

Emulation tool for credit card

interface validation and

authorization

H E N R I K P I E R R O U

Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LECS-2005-102

Emulation tool for credit card

interface validation and
authorization

H E N R I K P I E R R O U

Industry Advisor:
Nazir Goulamhoussen, Amadeus SAS, Nice France

Thesis Examiner:

Prof. Vladamir Vlassov, Department of Microelectronics
and Information Technology, Royal Institute of

Technology

Master of Science Thesis

Stockholm, Sweden 2005
IMIT/LECS-2005-102

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION

HENRIK PIERROU I 29 DECEMBER 2005

Abstract

Global Distribution Systems (GDS) provide users around the world access to traveling
products such as tickets, hotel room reservations and car rental reservations. When an
order is issued, these systems create records describing among other things the form of
payment. Payment by credit card is usually an option and whenever this option is used,
the GDS needs to send and receive one or more credit card messages to and from the
appropriate credit card authorization institution. The responses inform of whether the
payments are granted or not. If it is not granted, the reason for denial and/or a handling
message is included.

When developing software used to send and receive such messages and when
troubleshooting reported errors associated to them it is inevitable to send test credit card
messages. Most credit card companies provide test links for these purposes but the
inability to control what is received at the credit card company’s end, how the message is
handled and what is returned limits their usefulness. Also, the test links may sometimes
be unavailable due to reasons outside the control of the GDS. A solution for emulating
credit card interface validation and authorization, allowing control over the whole process
from the sending of the request to the receiving of the response would help facilitate the
support and the development in these situations.

This thesis addresses the issue of how such a system could be developed for a GDS
company and describes the problems encountered and conclusions drawn from the work
conducted in this area at GDS software company Amadeus SAS in Nice, France.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION

HENRIK PIERROU II 29 DECEMBER 2005

Sammanfattning

Globala distributionssystem (GDS) erbjuder användare i hela världen tillgång till
reseprodukter såsom flygbiljetter, hotellrumsbokningar och bilhyrningreservationer. När
en order placeras lagrar dessa system information om ordern, bland annat vilket
betalningssätt som användaren har valt. Betalning med kreditkort är vanligtvis ett
alternativ och när detta är valt behöver GDS-systemet skicka och ta emot ett eller flera
kreditkortsmeddelanden till och från det korrekta kreditkortsinstitutet. Svaren från
kreditkortsinstitutionerna innehåller information om huruvida betalningarna är godkända
eller inte. Om de inte är godkända inkluderas även information om varför den inte är
godkänd.

Vid utveckling av mjukvara som skickar och tar emot sådana meddelanden och vid
felsökning och support av dessa system är det oundvikligt att skicka
testkreditkortsmeddelanden. De flesta kreditkortsföretag erbjuder testlänkar för detta
ändamål men eftersom användaren av länkarna saknar kontroll över vad som tas emot
på kreditkortsföretagets sida, hur meddelandet hanteras och vad som returneras, är
dessas användbarhet begränsad. Dessutom är testlänkarna ibland otillgängliga av
anledningar utanför GDS-systemens kontroll. En mjukvara som emulerar
kreditkortsföretagens beteende och tillåter kontroll över hela processen från skickandet
av det första meddelandet till mottagandet av svaret skulle underlätta utvecklings- och
supportprocesserna i dessa situationer.

Den här uppsatsen behandlar frågan om hur ett sådant system skulle kunna utvecklas för
ett GDS-företag och beskriver arbetet med att utveckla en prototyp på GDS-företaget
Amadeus i Nice, Frankrike.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION

HENRIK PIERROU III 29 DECEMBER 2005

Acknowledgements

I would like to thank Nazir Goulamhoussen and Isabella Capella at Amadeus for

introducing me to the Amadeus world and for their constant willingness to answer my
questions thoroughly.

I would also like to thank my KTH supervisor, prof. Vladimir Vlassov at the Department

of Microelectronics and Information Technology, Royal Institute of Technology, Kista,
Stockholm for his support and guidance.

Thank you!

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION

HENRIK PIERROU IV 29 DECEMBER 2005

Table of Contents

1 INTRODUCTION...1

1.1 PROBLEM AREA ...1
1.2 COMPANY PRESENTATION ..2

1.2.1 GDS ...2
1.2.2 E-travel..2
1.2.3 IT-Services...3

1.3 PROBLEM DEFINITION...3
1.4 REPORT STRUCTURE...4

2 BACKGROUND..6

2.1 CREDIT CARD MESSAGES...6
2.1.1 The Qantas IGW link – AS2805...6

2.1.1.1 Header .. 7
2.1.1.2 Message Type ID .. 7
2.1.1.3 Bitmaps .. 8
2.1.1.4 Data Fields ... 8
2.1.1.5 Response codes.. 8
2.1.1.6 Message example .. 9

2.1.2 American Express Link – ISO8583..10
2.1.2.1 Message Type ID .. 10
2.1.2.2 Bitmaps .. 11
2.1.2.3 Data Fields ... 11
2.1.2.4 Response Codes... 11
2.1.2.5 Message Example.. 12

2.1.3 VISA Link – ISO8583...12
2.1.3.1 Header .. 13
2.1.3.2 Message Type ID .. 13
2.1.3.3 Bitmaps .. 14
2.1.3.4 Data Fields ... 14
2.1.3.5 Response Codes... 14
2.1.3.6 Message Example.. 15

2.1.4 Other Links ..16
2.2 CREDIT CARD NUMBER VALIDATION ..16
2.3 TTSERVER ...17

2.3.1 Receptor ..18
2.3.2 Injector ..18
2.3.3 Router ..18
2.3.4 Dynamic responses..19

2.4 EDIFACT ...19
2.4.1 Character set ...20
2.4.2 Structure ..20
2.4.3 HSFREQ/HSFRES...24

2.5 PREVIOUS WORK ..25
2.6 REQUIREMENTS..26
2.7 EXPECTATIONS...26

3 SOLUTION PROPOSAL ANALYSIS ..27

3.1 GENERAL ...27
3.2 IMPLEMENTATION OF EXISTING SOLUTIONS FOR TTSERVER ..27

3.2.1 Description ..27
3.2.2 Benefits ..27
3.2.3 Drawbacks...27

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION

HENRIK PIERROU V 29 DECEMBER 2005

3.3 CREATION OF NEW EDIFACT MESSAGE ...28
3.3.1 Description ..28
3.3.2 Benefits ..28
3.3.3 Drawbacks...28

3.4 PYTHON SCRIPT BASED SOLUTION ..29
3.4.1 Description ..29
3.4.2 Benefits ..29
3.4.3 Drawbacks...29

3.5 CONCLUSIONS ..29

4 PROTOTYPE DESIGN..30

4.1 OVERVIEW ...30
4.2 MESSAGE STANDARD DESCRIPTION FILES ...31

4.2.1 standard...32
4.2.2 field..32
4.2.3 size...33
4.2.4 compression...33
4.2.5 responseAction ..34

4.2.5.1 action.. 34
4.2.5.2 value ... 34
4.2.5.3 respActionArgs.. 35

4.2.6 description ...35
4.2.7 Example...35

4.3 RESPONSE MESSAGE CREATION ..36
4.3.1 Response Action Functions..36
4.3.2 Credit Card - Response Mapping File ..37
4.3.3 Credit Card Number Generator ..38

4.4 DESIGN PHASE TIME ALLOCATION ..39

5 PROTOTYPE USAGE ...41

5.1 INTRODUCTION...41
5.2 TYPICAL USAGE ...41
5.3 DOWNLOADING ..41
5.4 RUNNING..45
5.5 SENDING AND RECEIVING MESSAGES ...49
5.6 SPECIFYING RESPONSES..52

5.6.1 General..52
5.6.2 Using the Credit Card – Response Mapping File..53
5.6.3 Generating a credit card account number...54

5.7 UPDATING/ADDING LINKS..54
5.8 MODIFYING RESPONSE FIELD CREATION...55

5.8.1 General..55
5.8.2 Specific value or Echo ...55
5.8.3 Response Action Functions..56

6 ANALYSIS...61

6.1 MEASUREMENTS ..61
6.2 RESULTS ..61

6.2.1 Performance ..61
6.2.2 Dynamicity...62
6.2.3 Generality..63
6.2.4 Reliability ..64

7 CONCLUSIONS..66

8 FUTURE WORK ..68

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION

HENRIK PIERROU VI 29 DECEMBER 2005

8.1 HANDLING OF TRUE BINARY DATA ...68
8.2 TESTING AND MODIFICATION OF VISA LINK ..68

9 REFERENCES..69

APPENDIX A - MESSAGE STANDARD SPECIFICATIONS..71

A.1 QANTAS AS2805..71
A.2 AMERICAN EXPRESS ISO8583 ...74
A.3 VISA ISO8583 ..77

APPENDIX B – ACRONYMS AND ABBREVIATIONS ...81

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 1 INTRODUCTION

HENRIK PIERROU 1 29 DECEMBER 2005

1 Introduction

1.1 Problem Area

Software testing, the process of determining whether software behaves as specified or
not, as well as detection and correction of reported bugs, are two important parts of most
professional development processes. This requires the possibility to recreate the
software’s environment. Whittaker [19] states what might seem obvious; “to plan and

execute tests, software testers must consider … the environment in which the software
will eventually operate”, and continues to propose a four phase model for structuring the
work of testing, in which modeling of the software’s environment is the first phase. It is, in
other words, desirable to have the software run in an environment that to as large a
degree as possible corresponds to the one in which it is to be launched or, in the case of
troubleshooting, the one in which the error was encountered. Therefore, to be able to
correctly test software, all resources with which it may communicate need to be either in
connection with the tested software or to be emulated.

Companies integrating credit card payment in their products regularly send credit card
authorization request messages to the appropriate credit card issuers to determine
whether the transaction associated with the request is granted by the issuer or not. This
feature, like all other parts of the software, needs to be included in the testing routines
and is by necessity also subject to troubleshooting.

To enable the credit card authorization communication needed in these test and
troubleshooting scenarios, most credit card companies provide test links over which the
tested application can send test credit card messages. The messages sent over the test
links are treated the same way at the credit card company side as a real message would
be and the response is created according to the information stored about the request
credit card number and the logic built in to the receiving application. It differs only in that
no real money transaction is being made.

Also included in the services provided by most credit card companies is the ability to
predict to some extent what the responses created by the credit card company as a result
of the request messages are going to be. This is made possible by a collection of un-
issued credit card numbers which are mapped to certain responses in the test systems.
By using one of these known credit card numbers the requesting side can expect to
receive the error message or approval code that is mapped to the number.

The test links provided by the credit card companies are good ways for developers of
applications integrating credit card payment to test the applications in a realistic way.
They provide a means to simulate rather than emulate the behavior of the external
resource which satisfies the objective of running the application in an environment as
similar to the real one as possible.

They do however have drawbacks of which the main one is the lack of control over what
is actually being done in the simulation. In order to be able to draw correct conclusions
about the results of a test it is necessary to know why the result was generated. When
the simulation is being made at the credit card company end the tester can not be sure
that the results received from the simulation are the correct ones and hence can not

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 1 INTRODUCTION

HENRIK PIERROU 2 29 DECEMBER 2005

know whether the possible errors generated in the tested application are caused by an
error in the application itself or by an error in the link or simulating application.

The advantages of the test links provided by the credit card companies are also limited
by the number of un-issued test credit card numbers and corresponding response
messages that are at the disposal of the developers. These do not include numbers for
generation of all possible responses and can therefore not be used in every test case.
This limitation becomes especially significant when trying to recreate a reported bug. For
instance, imagine a credit card authorization message sending application, suspected to
be erroneous due to the fact that it behaves unexpected upon receiving a specific error
response from the credit card company. In this case, it would be of great help for the bug
fixing developer to be able to recreate the exact communication with the credit card
company, including the response message, as took place when the error was
encountered. With no credit card number mapped to the specific error, this can not be
done.

Being external resources, the simulating applications provided by the credit card
companies also have a drawback when it comes to accessibility. Whenever the links for
one reason or another are not available, the testing and troubleshooting processes
concerning credit card message communication are stalled.

Because of the lack of control, the limited amount of response messages that can be
simulated and the accessibility issues, the test links can be considered an insufficient tool
for credit card authorization communication tests.

1.2 Company presentation

The project described in this thesis has been conducted at Amadeus SAS at their main
development site in Nice, France. Amadeus is acting in three main markets; Global
Distribution Systems (GDS), e-travel and IT-services (directed at airlines and other travel
service providers) [17].

1.2.1 GDS

The original business idea and still remaining the core of the company is travel
distribution. Global Distribution Systems are systems that allow users in disperse parts of
the world to find travel information suited to their individual needs.

GDS’s are used both by travel agencies to facilitate their service towards their customers
as well as by web sites to automatically produce the travel information. They provide the
computer network, the terminals, the software and the content that allows airlines, travel
agents, hotel chains, car rental firms, ferry and cruise lines, train operators and insurance
agents to distribute travel products all over the world.

Amadeus has an extensive international distribution network worldwide with more than
350,000 terminals to travel agencies and airline offices and holds, in strong competition
with mainly American Airlines owned Sabre, the position as the number one player in the
market.

1.2.2 E-travel

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 1 INTRODUCTION

HENRIK PIERROU 3 29 DECEMBER 2005

As a result of increasing competition in the GDS market from competitors and lighter low
cost solutions, Amadeus is aiming to widen the business of the company. The company
therefore today also offers a range of online travel solutions and web-booking tools that
enable airlines, corporations, travel agencies and online travel portals to grow online
business.

A main step towards the e-travel commitment of Amadeus was the acquisition of e-
Travel, the leading US supplier of hosted corporate travel technology solutions in July
2001. Less than a year later, Amadeus launched e-Travel as a new e-commerce
business unit that provides global online solutions for airlines, corporations, travel
agencies and other travel partners.

Amadeus also has a wide range of joint-venture partners to gain positions in leading
online travel sites around the world. Among these are sites like OneTravel.com,
Opode.com and Scandinavian travellink.com.

1.2.3 IT-Services

Amadeus has expanded its System User Concept to what is called a Passenger Services
Systems offer, targeting travel providers (including airline alliances) and adding Inventory,
Yield Management and Departure Control to the distribution facilities offered to System
Users. This offer has been packaged together under the Altéa brand, turning passengers
into customers.

IT development centers have been established in the UK (London) and Australia
(Sydney). These commercial developments and Amadeus' existing common platform for
sales form the base of the company’s new IT platform for airlines.

Amadeus Altéa integrates sales, inventory and departure control systems, leveraging a
single source of data across all three environments. With the Altéa portfolio it is possible
to extend the flow of information across the entire customer experience, making it a
Customer Management Solution for airlines and airline alliances.

The Altéa suite comprises three solutions:

• Altéa Plan: inventory management system
• Altéa Sell: sales and reservation platform
• Altéa Fly: departure control system

1.3 Problem definition

Whenever an order is being made in the Amadeus GDS, a Passenger Name Record
(PNR) is set up. The PNR consists of information fields describing the order. Examples of
information stored in these fields are the purchasers name, the flight information, the
price, the currency etc. The PNR also includes a field describing the form of payment that
the user has chosen. One of the options is payment by credit card.

The work of creating and maintaining the parts of the Amadeus GDS system involved
with the credit card communication requires regular sending and receiving of credit card
messages. This can be done over the test links offered by the credit card companies but
the dependence on these companies is unsatisfying because of the lack of control, the
limited amount of response messages that can be simulated and the accessibility issues.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 1 INTRODUCTION

HENRIK PIERROU 4 29 DECEMBER 2005

For these reasons the question has been raised of how an application emulating the
behavior of the credit card companies can be built in such a way that all of these issues
are solved.

An attempt to do this was made in 2002 by Ludovic Sonrel [1]1. The proposed and

implemented solutions described in that document were designed for the Qantas market
and for use on Receptor, a simulation tool preceding the one used at Amadeus today,
TTServer.

Sonrels solution was useful in that it provided a tool to which it was possible to send
credit card request messages and receive response messages from. However, it lacked

in dynamicity and ability to handle all credit card message fields2 before timing out. It is
therefore not a sufficient tool for solving the issues involved in credit card message
communication emulation.

The project addressed in this thesis was aimed at resolving the following issues:

• Lack of control over the simulation process – In order to be able to draw

correct conclusions about the results of a test it is necessary to know why the
result was generated. The tester needs to be sure that the results received from
the simulation are the correct ones and hence know whether the possible errors
generated in the tested application are caused by an error in the application itself
or by an error in the link or simulating application. Before the start of the project
described in this thesis, the tester did not have this control.

• Incomplete spectra of communication scenarios – Prior to the start of this

project, all communication scenarios were not possible to simulate. The
capability to handle every possible input and response is missing as is the
capability to easily conduct emulations of credit card links yet to be implemented.

• Weak accessibility – Simulations of credit card message communication could

not always be conducted due to problems with transport links or other resources
outside the control of the tester.

• Incapability of handling all credit card message fields – To fully be able to

simulate a credit card message communication, it is necessary to be able to
process the whole credit card messages before sending the response. This did
not use to be possible.

• Weak dynamicity – No emulation tool used to be at hand which was able to

consider the incoming fields, process the information according to user defined
rules and return the response.

1.4 Report structure

In chapter 2, Background, any information which has been considered needed for the

reader in order to be able to comprehend the rest of the report is presented. This chapter
includes descriptions of the environment in which the Credit Card Interface Validation and
Authorization tool is meant to be used (TTServer, EDIFACT, etc.), an overview of three
credit card message standards and the credit card number validation principals. It also
presents the previous work in this area and states the requirements and expectations set
up before the project was launched.

1 See 2.5 - Previous work
2 See 2.1 - Credit Card Messages

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 1 INTRODUCTION

HENRIK PIERROU 5 29 DECEMBER 2005

Chapter 3, Solution Proposal Analysis, presents the three solution proposals that were

discussed in the project. The pros and cons of the three are discussed and a conclusion
of which was considered best is there to be read.

The following chapter, chapter 4, Prototype design, describes the design of the prototype.

It includes detailed information on which the different parts of the system are and their
roles in the therein. It also includes a table showing the time allocation of this phase.

Chapter 5, Prototype usage, is describing how the prototype is supposed to be used. It

begins by presenting two types of users and gives examples of three specific cases in
which the tool has been used. Thereafter follows a detailed description, in the form of a
step-by-step user’s guide, of how to make use of all the functionality of the tool.

The Analysis chapter (chapter 6) presents all the measurements that were made to

insure that the goals of the project had been reached. It first describes how the
measurements were conducted and then goes on to describe the results. The
measurements and results are divided into four main areas: Performance, Dynamicity,
Generality and Reliability.

Chapters 7 and 8 (Conclusions and Future work) presents the conclusions drawn from

the work in this project and the work that is yet to be done in this area respectively.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 6 29 DECEMBER 2005

2 Background

2.1 Credit Card Messages

The credit card messages that are sent to and received from the credit card companies
are used to find out whether the credit card purchase is granted by the credit card
company or the issuing bank. The exact flow of these messages varies between credit
card companies but generally communication is started by an authorization or pre-
authorization request sent by Amadeus. The credit card company then returns a
response to the request. If no response has been received within a certain period of time
Amadeus considers the request to be timed out and may send a reversal message which
the credit card company is expected to respond to.

The structure of the credit card messages also varies depending on which company the
credit card is tied to. All credit card message standards however have a basic structure in
common. They all include a header field with communication data and a message body
which contains the different data fields to be transmitted. Most standards also include one
or two Bitmap fields between the header and the data fields which describe which of the
possible data fields that are included in the message body. All fields are represented by a
bit in the bitmap. If the bit is set to one the field is included and if it is set to zero it is not.
There are usually 128 possible data fields so each of the two bitmaps has a size of 8
bytes.

Depending on which standard that is used, the fields of the credit card messages may
contain character strings, numeric digits (packed so that one byte contains two symbols)
or binary data.

The different credit card companies use different standards of formatting the data to be
transmitted over their links. The three links that can be routed to TTServer for test
purposes today are Qantas IGW, Visa/MasterCard and American Express but more links
are likely to be added in the future.

2.1.1 The Qantas IGW link – AS2805

Qantas is a large airline company based in Australia. The communication initiated when a
customer chooses to buy a service from Qantas by credit card via the Amadeus GDS is
described in [2] and visualized in Figure 1.The credit card message is in such a case

routed to the Qantas Interface Gateway (IGW). From there, Qantas routes the message
further to Global Acquiring Bank (GAB) but the communication beyond the IGW, between
the IGW and GAB, is transparent to the GDS and should not affect the way it is
implemented. The procedure of sending the credit card message via the IGW is done
regardless of what kind of credit card vendor is used.

Figure 1 – Amadeus communication with the Qantas Interface Gateway

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 7 29 DECEMBER 2005

Messages sent to the Qantas IGW are formatted according to the AS2805 standard.
Qantas’ implementation of the standard consists of a message header, a message type
ID, bitmaps and data fields as shown in Figure 2.

Figure 2 – The Qantas AS2805 implementation structure

2.1.1.1 Header

The first part of the Qantas implementation of the AS2805 standard is a header field
containing communication data. The header used is of the P1024 type which consists of
a 3 bytes field in front of the message. The header field is not included in credit card

messages routed to TTServer3.

2.1.1.2 Message Type ID

The message type ID field is a two byte field identifying the type of message that is being
sent. The credit card messages sent from Amadeus to the Qantas IGW can be of one of
the following types:

Message 0100
Credit card pre-authorization. This is the type of messages that will be sent to the
emulator tool.
A message 0100 sent a second time is considered a manual reversal message of the
pre-authorization (the processing code field set to 20 differentiates it from the original 100

message4).

Message 0420
If no response message is received within a certain time frame a message 0420 reversal
message is sent. This informs the IGW that the original request message should be
discarded.

Message 0421
Similar to the 0420 reversal message but this message is used for reversals when a
response was not received from the IGW following a 0420 reversal message.

The credit card messages received from the Qantas IGW can be of one of the following
types:

Message 0110
Credit card pre-authorization response. Sent as responses to 0100 messages. This is the
type of messages that will need to be generated in the emulator tool.

Message 0430

3 See 2.3 - TTServer
4 See 2.1.1.4 - Data Fields

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 8 29 DECEMBER 2005

Credit card reversal response. Sent as responses to 0420 and 0421 messages.

2.1.1.3 Bitmaps

The two bitmap fields are located between the header and the data fields and describe
which of the possible data fields that are included in the message body. All fields are
represented by a bit in the bitmap. If the bit is set to one, the field is included and if it is
set to zero it is not. There are 128 possible data fields so each of the two bitmaps has a
size of 8 bytes. The first bit in the first bitmap is used to determine whether the second
bitmap is included or not. If none of the last 64 data fields are present the second bitmap
is omitted and the first bit in the first bitmap is consequently set to zero.

2.1.1.4 Data Fields

The data fields contain the information to be sent to the credit card issuer. The fields are
all defined by the five parameters Bit Nr, Field Name, Attribute, Size and Content. The Bit
Nr is a number depicting the bit in the bitmap which describes whether or not the field is
present. The Attribute parameter describes how the data is stored in the field, i.e.
numeric, alpha-numeric or binary. The Size parameter states the size of the field or that it
is variable and the Content and Field Name attributes describe the contents of the field
and its name respectively.

The number of fields in a credit card message varies depending on what is to be
communicated but some fields are always present. An example of such a field is the
Primary Account Number. It has the Bit Nr 2, has numeric contents of maximum 19
digits. It holds the credit card number found in relief on the front of the card.

More info on the Qantas AS2805 credit card message fields can be found in Appendix A.

2.1.1.5 Response codes

The content of field 39 describes how the issuing bank responds to the request. In
Qantas’ implementation of the AS2805 standard, the codes described in Table A are
available.

Table A – Response codes in the Qantas AS2805 standard

Response
Code

Description

00 Approved

01 Refer to Card Issuer

02 Refer to card issuer’s special conditions

04 Pick-up card

05 Do not honour

07 Pick-up card - special condition

08 Honour with ID

09 Request in progress

12 Message Format Problem - unable to process

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 9 29 DECEMBER 2005

13 Invalid amount

14 Invalid card number

20 Invalid response

21 No action taken

30 Format Error

31 Bank not supported by switch

33 Expired card - pick up

34 Suspect fraud - pick up

36 Restricted card - pick up

38 Allowable number of PIN tries exceeded - pick up card

39 No credit account

41 Lost card - pick up

42 No universal account

43 Stolen card - pick up

51 Not sufficient funds

52 No checking account

53 No saving account

54 Expired card

55 Incorrect PIN

56 No card record

57 Transaction not permitted to cardholder

59 Suspected fraud

61 Exceeds withdrawal amount limits

62 Restricted card

63 Security violation

65 Exceeds withdrawal frequency limits

75 Allowable number of PIN tries exceeded

91 Issuer or switch inoperative

94 Duplicate transmission

97 Reconciliation totals have been reset

98 MAC Error

99
Gateway host not available (Bank link to Gateway not up). Used if there is a
timeout from the bank or bank link is not available

2.1.1.6 Message example

Qantas AS2805 Credit Card Authorization Response Message

Message ID:

X’0110’

Bitmaps:

Primary: x’722200012EC18001’

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 10 29 DECEMBER 2005

Secondary: N/A

Data Fields:

002 X’164532247214000966’
003 X’003000’
004 X’000000000100’
007 X’0404180418’
011 X’867716’
015 X’0000’
032 X’0856022004’
035 X’00’
037 X’F5F0F9F4F1F8F8F6F7F7F1F6’
038 X’F0F0F0F1F5F8’
039 X’F3F8’
041 X’D8C1D5E3C1E24040’
042 X’E5C940404040404040404040404040’
048 X’F0F1F2F140404040404040404040E0’
049 X’0036’
064 X’000000000000000’

2.1.2 American Express Link – ISO8583

The American Express link is used to send credit card messages whenever a customer
buys a service from the Amadeus GDS with an American Express Card. The messages
sent over the link are formatted according to the American Express implementation of the
ISO8583 standard which is described in [3]. The standard includes three main blocks; the

message type ID, the bitmaps and the data fields, as shown in Figure 3.

Figure 3 – The American Express ISO8583 implementation structure

2.1.2.1 Message Type ID

The message type ID field is a four byte field identifying the type of message that is being
sent. Each digit is represented by an EBCDIC character. The credit card messages sent
from Amadeus over the American Express link can be of one of the following types:

Message 1100
Authorization Request. Used to request a transaction of money.

Message 1110
Authorization Response. Sent as a result of a 1100 message. Contains the response
code telling the requesting application what the result of the request was.

Message 1804 and 1814

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 11 29 DECEMBER 2005

Network Management Request and Network Management Response. When the
Amadeus GDS has not sent any messages over the American Express link during two
minutes, American Express sends this message to check that the link is still working
correctly. If no response is returned from the GDS new 1804 messages will be sent. If a
certain number of consecutive tests fail, American Express will investigate the case
further and the frequency of 1804 messages will increase until the GDS responds with a
1814 response message. The frequency of Echo Test requests then returns to normal.

2.1.2.2 Bitmaps

The two bitmap fields describe which of the possible data fields that are included in the
message body. All fields are represented by a bit in the bitmap. If the bit is set to one the
field is included and if it is set to zero it is not. There are 128 possible data fields so each
of the two bitmaps has a size of 8 bytes. The first bit in the first bitmap is used to
determine whether the second bitmap is included or not. If none of the last 64 data fields
are present the second bitmap is omitted and the first bit in the first bitmap is
consequently set to zero.

2.1.2.3 Data Fields

The data fields contain the information to be sent to the credit card issuer. The fields are
defined by the five parameters Bit Nr, Field Name, Attribute, Size and Content. The Bit Nr
is a number depicting the bit in the bitmap which describes whether or not the field is
present. The Attribute parameter describes how the data is stored in the field, i.e.
numeric, alpha-numeric or binary. The Size parameter states the size of the field or that it
is variable and the Content and Field Name attributes describe the contents of the field
and its name respectively.

The number of fields in a credit card message varies depending on what is to be
communicated but some fields are always present. An example of such a field is the
Primary Account Number. It has the Bit Nr 2, has numeric contents of maximum 17
digits. It holds the credit card number found in relief on the front of the card.

More info on the American Express ISO8583 credit card message fields can be found in
Appendix A.

2.1.2.4 Response Codes

The content of field 39 describes how the issuing bank responds to the request. In
American Express’ implementation of the ISO2805 standard, the codes described in
Table B are available.

Table B – Response codes in American Express ISO8583

Response
Code

Description

000 Approved

001 Approve with ID

003 Approve VIP

092 Approved (Express Rewards Program)

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 12 29 DECEMBER 2005

100 Deny

101 Expired card

103 Deny — Invalid Manual Entry 4DBC

104 Deny — New card issued

105 Deny — Account Canceled

107 Refer to card issuer

109 Invalid merchant

110 Invalid amount

111 Invalid card number

115 Service not permitted

122 Invalid card (CID) security code

125 Invalid effective date

181 Format error

182 Please wait

183 Invalid currency code

189 Deny - Cancelled or Closed Merchant/SE

200 Deny - Pick up card

400 Reversal accepted

2.1.2.5 Message Example

American Express ISO8583 Credit Card Authorization Response Message

Message ID:

X’F1F1F1F0’

Bitmaps:

Primary: X’703000210EC08000’
Secondary: N/A

Data Fields:

002 X’F1F5F3F7F8F2F9F1F0F2F7F8F5F1F0F0F4’
003 X’F0F0F4F0F0F0’
004 X’F0F0F0F0F0F0F0F0F1F8F6F0’
011 X’F8F3F4F7F2F6’
012 X’F0F5F0F4F0F4F1F3F0F5F2F4’
027 X’F2’
032 X’F0F6F3F7F0F1F5F0’
037 X’F5F0F9F4F4F7F1F2F4000000’
038 X’F0F540404040’
039 X’F0F0F1’
041 X’F0F9C2F5F2F7F6F3’
042 X’C1C640E3F0F0F0F0F0F0F0F0404040’
049 X’F8F4F0’

2.1.3 VISA Link – ISO8583

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 13 29 DECEMBER 2005

The VISA link is used to send credit card messages whenever a customer buys a service
from the Amadeus GDS with a VISA credit card. The messages sent over the link are
formatted according to the VISA implementation of the ISO8583 standard which is
described in [4, 7, 8]. The standard includes four main blocks; the header, the message

type ID, the bitmaps and the data fields, as shown in Figure 4.

Figure 4 – The VISA ISO8583 implementation structure

2.1.3.1 Header

The header field in the VISA credit card message format consists of 12 (standard) or 14
(reject) fields which specify system ID, routing information, and message processing
control codes and flags. The header is defined by Visa and is not part of the standard
ISO 8583 message structure, nor is it included in credit card messages routed to

TTServer5.

2.1.3.2 Message Type ID

The message type ID field is a four byte field identifying the type of message that is being
sent. The credit card messages sent from Amadeus over the American Express link can
be of one of the following types:

Message 1100
Authorization Request. Used to request a transaction of money.

Message 0101
Repeat Authorization Request.

Message 1110
Authorization Response. Sent as a result of a 1100 message. Contains the response
code telling the requesting application what the result of the request was.

Message 0400
Reversal Request. Used to undo a previously sent request

Message 0401
Repeat Reversal Request.

Message 0410
Reversal Response.

Message 1800 and 1810

5 See 2.3 - TTServer

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 14 29 DECEMBER 2005

Network Management Request and Network Management Response. When the
Amadeus GDS has not sent any messages over the American Express link during two
minutes, American Express sends this message to check that the link is still working
correctly. If no response is returned from the GDS new 1804 messages will be sent. If a
certain number of consecutive tests fail, American Express will investigate the case
further and the frequency of 1804 messages will increase until the GDS responds with a
1814 response message. The frequency of Echo Test requests then returns to normal.

2.1.3.3 Bitmaps

The VISA implementation of the ISO8583 message standard allows for three bitmap
fields. These describe which of the possible data fields that are included in the message
body. All fields are represented by a bit in the bitmap. If the bit is set to one the field is
included and if it is set to zero it is not. There are 192 possible data fields so each of the
bitmaps has a size of 8 bytes. The first bit in the first bitmap is used to determine whether
the second bitmap is included or not. Similarly, the first bit in the second bitmap is used to
determine whether the third bitmap is included or not. If none of the 64 data fields, which
presence is determined in one of the two last bitmaps, are present, that bitmap is omitted
and the first bit in the preceding bitmap is consequently set to zero. The third bitmap can
only be included if the second one is.

2.1.3.4 Data Fields

The data fields contain the information to be sent to the credit card issuer. The fields are
defined by the five parameters Bit Nr, Field Name, Attribute, Size and Content. The Bit Nr
is a number depicting the bit in the bitmap which describes whether or not the field is
present. The Attribute parameter describes how the data is stored in the field, i.e.
numeric, alpha-numeric or binary. The Size parameter states the size of the field or that it
is variable and the Content and Field Name attributes describe the contents of the field
and its name respectively.

The number of fields in a credit card message varies depending on what is to be
communicated but some fields are always present. An example of such a field is the
Primary Account Number. It has the Bit Nr 2, has numeric contents of maximum 11
digits. It holds the credit card number found in relief on the front of the card.

More info on the VISA ISO8583 credit card message fields can be found in Appendix A.

2.1.3.5 Response Codes

The content of field 39 describes how the issuing bank responds to the request. In Visa’s
implementation of the ISO2805 standard, the codes described in Table C are available.

Table C – Response codes in VISA ISO8583

Response
Code

Description

00 Approved

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 15 29 DECEMBER 2005

01 Refer to Card Issuer

02 Refer to card issuer, special conditions

03 Invalid merchant or service provider

04 Pickup card

05 Do not honour

06 Error

07 Pickup card , special condition (other than lost/stolen card)

12 Invalid transaction

13 Invalid amount

14 Invalid card number (no such number)

15 No such issuer

19 Re-enter transaction

41 Pick up card (lost card)

43 Pick up card (stolen card)

51 Insufficient funds

52 No checking account

53 No savings account

54 Expired card

55 Incorrect PIN

57 Transaction not permitted to cardholder

58 Transaction not allowed at terminal

61 Activity amount limit exceeded

62 Restricted card

77
Previous message located for a repeat or reversal, but repeat or reversal data
are inconsistent with original message

80 Invalid date

81 PIN cryptographic error found

83 Unable to verify PIN

85
No reason to decline a request for account number verification or address
verification

91 Issuer unavailable or switch inoperative

92 Destination can not be found for routing

93 Transaction can not be completed; violation of law

96 System malfunction or certain field error conditions

2.1.3.6 Message Example

Visa ISO8583 Credit Card Authorization Response Message

Message ID:
X'0110'

Bitmaps:

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 16 29 DECEMBER 2005

Primary: X'F22000810ED18014'
Second. Bit Map : X'0000000000000020'

Data Fields :
DF2 - X'104972053263029923'
DF3 - X'000000'
DF4 - X'000000220000'
DF7 - X'0131122059'
DF11 - X'010101'
DF25 - X'51'
DF32 - X'0B012345678901'
DF37 - X'F8F1F1F1F0F1F2F3F4F0F5F0'
DF38 - X'F1F2F3F4F5F6'
DF39 - X'F0F0'
DF41 - X'F0F9F0F2F2F7F1F9'
DF42 - X'F1F2F3F4F5F6F7C1C2C3C4C5C6F7C8'
DF44 - X'02F1C1'
DF48 - X'01C1'
DF49 - X'0840'
DF60 - X'0109'
DF62 - X'15E000000000000000D70123456789012345F1F2F3F4'
DF123 -
X'1DF1F2F3F4F540404040C1C2C3C4C5C6C7C8C9C0F1F2F3F4F5F6F7F8F9F0'

2.1.4 Other Links

Except for the Qantas, American Express and VISA links, there are others, which might
impact the tool developed during the work described in this thesis. These use their own
unique implementations of different credit card message standards but being outside the
scope of the project, they will not be described in detail here. For the description of the
work of making the tool generic it is however useful to know of them.

The links that are most likely to be emulated in the tool in the near future are Nedbank
(used by airline company SAA) and RBoS (used by BMI). Nedbank and RBoS both use
implementations of the ISO8583 standard. Other links, which may impact the tool,
however do not use any of the previously described standards but such which for
instance, do not include bitmaps or field numbers. The work described in this thesis has
been done with this in mind.

2.2 Credit card number validation

Different credit card companies use different intervals of numbers for their credit card
accounts. As shown in Table D, VISA card numbers always has the prefix 4 and

American Express 34 or 37. Also visible from the table is the fact that the lengths of the
numbers may vary.

Table D – Prefix and length of some credit card companies’ account numbers.

Credit Card Company Prefix Length

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 17 29 DECEMBER 2005

VISA 4 13, 16

American Express 34, 37 15

Mastercard 51-55 16

Apart from these properties, identifying the credit card company for a certain number,
there is usually also a way to determine the validity of a credit card account number by a
trailing check digit in the number.

A check digit is a number resulting from calculations made on the rest of the number in
order to validate its authenticity. The calculation is made on an original number and the
check digit is added to the end. By performing the same calculations on the number and
checking whether it returns the expected result, the validity of the number can be
determined.

Different algorithms for validating credit card account numbers exist but the one that is
most commonly used is the LUHN formula, also known as the mod 10 algorithm [18].

This algorithm is used by all credit card companies mentioned in this report.

The LUHN formula consists of the following steps to check the validity of an account
number:

1. Starting from the second digit from the right, double the value of every other digit.
2. If the resulting number from one of these operations is more than one digit long,

add the values of the digits to form a one digit number (16 is for example
transformed to 7 by adding one and six).

3. Add all digits in the account number, with every other digit transformed as
described in step one and two. The resulting value should be a number ending
with the digit zero, i.e. 30, 40, 50 etc. for the account number to be validated.

The LUHN formula is a good way for applications sending credit card authorization
messages to the credit card companies to make sure that the right credit card number
has been typed in by the user. It allows for a local check before sending the message. It
does however not say anything more than this about the account. It offers no way to
check whether the account number has been issued or not and the issue of whether the
purchase can be granted or not can only be determined by the credit card company and
the financial institution responsible for the account.

2.3 TTServer

Amadeus TTServer (Test Tool Server) is an internal test tool with the purpose of

emulating any EDIFACT6 client and/or server. Messages are sent to and from TTServer
scenarios in order to test the functionality of applications created at the company.
TTServer is briefly described below and more thoroughly in [5].

The Test Tools is a set of three applications:

• The Injector is used to send messages and check responses.
• The Receptor is used to receive messages and send back the suitable reply.

6 See 2.4 - Edifact

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 18 29 DECEMBER 2005

• The Router is used to transfer messages from TPF (the Transaction Processing
Facility conducting the sending of messages) to the suitable Receptor.

The Test Tools Server includes an engine integrating the Injector, Receptor and Router
components and a graphical console to manage the engine. These components are able
to react to each other’s events.

The application can manage different types of message formats. Primarily, it supports
EDIFACT messages but it can be easily modified to support other formats, like XML.

2.3.1 Receptor

With receptor, TTServer emulates the behavior of a server. As shown in Figure 5 the
application being tested sends request messages to TTServer. When receiving the
request, TTServer looks for a match of it in the pre-written scenario files and returns the
response associated to the request.

Figure 5 – Communication between tested application and TTServer used as receptor

2.3.2 Injector

With the Injector, TTServer emulates the behavior of a client. In this case, it sends
messages to the tested application according to the scenario files. When the response is
received TTServer compares it to the expected response described in the scenario files.
The logs are stored in output files. The communication flow of the injector is shown in
Figure 6.

Figure 6 - Communication between TTServer used as injector and tested application

2.3.3 Router

The router component provides a mean of routing messages from TPF to receptor
applications. It uses a mapping list of user IDs (Amadeus Terminal ID - ATIDs) and IP
addresses/ports. The message flow through the router is visualized in Figure 7.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 19 29 DECEMBER 2005

Figure 7 – Test Tool Router behavior

2.3.4 Dynamic responses

When using TTServer as a receptor the incoming requests are, as described above,
matched against a set of predefined expected request messages and a corresponding
prewritten response is sent. This way of returning responses statically is sometimes
insufficient. Therefore, TTServer also features the ability to include python scripts in the
processing of messages.

When a message is received at a TTServer scenario file supporting dynamic responses,
the message can partially or in whole be passed on to python scripts inside the scenario
file with the help of regular expressions and certain commands of TTServer. In the python
scripts the data can be processed to dynamically create the appropriate response
depending on the incoming message.

If the scripts used to create the dynamic responses are large, it is a good idea to split
them up into Python modules and/or classes, preferably in separate files. This is possible
from the scenario file Python script as it is from any other Python script. The object
oriented features of Python [9, 10] allows for a wide variety of message processing

possibilities.

2.4 Edifact

EDIFACT, also known as UN/EDIFACT, stands for Electronic Data Interchange for
Administration, Commerce and Transport. It is an International EDI message standard
introduced by the United Nations Economic Commission (UN/ECE) by combining
UN/GTDI and ANSI X12 standards [11, 13] and is described in the ISO 9735 standard
[12, 14]. It is today maintained by United Nations (UN) committee, UN/EDIFACT Working
Group (EWG) [15].

The UN/ECE has prepared the Message Design Guidelines, included in the UN/ECE
Trade Data Interchange Directory which was published in 1988 and amended with small
changes in 1990 [16].

According to [16], the organization supporting the usage of the standard and maintaining

the directory service in Europe is the Western European EDIFACT Board (WE/EB). This
board is responsible for the coordination of the message design groups for the ten
different application fields. The application fields are trade, transport, customs, finance,
construction, statistics, insurance, tourism, health care and social administration.

The two main organizations dealing with Edifact are TT&L (Travel Tourism and Leisure –
a United Nations working group) and IATA/ATA (International Air Transport
Association/Air Transport Association America).

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 20 29 DECEMBER 2005

2.4.1 Character set

EDIFACT provides rules for the syntax of messages to be interchanged between two
parties. Other standards like ISO/OSI service specifications and protocols are
recommended to be followed for the communication of the messages. The standard is
specified as levels which differ in the character sets used in them. Certain characters are
reserved for use as terminator, separator and release character. The meaning and use of
the different characters are shown in Table E.

Table E – Character meaning in EDIFACT

Description Character(s) Use

Letters, upper case A to Z Data

Numerals 0 to 9 Data

Space character Data

Full Stop . Data

Comma , Data

Hyphen/minus sign - Data

Parentheses signs () Data

Oblique stoke / Data

Equal sign = Data

Exclamation mark* ! Data

Quotation mark* " Data

Percentage sign* % Data

Ampersand * & Data

Semi-colon* ; Data

Less-than sign* < Data

Greater-than sign* > Data

Apostrophe ‘ Service Character:

Segment terminator

Plus sign + Service Character:

Segment tag and data element separator

Colon : Service Character:

Component data element separator

Question mark ? Service Character:

Release character. Restores the normal
meaning of characters ' + : ?. if immediately
following one of them.

E.g. 10?+10=20 means 10+10=20. Question
mark is represented by ??.

Asterisk * Service Character:

Used to separate repeated occurrences of the
same Data Element within a Data Segment.

* Can not be used internationally in telex transmissions

2.4.2 Structure

All EDIFACT Data consists of segments which are ended by the Service Character ‘. The
main building blocks of the Edifact format are Interchanges, Messages, Segment Groups,

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 21 29 DECEMBER 2005

Data Segments and Data Elements. These are accompanied in the transmissions by the
Service Characters. The structure of EDIFACT messages is shown in Figure 8.

Figure 8 – The structure of an EDIFACT message [69].

An Interchange is a collection of Messages preceded by one or two Header Segments
(UNA and/or UNB) and followed by a Trailer Segment (UNZ). Header and Trailer
Segments in all levels of the Edifact hierarchy are examples of Service Segments. An
Interchange level view of an EDIFACT Interchange is shown in Figure 9.

UNB + unb segment data ’
 message’
 message’
UNZ + unz trailer segment data ’

Figure 9 – Interchange level view of EDIFACT Interchange

Messages are built up by one or more Data Segments or Segment Groups preceded by a
Header Segment (UNH) and followed by a Trailer Segment (UNT). A Data Segment level
view of an EDIFACT Interchange is shown in Figure 10.

UNB + unb segment data’
 UNH + unh segment data ’
 data segment’
 Segment group’
 data segment’
 UNT + unt segment data ’
 message’

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 22 29 DECEMBER 2005

UNZ + unz trailer segment data’

Figure 10 – Data Segment level view of EDIFACT Interchange

Segment Groups consists of more than one Data Segment and are started by a Trigger
Segment preceding Data Segments. A Segment Group level view of an EDIFACT
Interchange is shown in Figure 11.

UNB + unb segment data’
 UNH + unh segment data’
 data segment’
 Trigger segment ’
 data segment’
 data segment’
 data segment’
 UNT + unt segment data’
 message’
UNZ + unz trailer segment data’

Figure 11 – Segment Group level view of EDIFACT Interchange

Data Segments consist of a Segment Tag and Data Elements separated by the Service
Character +. If no value is present for a specified Data Element, the Service Characters
surrounding it (+) must still be present. A Data Element level view of an EDIFACT
Interchange is shown in Figure 12.

UNB + unb segment data’
 UNH + unh segment data’
 data segment’
 Trigger segment’
 TAG + data element + + data element ’
 data segment’
 data segment’
 UNT + unt segment data’
 message’
UNZ + unz trailer segment data’

Figure 12 – Data Element level view of EDIFACT Interchange

A Data Element can be a Simple Data Element (SDE), holding a value, or a Composite
Data Element (CDE). Composite Data Elements are built up by Component (Simple)
Data Elements holding values and separated by the Service Character :. If no value is
present for a specified Data Element in a Composite Data Element, the Service
Characters surrounding it (:) must still be present. A Composite Data Element level view
of an EDIFACT Interchange is shown in Figure 13.

UNB + unb segment data’
 UNH + unh segment data’

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 23 29 DECEMBER 2005

 data segment’
 Trigger segment’
 TAG + SDE + + SDE : : : SDE : : SDE ’
 data segment’
 data segment’
 UNT + unt segment data’
 message’
UNZ + unz trailer segment data’

Figure 13 – Composite Data Element level view of EDIFACT Interchange

Note that the space character is a value of its own7 and should not be included anywhere
in an Interchange if not part of a value to be transmitted. In Figure 9 through Figure 13,
the space characters have been inserted for increased readability.

Figure 14 shows an example of a complete EDIFACT Interchange comprising one
message with thirteen segments, header and trailer segments included.

 UNB+IATB:1+1APPC+LHPPC+940101:0950+1’ Interch. Header

 UNH+1+PAORES:93:1:IA’ Msg. Header

 MSG+1:45’ Data Segment

 IFT+3+?*AMADEUS AVAILABILITY?*’ Data Segment

 ERC+A7V:1:AMD’ Data Segment

 IFT+3+NO MORE FLIGTHS’ Data Segment

 ODI’ Trig. Segment

 TVL+240493:1000::1220+FRA+JFK+DL+400’ Data Segment

 PDI++C:3+Y::4+F::1’ Data Segment

 APD+74C:0:::6++++++1A’ Data Segment

 TVL+240493:1740::2030+JFK+MIA+DL+081' Data Segment

 PDI++C:4’ Data Segment

 APD+EM2:0:1630::6+++++++DA’ Data Segment

 UNT+13+1’ Msg. Trailer

 UNZ+1+1’ Interch. Trailer

Figure 14 - Example of a complete Edifact Interchange

When using the Edifact format to transmit messages it is encouraged to use predefined
messages to an as large extent as possible. Many messages are predefined by UN, IATA
or ATA but when these messages are insufficient Amadeus specific ones have been

7 See 2.4.1 - Character set

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 24 29 DECEMBER 2005

developed internally at the company. New messages may be added to the list of such
predefined messages if approved by the Edifact Board at Amadeus.

2.4.3 HSFREQ/HSFRES

The EDIFACT message used to send credit card messages to TTServer scripts is called
HSFREQ and the one used to return the responses in is called HSFRES. Both of these
messages consist of only one data segment containing the whole credit card message.
The fields of the credit card message have thus not been separated into individual fields
in the EDIFACT message. This is to make the emulated credit card messages as similar
to the real ones as possible.

The credit card message in the data segment in the HSFREQ/HSFRES EDIFACT
messages is not the exact same message as would have been sent over the real test

links. This is because the real messages contain fields of binary format8 which EDIFACT
is unable to handle. Before a HSFREQ message is created a translation of the credit card
message is therefore necessary. An example is described in .

Figure 15 – Example illustration of the translation from original credit card message to HSFREQ/HSFRES
compatible credit card message

8 See 2.1 - Credit Card Messages

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 25 29 DECEMBER 2005

For every four bits of the credit card message, the hexadecimal value is calculated. From
each of these values the EBCDIC character value representing it is determined. The
binary representation of these values is what is then inserted into the EDIFACT message.
Because the values of EBCDIC characters have a size of one byte each, the
HSFREQ/HSFRES credit card messages are always twice as big as the original ones.

The reversed process take place when the HSFRES response is received.

2.5 Previous work

Attempts to create an emulation tool for credit card interface validation were made in
2002 by Ludovic Sonrel. His work is described in [1]. The proposed and implemented

solutions in that document were designed for the Qantas market9 and for use on
Receptor, the simulation tool that preceded TTServer.

In the first solution created, the entire untransformed credit card message was sent to
TTServer. However, TTServer’s inability to extract binary data made it impossible for this
solution to create a dynamic response to the received data. Instead the response was
hard coded. The static nature of this solution made its usefulness very limited.

In the second solution, the credit card message data was transformed so that each set of
four bits was translated into the EBCDIC representation of its value. Hence, a byte
containing 00101100 was translated into the EBCDIC characters ‘2C’. In this way the
information in the credit card message could be interpreted by TTServer and the
response could be made dependant on it. However, the transformation from sets of four
bits into bytes doubled the message size and therefore the processing time. This caused
the sending application to regard the message processing as timed out after ten seconds
(the maximum time out time in TTServer at the time) and therefore to send a reversal
message. Because of this, the TTServer scripts were made to consider only a limited
portion of the credit card authorization message’s data fields. Among these fields was the

System Trace Audit Number field10. This made it possible to respond uniquely to any
credit card message.

The second solution is an improvement to the first one but has obvious flaws. The whole
credit card message can not be considered and a lot of time is consumed in the
processing. Furthermore, even though the second solution is dynamic in the sense that it
considers the contents of the credit card message and makes the response dependent
on it, it is not very useful since no real processing is being made. The solution simply
reads the fields and copies them to the appropriate places in the response. Furthermore,
the bitmap field is not regarded. The solution to be the result of this project should be
able to consider the incoming fields, process the information and return a response
dependent on the processed information.

A third alternative solution is proposed in Sonrel’s document but has not been
implemented. It suggests the creation of a new Edifact message constructed to include
all fields from the credit card messages structured in to support the Receptor tool,
preceding the TTServer.

9 The solution was made for reception of messages of the AS2805 standard, see 2.1.1 - The Qantas IGW link – AS2805
10 See 2.1.1.4 - Data Fields

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 2 BACKGROUND

HENRIK PIERROU 26 29 DECEMBER 2005

2.6 Requirements

The project addressed in this thesis is required to result in a prototype solution for
processing credit card messages and returning responses dynamically or a solution
showing that this is not possible. Dynamicity in this case means ability to send different
response codes depending on the input. The solution should be developed for the
TTServer environment since this is the test environment used at Amadeus. Hence, all

development requirements assigned by TTServer are inherited11.

Evaluations of the performance of the new product should be conducted to determine
whether the solution is an improvement of the existing solution or not.

If a faster solution is developed, it should be implemented for the Qantas,
Visa/MasterCard, and American Express links. It should however be generic enough to
be applicable to other credit card company links as well that might be added in the future.

Documentation on the use of the solution should be written, including information on how
to implement the solution for new credit card company links.

If a faster solution could not be developed, documentation on why this was the case
should be written.

2.7 Expectations

The prototype solution developed as part of the project is expected to be an improvement
to the existing solutions. It will be considered an improvement if the time needed for
processing the credit card messages and returning a response is reduced. Hence it is
expected that the number of fields that can be read and processed before time out should
increase. It is however not expected that the finished solution will be able to process all
credit card message fields before time out.

11 EDIFACT, Python etc. See 2.3 - TTServer

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 3 SOLUTION PROPOSAL ANALYSIS

HENRIK PIERROU 27 29 DECEMBER 2005

3 Solution Proposal Analysis

3.1 General

In the specification of the project, three solutions to the credit card interface validation
and authorization problem were proposed. The two first of them were first proposed By
Ludovic Sonrel in [1]. This chapter describes all three solution proposals and the

conclusion regarding which one is the best suited to implement as the final solution.

3.2 Implementation of existing solutions for TTServer

3.2.1 Description

Ludovic Sonrel has created three scenarios for Receptor12. The first scenario is a static
solution that is capable of recognizing a credit card request but ignores the contents of it.
A statically created (hard-coded) authorization response is generated. This scenario
allows for testing of credit card message sending applications’ ability to correctly send
requests and receive responses. It does however not allow variable input and output. All
changes must be made directly in the TTServer scenario code.

The second scenario is similar to the first one but instead of sending an authorization
response an error response is sent (ALLOWABLE NUMBER OF PIN TRIES EXCEEDED

- PICK UP CARD)13.

The third scenario is a more dynamic solution that captures some fields from the
incoming message and echoes them into the response. This allows for sending
authorization request messages that are to some extent variable. The message unique

System Trace Audit Number field14 is for instance echoed which makes it possible to
create correct replies to messages with any value in this field. All fields are however not
captured and no processing of the fields is being done.

3.2.2 Benefits

• It is known to work. The scenarios created by Sonrel have all been successfully
implemented for Receptor and should be possible to implement for TTServer.

• Allows input of partially variable authorization request messages.
• Allows testing credit card message sending applications’ ability to correctly send

requests and receive responses.

3.2.3 Drawbacks

12 See 2.5 - Previous work
13 See 2.1.1.5 - Response codes
14 See 2.1.1.4 - Data Fields

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 3 SOLUTION PROPOSAL ANALYSIS

HENRIK PIERROU 28 29 DECEMBER 2005

• Does not allow completely variable input and output.
• Does not process incoming data to make response dependent on it.

3.3 Creation of new Edifact message

3.3.1 Description

TTServer can only handle messages of the Edifact format but credit card messages do
not follow this standard. In the three scenarios from Sonrel’s solution, the credit card
messages are therefore converted into the character representation of the hexadecimal
values of the messages binary code. The resulting character string is then placed as a
field in an Edifact message called HSFREQ. In [1] the creation of a new Edifact message

is proposed as a possible solution. By creating a new Edifact message every field in the
credit card authorization message could be mapped to a corresponding field in the
Edifact message. It is suggested by Sonrel that this might solve the problem imposed by
Receptor of only being able to capture a portion of the fields before time out.

The creation of a new Edifact message creates a need for a converter that would turn the
credit card message into the new Edifact message before sending it to TTServer.

To create a new Edifact message one needs to first model the message in a correct
Edifact manner. Then the message is to be presented to the Edifact committee and in a
later stage to the Edifact board, for approval.

3.3.2 Benefits

• The new Edifact message could easily be sent to TTServer and the individual
fields could quickly be identified by the Edifact separators.

3.3.3 Drawbacks

• Relevance. In order to be able to correctly test credit card messages, it is
necessary that the simulation tool behaves as much as possible as the real credit

card company applications would do15. It is therefore desired to be able to send
messages that are as similar as possible to the real credit card messages.
Splitting the messages up and putting them in a new Edifact message would not
be a step in that direction. It raises the question of what is really being tested,
credit card messages or an Edifact message.

• Need for a converter. An external program/script would have to be created.
• Unnecessary. When Sonrel was proposing this solution, he was facing the time

out problem of Receptor and the proposition was intended as a possible solution
to this. It is likely that this problem does not exist in TTServer at all. Creating a
new Edifact message would therefore only move the capturing of individual credit
card message fields from TTServer to the converter, a process unlikely to speed
up the over all process.

• Time consuming. The process of piloting a new Edifact message, having it
approved by the Edifact committee and then the Edifact board before being able

15 See argumentation in 1.1 - Problem Area

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 3 SOLUTION PROPOSAL ANALYSIS

HENRIK PIERROU 29 29 DECEMBER 2005

to start creating scripts to handle the data in the credit card messages would take
time. This is not a critical issue but should be considered in relation to other
drawbacks.

3.4 Python script based solution

3.4.1 Description

The behavior of a TTServer simulation solution is determined by a set of scenario files,
possibly including Python scripts and separate Python modules. When a message is
received by the TTServer solution it can be made to extract data from the message,
process it and send a response dependent on the processed data. This solution would, if
successful, be an enhancement of the relatively static solutions created by Sonrel and
converted for TTServer.

3.4.2 Benefits

• Fully dynamic. The solution would be able to emulate all relevant scenarios
possible in real credit card message communication with the credit card
companies.

• Realistic messages. The credit card messages sent to the solution would be
changed as little as possible for applicability to TTServer. The only conversion
would be from bits to their hexadecimal values expressed in characters.

• No new converter needed. All the processing of the credit card messages data
fields would be conducted by scenario files and Python scripts in TTServer.

3.4.3 Drawbacks

No obvious drawbacks.

3.5 Conclusions

Considering the limited amount of data fields that are captured when simply implementing
Sonrel’s Receptor based scripts for TTServer and the static nature of this solution, it must
be concluded that this solution needs to be improved in order to serve as an adequate
tool for emulating credit card company applications.
It is also concluded that the lack of relevance and the fact that extra software would have
to be created, excludes the solution of creating a new Edifact message as a possible
option.
The conclusion is instead that the best suited solution for the problem is the third
alternative, improvement of Sonrel’s scripts to apply dynamic capturing and processing of
the data and make the response dependent on it.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 30 29 DECEMBER 2005

4 Prototype design

4.1 Overview

The prototype consists of three main parts; the emulation tool, The Message Standard

Description (MSD) files16 and the Credit Card – Response Mapping File. The application
utilizing the prototype sends a credit card message to the emulation tool. The tool then
opens one of the MSD files in the predefined MSD directory to find out how to read the
message and compose the response. If the MSD file matches the incoming message the
response is composed according to the contents of the MSD and sent back to the user
application. If the MSD file does not match the incoming message, another MSD file is
opened. This continues until a match has been found or all MSD files have been tested
without finding a match. A UML view of the relationship between the user application, the
emulation tool, the MSD files and the Credit Card – Response Mapping File is shown in
Figure 16.

Figure 16 – UML view of the relationship between user application, emulation tool, MSD files and Credit
Card – Response Mapping File

The emulation tool in the prototype consists of a receptor file in TTServer and five Python
classes in external modules. After starting the TTServer Receptor file, the tool is ready to
receive EDIFACT messages. Upon receiving the message, the Receptor file passes the
credit card message, which is embedded in the EDIFACT message, to the python script
in the file. From here, the emulating class (CC_Autorisation_Sim), contained in an
external module, is instantiated. This class supervises the emulation and delegates the
tasks to the other classes which it instantiates. Figure 17 shows how the classes are
connected to each other.

16 See 4.2 - Message Standard Description files

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 31 29 DECEMBER 2005

Figure 17 – Class Diagram of the Emulation tool

The emulator starts by looping through all MSD files in the predefined MSD directory.
When a matching MSD file is found the CC_Authorisation_Sim instance of the
Field_Collection class is filled with the contents of the MSD file. This “virtual” MSD file is
then updated with the parsed request message fields and later the generated response
fields.

4.2 Message Standard Description files

The Message Standard Description Files (MSD files) are XML files informing the
emulation tool of how an incoming credit card request message is to be read and how the
response should be created. They are of particular importance to the Credit Card
Interface Validation and Authorization tool since they are the only places, together with

the Response Action Functions17 and the Credit Card - Response Mapping File18, where
users should update the tool in order to adapt it to their needs. The structure of the MSD
files will therefore be described in some detail below.

17 See 4.3.1 - Response Action Functions
18 See 4.3.2 - Credit Card - Response Mapping File

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 32 29 DECEMBER 2005

The MSD files can be considered Amadeus adapted versions of the standard
descriptions provided by the credit card companies and describe the fields to be used in
the standard. The basic structure of an MSD file comprises six tags as shown in Figure
18. The standard tag is the container of the entire standard description and the field

tag contains the description of specific fields. The size , compression ,

responseAction and description tags are attribute tags inside the field tag.

<standard>
 <field>
 <size></size>
 <compression></compression>
 <responseAction></responseAction>
 <description></description>
 </field>
 ...
</standard>

Figure 18 – Basic structure of an MSD file

4.2.1 standard

The standard tag comprises the entire standard description and contains attributes as

shown in Table F:

Table F – Attributes in the standard tag

Attribute Description

name
Name of the standard. Does not have to be an official name but
should be one that uniquely identifies the described standard.

link Name of the link to be emulated with the described standard.

fieldsEnlargement
The enlargement of field sizes imposed by the transformation of
the credit card message into characters.

Example:
<standard name="ISO8583_VISA" link="VISA" fieldsEnl argement="2">

4.2.2 field

The field tag within the standard tag holds information on the different fields in the

standard. Table G shows the attributes of the tag.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 33 29 DECEMBER 2005

Table G – Attributes in the field tag

Attribute Description

name Name of the field. Generally a number.

bmpNr
The number of the bit in the bitmap, from left to right, that
represents the presence or absence of the field.

Example:
<field name="3" bmpNr="2">

4.2.3 size

The size tag within the field tag holds information on the size of the field. The tag has

one attribute called sizing . This attribute describes the way the size is stated in the tag.

Table H shows the possible values of the attribute.

Table H – Values of the sizing attribute in the size tag

Attribute value Description

Fixed
The size of the field is fixed. The value stated in the tag is the
size of the field.

variable_packed

The size of the field is variable. The value stated in the tag is the
length of the initial part of the field which holds the length of the
field (the initial part itself excluded). The length in this part is
stated in packed format.
A field with this sizing and the value 2, in an incoming message
where the field starts with “10345” is 10 digits long plus the two
length digits.

variable_binary

The size of the field is variable. The value stated in the tag is the
length of the initial part of the field which holds the length of the
field (the initial part itself excluded). This part states the length as
binary code.
A field with this sizing and the value 2, in an incoming message
where the field starts with “10345” is 16 digits long plus the two
length digits (10 = 0001 0000 = 16).

Example:
 <size sizing="fixed">8</size>

4.2.4 compression

The compression tag within the field tag holds information on how the incoming data

in the field is stored. The value of the tag should be one of the alternatives displayed in
Table I.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 34 29 DECEMBER 2005

Table I – The values of the compression tag

Tag value Description

Byte
The value of the field is stored so that one byte
contains one value (eight bits per value)

Packed
The value of the field is stored so that one byte
contains two values (four bits per value)

Binary
The value of the field is stored so that one byte
contains eight values (one bit per value)

The compression tag has no attributes.

Example:
 <compression>Binary</compression>

4.2.5 responseAction

The responseAction tag within the field tag holds information on how the present

field’s response value should be generated. This tag has no attributes but three sub tags.
These are the action tag, the value tag and the respActionArgs tag.

4.2.5.1 action

The action tag within the responseAction tag holds information on how to generate

the response value. The value of the tag should be one of the alternatives displayed in
Table J.

Table J – The values of the action tag.

Tag value Description

Echo
The response value should be echoed (copied)
from the request value.

Value
The response value is stated in the MSD file, in

the value tag19. This is the default alternative

and assumed if the tag is left empty.

Generate
The response value should be generated by a
user defined Response Action Function in the

Response_Generator class20.

The action tag has no attributes.

Example:
<action>Echo</action>

4.2.5.2 value

19 See 4.2.5.2 - value
20 See 4.3.1 - Response Action Functions

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 35 29 DECEMBER 2005

The value tag within the responseAction tag holds data representing different things

depending on the value of the action tag21. The meanings of this tag are displayed in

Table K.

Table K – The meanings of the value tag

action tag value value tag meaning

Echo Not used

Value The value to be put in the response for this field

Generate
A key word that is mapped to a Response Action Function in the

Response_Generator class22.

The value tag has no attributes.

Example:
<value>F0F0F0F1F5F8</value>

4.2.5.3 respActionArgs

The respActionArgs tag within the responseAction tag holds the arguments to be

passed to the Response Action Function in the Response_Generator class and is

therefore only used if the action tag value is Generate . This tag has no attributes but

one sub tag that can be repeated for as many arguments as needed. The sub tag is
called the arg tag.

Example:
<respActionArgs>
 <arg>002</arg>
 <arg>example value</arg>
</respActionArgs>

4.2.6 description

The description tag within the field tag holds a description of the field.

Example:
<description>BITMAP Secondary</description>

4.2.7 Example

Figure 19 shows an example of a short MSD file describing one field.

<standard name="AS2805" link="Qantas" fieldsEnlarge ment="2" >

21 See 4.2.5.1 - action
22 See 4.3.1 - Response Action Functions

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 36 29 DECEMBER 2005

 <field name="038" bmpNr="37">
 <size sizing="fixed">6</size>
 <compression>Byte</compression>
 <responseAction>
 <action>Value</action>
 <value>F0F0F0F1F5F8</value>
 <respActionArgs></respActionArgs>
 </responseAction>
 <description>Authorisation ID Response</descripti on>
 </field>

</standard>

Figure 19 – Example of MSD file XML code

4.3 Response message creation

The response message is created with regard to the response bitmap stated in the MSD
file and the information, also found in the MSD file, about the fields to be included.

If the field is set in the responseAction action tag to Echo , the corresponding

incoming field value is re-used as the response value. If it is set to Value (or nothing, or

anything else) the value from the MSD file is used as response value. If it is set to
Generate a Response Action Function is called.

4.3.1 Response Action Functions

All Response Action functions are located in the Response_Generator class. This

class also contains a generate() function. Whenever a field’s responseAction
action tag is set to Generate, this function is called with among other things the key

word from the value tag and the arguments from the respActionArg tag as

arguments.

In the generate() function, the key word is mapped to the Response Action Function of

choice. If a function exists that performs the desired tasks in order to generate the
response, the key word should be mapped to this function. If it does not, the user of the
system can add whichever functionality that is found necessary, by defining a new
Response Action Function.

In the Response Action Function, the user has access to the Credit Card – Response

Mapping File, the translation functions of the Translator class23 and all information

about every MSD file defined field in the standard, including the request values. In this
way, the response can be generated depending on this data.

This feature has been included in the system in order to make it as generic as possible
and allow for any field in any standard to be generated in exactly the way that the user
wants it to be.

23 See 4.1 - Overview

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 37 29 DECEMBER 2005

4.3.2 Credit Card - Response Mapping File

The real test links, provided by the credit card companies, generates certain response
codes when some predefined credit card numbers are used. It is desired to emulate this
in the tool. The Credit Card – Response Mapping File adds this feature.

This file contains credit card numbers and the response values that they are supposed to
generate. It can be used to make the tool generate a specific response code for a certain
credit card number. This is done from a Response Action Function. Figure 20 shows an
example of a Credit Card – Response Mapping File.

Figure 20 – Credit Card – Response Mapping File example

The file is text based in order to make it as understandable as possible and easy to
update for the users.

To add a new credit card – response mapping, the user must write the credit card
number, insert one or more tabulators and write the response code, all in the same line.
In between the numbers, the user is free to add any information, as long as the credit
card number is the first data in the line, the response number is the last and the data is
separated by tabulators.

The Qantas AS2805 and the VISA ISO8583 standards should have response codes with
two digits and the American Express ISO8583 standard should have three. If a number is
too long (according to the response code size depicted in the MSD file), only the
rightmost digits are used. If it is too short it is padded to the left with zeros.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 38 29 DECEMBER 2005

If the credit card number, which is used in the transmission to the tool, is not found in the
first tabulator separated segment of a line, the Response Action Function should be
written so that the line is skipped and the next one investigated. In this way, the user is
free to add whatever is found necessary in between the credit card – response code
mapping lines. In the example in Figure 20, descriptive titles have been inserted which
might be useful for the human reader of the file but will be ignored by the tool.

4.3.3 Credit Card Number Generator

When generating the response code, the Credit Card – Response Mapping File is a
convenient tool for stating the response code to be generated. However, when a credit
card number is received that is not represented in the file, some other way of determining
the response code is necessary (given that the MSD file says it is to be generated). Since
it is desirable to have the user remain in control of the outcome of the transmission, data
transmitted by him/her needs to be used in the response creation. That is because this
allows the user to emulate a response code without accessing the Credit Card –
Response Mapping File.

The amount would be a possible alternative for a field used to determine the response
code since it is always sent in a credit card request message. However, this field is not

always under the user’s control. If the call is made from a PNR24, the prize of the
purchase is automatically collected from the databases containing the information about
the specific product requested.

All except one field sent in the request message similarly fails to satisfy the requirements
for a response code determining field. The only data transmitted by the user that can be
controlled in every case where the tool might be used is the account number.

Though the functionality of the response generating Response Action Functions is
decided by the user, it is recommended for uniformity (and implemented in the prototype
for all links) that the last digits of the credit card number is used as the response code. An
American Express card with the account number 378291027851004 should therefore
generate the response code (referred to as the Action code in the American Express
terminology) 004 and a VISA card with the account number 4532247214000966 should

generate the response code 6625.

To be able to use the credit card number field as the field determining the response code
in this manner, it is necessary to know which credit card numbers end with the desired
response code and at the same time is a valid credit card number according to the LUHN

formula26.

To facilitate this, a credit card number generator was developed. The main parameters of
this tool are the credit card type, the link on which it is to be tested and the response
code to be generated (the end of the credit card number). From this information, using
the LUHN formula, it generates one or more credit card numbers which can be used in

24 See 1.3 - Problem definition
25 The lengths of the response codes are determined by the MSD file and should correspond to the lengths stated in the

credit card message specifications (see 2.1 - Credit Card Messages).
26 See 2.2 - Credit card number validation

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 39 29 DECEMBER 2005

the credit card message communication with the Credit Card Validation and Authorization
tool to generate the desired response message.

4.4 Design phase time allocation

The Credit Card Interface Validation and Authorization Emulation prototype, described in
this chapter, was developed at Amadeus SAS during spring 2005. The development was
divided in two segments. As the first part of the work, the solutions created by Sonrel for
Receptor was implemented for TTServer. The scripts were adapted to fit into the newer
tool and performance tests were made. The second part involved creating python scripts
for dynamic handling of the incoming fields. The entire credit card message was cut out
of the incoming EDIFACT message, sent to the scripts and parsed. Table L describes the
main events of this work.

Table L – Main events of the development of the Credit Card Interface Validation and Authorization Emulation
prototype

Date Event

1 April
Created a version for VISA cards on the Qantas link that created the
response based on the purchase amount.

4 April
Based the response on the credit card number with the help of the LUHN
formula (since the amount was not a good enough value to set the response
value with, I needed a way to create valid credit card numbers).

5 April Created Credit Card – Response mapping file.

6 April
Finished version for the Qantas link with VISA cards based on hard coded
message standard information.

7 April
Created the first, simple and text based, MSD file. Only included the name of
the field, the size and the description.

11 April
Finished version for the Qantas link including both VISA and American
Express cards.

15 April

Updated the format of the MSD file to include the response values (including
the response bitmap) and data about whether the data is packed or in full
bytes. Also included information on how each individual field is compressed
(bin, packed or byte) and the type of values to be sent in the response
(specified value, echo or generate).

18 April

Finished a version of the solution working for American Express and VISA
cards on the Qantas link and American Express cards on the American
Express link. This version was able to do everything stated in the project
specification but was hard to manage.

21 April
Up until this date, the solution had been a simple function driven one.
Restructured it into an object oriented version.

3 May Finished an XML based version of the MSD files.

9 May
The tool was used for the first time. A developer needing to simulate credit
card message responses tried it.

11 May Implemented automatic message standard recognition. Up until this date,

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 4 PROTOTYPE DESIGN

HENRIK PIERROU 40 29 DECEMBER 2005

users had to update a path pointing to the MSD file describing the credit card
message standard to be used. After this update, the tool itself could
recognize which standard to use making it easier to use.

16 May
The implementation of the VISA link introduced a new way of describing

variable field lengths27. To handle this, the MSD file was updated with the key
word “sizing”.

27 May

Before this date, the PYTHONPATH environment variable had to be set for
each user to point to the directory where the python scripts were located. This
update made this unnecessary. The pointer to the directory was instead
inserted in the code.

30 May

Updated the MSD files to describe the creation of response fields in a more
generic way. Introduced the tag 'responseAction' containing the tags 'action',
'value' and 'respActionArgs'. In the code, a separate module containing the
responseGenerator class was created, containing the Response Action
Functions for generating response field values. After this update, any field in
any credit card message standard can be generated dynamically in any way
the user wants.

27 See 2.1.3.4 - Data Fields

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 41 29 DECEMBER 2005

5 Prototype usage

5.1 Introduction

This chapter covers the usage of the emulator prototype created in the Credit Card
Interface Validation and Authorization Project in the form of a user’s guide. It describes
how to set up the tool and send correct messages to it. It also describes how to add new
credit card links to it or modify existing ones as well as how to make the tool generate
response values for fields in different ways.

The emulator is in this chapter referred to as the Credit Card Interface Validation and
Authorization (CCIVA) Emulator since the scope of the project was to implement it for
credit card authorization messages. It should however be working just as well for any
other kind of credit card messages as long as the settings are correctly made. This has
however not been tested.

5.2 Typical usage

The CCIVA prototype is a TTServer tool that can be used for emulating credit card
message communication from any implemented credit card company. It receives credit
card authorization requests in the form of an EDIFACT HSFREQ message, extracts the
credit card message inside it, reads it and creates the response according to the request
message and the settings made in the tool.

There are two types of users of the tool. The common user will be using the tool for
emulating responses and will be interested in making it generate certain types of
responses. These users will find what they need in the chapters 5.3 - 5.6. The advanced

user will be more of a maintainer of the tool. These users will be adding new links to it
and will be able to generate the fields of the response message in any desired way. The
chapters 5.7 and 5.8 describe how to do this.

At Amadeus, during the work of developing of the prototype, the first users of the system
were a developer in a Ticketing team, two members of a Product Definition team and a
development coordinator.

In the first case, the tool was used during the development to constantly have correct and
controllable emulated credit card companies to interact with in order to be able to create
solutions for every specified scenario. In the second case the prototype was used to
verify that newly written code behaved as specified in the communication with the credit
card companies. The development coordinator acted as a maintainer of the tool and
implemented a new credit card link by adding a new MSD file to the system which
described the message standard used in the new link.

5.3 Downloading

To use the CCIVA Emulator, download the tool using WinCvs.

1. Start WinCvs by opening the start menu and clicking on AMADEUS –
Development – WinCvs – WinCvs.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 42 29 DECEMBER 2005

2. Open Admin – Preferences

3. In the General Tab, add the CVS root “:local:\\ncesrccode1\tkt”.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 43 29 DECEMBER 2005

4. In the WinCvs tab, add a home folder of choice where the tool will be stored.

5. Click OK.
6. Click on the change location button. From the directory menu that appears, mark

the directory you chose as your home folder in step 4 to make it appear on the
left side of the screen.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 44 29 DECEMBER 2005

7. Right click the home folder and click Checkout module…

8. Enter the module name TKT Projects and let the home folder be the local folder

to checkout to. Click OK.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 45 29 DECEMBER 2005

9. The contents of the CVS repository under TKT Projects are downloaded to the

local computer. This may take a while.
10. When the download is finished, reload the view to see the subdirectories. In the

directories that appear, click on TKT Projects - TDW Projects - CCIVA Emulator.
This is the root folder of the CCIVA Emulator. It should also be found in explorer
by browsing the home directory from step 4 and clicking TKT Projects - TDW
Projects - CCIVA Emulator.

11. Whenever a file needs to be updated (like the Credit Card – Response Mapping

File28) the file needs to be made writable. This is done by marking the file and
clicking on the Edit Selection button.

5.4 Running

To run the tool, follow these steps:

1. The CCIVA Emulator is a TTServer application, so first open TTServer.

28 See 5.6.2 - Using the Credit Card – Response Mapping File

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 46 29 DECEMBER 2005

2. From the directory view to the left, right click the Local server icon and click on

Map a new folder.

3. In the New folder window, click on the Path button (the button with three dots on

it).

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 47 29 DECEMBER 2005

4. Locate the root folder of the CCIVA Emulator29. Click Open.
5. In the New Folder window, enter a suiting name and click OK.
6. The folder should now be available in the directory view to the left. By clicking on

the icon to the left of the folder, the sub folders get visible. The msd and scripts
folders are required. The msd folder contains the Message Standard Description
files describing the links that can be emulated and the scripts folder contains the
scripts performing the emulations. The receptor scenario to run and to send the
EDIFACT HSFREQ messages to is called CCIVA_EMULATION.gsv and is
located in the root folder of the CCIVA Emulator.

7. Click on Edit – Project properties…

29 See chapter 5.3, step 10.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 48 29 DECEMBER 2005

8. In the Project Properties window, add the variable ROUTING_VAL and the

correct value. Also add the ATID variable if not already present.

9. Click OK.
10. Open the scenarios folder.
11. Double click the CCIVA_EMULATION.gsv file to open it.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 49 29 DECEMBER 2005

12. Make this file writeable in WinCvs30.
13. Click on the Configuration tab beneath the code window and change the Session

header drop down menu (not the Character set) to Raw mode. Save.

14. Click on the start button. This starts the emulator and makes it ready to receive

HSFREQ credit card messages.

5.5 Sending and receiving messages

Messages are sent to the CCIVA emulator either from a PC3270 session or from a .play
file in TTServer. The .play files are simply collections of the commands that are used in
the PC3270 sessions so the following steps are generally applicable to both cases.

30 See chapter 5.3, step 11

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 50 29 DECEMBER 2005

1. Open a PC3270 session (not applicable when sending messages from .play
files).

2. In session B, print codb and press the right ctrl button on the key board (not

applicable when sending messages from .play files).

3. When LOGI COMPLETED is written on the screen, press the Pause button on

the key board (not applicable when sending messages from .play files).
4. Choose back end by entering LOG G3 1 or LOG G3 6.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 51 29 DECEMBER 2005

5. Log in using the JIA command.

6. In order to route the messages to the TTServer session on the local computer

and not to the real test links, print one or both of the following commands:

O*TTUG/ADD/EDTOOL/KEY1-%ATID%/KEY2-%UNTO%
O*AMCZ-EDTOOL-ON-AX-%UNTO%-%ATID%

%ATID% should be the ATID of the computer using the tool and %UNTO%
should be the UNTO corresponding to the link to be emulated.

Link UNTO

American Express AMEXDA

QANTAS QF0CCP

VISA VISADA

7. Make sure that the CCIVA_EMULATION.gsv file is running in TTServer (step 13

in chapter 5.4) and send the credit card request message.

8. In TTServer, the message is received and parsed and the response is created

and sent back. The results of the message processing are displayed in the output
window.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 52 29 DECEMBER 2005

9. In the PC3270 Session, the response message corresponding to the response

created by the CCIVA Emulator is printed.

5.6 Specifying responses

5.6.1 General

The response value of a field in a credit card message is specified in the MSD file. For
the links implemented so far, the response code is set in the MSD files to be generated in

Response Action Functions31. These use two ways to specify the response to be sent
back from the CCIVA Emulator. The primary one is to map the credit card account

number to the response code in the Credit Card – Response Mapping File32. The
secondary is to use the last digits of the account number as the response code. In this
case, the user can generate a credit card account number corresponding to the response
code to be generated. Both cases are described below in chapters 5.6.2 and 5.6.3.

31 See 5.8 - Modifying response field creation, or the Project Report – Emulation Tool for Credit Card Interface Validation

and Authorization.
32 For information on the Credit Card – Response Mapping File, see Project Report – Emulation Tool for Credit Card
Interface Validation and Authorization.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 53 29 DECEMBER 2005

5.6.2 Using the Credit Card – Response Mapping File

To use the Credit Card - Response Mapping File for specifying the response, follow these
steps:

1. Open the root folder of the CCIVA Emulator, specified in step 4 of chapter 5.3.

The file is called ccnr.py. The .py extension is a result of TTServers inability to
perform commit, update and checkout on text files.

2. Remember to make the file writeable from WinCvs (as described in chapter 5.3,
step 11) before updating it.

3. In the file, add the account number and the corresponding response code below

the line with the = characters. The available response codes for a certain
message standard can be found in the ICD’s or specifications for that standard.
The valid credit card numbers for a certain vendor (with the right bin number etc.)
can be found in the credit card tables.

A few rules need to be followed:
- Each new credit card account number mapped to a response code should be
written on a separate line.
- The credit card account number and the response code should be separated by
tabulators.
- The account number should be the first data in the line and the response code
the last.
- In between the account number and the response code as well as between
lines, any descriptive data can be inserted.
- If a response code is longer than it is supposed to be for a certain link, the

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 54 29 DECEMBER 2005

rightmost digits are used.
- If a response code is shorter than it is supposed to be for a certain link, the
response code is padded to the left with zeros.

4. Save the file and send a credit card message with the credit card account

number just added to the file.

5.6.3 Generating a credit card account number

1. In TTServer, open the CCNrGen file from the scripts folder found in the root
folder of the CCIVA Emulator, specified in step 4 of chapter 5.3.

2. At the bottom of the file, locate the call of the function CCNrGen:

3. Update the arguments to the function CCNrGen to make it generate the desired

result.
- The first argument states which kind of credit card number to generate.
American Express and VISA are supported. For American Express, use AX, for
VISA use VI.
- The second argument is the response code to generate, i.e. the last digits of the
credit card number to generate.
- The fourth argument is the number of credit card numbers to generate.

4. Use the credit card number generated in a message sent to the CCIVA Emulator.
The response code will be equal to the last digits of the credit card account
number. Remember however, that the Credit Card – Response Mapping File is
the primary way of determining the response code. Therefore, if the credit card
number is present in the file, the response code mapped to it will be used and not
the last digits of the account number.

5.7 Updating/Adding links

The MSD file is an XML file describing all fields in a given message standard that are
used by Amadeus (request messages as well as response messages etc.) To create a
new link, a new Message Standard Description (MSD) file needs to be created. To
update the definition of a link, the corresponding MSD file should be changed. The rules
for doing this can be read in the Project Report – Emulation Tool for Credit Card Interface
Validation and Authorization.

To create an MSD file follow these steps:

1. Create a new file in the msd folder found in root folder of the CCIVA Emulator,
specified in step 4 of chapter 5.3.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 55 29 DECEMBER 2005

2. Give the file a name corresponding to the standard it is to describe.
3. Open the file and add the base tag <standard> and end it with </standard>.
4. For every field to be described, add a field description set containing the tags

<field>, <size>, <compression>, <responseAction>, <action>, <value>,
<respActionArgs> and <description>.

5. All fields in a message standard do not need to be described in the MSD file, only

the ones to be used in the credit card message transmissions to and from the
CCIVA Emulator tool.

6. The bitmaps should be named HB1 (primary) and HB2 (secondary).
7. The fields can be added in any order with two important exceptions. The primary

bitmap must come before the secondary bitmap and the fields not described in
the bitmap must come in the order in which they appear in the message. It is
recommended however to add all fields in the order in which they appear in the
credit card message.

8. The tags in the responseAction tag need only be filled with values if the field is
part of the response.

9. If a new link is created, don’t forget to add the UNTO in the table of UNTOs as
specified in step 6 of chapter 5.5.

5.8 Modifying response field creation

5.8.1 General

There are three ways to specify what the response value for a certain field in a credit
card message should be. One is to have a specific value inserted in the response,
another is to have the field’s value echoed from the request message into the
response. The third is to have the value generated in certain user created functions
called Response Action Functions.

5.8.2 Specific value or Echo

To make the response value for a certain field a specific value or to have the value
echoed from the request message follow these steps:

1. Open the corresponding MSD file in the msd folder found in the root folder of the

CCIVA Emulator, specified in step 4 of chapter 5.3.

2. Locate the field to update or insert it if it does not exist.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 56 29 DECEMBER 2005

3. To insert a specific value in the response field, insert Value in the action tag

inside the responseAction tag. In the value tag, insert the value to be used in

the response field. The respActionArgs tag should be left empty.

 <field name="38" bmpNr="37">
 <size sizing="fixed">6</size>
 <compression>Byte</compression>
 <responseAction>
 <action> Value </action>
 <value> F0F0F0F0F0F5 </value>
 <respActionArgs></respActionArgs>
 </responseAction>
 <description>System Trace Audit Number</descriptio n>
</field>

4. To echo the value from the request message, insert Echo in the action tag

inside the responseAction tag. The value and respActionArgs tags

should be left empty. Trying to make a field echo its value from the request
message though the field is not part of the request message will raise an error.

 <field name="38" bmpNr="37">
 <size sizing="fixed">6</size>
 <compression>Byte</compression>
 <responseAction>
 <action> Echo</action>
 <value></value>
 <respActionArgs></respActionArgs>
 </responseAction>
 <description>System Trace Audit Number</descriptio n>
</field>

5.8.3 Response Action Functions

If a response value needs to be generated dynamically, the CCIVA Emulator can be
made to run a user defined Response Action Function to generate the value in the
desired way. To make the tool do this, follow these steps:

1. Open the corresponding MSD file in the msd folder found in the root folder of the

CCIVA Emulator, specified in step 4 of chapter 5.3.

2. Locate the field to update or insert it if it does not exist.
3. Insert Generate in the action tag inside the responseAction tag.

 <field name="39" bmpNr="38">
 <size sizing="fixed">3</size>
 <compression>Byte</compression>
 <responseAction>
 <action> Generate </action>
 <value></value>
 <respActionArgs></respActionArgs>
 </responseAction>
 <description>Action Code</description>
</field>

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 57 29 DECEMBER 2005

4. In the value tag, insert a key word of choice to be used later to map this field to

a Response Action Function. The key word should be as descriptive as possible.

 <field name="39" bmpNr="38">
 <size sizing="fixed">3</size>
 <compression>Byte</compression>
 <responseAction>
 <action> Generate </action>
 <value> ISO8583_Amex_ActionCode </value>
 <respActionArgs></respActionArgs>
 </responseAction>
 <description>Action Code</description>
</field>

5. In the respActionArgs tag, insert any number of arg tags. The contents of

these tags are accessible from the Response Action Function.

<field name="39" bmpNr="38">
 <size sizing="fixed">3</size>
 <compression>Byte</compression>
 <responseAction>
 <action> Generate </action>
 <value> ISO8583_Amex_ActionCode </value>
 <respActionArgs>
 <arg> 002</arg>
 <arg> Another argument </arg>
 </respActionArgs>
 </responseAction>
 <description>Action Code</description>
</field>

6. From TTServer, open the responseGenerator.py file, located in the scripts folder

found in the root folder of the CCIVA Emulator, specified in step 4 of chapter 5.3.
7. This file contains the Response_Generator class. The first function in this

class is the generate function. This is where the key word from the value tag

in the MSD file is mapped to a certain Response Action Function.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 58 29 DECEMBER 2005

8. If there is not already a mapping for the key word stated for the field in the MSD

file, add one at the bottom of the function. This is done by inserting the following
code with the KEY_WORD expression replaced with the key word from the MSD
file and the RESPONSE_ACTION_FUNCTION expression replaced with a valid
Response Action Function (created from step 10 and forward):

If action == KEY_WORD:
 Return self.RESPONSE_ACTION_FUNCTION()

9. Scroll down the file to the place where the Response Action Functions are

located.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 59 29 DECEMBER 2005

10. Insert a new Response Action Function with the name that was called in the

mapping in the generate function. This is done by adding the following code

(with RESPONSE_ACTION_FUNCTION replaced with the name of the function):

 def RESPONSE_ACTION_FUNCTION(self):

11. Below this code, any code can be inserted to generate the desired response

value for the field. The following variables are accessible to assist in the
processing.

Variable Type Content

self.args List List containing the arguments passed from
the MSD file’s respActionArgs tag.

self.fieldMatrix fieldCollection
Collection of all the fields and their attributes
collected from the MSD file, plus their values
in the request message.

self.responseLength Integer The length of the value to be returned.

12. In order to access the values of the fieldMatrix variable, use the getByName call.

 self.fieldMatrix.getByName(name, attribute)

13. The getByName call uses the following two arguments.

Argument Info

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 5 PROTOTYPE USAGE

HENRIK PIERROU 60 29 DECEMBER 2005

name String.

The name of the field to be
investigated.

attribute String.

The attribute in the field to be
returned. Can be one of the
following:

bitNr – The bmpNr attribute value in

the field tag.

size – The size tag value

sizing – The sizing attribute value

in the size tag.

compression – The compression

tag value.
responseAction – The action tag

value.
responseActionVal – the value

tag value.
requestValue – The value of this

field in the request message.
description – The description

tag value.

14. In order to find the response code (if any) mapped to the used credit card

number in the Credit Card – Response Mapping File, use the compToKnown call.

 self.compToKnown(ccNumber, responseLength)

15. The compToKnown call uses the following two arguments.

Argument Info

ccNumber String.

The credit card number to be looked
for in the Credit Card – Response
Mapping File.

responseLength Integer.

The length of the response code to
be returned. Must be equal to the
field length stated in the MSD file.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 6 ANALYSIS

HENRIK PIERROU 61 29 DECEMBER 2005

6 Analysis

6.1 Measurements

In order to verify that the requirements described in 2.6 - Requirements were fulfilled,

various types of measurements and tests were made. These have been divided into the
four areas performance, dynamicity, generality and reliability.

The performance measurements were aimed at proving that the tool is faster than the
one created by Ludovic Sonrel, which was one of the requirements. The requirement of
having the prototype be compatible with the Qantas, Visa/MasterCard, and American
Express links and still generic enough to be applicable to other credit card company links,
possibly added in the future, was targeted by the generality segment. The dynamicity part
describes measures taken to make sure that the tool is dynamic, i.e. able to process
credit card messages and return responses depending on the input data whereas the
reliability measurements shows that the tool is more reliable than the test credit card links
used prior to the emulation prototype.

6.2 Results

6.2.1 Performance

To verify that the prototype is faster than the tool created by Ludovic Sonrel in 2002, the
transaction time was measured. Fifty credit card messages per implemented message
standard (Qantas, American Express and VISA) were sent to the emulator and the
corresponding responses were returned. The average required time for sending the
messages, processing them and returning the responses are shown in Table M. Also
depicted in this table and in the pie chart in Figure 21 is how the processing time is
divided between the different parts of the credit card interface validation and authorization
emulation process.

Table M – Measurements of the time required to send and process credit card messages as well as return the
corresponding response with the emulator.

Link
Request

Transmission
MSD file

Detection
Request
parsing

Response
creation

Other
(printouts

etc)

Response
Transmission

Total

Qantas 0.5853 0.1295 0.0027 0.0153 0.0516 0.6483 1.4327

AMEX 0.4893 0.0703 0.0027 0.0172 0.0523 0.5127 1.1445

VISA 0.5219 0.1291 0.0027 0.0158 0.0529 0.6157 1.3381

Average 0.5322 0.1096 0.0027 0.0161 0.0523 0.1807 1.3051

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 6 ANALYSIS

HENRIK PIERROU 62 29 DECEMBER 2005

Time per processing area

0,110
8%

0,532
41%0,592

46%

0,003
0%

0,016
1%

0,052
4%

Request Transmission

MSD Detection

Request parsing

Response creation

Other (printouts etc)

Response transmission

Figure 21 – Time per processing area

Evident from the table and figure above is that the bulk of the processing time is spent on
transactions to or from the emulator. This part was left outside the scope of the project for
reasons related to the inevitably complex structures created in systems of the Amadeus
GDS systems’ size and the time constraints of the project. Attempting to improve the
EDIFACT message assembling, transaction protocols and mediums would require
involving many more development teams and rethink standardized ways of working
which are built in to practically every part of the company. If any improvements of the
message transactions at Amadeus would need to be done, it is therefore a task to be
dealt with by others, however interesting and challenging the task might be.

Despite this, the performance measurements must be considered satisfactory
considering that the credit card interface validation emulator manages to handle the
entire processing, including transaction times, in less than one and a half second. This is

to be compared to the earlier tool from 200233 which could not process an entire credit
card message before timing out after ten seconds.

6.2.2 Dynamicity

To achieve dynamicity, the emulator was made to parse the request messages into its
fields and create the response depending on the contents of these and the information
stored in the MSD files. By modifying the MSD file, the response can be altered and
made dependent on the request message.

To verify that the dynamic features functioned as expected as well as to make sure that
the responses were correct in case of other response creation methods (such as fixed

value or echo34), tests were made in which several different credit card messages from
the standards used in the implemented links were sent to the prototype. The settings in

33 See 2.5 - Previous work
34 See 4.2.5 - responseAction

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 6 ANALYSIS

HENRIK PIERROU 63 29 DECEMBER 2005

the MSD files were altered to make the emulator create the responses in different ways.
As can be seen in Table N the tests were satisfactory. In all cases, the prototype returned
the expected response message.

Table N – Tests of the prototype’s ability to return correct responses in various cases

Link Message nr35 Tested response action Result

Qantas 1 Fixed value Correct

Qantas 1 Echoed values Correct

Qantas 1 Generated values Correct

Qantas 2 Fixed value Correct

Qantas 2 Echoed values Correct

Qantas 2 Generated values Correct

American Express 3 Fixed value Correct

American Express 3 Echoed values Correct

American Express 3 Generated values Correct

American Express 4 Fixed value Correct

American Express 4 Echoed values Correct

American Express 4 Generated values Correct

VISA 5 Fixed value Correct

VISA 5 Echoed values Correct

VISA 5 Generated values Correct

VISA 6 Fixed value Correct

VISA 6 Echoed values Correct

VISA 6 Generated values Correct

6.2.3 Generality

It was stated in the project specification that the tool had to be implemented for the
Qantas, American Express and VISA links and made generic enough to be applicable to
additional credit card company links that might be added in the future.

The tool was successfully implemented and tested for American Express, Qantas and
VISA. The VISA link implementation however had to be based on a sample message
from [4] and not messages traced from real transactions with the VISA test link. This is

because the VISA link, planned to be implemented in the framework used in the
development of the prototype in May 2005, had not yet been implemented at the end of
the project period. As a result of this, no comparisons could be made between the
performance of the real VISA test link and the emulated one. It also makes the VISA link

35 The Message Nr only illustrates how different messages were used in the tests.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 6 ANALYSIS

HENRIK PIERROU 64 29 DECEMBER 2005

implementation in this project’s emulation prototype dependent on the correctness of the
used sample message and therefore possibly less reliable.

To satisfy the requirement of a solution generic enough to be applicable to new links, a
number of measures were taken during development. For simplicity, all these measures
were included in the MSD files which therefore are the most important components in this
aspect. By creating a new such file, or modifying an existing one, the prototype can be
informed of how to interpret the incoming message and create the response. As shown in
previous chapters, this can be done statically by inserting fixed values into the response,
or dynamically by echoing the request values into the response or creating them in
Response Action Functions.

6.2.4 Reliability

The regression framework scripts, sending several credit card messages of different
types to the prototype and the real test links, were run twice a day for two weeks. One
message per possible response code and link were sent. The tests showed how reliable
the links were in terms of accessibility. In Table O, the success rate of communicating the
different credit card messages are shown.

Table O – Success rate of communicating the different credit card messages in the regression framework tests.

Prototype Real test links

AMEX Qantas AMEX Qantas

2005-06-16,
Run 1

Yes Yes No Yes

2005-06-16,
Run 2

Yes Yes No Yes

2005-06-17,
Run 1

Yes Yes No No

2005-06-17,
Run 2

Yes Yes No No

2005-06-20,
Run 1

Yes Yes Yes No

2005-06-20,
Run 2

Yes Yes Yes No

2005-06-21,
Run 1

No (coding
error)

No (coding
error)

Yes Yes

2005-06-21,
Run 2

Yes Yes Yes Yes

2005-06-22,
Run 1

Yes Yes Yes Yes

2005-06-22,
Run 2

Yes Yes Yes Yes

2005-06-23,
Run 1

Yes Yes No No

2005-06-23,
Run 2

Yes Yes No No

2005-06-24,
Run 1

Yes Yes Yes Yes

2005-06-24, Yes Yes Yes Yes

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 6 ANALYSIS

HENRIK PIERROU 65 29 DECEMBER 2005

Run 2

2005-06-27,
Run 1

Yes Yes No Yes

2005-06-27,
Run 2

Yes Yes No Yes

2005-06-28,
Run 1

Yes Yes No Yes

2005-06-28,
Run 2

Yes Yes Yes Yes

2005-06-29,
Run 1

Yes Yes Yes No

2005-06-29,
Run 2

Yes Yes Yes No

2005-06-30,
Run 1

Yes Yes No No

2005-06-30,
Run 2

Yes Yes No No

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 7 CONCLUSIONS

HENRIK PIERROU 66 29 DECEMBER 2005

7 Conclusions

The project covered in this report was aimed at resolving the issues, involved in credit
card communication over test links, presented in chapter 1.3. It was a prerequisite to

develop a prototype to answer the question of how these issues would best be solved. It
was to be made generic enough to handle any credit card message format.

The idea was to create an emulator that could be used to send the credit card messages
to, instead of the real test links. The emulator would receive the messages and process
them in a way similar to that of the credit card company applications and return correct
responses to the sending side. Since the processing of the request message would then
be conducted locally within the company, the control over what is being done would be in
the hands of the sender of the message. By making the emulator flexible, the response
returned from the application could be created in exactly the way that the sender would
want.

The prototype developed in the Credit Card Interface Validation and Authorization project
was built in such a way and successfully put the control over the processing and
response creation in the hands of the credit card message sender. This was achieved by
combining the receptor script’s functionality, to receive credit card messages translated
into EDIFACT, with an application built in Python, to handle the processing of the
message, and other, application-external resources developed in the project such as the
MSD files.

By moving the processing from the credit card companies to a local location, the issue of
accessibility was resolved. Instead of relying on external links for the communication, the
only real link that needs to be up is the network connection between the sending
application and the emulator which is internal and controllable.

The processing of the messages has also come under the control of the sender. The
emulator’s functionality can be easily modified by making changes to the MSD files
and/or the Response Action Functions. If more detailed changes need to be done than
can be achieved by updating these, the application, being located locally, can still be

updated by modifying the Python source code36.

With complete control over the processing, the issue of limited variation possible in the
response messages is also resolved. By modifying the MSD files, the user can make the
emulator return any value in any field of the response messages. This can be done
statically by stating in the MSD file the exact value to be returned, or it can be done
dynamically by either echoing the value from the request message or generating the
value in a Response Action Function.

The work with the Credit Card Interface Validation and Authorization project at Amadeus
has been interesting in many levels. The free hands that I was given gave me useful
experiences in managing a project from start to finish and to present and defend my
ideas to my industrial supervisor and other Amadeus employees with various degrees of
experience in this field.

36 This is not the recommended way to go but illustrates how the sender using the prototype holds the complete control
over the processing.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 7 CONCLUSIONS

HENRIK PIERROU 67 29 DECEMBER 2005

The project also gave important insights when it comes to how the architecture of
systems like the CCIVA system ought to be planned. My lack of experience as an
architect sometimes became evident when parts of the code had to be rewritten in order
to become more efficient or to facilitate some communication process between two
objects. These mistakes are not likely to be remade since the delayed they caused was
quite distressing.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 8 FUTURE WORK

HENRIK PIERROU 68 29 DECEMBER 2005

8 Future work

8.1 Handling of true binary data

As described in chapter 2.4.3 - HSFREQ/HSFRES, the original credit card message is

translated before it is used in the HSFREQ EDIFACT message in order to make it suited
for the TTServer environment. This translation however means moving away from the
ideal emulation, resembling the real message passing to as large a degree as possible. If
TTServer in the future is updated to be able to handle true binary data it would therefore
be desired to make the emulator able to do so as well.

8.2 Testing and modification of VISA link

As mentioned, the VISA link was implemented based on a sample message from [4] and

not messages traced from real transactions with the VISA test link because the VISA link,
planned to be implemented in May 2005 in the framework used in the development of the
prototype, had not yet been implemented at the end of the project period. When this has
been done, the VISA link implementation would need to be tested properly and possible
errors be corrected.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 9 REFERENCES

HENRIK PIERROU 69 29 DECEMBER 2005

9 References

Internal Amadeus documents37

1. L. Sonrel. 2002. Receptor tool for credit card authorization message. Sophia-
Antipolis: Amadeus SAS.

2. L. Sonrel. 2002. Qantas Gateway Link Interface Control Document. Sophia-
Antipolis: Amadeus SAS.

3. R. Humphries. 2000. Amex Direct Link Interface Control Document. Sophia-
Antipolis: Amadeus SAS.

4. R. Humphries. 2000. Visa Direct Link Interface Control Document. Sophia-
Antipolis: Amadeus SAS.

5. E. Peran. 2005. Test Tool Server User Guide. Sophia-Antipolis: Amadeus SAS.

6. E. Peran. 2003. Edifact Training. Sophia-Antipolis: Amadeus SAS

Books

7. 2002. BASE I Technical Specification Volume 1 VISA V.I.P. System, VisaNet
Technical Documentation

8. 2002. BASE I Technical Specification Volume 2 VISA V.I.P. System, VisaNet
Technical Documentation

9. M. Lutz. 1996. Programming Python. ISBN X. X:O’Reilly

Web pages

10. Python 2.3.5 Documentation. < http://www.python.org/doc/2.3.5/ >. Released
February 8th, 2005.

11. VIRADIX Terminology < http://www.viradix.com/terminology.html#e >.
Accessed May, 2005.

12. XML Glossary < http://www.softwareag.com/xml/about/glossary.htm >.
Accessed May, 2005.

13. GIRO Bankcard Ltd. – Glossary of the bankcard industry - <
http://www.gbc.hu/english/bszotare2.htm >. Accessed May, 2005.

37 All internal Amadeus documents are referred to with the approval of Mr. Nazir Goulamhoussen, Unit Manager of the
Ticketing team, Global Core, Amadeus.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATION 9 REFERENCES

HENRIK PIERROU 70 29 DECEMBER 2005

14. ISO9735. < http://www.edifactory.de/ISO9735.TXT > Accessed May, 2005

15. UN/EDIFACT Working Group (EWG) <
http://www.unece.org/trade/untdid/sessdocs/ewg_0598.htm >. Accessed May,
2005

16. ISO 9735 EDIFACT. < http://www.nls.fi/ptk/standardisation/2.html >. Accessed
May, 2005

17. Opera, the Amadeus Intranet. <
https://opera.amadeus.com/intranet/html/index.jsp >. Accessed May, 2005

18. H. Stiles. Credit Card Check Digit Validation <
http://www.beachnet.com/~hstiles/cardtype.html >. Accessed June, 2005.

Articles

19. J. A. Whittaker. 2000. What Is Software Testing? And Why Is It So Hard?. IEEE
Software: 70-79

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 71 29 DECEMBER 2005

Appendix A - Message standard specifications

A.1 Qantas AS2805

The field with bit number 1 (the first bit, in other contexts usually referred to as bit 0) is
the secondary bitmap. Other fields omitted in Table A1, describing the fields of the
Qantas AS2805 standard, are fields that are not used by Amadeus.

Table A1 – Qantas AS2805 credit card message fields used by Amadeus

Bit Nr Field Name Attribute Size Content
2 Primary

Account
Number

Numeric

Maximum
19 digits

Variable Credit card number information

The first byte holds the number length, as two
numeric digits. The rest is the card number. If
of odd length it is padded to the right with four
bits set to one.

Example:
x'164000111100001111' – 16 digits long
number, value: 4000111100001111

3 Processing
Code

Numeric

6 digits

3 Bytes Information on what kind of request is being
made

The first two digits:
00 for purchase
20 for refund

Digits three and four:
30 for credit account

The Last two digits
Always 00

Example:
x'003000' – Purchase
x'203000' – Refund

4 Transaction
Amount

Numeric

12 digits

6 Bytes The requested amount of money

Leading zeros

The decimal point position is implied by the
currency code (field 49)

Example:
x'000000050000' - AUD$500.00

7 Transmission
Date & Time

Numeric

10 digits

5 Bytes The date of the transmission

Syd/Mel system time

Stated in the form MMDDhhmmss

Example:

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 72 29 DECEMBER 2005

x'0124130404’ - 13:04:04, January 24’th

11 System Trace
Audit Number

Numeric

6 digits

3 Bytes Unique system generated number to identify
each transaction

12 Local
Transaction
Time

Numeric

6 digits

3 Bytes The local time of the transaction

Stated in the form Hhmmss

GMT time

Example:
x'130404’ – 13:04:04

13 Local

Transaction
Date

Numeric

4 digits

2 Bytes The local date of the transaction

Stated in the form MMDD

GMT date

Example:
x'0124’ – January 24’th

14 Expiry Date Numeric

4 digits

2 Bytes The expiry date of the credit card

Stated in the form YYMM

Example:
x'0205' - May 02

15 Settlement
Date

Numeric

4 digits

2 Bytes Date when funds will be credited to Qantas by
the acquirer

Stated in the form MMDD

Default is present date

Example:
x’0124’ – January 24’th

18 Merchant's
type

Numeric

4 digits

2 Bytes Code describing the merchant’s type of
business product or service.

22 POS Entry
Mode

Numeric

3 digits

2 Bytes Identifies the method used to enter the credit
card number (POS – Point Of Sale)

First two digits:
01 manual
02 magnetic strip
05 integrated circuit card
n b90 full and unaltered magnetic stripe
read and transmitted

Third digit:
2 No PIN entry capability

25 POS
Condition

Numeric

1 Byte Information on the device used at POS

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 73 29 DECEMBER 2005

Code 2 digits 00 normal (customer present)
04 electronic cash register
07 telephone device
08 mail/telephone order
16 administration terminal
44 travel ticket vending machine
48 Electronic Commerce (Internet)

32 Acquiring
Institution
Identification
Code

Numeric

Maximum
11 digits

Variable The financial institution for Qantas to debit

Always x'0856022004'

35 Track 2 Data Packed
Track
data

Maximum
37 values

Variable Swipe card data

The first byte holds the remaining field length.

37 Retrieval
Reference
Number

Alpha
Numeric

ECBDIC

12 char.

12
Bytes

Message identifier used to match a request to
a response

Byte 1-4 - Julian date (YDDD)
Byte 5-6 - Transaction hour, from Field 7 (hh)
Byte 7-12 - Trace number, from Field 11

Example:
c'102413002345'

38 Authorisation
Identification
Response

Alpha
Numeric

ECBDIC

6 char.

6 Bytes Authorization Response identifier

Any value

39 Response
Code

Alpha
Numeric

ECBDIC

2 char.

2 Bytes The response value. Authorization or denial

and reason38.

41 Card
Acceptor
Terminal ID

Alpha
Numeric

ECBDIC

8 char.

8 Bytes Identifies the acceptor terminal (the receiver
and acceptor of the credit card requests)

Always x’D8C1D5E3C1E24040’ (c'QANTAS ')
with trailing blanks to 8 bytes

42 Card
Acceptor
Identification
Code

Alpha
Numeric

ECBDIC

15 char.

15
Bytes

The credit card vendor code

43 Card
Acceptor
Name
Location

Alpha
Numeric

ECBDIC

40
Bytes

Name of the credit card acceptor

First characters:
 c'QANTAS' + space + agent's city code +
spaces

38 See 2.1.1.5 - Response codes

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 74 29 DECEMBER 2005

40 char.
Last two digits:
country code

Example:
c'QANTAS QSC AU'

48 Additional
Data - Private

Alpha
Numeric

ECBDIC

999 char.

Variable Additional data

49 Transaction
Currency
Code

Numeric

3 digits

2 Bytes The transaction currency

Leading 0

64 Message
Authentication
Code

Binary

64 bits

8 Bytes Not used, filled with zeros

90 Original Data
Elements

Numeric

42 digits

21
Bytes

Position 1- 4 = original message type
Position 5-10 = original STAN (bit 11)
position 11-20 = original transaction date and
time (bit 7)
Position 21-31 = original acquiring institution
ID (bit 19) x'00056022004'
Position 32-42 = original forwarding institution
ID (bit 33) x'00000000000'

128 Message
Authentication
Code

Binary

64 digits

8 Bytes Not used, filled with zeros

Numeric fields are stored as unsigned packed, i.e. one byte contains two values. A byte
containing x’16 (bin 0001 0110) holds the numbers 1 and 6.

A.2 American Express ISO8583

The data fields contain the information to be sent to the credit card issuer. The field with
bit number 1 (the first bit, in other contexts usually referred to as bit 0) is the secondary
bitmap. Other fields omitted in Table A2, describing the fields of the American Express
ISO8583 standard, are fields that are not used by Amadeus.

Table A2 – American Express ISO8583 credit card message fields, used by Amadeus

Bit Nr Field Name Attribute Size Content
2 Primary

Account
Number

EBCDIC
(Numeric)

Maximum
17 digits

Variable Credit card number information

The first two bytes holds the number length, as
EBCDIC characters. The rest is the card
number.

Example:
x'
F1F5F3F7F8F2F9F1F0F2F7F8F5F1F0F0F4'

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 75 29 DECEMBER 2005

– 15 digits long number, value:
378291027851004

3 Processing
Code

EBCDIC
(Numeric)

6 digits

6 Bytes Information on what kind of request is being
made

000000 – authorization only
004000 – authorization and address
verification

4 Transaction
Amount

EBCDIC
(Numeric)

12 digits

12
Bytes

The requested amount of money

Leading zeros

11 System Trace
Audit Number

EBCDIC
(Numeric)

6 digits

6 Bytes Unique system generated number to identify
each transaction

12 Date and
Time, Local
Transaction

EBCDIC
(Numeric)

12 digits

12
Bytes

The local time of the transaction

Stated in the form YYMMDDhhmmss

14 Expiration
Date

EBCDIC
(Numeric)

4 digits

4 Bytes The expiry date of the credit card

Stated in the form YYMM

22 POS Data
Code

EBCDIC
(Alpha-
numeric)

12 digits

12
Bytes

Identifies the method used to enter the credit

card number, e.g. manual, magnetic stripe,
card-holder present (POS – Point Of Sale).

24 Function
Code

EBCDIC
(Numeric)

3 digits

3 Bytes Message purpose.

Used in network management messages

(1804/1814 – echo test)39.

26 Card
Acceptor
Business
Code

EBCDIC
(Numeric)

4 digits

4 Bytes A code that identifies the type of business
conducted by the service establishment
(Amadeus).

27 Approval
Code
Length

EBCDIC
(Numeric)

1 digits

1 Byte The maximum length of the approval code
that can be displayed or printed.

32 Acquiring
Institution ID

EBCDIC
(Numeric)

Maximum
13 digits

Variable Identifies the acquirer (Amadeus).

The first two bytes specifies the number of
digits, as EBCDIC characters. The rest is ID
code.

37 Retrieval

Reference

EBCDIC
(Alpha-

12
Bytes

Message identifier used to match a request to
a response

39 See 2.1.2.1 - Message Type ID

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 76 29 DECEMBER 2005

Number numeric)

12 digits

38 Approval
Code

EBCDIC
(Alpha-
numeric)

6 digits

6 Bytes The authorization code for the credit
approval.

Spaces indicates that approval is not
given.

39 Action Code EBCDIC
(Numeric)

3 digits

3 Bytes Response to the authorization. Holds the
error code or action to be taken.

41 Card
Acceptor ID

EBCDIC

15 digits

8 Bytes The identification of the terminal at the
card acceptor location

42 Card
Acceptor ID
Code

EBCDIC
(Alpha-
Numeric)

15 digits

15
Bytes

code that identifies the card acceptor
(sales establishment).

44 Additional
Response
Data

EBCDIC

Maximum
25 digits

Variable Miscellaneous data needed in a response,
such as Address Verification Result Code
and Telecode Verification Result Code.

The first two bytes specifies the number of
digits, as EBCDIC characters. The rest is the
additional response data.

49 Currency
Code

EBCDIC
(Alpha-
Numeric)

3 digits

3 Bytes The transaction currency

63 Private Use
Data

EBCDIC

Maximum
103 digits

Variable Contains address details when address
verification is requested.

The first three bytes specifies the number of
digits, as EBCDIC characters. The rest is the
private use data.

93 Transaction
Destination
Institution ID

EBCDIC

Maximum
11 digits

Variable Identifies the destination institution
(system).

The first two bytes specifies the number of
digits, as EBCDIC characters. The rest is the
ID code.

94 Transaction
Originator
Institution ID

EBCDIC

Maximum
11 digits

Variable Identifies the originating institution
(system).

The first two bytes specifies the number of
digits, as EBCDIC characters. The rest is the
ID code.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 77 29 DECEMBER 2005

A.3 VISA ISO8583

The data fields contain the information to be sent to the credit card issuer. The field with
bit number 1 (the first bit, in other contexts usually referred to as bit 0) is the secondary
bitmap. Other fields omitted in Table A3 are fields that are not used by Amadeus.

Table A3 – VISA ISO8583 credit card message fields used by Amadeus

Bit Nr Field Name Attribute Size Content
2 Primary Account

Number
Numeric

Maximum
11 digits

Variable Credit card number information

The first byte holds the number length, as
binary value. The rest is the card number.

If the account number has an odd
number of digits, a leading zero is used
to pad the first half-byte. This is not
included in the count of digits

Example:
x' 104972053263029923 ' – 16 digits long
number, value: 4972053263029923

3 Processing
Code

Numeric

6 digits

3 Bytes Coding which identifies the customer
and account types.

4 Transaction
Amount

Numeric

12 digits

6 Bytes The requested amount of money

Leading zeros

6 Cardholder
Billing Amount

Numeric

12 digits

6 Bytes Multicurrency field. Transaction

amount40 converted to the currency
used to bill the cardholder’s account.

7 Transmission
Date and Time

Numeric

10 digits

5 Bytes The date and time in Greenwich mean time
when the request or advice entered VisaNet.

10 Conversation
Rate,
Cardholder
Billing

Numeric

8 digits

4 Bytes Conversion factor used by Visa to

calculate the billing amount41 from the

transaction amount42.

11 System Trace
Audit Number

Numeric

6 digits

3 Bytes Unique system generated number to

identify each transaction

14 Expiration
Date

Numeric

2 Bytes The expiry date of the credit card

40 See field 4 – Transaction Amount
41 See field 6 – Card Holder Billing Amount
42 See field 4 – Transaction Amount

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 78 29 DECEMBER 2005

4 digits

Stated in the form YYMM

18 Merchant Type Numeric

4 digits

2 Bytes Code describing the merchant’s type of
business product or service.

19 Acquiring Inst.
Country Code

Numeric

3 digits

2 Bytes Identifies the country of the acquiring
institution for the merchant or ATM.

Leading zero

 22 POS Entry
Mode Code

Numeric

4 digits

2 Bytes Identifies the method used to enter the credit

card number, e.g. manual, magnetic
stripe, card-holder present.

25 POS Condition
Code

Numeric

2 digits

1 Bytes A code that identifies the condition
under which the transaction takes place
at the point of service e.g. customer not
present, mail/telephone order etc.

32 Acquiring
Institution ID

Numeric

Maximum
11 digits

Variable Identifies the acquirer (Amadeus).

The first byte holds the field length, as a
binary value. The rest is the ID number.

If the ID has an odd number of digits, a
leading zero is used to pad the first half-
byte. This is not included in the count of
digits.

37 Retrieval
Reference
Number

EBCDIC
(Alpha-
numeric)

12 digits

12
Bytes

Message identifier used to match a request
to a response

38 Authorization
ID response

EBCDIC
(Alpha-
numeric)

6 digits

6 Bytes The authorization code for the credit
approval.

39 Response
Code

EBCDIC
(Alpha-
numeric)

2 digits

2 Bytes A code that defines the response to a
request e.g. successful, do not honor,

pick up card, invalid amount etc43.

41 Card Acceptor
Terminal ID

EBCDIC
(Alpha-
numeric)

8 digits

8 Bytes The identification of the terminal at the
card acceptor location

42 Card Acceptor
ID Code

EBCDIC
(Alpha-
Numeric)

15 digits

15
Bytes

Code identifying the card acceptor
(sales establishment).

43 See 2.1.3.5 - Response Codes

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 79 29 DECEMBER 2005

43 Card Acceptor

Name/Location

EBCDIC
(Alpha-
Numeric)

40 digits

40
Bytes

The name and location of the card
acceptor.

44 Additional
Response
Data

EBCDIC
(Alpha-
Numeric)

Maximum
25 digits

Variable Miscellaneous data needed in a
response, such as Address Verification
Result Code and Telecode Verification
Result Code.

The first byte holds the field length, as a
binary value. The rest is the data.

48 Additional
Private Data

EBCDIC
(Alpha-
Numeric)

Maximum
256 digits

Variable Miscellaneous information. 16 different
usages.

The first byte holds the field length, as a
binary value. The rest is the data.

49 Currency Code Numeric

3 digits

2 Bytes The transaction currency

51 Currency
Code,
Cardholder
Billing

Numeric

3 digits

2 Bytes 3 digit numeric code identifying the
billing currency (multicurrency).

59 National POS
Geographic
Data

EBCDIC
(Alpha-
Numeric)

Maximum
14 digits
(+ size
value)

Variable Geographical location data e.g. state,
country.

The first byte holds the field length, as a
binary value. The rest is the data.

60 Additional
POS Info

Numeric

Maximum
10 digits
(+ size
value)

Variable VISA private use.

The first byte holds the field length, as a
binary value. The rest is the data.

62 CPS Fields Numeric

Bit-
mapped

Variable VISA private use.

The first byte holds the field length, as a
binary value. The rest is the data.

70 Network

Management
Information
Code

Numeric

3 digits

2 Bytes Defines the type of Network
Management needed.

90 Original Data
Elements

Numeric

42 digits

21
Bytes

Contains selected data from the original
message (identifies the message being
reversed in reversal messages).

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX A - MESSAGE STANDARD SPECIFICATIONS

HENRIK PIERROU 80 29 DECEMBER 2005

95 Replacement
Amounts

EBCDIC
(Alpha-
Numeric)

42 digits

42
Bytes

The corrected amount of a transaction
in a partial reversal.

123 Address
Verification
Data

EBCDIC
(Alpha-
Numeric)

Maximum
256 digits

Variable VISA private use, address information.

The first byte holds the field length, as a
binary value. The rest is the data.

EMULATION TOOL FOR CREDIT CARD INTERFACE VALIDATION AND AUTHORIZATIONAPPENDIX B – ACRONYMS AND ABBREVIATIONS

HENRIK PIERROU 81 29 DECEMBER 2005

Appendix B – Acronyms and Abbreviations

ATID Amadeus Terminal ID

BMI British Midland

CPS Custom Payment Service

EDIFACT
Electronic Data Interchange for Administration, Commerce and
Transport

EWG UN/EDIFACT Working Group

GAB Global acquiring Bank

GDS Global Distribution System

IATA/ATA
International Air Transport Association/Air Transport Association
America

IGW Interface Gateway

MSD Message Standard Description

PNR Passenger Name Record

POS Point Of Service

RBoS Royal Bank of Scotland

SAA South African Airlines

TPF Transaction Processing Facility

TT&L Travel Tourism and Leisure

TTServer Test Tool Server

UN United Nations

UN/ECE United Nations Economic Commission

WE/EB Western European EDIFACT Board

XML Extensive Markup Language

