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ABSTRACT 

Voice over the Internet Protocol (VoIP) is one of the latest and most successful Internet services. 

It takes advantage of Wireless Local Area Networks (WLANs) and broadband connections to 

provide high quality and low cost telephony over the Internet or an intranet. This project exploits 

features of VoIP to create a communication scenario where various conversations can be held at 

the same time, and each of these conversations can be located at a virtual location in space. The 

report includes theoretical analysis of psychoacoustic parameters and their experimental 

implementation together with the design of a spatial audio module for the Session Initiation 

Protocol (SIP) User Agent “minisip”. Besides the 3D sound environment this project introduces 

multitasking as an integrative feature for “minisip”, gathering various sound inputs connected by 

a SIP session to the “minisip” interface, and combining them altogether into a unique output. This 

later feature is achieved with the use of resampling as a core technology. The effects of traffic 

increment to and from the user due to the support of multiple streams are also introduced. 
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SAMMANFATTNING 

Röst över Internet Protocol (VoIP) är en av de senaste och mest framgångsrika Internettjänsterna. 

Det utnyttjar Trådlösa Nätverk och bredband för att erbjuda högkvalitativ och billig telefonering 

över Internet eller ett Intranät. Det här projektet använder sig av VoIP för att skapa ett 

kommunikationsscenario där flera olika konversationer kan hållas samtidigt och där varje 

konversation kan placeras på en virtuell plats i rymden. Rapporten innehåller en teoretisk analys 

av psykoakustiska parametrar och deras experimentella genomförande tillsammans med design av 

en 3D ljud modul för Session Initiation Protocol (SIP) User Agent ”minisip”. Förutom ljudmiljön 

i 3D introducerar projektet multitasking som en integrerbar del av ”minisip”. Alla tänkbara 

ljudkällor baserade på SIP förbindelser samlas med ”minisip” interfacet och kombineras till en 

enda utsignal. Detta uppnås med hjälp av resampling som kärnteknologi. Effekterna av att mer 

trafik når användaren på grund av stödet av multiple källor introduceras också. 
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1. Introduction 

The introduction of the third generation (3G) cellular telephony has created the need for 

new services and applications that operators can offer to their customers in order to make their 3G 

investments profitable. Specific applications for 3G phones exploit the fact that the 3G network 

can provide a much higher peak speed than the existing GSM and GPRS networks (see Table 1).  

Video calling (two way video conferencing), on demand streaming (one way, down to the 

phone), and real time video broadcast (sports, news, etc.) are some of the newest services being 

offered by mobile operators. However, it is broadly thought that the real 3G revolution has not 

been the increase in capacity and the applications directly coupled to this increased bandwidth, 

but rather that the capabilities of handsets has increased in order to support these new services. 

The newest devices have large color screens with high resolution, they can handle a number of 

multimedia file formats (AVI, MP3, MPEG…), they are equipped with high quality digital 

cameras, they support many different types of Internet (based) formats, they have larger 

memories, and they are programmable by the end user. This is in addition to the existing features 

from GSM and GPRS, such as SMS and MMS messaging. 

Table 1 – Main Parameters of the Principal Terrestrial Wireless Voice and Data 

Communication Standards 

STANDARD BANDWIDTH
1
 

MAXIMUM LINK 
SPEED 

POWER RANGE 
2
 

802.11b (WLAN) 22 MHz 11 Mbps 100 mW 100 m 

802.11g (WLAN) 22 MHz 54 Mbps 100 mW 100 m 

Bluetooth 1 MHz 1 Mbps 2.5 mW ->100 mW 10 m 

GSM 200 kHz 272 kbps 100 mW -> 1W 35 km 

WCDMA (3G) 5 MHz 2 Mbps 100 mW -> 1W 10 km 

AM RADIO 
3
 10 kHz --- ~ W -> ~ kW 10s - > 100s km 

FM RADIO 
3 

200 kHz ~ 10 kbps (side band) ~ W -> ~ kW 10s - > 100s km 

 

                                                
1
 This is the bandwidth of one carrier. 

2
 Practical usage. 

3
 Generally for broadcast radio, but some low power systems are used for local communication. 
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Mobile terminals no longer a limit the services that can be provided and one could think 

that the transition to 3G systems is going to be fast, just a stop and go before 3G+ and Wireless 

Local Area Network (WLAN) based technologies take the arena. The later could be a strong 

competitor for 3G, since 3G has not satisfied all the user’s expectations, and the wireless 

technology is developing blindingly fast. 

Table 1 shows the major difference between 3G and WLAN capacities. Today, high-end 

mobile terminals support multiple types of wireless connections and this enables them to utilize 

an even wider range of applications than 3G alone offers. Moreover, some terminals have AM 

and FM radio receivers. Some digital services use FM sidebands for one-way data transmission.  

This provides yet another source of data to be supported by handheld terminals. 

The main concern when talking about WLAN access is actually the access itself. 

Currently, access to WLANs is limited to hotspots and private WLANs, thus service is not always 

available. However, once this hurdle is reduced sufficiently more complete services will be 

available to the user beyond simply providing Internet access. Thus if the areas where a user 

spends most of their time have WLAN access, then the lack of complete coverage will not be a 

significant barrier. 

WLAN has become the link that closes the gap between GSM and POTS telephony and 

the Internet. The development of Voice over IP (VoIP) is threatening to change the telephony 

business as we now know it. Calls taking place through the Internet are cheaper, simpler, and 

allow a number of additional applications unavailable via the GSM system.  

This project tries to exploit the characteristics of a VoIP environment over WLAN, by 

developing a module for the existing open-source SIP User Agent (UA) called “minisip” [5], 

developed at the Telecommunication Systems Lab in cooperation with researchers at the Center 

for Wireless Systems (Wireless@KTH) at Royal Institute of Technology (KTH), Kista, Sweden.  

This service enables the exploitation of spatial audio, a psychoacoustic field that has been 

of great interest lately in both games and real-time applications. Spatial audio utilizes the ability 

of the human hearing system to locate the origin of a sound by the analysis of some of the 

parameters of the signal received in the ears. In the case of this project the sound is directly 

delivered to the user through headphones. 
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The module designed in this thesis utilizes resampling as another of its core features. 

Users today are not willing to have one single process running for them, as an example they 

would like to listen to their music at the same time they can hold a phone call, attend to their 

voice mail, or receive any other type of audio source such the broadcast radio ones mentioned 

above. Multitasking has become a major requirement for most of our systems, from PCs to PDAs. 

Additionally, mobile users are the biggest and most demanding targets for vendors. In the case of 

sound-based applications, a significant issue arises when looking at the different types of data: 

every sound application has its own preferred encoding system, uses its own choice of the most 

suitable sampling frequency, and delivers its data in the most appropriate time frame for each 

application. However, the target system may only be capable of adjusting its audio output to one 

unique set of parameters, thus making it impossible to reproduce all the incoming sources at the 

same time.  By introducing resampling in this project, all the sources become independent, they 

can have their own parameters (which better fit their needs), and the final system will adjust and 

combine all these different incoming streams to suit the requirements of the underlying hardware. 

1.1. Organization and contents of the report 

The report is divided in four different parts, each concerning a different aspect of the 

project: 

- PART I: Spatial Audio. This part introduces the most relevant parameters and 

features to be considered concerning spatialized audio. A theoretical base for the 

concepts and previous work are given. Some experiments analyzing the effect of the 

basic features for audio spatialization were conducted and the results are shown in 

order to contrast with the theory. The tests conducted during this phase were used to 

design the spatial environment for the final application. 

- PART II: Programming Tools and Methods. Many tools and applications have been 

designed for spatial audio and resampling applications. This part of the report deals 

with the selection of an appropriate tool for programming the implementation; this 

simplifies most of the programming and provides better performance by building on 

well-tested ideas. 

- PART III: An Example Service and its Implementation. This part describes the 

process of creating the desired service, from the basic program designed to receiving 

a call and locating it in space, to a more complex environment with multiple 
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simultaneous conferences. The development of the program is explained in small 

steps, so all the different aspects of the application can be observed. Finally, the 

working system was integrated into the “minisip” application, and some features 

were optimized for this specific environment. 

- PART IV: Conclusions and Further Work. The section gives a perspective of the 

current situation of the implementation of spatial audio and describes some of the 

near term activities that could be conducted. Some implications of the use of this 

service on the underlying communication are given. 

1.2. Unique contributions 

Spatial audio has mainly been used in a passive-user manner, where the sound is played 

to give the user the sensation of being immersed in the environment that the sound simulates. 

This project and this report examine spatial audio from a different perspective: the user is now in 

charge of spatializing the sound. This facilitate the user multitasking, i.e. exploiting the “cocktail 

party” effect to allow the user to simultaneously listen to multiple independent audio streams. 

Using the latest generation of PDAs with integrated WLAN allows receiving different 

media streams containing speech and other audio. These streams are managed by a VoIP user 

agent (here we use “minisip”) that has been extended to allow the user to decide where to 

virtually place each stream in space. The user can organize these separate conversations based on 

their own preferences and maintain spatially distributed multiconferences just as if they were in a 

meeting room. This enhances the experience of 3D sound as it gives the users the possibility of 

interacting with their own listening experience in a simple but useful way. 

Moreover, what this project introduces is a new way of understanding multitasking. Since 

“minisip” will be able to integrate all the incoming sound sources into an integrated output 

stream, the application is no longer restricted to VoIP related actions, but rather becomes the 

locus of different applications, each capable of establishing a SIP session. Any audio-based 

application with the capability of making a SIP connection will be then incorporated into the final 

sound output, allowing us to have many applications integrated into our multitasking 

environment. More on SIP sessions can be found in [9]. 

This report also presents the results obtained when testing different spatial audio 

environments based on a specific parametric design. This means that the user is not simply 
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exposed to sounds coming from different loudspeakers or exposed to sounds in their headphones 

from random positions, but rather the tests use sounds played following different patterns to 

simulate diverse environments and emphasizing different parameters in each experiment. This 

allowed the design of the final application to be based upon an experimental determination of the 

importance of each listening parameter based on actual user experience. 
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2. Background 

“Free Internet Telephony that just works” is how Skype
4
 introduces their VoIP client that 

is available for most major platforms in the market (e.g., Microsoft’s Windows and Windows 

Mobile [38], Linux [39], and Apple’s Mac Os [40]). This statement summarizes the basic 

underlying truth behind the success of VoIP in the last two years: it just works. Users connected 

to the Internet can hold a conversation using VoIP without any additional cost beyond their 

existing connection by using their existing computer. 

VoIP confronts the old telephony system by offering a high quality voice service 

delivered via a simple user interface to software that can be easily installed on anyone’s laptop or 

mobile device. Most of the VoIP services offered today are completely free. Recently VoIP 

companies have begun to deliver new services that allow calls to mobile and fixed telephones at 

lower rates than the conventional telephony network. Today, the Internet telephony phenomenon 

seems to be finally finding its way to the mass market, with Skype Technologies announcing one 

million users connected to their “network” during the last weeks of October 2004. The most 

significant factor for companies such as Skype Technologies is the fact that these users only 

exchange signaling traffic via the Skype overlay network, as all the voice traffic goes directly 

between the users’ computers, thus their network infrastructure does not have to be enormous to 

support so many users. 

“minisip” [5] an open source alternative to Skype. Initially implemented on the HP 

iPAQ h5550 PDAs running Linux, this User Agent allows the user to use a WLAN as the 

transmission media for calls, thus converting these PDAs into WLAN phones.  “minisip” is under 

constant development and is used in a number of research projects that are extending the 

capabilities and applications of the original system, e.g., with security via MIKEY and SRTP, 

Push to Talk [11], … 

Spatial audio has been developing over many decades. Entertainment companies first 

introduced spatial audio early in 1939 with the development of a 3 channel sound system for the 

Walt Disney film “Fantasia”. Perhaps the most known achievement in this field came in the 

1990’s when sound surround systems were installed in the cinemas [19]. The gaming industry 

followed this lead and created more realistic game environments by providing the user with 3D 

sound. Virtual reality games as well as the ones played in first person (Doom and similar) try to 

                                                
4
 Skype is a Skype Technologies S.A. product. 
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give the user the most affordable sensation of immersion in the environment by means of 

synchronized visual and auditory information. 

Unfortunately the gaming and film industries each developed their own platforms for 3D 

sound support. As it can be seen in Table 2, Microsoft’s Windows has a wide range of 

development APIs to create sound applications for their operating system.  

Table 2 - Microsoft’s Windows Sound APIs 

API 3D PROCESSING FEATURES 

Windows Multimedia NO Basic OS services for playing sounds 

Direct Sound NO Simple 2D sound processing 

Direct Sound 3D YES 
3D positioning, distance attenuation, Doppler 
effect, Head Related Transfer Functions 
(HRTF), reverberation, and chorus effect 

OpenAL YES 
3D positioning, Doppler effect, and distance 
attenuation 

EAX YES 
Room acoustic enhancement, requires 
OpenAL or Direct Sound 3D 

Sensaurea YES HTRF and virtual surround 

Aureal 3D YES HRTF and extended room characteristics 

 
Spatial audio has been studied for a long time with psychophysics studies and biomedical 

surveys having been conducted since the 1950’s. Aids for the hearing impaired, assisted learning 

methods, and other applications were all developed prior to the entertainment boom in the 1960’s. 

In fact, hearing aids were one of the first applications of the transistor. 

This project tries to connect both fields (VoIP and spatial audio) by means of exploiting 

the packet-based characteristic of the IP network and the wide variety of possible applications 

allowed by spatial audio. The goal is to provide the users with entertainment audio, VoIP calls, 

and other services while allowing them to move about and carry out various activities 

(specifically multitasking and conferencing). Security issues are also a major consideration while 

developing these new services; however, this project simply builds upon MIKEY/SRTP and other 

security work already undertaken in other projects. 
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3. Goals 

By enhancing the original “minisip” to provide support for spatialized multistream 

communication we seek to enable a set of new applications. The objectives were to design, 

implement, and evaluate a spatial sound “distributor”, that receives different streams of audio and 

assigns them to a virtual location in space based upon the user’s pre-established preferences or 

specific requests. The output interface is assumed to be a stereo headphone.  

The idea was to design a module to be integrated in “minisip”. This module could be 

used by any application to spatialize sound. This implies for example having an audio application 

playing audio files in one spatial location (making use of two stereo channels)  at the same time 

that another call occupies another location in space. Many different applications exist: multi-

conference [8], push-to-talk [11], videoconferencing, and something that has not been examined 

in this report: the possibility of sharing the spatial audio experience beyond the limits of a single 

“minisip” user (i.e., more than two speaker configurations). 

The other main goal of the project was to support multiple input sampling rates while 

having a single output sampling frequency; thus allowing an application to receive different 

streams with their independent characteristics and play them via hardware, which also has its own 

requirements. In this way the number and characteristics of the applications that could be 

integrated with “minisip” are not tightly restricted, but simply depend on the ability to establish a 

SIP connection. This opens up a new range of applications that can be developed built upon the 

“minisip” technology. 
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4. Progress of the Project 

4.1. Requirements 

Some of the main requirements of the project are related to the environment in which the 

spatial audio is to be implemented. Since the application has to be designed as a module for 

“minisip”, this required the software to be compatible and preferably developed in the same 

programming language. This means that the programming language should be C++, which gives 

the possibility of developing the system both for Linux (the OS used in the lab for design) and 

Windows (the OS installed in the iPAQ handheld devices to be used for user testing). The 

portability of the application is important, since one of the requirements was to develop a user-

friendly application that can compete with Skype and other VoIP clients while providing a 

greater number of features. 

The final implementation of the spatial audio application has to be deployed on and tested 

in a HP iPAQ h5550 PDA. The test bed is a group of students from one of the KTH Masters 

Programs. These students are going to be the first users of the application and they will provide 

feedback about the performance and their personal experiences with this application. However 

this testing is not part of this thesis. 

Since the final implementation of “minisip” should be widely used all the components 

used in the design of the system must be either licensed or license free. In this case, for 

simplicity, this requirement leads to the use of open source programs as much as possible. 

Unfortunately, few open source sound APIs compatible with Windows and Linux have been 

developed, so finding the appropriate tool was also essential.  

It is also crucial that if new libraries have to be installed and added to the project, that 

they don’t interfere with the existing ones; additionally they should provide a basis for new 

applications (i.e., ideally the library will not only be used for this project, but should also be 

usable by other applications). This later requirement is due to the limited resources of the PDA.  

Since interactive audio applications (such as telephony) require low latency, the system 

must work in real-time. This implies that the signal processing cannot be too complex and time 

consuming, as communication delays lead to user annoyance. 

Together with all the above requirements, a final requirement was writing appropriate 

documentation to support further development of the deployed application. The documentation 
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should allow the reader to understand what has been done and why, and also give him or her the 

insight necessary to add additional features to the resulting module. 

4.2. Accomplishments 

Thus far the project has accomplished the following:  

- All the relevant parameters (from now on referred to as cues, since this is the formal 

term used to define the relevant acoustic features of a signal that provide 

information about different aspects such as location, intensity, frequency 

components, etc.) in spatial sound have been studied and their relevance in source 

localization analyzed by means of a web-based test open to public access
5
. The test 

was conducted in order to determine which type of spatial source distribution gave 

the user better resolution of the spatialized environment. The analysis of the results 

leads to the design of a virtual environment for the spatial audio module that 

emphasizes the most important cues and distributes the sources based on user-

experience. Theoretical analysis, test background, and results as well as their 

implications are included later in this report. 

- A number of programming tools have been examined, their behavior analyzed, and 

their features studied relative to how they could be useful for the project. The study 

has been conducted in two different areas: spatial audio APIs and resampling APIs. 

The market for spatial audio products is quite broad, but most of the solutions are 

proprietary. The most suitable API for this thesis is the OpenAL library together 

with its related wrapper for C++ that is called OpenAL++. Both the library and the 

wrapper have been tested and considered for the application, but were finally 

discarded (the reasons for this decision are explained later in this report). In the 

other hand, not many resampling tools could be found, but their performance and 

ease of use helped me a lot. “libsamplerate” was the library finally selected to be 

integrated in the spatial audio application. It provides a set of functions that make it 

possible to work with streaming sound, and also gives the possibility of time 

varying conversions, which may be useful in a changing environment such as the 

wireless environment. 

                                                
5
 The test and some results can be found at  http://usuarios.lycos.es/iggyto/ 
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- A spatial audio module for “minisip” has been implemented. The module gives 

support for five simultaneous streams located in different positions, and it is based 

on a resampling structure that provides the necessary high sampling rate input to 

perform the spatializing operations. 

4.3. Limitations 

Some of the considerations referred to as requirements could also be viewed as 

limitations of the project. The main limitation comes due to the issue of licensed vs. license free 

software and the specific target OSs. These two factors significantly reduced the number of 

design options to be considered; although at the same time they helped define a specific and more 

limited programming environment that helped to focus the effort. 

The most frequently cited limitation in any project is always time. The limited time 

available for the project discouraged the analysis of the effects of spectral cues in spatial audio, 

since the establishment of the models and their implementation is a project itself to which many 

Masters theses and investigations have already been made.  Only limited theoretical results have 

been used in this experiment, although it provided sufficient knowledge to analyze the relevance 

of parameters and how to use the information that spectral analysis makes available. 

The mentioned test for Master Program students has not been undertaken because at the 

end of this project there was not official stable and complete release of “minisip” to be installed 

in their PDAs. The progress of the whole “minisip” development is something to have in 

consideration when looking at individual goals, since most of the projects are dependent on 

others. 

Last but not least, my limited C++ programming experience and the limited time devoted 

to acquire the minimum required skills represented an additional hurdle to achieving the aims of 

this project. Some very useful resources for those who might find themselves in the same 

programming situation can be found in [37] (documentation in Spanish). 
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5. Methodology 

Each of the phases of the project requires an specific methodology depending on whether 

the related work is more theoretically or practically oriented.  

In the case of the spatial audio study both aspects were taken into consideration. The 

process consisted of a bibliographic investigation of the field, followed by the reading and 

comprehension of numerous related articles, papers, books, …. The reading provided the 

necessary background regarding the cues involved in spatializing sound required to develop my 

own spatial audio test in order to check the theoretical results and to experiment with the effects 

of the variation of acoustic cues. 

The test was web-based, using PHP and HTML technologies to develop an interactive 

client-server interface where the users can test their own spatial skills and at the same time 

provide the project with crucial results regarding the perceived spatializing process. All the sound 

sources used were previously processed with MATLAB using Speech Signal Processing (SSP) 

techniques in order to recreate a specific spatialized environment. More information about the 

testing process follows in Part I of this report. 

For the tool analysis and selection, an initial thorough search of available tools and 

components was made. Then, with all the options in hand, the features of each alternative were 

compared, and only those whose interest for the project was easily demonstrated were  considered 

further. The use of these programs together with an analysis of their theoretical and programming 

basis was required since the results obtained from one product might be appropriate, but the 

underlying technologies might not suit the requirements of the project. The final selection was 

made based on simplicity and performance criteria. For this reason no library was used for the 

spatial audio part, but the specific necessary code was written instead. 

The implementation has been divided in two phases: an approach in C to understand the 

resampling and spatializing routines, and the final integration of C++ code into “minisip”. The 

first phase consisted of a step-by-step implementation of the spatializing procedure in C, starting 

by reading sound samples in blocks, and ending with a spatialized distribution of resampled 

audio. Once the correct behavior was confirmed, the code was integrated into “minisip” by 

introducing a new class and modifying two of the existing classes. 
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PART I: SPATIAL AUDIO 

A theoretical overview of  

spatially located sound
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6. Acoustics and Psychophysics 

Sound is a pressure wave, and in the case of human speech the vibration of the vocal 

cords produces the wave. A sound wave travels through the air at approximately 340 m/s 

depending on temperature and humidity. The most important physical properties of a sound 

waveform are frequency, intensity, and complexity. These physical properties are directly related 

to their perceptual analogues: pitch, loudness, and timbre respectively. 

Frequency is probably the most important factor in signal speech processing [7]. Human 

ears are sensitive to sounds with energy in the range of frequencies from 20 Hz to 22 kHz. 

Humans are most sensitive to frequencies near 2 kHz and less sensitive in upper and lower 

ranges. From frequency analysis of speech the majority of the relevant features can be extracted 

and then analyzed to understand the underlying behavior of the human speech production system. 

If one understands this system, then the use of synthesized parameters allows simulating human 

speech and modifying it to an extent which human beings are unable to reach by means of 

conventional speaking.  

But acoustics does not simply entail analysis of the physical sound waveform. The 

listener has an enormous influence on how the emitted sound is perceived. Since every human 

being is different and their way of thinking is influenced by so many diverse factors, a universal 

generalization of the speech model is impossible, and so when simulating speech the goal is to 

achieve a general result that satisfies the majority of the users. It is also very application-

dependent, so different features of speech and sound are emphasized depending on the 

application, the user, and their environment. 

Another relevant acoustic factor to consider regarding spatial audio is masking effects. 

When a listener is presented with various speech signals at the same time, these signals can 

interact in various ways. When a signal that is perfectly perceived in isolation is inaudible in 

presence of the other signals a phenomenon called masking occurs [32][13]. Noise masking 

effects are the most common and undesired effects. 
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7. Binaural Processing 

All human hearing processes that are made affordable or are enhanced by the use of two 

ears rather than one are referred as binaural processing. These binaural functions support the 

human ability to localize sound sources in three dimensions, identify speech in noisy 

environments, performing loudness estimations, and headphone-based tasks (the later are the ones 

of specific interest in this project). The term interaural is sometimes used instead of binaural. 

The parameters and important features related to binaural processing are called binaural 

cues. The term cue can be defined as “a component of an incoming signal that can be used in the 

identification and analysis of a perceptual feature”
6
.  

7.1. Binaural Cues 

The most significant cues for source location depend on the differences appreciated in the 

signals arriving to the left and right ears. The simplicity of binaural cues resides in the fact that 

their analysis is done by comparing the signals arriving at each ear, then extracting from this 

comparison the attributes that arise from source position. There are two central binaural cues: 

Interaural Time Differences (ITDs) and Interaural Intensity Differences (IIDs). These two cues 

provide only left and right separation of sound. 

Depending on the angle formed by the medial plane of the body and a sound source 

location, one ear might receive the sound earlier than the other. This time difference (ITD) is 

considered to be useful up to a frequency where the wavelength is approximately twice the 

distance between the two ears. Beyond that frequency no difference is appreciated in the sounds 

arriving to the left and the right ear. Some important features of ITDs are: 

- they vary with both azimuth and elevation (see figure 1). 

- they grow with the angle of the source to the medial plane with a range of values 

from 0 to 600-800µs (see figure 2). 

- humans are able to detect ITDs from 10-50 µs depending on the listener. This 

corresponds to a difference in angle of 1-5 degrees. But the sensitivity to changes in 

ITD varies depending on the location of the source. As ITD increases (i.e., the 

source moves away from the medial plane) sensitivity deteriorates. 
 

                                                
6
 Source: http://www.ling.mq.edu.au/units/sph307/terminology/index.html 
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Figure 1 – A) Dependence of the ITD on azimuth; B) Dependence of the ITD on elevation 

 

 IIDs are based on the fact that the sound reaching the closest ear is louder that the one 

reaching the furthest ear. The intensity of the sound drops with the square of the distance (formula 

1). However, when taking into account the absorption of sound in the air, it has to be noted that 

higher frequencies decay faster (i.e., I ∝ 1/d
3
). 

         I =
W

4πd2
                                                                (1) 

where W is the sound power [W], 

           d is the distance to source-ear [m]. 

 

The difference in relative intensity of sound (IID) arriving to the two ears varies with the 

location of the sound; it increases with frequency and the angle between the source and the 

medial plane. 

A third cue called Interaural Loudness Difference (ILD) appears when the source is 

within reach of the listener. ILDs are extra large IIDs at all frequencies. These ILDs help to 

express information about the relative distance and direction of the source from the listener [23]. 

To determine the exact location of a sound, when ITDs and IIDs provide ambiguous 

information, Head Related Transfer Functions (HRTFs) are used. HTRFs will be explained in 

section 8.2. 

A) B) 
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Figure 2 - Computed values of ITD depending on source’s azimuth being 0º directly ahead. 

The curve is an interpolation of theoretically calculated values. 

 

7.1.1. Head-shadow Effect 

Both ITDs and IIDs are affected by the head shadow effect. This effect is caused by the 

reflection and diffraction of signals by the head, causing less energy to arrive to the far side of the 

head. The head acts as a screen on high frequencies that have small wavelengths compared to the 

size of the head (λ<<r) as shown in figure 3a. Low frequencies (λ>>r) are simply diffracted 

(figure 3b). 

 

 

 

 

 

Figure 3 – A) High frequencies are shadowed; B) Low frequencies are diffracted 

B) A) 
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7.2. Lateralization and Localization 

Stereo sound presented through headphones gives the impression of coming from inside 

the head and has a definite spatial definition. The sound is distributed in the virtual space defined 

by the line that goes from one ear to the other. Perception of sounds within the head is defined as 

internalization of sound and their location along the imaginary line between the ears is called 

lateralization [16]. In contrast, when a sound is presented to the listener using loudspeakers the 

sound is considered to be externalized, and it is located in a process called localization. 

In this project a mixture between lateralization and localization is used in the test part. 

Since the listener generally has experience about this environment and is surrounded by different 

sounds that can be located by visual confirmation, the process followed to point out source 

locations when receiving sound through headphones is based on an “externalization of the 

internalized sounds”. This is, the listener receives the sound through the headphones, and 

internalizes it in one of the positions in the virtual line between the ears. Then, using comparison 

with location-known sounds and other a priori knowledge, the listener assigns the internal sound 

to an external location in the range of positions in front of him.  

Since the internalized sound has only right and left information the listener could as well 

define the symmetrical position behind them and it would provide the same information. To 

obtain a real location based in the exact simulation of the sound perceived by the listener in a free 

field environment the use of HTRFs is needed. 

7.2.1. Horizontal Plane 

Localization of sounds in the horizontal plane is based on IID and ITD analysis. A source 

directly in front of the listener produces almost the same waveforms in both ears (with the same 

IID and ITD), but when the source moves away from the midline the sound will arrive sooner and 

be louder in the closer ear than in the far one. 

One of the concepts that must be taken into account when discussing localization is 

localization blur. This term refers to the difference existing between the auditory space and the 

real space where the sound sources exist. A point source produces a sound that is spread in space 

thus producing a blur in the identification process. In [1], localization blur is defined as “the 

amount of displacement of the position of the sound source that is recognized by 50% of 

experimental subjects as a change in the position of the auditory event”. 
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For spatial hearing analysis in the horizontal plane the minimum localization blur occurs 

in the forward direction while it increases when moving left or right. The maximum is found in 

the direction orthogonal to the one the listener is facing, this is 90º from the medial plane. Behind 

the user the blur decreases, but it has higher values than in the front (see figure 4). 

 

 

 

 

 

 

 

Figure 4 – Localization Blur in the Horizontal Plane (after [1]) 

 
As stated in [6], ITD and IID cues provide the main contribution to horizontal-plane 

localization. ITD is a crucial cue for localization of low frequencies while it is almost useless for 

high frequency ones.  The IID frequency-dependent head shadow effect makes it useful in high 

frequencies, but is useless with low frequency stimulus.  

Since speech is broadband (200 Hz - 8 kHz), the various frequency components of a 

speech signal in free field conditions are differently affected by ITDs and IIDs, and therefore 

differently perceived by the listener. During the experimental phase of this report broadband 

signals have been used in order to obtain a better understanding of the effect of binaural cues, 

although the real bandwidth of speech signals in telephony differs from free field conditions. 

Traditional telephone speech signals have a frequency range from 250 Hz to 3.5 kHz, 

which ensures intelligible communication, but reduces the effects of the IIDs. The wide band 

suppression in telephony does not cause a big problem for the listener, since he/she actually hears 

the overtone frequencies of the voice in the range of 250-3500 Hz. The human brain extrapolates 

the information lost in the upper frequency band, enabling us to understand conversations and to 

identify speakers. 

0º ±3,5º 

±10º 

±5,5º 

±10º 
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7.2.2. Vertical Plane 

Spatial localization is not as good in the vertical plane as it is in the horizontal plane. As 

was mentioned before the theoretical minimum audible angle (MAA) in the horizontal plane is 

about 1º of arc, although the results in figure 4 show that the minimum is actually about 3.5º of 

arc in the best situation. In the case of the vertical plane this MAA is around 9º of arc [1]. 

In contrast with horizontal-plane localization, vertical plane localization is not based on 

ITD nor IID cues, but on pinna
7
-based spectral cues, reflection from the torso, and the interaural 

pinna disparity cue. 

Similar results as the ones shown for the horizontal plane are shown for the vertical plane 

in figure 5. The main differences observed between the two planes are the higher blur occurring 

in the vertical plane, and also the big differences in front and back localization accuracy. As we 

see the vertical plane location in front of the user is much more accurate than behind the user. 

This is the effect of the already mentioned pinna-based spectral cues. The appearance of these 

cues explains the main importance of the shape of the ear; since the incoming path of the ear is 

orientated toward the front, better results are obtained compared to the sound waves that come 

from the back and must past around the ear to reach the auditory channel. 

 

 

 

 

 

 

 

Figure 5 – Localization Blur in the Vertical Plane (after [1] ) 

 

                                                

7
 Pinna is the visible outer part of the ear in charge of sound collection. 
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7.3. Front-back and up-down confusions 

Positioning of sound sources is altered by two main factors. The first is the just 

mentioned localization blur effect. The other, observed in almost every localization study, is the 

front-back and up-down confusion. The first refers to forward sources received in the rear 

hemisphere and the second to sources located above the horizontal plane of sound detection and 

that are located beyond it. 

These confusions are the result of ambiguities caused by the spherical shape of the head 

and the role of ITDs and IIDs in localization. For example, since ITDs from front and back 

locations are symmetric, they result in the same perception is we base our analysis only on ITDs. 

A given interaural difference produces a range of possible sound source locations describing a 

cone. This phenomenon has been called the “confusion cone”.  

7.4. Reverberation 

The acoustic energy that arrives to the listener through indirect paths is referred to as 

reverberation. Reverberation affects localization in two ways: it degrades the perception of source 

direction and it enhances the perception of sound distance. Reverberation also provides 

information about the environment in which the listening experience occurs. It gives for example 

information about the size and spatial distribution of elements in a room. 

Although adding reverberation to a sound simulation provides information about the 

relative distance it can also decrease directional perception accuracy, interfere with the speech 

reception, and degrade the ability to attend to more than one source. Thus, reverberation was not 

considered further for the testing environment designed for this project. 

7.5. Benefits of Binaural Hearing 

As discussed before the major benefit extracted from binaural hearing is the ability to 

determine the location of sound sources. But this is not the only advantage we encounter; binaural 

hearing is of great aid when selectively attending to sources coming from different locations. As 

explained in [2], this is of great importance when a group of sources are competing in the same 

environment. Rather than just separating sources, spatial information can be used to disregard 

signals coming from a direction different from the direction of interest. 

A specific benefit from binaural hearing applied to headphone listening is the increase in 
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the Masking Level Difference (MLD). MLD can be defined as the difference in intensity for the 

detection of a signal when ITDs and IIDs are present compared to when these cues are not 

considered. 

7.6. Supernormal Auditory Localization 

A way of obtaining better results when testing spatial localization is to exaggerate the 

design parameters. This affects for example the head and ear size cues that are given to the 

listener. The aim is to provide the user with a better resolution than in the real world. This 

synthetic sound can be of great help when managing a large number of sources since a greater 

difference can be appreciated compared to the real world, where a complex environment leads to 

confusion and difficulty in achieving spatial localization. 

Since the purpose of the tests performed in this project was to understand the binaural 

cues and their effects in spatial audio in a real environment, supernormal localization has not been 

used, thus putting the user in the most real environment. 
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8. Spatial Simulation 

Spatial simulation can be done by using either headphones or loudspeakers. Headphones 

allow better control of the interaural cues since the designer has complete control of the two 

independent signals arriving to the ears. 

8.1. Headphone Simulation 

The simplest way of simulating sound through headphones is delivering the same signal 

to both ears (diotic displays). This kind of experiment provides no spatial information; the sources 

are perceived internally in the midline between the two ears and cannot be externalized. 

Dichotic displays make use of ITDs and IIDs to provide spatial information. The result 

are signals that can be internally located in the imaginary line inside the head that connects both 

ears, but that can then be externalized by the user as explained in section 7.2. This is not a natural 

process though. The act of varying ITDs and IIDs causes the sounds to move from right to left 

inside the listeners’ heads, and using the combination of both information sources he/she creates 

an external image of the sound. This is the kind of localization process used in this project. If a 

more realistic sound is needed then signal speech processing techniques can be used to provide 

most of the spatial cues available in the real world. The most widely used technique is Head-

Related Transfer Functions. 

8.2. Head-Related Transfer Functions 

The most effective way of recreating spatial audio in the listeners’ ears is to reproduce the 

exact waveform that would arrive to them from a source in the desired location. This is done by 

measuring the transfer functions that show how the waveform is affected from when it is 

produced until it arrives at the ears of the listener. Then, for every position that is simulated, the 

transfer function that has been previously calculated is used to filter the known source signal. 

The filters that define this transformation from the source to the listener are called Head-

Related Transfer Functions. They give information on how to simulate directions, but do not 

include for example reverberation parameters. 

Although theoretically HRTFs provide signals that are completely equivalent to the ones 

provided by natural hearing, there are some limitations to HRTF processing that explain some of 

the reasons why they have not been used in this project. HRTF processing is a difficult, time 
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consuming process, and it requires huge amounts of storage space. Apart from that, HRTF are 

typically calculated only for a few locations and then interpolated and scaled to obtain the whole 

set of desired positions. Moreover, HRTFs are individual parameters, because the individual 

differences are very important in source localization; hence the use of non-individualized HRTFs 

reduces the accuracy and externalization of auditory images. 

Together with the theoretical study, during October 2004 I maintained email 

correspondence with Professor Barbara G. Shinn-Cunningham, from Boston University. She is an 

expertise in the spatial audio field, and specially in HTRF processing. Her suggestions finally 

discouraged me from using HRTFs in my project. 

“ […] I think that there are many, many benefits that you can get from simply 

adding ITD and IID (interaural time and intensity difference, 

respectively) cues to the signals. The extra benefit you get from HRTFs 

is most important when there is high-frequency information, above 5 

kHz. For the kind of application you are investigating, using HRTFs may 

not provide much benefit. Moreover, the benefit of using HRTFs (rather 

than simply using ITD and IID cues) depends on using individualized 

HRTFs for each listener. With "generic" HRTFs and a low-pass stimulus 

like you are probably working with, the HRTFs may not give much benefit 

over simple interaural difference cues. […] ” 

B.G. Shinn-Cunningham 

15
th
 October 2004 
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9. Test 

During October 2004 a test bed was created in order to observe the phenomena related to 

binaural processing, in particular the effects of ITD and IID changes in the perception of sound. 

All the experiments entail data only in the horizontal plane. The goal of these tests was to 

determine which of the parameters was more relevant in order to design the appropriate virtual 

environment for the final application. 

The tests were web-based in order to make them available to as many people as possible. 

The users had to enter their names and the final results were stored so a personal record of the 

results is made. 

The different cue-based virtual environments designed for the test are shown in figure 6. 

The first two grids display the same number of different source positions so a fair comparison can 

be made. The “Six Position Grid” (SPG) enhances the IID parameter while the “Long Table 

Grid” (LTG) gives more importance to ITD.  
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Figure 6 – Different Test Environments; shadowed position denotes the listener 
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The “Fifteen Position Grid” (FPG) is an experiment in order to determine the ability of 

the human hearing system to distinguish among very close positions. This test was done to 

crosscheck the theoretical results on the Minimum Audible Angle (MMA) shown in figure 4. 

To conclude, the “Square Table Grid” (STG) mixes both the ITD and IID cues and 

provides an environment where positions in the same side of the virtual table provide very similar 

cues. This test provides results about the acuity of small changes in binaural cues. 

 

9.1. Method 

9.1.1. Subjects 

The tests were public so any one that had access to the web page could experiment with 

their own spatial audio experience and provide useful data. None of the users had previous 

experience in psychoacoustic experiments. In order to provide accurate results only the subjects 

that completed the tests more than three times where considered. Specific subjects were asked to 

cooperate in order to obtain, apart from a general view, specific individual-based results. All the 

subjects were adults of ages 18-50. 

9.1.2. Stimuli 

The subjects were presented with a WAVE format stereo speech audio sample. The 

sound that was presented to the listener was a sample sentence spoken in English. The original 

audio file was a monaural (mono) signal, so in order to be converted to stereo and have its ITDs 

and IIDs modified, MATLAB’s speech signal processing was used. The process followed to 

create the spatialized stimuli is shown in figure 7. 

In this example the sound is simulated to be coming from the left. The mono file is split 

into two channels to enable control of both the ITDs and IIDs. As the sound comes from the left, 

the sound received in the right channel will come later and with less energy than the one on the 

left. To simulate this, the samples from the right ear are shifted and the difference in level is 

achieved by scaling the samples.  

The scaling is done following acoustics; this is, directly scaling by the distance to the 

source. Since the designed environments have virtual locations expressed in meters, the division 

is directly done using these values. 
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Figure 7 – Stimuli creation process 

 

To obtain the delay values in samples the process is: first, the distances to both right and 

left ear are computed. Then, the difference in propagation time is obtained (dividing each distance 

by 340 m/s and then subtracting the values). With the difference in time, the last step is to 

compute the difference in units of sample time; this number of samples will be then used to shift 

one of the channels in order to recreate the ITDs. The number of samples to shift by is determined 

by multiplying the difference in time by the sampling frequency. This introduces one of the main 
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concerns of the project: resampling. 

The first sound signals I used for the test were signals sampled with an 8 kHz sampling 

rate. All the steps of the spatializing process were followed, but when the sound was delivered to 

the headphones no significant differences among sounds were observed. This was due to the 

sampling rate used. If the sampling rate is not high enough, then the temporal resolution of the 

samples does not provide enough information to spatialize sound. The subsequent stimuli creation 

was all done with a 44.1 kHz sampling rate, and in this case much better results were achieved. 

This result means that we need to have high sampling rate signals arriving to the headphones.  

Since the CODECs typically used with “minisip” uses an 8 kHz sampling rate, the 

resampling of these signals is of major importance. Moreover, the actual implementation of 

“minisip” for the HP iPAQ h5550 already requires the input signals to be sampled at 16 kHz. 

“minisip” already implements a simple resampling routine to upsample the incoming samples to 

16 kHz. The use of a general method that can resample any incoming sampled signal to the 

desired output sampling rate was used in this project. Alternatives to the resampling process are 

left for Part II of this report where the tools for the application development are described. 

9.1.3. Test Procedure 

The test procedure is analogous for all the four grids, so only one case will be presented 

in detail and the other ones can be inferred from this. For each grid, the user can first practice by 

listening to learn the possible sound locations. When the user feels that has an understanding of 

the different spatial positions, the test starts. 

During the test, the user is presented with five different and random positions from the 

grid that is being tested. Each sound can be listened to as many times as required by the user, but 

must be followed by a decision. The user is told whether their decision was right or wrong. When 

the five trials finish the user is given a final result and this result is stored. 

Via the different grids the user can experiment with different parameters, and although 

the user is not aware of the exact changes in the signals, their reactions will show how they are 

interpreting the binaural cues. 
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9.2. Results 

All the results from the test were stored internally in the same server where the test files 

were hosted. The raw file contained useful data together with other results that could not been 

considered further. These extraneous results were generated for example when users navigated 

back and forward in the test using the navigator back and forward functions instead of the 

appropriate functions within the webpage. The final results after the extraction of extraneous 

results and averaging are shown in Table 3. 

Table 3 – Results of the Test in Number of Correct Choices (1-5) 

GRID 1 (SPG)  GRID 2 (LTG)  GRID 3 (FPG) 

1. Ine 4.60  1. L.Lo 4.00  1. L.Lo 4.75 

2. L.Lo 4.25  2. Ine 3.60  2. Ine 4.60 

3. Ann 4.18  3. Inm 2.50  3. Ann 4.40 

4. Ing 4.00  4. Mar 2.33  4. Mar 3.67 

5. Mar 4.00  5. Jes 2.00  5. Chi 3.50 

6. Flo 4.00  6. Ann 1.67  6. Inm 3.00 

7. Car 3.67  7. Ale 1.50  7. Mim 2.83 

8. Ale 3.67  8. Uge 1.33  8. Car 2.67 

9. Chi 3.50  9. Flo 1.33  9. Flo 2.67 

10. Enr 3.43  10. Chi 1.33  10. Ale 2.67 

           

GRID 4 (STG)  INDIVIDUAL AVERAGES  GRID AVERAGES 

1. L.Lo 4.50  1. L.Lo 4.30  

2. Ann 3.60  2. Ine 4.00  
SPG 3.569 (71.38%) 

3. Ine 3.60  3. Ann 3.10  

4. Mar 3.17  4. Mar 3.10  
LTG 1.937 (38.74%) 

5. Ale 2.50  5. Ale 2.37  

6. Enr 2.50  6. Chi 2.27  
FPG 3.278 (65.56%) 

7. Flo 2.00  7. Inm 2.13  

8. Jos 1.83  8. Flo 2.13  
STG 2.670 (53.4%) 

9. Chi 1.83  9. Enr 2.09     

10. Inm 1.17         

 
The results can be analyzed from three different points of view. First the individual user 

results for each grid were studied. Through this analysis one can see that the SPG provides better 

results, since all of the users average more than 50% correct choices. FPG provides similar 

results, but with worse average results but higher maximum value. The explanation is simple: 

SPG is the most played, and repetition is a major factor in this kind of tests; thus most of the users 

achieved a degree of accuracy quite good. Moreover, the majority of the users did the practice for 

the SPG but skipped the practice of the other three. Subjects with the same level of practice 

obtained very close results in grids SPG and FPG.  
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When talking about the FPG something else becomes clear: the individual ability together 

with the randomness of the process makes the results highly variable. The average results are 

spread over a wide range of values that impedes the extraction of any clear conclusion, besides 

that a high number of sound sources leads to a high degree of confusion and does not provide a 

good spatial audio experience. STG was the one with the least number of participants and so the 

variance of the results must not be taken too negatively. 

From a different perspective, one can analyze the results based on the global user results. 

Three subjects (Ine, L.Lo, and Ann) were personally asked to perform the tests in a more 

thorough way, by practicing and reporting their comments on the tests. The fact that these three 

subjects appear in the first positions of all the grids and therefore in the first positions of the total 

results reinforces the theory that practice, repetition, and a priori knowledge of the system provide 

a significant advantage when making choices. Some of the relevant facts that these three subjects 

reported were: the importance of the proper functioning of the headphones, the creation of their 

own way of recognizing the sounds once they learned how to make correct choices, the great 

difficulty of distinguishing between close sounds in grid two, and the fact that practicing at least 

once to determine a reference position was of major importance. 

Finally, the grid average results were compared. This comparison is only valid among the 

SPG, the LTG, and the STG, since the FPG utilizes different parameters. The results show that 

grids SPG and LTG provide very similar and good results, thus this kind of spatial scheme should 

be the one used in the final application. 
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10. Conclusions About Spatial Audio 

ITDs and IIDs give very useful information about how we localize sounds. The most 

important result is that in well-defined environments with marked ITDs or IIDs, the results 

obtained are very satisfactory. The “Six Position Grid” and the “Long Table Grid” display an 

average of correct choices higher than 50%. Both of these environments could be used for the 

final application. Considering that the conditions of the test presume no previous knowledge of 

the position of the incoming sound, the results obtained imply that a user-guided process of 

locating their incoming phone calls in space will provide a very good spatial experience. 

In order to enhance the results, Supernatural Auditory Localization (section 7.2) could be 

used, so that the cues could be varied in an unnatural way that provides better performance.  

The “Square Table Grid” has worse results in general; showing that if the cues are not 

very defined the user easily gets confused, since the externalization process is not precise and the 

localized positions fall into the blur area. 

The other major result extracted from the test is based on the “Fifteen Position Grid”. The 

analysis of the results from this grid show that users have a lot of difficulty in choosing the right 

source. Most of the users are able to determine whether the sound comes from the right or the left, 

but when the resolution problem arises the decision becomes really hard. Many of the users 

achieved no correct choices, showing the difficulty of making the correct choice in very busy 

environments. A virtual environment with such a large number of positions is therefore not 

recommended for the design of the final application. 
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11. Future Work on Spatial Audio 

This first part of the report gave a theoretical introduction to spatial sound. The 

experiments are based on simple tests based on two parameters (ITD and IID). In order to obtain 

more accurate results other parameters such as reverberation, echo, supernormal localization, and 

HRTFs should be introduced. Including these new variables would lead to a more complex spatial 

environment, giving a better understanding of the location process, but not necessarily ensuring 

better results, since the increasing complexity of the environment leads to an increasing difficulty 

in the localization process. Therefore, the individual contribution of each parameter should be 

studied to determine which of them could contribute to a better spatial audio system than that 

provided in this thesis. 
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PART II: PROGRAMMING TOOLS 

Analysis and selection of the tools and methods 

involved in realizing a spatial audio module
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12. Programming Language 

The entire “minisip” application has been developed in C++ following a modular 

structure where every feature of the program is represented by its own folder containing the 

header files as well as the code itself. The majority of the libraries used have been adapted for the 

application and placed in their own folders, with their particular dependencies and compiling 

instructions. Some of the libraries used are not directly included in the “minisip” files and have to 

be downloaded from other sources. 

Since this project was to be compatible with all the existing code and was to be integrated 

into the “minisip” application, the code developed for the audio localization process is C++ code 

in its own folder, containing its own header files with the methods for the created classes. Since 

there is no need for a complex structure of classes, only one class is defined, containing all the 

methods that are necessary for the creation of spatial output. There are no new libraries needed, 

but some of the existing files need to be compiled against the “libsamplerate” library [3], thus this 

becomes a requirement for users that want to enable the spatial audio features in their installation 

of the program. 

In contrast, files developed for resampling tasks were merged into the existing classes, in 

particular in SoundSource (found under the SoundIO files in the source code of “minisip” [5]). 

This class defines a method for audio resampling, so that any sound application that creates a 

SoundSource instance of the class is then able to perform resampling operations on its streaming 

data. 

For simplicity of understanding, and since the majority of the files developed for the test 

in the first part of the thesis were written in C, the files written to test the functioning of the 

locating process were also first written in C before being translated into C++ for their inclusion in 

“minisip”. This allows reusing some of the material developed in the first part of the project as 

well as quickly gaining a better understanding of the sampling process, since its related library is 

written in C, and had a series of examples in this language. 
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13. Spatial Sound Tools 

The first intention was to use one of the existing sound applications capable of managing 

3D sound (a reference to them can be found on page 6). One of the requirements for the selection 

of the API was that it had to be possible to use it without any charge, and if necessary that it 

should also be possible to modify it to better suit the purposes of the thesis. These two major 

criteria lead to the analysis of open source projects, which can be both used freely and extended 

given the access to all their source files and often their programmers. 

Taking a closer look at the open source options I found that OpenAL [41] was the most 

appropriate alternative to proprietary solutions. OpenAL is a library that provides 3D sound after 

a short parameter initialization and with simple function calls. Moreover, a wrapper called 

OpenAL++ [42] simplifies the task, providing C++ compliance and presenting the API in a 

transparent way to the user. The application only has to link sound sources (file, stream, etc.) to a 

position in space specified by Cartesian coordinates. 

The drawback of using OpenAL and OpenAL++ is the large number of compiling 

dependencies with other libraries, which increases the complexity of the already complex process 

of installing “minisip”.  In addition, OpenAL tests run in the lab show no better results than those 

obtained with my own code, but instead they increase the processor usage due to their complex 

internal operations. The tests also showed that the location process worked well with sound files, 

but the support for streaming sound was not so reliable. 

For these reasons, the decision was to create and use my own code, simplifying to the 

maximum extent the operations, and aiming for fast processing with little processor consumption. 

One of the methods to obtain these results is the substitution of software emulated fixed-point 

multiplications by lookup tables (indirect memory references).  

13.1. Lookup vs. Fixed-Point Arithmetic 

A lookup process consists of creating a lookup table containing all the possible results of 

an operation that is to be constantly or frequently repeated, and using this table to simply lookup 

the result of that operation instead of explicitly doing it. Instead of having to repeat the whole 

computation each time the function is called, the result is obtained by looking in the appropriate 

place in the lookup table. To illustrate this technique I will introduce as an example the process 

followed to locate a sound at a given position. 
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As explained in Part I of this report, spatial sound depends on two basic cues: delay and 

intensity. Intensity is the parameter that will be analyzed now to demonstrate how the use of 

lookup tables works and the benefits it introduces. When adjusting the volume level of each 

sound channel of the incoming signal, an output value is determined depending on the position 

and the incoming samples. A problem arises due to type differences. “minisip” uses short int
8
 

variables to represent the sent and received sound samples. These samples have to be multiplied 

by a floating-point value (float) that is calculated depending on the position. The resulting line of 

code would look like: 

 sample_out = (short int) ( (float) sample_in * scaling_factor ) (code sample I) 

The input sample must be first type-cast to match the type of the scaling factor, and the 

result obtained must be again type-cast to obtain the short int type we need. For the current block 

size of samples that “minisip” processes, this operation would have to be repeated 160 times 

every 20 ms, consuming resources in a non-efficient way. 

The proposed alternative is to create a lookup table. Since both sample_out and 

sample_in have a fixed range determined by their type, the results of the multiplications are 

limited to this range. Moreover, in a five-position configuration such as the one shown in figure 6 

(p. 26), only two of the positions need to have volume scaling (for simplicity, the positions 

located 90º from the user have no sound in the farther ear, i.e., for a sound 90º on the right, no 

sound is produced in the left ear). Since they are symmetrical positions, only the two scaling 

factors from one of the positions need to be considered. 

Let us take only one of the channels of one of these positions; then all the possible values 

of the output will be the result of multiplying all the possible values of the input by the scaling 

factor and then converting the result to a short int  so it matches the data type of the sound 

samples.  

The code to create this lookup table (code sample II) is very similar to the one shown in 

code sample I, but a slight detail must be noted. Since the index of the loop is also the index of 

the lookup table rows, and this cannot be a negative number, we have to make a correction in the 

multiplication in order to convert to the appropriate range of numbers. 

                                                
8
 Short int = [-32768, 32767] 
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for (index=0; index<65536;index++) { 

lookuptable[index] = (short int) ( (float) (index - 32768) * scaling_factor ) ; 

}  (code sample II) 

 

The result of the lookup table can be seen in Table 4. The range of the output table 

corresponds to the range of the short int variables multiplied by the scaling factor and rounded to 

an integer value. 

Table 4 – Lookup table creation (using code sample II); scaling factor = 0.7 

INDEX  
INPUT  

(index-32768) 
 

MULTIPLICATION 
(factor = 0.7) 

 LOOKUPTABLE[INDEX] 

0 � - 32768 � - 22937.6 � - 22938 

1 � - 32767 � - 22936.9 � - 22937 

2 � - 32766 � - 22936.2 � - 22937 

3 � - 32765 � - 22935.5 � - 22936 

… … … … … … … 

32768 � 0 � 0 � 0 

… … … … … … … 

65534 � 32766 � 22936.2 � 22936 

65535 � 32767 � 22936.9 � 22936 

 
For every different factor we have a lookup table containing 65536 short int (16 bits) 

samples; thus each lookup table represents a use of 0.125 MB of memory. One simple structure to 

store all the possible output values is to have two matrices, one for the right channel and the other 

for the left channel. In our example we would have two matrices of five columns (the positions) 

and 65536 rows (the possible values) each, consuming a total of 1.25 MB in memory. In order to 

make the lookup processes efficient, there are different alternatives for the creation of the lookup 

tables.  

The first one is to initialize the lookup tables when “minisip” is started. Since there is no 

knowledge of the future number of users, the five tables for each channel must be created, using a 

large amount of memory. The amount of data stored is independent of the number of users 

connected, thus inefficient. The positive thing is that the process is done before the user starts to 

talk; consequently no operations must be done when the user starts a new conversation; the 
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lookup process can be directly started. Moreover, all the users share the same matrices containing 

the data, thus only one lookup table for each position is created. The total amount of data is the 

already mentioned 1.25 MB. 

A different alternative would be to assign each user their lookup tables depending on the 

position they are assigned as they establish a new call. In this way for every user we have 0.25 

MB of memory space needed, 0.125 MB for each channel, and the use of memory is more 

efficient. However, when more than one user has the same position there would be duplicity of 

data. 

A third possibility arises taking the positive part of the two already proposed alternatives. 

The process consists in creating lookup tables for every position that is being used. Whenever a 

user establishes a conversation and is assigned a position, the lookup tables for that position are 

created. When more than one user is in the same position, they would utilize the same block of 

data, consequently using memory in a more efficient way. Furthermore, only the memory of the 

currently used positions is occupied, hence a better memory allocation. Special treatment should 

be given to those positions having default scaling factors (zero and one); using this information in 

a smart way the amount of memory used can be greatly reduced. 

Now that the process of creation of the lookup tables has been explained, I will introduce 

the lookup process itself. We now have samples coming in to our system, each sample being a 

short int. Code sample I showed the way the samples should be processed in each channel in 

order to obtain the desired output. This expression is replaced in the lookup process by the 

following piece of code: 

 sample_out = lookuptable [ sample_in + 32768 ] (code sample III) 

Notice again that the index of the lookuptable has to be offset in order to ensure a valid 

index. The results of the lookup process can be seen in Table 5.  

This process has to be done for each channel; as we will see further in this report the way 

this conversion is done depends on the number of input channels. This means that if we have a 

stereo input we could have different input samples to the lookuptables, while if we have a mono 

input, the same input sample would feed the lookuptables for the right and left channel. 

In any case the payoff from using lookuptables is high because far more than 65 K 

samples will be processed. This is the number of computations needed to create each of the 
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lookuptables for each channel and position. Considering the 8 kHz sampling rate earlier, every 20 

ms we must process 160 input samples. Thus is around 5 seconds we will have to process more 

than 65K samples, thus for calls that last more than 5 seconds we would have to do more than 65 

K float to short int conversions and multiples; since few calls last less than 5 seconds this method 

pays off. 

 Table 5 – Lookup process example (using code sample III); scaling factor = 0.7 

SAMPLE_IN  
INDEX 

(sample_in + 32768) 
 

SAMPLE_OUT 
( lookuptable [ index ] ) 

- 32768 � 0 � - 22938 

- 32767 � 1 � - 22937 

- 32766 � 2 � - 22937 

- 32765 � 3 � - 22936 

… … … … … 

0 � 32768 � 0 

… … … … … 

32766 � 65534 � 22936 

32767 � 65535 � 22936 

 

This section of the report has illustrated how the use of lookup i.e., indirect memory 

references can help reduce the processor consumption especially when using software emulated 

floating-point multiplications. Many other applications for this technique can be found, all of 

them try to lower the processor consumption. A good example can be found in the next section of 

the report where resampling is considered. The basic function used by the resampling module has 

an array of float data as input parameter, and as we have already seen “minisip” works with short 

int sound samples. This makes it necessary to do a type conversion. This could be done by type-

casting each input sample, or as it has just been presented, by creating a table of floats where 

every element of the array is a float within the short int range, and then using this lookuptable 

when required. The process would look like: 

1. Creation of the lookup table ( float lookuptable[65536] ): 

         for (i=0; i<65536;i++) { lookuptable[i] = (float) (i – 32768) ; } 

2. Lookup process: 

         float_input = lookuptable [short_int_input + 32768]; 
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14. Resampling tools 

Resampling is not a requirement for spatial audio, but it proves to be an interesting 

feature to be combined with it. Resampling was introduced in this project due to the constraint 

introduced by the hardware CODEC of the target HP iPAQ h5550. Since this CODEC requires a 

single sampling rate for all the sound data that is sent to it, if we want to have the possibility of 

simultaneously using different CODECs with different sampling rates, and to have multitasking 

of our “minisip” without having to stop one call to start a new one using a different sampling rate, 

resampling of signals to a common rate that is accepted by the hardware CODEC is essential. 

More discussion of the reasons that lead to the introduction of resampling in the project, 

the way that this is performed, and the results that have been obtained will be shown in the next 

section of this report. Here I will introduce the resampling tools that have been examined, and 

explain in detail the one that has been selected for the spatial audio module. 

There are several libraries and resampling products available, but as stated from the 

beginning the aim of this project was to find open source solutions. Taking a look at these we find 

“resample” [24], which is considered to be one of the first high quality sample rate converters 

library available as source code. A lot of converters have been developed taking “resample” as a 

base, the one presented in [10] probably is one of the best examples. “resample” contains free 

sampling-rate conversion and filter design utilities written in C, and it is based on the theoretical 

approach presented in [25] by its author. Other approaches to sampling rate conversion can be 

found in [14][17]. 

“libresample” [12] is another of the libraries based on “resample”. As stated by its author, 

“libresample” “is not the highest-quality resampling library available, nor is it the most flexible, 

nor is it the fastest. But it is pretty good in all of these regards, and it is quite portable. The best 

resampling library I am aware of is libsamplerate by Erik de Castro Lopo.”[12] 

“libresample” introduced floating-point computation compared to “resample” that used 

fixed-point, as well as established support for streaming information by handling small chunks of 

data to be processed and enabled time-varying resampling ratios. 

The last two libraries I will introduce are “libsamplerate” [3] and the one presented in 

[10]. This later is targeted for being used in real-time applications when managing blocks of 

streaming audio. It is implemented with a time-varying fractional delay filter and uses lookup 
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tables to store the filter coefficients in order to eliminate the calculation of the coefficients at run-

time. As was mentioned earlier in this report, lookup tables are a highly efficient method since 

they compute the coefficients only once; but as different tables are needed for different rates they 

can become memory consuming. This library has a code optimization specification in order to 

enhance the performance of “resample” on which is based. As it can be seen in [10] the 

optimization can reduce the number of cycles by 64%, as well as improving both processor and 

memory efficiency. 

To conclude I will analyze the library that was finally used for the creation of the spatial 

audio environment. The library is called “libsamplerate”, although it is also known as Secret 

Rabbit Code (it takes the initials from Sample Rate Converter) [3]. The library has been created 

by Erik de Castro Lopo, and its last release was September 2004. The main feature of the 

converter is the ability to perform time varying conversions as well as arbitrary conversions. 

Arbitrary conversion implies that any incoming stream can be resampled independently 

of its sampling rate. The resampler can upsample and downsample at a maximum factor of 256. 

This allows us to have many different applications providing different kinds of data, from high 

quality CD music (44.1 kHz) to normal telephony speech (8 kHz), all of them being converted to 

the same sample rate. 

Time varying conversions are very useful when considering telephone applications 

running over the Internet network. A moving user that changes from network to network (each of 

them with their specific bandwidth and capacity) needs to be able to switch CODECs and 

sampling rate depending on the available link and network bandwidth. These changes in the 

parameters of the transmitted data need to be followed by a change in the resampling converter to 

fit the new incoming sampling frequency. 

Apart from these two important features, the resampling application provides five 

different converters with specific characteristics. There are three different underlying 

technologies for the converters: band limited interpolation, zero order hold conversions, and 

linear conversions. All three band limited interpolation converters are based on Julius O. Smith’s 

techniques. The specific characteristics of the filters are (extracted from [3]): 

- BEST_QUALITY: this is a band limited interpolator derived from the mathematical 

sinc function and this is the highest quality sinc based converter, providing a worst 

case Signal-to-Noise Ratio (SNR) of 97 decibels (dB) at a bandwidth of 97%. 
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- MEDIUM_QUALITY: this is another band limited interpolator much like the 

previous one. It has an SNR of 97dB and a bandwidth of 90%.  The speed of the 

conversion is much faster than the previous one. 

- FASTEST: this is the fastest band limited interpolator and has an SNR of 97dB and 

a bandwidth of 80%. 

- ZERO_ORDER_HOLD: a Zero Order Hold converter (interpolated value is equal 

to the last value). The quality is poor but the conversion speed is very fast. 

- LINEAR: a linear converter. Again the quality is poor, but the conversion speed is 

very fast. 

The selection of the converter based on the performance requirements of the system will 

be described in the next section of the report. Depending on the required speed and the processor 

resources available, one or another converter should be chosen. 

The sampling library has three different APIs, two of them being of particular interest for 

this thesis. The simplest one converts a block of mono or stereo samples to the desired output 

sample rate. This API consists of one function, which takes the selected converter, the number of 

channels, and the data structure as parameters. The data structure is common to this simple 

interface and the other two more complex interfaces, so I will go a little more into detail. The 

structure is called SRC_DATA, and is defined as follows: 

typedef struct 

      {   float  *data_in, *data_out ; 

          long   input_frames, output_frames ; 

          long   input_frames_used, output_frames_gen ; 

          int    end_of_input ; 

          double src_ratio ; 

      } SRC_DATA ; 

 

The data_in, data_out, input_frames, output_frames, and src_ratio fields must be fill in 

by the user. The first two are pointers to the arrays containing the input and output data. 

Input_frames and output_frames represent the number of samples of data pointed by the two 

previous pointers. It has to be noted that in case of monophonic sound these values refer to the 
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length of the arrays, but for stereo sound these two numbers are equal to half of the length of the 

arrays. To conclude, src_ratio specifies the conversion ratio defined as the output sampling rate 

divided by the input sampling rate. 

The function implemented by this simple API just takes one element of the SRC_DATA 

type, and performs the conversion leaving the data in the data_out array. This API is not useful 

for my application since it maintains no state of the converter from one call to the next one. A 

more complex API is needed for spatial sound purposes. This is the full API defined in the 

“libsamplerate” library, which allows time varying sample rate conversions on streaming data. 

The full API consists of five different functions. These are: 

- SRC_STATE* src_new (int converter_type, int channels, int *error) ; 

- SRC_STATE* src_delete (SRC_STATE *state); 

- int src_process (SRC_STATE *state, SRC_DATA *data) ; 

- int src_reset (SRC_STATE *state) ; 

- int src_set_ratio (SRC_STATE *state, double new_ratio) ; 

First we have to create a sample converter object. We do this using the src_new function. 

Here we specify the type of converter, and the number of channels of the input. The 

complementary function is src_delete. Once the converter is created, we use the same 

SRC_DATA structure defined before to define the input and output parameters, and call the 

src_process function to make the sample rate conversion. We can change the ratio of the 

conversion between calls to the src_process function by calling the src_set_ratio. When we want 

to return to the original converter we can call the src_reset function. 

These five functions are supported by two auxiliary functions that convert blocks of 

shorts into floats and vice versa. Since the input to the src_process has to be a block of floats, and 

“minisip” processes sound in short int  samples these two functions allow us to feed the converter 

with the correct type of data, and then convert it again to match the “minisip” requirements. 

To conclude, it is particularly significant that the library has no dependencies beyond 

what is provided by the standard C library, thus it should compile and work on any operating 

system. 
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15. Conclusions and Further Work regarding the tools and methods 

selected 

Some important conclusions that will influence the creation of the spatial audio 

application can be extracted from this part of the report: 

- the programming language for the initial files will be C; when the system proved to 

be stable and all the required features worked properly, a translation into C++ as 

well as the integration in the “minisip” code was performed 

- no spatial audio libraries were used; in its place self written code was used, 

allowing resampling to be included as an integral process together with the 

spatialization 

- optimization of the code was done using lookup tables, i.e., indirect memory 

referencing, instead of software emulated floating point multiplications when 

possible 

- the “libsamplerate” library was used for the resampling processes; the full API 

interface provided by the library was used, since it is intended for streaming 

applications with continuous calls to the resampling functions. 

Only one sampling library has been thoroughly analyzed in this thesis, since it is 

considered to be the best open source option available. Nevertheless, other options could be 

considered, particularly the resampling library proposed in [10] that has special optimization, and 

is intended for real-time applications. Mat Hans should be contacted in order to gain access to the 

source code or at least the API. 

The spatial audio libraries should be reconsidered and studied in depth. The complexity 

of these libraries is high, but the specific features of OpenAL for spatial streamed audio make it 

worth considering. Furthermore, specific solutions for Windows users should be considered, since 

the port to this operating system is expected to be finished soon, and the majority of “minisip” 

users will likely be using it. 

To sum up, alternative tools to the ones presented in this part of the report should be 

analyzed, and their performance compared to the solution selected here. 
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PART III : THE APPLICATION 

Approach and final implementation 

of the spatial audio application with 

multi sampling rate support
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16. Goal of the Implementation 

Until now 3D sound has been mainly developed by the entertainment industry to provide 

enhanced audio experiences to their customers. The design that is shown in the following pages 

introduces the field of spatial audio in the arena of communications, specifically in a VoIP 

environment as offered by “minisip”. Currently applications are designed for the user to hold one 

conversation and to perform one task at a time. As a result of this thesis, it will be possible to see 

the effects of speech signal processing on telephony, and devise new applications based on this 

enhanced listening experience, as well to introducing multitasking as an integrated component. 

The way that most of the VoIP products on the market work right now, the information 

carried between users is highly dependent both on the network and the hardware used for the 

communication. This thesis focused on the specific hardware limitations imposed by the audio 

parts of the computers, PDAs, and other VoIP enabled devices. A generic implementation of an 

audio system can be seen in figure 8. 

 

 

 

 

 

 

Figure 8 – General Audio Disposition for VoIP Applications 

 

The previous figure shows us some of the main limitations of the system. Incoming 

sound sources might have different sampling rates, and these could be at the same time different 

from the hardware sampling rate. The first problem comes when mixing sources with different 

sampling rates.  If we are to mix these sources into a single output stream, the resulting sampling 

rate needs to be properly defined, and such that the hardware can reproduce this combined stream 

at the appropriate rate. This is easily done if we have inputs with the same input rate as output. 

HW 
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clockj 

clockk 
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If we consider sources with the same sampling rate, but different from hardware CODEC 

sampling rate. There are two different scenarios: 

- if clockk ≤ clockHW the decoding of the data is potentially lossless. This is the case 

for “minisip” before this thesis. The iPAQ has a hardware CODEC running at 16 

kHz sampling rate and the input encoded with a G.711 CODEC providing 8 kHz 

sampling rate. Then the sound has to be upsampled on reception to match the 

hardware requirements. 

- in the other hand, if clockk > clockHW  the decoding is lossy, it cannot process the 

information at the same speed as it is provided. In this case, if we have an incoming 

source with a high sampling rate (CD audio at 44.1 kHz for example), we would 

have to downsample it to match the hardware requirements, thus losing quality. 

The first goal of the implementation was to support high quality audio while exploiting 

the fact that low sample rate sound sources already have to be upsampled. For this purpose, the 

hardware CODECs of our communication devices were set to high quality, and all the incoming 

sources resampled to this high rate. With this solution we have no degradation of high quality 

incoming sources, but we also prepare the support for spatial audio (as shown on page 29, spatial 

audio requires a high sampling rate to have a good time resolution when performing the delay 

operations). Since all the sources are now resampled to one single sampling rate, this allows 

integrating them into a unique stream without degrading the properties of the individual 

components. 

Once the initial goal of mixing is achieved and the data is properly prepared, it is time to 

perform spatialization operations on it. Spatialization introduces multitasking as an integrated 

feature for any communication device. The possibility of establishing SIP sessions with different 

types of audio applications while having their sound delivered all at the same time increases the 

user’s capabilities. Once this new mode of communication is enabled, new applications can be 

designed. Finding the best uses of these new capabilities is of great importance. Recent studies 

have shown that women are better prepared for multitask than men [44]; thus women might be 

the focus for these new multitask applications. The first project for spatial audio based services is 

already been developed by students in the Communication System Design (CSD 2005) course 

[43], which is focused on enhancing videoconference services. 
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On the other hand, the increase in data communication has its drawbacks. Traffic to and 

from a spatial audio enabled user holding different audio streams at the same time has a big 

impact on the network utilization and the resources available. Further analysis on these 

implications, as well as finding the network limitations for multistream support are possible tasks 

for upcoming projects. 

The whole implementation process can be seen as an iterative process made up of small 

steps (figure 9) that convert data from an incoming stream of data with a random sampling rate, to 

a stream of data with a fixed length, a specific sampling rate, and specific delay and amplitude 

modifications in its stereo channels. Having these fixed parameters makes it possible to have a 

number of sources integrated into a single output source; thus the resulting sound stream is 

independent of the incoming parameters which allows designing the entire system depending only 

on this last stream and not on the individual ones. 

 

 

 

 

 

 

 

 

Figure 9 – Scheme of the Spatial Audio Implementation 

 

The specific steps followed for the implementation are introduced in the following two 

sections, first with a C approach to the problem, and finally with the definitive implementation of 

the spatial audio module for “minisip”. 
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17. First Approach: the C example 

In order to reuse some of the code used for the first part of the thesis the initial 

implementation of the spatial audio implementation was developed in C. The sound examples 

used for this part are not streaming audio data, but rather WAVE files converted to raw audio 

samples. All of them were 16 bit stereo sound files. The objective of the programming was to 

create a simple application that read these files and then build upon it the complex spatial 

operations. The code for the final C implementation can be seen in Appendix A, where only the 

code for the spatial audio has been shown (the complete code can be found at 

http://www.e.kth.se/~isp/exjobb/cfiles).  

The first step to simulate streaming audio is to read the information from the file in 

blocks such as the ones that arrive to the audio device in a VoIP session. To make the simulation 

realistic and since the final target is “minisip”, I used the same block size it used. This means that 

blocks of 160 mono samples are extracted every 20 ms from an 8 kHz sampling rate CODEC, and 

then transformed into stereo by duplicating the information into two channels. To simplify this 

task I preprocessed the monaural files and converted them to stereo. After that transformation the 

block reading process was done in blocks of 320 samples. 

Once the block of samples was fetched, the following step (as shown in figure 9) was  

resampling. As explained before the main goal of the implementation was to support high quality 

audio, and for this reason the sampling rate of the hardware CODEC was set to 44.1 kHz. The 

parameters needed for the resampling were the input sampling rate, the length in monaural 

samples of the input, the length in monaural samples of the output, and the ratio between the 

output and the input sampling rates. These parameters are related since the ratio between 

sampling rates is the same ratio as the one between output and input buffer lengths. 

The resampling process is then broken into three sub-processes. The fact that the 

resampling routine processes floating point numbers while the audio is usually stored in 16 bit 

integers implies that a float-to-integer and an integer-to-float conversion must be wrapped around 

the resampling process itself. The conversion routines are already provided by the resampling 

library. As a result of the resampling the incoming 320 samples of 8 kHz sampled audio were 

converted into 1764 samples at 44.1 kHz sampling rate. It was then time for the spatialization. 

My first approach to spatialization consisted of a direct operation on the incoming block 

of data turning it into a spatialized output block in a single operation. The determination of the 
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delayed channel and the exact number of delay samples as well as the scaling values for the 

channels are dependent on the play out position determined by the user, and obtained from lookup 

tables. The process itself consisted of reading the samples of the resampled input one by one; 

every time a sample was read it was placed into the output stream in the appropriate position by 

separating the left and the right channels by the exact number of samples (do not forget that 

stereo audio is stored in a channel alternating fashion, L, R, L, R, …). The problem with this kind 

of implementation is that the delayed channel starts to overflow when the delay causes the input 

samples to exceed the limit of the output buffer. To solve this limitation an additional buffer is 

used. This buffer saves the extra samples and keeps them for the next iteration. An example can 

be seen in figure 10. 

 

INPUT 1 L1 R1 L2 R2 L3 R3 

 

 

 

 

Figure 10 – Delay Control using Overflow Buffer 

 

The figure shows an example where the right channel is delayed one sample from the left 

channel. Due to this delay the last sample of the right input channel ought to be out of the range 

of the output buffer. This sample is stored into the overflow buffer and processed with the next 

block of samples in the next iteration. 

An alternative to this technique is the use of circular buffers. Each circular buffer 

contains the samples of one of the input stereo channels. There are two different pointers, one for 

reading and one for writing to the buffers. As shown in figure 11, the samples are first written 

into the circular buffers based on the state of the writing pointer from the previous iteration, and 

then the output buffer is extracted using the reading pointer at the place where it was left by the 

previous reading process. 

OUTPUT 1 L1 Ø L2 R1 L3 R2 

OVERFLOW R3 Ø Ø 

OUTPUT 2 L4 R3 L5 R4 L6 R5 

INPUT 2 L4 R4 L5 R5 L6 R6 

OVERFLOW R3 Ø Ø OVERFLOW R6 Ø Ø 
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Figure 11 – Delay Control using Circular Buffers 

 

The important details to observe in this figure are the different positions of the read (R*) 

and write (W*) pointers depending on the channel. Since the right channel has a delay of one 

sample, its pointers are also delayed one sample, so the writing pointer follows the same rhythm 

as the left channel, but the reading pointer is one sample behind. 

In the C file in Appendix A the circular buffer method is used. However, here only one 

source is considered. If there were more than one source, then the output for each source should 

be added together before sending the sound to the hardware CODEC of the soundcard.  

INPUT 1 L1 R1 L2 R2 L3 R3 L4 R4 

L BUF L1 L2 L3 L4 Ø (R/W*) Ø 

R BUF R1 R2 R3 R4 (R*) Ø (W*) Ø 

OUTPUT 1 L1 Ø L2 R1 L3 R2 L4 R3 

INPUT 2 L5 R5 L6 R6 L7 R7 L8 R8 

L BUF L7 L8 (R/W*) L3 L4 L5 L6 

R BUF R7(R*) R8(W*) R3 R4 R5 R6 

OUTPUT 2 L5 R4 L6 R5 L7 R6 L8 R7 
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18. Final Version: the C++ API and Integration with “minisip” 

The previous section introduced the basic principle of the resampling and spatialization 

routines that were used for the “minisip” implementation of spatial audio. The next step was to 

analyze the sound structure of “minisip” and find a way to integrate my module, whether 

introducing it as an external module or modifying existing code. The sound system of “minisip” 

before this thesis can be seen in figure 12. It follows the general description presented in figure 8, 

with three different classes involved.  

 

 

 

 

 

 

Figure 12 – “minisip” Sound System 

 
The SoundSource class represents the audio information, for now only VoIP calls; 

SoundIO represents the audio mixing module, and although only its function as an input module 

was considered for this thesis, it also provides the structure for the outgoing audio; and finally the 

hardware CODEC is represented by the SoundDevice class. “minisip” allows defining different 

devices, but the one used right now is an OSSDevice [44]. 

Table 6 – Classes used for “minisip” Sound System 

Classes used:  

SoundSource Gets sound from the audio stream and stores it into a buffer, 
then provides this buffered data to SoundIO 

SoundIO Mixes the different streamed data contained in the buffers 
provided by the SoundSource(s) 

SoundDevice Low level interaction with the hardware 

 

The integration of the final spatial audio module consisted in the creation a new class, 

SpAudio, declared as a friend of SoundIO (i.e., has access to its private variables), and  

modification of the SoundSource and SoundIO classes. Let us first introduce the new class, 

Sound 

Device 

16 kHz 

SoundIO 

8 kHz 

8 kHz 

SoundSources 
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SpAudio. SpAudio is created by SoundIO and performs the spatialization of the sound buffers 

that it is provided. It defines one method called spatialize that takes an input buffer, an 

output buffer, and a SoundSource as parameters. This method is exactly the same function that 

was presented in the previous section. It also defines a second method for assigning positions to 

the incoming sources as they register in the system. This method looks in a table and assigns a 

position to the new source depending on the number of sources in the system.  

The proposed design provides automatic assignation of the positions. The system assigns 

the central position to the first incoming call, and then proceeds by separating the sound sources 

as much as possible as they enter the system. The possible configurations depending on the 

number of calls in the system are shown in figure 13. This automatic assignment of the position 

should be one of the first things to be considered when improving the system, since it should be 

possible to manually override the assignment, to assign positions depending on pre-established 

priorities, or to have more than one source in the same position. 

 Call 1      

       

 USER   Call 1 USER Call 2 

       
       

 Call 3   Call 3  Call 4 

       

Call 1 USER Call 2  Call 1 USER Call 2 

       
       

  Call 3 Call 5 Call 4   

       

  Call 1 USER Call 2   

Figure 13 – Possible Configurations of the Spatial Grid depending on the number of calls 

in the system 

 
The main modification made to the SoundSource class was to introduce resampling. The 

most important method introduced is called resample and it is basically an adaptation of the 

function shown in the previous section. The resampling depends on the sampling rate of the 

SoundSource, which is a private variable of the class. The majority of the methods and variables 

introduced in SoundSource have been declared as private, in view of the fact that ideally we want 

to have a number of sources with different types of sound data, not just phone calls, and each of 

them might need to implement its own method; thus, subclasses for each of the sound sources 

will also be something under consideration for further development of the system. 
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Figure 14 – “minisip” Sound System with Spatial Audio 

 
The last modifications were made in the SoundIO class. Here, the playerLoop method 

was the major change. This loop reads one by one the buffers from the SoundSources and creates 

a single output buffer by adding their contribution. The playerLoop method has been modified 

so it reads each buffer, resamples it depending on the incoming sampling rate,  spatializes it 

depending on the position that the spatial audio module has assigned it, and finally adds it to the 

output buffer that will be then sent to the sound device. It was in this point where we found some 

unexpected problems. Although the resampling and spatializing routines seemed to work well, the 

output sounded in a strange delayed and interrupted way. After setting some counters and with 

the help of a debugger we found out that the routine sending data to the hardware CODEC was 

taking more than 23 ms to do it, thus producing a delay in the communication since the 

information from the buffers was being read every 20 ms. We increased the size of the internal 

buffer that seemed to be causing the problem and everything worked properly. 

Table 7 – Classes used for “minisip” Sound System after spatialization 

Classes used:  

SoundSource* Gets sound from the audio stream and stores it in a buffer, it 
resamples the sound in this buffer and sends the resampled 
information to SoundIO 

SoundIO* Mixes the spatialized streamed data contained in the buffers 
provided by the SoundSource class 

SpAudio Does the spatialization of the data when required by SoundIO. 
It also assigns position to sources depending on the current 
number of sources in the system. 

SoundDevice Low level interaction with the hardware 
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It is important to consider some details of the implementation: 

- the converter for the resampling has to be carefully initialized, since processing 

depends on if the input audio is mono or stereo.  

- moreover, tests showed that the best converter available produces a delay in 

communication (the processing time for this converter is around 15 ms). Converter 

number 2 is the one recommended for standard applications, whereas when 

listening to music or other entertainment audio converter number 1 is 

recommended. For the worse case scenario converter 4 provides GSM quality with 

incredibly fast performance. 

- the proper definition of the of the writing and reading pointers is also very 

important, since they have to maintain their values between calls and they have to 

be properly initialized (to 0). 

- automatic gain control should be added to ensure appropriate output levels at every 

moment. Depending on the number of sources interacting at the same time the 

amplitude of the output can vary over a very wide range. The simplest solution is to 

leave the gain control for the user, e.g., not introducing any amplitude control 

dependent on the number of active sources. With this solution the user adapt their 

conversation to the current sound that they receive, as they would do in a face-to-

face conversation where one stops talking when another starts. A more complex 

solution consists in assigning different value attenuations depending on the virtual 

position and the number of active sources. User experiments should be performed to 

determine which of the two solutions is preferred. 
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19. Conclusions and Further Work on the Implementation 

This part of the report has shown the details of implementing spatial audio functionality 

into an existing SIP User Agent. The implementation is supported by the theoretical results of the 

first part of the report. Example code in C has been also provided in order to familiarize the 

reader with spatialization, and to have a module that is independent of the final implementation, 

so it can be reused for other applications. 

The following parts have been implemented: 

- enabling of resampling as basic operation performed on incoming sources, resulting 

in a single high sampling rate for the output. This gives us the possibility of having 

high quality audio without degradation and allows us to integrate the spatial audio 

module. 

- implementation of the spatial audio environment by modifying some of the existing 

classes, providing them with the necessary variables and methods. 

- implementation of a spatializing method based on circular buffer caching of 

information, providing up to 5 different spatial locations. 

 

The final result is a basic implementation of a spatial audio tool for streaming audio. 

Further work on the implementation could introduce graphic commands to run the system. A 

major need is to implement manual control of the spatializing process, i.e.,  the user can assign 

positions by simply pre-assign the sources a priority or by doing so on the fly. It is also important 

to perform some user tests and gather some results related to the automatic gain control, and 

decide whether not gain control should be done or should be left to human interaction, or if some 

kind of control depending on the number of sources and the current amplitude of the output 

should be done.  

Additional further work on the spatial audio module includes integration with a speaker 

recognition system, the analysis of the possibility and need of having a greater number of spatial 

positions, the adaptation of the spatial sound to multiple videoconferences, and modifications of 

the module that can lead to the introduction of new services and enhanced use of multitasking.
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PART IV: CONCLUSIONS & FURTHER WORK
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20. Conclusions 

This report has presented the design and implementation of a spatial audio module for 

VoIP communication using “minisip”. The whole process from the theoretical analysis of spatial 

audio conditions to the final implementation has been described in the previous sections. 

The report gives an idea about how the human ears interact with the sound environment 

surrounding them, and introduces delay and intensity as the two main parameters when 

identifying a sound location. The possibility of digitally modifying these two cues for a non-

spatialized monaural sound is the basis of the spatializing process. 

Delay and scaling operations were done in this thesis by applying speech signal 

processing techniques, and simplifying the processes to obtain fast operation and minimum delay. 

The report has utilized lookup tables as an efficient way of replacing high computational cost 

floating point operations. The design and implementation of the spatial audio module were a 

trade-off between quality of audio and consumption of resources. All the system variables had to 

be adjusted to offer a stable service while having high quality audio. 

During the development of the spatial audio module the need for a second design and 

implementation effort arose: since spatial audio could not be achieved with the low sampling rate 

of the incoming audio, resampling was needed. Resampling tools have been introduced and 

analyzed in this report, and have been integrated into the spatial audio experience. Having 

resampling integrated in the system allows high quality audio be reproduced without losing 

quality, as well as gives the appropriate background not just for spatial audio but also for text-to-

speech and speech-to-text conversions [18].  

Enabling resampling and spatial audio provides the basis for successful multitasking, 

with a proper integration of sound sources and an efficient distribution in the listening field of the 

user. Applications that can directly benefit from this module are multiconferencing and 

videoconferencing, as the spatial audio module makes the task of handling different audio sources 

much easier. 

However, there is a downside to this scheme of multisource management. Being able to 

listen to multiple sources means that the traffic to and from such a user is fundamentally changed. 

It is no longer limited to a single stream or a single call. Some examples for these effects are: 

great increase of the downlink audio traffic - since you can be in multiple calls, and a change in 
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the interarrival distribution of packets - since even with silence suppression the probably of not 

having a packet in given time interval drops as the product of the probability distributions of the 

individual sources. 

The final result is a spatial audio module for “minisp”, a SIP User Agent that is being 

developed by students at KTH. The module will hopefully provide the basis for further projects 

within this context.  
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21. Further Work 

Spatial audio offers numerous possibilities for further development. The spatial audio 

module presented in this report can be taken as a starting point for this development, by 

implementing new applications based on it, as well as improving its performance and its user 

interface. 

Further work considering the impact and the possibilities introduced by spatial audio 

should be considered. Some of these could be: 

- study the possibility of plugging new CODECs into “minisip”. The possibility of 

selecting a different CODEC depending on the actual conditions of the access 

network as well as being able to manually select the desired CODEC are some of the 

proposed investigations. This is also of major importance when talking about 

multiple audio streams, since the coexistence of multiple streams increases the 

amount of data received by the device. Additionally, all of the streams need not 

utilize the same CODEC; for example the sender might have only limited bandwidth 

via his current link, even though the receiver has a high bandwidth link and high 

quality audio from other sources.   

- the effects on the traffic to and from the mobile user’s device should carefully be 

examined. This analysis together with the spatialized audio system must enable the 

determination of the maximum number of streams manageable by a “minisip” user 

depending on the capacity of the network. This goal is directly related to the 

previous one, since the amount of traffic incoming and outgoing from the device can 

be varied by changing the CODEC used or by pre-caching contents. This later 

approach is being examined in a parallel project by Johan Sverin and Inmaculada 

Rangel Vacas [18]. As the SIP protocol, used for this VoIP application, allows the 

renegotiation and changing of CODEC during a conversation, the available 

bandwidth can be dynamically accommodated. Additionally, SIP allows multiple 

CODECs to be negotiated, thus traffic from multiple encodings might be sent to 

allow for different receivers to receive different quality, to allow for short-term 

changes in connectivity (for example, a vertical handoff for just a short period as a 

user moves between two buildings on a campus). Note that the use of resampling 

allows for easily mixing the audio from different rate CODECs that in this case are 

associated with the same source. 
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- performance analysis of the spatial audio service should be done, focused on the user 

experience and also the efficiency of the designed module. Users’ opinions should be 

gathered and taken into account to enhance the module and provide a solution that 

better suites the requirements of the users. 

- the implementation of the manual control of the spatializing process, as well as 

enabling SIP connections with different other audio sources different (e.g., radio, 

music, and others). 

- study of the possibility of having spatial audio based on head related transfer 

functions. Implement this alternative and compare it to the use of simple spatial cues. 

- study the creation of a spatial audio environment with a higher number of positions. 

Determine whether this is feasible, profitable, and manageable from the network, the 

user, and the device point of view. 

- consider the introduction of a more efficient resampling algorithm such as the one 

presented in [10]. 
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APPENDIX A: 

C Code for a Spatial Audio Implementation
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/* 
 * play a set of 16 bit linear stereo samples sampled at 8kHz, 
 * in the desired space location, 
 * first resampling them up at 44100 Hz, on the selected audio device 
 * 
 * option -c to choose the type of converter (see Secret Rabbit Code webpage) 
 * 
 * option -p to select the position of the source [1,5] 
 *  
 * it uses the full API of the Secret Rabbit Code for resampling 
 * see  http://www.mega-nerd.com/SRC/api_full.html 
 * 
 * the file is split into 20 ms frames = 160 samples per frame and channel 
 * 
 * lookup tables used for the volume scaling 
 * 
 * compile with: 
 * gcc  c_api_example.c -o api -lsamplerate 
 */ 
 
#include <samplerate.h> 
#include <sys/soundcard.h> 
 
/* the following are needed for stat() */ 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <unistd.h> 
 
#define LIM 65536 
#define POS 5 
#define SHIFTSIZE 36 
 
/* variables for locating process */ 
int lchdelay[POS]={0,0,SHIFTSIZE,0,0}; 
int rchdelay[POS]={0,SHIFTSIZE,0,0,0}; 
 
float lchvol[POS]={1,0.8,0.6,1,0}; 
float rchvol[POS]={1,0.6,0.8,0,1}; 
 
short int lookupright[LIM][POS]; 
short int lookupleft[LIM][POS]; 
 
SRC_DATA src_data; 
SRC_STATE *src_state ; 
int channels=2; 
int converter; 
int position; 
int error; 
 
short int* data_in; 
short int* data_out; 
short int* lbuffer; 
short int* rbuffer; 
short int* short_output; 
float* float_in; 
float* float_out; 
int pointer; 
 
void createTable(float chvol[POS],short int lutable[LIM][POS] ) { 
  int i,j; 
 
  for (j=0;j<POS;j++){ 
    for(i=0;i<LIM;i++){ 
      lutable[i][j]=(short int)((float)(i-32768)*chvol[j]); 
    } 
  } 
} 
void initSpatial(){ 
  createTable(rchvol,lookupright); 
  createTable(lchvol,lookupleft); 
} 
 
void resample (short *input, short *output, int isize, int osize, SRC_DATA src_data, 
SRC_STATE *src_state){ 
 
  src_data.data_in=float_in; 
  src_data.data_out=float_out; 
 
  src_short_to_float_array (input, float_in, isize); 
 
  if ((error = src_process(src_state,&src_data))){ 
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    printf ("\nError : %s\n", src_strerror (error)) ; 
    exit (1) ; 
  }  
 
  src_float_to_short_array(float_out,output,osize); 
 
} 
 
int spatialize (short *input, short *leftch, short *rightch, int position, int pointer, 
short *outbuff){ 
   
  int i=0; 
  static int j=0, k=0; 
 
  for(i=0;i<1764;i++){ 
    if(i%2 == 0){ 
      leftch[(j+lchdelay[position])%950]=input[i]; 
      j=(j+1)%950; 
    } 
 
    else { 
      rightch[(k+rchdelay[position])%950]=input[i]; 
      k=(k+1)%950; 
    } 
  } 
 
  for(i=0; i<882;i++){ 
    outbuff[(2*i)]=lookupleft[leftch[pointer]+32768][position]; 
    outbuff[(2*i)+1]=lookupright[rightch[pointer]+32768][position]; 
    pointer=(pointer+1)%950; 
  } 
  return pointer; 
} 
 
 
int main(int argc, char *argv[]) 
{ 
while ((c = getopt(argc, argv, "d:hr:i:c:p:v")) != EOF) { 
    switch (c) { 
    case 'd': 
      dev_flag++; 
      dspname=optarg; 
      break; 
 
    case 'r': 
      sscanf(optarg, "%d", &rate); 
      rate_flag++; 
      break; 
     
    case 'c': 
      sscanf(optarg, "%d", &converter); 
      conv_flag++; 
      break; 
     
    case 'p': 
      sscanf(optarg, "%d", &position); 
      pos_flag++; 
      break; 
 
    case 'i': 
      input_file_name=optarg; 
      /* open file for reading in binary mode */ 
      if ((input_fileP=fopen(optarg,"rb")) == NULL) { 
 fprintf(stderr, "\nError in opening file: %s\n", optarg); 
 exit(1); 
      } 
      break; 
 
    } 
  } 
 
 
 
  /* get info from the file */ 
  if ( stat(input_file_name, &file_stat_buf) == -1) { 
    fprintf(stderr, "Unable to stat the input file\n"); 
    exit(1); 
  } 
 
  /* compute the number of (short int) samples in the input file */ 
  input_file_size = file_stat_buf.st_size;  
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  number_of_samples=input_file_size/sizeof(short int); 
 
 
  /* creating src_state structure for recursive calling  */ 
  src_state=src_new(converter,channels,&error); 
 
  /* creating src_data for resampler calls  */ 
  src_data.data_in = float_in; 
  src_data.data_out= float_out; 
  src_data.input_frames = 160; 
  src_data.output_frames = 882; 
  src_data.src_ratio = 5.5125; 
   
  /* read sound in blocks of 320 samples= 20 ms * 8 kHz * 2 channels  */ 
  while ((counter+320)<number_of_samples){ 
 
    for (i=0; i <320; i++) { 
      number_read = fread(&in, 

1,  
sizeof(short int), 

 input_fileP); 
      data_in[i]=in; 
    } 
     
    resample(data_in,data_out,320,1764,src_data,src_state); 
    pointer=spatialize(short_output,lbuffer,rbuffer,position,pointer,data_out); 
    
    if (write(dspFD, data_out,sizeof(short int) * 882 *2) < 0) { 
      fprintf(stderr, "Error encountered in writing output samples\n"); 
      exit(1); 
    } 
    counter=counter+320; 
  } 
  
  src_delete(src_state); 
  fclose(input_fileP); 
  close(dspFD); 
} 
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