It is believed, as
Grid systems scale up and P2P techniques begin to capture shared use of more
specialized resources, and as users are able to specify location, performance, availability
and consistency requirement more finely, we may see a convergence between these two
techniques [12]. Figure 1 gives us a possible combination case. In fact we’ve seen many
practical examples showing this kind of convergence [13] [14]. This thesis work also use
Distributed K-ary System (DKS), a structured P2P system in a Grid system.

Figure 1 A P2P Grid System based on Figure 6 from [12]

P2P systems can be categorized into two sorts according to the routing substrates [12],
structured P2P systems and unstructured P2P systems. The essential difference is that
whether each peer maintains organized neighbors so that location of a piece of content or
a node can be determined.

 Chapter 2 Background

- 5 -

2.1.1 Unstructured P2P
In each P2P system, no matter structured or unstructured, a node maintains information
associated with parts of participating nodes. The difference is that unstructured P2P
systems nodes tend to replace their entries if it detects that the node in question has failed.
It is more flexible in their neighbor selection and routing mechanisms. This means the
topology of the network grows in an arbitrary, unstructured manner; it becomes difficult
to bound the maximum path length and guarantee even connectivity between groups of
nodes. In addition this system exhibits preferential connection tendencies toward highly
connected nodes; therefore node failure of these highly connected nodes may be very
sensitive.

There are three search mechanisms [15] in the current unstructured P2P networks, which
are (1) flooding searches, (2) random walks and (3) identifier search. In a flooding search,
when a node receives a query, it simply forwards the query to all of its neighbors.
Gnutella [53] uses this kind of method. A query in Gnutella can overwhelm the network
with messages. So it tends to be inefficient and waste bandwidth. Although we can set
Time To Live (TTL) value to limit message life time, finding a appropriate TTL is not
easy. Random walks [16] are simple. It means randomly walks the network querying
each node it visits for the desire object. This method has long response time for resolving
a query but it does reduce the number of messages and save bandwidth. Identifier search
is based on the Bloom filters [17], which are essentially a potential function that guides
the walk to allow the search to converge toward the object. It generates few messages
than the above two messages and is faster than a random walk. A Bloom filter is a
compact representation of a large set of objects that allows one to easily test whether a
given object is a member of that set.

Although unstructured P2P systems have the shortcoming mentioned above, it does has
big flexibility and support applications that require multi-attribute and wild card
searching, which structured P2P are not suitable for these applications. In [15] the authors
show that carefully constructed unstructured overlay can resolve this type of search
within short hops for large networks and low replica replication ratios.

2.1.2 Structured P2P
Currently structured P2P systems seem to have the same meaning as Distributed Hash
Table (DHT). They organize their peers in a way that any node can be reached in a
bounded number of hops, typically logarithmic in the size of the network. In general,
peers (nodes) identification and key items have the same address space. Each node is
responsible for storing a range of keys and corresponding objects. By looking up a key,
we can find the identity of the node storing the object paired with that key. A key is
usually generated by hashing the object name. The DHT nodes are organized into overlay
network where each node has several other nodes as neighbors. As a lookup request is
issued from one node, the lookup message is routed along the overlay network to the
node that is responsible for the key. There are many structured P2P systems. The
Differences among them lie in the routing algorithm or the way peers organized.

 Chapter 2 Background

- 6 -

Chord [18], Tapestry [19], Pastry [20], and SkipNet [21] are typical structured P2P
system. In Chord both node identifiers and object keys lie in a one-dimensional circular
identifier space with modulo 2m. Chord hashes one node’s IP address and port to get a
unique m-bit identifier for the node. A ring topology is set up based on all nodes
identifier in the circular space. Each object owns an object key which is also a unique m-
bit identifier. These object keys are allocated to nodes according to consistent hashing,
which means key k is given to the first node whose identifier is equal to or follows the
identifier of k in the circular space. Each node maintains two sets of neighbors, i.e. its
successors and fingers. The finger nodes are distributed exponentially around the
identifier space. To describe its routing mechanism, let’s imagine a node n would like to
look up the object with key k. This lookup request will be routed to the successor node of
key k. If it is too far, node n will forward the request to the finger node whose identifier
most immediately precedes the successor node of key k. This process could be repeated
for many times until the successor node receives the lookup request for the object with
key k, finds the object locally and return the result to node n. In addition Chord has some
mechanism to achieve load balancing and fault tolerance, and maintain ring topology
correctly by running stabilization protocol.

In Pastry, each node has a unique nodeId (identifier). When presented with a message and
a key, a Pastry node can efficiently route the message to the node with a nodeId that is
numerically closest to the key, among all current alive Pastry nodes. The “closest” means
two numbers has matched prefix that is as long as possible. Each Pastry node maintains a
routing table, a neighborhood set and a leaf set. The routing table in each Pastry node has
log2

b
N rows, where N is the number of nodes and b is a configuration parameter with

typical value 4. Each row has 2b-1 entries. The entries at row x and column y represents
the node which shares with the current node an x-digit prefix, while the x+1 digit is y.
Each entry in the routing table refers to any node whose nodeId has the appropriate prefix.
Each entry also maps the nodeId to its IP address. Only the nodes which are likely to be
close to the current node are selected to put in the entry. If no node is suitable, the entry
will be left blank. The leaf set contains the entries of the nodes numerically closest to the
current node, which includes 2b/2 nodes with larger nodeIds and 2b/2 nodes with smaller
nodeIds. Pasty takes into account network locality. It seeks to minimize the distance
messages travel, according to a scalar proximity metric like the number of IP routing
hops. Whenever a node A is contacted by another node B, node A checks whether B is a
better candidate for one of its entries according to the proximity metric. Pastry employs
the locality information in its neighborhood set to achieve topology-aware routing, i.e. to
route messages to the nearest node among the numerically closest nodes.

Tapestry is very similar to Pastry except the way how it manages replication and how it
maps keys to nodes in the sparsely populated id space. For fault tolerance, Tapestry
inserts replicas of data items using different keys. There is no leaf set and neighbor nodes
are not aware of each other. If there is no entry for a node that matches a key’s nth digit
in a node’s routing table, the message will be forwarded to the node with the next higher
value in the nth digit, found in the routing table. This is called surrogate routing, i.e.
mapping keys to a unique live node if the node routing tables are consistent.

 Chapter 2 Background

- 7 -

Neither Chord Pastry nor Tapestry provides control over where data is stored and no
guarantee that routing paths remain within an administrative domain whenever possible.
SkipNet [21] is a scalable overlay network that provides controlled data placement and
guaranteed routing locality by organizing data primarily by string names. SkipNet has
two separate ID spaces, i.e. string name ID space and numeric ID space. The former
consists of node names and item identifier strings. The latter consist of hashes of item
identifier. Each node in a SkipNet system maintain O(logN) neighbors in its routing table,
where N is the number of nodes. A neighbor is said to be at level h with respect to a node
if the neighbor is 2h nodes away from the node. This scheme has something in common
with the fingers in Chord. At level h there are 2h rings where each has n/2h nodes. A
search for a key begins at the top-most level of the node by seeking the key. It proceeds
along the same level without overshooting the key, continuing at a lower level if required,
until it reaches level 0. Content and routing path locality in SkipNet is enforced by
suitably naming the nodes and incorporating node’s name IDs in object name. In addition,
SkipNet takes network proximity for both name ID and numeric ID routing into
consideration.

The above structured P2P overlay network has topology-aware routing. Pastry and
Tapestry contain information on which nodes are close to each other according to specific
metrics, such as network latency. SkipNet has further control over data placement. In
many cases, replica management system in the Data Grid tends to pick up appropriate
replica positions which are the “closest” to a job execution site (the meaning of “closest”
depends on different use cases). We believe if proximity information in the structured
P2P, like Pastry, Tapestry and SkipNet, is fully explored for the Data Grid, they could
give us more flexibility and convenience in the replica selection and management.

2.1.3 Distributed K-ary System (DKS)
DKS is a structured peer-to-peer middleware developed at KTH and Swedish Institute of
Computer Science in the context of the European project PEPITO. The DKS is based on
Chord and is a typical DHT. The routing table in each node maintains logk(N) levels,
where N is number of nodes in the network and k is a configuration parameter. Each level
contains k intervals with pointers to the first node encountered in the interval. This kind
of structure looks like a spanning tree, while Chord is just a binary tree. The lookup is
resolved by following a path of the spanning tree. This ensures logarithmic lookup path
length. DKS organizes peers in a circular identifier space and has routing tables of
logarithmic size. Each node is responsible for some interval of the identifier space, just
like Chord. DKS also self-organizes itself as nodes join, leave and fail.

Besides these typical DHT functionalities, DKS works more. It has several characters that
separate it from others. The first is the different topology maintenance mechanisms [23],
including correction-on-change and correction-on-use. Correction-on-change means
whenever some changes happen in the topology, instead of depending on periodic
stabilization to correct the topology, the correction should be happened immediately to
reflect these changes. In other words, as a node join, it should immediately notify every
node that point to it; as a node leaves, it should immediately notify every node pointing to
it to point to its successor; as a node fails, the detecting node finds its successor which in

 Chapter 2 Background

- 8 -

turn notify all nodes pointing to the failed node to point to it. This requires a node sense
who is pointing to it. For a non-fully populated topology, a theorem [23] gives us some
hints about which intervals we can find pointing nodes. Correction-on-use is kind of lazy
compared with correction-on-change. When routed, messages piggyback information
about the nodes neighborship. Then receiver can calculate if the pointer should be
corrected.

Secondly, DKS use symmetric replication [22] to enable information backup and
concurrent requests. Chord doesn’t back up information stored in the system. So if a node
fails, information it contains is lost. In order to improve fault tolerance, we would like to
have several replicas for the same information. In this case, if we employ the nodes in the
Chord successor lists to back up information, the master replica node becomes
performance bottleneck and brings potential security problems. Therefore DKS
abandoned successor lists. Instead it takes a mechanism called “symmetric replication”. It
partitions the identifier space into m equivalence classes such that the cardinality of each
class is f, where f is the replication factor. Each node replicates the equivalence class of
every identifier it is responsible for. So for every identifier i, there exists f different
identifiers in its equivalence class and every node knows this partitioning scheme. With
this brand-new method, replicas can be accessed randomly, so DKS provides better load-
balancing, stronger robustness than Chord and provide better security. Furthermore, if
locality and proximity information is added for choosing replicas, shortened response
time can be expected. With this method, it is also easier for us to delete some information
stored in the DHT, because replica positions for each item are all deterministic and
known by each node. This is important for choosing DKS to build the replica location
service, which may need to modify (including deleting and updating) replica location
information frequently.

Thirdly, in DKS join or leave operations are all locally atomic. This means join or leave
operations never leave with failed or unfinished leftover in the system. By doing so, we
guarantee lookup will always succeed. In DKS each node has three states including
gettingIn, inside, and gettingOut. All operations on peers are defined for these three states.
As a new node is inserted, the inserted point queues other insertion requests and doesn’t
exit. As a new node is leaving, the operation point should queue other requests and
doesn’t exit.

Finally DKS implements broadcast and multicast mechanisms [24] [25] [26]. Multicast in
DKS proceeds in parallel and only affects specific multicast group members. Each
multicast group can be tailored to meet specific requirements. All nodes are members of
an instance of DKS(N, k, f), where N is number of nodes, k and f are the parameters
mentioned in the above. Whenever a multicast is required, a node firstly creates a DKS
instance and makes the group with the characteristics (Hg, Ng, Kg, fg) according to the
requirements and then achieve multicast by broadcasting within the group. As far as
broadcast algorithm is concerned, it goes from one interval to another. Intervals are
covered in counter-clockwise direction. The word “limit” is introduced to refer to an
operation delegating intervals to responsible nodes. We commit multicast within an
interval and change the “limit” after a multicast message is sent.

 Chapter 2 Background

- 9 -

From the above, we can see DKS is a typical structured P2P system. Besides its basic
function like a common DHT, it has symmetric replica mechanism for information
backup, so the replica position is deterministic which is good for deletion or updating
operation. Its topology maintenance is efficient and saves bandwidth. In general DKS
provides a very good middleware for our upper replica management. We believe if given
more time, we can improve our replica management system for the Data Grid by fully
exploring it.

2.2 Globus Toolkit 4
The Globus Toolkit (GT) is an open source software toolkit used for building grids [3]. It
is being developed by the Globus Alliance and many others all over the world. It supports
the development of service-oriented distributed computing applications and infrastructure.
In essence, GT is a set of libraries and programs. Within a common framework, core GT
components address many issues including resource discovery, data movement, resource
access, resource management, security and so on. These issues are indispensable for
developing advanced functions or conducting science researches such as biology
molecule formation and high-energy physics data analysis. Therefore GT provide a good
platform for others application and tools to be built on or interoperate with. From GT3
which supports Open Grid Service Infrastructure (OGSI) to GT4 which supports Web
Service Resource Framework (WSRF), GT makes extensive use of web services to define
interfaces and structure of its components. In section 2.4, we will discuss more about the
relationship between stateful web services and Grid.

GT4 consists of three sets of components. The first is the set of service implementation.
Most of them are Java Web services except that GridFTP, MyProxy, RLS and Pre-WS
GRAM are implemented in C language. The set includes GRAM for execution
management, GridFTP and RFT for data movement, OGSA-DAI for data access, RLS
and DRS for replica management, Index, Trigger and WebMDS for monitoring and
discovery, MyProxy, Delegation and SimpleCA for credential management. The second
set is three containers, i.e. Java, Python and C containers for hosting user-developed
services. These containers provide implementations of security, management, discovery,
state management, and other mechanisms frequently required when building services.
They extend open source service hosting environment with support for a range of useful
Web service specifications [27], including WSRF, WS-Notification and WS-Security.
The third is a set of client libraries. These allow client programs in Java, C and Python to
invoke operations on both GT4 and user-developed services.

In the rest of this section, we will say a little more about GT4 structure at the level of
function. They are more or less related to our work. With the following description, we
expect to give this paper a bit self-contained. In addition Figure 2 gives a GT4
architecture schematic which is adapted from [27].

Data Movement and Access

GT4 includes the implementation of GridFTP specification, which includes libraries and
tools for reliable, secure, high-performance memory-to-memory and disk-to-disk data

 Chapter 2 Background

- 10 -

movement. Currently more and more data movement services or applications are based
on it, such as Reliable File Transfer and Data Replication Service (DRS) [28].

Replica Location Service (RLS) is a scalable system for maintaining and providing
access to information about the location of replicated files and datasets. The GT4 uses a
framework called Giggle [29]. We will talk about RLS a little more in the section 4.1.
RFT provides the information and management of multiple GridFTP transfers. DRS is
sort of upper service, since it combines RLS and GridFTP to provide for the management
of data replication. The Globus Data Access and Integration (OGSA-DAI) tools provide
access to relational and XML data.

Figure 2 GT4 architecture schematic, including many components

Monitor and Discover Services and Resources

In GT4, there are two mechanisms to detect problems or identify resources or services
with desired properties from distributed information sources. (1) Associating XML-based
resource properties with network entities and accessing those properties via query or
subscription operation according to WSRF and WS-Notification specification. Without
much more labors to do in users’ services, users can incorporate this into their own
developed service. Furthermore all registered services or containers can be organized into
a hierarchical structure, which is easily managed. (2) Aggregator services, which collect
state information via aggregator source. These sources could not only be those supporting
WSRF/WS-notification interfaces, but also be external software components, such as
Hawkeye [30] and Ganglia [31]. They use common configuration mechanisms to
maintain information about which aggregator source to use and its associated parameters.
Each registration in these services has a lifetime, i.e. they are self-cleaning. There are two
aggregator services provided by GT4, named Index service and Trigger services. The
index service collects information and publishes that information as resource properties.
Clients use the standard WSRF resource property query and subscription/notification

 Chapter 2 Background

- 11 -

interfaces to retrieve information from an Index [32]. The Trigger Service collects
information and compares that data against a set of conditions defined in a configuration
file. When a condition is met, or triggered, an action takes place [32]. In this thesis work,
we use the default index service in the GT4 Java container.

Security issues

Although our replica management system doesn’t take security issues into consideration,
it is an important thing for the Grid, especially when resources and users span multiple
locations. GT4’s highly standards-based security components implement credential
formats and protocols that address message protection, authentication, delegation and
authorization [34].

GT4 support both message-level security and transport-level security. Message-level
security supports the WS-Security standard and the WS-SecureConversation specification
to provide message protection for SOAP messages. However message-level security
implementations have poor performance. This lies in two points. One is that the XML
Signature design which is used by SOAP applications introduces a number of complex
processing steps [33], such as canonicalization and XPath filter, leading to performance
and scalability problems. The other is implementation issues [34]. Transport-level
security is based on X.509 credentials. This is the default security mechanism and faster
than message-level security. It is believed Transport-level security is just a temporary
solution. Message-level will replace it sooner or later, because it complies with the WS-
Interoperability Basic Security Profile.

In the default configuration, all services and uses share a common certificate authority
and have a X.509 public key credential. Then two entities validate each other’s
credentials and set up a security channel for purpose of message protection. They may
create an attenuate proxy certificate to allow another component to act on a user’s behalf
to authenticate to the target within a limited period of time. This security work flow has
more or less centralization factors in the design. As an alternative, distributed security
can be used [4].

Execution Management

Sometimes users need to dispatch individual tasks to computational cluster or, deploy
service and control its resource consumption, or use the Message Passing Interface to
schedule subtasks across multiple computes, etc. The GT4 addresses these use situations
by giving us Grid Resource Allocation and Management (GRAM). It is a web service
interface for initiating, monitoring and managing the execution of arbitrary computations
on remote computers. In our thesis work, we didn’t use GRAM. But we think GRAM
could be added into our system later to watch and control local resource consumption.

2.3 Autonomic Computing
Autonomic computing, invented by IBM, is an idea borrowed from biology field. A
component which has the characters of autonomic computing in a system is just like a
normal heart in human body. Normal heart beats regularly and it doesn’t need any
intervene of brain. You or the nature may set policies or rules for the heart in advance.

 Chapter 2 Background

- 12 -

Afterwards, it just works according to these policies or rules. It cooperates with other
organs and has self-* properties, such as self-configuration, self-optimization, self-
healing to some extend and so on. In other words, it is totally autonomic, which is very
reasonable. The whole human body is complex and consists of many parts. We can’t
imagine if all of them depend on brain’s guides to do everything --- either brain will be
exhaustive, or it will become the “bottleneck” and react pretty slowly.

In the Data Grid, according to requirements and situations of science research, large
amount of files need to be managed. They lie around in a large scale, even in the global
scale. The statuses of the whole system are changed, such as a replica is created or
removed, a Grid site is crashed. It is hard to monitor and manage them manually. This
situation is just like the brain we mention above. Therefore when we design the replica
management system, we try to make it conforming to the “spirits” of autonomous
computing, i.e. after user deploys parameters and requirements for replica management,
he doesn’t care about the later issues any more. The system should work autonomously
and need people’s cares as less as possible.

There are four aspects of self-* properties as they are now and would be with autonomic
computing [35].

• Self-configuration
It means the components follow high-level polices and automatically configure itself. It
could adjust automatically and seamlessly.

• Self-optimization
Components and systems continually seek opportunities to improve their own
performance and efficiency.

• Self-healing
When software or hardware problems occur, system automatically detects diagnoses and
repairs them.

• Self-protection
System has the security mechanism that automatically defends against malicious attacks
and failures. It uses early warning to anticipate and prevent system-wide failures.

We will see in the chapter 3 how our system automatically works according to these
properties.

2.4 OGSI, WSRF and Grid
 Many current Grid infrastructures are moving towards service-oriented architecture
(SOA). Web services, working as a standard for a particular set of XML-based
technologies, are heavily replied on to build SOA and used widely in the GT. They
provide great flexibility to set up loosely coupled components (services) and dynamically
compose them. Their natures are distributed and can work pretty well in the Grid
situation which is dynamic and heterogeneous.

Web services are typically implemented by stateless components. They are usually
modeled as stateless message processors that accept request messages, process them in
some fashion and formulate a response to return to the request. However sometimes we

 Chapter 2 Background

- 13 -

need pieces of information in order to properly process the request. These are called
states, which means “a set of persistent data or information items that have a lifetime
longer than a single request/response message exchange between a requestor and the web
service” [36]. The states which are bundled together are named as stateful resource.

The previous applications happened to deal with stateful resources in different manners,
although they showed the same relationship between web services and state. This
situation increased the integration cost between these applications and limited the
reusable of middleware. Therefore Open Grid Service Infrastructure (OGSI) and WSRF
have been proposed to formalize and standardize the relationship between web services
and state.

The OGSI, developed by the Globus Alliance, was the first attempt to associate web
services and their states in a standard way. It was expected to adopt and exploit web
services and made Grid services more widely accepted. OGSI introduces the notion of
Grid Service which is a variant on the web service concept. Grid service defines a
standard set of operations that can be performed on any Grid services. It is regarded as
“an attempt at a component model for web services” [37]. It is just like an Object class in
object-oriented languages [37].

However OGSI was not accepted. It made too aggressive use of WSDL and XML. Its
extension to WSDL, GWSDL didn’t allow general WSDL tools to build OGSI system. It
also confused many people by blurring the notion between stateless web services and
state resources [37]. Finally it defined too many concepts in a single specification. Many
of them should be composed from others instead of defined individually. These
significant shortcoming prevented the widely support for Grid infrastructure. So the
Globus Alliance took action again. They propose a further evolution from OGSI to the
WSRF.

The WSRF can be regarded as a set of standards that are intended to unite the way Grid
computing, system management, and business computing use web services. It answers
questions that are of interest to applications, including [36] (1) how a stateful resource is
identified and referenced by other components n the system; (2) how messages can be
sent to the stateful resource in order to act upon or query its state value; (3) how the
stateful resource is created, either by an explicit Factory pattern operation or an operation
within an application; (4) how the stateful resource is terminated; (5) how the elements of
the resource’s state can be modified. WSRF functionality is separated into five
independent specifications that define the normative description of the web service
resource in terms of specific web services message exchange and related XML
definitions [58]. These specifications are summarized in the Table 1 which is from [58].

The changes from OGSI to WSRF are primarily syntactic but also represent some useful
progress [37]. In OGSI, stateful resources are called Grid services; while in WSRF, they
are called WS-resources. Although they have the different names, they have the same
ability to create, address, discover, and manage stateful resources. In addition WS-
Addressing is used and XML schema is used less. Web services community new progress,

 Chapter 2 Background

- 14 -

such as WSDL 2.0 is also taken in WSRF. Given WSRF, in particular WS-Notification, it
is easier to define information service components for discovery, monitoring, fault
detection and so on. Currently these changes get more support in the web service
community for Grid infrastructure. In fact our system is taking advantage of this change
in the WSRF. Some services in our system have stateful resources. With GT4 which
supports WSRF, we can easily develop satisfying information service.

Table 1: Five normative specifications defined in the WSRF

Name Description

WS-ResourceLifeTime

Mechanisms for WS-Resource destruction,
including message exchanges that allow a
requestor to destroy a WS-Resource, either
immediately or by using a time-based
scheduled resource termination mechanism.

WS-ResourceProperties
Definition of a WS-Resource, and
mechanisms for retrieving, changing, and
deleting WS-Resource properties.

WS-RenewableReferences

A conventional decoration of a WS-
Addressing endpoint reference with policy
informatioin needed to retrieve an updated
version of an endpoint reference when it
becomes invalid.

WS-ServiceGroup
An interface to heterogeneous by-reference
collections of web services.

WS-BaseFaults
A base fault XML type for use when
returning faults in a web services message
exchange.

 Chapter 3 Design

- 15 -

3 Design
This section gives an overview of the design of our replica management system. We
discuss the main components of our system and identify the functionalities and
interdependencies of the components. Here the “component” refers to a function unit,
such as location information or replica selection. It may include one or more than one
services. The “service” refers to the web services with or without resource properties.

3.1 System Design
Our replica management system is intended to manage and place replicas according to
user specific QoS requirements and access records. Here the “user” refers to a job
execution node. In the Data Grid (see Figure 3), after a job is scheduled by a resource
broker to a node where workload is appropriate, this node is a job execution node. It may
need a large amount of data files for computing. For each needed file, our replica
management system is able to provide a suitable replica location to minimize file access
time according to the user Round Trip Tim (RTT) requirement. Figure 4 illustrates the
components and services of our replica management system in a Data Grid node.

Figure 3 DataGrid Architecture

In general the system is designed according to the following Principles.

• Oriented towards large scales and having good scalability
• Compliance with the spirits of autonomous computing
• Adoption of the web services and WSRF standards to promote interoperability
• Achieving good fault tolerance.

The system has three reusable lower-level components, i.e. Location Information, Data

Consistency and Data Transfer and two higher-level components called Replica Selection

 Chapter 3 Design

- 16 -

(RS) and Statistics which act upon the lower ones. They are explained in the following
sections.

DKS Ring

Grid Node

Grid Node

Grid NodeGrid Node

Grid Node

JNIJava CoG

GridFTP FAM

Storage Element

Grid Node

Agent Notification
Statistics

(Optional)

Directory/File

Monitor

DKS

(RLS)

Node Location

Service(Optional)
AliveInfo

GT4 Web Services Container

Figure 4 Main Components of Replica Management System

3.1.1 Location Information Component
The Location Information provides information on replica location and all Grid node
addresses in a virtual organization. By Grid node, we mean a Grid site linking to others
and acting a role in a virtual organization. It consists of two parts, the Replica Location
Service (RLS) and Node Location Component (NLC). The replica location service is
built on top of the DKS, a structured P2P middleware which enables mutable data storage
(see section 2.1.3). For each item (key-value pair) in the DKS, the key is the hash value
of a unique file name. The value is all replica positions for this file. This service exports
many APIs in the DKS as web service operations. Each Grid node has a local RLS. All
RLSs are organized into a DKS ring and each has parts of the replica location
information. The NLC includes Node Location Service (NLS) and “aliveinfo” service. It
is based on the GT4 WS MDS Aggregator Framework with the Query Aggregator Source,
where the NLS acts as aggregator sink and the “aliveinfo” is a WSRF service that
registers its resource property to a service group in the NLS. Current resource properties
in the “aliveinfo” include file lists in the storage element (see Figure 4) and node address.
But it could include more in the future, such as workload of the local node and available
storage space size etc. The NLS is based on the Index Service of the GT4 and collects
position information (node address) of all registered living Grid nodes in a virtual
organization. Each registered node position has limited life time and need to be refreshed
by the corresponding node, otherwise it is removed. With the help from the aggregator
framework, other service or application can retrieve positions information of living nodes

 Chapter 3 Design

- 17 -

by querying the NLS. Whenever a Grid node starts up and would like to join a virtual
organization, its “aliveinfo” service registers to the NLS and its local RLS seeks any
registered node from the NLS as an entry point to join the DKS ring or starts a new DKS
ring if there is no item in the NLS.

3.1.2 Data Consistency Component
The Data Consistency component takes care of keeping the replica set of a file consistent.
It consists of the lower FAM and the upper application. At each node the File Alteration
Monitor (FAM) [47] is used to monitor the statuses of a specific directory and all files
within it. The FAM is an open source project and it detects changes to the monitored file
system and relays these changes to the upper Data Consistency applications. Although
currently we use the FAM only on the Linux, we expect this doesn’t affect portability of
this solution. The newest FAM (2.7.0) features a feature-based configuration script rather
than an operating-system based script, which makes it easier to be built on other
platforms. In addition the FAM is developed in C language. In order to access its library
routine from the Data Consistency component, Java Native Interface (JNI) [47] is used.
Taking advantage of the FAM, we observe when a file is changed and record it into a log.
The Data Consistency periodically checks the log to see whether any changes are made to
the monitored files. If so, these changes are sent to other replicas to make them
consistency. When a replica is deleted or added, the upper application is notified by the
FAM and updates corresponding replica location information in the RLS. This solution is
a kind of epidemic approach (see section 4.2). It is flexible and independent of any
application accesses type. However it can only guarantee weak consistency among
replicas and may not work well for time-critical data. But in many cases, science data
files are used for analysis and not changed frequently. This kind of consistency is enough.
Furthermore we can configure time period of maintaining consistency to adapt to
application requirements.

3.1.3 Data Transfer Component
The Data Transfer component exists on each node. It consists of a client for the GridFTP
and one GridFTP server. The GridFTP supports third party transfer, which allows a user
or application at one site to initiate, monitor and control a data transfer operation between
the source and destination site for the data transfer. This is very important for the replica
management.

3.1.4 Replica Selection Component
RS component includes two services, agent and notification. Each node has an obligatory
agent service and an optional notification service. By “optional”, we mean it is possible
for the node to have no notification service. The agent service’s responsibility lies in tow
folds. Firstly, it is an entry point to replica selection, i.e. it can work as the “delegate
agent” to receive the task from users and conduct selection work. Secondly it indirectly
interacts with each other according to the “ant” algorithm and senses network
environment to help delegate agent find appropriate replica. We will talk about these
details in section 3.2. The notification service is used to inform users of the selected
replica position for a requested file. Before a user delegates a request to an agent, it

 Chapter 3 Design

- 18 -

creates a resource in a notification service, whose resource properties are the values
associated with replica selection, such as file name, RTT requirement and selected replica
position. The users can subscribe to resource properties or query these resource properties.
As the delegate agent gets the final selection results, it changes the corresponding
properties in this notification service and enables the user to receive asynchronous
notification. For each replica selection, delegation agent and notification service could be
in different nodes.

3.1.5 Statistics Component
The Statistics component is a service located in one node and therefore is centralized. It
receives file change records from each Data Consistency component and replica selection
results from the agent service. At each Grid node the directory monitor in Data
Consistency component records changes times for each local file within a time (The
changes for data consistency maintaining are not included) and periodically sends these
records to the Statistics Service. Each delegate agent, after it gets selection results, will
also report it to the Statistics Service. Here we assume that before accessing any file, the
user uses the RS to decide file position. Therefore according to these access records, the
Statistics Service could decide which replica may not be used beyond a threshold time
and removes it. It also finds which file is popular by summing up access times for all
replicas of this file. The files whose access times are beyond a threshold are called
popular files. They may be proactively put to a place close to some Grid nodes with the
help from RS component. These nodes need to submit their requirements to the Statistics
Service in advance. We assume that previous popular files are also popular later. So it is
highly possible that they are needed by these nodes. By putting potentially needed files
close to nodes, we hope to reduce time for replica selection and replica movement which
may be long for large size files.

3.2 Replica Selection
This section describes our replica selection method which is based on the ant algorithm.
We will firstly explain how the ant works and then see how the ant is applied in the
replica selection.

3.2.1 The Autonomous Ant
The ant algorithm simulates actions of the ant colony. It consists of a large number of
relatively simple autonomous computing units, or ants. Their actions exhibit the
characters of emergent behavior, i.e. although the interactions among them are simple,
they can generate more complex and richer patterns than those produced by single ant in
isolation. Resnick [49] describes an artificial ant following three simple rules: (i) wander
around randomly, until it encounters an object; (ii) if it was carrying an object, it drops
the object and continues to wander randomly; and (iii) if it was not carrying an object, it
picks the object up and continues to wander. Although the rules seem simple, the ants
conforming to them are able to collect small stuffs and group them into larger ones. In
addition, in emergent systems, there is a method of communication called stigmergy. It
means the individual parts of the system communicate with one another by modifying

 Chapter 3 Design

- 19 -

their local environment. For example, ants communicate with one another by laying
down pheromones along their trails. This can indirectly guide other ant’s future behaviors.

The ant algorithm is self-organized, adaptive and distributed. It adapts to the large scale
and dynamical environment. With the help from the P2P overlay, it can full explore
participating nodes without the bothering of membership changes. Although the
algorithm seems simple, it finishes users’ tasks without any rules specific to variations in
the environment, initial conditions and topology-aware. Currently the ant algorithm has
been used in the Data Grid for load balancing [50] [51].

In our system when an agent service is “motivated” (there is operation in the agent
service called motivation), it sends out ants. An ant walks from an ant container to
another within configured number of steps, after which it returns to the delegate agent.
An ant exists as a Java class containing the ant state or in other words all necessary data
for the ant algorithm. The ant states include file name, current hop number, minimum
RTT and corresponding position, delegate agent position, RTT requirement and user
position. The ant container is an operation in the agent service implementing the ant
algorithm. Each ant container, invoked by an ant, will determine the RTT between itself
and the given user node. It updates the corresponding ant states if its RTT is shorter than
the minimum. The ant carries its states and walks along the DKS ring. The behavior of an
ant is determined by its current state and its interaction with the ant container. As you can
see, our ant is somewhat different from the nature one. Instead of grouping objects, they
collect node information and explore unknown space.

3.2.2 Replica Selection with the Help from the Ant
Figure 5 describes our replica selection method. The user begins by creating a resource in
a notification service (1). Its properties include file name, QoS requirement and replica
selection results. Currently we only consider one QoS parameter, Round Trip Time
(RTT). This parameter reflects dynamic network environment and is important for
predicting job execution time. In the future we can consider more parameters. The replica
selection results are satisfying replica position and the RTT between the selected position
and the user node. The user also subscribes to the resources properties of replica selection
results. So whenever they are changed by the delegate agent, a notification is sent to the
user node.

After (1), the user submits the parameters for replica selection to any agent service (2),
which will be the delegate agent. These parameters are file name, QoS parameter (here is
the RTT requirement) and the storage space size the user node can provide. To reduce file
access time caused by network latency, the best place to put the file is user local storage
element. However the user may have limited storage space. Therefore we ask the user to
give the storage space size it can provide and it is up to the delegate agent to make a
decision whether it is appropriate to put the file in the user node. Typically the user may
choose the agent service located in the local place as the delegate agent. However it can
also be in remote place and its position can be got from the NLS. In Figure5, the delegate
agent is in the Grid node D.

 Chapter 3 Design

- 20 -

After the delegate agent receives the parameters, it queries the RLS to find existing
replica positions, which is the Grid node A in the Figure 5. From one of these positions, it
gets the file size and decides whether the file could be placed in the user node. This step
is not shown in the Figure 5. If the file is too large, the delegate agent contacts the agents
in the existing replica positions to compute RTT to see if any one satisfies the RTT
requirement (3) (4). If the satisfying location exists, its position and RTT are returned to
the delegate agent that in turn changes resource properties related to the selection results
in the notification service. If no one can satisfy the requirement, the delegate agent
motivates the agents in the existing replicas (5).

Figure 5 Replica Selection

Any motivated agent sends out the ants (6). Their destinations are the nodes in the first
level (level 0) of DKS routing table for the nodes where the motivated agents live. In the
Figure 5 we assume they are the node A and B. We choose the nodes in the first level of
routing table to make ants being separated from each other as far as possible in the DKS
ID space, so all Grid nodes could be fully explored. The ants walk along the DKS ring to
collect information of each place they pass by and record the best position in their
statuses. At each step, the default next destination for the ant is the successor of current
node, just like what the Figure 5 shows. However the ant container can also check the
information left by the previous ant. It may be lucky to find some previous records for
positions where there was a shorter RTT between it and the user node. Then it chooses
that place as its next destination. This is s a kind of stigmergy behavior, i.e. the “smell” or
information left by previous ants guide later ant action. In the performance evaluation, we
will see how this model shortens ant exploration time. After walking fixed steps (in the
Figure 5 there are three steps), all ants go to the delegate agent where the best position
will be chosen (7). As an alternative, we could ask the ant to go to the delegate agent as
soon as it finds any satisfying position. However this position may not be the best
position the ant can find and may cost users more access time. Therefore we would like
to find the position that reduces access time as much as possible. Obviously this is done
at the cost of asking ants to walk more steps. If the delegate agent discovers an

 Chapter 3 Design

- 21 -

appropriate position, it creates a new replica in this position which is performed with the
third party transfer in (8), registers it in the RLS, reports this selection result to the
Statistics service and changes the resource properties associated with selection results in
the notification service to inform the user (9). The replica is copied to this new position
from the existing replica place where there is the shortest RTT between them. If the
satisfying positions aren’t found, the agent changes the resource properties without copy
behavior.

3.3 Fault Tolerance, Scalability and Self-*
Properties
As far as the fault tolerance of location information is concerned, we consider the case of
node crashing. Whenever a node crashes, the replica location information stored in this
node is missed and location information related to this node in the NLS and RLS need to
be updated. For the replica location information stored in this node, the DKS has
symmetric replica to enable information backup and concurrent requests. Even as the
replica location information stored in this node is lost, other replicas still allow users to
get information. In the NLS, the entry related to this node is removed when its life time
expires and not refreshed by the crashed node. To update the replica location information
in the RLS, we require that each query operation for the replica positions of a file, before
it returns results, should get the newest node lists from the NLS and compare it with the
query result. If any position doesn’t exist according to the list, it is removed from the
RLS. In this way the RLS is updated step by step. Of course this will add the overhead of
getting the node lists to a query operation. To improve its performance, the RLS at each
node could cache the node lists and refresh it periodically. Considering the usual case that
the node crashing is not frequent, this caching method is acceptable.

Our replica management system has good scalability. Whenever a new node is added and
joins the DKS ring, its storage space can be explored by ants. No extra efforts are needed
to inform other nodes or ants except to register it in the NLS. The centralized NLS may
affect the scalability a little bit. However since it is based on the Index Service of GT4,
we can easily deploy more Index Service and organize them into a hierarchy way. This is
not a problem. In addition, we use P2P overlay network for our RLS. This provides great
flexibility and scalability for information storage. We believe that taking advantage of the
DKS, autonomous ant and hierarchy location service, our system is able to work for the
virtual organization containing a large amount of nodes.

Our replica management system is autonomous. It achieves self-configuration, self-
healing, self-optimizing.

• Self-configuration
Following high-level policies, the replica management either picks up appropriate
replicas or adjusts replica distribution. A new Grid node can be added into virtual
organization easily. The new added storage space is explored and used automatically
without any manual configurations. Weak data consistency is achieved and auto-
maintained without any knowledge of application type and access patterns.

• Self-optimization

 Chapter 3 Design

- 22 -

The replicas are optimistically placed to meet user specific QoS requirements. The
useless replicas are removed silently. To reduce access time for files, The Statistics
Service predicts future replica distribution according to the user access records.

• Self-healing
Whenever the node crashing happens, the system automatically detects it and updates
information related to it. The other nodes are not affected by node failures. No manual
healing for the system recovery is needed.

 Chapter 4 Related Work

- 23 -

4 Related Work in Replica
Management of the Data Grid
In this chapter we will give a survey for the work done in replica management. In general
replica management is not a single software component. It may consist of several basic
components (services). In the Chapter 1, we categorize them into 4 classes, i.e.
information services, data transfer, security mechanism and data consistency. This
chapter is presented according to these categories. Furthermore we summarize several
high-level replica management systems and compare them with our system.

4.1 Replicas Location Service
In the Data Grid, replicas are used to provide shorter access time, fault tolerance and load
balancing. One of the concerns for managing replicas is how to discover and register
them. We call this service as replica location service, which is a general concept in this
thesis paper and different from the specific one in the GT3 and GT4.

The replica location service needs to satisfy several requirements. The first and the most
important is the scalability, which allows millions of location information to be stored in
them. The second is dynamical membership maintenance. Here membership refers to a
set of sites where replica location can be registered and discovered. The replica location
services should be updated dynamically to reflect membership changes. The third is the
fault tolerance. Location information cannot be lost if some sites storing replica location
information are broken. This is indispensable; otherwise some files may happen to be
disappeared from users’ views although they still exist physically.

The replica location service in GT3 and GT4 is based on a parameterized framework
called Giggle [29]. They define two terms called physical file name (PFN) and logical
file name (LFN). PFN is the exact replica physical location. LFN is a unique identifier for
the contents of a file which may have many replicas. Local Replica Catalogs (LRC)
maintains the mapping between PFN and LFN at a place. Replica Location Indices (RLIs)
collect the mapping information from LRC and are organized into a hierarchical
distributed index (see Figure 6). Whenever user submits a LFN to a RLS server, she can
get physical locations of all replicas for this LFN. To keep information consistency
among LRCs and RLIs, information in RLIs need to be periodically refreshed by LRCs,
otherwise it times out. LRCs send their new states by soft state update protocols. The
states can be processed with Bloom filter compression scheme to save network
bandwidth and storage space in RLI sites.

This framework is scalable in some sense. By organizing RLI in a hierarchy and
distributed way, large amounts of mapping information can be stored. However it has a
membership problem. LRCs and RLIs must be known in advanced for users. Their
deployments are statically. RLI cannot be inserted into existing structure autonomously.
It is also not easy to recover from any RLI failure.

 Chapter 4 Related Work

- 24 -

P2P overlay networks are highly scalable and has no centralized membership
management. They can tolerate membership dynamical changes, such as node leaving
and joining. They are good replacement for the Giggle. So [38] [14] introduce different
P2P overlay networks to work as the replica location service.

Figure 6 Hierarchical RLS in the GT

In [38] the author organizes all RLIs into a structured P2P overlay network, Chord.
Taking advantage of this P2P, it is easier to handle cases such as RLI node leaves or is
inserted into the existing ones. Scalability and fault tolerance are improved. However
Chord doesn’t provide the way to back up the data stored in each node. Users are at risk
of losing data when a node crashes. Therefore the author uses a scheme called successor
replication. It replicates the mapping stored on the root to its k successors, where k is the
replication factor and is typically O(log N) for N nodes. The root node is the node that is
in charge of storing a specific mapping according to the Chord algorithm. In addition
each mapping has a life time. It needs to be extended by the predecessor that owns the
same mapping. In this way, the useless mappings can be cleared by itself. In order to
maintain consistency among all replicated mappings, whenever replica location
information is changed, LRC informs the root node immediately that in turn updates all
the replicas. Furthermore the authors also made modification to the Chord to balance load.
To evenly distribute the mappings among nodes, the factor k is increased to store more
mappings per node. To balance query load, predecessor replication is taken, i.e.
replicating mappings in the predecessor nodes of the root node. This is based on the fact
that before the query is routed to the root node, there is high probability that one of the
predecessors of the root node is traversed. If the mapping is found locally in the
predecessor, the result is returned without bothering the root node.

In [14] the authors design a replica location service oriented towards the future needs of
a global Grid. This kind of Grid may have large number of members, frequently
membership changes and good fault tolerances. The author introduces Kademlia [54]
overlay as the replica location service. To enable mutable data storage in this structured
P2P overlay, a simple data versioning scheme is introduced. It uses timestamp indicator
for every key-value pair. lookup or store command update information with the latest
values according to the data versioning scheme. For the case that frequent joins and
departures in the P2P overlay causes continuously exchanging key-value pairs, this
design is not affected. This is because the modifications to support mutable data storage

 Chapter 4 Related Work

- 25 -

are based on operations, not node behaviors. The integrity of updated data is not affected
by changed membership.

Our system also use a P2P overlay network, the DKS, as the RLS. For the details about
the DKS, you can see section 2.1.3. Unlike the Chord, the DKS uses symmetric
replication for information backup. We don’t need to implement any “predecessor
replication” to consider information loss. Besides, the position for the information backup
is deterministic. This is easier for us to implement delete and update operation, or
mutable information storage. For the information integrity, our scheme is just like the one
in [14]. It is based on operations, i.e. query operation (see section 3.3), not on node
behaviors. This can reduce too many key-value pairs exchanging due to possible frequent
node joining or leaving.

4.2 Data Consistency
Data consistency in the Data Grids is not always required. Many scientific datasets are
accessed in a read-only manner. Therefore some replica management systems, such as the
Data Replication Service (DRS) in the [28] don’t provide data consistency at all. In
addition, considering possible large amount of data and locking overhead in the global
scale, strict consistency is not practical, especially when you require a reasonable
response time for accessing replicas over the WAN. Sometimes weak consistency can be
acceptable if user requirements are satisfied.

Weak consistency is able to be established by having asynchronous replication. There are
several commonly used solutions for asynchronous replication. They are summarized in
 [39]. Here we just borrowed their summaries. The first solution is primary-copy (or
master-slave) approach. You can only modify the primary replica. Any write request
towards other replicas is forwarded to the primary one. The primary is also responsible
for updating and propagating the changes to the others replicas. This solution is taken in
the object data stores Versant [40], ObjectStore [41] and Oracle products. The second is
the epidemic approach. This method executes update operations locally first and then the
sites communicate to exchange up-to-date information. This solution has very low degree
of consistency and can only be applied for non time-critical data. The third solution is
applied for the subscription and relatively independent sites. It allows a site to do local
changes without the agreement of other sites. A site that explicitly subscribes to a data
producing site is notified of the updates. A site that has not subscribed is itself
responsible to get the latest information from other sites.

Models for replica synchronization and consistency in the Data Grid are given in [2]. The
authors discuss data consistency levels delivered to Grid users based on database
transaction theory including locking for establishing consistent data.

In our system, data consistency is not ignored. File storage in our design is non-database
stores and doesn’t provide transactional consistency. Our replica management system
supports concurrent read/write and achieves week consistency with asynchronous
replication. The method is similar to epidemic approach mentioned above. For details
please read Section 3.1.

 Chapter 4 Related Work

- 26 -

4.3 Data Transfer
GridFTP is widely used in the Gird for data transfer. There are two points in GridFTP
that deserve a mention here. The first, GridFTP supports third party transfer, which is
very important for replica management. Third party transfer is explained in the official
Globus Alliance [42] like this, “The client, who will only orchestrate, but not actually
take place in the data transfer, and two servers one of which will be sending data to the
other”. The second is the separation of front end and data node processes for security
issues. The front end is responsible for client control connection. It can be run as any user,
typically user globus , which has limited access to the machine. The back end is run as
root and configured to only allow connections from the front end. As the back end runs as
root, it can allow the server to fork and setuid on a child processes related to an
authenticated user. If an attacker compromises the process, they could only obtain access
to the limited account in the front end. In addition, single front end process may contact
many back end data nodes. This is called striped configuration. It allows the combined
bandwidth of all data nodes to be used.

RFT in GT4 is based on GridFTP. It complies with WSRF and functions as a “job
scheduler”. You can query the transfer status or subscribe for notifications of state change
events after you provide a list of source and destination URLs to it.

In the thesis work, we only use GridFTP. However for better designs, we should use RFT
to provide status-checking.

4.4 Security Issues
.In our system we take advantage of simpleCA [56] in the Globus toolkit 4 (GT4) [3] to
set up Globus Grid Security Infrastructure (GSI) [5] for secret, tamper-proof, delegatable
communication between services. In addition [4] provide a survey on decentralized
security and the consequences of decentralized security among the Grid sites. In this
paper, we will not pay many efforts on security issues.

4.5 Higher Level Replica Management
DRS [6] is a higher-level data management services for Grids. It uses the hierarchy and
distributed RLS in the GT4 for replica location information, uses RFT and GridFTP for
data transfer, and uses the security tools in GT4 for the security issues. There is no data
consistency mechanism in DRS. It adopts WSRF to promote interoperability and
represents the states of the replication request as resource properties. User initiates DRS
by creating a request file that contains an explicit description of the replication request.
The request may include file name, desired destination locations. Then resources for this
request are created in the DRS. According to the request, the DRS checks replica position,
creates new replicas and register its position in the LRC. The LRC will in turn update the
information in all RLIs in the way mentioned in section 4.1. DRS lets user decide the
destination position for the new replicas and uses a source selector class implemented by
the user to select the desired source file.

 Chapter 4 Related Work

- 27 -

Comparing with DRS, Replica Management Service (RMS) in the EU DataGrid [44] is
more autonomic and more easily understood by the end-user. It adopts the OGSA concept
for several components. The RLS in the RMS is almost the same as the RLS of GT. The
difference is that the LRC stores the mappings between GUIDs (Grid Unique Identifiers)
and PFNs instead of LFNs and PFNs. To maintain the mappings between LFNs and
GUIDs, a Replica Metadata Catalog Service (RMC) is added. In addition the RMC
provides metadata for the file represented by the GUID. With the metadata, the RMC
gives users a way to query the file catalog based on attributes. RMS has two important
APIs called getNetworkCosts and getSECosts. They monitor the network traffic and the
access traffic to the storage device respectively. They interact with a service called
Replica Optimization Service which can in turn perdict data access latencies. In EU
DataGrid, optimization is performed in the three points, i.e. job scheduling, pre-execution
and run-time [45]. The component called Resource Broker is responsible for the first
point optimization. It decides which site has the least loaded resource with the maximum
amount of locally available data for a job. After the job is allocated to a site and before it
is executed, an optimization is performed to locate the best replicas for the files needed
by the job based on an economic model. We will explain this model later. This kind of
optimization is also performed during the job execution (run-time). For the security issue,
RMS uses the EDG Java security package.

There are different replica selection algorithms for a file needed by job execution. In our
system it is based on the “ant” and user QoS requirements. In the EU DataGrid, an
economy-based file replication strategy is provided. In the model, data files are regarded
as the goods in the market. Each site has an optimization agent. They are interacted with
each other through auction protocol for optimal dynamic replica selection according to
file requests from the job execution. A little more details go like this. Firstly a job
execution site brings out the request or “calling a bid” for a file and this bid is propagated
to the other Grid sites. For each site, once it receives the request, it first checks if it has
the replica for this file. If so, it calculates a bid proportional to the transfer time between
the calling site and itself and returns the result to the job execution site. The site that
submits the lowest bid wins and the job execution site accesses the replica in the winner
site. If the site doesn’t have the replica, it may start a nested auction according to a
prediction function. The prediction function tells the site whether it is economically
beneficial to create a new replica at local place according to the file access history. If a
nested auction is initiated, the site that starts it also responds to the job execution site with
its own bid.

Comparing with DRS, the RMS in the EU DataGrid and our system implement replica
selection algorithm to locate appropriate data and relieves the burdens of the application
programmers. The RMS provides the optimization, from job submission to replica
selection, while our system focuses on the replica selection for the user site. The RMS
selects replica according to the network traffic and the access traffic to the storage device.
Our system allows user to provide their RTT requirement and only consider network
characters. For the replica selection, the RMS creates the new replica only when it thinks
this is beneficial in the long term. Our system creates the new one at any place that can
reduce file access time. Consideration for future replica distribution is left to the Statistics

 Chapter 4 Related Work

- 28 -

Service. Therefore our method is more flexible and may be better for reducing access
time in each file access.

 Chapter 5 Prototype Implementations

- 29 -

5 Prototype Implementations
In this thesis work, a prototype of replica management framework is implemented with
Java and Globus Service Build Tools (GSBT) [46] in the GT4 environment, including
replica selection component, statistics component, location information component and
data consistency component. Some work takes advantages of DKS, FAM and several
GT4 tools. In particular, the RLS is based on DKS; the data consistency component is
based on the open source project, FAM (including fam daemon and a library in C
language); the NLS is based on the GT4 default index service; the GridFTP client in the
data transfer component use JavaCog to access GridFTP servers. Except this, all the other
work mentioned in the following is implemented by this thesis. The rest of this chapter
will describe these implementation details.

5.1 Data Consistency Component
The data consistency component consists of two layers, the lower FAM Java API and the
upper application for data consistency maintenance. All are implemented by this thesis.
Figure 6 depicts the Data Consistency component framework. FAM in essence includes
the FAM daemon, fam, and a library for interacting with this daemon. The library
provides the functions to open a connection to fam, monitor a file or directory, control the
status of monitor and detect changes. These functions are implemented in C by an open
source project [47]. To take advantage of the FAM C library and export a FAM Java API
to the upper application, JNI is used. Implementing calls from Java to the FAM C library
is a three-step process. The first is to write declarations in Java for the native method (C
function). These declarations are in the 4 classes: the class "FAM" initiates the event
constants and defines methods for opening a connection to the fam daemon; the class
"FAMRequest" identifies a file or directory monitor and declares methods for controlling
monitor status; the class "FAMEvent" declares methods related to the fam events, such as
returning the events numbers or printing events; the class "FAMConnection" declares
exact methods for monitoring a file or directory. The second step is to generate the header
file for the next step. This header file, which is called "fam-jni.h", is created with the Java
SDK's javah tool. The last step is to implement the native methods in C. These functions
use header file in the previous step, make calls to the FAM C library and return results to
Java.

The upper data consistency applications are built on top of the FAM Java API. They
include the "DirectoryMonitor", "FileMonitor", and a tool class called "RLSOP".
DirectoryMonitor monitors the storage element default directory "/home/icebox/filedir",
but it can also monitor any other directories if required by the local replica management
system. Its constructor registers all files in the monitored directory to RLS. Then it runs
as a thread and listens to the FAM events. When a file within this directory is changed
and the "changed" event happens, it will check the replica numbers of this file in the RLS.
If the number is zero, which shows the file is never registered and is not cared by the
replica management system, it is most likely to be produced temporarily by the local file
system and the changes can be ignored. Therefore no further action is needed to do. If
there is only one replica record in the RLS, nothing needs to do either, because no
consistency maintaining work is required for only one replica. If there is more than one

 Chapter 5 Prototype Implementations

- 30 -

replica, it will check whether this file is associated with a file monitor. Any file without a
corresponding file monitor will cause a new thread (file monitor) to be created and started.
We will talk about the file monitor in the next paragraph. When the "delete" event
happens, which means a file within the monitored directory is removed, we check
whether this file is monitored. If so, this file name is deleted from an ArrayList, called
fileMonitored, which is used to record which files are associated with a FileMonitor
thread. For other FAM events, such as “execution” and “create”, the DirectoryMonitor
thread just ignores them. The data consistency component doesn't consider the "create"
event, because it can’t discriminate the temperate files produced by local file system and
the “true” new files that really matter to the replica management system, and therefore
can’t decide whether the file information should be added into the RLS. So we let our
component pass “create” event away and not add new item (file-position pair) into the
RLS. Instead it is left to the applications when they create a file. In particular, whenever
the application creates a file which matters to the replica management system, it should
add this file name and location information into the RLS.

Figure 7 Data Consistency Component Framework

The class "FileMonitor" runs as a thread. Every monitored replica has a file monitor
thread associated with it to maintain its consistency with other replicas. Whenever a FAM
"change" event is received, its time is recorded. At every hour, the FileMonitor checks
whether there is any file change within this time period. If there is, it copies the file to the
other replica locations. If the file is deleted, the monitor thread updates the RLS and kills
itself.

The class RLSOP serves as a tool box. It provides the API for add, query, delete and
other operations related to the RLS. It also plays the role of synchronizing data replicas.
Currently we copy the new replicas to the other places when required by the FileMonitor.
This may cost too much time and bandwidth. In the future we can improve it by only
sending the differences to the other replicas. In fact there is a way to produce differences
between any two binary files, called XDelta [55].

5.2 Statistics Component
This component is a web service, responsible for proactively placing and deleting useless
replicas. In general it is deployed in one Grid node. However to avoid centralization
bottleneck and single-point failure, we can deploy it in a distributed and hierarchy way,
just as how the index service in GT4 does.
The operations in the Statistics service include:

• collectAccessInfo. After a delegate agent gets replica selection results, it notifies
the user to get results. Meanwhile it employs the "collectAccessInfo" to submit
information related to the selection results to the Statistics component. The Data
Consistency component does the same thing periodically to report file changes.
The submitted information contains the file name and its position. In the current

 Chapter 5 Prototype Implementations

- 31 -

implementation we use three HashMaps to store user access information. As an
alternative, we are thinking to use the database and implement some statistics
information as resource properties based on WSRF.

• addClient. This operation is used for proactively placing replicas. To require the
statistics service to place popular files in advance, the user needs to register its
position and QoS requirement in the Statistics component. This register operation
is what addClient does. In addition inside the Statistics component, a HashMap
works as a container for recording user QoS requirement.

• removeClient. This operation is the contrary to the addClient. It removes the
register of the user position and requirement from the Statistics Component. Any
proactive placing action will not be committed any more.

• reset. This operation clears all access records and user registers in the Statistics
Component, such as previous replica selection result collections and the name set
of users who commit the "addClient".

Statistics Service schedules a thread (class "MyServices") at a fixed rate whose current
values are 7 days. "MyServices" is the core of Statistics service. It gets the file lists from
each node and compares them with previous replica access records. The file which is not
accessed for a long time is removed. Here we assume that the user employs replica
selection component to pick up appropriate file position before he access any files.
Therefore the replica selection records plus file change records reflect how files are
accessed within a period in some sense. In addition, with these records, "MyServices" can
determine which files are popular. According to the user requirements, these files are
placed near the users. The methods "deleteUseless" and "proactivePlacement" are in
charge of these two tasks mentioned above.

In the "impl" directory of Statistics component, there are two other classes, called
"ForAliveInfo" and "ValueListener". They in essence work as two clients. The
"ForAliveInfo" is the client for the NLS. It checks the NLS and gets the nodes position
list. "ValueListerner" acts as the replica selection results listeners. When the MyServices
acts as the delegate agent to proactively place replicas, this class is responsible to receive
the results from ants and schedule replica movements.

5.3 Location Information Component
Location Information Component provides replica location information and Grid node
location information within a virtual organization. It includes two parts, Replica Location
Service and Node Location Component.

5.3.1 Replica Location Service
In the implementation, this service is called RLSDKS. It is built on top of the DKS
middleware and exports many DKS APIs as remote operations. Whenever the GT4 web
container starts up, the RLSDKS in it will contact the NLS to get the current Grid living
node lists. Therefore there should be at least one working NLS before any RLSDKS
starts up.

 Chapter 5 Prototype Implementations

- 32 -

The RLSDKS initialization goes like this. Firstly it checks the NLS to find if there is any
registered node. If it itself is the only one registered in the NLS, the RLSDKS will set up
a new DKS ring and act as the first node. Otherwise the RLSDKS will contact any node
in the list to get a DKS node URL as the entry point to join in the existing DKS ring. In
this way, the DKS ring is constructed and includes all registered nodes.

The RLSDKS service contains the following operations.

• add. It receives the file name and its position as input parameters. In the DKS, the
key is the "long" type. Therefore this operation takes the hash code of file name as
the key and file position as the value. However there is a small bug here. Different
file names may has the same hash codes. In the future we should consider other
ways to guarantee the key is unique for each file.

• delete. This operation is almost the same as the add operation. The difference lies

in the different DKS API it uses.

• query. The only parameter to this operation is file name. This operation queries
the DKS ring to get all file positions for this file. Before it returns the file
positions to the user, this operation checks the local cache which contains the
node lists obtained from NLS. It compares the query results with the node lists.
Any position which is not in the list is removed. In this way we hope to update
RLS and maintain the consistency between the replica location information and
physical file distribution.

• getFirstDKSNodeURL. It returns a DKS node URL for which other new Grid

node may take as the entry point to the DKS ring.

• getSuccessor, which returns the successor IP for the current node in the DKS ring.

• getRoutingTable, which returns the IP addresses of the nodes which are in the first
level (level 0) of local node DKS routing tables.

In addition, the RLSDKS schedules a thread at a fixed rate (the current rate is one
minute). This thread is called PeriodAction. It is in charge of updating node lists cached
locally by getting newest list from NLS.

5.3.2 Node Location Component
This component consists of NLS and "aliveinfo" service. The NLS is based on the GT4
default index service. In our system, there is only one node that has the NLS. It should be
set up before any other sites start up. A configuration file in XML that specifies
registrations to the NLS is created. This file is called "alive-position-registration.xml".
Whenever a node joins a virtual organization, it should run "mds-servicegroup-add" to
perform the registrations specified in this configuration file. Currently this is done
manually. In the future it is better to integrate this registration process in the "aliveinfo"
service. So whenever the "aliveinfo" is initiated, it automatically registers resources in the
NLS.

 Chapter 5 Prototype Implementations

- 33 -

Our NLC uses the QueryAggregatorSource to collect information from registered
resources in the “aliveinfo” services by WS-Resource Properties polling mechanisms.
Figure 6 describe this framework. In general the corresponding configuration file
specifies a grid resource to be registered, a service group to be registered to, and various
parameters associated with the registration. In our implementation, we register the
resources properties in the "aliveinfo" service, i.e. the service address and the file list. We
register them to a service group in the NLS. The registration is refreshed every 10
minutes and the resource properties are refreshed every 1 minute.

Figure 8 Node Location Component Frameworks

The "aliveinfo" is deployed at each site. It has two resource properties, IP address of local
site, and file lists of local storage element. Although this service has only two resource
properties now, it builds a good foundation for the further development. In the future, we
can add more resources properties like local work load and storage response time to it.
This could provide ants more information besides RTT to select replica location.

5.4 Replica Selection Component
This component includes two services, "Myagent" and "Notification". "Myagent"
receives user requests, senses the network environment by computing RTT, and interacts
with each other through the ants.

5.4.1 Agent Service
There are five classes in its "impl" directory. The class "NotifClient" provides the
function to notify the user of selection results by modifying the resource properties of a
specific notification service. It has two methods, "add" and "printResourceProperties".
The "add" method changes the resource properties, while "printResourceProperties"
shows the current status of replica selection. The interface "NotifQNames" defines several
QName for the "Notifclient". The class "ForAliveInfo" is in essence a client to get the
node location list from the NLS.

In addition the agent service employs a package called roundtriptimer to compute the
RTT between local site and the user site. The package contains three classes, PingClient,
PingPong and PongManager. The PingClient sends 10 TCP packages to a specific
destination and compute the average round trip time. The PongManager is a server to
receive the TCP packages. As the PongManager starts up, it constructs a thread list and
initializes ten threads in the list which are free and ready to receive remote connection.

 Chapter 5 Prototype Implementations

- 34 -

Then it listens at the port 4040. Whenever a connection request is received, the
PongManager gets a free thread from the thread list to handle the communication
between the request site and itself. This thread replies a TCP package whenever it
receives one. The class "PingPong" is the implementation for this kind of thread. The
“PingPong” also has a static request pool. The scheduled thread can take requests from
this pool when it is motivated by the PongManager.

The core of agent service lies in the class "Myagent". It starts by getting PongManager
work, which enable it to respond to any Ping requests. It has a static class
"DelegationStatus". If a user presents a request to an agent, this class will record the data
related to a replica selection corresponding to this user request. These data are the file
name and RTT requests, received ant numbers and final results. In the current
implementation, we use the static class to record the status, this may seems awkward. In
the future, we may replace it with several resource properties, which can strength the
interoperability of this service.

The following operations are provided in this service.

• receiveRequest. Input parameters to it are requested file name, RTT requests and
user site address. This operation firstly checks its delegate status. Only when the
status is free, it accepts user requests. Afterwards it gets the replica positions from
local RLSDKS and computes their RTT from these positions. Then it determines
whether any node can satisfy the requirement. If no node is all right, it commits
the "motivate" operation in these replica positions. If the delegate status is busy, it
will ignore this user request and reply to the user with busy information.

• motivate. It initiates ants with user requests and sends them or in other words

conducts antContainer operation of the nodes that are in the first level of local
node DKS routing table. A local method called "sentAnt" is used for sending ants.
This method checks out whether the destination site is local node. If so, it will
take the successor node of the destination site as the destination. This check
process will continue until a non-local site is found.

• antContainer. This operation implements the ant algorithm. It receives ants,

checks its status, and takes the corresponding action. If the hops in the status are
beyond the MAX_HOPS, the ant container will send this ant back to the delegate
agent which in turn will notify the user. Otherwise, it starts the PingClient to get
the RTT and compares it with the ant status. The ant status is updated
correspondingly.

• getFileSize. This operation returns the size of a specific file if this file exists in the

local storage element.

• getRTT. This operation computes the RTT from the local site to a remote node.

• getFileLists. This operation gets all files names from the local storage element.

 Chapter 5 Prototype Implementations

- 35 -

5.4.2 Notification Service
This service is simple. It contains a resource property called "informationRP", which is
just a string chaining the user site, RTT requirement, minimum RTT and its position. We
didn't put this information into four separate properties. This is to avoid possible
information mismatch when several add operations are conducted at the same time. By
bundling them into a single string, we are sure about the matches between these four
parameters. In addition we declare this property as a topic, so the user site can subscribe
to it and receive the notification when it is changed. This service has only one operation,
called add. It can update the resource properties with new values.

5.5 The Components and The Corresponding
Classes
For the convenient of future work, we indicate the relation between the components and
the classes in this section.

Component

Name
Services Name Class Name

Agent

AntModel, CacheWorker, ForAliveInfo,
Myagent, MyagentQNames, NotifClient,
NotifQNames, WorkerForAntContainer,

WorkerForSendingAnt

Replica
Selection

Notification NotifClient, NotifQnames, NotifService
RLSDKS ForAliveInfo, PeriodAction, RLSDKS

NLC
AliveInfo

AliveInfo, AliveInfoQNames,
AliveInfoResource, AliveInfoResourceHome

Statistics statistics
ForAliveInfo, MyServices, Statistics,

ValueListener

Data
Consistency

DirectoryMonitor, FileMonitor, RLSOP,

CogGSIUtils, GeneralUtils, GridFTP,
ProxyProducer

 Chapter 6 Profiling of Prototype

- 36 -

6 Profiling of Prototype
This section presents performance evaluation for our implementation. The first part is the
time anatomy of replica selection. The complete process of replica selection is divided
into several phases. We expect to observe the roles which different phases play in the
time consumption.

Up to now, we don’t have an appropriate test-bed platform to deploy more performance
evaluation. But more tests and experiments could be performed, if the lab environment is
available. So at the end of this chapter, we propose several measurements which may be
achieved in the future.

6.1 Time Anatomy of Replica Selection
In this evaluation, one site, the user, submits its replica selection requests to the other, a
Grid site that runs a GT4 container as well as Replica Selection service, Notification
service and the three lower-level components. The user site is Intel Pentium processor 1.6
GHz, 512MB RAM and Intel 802.11b wireless card. It sends the replica requests for a file
whose RTT requirement is 100 milliseconds and local storage space it could provide is
zero, i.e. the file is not allowed to be placed in the user site. The size is set zero, so we
have the chance to observe the time consumption of complete replica selection process.
In addition the Grid site is .

Before the test, we put the requested file in the Grid site in advance, so there is at least
one replica location record for this file in the RLS. The RTT delays for replica selection
between the two sites are generated randomly. In particular, when one site needs to
measure the RTT between itself and the other, it sends out a TCP packets to the other.
The other site, as it receives it, will reply after a random delay. The delay time is
uniformly distributed value between 0 and 1000 milliseconds.

We divide the complete replica selection process into the following phases and report the
time consumption for them.

• Submit request is the phase for the user to create a resource in notification service
and subscribe to its properties for result notification.

• Query RLS is the phase for the delegation site to query the RLS to get the replica
position.

• Judge the existing replica site includes two steps. The first is to get the file size
from one replica position that has the file and decide whether the user site has the
storage space to hold the file. The second is to decide whether the existing replica
site can satisfy the RTT requirement.

• Seeking appropriate positions by motivating ants is the phase to use the ant
walking around to pick an appropriate position.

• Register the new replica is the phase to copy the replica to the new site and
register its position in the RLS. In our performance evaluation, the copy time to
create new replica is ignored, for this time depends on actual file size and

 Chapter 6 Profiling of Prototype

- 37 -

GridFTP configuration which may vary greatly between different sites and can
not reflect our system performance.

• Inform the user is the phase to change the resource properties in the notification
service with the final results which in turn notifies the user site.

In “judge the existing replica site” phase, we “force” the Grid site that already has the file
generates longer delay than the RTT requirement, i.e. it will not meet the RTT
requirement in this step. So the replica selection process can go on further and we are
able to observe the complete process of replica selection. In addition, due to the fact that
we only have one Grid site whose DKS routing table only contains itself, the ant, in fact,
will just circle around in one site. So the final replica selection result will be either this
Grid site whose random delay is less than 100 sometimes or no satisfying site at all.
Finally the k parameter of the DKS in our measurement is two, i.e. the first level of
routing table has two items and two ants are motivated. We set ant walking step as 5. We
submitted the request five times and obtained the average performance shown in Table 2.

Table 2 Time Anatomy of Replica Selection

Phase Time(ms) Standard Deviation
(1) Submit request 426 32

(2) Query RLS 144 15
(3) Judge the existing replica site 618 24
(4) Seeking appropriate positions

by motivating ants
1155 957

(5) Register the new replica in the RLS 271 19
(6) Inform the user 615 20

We observe the variance is large on the phase of “seeking appropriate positions by
motivating ants”. This is due to the fact that our delay for measuring RTT is generated
randomly and the ant could encounter different RTT as it walks around. In the practice
WAN environment where network traffic may change greatly, the variance in this phase
will also be large. Additionally the time in the phase of “query RLS” is not so large. As
the RLS has only one item, this may be reasonable. But the time in this phase depends on
numbers of items stored in the RLS greatly. As more location information is stored in the
RLS, this query time will increase.

The Figure 9 shows the time consumption distribution of different phrases. With no
surprise, the phrase 3 and 4 rank the top 2. Both of them need to cooperate with other
sites quite often to get information, which is time-consuming. Therefore how to reduce
the needs to communicate with services in other sites is the key to decrease replica
selection time. The phrase 6 and phrase 1 also play important roles in time consumption.
They are both related to the operations on the web service resources, which may account
for the large time consumption.

 Chapter 6 Profiling of Prototype

- 38 -

Figure 9 Time consumption distribution for replica selection

6.2 The Future Work in Performance Evaluation
It is very interesting to observe how the system performs under different replica selection
policies. So we could do the following two experiments in the future.

Ants Numbers and Their Walking Steps
We will see how the time and RTT rate are sensitive to the number of ants and their
walking steps. Here “RTT rate” refers to the rate between the results RTT and RTT
requirements. For example, the user proposes the RTT requirement as 200ms. Our replica
selection method gets a position with RTT 180ms. So the RTT rate is 90%. Obviously we
hope the RTT rate is as small as possible. The “time” refers to the replica selection time
and doesn’t include the file transfer time. The user site will access 100 files or more. We
will record the time consumption for each replica selection.

Cache Effects

We will see how the time and RTT rate are sensitive to the caches existence. Here “RTT
rate” refers to the rate between the results RTT and RTT requirements. For example, the
user proposes the RTT requirement as 200ms. Our replica selection method gets a
position with RTT 180ms. So the RTT rate is 90%. Obviously we hope the RTT rate is as
small as possible. The “time” refers to the replica selection time and doesn’t include the
file transfer time. The user site will access 100 files or more. We will record the time
consumption for each replica selection.

File Access Patterns

We will observe the performance of our replica selection method under different file
access patterns. Firstly each file name is mapped to a unique integral. Then (a) the user
selects 100 integrals randomly which meets the uniform distribution to access 100 files;
(b) the user selects integrals for 100 times which conform to the Gaussian distribution to
access files.

 Chapter 7 Conclusions and Future Work

- 39 -

7 Conclusions and Future Work
The Grid computing doesn’t only belong to scientific fields that have limited numbers of
processing and data storage nodes. It is moving towards enterprises applications and may
integrate millions or even billions of IT resources. So when we design and deploy our
Grid system, one of our concerns is its scalability and how easily we manage large
number of resources within it. This thesis work focuses on managing file-based replicas
among Grid nodes. We take the scalability into consideration with the help of P2P
technology and ant algorithm. In addition by compliance with the spirits of autonomous
computing, we expect to make the management work a little easier. As a plus, our system
can select replicas according to the user specific QoS requirement. In particular, we layer
our design into low level and high level and implement them within GT4 environment.
The low level includes Node Location Component, Data Transfer Component, and Data
Consistency components. NLC integrates the DKS in the RLS and builds Node Location
Service on the GT4 WS MDS Aggregator Framework to provide replica location
information. Data transfer component is based on GridFTP to create or move replicas.
The Data consistency component maintains the consistency with the help of FAM. The
high level takes advantage of low one and includes two components: replica selection
component and statistics component. While the former provides service of selecting
replica according to user’s specific QoS requirements, the latter proactively places
replicas according to the user access records.

As far as the performance of our system is concerned, we pay more attention to the
system response time and result precision to the RTT requirement in replica selection
component. Different design polices, including the ants numbers, ant walking steps and
the introduction of stigmergy mechanism (or cache), have effects on the performance.
Additionally file access patterns also play a role. We argue that different application
cases should consider these factors to improve system performances.

To reduce file access time of user node, we pick up or create a replica on the node that
has a required RTT to the user node. In our implementation, the RTT is estimated based
on TCP protocol. However using RTT for predicting access time is not good enough. It is
far from being precise. Firstly the user node may use different patterns and protocols to
access files. Secondly the file access time is affected by the storage component of remote
node too. Some factors, such as workloads of the remote node and storage device types
may influence file access time. However these factors are not considered. In our future
work we plan to take more factors into consideration, such as storage response time.
Although current method needs to be refined, it does reflect network dynamism in some
sense and gives us a prototype and guide on the design choices.

The current Statistics component in the system collects user access records and
proactively creates replicas for the files which have been accessed most often. This is
based on the assumption that popular files are highly possible to be accessed in the future.
By putting them near the user node, we make preparation for their future use. As you can
see, this method predicts future file access based on previous file access times. More
advanced prediction method can be developed in future work. We plan to predict file

 Chapter 7 Conclusions and Future Work

- 40 -

access according to the application type, such as high energy physics application,
biomedical applications, and earth observation science application. We believe different
application type has different file preferences. According to the application type and
previous access records, we expect to improve the success rate of prediction.

In addition, we plan to take advantage of more P2P overlay network characters for the
replica management. For example, some P2P overlay networks are topology-aware; using
their knowledge relating to distances between the nodes may help ants to find appropriate
positions more quickly.

 Chapter 8 Lists of Abbreviations

- 41 -

8 Lists of Abbreviations
CAS - Complex Adaptive System
DHT - Distributed Hash Table
DKS - Distributed K-ary System
DRS - Data Replica Service
FAM - File Alteration Monitor
GRAM - Globus Resource Allocation Manager
GT - Globus Toolkits
GT3 - Globus Toolkit, version 3
GT4 - Globus Toolkit, version 4
GSBT - Globus Service Build Tools
GSI - Grid Security Infrastructure
JNI - Java Native Interface
LFN - Logical File Name
LRC - Local Replica Catalog
MDS - Management and Discovery Service
NLS - Node Location Service
NLC - Node Location Component
OGSI - Open Grid Service Infrastructure
PFN - Physical File Name
P2P - Peer-to-Peer
QoS - Quality of Service
RFT - Replica File Transfer
RLI - Replica Location Indices
RLS - Replica Location Service
RMC - Replica Metadata Catalog Service
RMS - Replica Management System
RTT - Round Trip Time
RS - Replica Selection
TTL - Time To Live
WSRF - Web Service Resource Framework
VO - Virtual Organization

 Chapter 9 References

- 42 -

9 References

[1]. I. Foster. What is the Grid? A three point checklist. Grid Today, July 20, 2002.
[2]. D.Dullmann, W.Hoschek, J. Jaen-Martinez, B. Segal. Models for replica

synchronization and consistency in a data Grid. In 10
th

 IEEE international

symposium on high performance distributed computing.
[3]. Globus Toolkit 4. URL: http://www.globus.org/toolkit/
[4]. D. Thain, C. Moretti, P. Madrid. The consequences of decentralized security in a

cooperative storage system. In IEEE workshop on security in storage, San
Francisco, December 2005.

[5]. I. Fonster, C. Kessleman, G. Tsudik and S. Tuecke. A security architecture for
computational grids. In ACM Conference on Computer and Communications

Security Conference, 1998.
[6]. A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, B. Moe. Wide Area Data

Replication for Scientific Collaborations. Proceedings of 6th IEEE/ACM

International Workshop on Grid Computing (Grid2005), November 2005
[7]. W.E. Allcock, I. Foster, R. Madduri. Reliable Data Transport: A Critical Service

for the Grid. Building Service Based Grids Workshop, Global Grid Forum 11,
June 2004.

[8]. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems. IFIP

International Conference on Network and Parallel Computing, Springer-Verlag
LNCS 3779, pp 2-13, 2005

[9]. GridFTP Protocol Specification (Global Grid Forum Recommendation GFD.20).
March 2003

[10]. M. Baker. Ian Foster on Recent Changes in the Grid Community. IEEE

Distributed Systems Online Vol.5, No.2; Feb, 2004.
[11]. M.M.Waldrop. Autonomic Computing, The Technology of Self-Management.

The Future of Computing Project at the Woodrow Wilson International Center of
Scholars, Dec 2003.

[12]. J.Crowcroft, T. Moreton, I. Pratt, A. Twigg. Peer-to-Peer systems and the Grid.
http://www.cl.cam.ac.uk/users/jac22/out/.

[13]. M.Cai, A. Chervenak, M.Frank. A Peer-to-Peer Location Service Based on A
Distributed Hash Table. Proceedings of the SC2004 Conference (SC2004),
November 2004.

[14]. A. Chazapis, A. Zissimos, N. Koziris. A peer-to-peer management service for
high-throughput Grids. Proceeding of the 2005 International Conference on

Parallel Processing.

[15]. W. Acosta, S. Chandra. Unstructured Peer-to-Peer Networks-Next Generation
of Performance and Reliability. Refereed poster, IEEE INFOCOM 2005.

[16]. E. Cohen and S. Shenker. Replication Strategies in Unstructured Peer-to-Peer
networks. In Processings of the 2002 conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, page 177-190. ACM
Press, 2002.

 Chapter 9 References

- 43 -

[17]. S.C.Rhea and J. Kubiatowicz. Probilistic location and routing. In Proceedings of
the 21st Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), June 2002.

[18]. I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In Proceedings of

the ACM SIGCOMM’ 01 Conference, San Diego, California, August 2001.
[19]. B.Y.Zhao, J.D. Kubiatowicz, and A.D. Joseph. Tapestry: An infrastructure for

fault-resilient wide-area location and routing. Technical Report UCB//CSD-01-
1141, U.C.Berkeley, April 2001.

[20]. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In International Conference on

Distributed Systems Platforms (Middleware), Nov. 2001.
[21]. Nicholas J.A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin Theimer, Alec

Wolman, SkipNet: A Scalable Overlay Network with Practical Locality Properties.
In Proceedings of the 4

th
 USENIX Symposium on Internet Technologies and

Systems (USITS), Seattle, WA, USA, March, 2003.
[22]. Ali Ghodsi, Luc Onana Alima, Seif Haridi. Symmetric Replication for

Structured Peer-to-Peer Systems. In The 3rd International Workshop on

Databases, Information Systems and Peer-to-Peer Computing, August 28-29,
2005, Trondheim, Norway

[23]. Ali Ghodsi, Luc Onana Alima, Seif Haridi. Low-Bandwidth Topology
Maintenance for Robustness in Structured Overlay Networks, In the 38th

International HICSS Conference, Springer-Verlag, January, 2005.
[24]. Luc Onana Alima, Ali Ghodsi, Per Brand, Seif Haridi. Multicast in DKS(N, k, f)

Overlay Networks, In Proceedings of the 7th International Conference on

Principles of Distributed Systems, Springer-Verlag, Berlin, 2004
[25]. Ali Ghodsi, Luc Onana Alima, Sameh el-Ansary, Per Brand, Seif Haridi. Self-

Correcting Broadcast in Distributed Hash Tables. In Series on Parallel and

Distributed Computing and Systems , ACTA Press, Calgary, 2003
[26]. Sameh El-Ansary, Luc Onana Alima, Per Brand and Seif Haridi, Efficient

Broadcast in Structured P2P Networks. In the 2nd International Workshop On

Peer-To-Peer Systems, (Berkeley, CA, USA), February 2003
[27]. I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.

IFIP International Conference on Network and Parallel Computing, Springer-

Verlag LNCS 3779, pp 2-13, 2005

[28]. A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, B. Moe. Wide Area Data
Replication for Scientific Collaborations. Proceedings of 6th IEEE/ACM

International Workshop on Grid Computing (Grid2005), November 2005

[29]. A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Iamnitchi, C.
Kesselman, P. Kunst, M. Ripeanu, B, Schwartzkopf, H, Stockinger, K. Stockinger,
B. Tierney. Giggle: A Framework for Constructing Scalable Replica Location
Servcies. Proceedings of Supercomputing 2002 (SC2002), November 2002.

[30]. Hawkeye. URL: http://www.cs.wisc.edu/condor/hawkeye/.
[31]. Ganglia. URL: http://ganglia.sourceforge.net.
[32]. MDS Key concepts. URL:http://www.globus.org/toolkit/docs/4.0/info/key-

index.html

 Chapter 9 References

- 44 -

[33]. Wei Lu, Kenneth Chiu, Aleksander Slominski, and Dennis Gannon. “A
streaming validation model for soap digital signature”. In 14th IEEE International

Symposium on High Performance Distributed Computing (HPDC-14), 2005
[34]. The Globus Security Team.

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf. GT4
Grid Security Infrastructure: A Standard Perspective.

[35]. J. O. Kephart, and D. M. Chess. “The vision of autonomic computing”. IEEE
Computer 36(1):41-50, 2003

[36]. Steve Graham, Doug Davis, etc. Building web services with Java (Second
Edition), 383, 2005 by Sams Publishing.

[37]. Mark Baker. “Ian Foster on Recent Changes in the Grid Community”. IEEE

Distributed Systems Online, February 2004.
[38]. M. Cai, A. Chervenak, M. Frank. A Peer-to-Peer Replica Location Service

Based on A Distributed Hash Table. Proceedings of the SC2004 Conference

(SC2004), November 2004.

[39]. H. Stockinger, Distributed Database Management Systems and the Data Grid, In
18th IEEE Symposium on Mass Storage Systems and 9th NASA Goddard

Conference on Mass Storage Systems and Technologies, San Diego, April 17-20,
2001..

[40]. Versant, Inc. http://www.versant.com
[41]. ObjectStore http://www.exceloncorp.com/products/objectstore.html
[42]. Third-party-transfers

http://www.globus.org/toolkit/docs/4.0/data/gridftp/GridFTP_Glossary.html#third
-party-transfers

[43]. LIGO Project. Lightweight Data Replicator, http://www.lsc-
group.phy.uwm.edu/LDR/, 2004

[44]. P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. File-based Replica
Management, Future Generation Computer Systems, 22(1):115-123, 2005,
Elsevier

[45]. W. H. Bell, D. G. Cameron, L. Capozza, P. Millar, K. Stockinger, and F. Zini.
Design of a Replica Optimisation Framework. Technical Report DataGrid-02-

TED-021215, CERN, Geneva, Switzerland, December 2002.
[46]. Globus Service Build Tools. http://gsbt.sourceforge.net
[47]. FAM. http://oss.sgi.com/projects/fam
[48]. JNI http://java.sun.com/j2se/1.5.0/docs/guide/jni/index.html
[49]. M. Resnick. Turtles, Termites, and Traffic Jams: Exploration in Massively

Parallel Microworlds. MIT Press, 1994.
[50]. Junwei Cao. Self-Organizing Agents for Grid Load Balancing. Fifth IEEE/ACM

International Workshop on Grid Computing (GRID'04) pp. 388-395
[51]. A. Montresor, H. Meling, and Ö. Babaoglu. Messor: Load-Balancing through a

Swarm of Autonomous Agents. In Proc. Of 1st Int. Workshop on Agents and Peer-
to-Peer Computing, Linköping, Sweden, pp. 81-89, 2002.

[52]. L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Replica
Management in Data Grids. Technical Report, GGF5 Working Draft, July 2002.

[53]. Gnutella. http://rfc-gnutella.sourceforge.net

 Chapter 9 References

- 45 -

[54]. P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information
system based on the XOR metric. 1st International Workshop on Peer-to-Peer

Systems (IPTPS '02), March 2002.
[55]. Joshua P. MacDonald, XDelta,

http://www.XCF.Berkeley.edu/~jmacd/xdelta.html
[56]. SimpleCA. http://www.globus.org/toolkit/docs/4.0/security/simpleca/
[57]. Complex Adaptive System. http://www.cs.iastate.edu/~honavar/alife.isu.html
[58]. K. Czajkowski, D. Ferguson, I. Fonster, etc. The WS-Resource Framework,

version 1.0. http://www.globus.org/wsrf/specs/ws-wsrf.pdf

 Chapter 10 Appendixes

- 46 -

10 Appendixes

Appendix A Java Doc
This appendix contains the Java doc. To save the file spaces, it doesn’t include the
documentary for all the Java class.

• Directory Monitor and File Monitor

Class DirectoryMonitor

public class DirectoryMonitor
implements Runnable

This class monitor a specific directory.

Constructor Detail

DirectoryMonitor
public DirectoryMonitor(String path)

If the directroy doesn't exist, exception will be thrown.
Parameters:

path - The directory to be monitored

DirectoryMonitor
public DirectoryMonitor()

The default monitored directory is "/home/icebox/filedir"
Throws:

IOException -

Method Detail

initRLS
public void initRLS()

initRLS is used to load the local file list to the RLS.

start
public void start()

Open a connection to the fam daemon. Start the watch thread.

stop
public synchronized void stop()

Stop the monitor thread and close the connection to the fam daemon.

 Chapter 10 Appendixes

- 47 -

run
public void run()

Capture the events from the fam daemon and do corresponding action.

main
public static void main(String[] args)

Class FileMonitor

public class FileMonitor
implements Runnable

FileMonitor Monitor a specific file.

Constructor Detail

FileMonitor
public FileMonitor(String path)

Initialize the timer and RLS operation.
Parameters:

path - The file to be monitored

Method Detail

start
public void start()

Open a conncetion to the FAM daemon and start up a watch thread.

stop
public synchronized void stop()

Close the connection and kill the watch thread.

run
public void run()

Capture the events and take corresponding action

main
public static void main(String[] args)

 Chapter 10 Appendixes

- 48 -

util
Class RLSOP

public class RLSOP

Description: This is a tool class. It provides API to access RLS and maintain the
data consistency.

Constructor Detail

RLSOP
public RLSOP()

Get the RLS PortTypePort and initialization.

Method Detail

add
public void add(String[] fileList)

Before the file and its position are inserted into the RLS, this method will make
sure there are not already existed

Parameters:
fileList - String[] The files name whose positions are to be inserted into the
RLS.

subtract
public void subtract(String fileName)

Delete a file position in the RLS
Parameters:

fileName - String The file name to be deleted from the RLS.

existNum
public int existNum(String fileName)

Get the replica numbers for a file
Parameters:

fileName - String File name to be queried.
Returns:

int The number of replicas for a file

positionExist
public boolean positionExist(String[] positions)

Check if the local position is in a position lists.
Parameters:

 Chapter 10 Appendixes

- 49 -

positions - String[] The positions list to be checked.
Returns:

boolean

sync
public void sync(String fileName,
 GSSCredential cred)

Data consistency Maintaining Note: although the security parameters are used
here. But it is never tested. All the tests are performed without security
consideraitons.

Parameters:
fileName - String The file name whose replica consistency is going to be
maintained.
cred - GSSCredential Credentail for the security GridFTP access.

getContainerUrl
public String getContainerUrl()

Get the local web container URL
Returns:

String

getmyIP
public String getmyIP()

Get the local IP address
Returns:

String

• Statistics Service

org.globus.myagent.services.core.statistics.impl
Class Statistics

public class Statistics

Description: This class collects user access information. It removes useless
replicas and proactively places replicas

Constructor Detail

Statistics
public Statistics()

"MyServices" will be scheduled periodically.

 Chapter 10 Appendixes

- 50 -

Method Detail

collectAccessInfo
public CollectAccessInfoResponse
collectAccessInfo(CollectAccessInfo params)

Remotely-accessible operations collectAccessInfo. It collects file access info.
Parameters:

CollectAccessInfo - File name and file positions
Returns:

A empty stub

addClient
public AddClientResponse addClient(AddClient params)

Remotely-accessible operation. The client submits it requirements.
Parameters:

params - AddClient client position and client RTTreq
Returns:

AddClientResponse A empty stub

removeClient
public RemoveClientResponse removeClient(String clientPosition)

Remotely-accessible operation. The client removes its requirement for placing
replicas around it.

Parameters:
clientPosition - String client IP address

Returns:
RemoveClientResponse A empty stub

reset
public ResetResponse reset(Reset param)

Remotely-accessible operation. Clear all acess record
Parameters:

param - Reset A empty stub
Returns:

ResetResponse A empty stub

org.globus.myagent.services.core.statistics.impl
Class MyServices

public final class MyServices
extends TimerTask

 Chapter 10 Appendixes

- 51 -

Description: This class is scheduled by the Statistics service periodically. It
deletes useless and places replicas.

Method Detail

run
public void run()

Thread running.

MaxForaccessInfo1
private String MaxForaccessInfo1()

Returns:
String The file name that has the most access time

getFileList
private String[] getFileList(String position)

Parameters:
position - String Storage element address

Returns:
String[] File names

deleteUseless
private void deleteUseless(String[] fileList,
 String position)

Parameters:
fileList - String[] Files to be checked
position - String Positiions where files exist

proactivePlacement
private void proactivePlacement(String fileName)

Parameters:
fileName - String Files to be placed.

motivateNode
private void motivateNode(String filePosition,
 String clientPosition,
 long rttReq)

Parameters:
filePosition - String
clientPosition - String
rttReq - long

 Chapter 10 Appendixes

- 52 -

org.globus.myagent.services.core.statistics.impl
Class ValueListener

public class ValueListener
extends Thread
implements NotifyCallback

Description: To receive notification from the reomote Notification service.

Constructor Detail

ValueListener
public ValueListener(String serviceURI,
 String clientPosition,
 long minRTTReq)

Parameters:
serviceURI - String The remote notification service address
clientPosition - String The user site address
minRTTReq - long The user RTT requirements

Method Detail

deliver
public void deliver(List topicPath,
 EndpointReferenceType producer,
 Object message)

This method is called when a notification is delivered

run
public void run()

Thread running. To subscribe to the remote topic.

getPosition
public String getPosition()

Get the final result: replica position
Returns:

String

getValue
public long getValue()

Get the final result: min RTT value

 Chapter 10 Appendixes

- 53 -

Returns:
long

org.globus.myagent.services.core.statistics.impl
Class ForAliveInfo

public class ForAliveInfo
extends BaseClient

Description: This class gets the current registered alive node sites addresses from
NLS.

Method Detail

getPositionList
String[] getPositionList()

Get current alive registered node address.
Returns:

String[]

• Replica location Service

org.globus.myagent.services.core.RLSDKS.impl
Class RLSDKS

public class RLSDKS

Description: This service registers in the DKS ring when it starts up and exports
many RLS operations.

Method Detail

add
public AddResponse add(Add params)

Remotely-accessible operations. Add a replica position into the RLS
Parameters:

params - Add File name and its position
Returns:

AddResponse An empty stub
Throws:

RemoteException -

delete
public DeleteResponse delete(Delete params)

 Chapter 10 Appendixes

- 54 -

Remotely-accessible operations. Delete a replica from the RLS
Parameters:

params - Delete File name and its position.
Returns:

DeleteResponse An empty stub.
Throws:

RemoteException -

query
public QueryResponse query(String fileName)

Remotely-accessible operations. Query the positions for a file.
Parameters:

fileName - String
Returns:

QueryResponse File positions.
Throws:

RemoteException -

getFirstDKSNodeURL
public String getFirstDKSNodeURL(GetFirstDKSNodeURL param)

Remotely-accessible operations. Get a DKS Node URL
Parameters:

param - GetFirstDKSNodeURL A empty stub.
Returns:

String URL for a DKS node.

updateCache
public static synchronized void updateCache()

Update the local node list cache by contacting the NLS.

getSuccessor
public String getSuccessor(GetSuccessor param)

Get the successor IP of the local site.
Parameters:

param - GetSuccessor
Returns:

String

getRoutingTable
public GetRoutingTableResponse getRoutingTable(GetRoutingTable param)

Get the nodes in the level 0 of the local node routing table.

 Chapter 10 Appendixes

- 55 -

Parameters:
param - GetRoutingTable

Returns:
GetRoutingTableResponse

org.globus.myagent.services.core.RLSDKS.impl
Class PeriodAction

public class PeriodAction
extends TimerTask

Description: This class is scheduled periodically to update the local cache.

Method Detail

run
public void run()

Update the cache.

• Agent service

org.globus.myagent.services.core.agent.impl
Class Myagent

public class Myagent

Description: This service handles the ants and sense network dynamical
environment by computing RTT

Constructor Detail

Myagent
public Myagent()

Constructor. Initialization. Start up the PongManager and clear the status

Method Detail

receiveRequest
public RespondToRequest receiveRequest(ReceiveRequest params)

To receive user requests and act as a delegate agent.
Parameters:

params - ReceiveRequest includes user IP, file name and RTT requirements.
Returns:

 Chapter 10 Appendixes

- 56 -

RespondToRequest contains the status of current agent.
Throws:

RemoteException -

motivate
public MotivateResponse motivate(Motivate params)

Send out ants to the nodes in the first level of routing table.
Parameters:

params - Motivate includes user IP address, delegate agent address and user
requirements.

Returns:
MotivateResponse An emptty stub.

Throws:
RemoteException -

sendAnt
public void sendAnt(AntModel am,
 String dest)

Check the vadility of the destination and send out ants.
Parameters:

am - AntModel
dest - String Destination IP address.

Throws:
RemoteException -

antContainer
public AntAck antContainer(Ant ant)

The ant algorithm implementation
Parameters:

ant - Ant contains the status and data for ant algorithm
Returns:

AntAck An empty stub
Throws:

RemoteException -

getSuccessor
public String getSuccessor(String param)

Get the successor IP of a node.
Parameters:

param - String node IP
Returns:

String Successor IP

 Chapter 10 Appendixes

- 57 -

getRoutingTable
public String[] getRoutingTable(String param)

Get the routing table of a node
Parameters:

param - String node address
Returns:

String[] routing table of this node.

getFileLists
public String getFileLists(GetFileLists param)

Get the files names of local storage element.
Parameters:

param - GetFileLists
Returns:

String File lists
Throws:

RemoteException -

getFileSize
public long getFileSize(String fileName)

Get the size for a specific file in the local storage element.
Parameters:

fileName - String
Returns:

long The size of a file

getRTT
public long getRTT(String remoteClientPosition)

Get the RTT between the local site and the remote place
Parameters:

remoteClientPosition - String The IP address of the remote place.
Returns:

long The RTT value.

org.globus.myagent.services.core.agent.impl
Class NotifClient

public class NotifClient

Description: This class is used to notify the user site of final replica selection
results. It changes the resource properties in the notification service.

 Chapter 10 Appendixes

- 58 -

Method Detail

add
public void add(String cp,
 long rttReq,
 String minRTTPosition,
 long minRTTValue)

Conduct the remote operation "add" in the notification service.
Parameters:

cp - String user site IP address
rttReq - long user site RTT requirement
minRTTPosition - String the selected position with the minimum RTT
minRTTValue - long The minimum RTT

Throws:
Exception -

printResourceProperties
private static void printResourceProperties(NotificationPortType notif)

Query the resource properties in the remote notification service and print them
Parameters:

notif - NotificationPortType
Throws:

Exception -

• Notification service

org.globus.myagent.services.core.notification.impl
Class NotifService

public class NotifService
implements Resource, ResourceProperties, TopicListAccessor

Description: This service takes the replica selection information as the resource
properties. It adds this property as a topic. Therefore whenever it is changed, any
one who subscribe it can be notified.

Constructor Detail

NotifService
public NotifService()

Constructor. Initializes RPs and topic

Method Detail

 Chapter 10 Appendixes

- 59 -

add
public AddResponse add(Add params)

Remotely-accessible operations. Update the resource properties.
Parameters:

params - Add includes the user IP address, RTT requirement and selected replica
position and its RTT.

Returns:
AddResponse An empty stub

Throws:
RemoteException -

getResourcePropertySet
public ResourcePropertySet getResourcePropertySet()

Required by interface ResourceProperties

getTopicList
public TopicList getTopicList()

Required by interface TopicListAccessor

 Chapter 10 Appendixes

- 60 -

Appendix B Use Cases
This appendix includes several use cases. They are: (1) Grid node setting up; (2) Replica
Selection.

• Grid node setting up
1. The Grid node holding the Node Location Service starts up the web container.

This web container shouldn’t employ the RLSDKS.
2. A Grid node starts up the web container that could include all the components and

services.
3. This Grid node runs “mds-servicegroup-add” with the configuration file “alive-

position-registration.xml”. There is a parameter in it, corresponding to the NLS
IP address. It should be set correctly.

4. Other Grid nodes are set up in the same way as 2 and 3.

• Replica Selection
1. The user creates a resource in a notification service and subscribes to its property,

“informationRP”.
2. The user submits replica selection requests including three parameters to any

agent service. The parameters are file name, RTT requirement, local available
storage space size. This agent is the delegate agent of the user.

3. The delegate agent queries local RLS about the existing replica location for the
file.

4. The delegate agent queries a replica location to get the file size.
5. The delegate agent collects RTTs from all the existing replica locations.
6. The delegate agent motivates the existing replica locations which in turn send out

ants.
7. Ants collect information and walk around the DKS ring. After fixed steps, it goes

back to the delegate agent.
8. The delegate agent selects the potential position and computes the RTT between it

and each existing replica position. It then moves the file from a position that has
the least RTT to the potential position.

9. The delegate agent registers this position in the RLS and conducts the remote
operation “add” in the notification service.

10. The delegate agent sends the results to the statistics service.
11. The notification service notifies the selection result to the user.

 Chapter 10 Appendixes

- 61 -

Appendix C WSDL Files
This section contains the WSDL files for all web services included in our work. Table *
shows the relation between the WSDL files and the corresponding components.

WSDL file Component Name
Myagent.wsdl for agent service Replica Selection

Notification.wsdl for Notification service Replica Selection
Statistics.wsdl for statistics service Statistics

RLSDKS.wsdl for RLS Node Location Component
AliveInfo.wsdl for aliveinfo service Node Location Component

C.1 Myagent.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Myagent"
targetNamespace="http://www.globus.org/namespaces/m yagent/core/Myagent"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.globus.org/namespaces/mya gent/core/Myagent"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/200 4/06/wsrf-WS-
ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/20 04/06/wsrf-WS-
ResourceProperties-1.2-draft-01.wsdl"
xmlns:wsdlpp="http://www.globus.org/namespaces/2004 /10/WSDLPreprocessor
"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-W S-
ResourceProperties-1.2-draft-01.wsdl"
 location="../../wsrf/properties/WS-ResourceProp erties.wsdl" />

<!--=== =============

 T Y P E S

 === ===========-->
<types>
<xsd:schema
targetNamespace="http://www.globus.org/namespaces/m yagent/core/Myagent"
 xmlns:tns="http://www.globus.org/namespaces/mya gent/core/Myagent"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- REQUESTS AND RESPONSES -->

 <xsd:element name="fileName" type="xsd:stri ng"/>
 <xsd:element name="filePosition" type="xsd: string"/>
 <xsd:element name="clientPosition" type="xs d:string"/>

 Chapter 10 Appendixes

- 62 -

 <!-- CLIENT REQUEST -->
 <xsd:element name="receiveRequest">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:clientPosition" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:fileName" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="roundTripTime" type="xsd:long"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="providedSize" type="xsd:long"
minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="respondToRequest">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:fileName" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="status" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="roundTripTime" type="xsd:long"
minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- ANT ALGORITHM -->

 <xsd:element name="motivate">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:clientPosition" minOccurs="1"
maxOccurs="1"/>
<xsd:element name="delegationSite" type="xsd:string "
minOccurs="1" maxOccurs="1"/>
<xsd:element name="roundTripTime" type="xsd:long"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="rttReq" type="xsd:long"
minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:fileName" minOccurs="1"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="motivateResponse">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="ant">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="hops" type="xsd:int"
minOccurs="1" maxOccurs="1"/>

 Chapter 10 Appendixes

- 63 -

<xsd:element name="minRTT" type="xsd:long"
minOccurs="1" maxOccurs="1"/>
<xsd:element ref ="tns:clientPosition"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="rttReq" type="xsd:long"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="minRTTPosition"
type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="hopStart" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="delegationSite"
type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:fileName" minOccurs="1"

maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="antAck">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="resetMyagentStatus">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="resetMyagentStatusResponse">
 <xsd:complexType/>
 </xsd:element>

 <!-- FILE INFO -->

 <xsd:element name="getFileLists">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="getFileListsResponse" type="xsd :string"/>

 <xsd:element name="getFileSize" type="xsd:string"/ >
 <xsd:element name="getFileSizeResponse" type="xsd: long"/>

 <!-- Ping Pong -->

 <xsd:element name="getRTT">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="remotePosition"
type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="remotePort" type="xsd:int"
minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="getRTTResponse" type="xsd:long" />

 Chapter 10 Appendixes

- 64 -

 <!-- Cache -->

 <xsd:element name="updateCache">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="newNodeCache"
type="xsd:string" minOccurs="1" maxOccurs="1"/>
<xsd:element name="newTimeRecCache"
type="xsd:string" minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="updateCacheResponse">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="getCache">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="getCacheResponse">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="currentNodeCache"
type="xsd:string" minOccurs="0" maxOccurs="1"/>
<xsd:element name="currentTimeRecCache"
type="xsd:string" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <!-- RESOURCE PROPERTIES -->

 <xsd:element name="StatusClientPosition" type="xsd :string"/>
 <xsd:element name="StatusRTTReq" type="xsd:long"/>
 <xsd:element name="StatusMinRTT" type="xsd:long"/>
 <xsd:element name="StatusFileName" type="xsd:strin g"/>
 <xsd:element name="StatusString" type="xsd:string" />
 <xsd:element name="StatusCounter" type="xsd:int"/>
 <xsd:element name="StatusMinRTTPosition" type="xsd :string"/>
 <xsd:element name="CacheNodeList" type="xsd:string "/>
 <xsd:element name="CacheTimeRec" type="xsd:string" />

 <xsd:element name="MyagentResourceProperties">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:StatusClientPosition"
minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:StatusRTTReq" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:StatusMinRTT" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:StatusFileName" minOccurs="1"
maxOccurs="1"/>

 Chapter 10 Appendixes

- 65 -

<xsd:element ref="tns:StatusString" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:StatusCounter" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:StatusMinRTTPosition"
minOccurs="1" maxOccurs="1"/>
<xsd:element ref="tns:CacheNodeList" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:CacheTimeRec" minOccurs="1"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>
</types>

<!--=== =============

 M E S S A G E S

 === ===========-->

<message name="MotivateInputMessage">
 <part name="parameters" element="tns:motivate"/>
</message>
<message name="MotivateOutputMessage">
 <part name="parameters" element="tns:motivateRespo nse"/>
</message>

<message name="Ant">
 <part name="parameters" element="tns:ant"/>
</message>
<message name="AntAckMessage">
 <part name="parameters" element="tns:antAck"/>
</message>

<message name="GetFileListsInputMessage">
 <part name="parameters" element="tns:getFileLists" />
</message>
<message name="GetFileListsOutputMessage">
 <part name="parameters" element="tns:getFileListsR esponse"/>
</message>

<message name="GetFileSizeInputMessage">
 <part name="parameters" element="tns:getFileSize"/ >
</message>
<message name="GetFileSizeOutputMessage">
 <part name="parameters" element="tns:getFileSizeRe sponse"/>
</message>

<message name="GetRTTInputMessage">
 <part name="parameters" element="tns:getRTT"/>
</message>
<message name="GetRTTOutputMessage">

 Chapter 10 Appendixes

- 66 -

 <part name="parameters" element="tns:getRTTRespons e"/>
</message>

<message name="RequestInputMessage">
 <part name="parameters" element="tns:receiveReques t"/>
</message>
<message name="RequestOutputMessage">
 <part name="parameters" element="tns:respondToRequ est"/>
</message>

<message name="ResetMyagentStatusInputMessage">
 <part name="parameters" element="tns:resetMyagentS tatus"/>
</message>
<message name="ResetMyagentStatusOutputMessage">
 <part name="parameters"
element="tns:resetMyagentStatusResponse"/>
</message>

<message name="UpdateCacheInputMessage">
 <part name="parameters" element="tns:updateCache"/ >
</message>
<message name="UpdateCacheOutputMessage">
 <part name="parameters" element="tns:updateCacheRe sponse"/>
</message>

<message name="GetCacheInputMessage">
 <part name="parameters" element="tns:getCache"/>
</message>
<message name="GetCacheOutputMessage">
 <part name="parameters" element="tns:getCacheRespo nse"/>
</message>

<!--=== =============

 P O R T T Y P E

 === ===========-->

<portType name="MyagentPortType"
 wsdlpp:extends = "wsrpw:GetResourceProperty"
 wsrp:ResourceProperties="tns:MyagentResourceProper ties">

 <operation name="motivate">
 <input message="tns:MotivateInputMessage"/>
 <output message="tns:MotivateOutputMessage"/>
 </operation>

 <operation name="antContainer">
 <input message="tns:Ant"/>
 <output message="tns:AntAckMessage"/>
 </operation>

 <operation name="getFileLists">
 <input message="tns:GetFileListsInputMessage"/>
 <output message="tns:GetFileListsOutputMessage"/>
 </operation>

 Chapter 10 Appendixes

- 67 -

 <operation name="getFileSize">
 <input message="tns:GetFileSizeInputMessage"/>
 <output message="tns:GetFileSizeOutputMessage"/>
 </operation>

 <operation name="getRTT">
 <input message="tns:GetRTTInputMessage"/>
 <output message="tns:GetRTTOutputMessage"/>
 </operation>

 <operation name="receiveRequest">
 <input message="tns:RequestInputMessage"/>
 <output message="tns:RequestOutputMessage"/>
 </operation>

 <operation name="resetMyagentStatus">
 <input message="tns:ResetMyagentStatusInputMessag e"/>
 <output message="tns:ResetMyagentStatusOutputMess age"/>
 </operation>

 <operation name="updateCache">
 <input message="tns:UpdateCacheInputMessage"/>
 <output message="tns:UpdateCacheOutputMessage"/>
 </operation>

 <operation name="getCache">
 <input message="tns:GetCacheInputMessage"/>
 <output message="tns:GetCacheOutputMessage"/>
 </operation>

</portType>

</definitions>

C.2 Notification.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Notification"

targetNamespace="http://www.globus.org/namespaces/m yagent/core/Notifica
tion"
 xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://www.globus.org/namespaces/myagent /core/Notification"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/200 4/06/wsrf-WS-
ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/20 04/06/wsrf-WS-
ResourceProperties-1.2-draft-01.wsdl"
 xmlns:wsntw="http://docs.oasis-open.org/wsn/200 4/06/wsn-WS-
BaseNotification-1.2-draft-01.wsdl"

xmlns:wsdlpp="http://www.globus.org/namespaces/2004 /10/WSDLPreprocessor
"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 Chapter 10 Appendixes

- 68 -

<wsdl:import
 namespace=

 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-W S-
ResourceProperties-1.2-draft-01.wsdl"

 location="../../wsrf/properties/WS-ResourceProp erties.wsdl" />

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsn/2004/06/wsn-WS- BaseNotification-
1.2-draft-01.wsdl"
 location="../../wsrf/notification/WS-BaseN.wsdl "/>

<!--=== =============

 T Y P E S

 === ===========-->
<types>
<xsd:schema
targetNamespace="http://www.globus.org/namespaces/m yagent/core/Notifica
tion"

xmlns:tns="http://www.globus.org/namespaces/myagent /core/Notification"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- REQUESTS AND RESPONSES -->
 <xsd:element name="add">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="cp" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="rttReq" type="xsd:long"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="minrttp" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="minrtt" type="xsd:long"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="fileName" type="xsd:string"

minOccurs="1" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="addResponse">
 <xsd:complexType/>
 </xsd:element>

 <!-- RESOURCE PROPERTIES -->

 <xsd:element name="Information" type="xsd:string"/ >

 <xsd:element name="NotificationResourceProperties" >
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:Information" minOccurs="1"
maxOccurs="1"/>

 Chapter 10 Appendixes

- 69 -

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>
</types>

<!--=== =============

 M E S S A G E S

 === ===========-->

<message name="AddInputMessage">
 <part name="parameters" element="tns:add"/>
</message>
<message name="AddOutputMessage">
 <part name="parameters" element="tns:addResponse"/ >
</message>

<!--=== =============

 P O R T T Y P E

 === ===========-->
<portType name="NotificationPortType"
 wsdlpp:extends="wsrpw:GetResourceProperty
wsntw:NotificationProducer"
 wsrp:ResourceProperties="tns:NotificationResour ceProperties">

 <operation name="add">
 <input message="tns:AddInputMessage"/>
 <output message="tns:AddOutputMessage"/>
 </operation>

</portType>

</definitions>

C.3 Statistics. wsdl
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Statistics"

targetNamespace="http://www.globus.org/namespaces/m yagent/core/Statisti
cs"
 xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://www.globus.org/namespaces/myagent /core/Statistics"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/200 4/06/wsrf-WS-
ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/20 04/06/wsrf-WS-
ResourceProperties-1.2-draft-01.wsdl"

 Chapter 10 Appendixes

- 70 -

xmlns:wsdlpp="http://www.globus.org/namespaces/2004 /10/WSDLPreprocessor
"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-W S-
ResourceProperties-1.2-draft-01.wsdl"
 location="../../wsrf/properties/WS-ResourceProp erties.wsdl" />

<!--=== =============

 T Y P E S

 === ===========-->
<types>
<xsd:schema
targetNamespace="http://www.globus.org/namespaces/m yagent/core/Statisti
cs"

xmlns:tns="http://www.globus.org/namespaces/myagent /core/Statistics"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- REQUESTS AND RESPONSES -->
 <xsd:element name="fileName" type="xsd:stri ng"/>
 <xsd:element name="filePosition" type="xsd: string"/>
 <xsd:element name="rttReq" type="xsd:long"/>
 <xsd:element name="clientPosition" type="xsd:strin g"/>

 <xsd:element name="collectAccessInfo">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:fileName" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:filePosition" minOccurs="1"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 <xsd:element name="collectAccessInfoRespons e">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="addClient">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:clientPosition" minOccurs="1"
maxOccurs="1"/>

<xsd:element ref="tns:rttReq" minOccurs="1"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 Chapter 10 Appendixes

- 71 -

 <xsd:element name="addClientResponse">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="removeClient" type="xsd:string" />
 <xsd:element name="removeClientResponse">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="reset">
 <xsd:complexType/>
 </xsd:element>
 <xsd:element name="resetResponse">
 <xsd:complexType/>
 </xsd:element>

</xsd:schema>
</types>

<!--=== =============

 M E S S A G E S

 === ===========-->

<message name="CollectAccessInfoInputMessage">
 <part name="parameters" element="tns:collectAccess Info"/>
</message>
<message name="CollectAccessInfoOutputMessage">
 <part name="parameters" element="tns:collectAccess InfoResponse"/>
</message>

<message name="AddClientInputMessage">
 <part name="parameters" element="tns:addClient"/>
</message>
<message name="AddClientOutputMessage">
 <part name="parameters" element="tns:addClientResp onse"/>
</message>

<message name="RemoveClientInputMessage">
 <part name="parameters" element="tns:removeClient" />
</message>
<message name="RemoveClientOutputMessage">
 <part name="parameters" element="tns:removeClientR esponse"/>
</message>

<message name="ResetInputMessage">
 <part name="parameters" element="tns:reset"/>
</message>
<message name="ResetOutputMessage">
 <part name="parameters" element="tns:resetResponse "/>
</message>

<!--=== =============

 Chapter 10 Appendixes

- 72 -

 P O R T T Y P E

 === ===========-->

<portType name="StatisticsPortType">

 <operation name="collectAccessInfo">
 <input message="tns:CollectAccessInfoInputMessage "/>
 <output message="tns:CollectAccessInfoOutputMessa ge"/>
 </operation>

 <operation name="addClient">
 <input message="tns:AddClientInputMessage"/>
 <output message="tns:AddClientOutputMessage"/>
 </operation>

 <operation name="removeClient">
 <input message="tns:RemoveClientInputMessage"/>
 <output message="tns:RemoveClientOutputMessage"/>
 </operation>

 <operation name="reset">
 <input message="tns:ResetInputMessage"/>
 <output message="tns:ResetOutputMessage"/>
 </operation>

</portType>

</definitions>

C.4 RLSDKS.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="RLSDKS"
targetNamespace="http://www.globus.org/namespaces/m yagent/core/RLSDKS"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:tns="http://www.globus.org/namespaces/mya gent/core/RLSDKS"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/200 4/06/wsrf-WS-
ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/20 04/06/wsrf-WS-
ResourceProperties-1.2-draft-01.wsdl"

xmlns:wsdlpp="http://www.globus.org/namespaces/2004 /10/WSDLPreprocessor
"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-W S-
ResourceProperties-1.2-draft-01.wsdl"
 location="../../wsrf/properties/WS-ResourceProp erties.wsdl" />

<!--=== =============

 Chapter 10 Appendixes

- 73 -

 T Y P E S

 === ===========-->
<types>
<xsd:schema
targetNamespace="http://www.globus.org/namespaces/m yagent/core/RLSDKS"
 xmlns:tns="http://www.globus.org/namespaces/mya gent/core/RLSDKS"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- REQUESTS AND RESPONSES -->

 <xsd:element name="fileName" type="xsd:stri ng"/>
 <xsd:element name="filePosition" type="xsd:string" />

 <xsd:element name="add">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:fileName" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:filePosition" minOccurs="1"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="addResponse">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="delete">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:fileName" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:filePosition" minOccurs="1"
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="deleteResponse">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="query" type="xsd:string"/>
 <xsd:element name="queryResponse">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:fileName" minOccurs="1"
maxOccurs="1"/>
<xsd:element ref="tns:filePosition" minOccurs="0"
maxOccurs="unbounded"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

 Chapter 10 Appendixes

- 74 -

 <xsd:element name="getFirstDKSNodeURL">
 <xsd:complexType/>
 </xsd:element>

<xsd:element name="getFirstDKSNodeURLResponse"
type="xsd:string"/>

 <xsd:element name="getSuccessor">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="getSuccessorResponse" type="xsd :string"/>

 <xsd:element name="getRoutingTable">
 <xsd:complexType/>
 </xsd:element>

 <xsd:element name="getRoutingTableResponse">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element name="myIP" type="xsd:string"
minOccurs="1" maxOccurs="1"/>
<xsd:element name="routingTable" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>
</types>

<!--=== =============

 M E S S A G E S

 === ===========-->
<message name="AddInputMessage">
 <part name="parameters" element="tns:add"/>
</message>
<message name="AddOutputMessage">
 <part name="parameters" element="tns:addResponse"/ >
</message>

<message name="DeleteInputMessage">
 <part name="parameters" element="tns:delete"/>
</message>
<message name="DeleteOutputMessage">
 <part name="parameters" element="tns:deleteRespons e"/>
</message>

<message name="QueryInputMessage">
 <part name="parameters" element="tns:query"/>
</message>
<message name="QueryOutputMessage">
 <part name="parameters" element="tns:queryResponse "/>
</message>

 Chapter 10 Appendixes

- 75 -

<message name="GetFirstDKSNodeURLInputMessage">
 <part name="parameters" element="tns:getFirstDKSNo deURL"/>
</message>
<message name="GetFirstDKSNodeURLOutputMessage">
 <part name="parameters"
element="tns:getFirstDKSNodeURLResponse"/>
</message>

<message name="GetSuccessorInputMessage">
 <part name="parameters" element="tns:getSuccessor" />
</message>

<message name="GetSuccessorOutputMessage">
 <part name="parameters" element="tns:getSuccessorR esponse"/>
</message>

<message name="GetRoutingTableInputMessage">
 <part name="parameters" element="tns:getRoutingTab le"/>
</message>

<message name="GetRoutingTableOutputMessage">
 <part name="parameters" element="tns:getRoutingTab leResponse"/>
</message>

<!--=== =============

 P O R T T Y P E

 === ===========-->

<portType name="RLSDKSPortType">

 <operation name="add">
 <input message="tns:AddInputMessage"/>
 <output message="tns:AddOutputMessage"/>
 </operation>

 <operation name="delete">
 <input message="tns:DeleteInputMessage"/>
 <output message="tns:DeleteOutputMessage"/>
 </operation>

 <operation name="query">
 <input message="tns:QueryInputMessage"/>
 <output message="tns:QueryOutputMessage"/>
 </operation>

 <operation name="getFirstDKSNodeURL">
 <input message="tns:GetFirstDKSNodeURLInputMessag e"/>
 <output message="tns:GetFirstDKSNodeURLOutputMess age"/>
 </operation>

 <operation name="getSuccessor">
 <input message="tns:GetSuccessorInputMessage"/>
 <output message="tns:GetSuccessorOutputMessage"/>

 Chapter 10 Appendixes

- 76 -

 </operation>

 <operation name="getRoutingTable">
 <input message="tns:GetRoutingTableInputMessage"/ >
 <output message="tns:GetRoutingTableOutputMessage "/>
 </operation>

</portType>

</definitions>

C.5 AliveInfo.wsdl
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="AliveInfoService"

targetNamespace="http://www.globus.org/namespaces/m yagent/core/AliveInf
oService"
 xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://www.globus.org/namespaces/myagent /core/AliveInfoServi
ce"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsrp="http://docs.oasis-open.org/wsrf/200 4/06/wsrf-WS-
ResourceProperties-1.2-draft-01.xsd"
 xmlns:wsrpw="http://docs.oasis-open.org/wsrf/20 04/06/wsrf-WS-
ResourceProperties-1.2-draft-01.wsdl"

xmlns:wsdlpp="http://www.globus.org/namespaces/2004 /10/WSDLPreprocessor
"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<wsdl:import
 namespace=
 "http://docs.oasis-open.org/wsrf/2004/06/wsrf-W S-
ResourceProperties-1.2-draft-01.wsdl"
 location="../../wsrf/properties/WS-ResourceProp erties.wsdl" />

<!--=== =============

 T Y P E S

 === ===========-->
<types>
<xsd:schema
targetNamespace="http://www.globus.org/namespaces/m yagent/core/AliveInf
oService"

xmlns:tns="http://www.globus.org/namespaces/myagent /core/AliveInfoServi
ce"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- RESOURCE PROPERTIES -->

 <xsd:element name="ServicesAddress" type="xsd:stri ng"/>

 Chapter 10 Appendixes

- 77 -

 <xsd:element name="AliveInfoResourceProperties">
 <xsd:complexType>
 <xsd:sequence>

<xsd:element ref="tns:ServicesAddress" minOccurs="1 "
maxOccurs="1"/>

 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

</xsd:schema>
</types>

<!--=== =============

 P O R T T Y P E

 === ===========-->
<portType name="AliveInfoPortType"
 wsdlpp:extends="wsrpw:GetResourceProperty
 wsrpw:GetMultipleResourceProperties"
 wsrp:ResourceProperties="tns:AliveInfoResourceP roperties">

</portType>
</definitions>

 Chapter 10 Appendixes

- 78 -

Appendix D User Guides
There are four directories under thesis work package, named (1) DataConsistency ,
including the source codes for data consistency component;
(2)DongLi_Thesis_JavaCode , including the source code for services and clients; (3)
Gar , including the gar package for deploying services; and (4) schema including
the .wsdl file.

To set up the first Grid node, you have to re-build the RLS service instead of using the
Gar file in the Gar directory. Firstly, copy the RLSDKS.java in
org/globus/myagent/services/core/tmp_RLSDKS/1/ to the RLSDKS
impl directory and then build it. The corresponding command is:
./globus-build-service.sh –d
org/globus/myagent/services/core/RLSDKS/ -s
schema/RLSDKS/RLSDKS.wsdl
Secondly, deploy aliveinfo service. Third, run the command,
$GLOBUS_LOCATION/bin/mds-servicegroup-add -s
https://ServiceAddress/wsrf/services/DefaultIndexSe rviceEntr
y -z none alive-position-registration.xml

To deploy a service in the GT4 web container, like agent service, run the command
$GLOBUS_LOCATION/bin/globus_deploy_gar
Gar/org_globus_myagent_services_core_agent.gar

The clients for services access are under the directory
DongLi_ThesisWork/DongLi_Thesis_JavaCode/org/globus /myagent/
clients/agent/ . To add an item in the RLS and query a file, run the command
java org.globus.myagent.clients.agent.RLSDKSClient RLSDKS
*** , where “***” should be replaced with the service address.

 To submit replica selection request, run
 java org.globus.myagent.clients.agent.GenClientReq uest .
To listen to the selection result, run
java -DGLOBUS_LOCATION=$GLOBUS_LOCATION
org.globus.myagent.clients.agent.GenClientListener n
where n should be replace by the relica selection requests number.

To run the data consistency component, first run the command fam as the superuser and
then run the run-example-d.sh *** , where *** should be replaced by the
directory name you would like to monitor.

