

Monte Carlo Simulation of Sintering
on Multiprocessor Systems

Jens R. Lind

Master of Science Thesis
Stockholm, Sweden 2004/2005

IMIT/LECS-2005-07

Design, implementation and evaluation of
microstructural storage and parallel execution for

simulation of an atomic process

 ii

 iii

Monte Carlo Simulation of Sintering
on Multiprocessor Systems

Author: Jens R. Lind
Examiner: Vladimir Vlassov

Master of Science Thesis
Stockholm, Sweden 2004/2005

IMIT/LECS-2005-07

Design, implementation and evaluation of
microstructural storage and parallel execution for

simulation of an atomic process

 iv

 i

Abstract

As the availability and computational power of modern computer system increases,
new fields of applications are made possible. One such field is the simulation of
industrial processes. Simulating these processes allows for safer and cheaper research
and development. But applications of real life simulations most often suffer great
time and memory constraints. A metallurgy process called sintering, by which
powders are formed into objects under high pressure and near melting point
temperatures, has been accurately modelled as such a computer application based on
the Monte Carlo technique.

The purpose of this master thesis project is to address the constraints of the sintering
application and improve the memory and execution time performance. The latter is
done by designing and implementing a parallel version of the application. The
memory usage reduction is achieved by dividing the simulation data, resulting in fast
and effective compression of locally sparse data. These subsets of the simulation data
are then used as base for the parallelization strategy, allowing for them to be fairly
independently scheduled among multiple processes.

An important aspect of this project was to improve the performance without making
any changes to the underlying sintering algorithm, ensuring the simulation model
remains accurate. This significant limitation and the design being based on two
different, yet interlocked, fields of computer science, namely memory structure and
parallelization, make this project an interesting and worthwhile master thesis.

Evaluations prove the parallel application to outperform the original version by a
factor of ten while still maintaining the correctness of the underlying sintering
simulation algorithm. The resulting application can simulate much larger models than
the original version, but the time needed to complete simulations of any real life
experiments is unfortunately still outside the scope of most multiprocessor systems.

 ii

Acknowledgements

First of all, I want to thank my supervisors Adam Postula and Peter Sutton at UQ for
allowing me to come all the way to Australia. It has truly been a great journey and an
endless string of memorable experiences. In regard to all the administrative work
behind an overseas arrangement I want to thank Patrik Gärdenäs at KTH for his
valuable help.

My supervisors deserve a second thank for all their support, feedback, comments and
also for allowing me fairly free reins making me feel that this is my own project. My
examiner Vladimir Vlassov at KTH I want to thank especially for taking time in the
middle of the summer to sketch up a rough outline of a project plan and report
contents. Those outlines proved to be crucial for the successful completion of this
master thesis.

Furthermore, I want to thank John Xue at UQ and my father, Lennart Lind, for their
comments on my project and especially the report.

 iii

Table of Contents

1. Introduction... 1

1.1 Motivation... 1
1.2 Goals and expected results.. 2
1.3 Evaluation methods... 2
1.4 Thesis structure ... 3

2. Related work ... 4
2.1 Background ... 4
2.2 Sparse data storage.. 4
2.3 Parallel Monte Carlo algorithms... 5
2.4 Summary ... 5

3. Sintering.. 6
3.1 Diffusion ... 6
3.2 Sintering process... 8
3.3 Sintering products ... 9

4. Background... 11
4.1 The simulation model ... 11
4.2 The simulation data... 11
4.3 The simulation algorithm.. 14

5. Memory model design .. 19
5.1 Grid types.. 20

5.1.1 Bulk area ... 20
5.1.2 Pore area.. 21
5.1.3 Surface area... 22
5.1.4 Free areas .. 24

5.2 The grid structure.. 25
5.3 Data initiation.. 27
5.4 Summary ... 28

6. Algorithm design .. 29
6.1 Updating the sequential code .. 29

6.1.1 Vacancy list... 29
6.1.2 Validating move.. 30
6.1.3 Special error detection code.. 30
6.1.4 Pore pinch ... 30
6.1.5 File I/O .. 31

6.2 Limitations .. 32
6.2.1 Grid access .. 32
6.2.2 Global variables .. 33
6.2.3 Vacancy annihilation .. 33
6.2.4 Pore pinch revisited... 34

6.3 The parallel algorithm... 35
6.3.1 Task selection.. 36
6.3.2 Vacancy list(s) .. 39
6.3.3 Grid locks.. 41

6.4 Summary ... 43
7. Implementation ... 44

7.1 Sequential algorithm updates.. 44
7.2 Memory model implementation.. 45
7.3 Parallel algorithm implementation.. 46

 iv

7.3.1 Pthreads library ... 46
7.3.2 The parallel implementation phase ... 46

8. Evaluation ... 49
8.1 Tools ... 49
8.2 Correctness.. 49

8.2.1 Visual .. 50
8.2.2 Porosity and rugosity .. 51

8.3 Memory usage... 53
8.4 Parallel performance ... 55

9. Conclusions and future work .. 59
9.1 Conclusions... 59
9.2 Future work... 60

10. References... 61
11. Abbreviations.. 63
12. Appendix... 64

A. Profiling results... 64

 v

Table of Figures

Figure 1: An atom squeezing between two of its neighbours. [5] 7
Figure 2: A smaller atom squeezing between two larger atoms. [5]............................. 7
Figure 3: (A) The atom may only move to the vacancy, (B) where as the vacancy may

move in any direction. [32] ... 8
Figure 4: Very fine aluminium powder which can be used for sintering. [12] 8
Figure 5: Matter is transferred from the surface into the area between two particles,

forming the neck. [2] ... 9
Figure 6: Various gears made through sintering. [20] ... 10
Figure 7: An etched cross-section of 128 μm diameter copper wires after sintering at

900 ˚C for 600 hours. [29] .. 11
Figure 8: The hexagonal atom pattern where the site marked by X has six immediate

neighbours... 12
Figure 9: The different areas within the model. .. 12
Figure 10: The neighbourhood of a site (marked by X) in the array and when mapped

to the hexagonal grid. ... 13
Figure 11: Graph plotting the probability of an atom reversing a jump depending on

the change in nearest neighbours. [29]... 15
Figure 12: (A) An atom moves into the grain boundary vacancy, (B) after the move

the atom has one neighbour from its own particle and four neighbours of
another particle, (C) thus it becomes part of that particle. 15

Figure 13: (A) The atom marked X moves left and (B) blocks off a small part of the
pore which becomes grain boundary vacancies. .. 16

Figure 14: An example of grain boundary annihilation.. 17
Figure 15: This image shows how the micro structure changes during the simulation.

[29].. 18
Figure 16: (A) Image of four particles in the hexagon pattern and (B) the same

particles as stored in a matrix. ... 19
Figure 17: (A) Image of four particles in hexagon pattern after the sintering is

complete and (B) the same image as stored in the matrix. 19
Figure 18: (A) a sparse matrix and the resulting vectors when encoded with CRS (B)

and CCS (C). [31] ... 23
Figure 19: The search path to find element at (5,5) in a matrix (A) for CRS encoding

(B) and CCS encoding (C). ... 24
Figure 20: The grid pattern as applied to part of a model. S marks a surface area, B a

bulk area, P a pore area and, finally, F a free area. .. 25
Figure 21: The grid indexes .. 26
Figure 22: (A) The neighbourhood of atom marked by X is investigated from the start

point (B) in clock wise motion adding unconnected vacancies to different groups
and (C) at last connecting the end of the search to the start. 31

Figure 23: When atom (X) makes a jump to vacancy (V), inspecting the
neighbourhood of the two sites will cause four different grids to be read. 32

Figure 24: The pore pinch algorithm searching for an area of 9 vacancies as (A)
depth-first and (B) breadht-first.. 34

Figure 25: Pseudo code of depth-first search and breadth-first search versions of the
pore pinch algorithm... 35

Figure 26: The neighbourhood of any two sites on direct opposite sides of a partion
boundary are limited to a strip of four sites in breadth with the actual border in
the centre... 36

 vi

Figure 27: Message passing between process A and B when dealing with the move of
atom X to vacancy site V (Figure 26).. 37

Figure 28: The grid selection in order to reduce potential grid locks. (A) First run
starting on first row and picking every third grid on every third row. (B) And in
second run starting from the second index on the first row. And so on, until all
grids have been considered... 38

Figure 29: The Sliding Window data transfer protocol. [24]...................................... 39
Figure 30: The highlighted grid’s neighbourhood, where all grids have to be locked.

... 40
Figure 31: A grid divided into four subsets, and the three neighbouring grids needed

to be locked by the highlighted subset. ... 41
Figure 32: The locked neighbours for the two types of highlighted border subsets; the

arrows indicating which locked grid belongs to which subset. The centre subset
does not need any neighbouring grids locked... 41

Figure 33: The particle structure after successful simulation of the small model (Table
3) as generated by the original program (left) and the parallel program (right).
... 50

Figure 34: The particle structure after successful simulation of the large model (Table
3) as generated by the original program (left) and the parallel program (right).
... 50

Figure 35: Plotting the average porosity and rugosity from 10 simulations of both the
original and parallel sintering program using the small model (Table 3). 51

Figure 36: Plot of the porosity and rugosity difference between the original and
parallel simulations for each Monte Carlo step. .. 52

Figure 37: Plotting the average porosity and rugosity from five simulations of both
the original and parallel sintering program using the large model (Table 3). .. 53

Figure 38: Memory used by the original and parallel version for models with four
particles... 54

Figure 39: The memory needed for a model with four particles and 16384 atoms in
radius; the memory needed is broken up into the grid list, grid data and vacancy
list.. 54

Figure 40: The performance of the original and parallel versions of the sintering
simulation, measured in time per Monte Carlo step... 56

Figure 41: Performance of the parallel sintering simulation on a model with 512
atoms in each particle radius, for a varied number of grids and threads. 56

Figure 42: Same as in Figure 41, but the model now has 128 atoms in each particle
radius. ... 57

 vii

Table of Tables

Table 1: List of the vacancy types and their characteristics (use Figure 9 as

reference). ... 13
Table 2: The particle radius effect on number of atoms and the equilibrium

concentration, when dealing with a model of four circular particles at a
sintering temperature of 1173 ˚K.. 21

Table 3: The two different models used for evaluation... 49
Table 4: List of the two available multiprocessor systems. .. 55

 1

1. Introduction

This report is the main document for my master thesis project at the School of
Information Technology and Electrical Engineering (ITEE) which is a department
within the University of Queensland (UQ). UQ is one of the major universities in
Brisbane, Australia. The project is a mandatory, and final, step towards my master
degree in Computer Science and Engineering at the Royal Institute of Technology
(KTH).

This report deals with the simulation of the sintering process. Sintering is a
metallurgical process forming objects of metal or ceramic powders by applying high
pressure and temperatures below the powder’s melting point over a long time.
Accurate modelling of this process can be achieved by simulating movements of
single atoms with the Monte Carlo type algorithm. Such a model has already been
developed by Dr Roberta Sutton and Professor Graham Schaffer at the UQ
Department of Mining, Minerals and Materials Engineering (MINMET) [29] but
suffers from unacceptable run times if executed on a single workstation. A hardware
accelerator to speed up computations is being designed by Dr Peter Sutton and Dr
Adam Postula at ITEE. Some of their early work was done by Adam Postula together
with David Abramson and Paul Logothetis [23].

This master thesis project investigates mapping of the already developed sintering
simulation algorithm on a multiprocessor system and analyzes the achieved speedup.
The memory model of the earlier algorithm is revised to allow for much larger data.
The small datasets that the original version currently can handle is not enough to
simulate real life sintering experiments, and as such can only be used for
approximations.

1.1 Motivation

The current version of the sintering simulation algorithm is sequential and can
therefore only be executed on a single processor. It suffers from very high simulation
run times, even on small problems. The memory model of the algorithm does not
scale well either and would not be reasonable when dealing with simulation of real
life sintering. A revision of the algorithm and its memory model to allow for
execution in parallel and on large scale problems should make it possible to within
reasonable time and storage capacity simulate the sintering process on a
multiprocessor system. The parallel algorithm would also prove a better evaluation
basis for the hardware accelerator. Another motivating factor is that during the
development of the parallel algorithm information useful to the design of the
hardware accelerator might be found.

The original model was based on an experiment made by Alexander and Balluffi [29].
The original core algorithm, which should not be altered, was built to simulate that
experiment. The experiment material was 128 μm diameter copper wire wound
around a copper spool. In the computer this is represented by a model of at least four
particles, with a radius of about 5105.2 ⋅ atoms each. Because the sequential program
can not handle that amount of data, two smaller data sets were used where the
particles had radii of 60 and 120 atoms. The correctness of the model was then proved
by using an estimation based on results from the two different simulated model sizes

 2

and the estimation was then compared to the actual results of Alexander and
Balluffi’s experiment. If a memory model is designed to allow for the parallel version
to run simulations with data having the same size as the actual experiment, such a
simulation would give much better results to use in comparison to the experimental
result. Thus, based on that comparison, the core algorithm could be further fine tuned
at MINMET (if needed).

The actual need to simulate sintering on computers is motivated by cost, as is often
the case. “A sintering schedule is often set by trial and error techniques in industry”
[11]. Thus, when experimenting with sintering a wide range of raw materials will be
used. An accurate simulation model would mean that the trial and error phase could
be run on the computer. Not only would the cost for buying raw materials be reduced
but also the cost for running all the sintering machinery.

1.2 Goals and expected results

The goals are to create a parallel version of the sequential code that outperforms the
latter when it comes to simulation times and problem sizes. This goal has to be met
without any alterations to the underlying simulation algorithm. The parallel version
should also scale well, i.e. an increase in the number of processors used for execution
should result in a further decrease of simulation time for a fixed problem size. The
parallel application should also be able to run with input data having particle sizes
ranging from a few thousand atoms to several billion atoms.

It is expected that the parallel code will out perform the sequential version and that it
will at least be able to simulate sintering within a system of four particles each having
a radius of 4100.4 ⋅ atoms. Such a model has almost four billion atoms and it is
expected that the rewrite of the storage scheme should put the memory usage for that
model below two gigabytes.

It is also expected that the results from parallel simulations should be accurate and
similar to the results from the original program within a reasonable margin of error.
The error margin should, largely, be related to the randomness of the core algorithm.

1.3 Evaluation methods

First, when it comes to correctness between the original sequential code and the
parallel version, the parallel application will generate output for a fairly small
problem. A small problem is a model consisting of four particles each having between
30 and 150 atoms in radius. The average results from several parallel simulations can
then be compared with the outputs of the sequential version when using input data
consisting of identical models and the same random seeds (if necessary). For such
small problems, it will also be possible to compare the results from the sequential and
parallel version visually. Making sure that the end result has particles of roughly the
same shape.

Second, when it comes to simulation speed, the parallel and sequential application
will be run across the same multiprocessor system. The difference in CPU time used
for varying small problem sets between the parallel and original program will be
noted and compared. Because of the difference in the number of Monte Carlo steps

 3

(MCS) between simulations of even the same sized models, the CPU time will be
measured as time per MCS rather than the time needed to complete a full simulation.
The parallel version will be run on larger inputs with varying number of threads, to
measure the scalability.

Third, the new memory model can be measured based on the memory used compared
to the old memory model. This will be done for a range of problem sizes. It is also
interesting to see how the different parts of the memory model behave depending on
how the model that is generated.

1.4 Thesis structure

The rest of this report is organized as follows. In section 2, a brief review of related
work will be presented. Section 3 will describe the process of sintering and its uses.
The original model and the resulting sequential algorithm will be presented in section
4. The design of the structure for a new memory model is described in section 5, also
including various ways of initializing the data. In section 6, various methods of
parallelization of the algorithm will be discussed. Section 6 also investigates all the
bottlenecks of the algorithm which put an upper bound on the possible parallel
performance. Section 7 will describe the implementation phase of the application with
both the new memory model and the parallel code. The evaluation results will be
analyzed in section 8 followed by conclusions and future work in section 9.

 4

2. Related work

The research behind the algorithm design in this master thesis was based on related
work from three major fields. First, the earlier work performed on the simulation
model and the original program code. Second, articles on effective storage of sparse
matrix based data, similar to the simulation data. Third, papers dealing with the
design and implementation of parallel Monte Carlo algorithms.

2.1 Background

An important paper covering the original version of the sintering simulation program
was written by Sutton et al. [29]. It gives a good view into the model and its
background. Postula et al. [23] describes the first attempt to map the simulation
program onto a specialized processor.

2.2 Sparse data storage

McKellar et al. [18] deals with pagination of large matrices, i.e. how the elements of
a matrix should be mapped to pages in order to yield the minimum number of page
faults. The partitioning of the matrices is done in either row storage or sub-matrix
storage. Efficient storage of large matrices is also discussed by Sarawagi et al. [26].
The word chunking is used instead of pagination to indicate the division of an array
into smaller storage units. The article also mentions reordering of the array to achieve
faster access. The advantages of decomposition, in this case by using tiling, and
compression of large data sets are briefly discussed by DeWitt et al. [8]. The data sets
dealt with in the article are geographic imaging for a GIS database.

A sparse matrix is defined as containing only a small number of non-zero elements.
The data dealt with in this report is not sparse, but large parts of the resulting array
have the same value. Thus, for a subset of the array the contents can be seen as
sparse. Ujaldon et al. ([30], [31]) investigates various techniques of storing sparse
matrices in order to perform better in parallel. A more efficient lookup and a lower
decomposition overhead are achieved at the cost of worse load-balance and locality.
Lin et al. [17] further discusses various storage schemes, implementing three of them
on a parallel machine with distributed memory. When computation activity is focused
on only a relatively small region of a large matrix, that region can be reformatted into
a sparse data structure according to work done by Cheung et al. [6]. The reformatting
would allow for a more efficient computation. The workload of the algorithm this
paper is concerned with is in fact a large array with the actual computation focusing
only on a few smaller regions of the array.

Seamons et al. [27] deals with the handling large arrays with concerns of I/O
performance. The article discusses chunking and compression and the combining of
the two. It also briefly reports on two compression algorithm and having modified
them to work on data already in memory.

 5

2.3 Parallel Monte Carlo algorithms

Cvetanovic et al. [7] reports on the results from parallelization of various algorithms.
The algorithm of interest for this report is Monte Carlo simulation. The article
compares the implementation of three parallel strategies for Monte Carlo simulation.
The three strategies were implemented on two different shared-memory systems.
Parallelization of a Monte Carlo algorithm for simulating ion implanted particles is
discussed by Hössinger et al. [15]. The algorithm is run on a cluster of computers
using the MPI (Message Passing Interface) standard. The problem data is divided into
sub-domains and each sub-domain is mapped to a slave process. A master process
monitors the slaves’ performance after the first time step and balances the load
accordingly, i.e. more sub-domains are mapped to faster slaves. Communication
between the slave processes will only be necessary when a particle leaves a slave’s
sub-domains.

Other than dealing with vectorization of a Monte Carlo algorithm for Electron-
Gamma showers, Miura [19] also describes parallel implementation of the same
algorithm. A shared stack or queue with particles is used, each process fetching work
from the stack. This way load balancing is automatic. The article also describes the
need of a parallel random number generator in order to receive the same results for
the same problem. Beichl et al. [4] discusses the implementation of a parallel Monte
Carlo algorithm for Molecular beam epitaxial growth for a two-dimensional model. In
the implementation CMMD communication library is used for message passing. The
model is divided into uniform sub-grids where one processor is assigned to each sub-
grid. Most of the article deals with conflict resolution between neighbouring sub-
grids, but it also mentions the importance of a parallel random number generator.

Another Monte Carlo algorithm, in this case dealing with the folding of large
proteins, was parallized by Ripoll et al. [25]. A number of slave processes perform
independent tasks, thus no communication is needed between the slaves. There may,
at times, be fewer independent tasks available than the number of processors, leaving
processors idle. Message passing between slaves and the master process is done
through the iPSC/2 interface.

2.4 Summary

In this work, we propose chunking of the simulation data model into smaller grids.
Sparse storage schemes are used on the contents of the grids when it is possible and
necessary. There can be no one-to-one mapping of any of the related parallel Monte
Carlo algorithms to this project. Instead, we propose using a shared circular queue
from which the processes can fetch grids to perform work on. This technique is
similar to the shared stack of particles described by Miura [19]. An important
difference is that unlike the particles the grids can not be seen as independent.
Therefore, the proposed parallel algorithm needs to be able to resolve grid conflicts,
as discussed by Beichl et al. [4].

 6

3. Sintering

The ISO definition of sintering is “The thermal treatment of a powder or compact at
temperature below the melting point of the main constituent for the purpose of
increasing its strength by bonding together of the particles.” [9]

Sintering is mostly used with ceramic powders creating sanitary wares such as sinks,
bathtubs and toilets. But in the following text we are interested in solid-sintering of
“elemental” powders.

First we look at the underlying atomic process which makes sintering possible.
Thereafter follows a description of the actual sintering process. At last we take a look
at what products are currently being made by sintering.

3.1 Diffusion

Here follows a short presentation of diffusion based on the work of Shewmon [28]
and Moran [22].

The reason to study diffusion is to learn how atoms move in solids. The diffusion of
atoms is one of the most fundamental processes that control the rate at which many
transformations occur. There are several different kinds of diffusion but in this report
focus is put on self-diffusion. The reason for this is that the inputs that are considered
are systems containing just one type of atom and self-diffusion is the process of
movement of chemically identical atoms within a solid specimen.

Early work within the field of diffusion was conducted by Adolf Fick who in 1855
presented a paper where he derived two laws of diffusion. In the laws he introduces
the concept of a diffusion coefficient which determines the rate with which elements
move in a given solid by diffusion. The SI unit of the diffusion coefficient is square
meters per second. The diffusion coefficient is sensitive to changes in temperature
and varies between different elements.

The study of diffusion has later focused more on the actual atomic process, the
movement of atoms. The diffusion coefficient can be related to the atoms’ jump
frequencies and jump distances. This naturally means that the jump frequency is
sensitive to temperature changes. “Near melting point of many metals each atom
changes sites roughly 108 times per second.” [28]

Diffusion occurs to produce a decrease in Gibbs free energy. Every atom oscillates
around its equilibrium position in the lattice. An atom with extra energy oscillates
more violently than other atoms. If it has an adjacent vacant site, a neighbouring
equilibrium position that is unoccupied, and if the oscillation is large enough it may
move to that position. In order to perform the move the atom must also squeeze
between two neighbouring atoms, as shown in Figure 1. This means that the two
constraining atoms must simultaneously move apart. That movement will cause the
entire lattice to dilate or expand temporarily. The lattice distortion sets a barrier to
how often an atom can jump. In contrast to interstitial movement, where smaller
atoms migrates by forcing their way between two larger atoms as show in Figure 2,
the energy barrier is huge.

 7

Figure 1: An atom squeezing between two of its neighbours. [5]

Figure 2: A smaller atom squeezing between two larger atoms. [5]

Regardless of how much extra energy an atom has it can not move unless there is a
neighbouring vacancy site. The rate at which an atom is able to jump within a solid
will, thus, clearly be determined by how often the atom encounters a vacancy and this
in turn depends on the concentration of vacancies within the solid specimen. Both the
probability of jumping and the concentration of vacancies vary with temperature.

An important observation can be made. The diffusion of atoms into vacant sites can
just as well be thought of as the diffusion of vacancies onto atom sites. The difference
is that a vacancy is always surrounded by sites which it can jump to (Figure 3).
Although, a move must always involve an atom; a vacancy can not change place with
another vacancy. The atomic jumps of the vacancies are completely random, thus are
made in all directions and follow no particular pattern. Once a vacancy has exchanged
place with an atom, where the atom actually made a jump into the vacant site, there is
a higher probability that it will make a jump back to its previous position than
anywhere else.

 8

Figure 3: (A) The atom may only move to the vacancy, (B) where as the vacancy may move in any

direction. [32]

It should be noted that defects within the solid specimen such as dislocations and
grain boundaries have a higher rate of diffusion.

3.2 Sintering process

The information in this section is composed from books by German [11] and Kingery
[16].

The ingredient of sintering is a powder (Figure 4), which most often has been
compacted under pressure. The powder is then heated at a temperature below its
melting point. This will cause the powder to bind together and form a solid substance.
More exactly the sintering process provides energy to make the particles of the
powder weld together.

Figure 4: Very fine aluminium powder which can be used for sintering. [12]

The result of the sintered powder can have a number of improved properties such as
increased strength, hardness and conductivity. The only disadvantage is that the
powder compact will shrink during the process.

 9

The driving force of sintering is a reduction in the system free energy. The reduction
is accomplished through diffusion, as described in previous section. Initially sintering
will cause surface diffusion where necks are formed between particles as shown in
Figure 5. The free energy of a particle can be related to its surface area. On an atomic
state, the movement of atoms to form the neck is favourable because it reduces the net
surface energy by decreasing the total surface area. During this stage there is no
shrinkage. At a later stage there will be bulk diffusion as well as surface diffusion.
During bulk diffusion, atoms within the particle may move (Figure 1) eventually
causing vacancies to surface. The atom movement will start filling the pores within
the powder and along the edge between the particles. Together, this movement and
bulk diffusion make the substance become denser and shrink. In the end of the
process the pores become isolated and the diffusion rates are extremely small. It is
near to impossible to create an end result with 100% density through ordinary
sintering.

Figure 5: Matter is transferred from the surface into the area between two particles, forming the neck.

[2]

There are several factors which control the sintering rate. The size of the particles in
the powder is very important. As the particle size is decreased, the rate of sintering is
increased. The sintering rate is, just as diffusion rate earlier, also strongly dependent
on the temperature. Another factor that plays an important part in the result of the
process is the sintering atmosphere.

There are various ways of measuring the substance progress during sintering. One
method is to monitor the neck growth between particles or the density of the
substance. It’s also possible to measure the substance’s shrinkage or free surface area.

3.3 Sintering products

Not until after the Second World War did products made from sintering become
available at a larger scale. The arrival of these products was due to the progresses
within the field of sintering made during the war. The driving bands for artillery were
made of copper, but there was a shortage of that metal in the Western Europe. Other

 10

solid metals, like iron or steel, prove to be poor replacements for copper because of
their hardness. Eventually research within sintering of iron powder created a product
which could replace the copper as part of the artillery driving bands. After the war the
automobile industry became by far the biggest consumer of sintered parts and still is.

Most parts made by sintering are small, weighing around 10g. Some examples of the
components currently being created are gears of various kinds and sizes (Figure 6),
magnetic parts, electrical contacts, filters and metal working tools.

Figure 6: Various gears made through sintering. [20]

The text of this section was compiled from the book “Powder metallurgy: the process
and its products” by Dowson [9].

 11

4. Background

The background for the sintering simulation consists of the original experiments from
which the model is derived. The content of the simulation data is individual sites
within and around the particles. The data and the initialization of it are described after
the original experiment. Last follows an introduction to the original application, its
core simulation algorithm and all output generated during a simulation.

4.1 The simulation model

The simulation model described in this chapter was derived from an experiment
dealing with copper wires, originally performed by Alexander and Balluffi [29]. The
copper wires each has a diameter of 128 μm and are wound around a copper spool.
They are then sintered at temperatures between 900˚C and 1000˚C for up to 600
hours. Cross sections of the wire are examined during different time intervals, the
resulting images can be seen in Figure 7. These experimental results can be simulated
by a series of close packed circles, which are of the exact same size and shape.
Because of this only a subset of the problem needs to be simulated. The behaviour of
four circles can be multiplied to create the same images as in Figure 7.

Figure 7: An etched cross-section of 128 μm diameter copper wires after sintering at 900 ˚C for 600

hours. [29]

4.2 The simulation data

The input is a representation of a number of closed packed circular particles.
Currently the data generated can consist of four particles. The actual atoms and holes
or vacancies of the data model are mapped onto a hexagonal grid, giving each atom
six immediate neighbours as seen in Figure 8. This model is consistent with the
atomic structure of Copper.

 12

Figure 8: The hexagonal atom pattern where the site marked by X has six immediate neighbours.

Each site in the data corresponds to either an atom belonging to one of the particles or
a type of vacancy. There are five types of vacancies which are of interest and they are
surface vacancy, pore vacancy, pore surface vacancy, grain boundary vacancy or bulk
vacancy. Which type a vacancy should be is determined by its neighbouring sites
(Table 1 and Figure 9). Vacancies of the type free space are generally outside the
range of interest for the simulation. The atom sites are represented by a number to
identify which particle it belongs to. During the simulation an atom site may change
particle, as will be discussed later.

Figure 9: The different areas within the model.

Grain boundary
Pores

Bulk

Free surface

 13

Table 1: List of the vacancy types and their characteristics (use Figure 9 as reference).

Vacancy type Neighbourhood
Free space Outside free surface
Grain boundary At least two atoms from different particles and/or other grain

boundary vacancies
Pore Inside the pore but without any atoms as neighbours
Free surface Between atoms from one particle and free space
Pore surface Between atoms from one particle and pore
Bulk Surrounded by atoms from one particle, may have other bulk

vacancies as neighbour as well

The code that generates the data takes the number of particles, their radius in number
of atoms and the sintering temperature. A two dimensional integer array is created
and initially contains only free surface vacancies. The array maps to the hexagonal
data as seen in Figure 10. The centre of each particle in the array is then calculated
from the radius. By going through the array in row-major order and using the
particles’ centres each individual site is turned into a pore vacancy or an atom.

Figure 10: The neighbourhood of a site (marked by X) in the array and when mapped to the hexagonal

grid.

There is a natural balance between how many bulk vacancies reside in the particles at
a certain temperature and the particles’ size. That balance is called the equilibrium
concentration ec and is calculated from the total number of atoms N and the sintering
temperature T (˚K) (Equation 1).

⎥⎦
⎤

⎢⎣
⎡

⋅⋅
−

⋅+= − T
Nec 51062.8

1.1exp5.0 (1)

A number of sites containing atoms equalling the equilibrium concentration are
randomly picked and turned into bulk vacancies. The array is now searched again and
sites responding to surface vacancies or pore surface vacancies are correctly marked
as such. To find those vacancies the neighbourhood of each vacant site is
investigated. If there is at least one atom in the neighbourhood, the vacancy will be

 14

turned into either a surface vacancy or a pore surface vacancy. The array is then saved
to file.

The resulting data created does not contain any grain boundary vacancies. This type
only appears during simulation when a vacancy becomes surrounded by atoms from
two different particles.

4.3 The simulation algorithm

At the start of the algorithm the two dimensional data array, the matrix, is read from
an input file and the initial porosity and rugosity coefficient are calculated. These
values are updated throughout the simulation and occasionally written to files. The
file can then be used to compare the simulation data with physical experimental data
at different time intervals. These two values are discussed later in this section.

The algorithm used for simulating the sintering process of the copper wires takes
advantage of the observation made in Section 3.1 by using vacancy diffusion. Instead
of going through all atoms and determine if they should move, it only considers the
vacancies with at least one atom in the neighbourhood. Therefore, before entering the
main loop the matrix is read and a vacancy list is created.

Each step of the main loop starts by picking a site at random from the vacancy list
and randomly choosing a direction to jump to. If there is no atom at that neighbouring
site, the jump is disqualified. A special case that can also make the jump disallowed is
if a grain boundary vacancy was moved perpendicular to the grain boundary. Another
special case is when a move results in a bulk vacancy being created, that move is not
allowed if the total number of bulk vacancies equals the equilibrium concentration.

The use of random numbers will be continuous occurrence throughout this section.
Randomness for physical events is the most important aspect of the Monte Carlo
technique, named so because of the random element of gambling and the many
casinos in Monte Carlo. Therefore, an entire iteration through the vacancy list will be
referred to as a Monte Carlo step (MCS).

It should be mentioned that an identical algorithm where the sites are picked
sequentially from the vacancy list has been implemented as well. It showed similar
results as the random version. Therefore, it would not be incorrect to consider
vacancies in the same order every loop instead of randomly picking them from the
list. Although no longer using randomness to select which vacancies to attempt to
move, the Monte Carlo technique is still used to decide whether a selected vacancy
should move or not, by applying random numbers.

In order for a vacancy and atom to change sites the atom has to have an energy equal
to or above the activation energy. The probability that the atom has this energy is
related to jump frequency which in turn is related to the diffusion coefficient. The
algorithm assumes that all jumps involving a surface vacancy always has sufficient
energy to perform the move. The probability for a jump involving a grain boundary
vacancy or a bulk vacancy is then given in relation to the surface vacancy movement.
For copper these probabilities are 10-4 for bulk diffusion and 0.6 for grain boundary
diffusion. Thus, a random number is created for each bulk vacancy or grain boundary

 15

vacancy move to simulate the jump frequency. If the probability is lower than the
random number, the jump is disallowed.

Once a jump has been made, there is a chance that the movement will be reversed.
The diffusion process strives to decrease the overall energy of the system and an
atom’s energy is determined by the number of neighbouring atoms. Thus, if the
atom’s jump increased the number of adjacent atoms, the atom is likely to remain in
its new site. Whereas, a decrease in the number of nearest neighbours often causes the
jump to be reversed. The probabilities based on the change in the number of adjacent
atoms can be seen in Figure 11.

Figure 11: Graph plotting the probability of an atom reversing a jump depending on the change in

nearest neighbours. [29]

If the move has been made there are a few things that will be checked. The moved
atom may change particle type if it is surrounded by more atoms of another type. The
neighbours of the moved atom are checked and the moved atom is set to the same
type as the particle dominating the neighbourhood (Figure 12). There is also a chance
that a moved atom caused a small pore area to get enclosed as shown in Figure 13 and
the phenomenon is called a pinch off. This happens when two particle surfaces are
close to each other and the atoms cause a bridge to form between the surfaces. The
area, if small enough, will become part of the grain boundary. There is also the
possibility of a pinch off where the bridge is of the same atom type. In that case the
sites in the area become bulk vacancies and the equilibrium concentration might
temporarily be overrun.

Figure 12: (A) An atom moves into the grain boundary vacancy, (B) after the move the atom has one
neighbour from its own particle and four neighbours of another particle, (C) thus it becomes part of

that particle.

 16

Figure 13: (A) The atom marked X moves left and (B) blocks off a small part of the pore which

becomes grain boundary vacancies.

The moved vacancy will also need to be considered. If it is now part of a pore or the
free area, its neighbouring vacant sites must also become part of the pore or the free
area. And their neighbouring vacant sites must be freed as well. And so on.

Lastly, another special case considering grain boundary vacancy movement is
annihilation. In real life experiments, annihilation occurs by particles collapsing in
along the grain boundaries. Pore vacancies moving into the grain boundary and
causing these collapses is what makes the particle shrink and the pore to eventually
eliminate. In the algorithm annihilation happens when a moved vacancy is a grain
boundary vacancy and it is simulated by an entire row of atom moving through the
centre of mass of a particle, thus, effectively moving the grain boundary vacancy to
the surface of the particle (Figure 14). The surface of the particle could either be
actual free surface, pore surface or another grain boundary. If the vacancy ends up in
another grain boundary, it will try to annihilate again. The move always takes place
through the particle having the centre of mass closest to the vacancy. In case of an
annihilated vacancy ending up in the grain boundary, it could annihilate back again
through the same particle. Effectively ending in the same site it started. The chance of
annihilation occurring is determined by the annihilation coefficient, which is a
constant value set before simulation. Care must be taken when setting the coefficient;
a too high value will cause distortions in the final particle structure.

 17

Figure 14: An example of grain boundary annihilation.

The line from an annihilating vacancy through the closest centre of mass to a surface
is approximated by a modified Bresenham line algorithm [13]. It is modified to take
into count the hexagonal grid rather than rectangular.

As mentioned in section 3, there are several ways of measuring sintering
performance. In the algorithm the two features of interest are the pore size and the
pore shape. The pore size, porosity, is defined as the ratio of the number of sites in the
pore area Np to the total number of sites in the substance Ntot (Equation 2). The pore
shape is calculated as the curve formed by atoms on the pore surface Ns and the
number of vacancies in the pore Np. The rugosity is then the average pore shape for a
given number of pores, Npores (Equation 3).

tot

p

N
N

Porosity = (2)

()poresp

poress

NN

NN
Rugosity

⋅⋅
=

π2
 (3)

When the porosity becomes zero, the sintering is complete. During the process five
intermediate particle structures are saved. At the moment, those files can not be used
to restart the simulation. Figure 15 shows how the particles evolve during the
simulation.

Centre of Gravity

 18

Figure 15: This image shows how the micro structure changes during the simulation. [29]

 19

5. Memory model design

Before designing the parallel version of the algorithm the memory model has to be
revised. First the current memory model needs to be introduced, which will make the
need for revision obvious. An advantage of designing the memory model structure
first is that its changes will then also work with an only slightly modified version of
the original sequential code.

The individual atoms are arranged in a hexagonal pattern. This pattern is then mapped
to a two dimensional array. Figure 16 shows four particles as their hexagonal pattern
and how the same particles look in the matrix.

Figure 16: (A) Image of four particles in the hexagon pattern and (B) the same particles as stored in a

matrix.

When the simulation finishing the pores of the particles will have completely
disappeared and the resulting images are shown in Figure 17. From the figures it can
be seen that during the simulation a large number of the elements in the array remain
the same from the beginning to the end. The white outline around the particles
(Figure 17) showing the sites that have been moved, every site outside that white
outline has been of the same type through the entire simulation.

Figure 17: (A) Image of four particles in hexagon pattern after the sintering is complete and (B) the

same image as stored in the matrix.

 20

The two-dimensional array does not scale well with the problem size, nor does it treat
the sites differently. A site is stored using the same amount of memory in the array
regardless of type or if it has ever been updated. As shown in Figure 16 and Figure
17, a lot of the array will in fact be constant during the entire simulation. The fact that
the experimental model of Alexander and Balluffi will use more than one terabyte of
memory should make the need for a revision of the memory model obvious. But the
revision is necessary for another reason as well. Because this project deals with a
shared-memory system, the parallelization will result in several processes
concurrently accessing the same model. If the model remains unchanged, the access
to the two dimensional array will be restricted to one process only. That limitation is
unacceptable for parallel execution.

The storage proposed is done by partitioning the particles into four different kinds of
areas, called grids. It is expected that such a partitioning, chunking [26] or
decomposition [8], of the model will be successful because of the large amounts of
similar data in the model. The grid types, which are discussed more in detail below,
are free, bulk, pore and surface. The grids all have the same dimension and the model
is divided into a number of grids based on their size. The sites inside a grid determine
which of the four types the grid is.

5.1 Grid types

In order for the partitioning of the model to successfully reduce the memory usage,
the grids with sparse data must be found. “…significant savings in storage and
computation can be achieved if this limited sparsity can be handled efficiently” [6]. In
light of this, the different areas of sparse and dense data within the model cause the
following four grid types to be named.

5.1.1 Bulk area
A bulk vacancy is a hole inside a particle. This type of vacancy has a very low
probability of moving. In the case of copper at the sintering temperature the
probability is ca. 10-4 relative to the surface diffusion [29]. By definition a bulk
vacancy is only surrounded by atoms of the same kind and some times other bulk
vacancies (Table 1). The bulk vacancies are completely randomly distributed inside a
particle. The total number of bulk vacancies in all the particles is in the beginning of
simulation equal to the equilibrium concentration. The concentration is dependant on
the sintering temperature and the number of atoms in the model (Equation 1).
Throughout the process the number of bulk holes should rarely exceed the
equilibrium concentration; it is more likely the number will be lower than the
concentration. There is always a chance that a bulk vacancy will eventually make it to
the surface, thus becoming a surface vacancy. But there is also a chance that a surface
vacancy will migrate into the particle, thus becoming a bulk vacancy. For a particle,
the bulk vacancies can be considered to be non-zero data in a sparse array where the
zeros represent the current atom type.

It should be noted that the equilibrium concentration is extremely small at sintering
temperatures when compared to the number of atoms. Table 2 shows that equilibrium
concentration puts the number of bulk holes just over a million when the total number
of atoms is 50 billion. Because of this most of the bulk areas inside a particle will not
actually contain any holes. Therefore, it might be more effective to design a global

 21

storage scheme than a grid based one for the bulk areas. Another important thing to
note is that because of the low number of bulk vacancies compared to atoms and their
low probability of jumping the bulk data will rarely need to be updated. Even rarer
are the occasions when a bulk vacancy reaches the surface or a new bulk vacancy is
created. Thus, storage scheme for the bulk area doesn’t need to be very fast when it
comes to updating data, nor when making additions to or deletions from the data.

Table 2: The particle radius effect on number of atoms and the equilibrium concentration, when
dealing with a model of four circular particles at a sintering temperature of 1173 ˚K.

Particle
radius

Number of
atoms

Equilibrium
concentration

64 51,472 1
128 205,887 4
256 823,550 16
512 3,294,199 62

1024 13,176,795 248
2048 52,707,179 994
4096 210,828,714 3,974
8192 843,314,857 15,898

16384 3,373,259,426 63,589
32768 13,493,037,705 254,354
65536 53,972,150,818 1,017,413

A novel scheme has a global vector containing each bulk vacancy’s location in the
particle model. The vector has a fixed size equal to the equilibrium concentration,
using the fact that the concentration is the maximum number of bulk vacancies
allowed in the model. The bulk holes are sorted according to which particle it
currently resides in and every particle has a pointer or index to its first bulk hole in
the vector. If a bulk hole is moved, only its corresponding location data in the global
vector needs to be updated. Should a bulk hole be eliminated, i.e. reach the surface, or
a new bulk hole be created, the vector will need to be resorted and the particles’
pointers or indexes to the vector will have to be updated accordingly.

Searching the global vector has the potential of becoming very time consuming and
the access to the vector will have to be restricted in a multiprocessor environment.
Therefore, it may be better from a time performance perspective to mark the bulk
areas containing vacancies and treat those vacancies locally.

It is expected that bulk areas will generally appear in between 65% and 80% of the
grids and the ratio should stay fairly constant during the simulation. This makes the
name bulk even more suitable.

5.1.2 Pore area
The pore areas are created where two or three particles meet. These areas may contain
both pore vacancies and grain boundary vacancies and up to three types of atoms.
Throughout the simulation the number of pore areas will increase as sintering causes
the particles to move closer to each other. Meaning, some surface areas within the
pore will eventually become inhabited by more than one particle and thus be changed
to pore areas. It should also be mentioned that there are pore areas where two or three
particle surfaces meet but there are no holes between them. Such pore areas would

 22

not be of any interest to the algorithm as there are no way the atoms can perform a
jump. During the process more and more pore areas will end up having no vacancies
as the sintering causes the holes between them to annihilate.

There are atoms that don’t belong to the same particle throughout the entire
simulation. If an atom makes a valid jump which causes it to have more neighbouring
atoms of another particle than its own, it will become part of that particle (Figure 12).
This means that the sites within a pore area are clustered together depending on their
type. This also means that some pore areas will eventually become bulk areas as they
end up being completely dominated by atoms from one particle. If sintering is done
over a very long time grain growth can occur, which is when some particles grow
larger at the cost of smaller particles. The atoms of the smaller particles will then
eventually disappear into the larger ones.

As described earlier, part of the pore area might become victim of a pinch off. This is
when atoms form a bridge between the surfaces of two particles. The area now
enclosed by that bridge and the two surfaces of the particles will become a grain
boundary, if small enough. This is something to keep in mind for these areas.

Since the data within a pore area consists of so many different types of atoms or
vacancy sites it can not be considered sparse. But the fact that the same types of sites
cluster together should be used in an effective storage scheme. Another important
factor to consider is the pore areas that contain no vacancies, since these are of no
interest to the simulation algorithm. For the pore areas with surface or grain boundary
vacancies, the neighbouring types of each atom must be available in order to
determine if a jumping atom should change particle type.

Because of the lack of sparse data and the need for access to most sites in a pore area
a storage scheme where the data will be kept in a two dimensional array seems most
reasonable. The array will have the same dimensions as the area and each element
corresponds to a site in the pore area. If the area doesn’t have any vacancies the data
should be compressed, as it is of very little interest, in that state, to the sintering
process. This does not require any particular compression algorithm. But since the
data won’t be read by the simulation process until, and if, a vacancy makes it way
into the area; the algorithm should have a high compression ratio. Naturally, the
algorithm should work on data already in memory and leave the compressed or
decompressed data in memory as well, not having to store anything in files, as
mentioned by Seamons et al. [27].

The fact that the pore areas is expected to populate less than 2% of the grids and that
they will experience a lot of change, compared to bulk areas, there is little or no point
to consider compressions for the model sizes dealt with in this report.

5.1.3 Surface area
Surface areas can appear in two places: outside the substance and in the pores. For
both places a surface area consists of part of the surface from one, and only one,
particle. The surface of a particle is made up by a barrier of surface vacancies
between free vacancies and atoms of one type. When a surface vacancy and an atom
change lattice sites the move is assumed to always have sufficient energy. Meaning,
as a scaling factor, surface diffusion has a probability of 1 [29]. On the other hand, a

 23

surface jump often ends up with the atom having fewer neighbours than in its
previous lattice site, so there is a high probability of the jump being reversed. Because
of this, bulk holes next to a surface atom play an important part when considering the
reversing of a surface jump. Thus, when considering the memory model for any of
these individual partitioning areas the interaction between them must also be part of
the design.

One storage scheme treats the areas as sparse arrays only saving the actual surface
vacancies. The atoms and free vacancies are in this case treated as zero valued
elements. When a surface vacancy is picked for a jump, its neighbouring surface
vacancies can be fetched from the data. But which of the neighbouring sites are actual
surface atoms must be found in order to get the direction of the allowed jumps. There
are two possible solutions to this considered here. The area could have a general
direction stored with its data. The direction would then tell on what side of the surface
vacancy barrier the atoms are positioned. A second solution would be to assume that
the atoms reside in the direction toward the centre of mass for the current particle.
During the simulation the direction data of the first solution might have to be updated
and it would have to be calculated for new surface areas, whereas updating the centre
of mass is already part of the algorithm.

The surface vacancies can be stored using CRS (Compressed Row Storage) or CCS
(Compressed Column Storage) as described in [30] and [31]. Both of the schemes use
three vectors ROW, COL and DATA. In CRS, the non-zero elements store their data
and column index in the DATA and COL vector respectively. These two vectors will
have the same size. The ROW vector marks the beginning for each row in the DATA
and COL vectors. CCS works as CRS but with rows and columns interchanged. The
result of the two schemes applied to a sparse matrix can be viewed in Figure 18.
Because the data stored are only surface vacancies, there is no need to have a DATA
vector for the surface areas. And instead of using two separate vectors a special
buffer, as described in CFS scheme from [17], can be used.

Figure 18: (A) a sparse matrix and the resulting vectors when encoded with CRS (B) and CCS (C).

[31]

 24

A further improvement is to allow both CRS and CCS compression depending on the
data in the surface area. The choice is fairly simple, if the surface of an area has more
vacancies located in different rows than columns, the CRS scheme should be used.
And the opposite is true for CCS. This will allow for faster access to a specific
element in the array. An example of this can be seen in Figure 19 where the search
needs to investigate six vector elements for CRS encoding but only three for CCS
encoding. In surface areas, where the vacancies are evenly spread among the rows
and columns, one scheme can be set as dominant or the neighbouring surface areas
can be checked and a scheme is selected from that information. In order to allow two
different compression schemes each surface area must record its selected scheme. If a
surface vacancy jumps into a bulk area or free area, the area should be transformed
into a surface area with the same compression scheme as the area from which the
surface vacancy originated.

Figure 19: The search path to find element at (5,5) in a matrix (A) for CRS encoding (B) and CCS

encoding (C).

A second storage scheme, which is similar to the previous one, stores both the surface
vacancies and the surface atoms. The increased amount of memory needed for this
scheme is the price for always knowing the valid direction a surface vacancy can
move. In this case the DATA vector of the CRS and CCS schemes would have to be
used in order to decide if the element is a surface vacancy or an atom. A possible
second solution would be to have two ROW and COL vectors or two CFS buffers, one
for vacancies and one for atoms.

Grids of surface type are expected to make up roughly 5% of the total number of
grids. For small model, any surface area compressions will have little influence on the
memory usage, but as larger models are needed the same compressions might become
essential.

5.1.4 Free areas
There will be areas where there are no surface vacancies or atoms, mainly outside the
substance but also inside the pore. Because sintering causes the substance to shrink,
the free areas outside the substance will never be of much interest to the algorithm.
The free areas inside the pore will, on the other hand, become surface areas and
eventually pore areas as the pore continues to shrinks. Free areas will not contain any
data and there is therefore no need to design a memory model for them. They are of

 25

interest in the next section, when designing the partitioning of the entire particle
model.

The free areas go from having each site stored in the two dimensional array to being
treated as empty. The memory gained here is enormous, especially considering the
fact that the free areas are expected to take up as much as 25% of the grids and that
most of those grids will remain unaffected by the simulation algorithm (Figure 16 and
Figure 17).

5.2 The grid structure

In this scheme the two dimensional array of the original memory model is divided
into several equally sized grids, as in submatrix storage [18]. Each grid will be of one
of the types described in the previous section. An example of this can be seen in
Figure 20. As the simulation progresses the grids may change area type as movements
occurs inside them.

Figure 20: The grid pattern as applied to part of a model. S marks a surface area, B a bulk area, P a

pore area and, finally, F a free area.

Care must be taken when deciding the size of the grids. Smaller grids will be fast to
read and update, but may experience a low compression ratio and have more
transactions where an atom moves across a grid’s border forcing the neighbouring
grid to be read and updated as well. Larger grids may cause an overall worse
compression rate because grids have to be initialized with just a few sites of interest,
such as a large grid having just a few surface vacancies in a corner. But within an
actual large grid the compression rate will be higher, although updating the data may
be slower than for a small grid. The number of grids will also be important in the later
stage when the algorithm is parallelized. There must be enough of interesting grids,
i.e. grids with vacancies, to keep each process occupied without trying to read or
write the same grids.

In light of all these variables, selecting the optimal grid size in advance can be
difficult. The size may be optimal for the starting model, but as the particles shrink
the size might not be as good. Optimally setting the size is made even harder by the
fact that the shrinkage of particles is random, and varies between two runs of the
algorithm. Therefore, focus should be put on ensuring a high degree of parallelisation.
The grid size should be set so that the number of processor can run the code at the
same time with the minimum amount of pauses due to the same grid being accessed.

 26

For the four particles, as shown in Figure 16, which each have a radius of 60 atoms
the resulting array has 300 rows and 302 columns. A fixed sized rectangular grid for
this array will never fit perfectly. Instead the dimension will be increased slightly to
allow for the perfect fit. The new columns or rows will on the other hand just contain
free space vacancies that are never even considered by the sintering algorithm.

To store the grids the Offset Vector scheme (OV) [6] can be used, where the grids are
numbered as shown in Figure 21 and stored in an one dimensional array. Cheung et
al. [6] give two equations (Equation 4 and Equation 5) for OV when representing an
M x N sparse matrix. An array (Vf) contains the offsets of non-zero elements and the
second array (Vv) holds the data values for the elements. The elements in the sparse
array are located at x(a,b).

Figure 21: The grid indexes

() () ()()NiVNiVxiV ffv mod,= (4)
() bNaiV f +⋅= (5)

For this particle model the array Vf contains the grid numbers and the array Vv
contains the corresponding grid data. From a hole or atom at (x,y) in the particle
model the responding grid (a,b) can be found from Equation 6. The variables gx and
gy define the grid’s dimensions. The location, in the particle model, of grid Vf(i)’s top
left corner (x,y) is found by Equation 7 which is derived from Equation 4 and
Equation 6. N is the total number of grids along the width of the two dimensional
array for the original particle model.

() ⎣ ⎦ ⎣ ⎦()gyygxxba ,, = (6)
() ()() ()()()gyNiVgxNiVyx ff ⋅⋅= mod,, (7)

A slightly modified Offset Vector scheme has only a Vv array the same size as the
number of grids and no Vf array. So, the result from Equation 5 instead gives the
index for Vv directly, as seen in Equation 8. In this case all grids will be in memory,
even the ones only containing free space. But finding the data for a grid will no
longer involve having to search Vf for the grid number.

() iiV f = (8)

 27

5.3 Data initiation

There are a few points of interest when creating the grid and initializing its data.
Firstly, there are only two sites that are of interest when initializing the grid model.
That is the surface vacancies and the bulk vacancies. These are the ones that are later
moved in the algorithm. But it is still important to know where in relation to these
vacancies the particles and pores are located. Secondly, the total number of atoms
will need to be calculated in order to determine the equilibrium concentration. A
number of bulk vacancies equalling this concentration must then be added inside the
particles. Thirdly, the result must be written to file. This means that actual time of the
simulation is not bound to the time spent initializing data. It also means that the data
initializations phase only needs to be run once, unless a different bulk vacancy
distribution or another particle radius is needed.

The original initialization algorithm (section 4.2) investigates each individual site of
the model, first when adding the atoms and then when finding the surface vacancies.
Not only is this ineffective when the model becomes large, but this also means a lot
of access to each grid. Even though the data initialization only needs to be run once
for a particular problem size, the grid model will need a more efficient algorithm.
Especially when considering the fact that the Alexander and Balluffi model, with

5105.2 ⋅ atoms in each particle radius, results in more than 800 billion individual
sites.

One way to initialize the data would be to consider each grid and their sites. This
means creating a small matrix which is a subset of the original model. Use the same
initialization algorithm on all sites of that smaller matrix and then compress and save
them before reading next grid. The grid might then need to be read again if a bulk
vacancy is being added to it. Several grids might actually have to be read again if a
bulk vacancy is trying to insert itself at the boundary of a grid. This is because all the
neighbouring sites of a bulk vacancy must be checked so that none of them belong to
the particle surface. Saving the grids could be done to file directly in order to decrease
the memory usage. This algorithm would reduce the grid accesses, but still result in
all sites having to be individually investigated.

Another way to initialize the data is to only consider the surface of each particle. The
particles in the model being created are circular (Figure 16). Thus, creating a circle in
the hexagonal grid and then transforming the surface of that circle onto the matrix
model will give the actual particle surface. Another way to get the particle surface is
to draw the ellipse directly in the matrix. In both cases adding one to the radius of the
shape gives the surface vacancies enclosing the particle. To speed up the creation of
the surface, the symmetry of the circle and ellipse equations can be used,
Bresenham’s Circle Algorithm [13].

A third option can be designed which has the advantage of independence from the
geometry of the particles. In this case, the starting point is an atom on the surface of a
particle. The neighbours of that atom are investigated and surfaces added to the data.
If another atom is found, that atom’s neighbourhood is investigated. The algorithm
keeps adding surfaces until an atom found is the same as the starting point. This
surface walker algorithm is repeated for each particle.

 28

All these three schemes only check the surface sites, instead of every site in the
model. The surface areas become initialized as surface sites are added to their grids. If
a surface is added to an area where there is already surfaces belonging to other
particles, then that area is a pore grid. The other grids are easily initialized. They are
either free or bulk areas, so if a site of one of the remaining grids is an atom, then the
grid is a bulk area, otherwise it is a free area. The number of sites investigated will
thus be a lot less than the total number of sites in the model.

5.4 Summary

The two dimensional model is divided into a number of fixed size grids, a technique
called chunking by Sarawagi et al. [26] or decomposition by DeWitt et al. [8]. The
grids allow for locally sparse data [6] within the model to be taken advantage of,
especially for grids of type bulk or free. Together, the two types are expected to
represent 85% to 95% of the total grid population and therefore, because of their high
degree of compression, the memory used compared to the original model should be
reduced by at least a factor of 5. The other two grid types, clearly not expected to be
the majority, are the ones that are important to the actual sintering algorithm. The
grids of type pore contain different atoms and all kinds of vacancies and surface type
grids contain surface vacancies and free vacancies. The latter type can treat the
surface vacancies as sparse data which, when compressed, is expected to have a
noticeable memory usage reduction on larger sized models.

 29

6. Algorithm design

The parallelization is based on shared-memory system and asynchronous execution.
Meaning that all processes share the same main memory and each process executes at
its own rate, so called “lightweight processes” [3]. Another assumption made when
designing the parallel algorithm is that the model is divided into grids, as described in
previous section. The actual storage model of the grids will not be of importance to
the algorithm. This will ensure that several different grid based storage schemes can
be implemented.

Later in this section various designs for a parallel version of the code will be
considered. But first the sequential code receives a face lift. The face lift consists of a
few modifications that will ensure better performance both for sequential and parallel
execution. The code after the update will still contain some bottlenecks that set an
upper bound on the performance of any parallel algorithm. These limitations will be
identified and discussed.

6.1 Updating the sequential code

Before starting with the parallel design there are a few short comings in the original
code that should be addressed. The problems are updating the vacancy list, validating
a suggested move, special error detection code, the pore pinch algorithm and
improving file input and output. Already after these changes the simulation execution
time is expected to be much shorter, resulting in a very good platform to start the
parallel design from.

6.1.1 Vacancy list
One factor that makes the original simulation program slow is that it fails to update
the vacancy list correctly. Whenever a surface vacancy is moved from the surface of a
particle it should no longer be a surface vacancy and it should no longer reside on the
vacancy list. The white outline surrounding the particles in Figure 17 consists of
surface vacancies. The reason the white area is larger than the immediate surface of
the particles stems from the fact that the vacancy list is never purged.

A change in the algorithm is merited. An additional check should be added for each
move that is performed; where every surface vacancy in the moved vacancy’s
neighbourhood should be examined. If one is found without any neighbouring atoms,
it should be freed from the vacancy list and set as free vacancy, no longer a surface
vacancy.

Since a move consists of a vacancy changing place with an atom, failing to address
this matter will cause the algorithm to consider vacancies that has no valid direction
to move. They will be completely surrounded by other vacancies. And as the
simulation progresses the vacancy list will keep growing. For a large model this
means that eventually a very small percentage of the vacancy list have a potentially
valid move.

Another beneficial effect of keeping the number of vacancies up to date is that at
every intermediate stop where the rugosity and porosity is calculated will be faster. In
the original model the entire model is examined and each site corresponding to a

 30

surface vacancy has its neighbourhood checked. The rugosity and porosity
computations results in an inspection of all sites and an additional inspection of six
sites per each surface vacancy found. A correct update to the vacancy list however
means that the computation can be done without consulting the model. The
performance gain is two-fold by allowing the calculating process to complete faster
and by allowing the other processes to keep accessing and working on the model
instead of having to wait for the computations to be done.

6.1.2 Validating move
If a moving vacancy has picked its random direction to a site where an atom resides,
the move is made. After the site swap the probability of the move being made is
checked and also the probability of the move being reversed. If the move is
invalidated the sites are swapped back. Thus, two writes to the model is made for a
failed move.

A fairly small update to the algorithm is necessary where a move is not performed
until it has been completely validated. This means there would be no writes to the
model for a failed move.

The importance of reducing the number of writes to the model when dealing with
grids and parallel processes is two-fold. Firstly, a write will force a read grid to be
saved. Saving a grid is time consuming when using any kind of compression. There
may also be cases where a compressed grid can be read without decompressing it. A
write on the other hand always needs a decompressed grid. Secondly, in parallel a
grid may be read by any number of processes at the same time, but a writer must have
exclusive access. This is called the Readers/Writers Problem [3].

6.1.3 Special error detection code
Error detection code already exists in the original program, but there is need for more
detection in order to assure the correct execution of the parallel version. Therefore, in
the interest of simulation time, the code should be further specialized to allow the
program to run in a debug mode or a fast mode. In the fast mode all the error
detection will be disabled, which should give a greatly improved run time.

Another specialized error detection code that should be added to the program is an
override of the systems memory allocation function. The override should keep track
of how much memory has been allocated, to what part of the address space and from
where in the code. It should also keep track of freeing of the memory. At the end of
execution all memory allocations and de-allocations should be accounted for. If any
memory has not been freed, the part of the code that caused the memory leak can be
found. Finding and removing memory leaks should greatly improve performance by
both allowing for more memory being available and fewer allocations to be made. In
fast execution mode this special detection code should also be turned off.

6.1.4 Pore pinch
Also mentioned in section 4.3, it is possible that a moved atom caused a small pore
area to get enclosed as shown in Figure 13. This is something that is checked for each
move. And for each moved atom it does in fact perform a pinch off evaluation for all
its surface vacancy neighbours, regardless if the surface neighbours are actually
connected. This is fairly ineffective because if one surface neighbour has been

 31

evaluated for pinch off and the search concluded that there was no pinch off, any
other surface vacancy within that same region will lead to the same conclusion. In
fact, for a pinch off to be possible the moved atom must have separated its
neighbouring vacancies into at least two different regions. Only when a part of the
pore splits because of a bridge of atoms can a pinch off be possible. The last atom to
complete such a bridge is the only one that can cause the pinch off and that atom is
also the only one that will have separated its neighbouring vacancies into two regions.

Determining if surface vacancies in an atom’s immediate neighbourhood are
connected can be done at a low computational cost. The algorithm works by grouping
surface vacancies together as shown in (Figure 22). It starts with the first surface
vacancy found in the neighbourhood and then circles around the atom, all following
vacancies are added to the group until an atom is found. If any other vacancies are
found after the atom(s), they will belong to the second group. There can be at most
three groups of surface vacancies, group being a fairly misguiding term since they’d
only contain one vacancy each. It takes three atoms to separate three vacancies
making up for the total of six sites in the neighbourhood. Lastly, if a second or a third
group is being formed, but the algorithm returns to the first vacancy without having
encountered any atoms, then that second or third group should belong to the first
group (as seen in part C of Figure 22). When the all groups have been found, the pore
pinch computation is only run once for each group instead of once for each surface
vacancy. And further more, the pore pinch computation is only run if at least two
groups have been found.

Figure 22: (A) The neighbourhood of atom marked by X is investigated from the start point (B) in

clock wise motion adding unconnected vacancies to different groups and (C) at last connecting the end
of the search to the start.

6.1.5 File I/O
The last issue before considering the parallelization of the original code is the file
input and output. The data initialization stage writes a file that can subsequentially be
read by the main simulation algorithm. But the algorithm uses a different format
when writing to file, which means that the intermediate models that are written to file
can not be read by the simulation algorithm.

 32

The simulation and data initialization algorithms would benefit of common file
interface. This would ensure that a model written to file can always be read back into
the simulation.

There are environmental events, such as a system crash, which might cause sintering
simulation to exit. For long execution times it is important to be able to continue the
simulation from last saved model instead of restarting it completely. This change
alone can mean hours saved for any simulation. Other benefits achieved through a
common file interface is that changes to how the model should be stored on disc only
has to be made in one part of the code.

6.2 Limitations

Another stop before dealing with the parallel design is to identify the limitation of
concurrency. The obvious bottleneck is that several processes need to repeatedly
access the same model. But there are also other global data to consider, which will be
discussed first in this section. There are two parts of the simulation algorithm which
can substantially limit the parallel performance, namely vacancy annihilation and
pore pinch. The problem with vacancy annihilation and pore pinch is largely a result
of the model access limitation, but they still merit a separate investigation.

6.2.1 Grid access
As mentioned earlier the global data that is accessed most frequently is the model.
Not only must access to individual grids be synchronized, but also to the entire model
structure in order to assure access to more than one grid at the same time. For
instance, when a moving vacancy is in the corner of a grid, three grids, other than the
one containing the moving atom, must be read (Figure 23). The move can only be
validated if the process has been granted access to all those three grids, not just one or
two of them. Another process might own access to one of those grids, thus this
process must wait until access is granted to it. It is expected that the access to the
model will be the biggest limitation to parallel performance.

Figure 23: When atom (X) makes a jump to vacancy (V), inspecting the neighbourhood of the two sites

will cause four different grids to be read.

 33

One idea to reduce this problem would be to allow for several processes to read a grid
at the same time. Only when writing will they need exclusive access. The problem
with this strategy is that when a process wants to write to a grid that is shared, it must
either wait for the other process to finish reading the grid or pre-empt them.
Regardless of whether the process waits for or pre-empts the grid, all the other
processes potential moves must be invalidated. Thus, a lot of work is lost.

A far better strategy should be to minimize the risk of several processes sharing the
same grids. This is done by choosing a good grid selection algorithm and ensuring
that as few as possible of the neighbouring grids is needed at any given time. It is also
important to have a total number of grids large enough to guarantee close enough
independent execution for all processes. This will mean modifying the grid
dimensions for the same problem when increasing and, to a lesser extent, decreasing
the number of processes to be used. A large number of grids should have a big impact
on the degree of concurrency, but may greatly reduce memory performance. There is
a trade-off to be made there.

6.2.2 Global variables
Other global data that must be synchronized between processes is the centre of mass
for each particle and the counter for each different site type in the model. The code
should be altered to ensure that writes to these global variables are bunched together.
That way the synchronization is kept at a minimum, but will still be a noticeable
limitation.

The last group of global data is the file pointers. The files are rarely accessed and it is
expected that the synchronization pose a neglect able limitation.

6.2.3 Vacancy annihilation
As described in section 4.3 grain boundary vacancy movement may cause
annihilation. Annihilation is simulated by an entire row of atom moving through the
centre of mass of a particle, thus, effectively moving the grain boundary vacancy to
the surface of the particle. The process will have to write to a grid that is on the
opposite side of the particle, but before finding that grid it must access other grids
inside the particle when calculating the Bresenham line [13]. If one of those grids is
being accessed by another process, the annihilation will have to wait.

Waiting poses two problems. Firstly, it limits the parallel performance if the wait
causes the process to stop execution. Secondly, it may cause error of correctness,
since during the wait the surface where the grain boundary vacancy should end up
might be altered and the centre of mass used to approximate the line may move.

A solution to this problem is to allow the process to interrupt the other process that
has access to the grid through which the annihilation should take place. The
interruption could either lead to the process in charge of the annihilation to take over
the access to the grid or the other process may take over execution of the annihilation.
The first interruption scheme is fairly simple, but it would force the other process to
pre-empt any work being done to the grid. The second scheme is similar to how work
is passed between processes in a distributed system [15]. It is more desirable because
none of the processes will have to delay, but demands a larger part of the annihilation

 34

algorithm to be rewritten. The major part of the rewrite is to allow the events at either
side of particle to be executed separately.

6.2.4 Pore pinch revisited
There are more problems with the pore pinch algorithm when dealing with the grid
model and parallelization. Since the pore pinch algorithm is based on a depth-first
search [1], it has a tendency to follow vacancies in a straight line. This leads to a high
probability of leaving the current grid and having to write to neighbouring grids. The
write is caused by the flagging of sites to mark them as visited. A vacancy analyzed
by pore pinch will be stored as a temporary type to ensure that it is not investigated
again during the same pore pinch calculation. Writing to a neighbouring grid forces
that thread to gain exclusive access to it and it might also result in the grid having to
be restored.

To lower the probability of a pinch pore algorithm to leave the current grid a breadth-
first search [1] should be used instead of a depth-first search. A fairly simple
example of the difference can be seen in Figure 24 where the depth-first search
moves over the boundary of the grid whereas the breadth-first search stays within the
grid. Another benefit of breadth-first search is that there is no longer any need for a
recursive function within the algorithm. A recursive function causes many jumps in a
code and also a lot of stack variables to be allocated, none of which are good traits.
The width first search only needs some way to store which sites to investigate for
each depth; luckily the original search algorithm already has a position vector which
can be used for this. The similarities of the two different implementations can be seen
in Figure 25.

Figure 24: The pore pinch algorithm searching for an area of 9 vacancies as (A) depth-first and (B)

breadht-first.

 35

depth_first(site): Breadth_first(site):
ADD site TO list
LOOP each neighbour
 IF neighbour IS vacancy
 AND neighbour NOT IN list
 depth_first(site)
 END IF
END LOOP

ADD site TO list
LOOP all NEW sites IN list
 LOOP each neighbour
 IF neighbour IS vacancy
 AND neighbour NOT IN list
 ADD (NEW) site TO list
 END IF
 END LOOP
END LOOP

Figure 25: Pseudo code of depth-first search and breadth-first search versions of the pore pinch
algorithm.

The combination of dealing with the two issues, checking pinch off for every surface
vacancy in neighbourhood (as described in section 6.1.4) and having to write to
neighbouring grids, is expected to have a very positive effect on the parallel
performance. The time spent for each move is much shorter, that alone being a reason
for decreased run time, and in turn there will be less and shorter periods of exclusive
access to grids.

6.3 The parallel algorithm

After considering the improvements to the sequential part of the program and also the
factors causing limitation to the possible achievement in performance, the design
phase of the parallel code can start. The possible parallelization is governed by the
different independent parts of the code that will allow for concurrent computation.
Whenever two or more processors are performing work on dependent parts of the
code, one must be granted exclusive access to that particular part. Allowing for
mutual access to such a part of the code would mean the execution risks ending up in
an inconsistent state.

The main simulation code centres on iterating through all moveable vacancies and
validating potential moves through the Monte Carlo technique. The parallel tasks to
be assigned to different processes are therefore independent vacancies or grids. The
vacancy, or a vacancy in a grid, attempts to move. Independence between the tasks
assures that several moves can be considered, validated and performed in parallel.
Parallelization of the program can then be cut down into two major fields: the model
and the vacancy list.

The model makes up the case of how the grids or vacancies should be distributed
among the processes, in order to minimize the potential dependent moves. Load
balancing becomes an issue here as well. One process might receive more work than
other, forcing the other processes to wait. The distribution will be able to balance the
tasks by either static or dynamic partitioning.

A cleverly designed vacancy list can further assure independence of vacancies within
a grid and the neighbouring sites necessary to validate any potential move. Thus,
allowing for a higher degree of concurrency.

 36

Last, we have to consider how to ensure that dependent tasks are performed by one
and only one process at a time. But also that other processes waiting for access to
critical section of the code will have to wait as short time as possible.

6.3.1 Task selection
Section 6.2.1 describes the need of a good grid selection algorithm and even if the
individual tasks distributed among the processes are the movement of single
vacancies, grid usage must be effective and the work must be balanced between the
processes. This might be the single most important issue of the parallelization.
Therefore, a number of various schemes are considered in this section.

One grid selection strategy would be to divide the grids among the processes. Either
uniformly [4] or using dynamic load balancing [15]. Regardless of which of these two
schemes is used the execution of all processes has to wait for the slowest one at each
Monte Carlo step (MCS). A process may not start over on its part of the model until
all other processes have completed their step. For a uniform distribution this would
mean that a process assigned to grids with few vacancies will spend most its time
waiting for other processes. A dynamic load balancing scheme would ensure that
such a process received grids from the slower processes, but at the cost of the added
balancing computation and complexity, which might have to be performed by a
separate scheduler process. There is still need for synchronization between the
processes as a move might potentially cross the boundary between two processes’
areas. One way to deal with the boundary crossing would be to allow the
neighbouring processes to share the boundary strip, like a no-man’s-land [4]. Since a
move taking place at the boundary would only need to know a depth of two sites
across the boundary (Figure 26), the strip would be small. Another solution would be
to use data request and data deliver messages that interrupts the neighbouring process
causing it to act on the message [15]. The messages would either tell the process to
retrieve site data or to execute part of a move (Figure 27).

Figure 26: The neighbourhood of any two sites on direct opposite sides of a partion boundary are

limited to a strip of four sites in breadth with the actual border in the centre.

 37

Figure 27: Message passing between process A and B when dealing with the move of atom X to

vacancy site V (Figure 26).

The two strategies seem more usable for distributed processors because each process
only needs to know a subset of the problem. So, whenever a move is performed the
other processes only need to be informed of any updates to the global variables, their
grids will still be valid. This greatly reduces the amount of data transferred compare
to allowing any process to run any given grid.

Another strategy uses a master process which chooses guaranteed independent grids
and send them to slave processes [25]. An independent grid would have all its nine
neighbouring grids free and also, in the case of a grain boundary, the grids of any
potential annihilation path need to be free. The advantage is that there is no need for
synchronization between the processes. But there may not be enough independent
grids to keep all processes busy and the time spent finding independent grids might
cause processes to have to wait for work.

Many grids contain no vacancies and those that do tend to be neighbours, following
the surface of the particle. In light of this, finding independent grids and still allow for
scaleable performance when adding more processes might be hard, if not impossible.

A stepping stone before the next strategy is for the processes to fetch individual
moves [7]. A master process would select a vacancy and a random direction then pass
that on to a slave process to validate the move. The move could then be performed by
either the master process or the slave process. Allowing the master process to perform
the move means that the slave process is only reading data, thus it doesn’t need to be
synchronized. If two moves are done using the same data, i.e. the same neighbouring
sites, the master would select one of them and discard the other.

It is expected that this scheme would perform very poorly since the moves aren’t
guaranteed to be within the grid the slave last worked on. So, there will be a lot of
grids read over and over again for each Monte Carlo step. On the other hand the
scheme is easy to implement since it is roughly equivalent to the sequential code.

The last strategy is based on the processes fetching grids to perform work on. The
grids reside on a common queue [19]. One Monte Carlo step is finished when every

Process A

Process B

time

Deliver data (X) Request data (X) Move (X, V) Acc move

wait wait

 38

grid has been fetched from the queue. The queue will then be made ready for the next
step. Effectively, this means that the queue in question should be circular. In order to
make the selected grids as independent as possible, the grid indexes need to be
scrambled across the queue. This could either be done randomly or statically by for
instance taking every third index and skipping a couple of rows (Figure 28). The
reason for suggesting every third index is because for each highlighted grid in Figure
28A the neighbouring nine grids are different from any other highlighted grid’s
neighbours. Using every second index would result in shared neighbourhoods and
using every fourth index would have the selection returning to the first line of grids
earlier and thus result in more potential grid locks. A third option would be to reorder
conflicting grids positions in the queue. Whenever a grid selected from the queue is
not able to be run it would be moved to another position. Eventually the grids would
then be ordered optimally within the queue, a kind of dynamic load balancing.

0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 75 76
77 78 79 80 81 82 83 84 85 86 87
88 89 90 91 92 93 94 95 96 97 98
 A

0 1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20 21
22 23 24 25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40 41 42 43
44 45 46 47 48 49 50 51 52 53 54
55 56 57 58 59 60 61 62 63 64 65
66 67 68 69 70 71 72 73 74 75 76
77 78 79 80 81 82 83 84 85 86 87
88 89 90 91 92 93 94 95 96 97 98
 B

Figure 28: The grid selection in order to reduce potential grid locks. (A) First run starting on first row
and picking every third grid on every third row. (B) And in second run starting from the second index

on the first row. And so on, until all grids have been considered.

Further improvements can be made to the queue by using a Sliding Window
algorithm. Sliding window is used for network protocols [14]. The general idea,
shown in Figure 29, is that a sender has a window it can use to store several data
messages. As long as that window is not full it may keep sending messages. If the
window becomes full it must wait for the receiver to catch up and acknowledge some
of the outstanding data messages. For the grid model the window size is the same as
the total number of grids and the frames being sent are the actual grids. The grids are
ordered on the transmission queue according to the grid selection algorithm being
used. If a grid is being run and another process tries to access it, i.e. the process wants
to run the grid for the next Monte Carlo step, the process has to wait. As long as the
end of the window isn’t reached the processes can keep running grids. The advantage

 39

of this is that the processes won’t have to stop at the end of every Monte Carlo step.
This means that the processes will spend less time waiting and they will also be
spread further throughout the model.

Figure 29: The Sliding Window data transfer protocol. [24]

This strategy is only effectively useable for a shared-memory system, because any
given grid could during the simulation be used by all processes. If used in distributed
system, every process would have to be able to access any grid, thus resulting in
many and large network transmissions. But as a shared-memory strategy it is very
interesting. Firstly, there are only worker processes, which both decrease the
complexity and assure better CPU usage. Secondly, work balancing is done
automatically with faster processes picking more grids from the queue than the slower
ones. The only real limitation would be the sliding window. The window must have
enough grids to ensure that it doesn’t keep getting filled up, i.e. the model must be
split into enough grids to keep the processes busy (as mentioned in Section 6.2.1).

6.3.2 Vacancy list(s)
Once the task selection routine is good, there is further room to improve the
independence of the tasks. The sites involved in validating a potential move are
limited to the two sites changing position’s neighbourhoods, as highlighted by the
hexagon in Figure 26. The two sites are next to each other which add up in a total of
ten sites that need to be investigated. Once the move has been validated and if it is to
take place, more sites will become involved in the process. But focusing on just
validating the moves and their high degree of locality should make it possible to
greatly decrease the amount of data a process needs to have exclusive access to.

Let’s first review the case of using a global vacancy list as in the original simulation
code. In that case the entire grid selection process becomes useless. Of course, the list
could be sorted and sequential access to it rather than random access would allow for
a rather crude method of controlling which grids are used. The time needed to resort
the list for every update and also the complexity of ensuring not only grouping of the
vacancies belonging to the same grid but also keeping the processes from using
neighbouring grids is appalling. Another disadvantage of the global vacancy list is
that further synchronization would be needed to ensure exclusive access when
updating it.

 40

Therefore in order to utilize both an effective grid selection method and take
advantage of the locality of data when validating any given move, the design of the
vacancy list has to be changed.

The first improvement is the use of grid local vacancy lists. Thus a process will stay
inside the same grid for all the vacancies of that grid. But even when each grid has its
own vacancy list, the potential grids that is needed to validate a sequence of moves
within the list is all the immediate eight neighbouring grids. Either every move will
result in its neighbourhood being investigated and the necessary grids being locked or
the process will have to keep all the eight grids locked (Figure 30), in order to ensure
that no validated move has to wait to be performed. In the first case a lot of time is
spent determining the grids needed to validate a move and synchronizing grid access.
In the second case the number of grids in the model has to be large, and needs to
grow significally with each process added to the simulation and even with a fair
amount of grids in the model the risk of grid lock is unacceptable.

Figure 30: The highlighted grid’s neighbourhood, where all grids have to be locked.

To really take advantage of the data locality in the validation process and reduce need
for synchronization the vacancy list is divided into four sections (Figure 31). When
using this shy version of divide-and-conquer [1], the dealing with one subset of the
vacancy list results in only the current grid and three other grids to be locked. That is
the three grids needed for the move of a vacancy in the corner of the grid (Figure 23).
Each process will always maintain exclusive access to four grids. Not only is this a
great improvement compared to having nine grids locked down, but also is the time
having exclusive access to neighbouring grids reduce, since the grids needed for each
subset are different.

 41

Figure 31: A grid divided into four subsets, and the three neighbouring grids needed to be locked by

the highlighted subset.

An even further improvement can be drawn from the fact that it is only the two sites
closest to the grid boundary that needs the neighbouring grid for validation (Figure
26). Using more of the divide-and-conquer approach, the vacancy list is divided into
eight subsets, as shown in Figure 32. Only the corner subsets force the process to gain
exclusive access to three neighbouring grids. The central part will in fact only require
the current grid to be locked. The disadvantage of eight vacancy lists compared to
four is the increased complexity, resulting in more updates when moving a vacancy
and either higher amount of overhead saved per grid or more time needed when
reading a grid to create the lists.

Figure 32: The locked neighbours for the two types of highlighted border subsets; the arrows

indicating which locked grid belongs to which subset. The centre subset does not need any
neighbouring grids locked.

6.3.3 Grid locks
Now that the grid and vacancy methods have been examined in order to find good
parallel behaviour, it still leaves the possibility that two processes might want to
access the same grid at the same time. Whereas the previous two sections dealt with
minimizing the risk of a grid lock situation, this section will show various ways of
handling processes when the situation arise.

 42

Firstly, when dealing with a grid a process must gain exclusive access to it. The grid
locking mechanism must therefore satisfy the following four properties [3]:

1. Mutual Exclusion. At most one process at a time is executing the grid.
2. Absence of Deadlock. If two or more processes are trying to access the same

grid, at least one will succeed.
3. Absence of Unnecessary Delay. If a grid is free, a process is not prevented

from accessing it.
4. Eventual Entry. A process attempting to gain access to a grid will eventually

succeed.
Each grid will have a lock and the process owning a lock will have exclusive access
to that grid. If another process wants to access a grid that is locked, a grid lock
situation occurs which must be resolved.

Depending on the status of the process different strategies are possible for solving a
grid lock situation, but the easiest and most robust solution is waiting. The process
will be paused and put on a list to wait for access to the grid. When the grid is
unlocked, a process from the list is granted access to the grid. Most often the
processes will be picked from the list in a FIFO order (first-in, first-out), i.e. the list is
a queue. But there are some cases where a process needs to ensure access to more
than one grid at the same time. In that case, locking one grid at a time might cause a
deadlock. For instance, if two process need access to the same two grids to work on
their vacancy lists, they might gain access to one grid each and would then have to
wait forever for the second grid. This deadlock situation can be resolved by using the
spin lock strategy. A process sits in a tight loop examining all locks of the grids it
needs. Only when all the locks are free does it attempt to gain access to them.

If the process only needs access to the grid in order to perform vacancy annihilation,
the access is brief compared to a full Monte Carlo run of the vacancies in the grid. In
that case the process should not be forced to wait for the access. Either the access to
the grid could be taken by the process, pausing the process that currently owns the
grid’s lock, so called pre-emption. Or the work could be passed on to the owning
process. Allowing work to be passed on demands rewriting parts of the code to find
separate entities. Passing on work might also cause the model to temporarily be in an
incorrect state. For example, one process passes on the moving of the annihilating
vacancy to another process, but performs the atom movement in the grain boundary.
At that stage, before the other process finalizes the annihilation movement, the model
would temporarily have more atoms than at the start, which is wrong. Pre-emption on
the other hand, might result in the process losing access to its grid and that might
force it to cancel whatever it was working on. It will also cause the process to have to
re-read the grid once it has regained access to it. The time lost in this fashion will
have to be recaptured by the process that pre-empts the lock instead of waiting.

Another situation where putting process to sleep until the grid is freed might not be
the best option, is when there is other work that can be done. Discarding the
validation or performing of a move because of a grid lock is unacceptable, since it
would mean lost work and conflict with the Monte Carlo algorithm. But there are
places where a process would be able to find similar but non-conflicting work to do.
For instance, if a grid has several vacancy lists, as described in previous section, the
only demand on the process is to evaluate each list once. The order of evaluation is
not important. So, if evaluation of a list would result in a wait because one or more of

 43

the needed neighbouring grids are locked, another vacancy list could be selected. The
work on the locking vacancy list would be done later; hopefully by then the necessary
grids will be free.

6.4 Summary

After analyzing the flaws of the original version and the limitation of possible
concurrency, the parallel algorithm was decided to use a grid based approach. The
processes tasks are to consider one grid at a time and iterate through the vacancies,
attempting to move them. The grids reside on a shared list, a so called “bag of tasks”
[3], from which the process fetch their tasks. This allows for dynamic load balancing,
with faster processes fetching more work, as long as there is more work. To further
increase the independence of the tasks, the grids can be distributed randomly,
statically or dynamically on the shared list. The grids will also be iterated through in
subsections, allowing for fewer neighbouring grids to potentially be involved in
validating a move. Together, the bag of task and working on subsets of the grid are
expected to allow for a high degree of concurrency and should scale well if there are
enough grids and access to other dependent part of the code, such as global variables,
is not too extensive.

 44

7. Implementation

For clarity, the implementation description has been divided into three sections. The
first section deals with implementations to the simulation code that had nothing to do
with the parallel algorithm. The next section deals with the implementation of the
memory model. As such, the two first section’s changes were implemented without
having to deal with the problems that come with concurrent execution. The parallel
implementation and its four phases are described in the third, and final, section.

7.1 Sequential algorithm updates

There were several suggested modifications to the original simulation code made in
the previous section. But before making any additions, the entire code was
restructured. The restructuring phase played a vital role in reading and understanding
the code, and to clear the path towards future modifications. It also allowed for a
clearer plan as to what can and cannot be done, the limitation of keeping the core
simulation algorithm intact. The restructuring further ensured a separation of different
logical part of the code, so that modification could be kept fairly local.

Once the code had been restructured the main objective was to implement error
detection instructions. Any addition, regardless of how small, must still maintain the
correctness of the simulation process. By the addition of instructions to guard against
failure the transitions of the code from one version to another was kept much more
smoothly.

At last the implementations suggested during the design phase were implemented.
Updating the vacancy list proved to be a matter of surprisingly few modifications and
resulted in making the code look more logical and easier to follow. A disadvantage is
that after the vacancy list had been altered, the original code and the new improved
sequential version behave differently for the same random seed. This forces the code
to completely rely on the detection instructions for correctness.

Another improvement, that caused better performance than expected, was to validate
a move without actually performing it. The performance boost became clearer after
profiling of the original code. The profile proved that reverting an invalidated move
was in fact responsible for roughly 1% of the total execution time (see Appendix A).

The restructuring phase had unified the data initialization and simulation codes model
variables making the implementation of abstract file read and write routines much
easier.

In total, the updates made to the original version altered roughly 5% of the code.

The last part of the sequential implementation phase was to improve the data
initialization algorithm. The three different methods, mentioned in Section 5.3, that
only consider the surface of each particle were implemented. Of the three algorithms
only the last one, the surface walker algorithm, was correct. This due to the fact that
the particles weren’t exact circles in the hexagon pattern and that adding one to the
radius wasn’t enough to find the correct number of surface vacancies.

 45

7.2 Memory model implementation

Next implementation phase was to alter the memory model. This was done before
creating the parallel version, since the memory model should behave the same for
both parallel and sequential execution. Thus, the correctness of the new memory
model could be proven without having added the complexity of parallel processing.
In this phase there were two very different versions created. The first version was
based on minimizing the total memory usage, which later proved to cause the
execution time to be unacceptable. Therefore, a second version was implemented,
which was based more on speed rather than low memory usage.

Before talking about the two different memory model versions there are some
changes to the code that they have in common. This is, perhaps quite obviously, how
data is read from and written to the model. The original code directly uses the two
dimensional model array, but for grids there are a few things that must be determined
before anything can be done. The correct grid must be loaded into memory and it
must also be uncompressed. If a new grid has to be loaded into memory, the grid it
replaces might have to be saved and compressed to ensure that any change to it is
accounted for.

In both of the versions the main part of the model consists of a vector containing
pointers to each grid’s structures. The vector fulfils Equation 8 in Section 5.2
allowing for easy access to any grid. Because there are a lot of grid accesses having to
search the vector for a grid (Equation 5) proved to consume too much time. The
actual grid structure contains all the important data, such as the type of the grid
(section 5.1) and pointer to grid contents.

The bulk and free areas contain the same sites. In the case of a free grid it is either all
free space or pore sites whereas the bulk grid contains only atoms of one particle.
Therefore there is no need to save any contents along with these grids. Instead a flag
is used to indicate which site type the grid of type free or bulk contains. There is the
special odd bulk grid which will have one or more bulk holes, in that case the
locations of the holes will be stored on a list.

The first version involves two major parts. First, the vacancy list is created every time
a grid is selected for execution. This is separate from the grid accessing mechanism,
since a grid that is being access for anything but execution doesn’t need any vacancy
list. Second, surface areas are compressed with the CRS and CCS schemes. This
proved, as expected, to be extremely complex. Especially determining which side of a
surface belongs to the particle.

In the second version the compression of surface grids was completely discarded and
each grid had its vacancy list saved with it. The vacancy list was first set at a fixed
size, causing fairly poor memory usage. But varied size lists, on the other hand,
resulted in a lot of allocations and deallocations. By allocating the vacancy lists in
chunks, instead of for one vacancy at a time, the number of memory calls were
greatly reduce. In fact, the chunking was enough to bridge the allocation time gap
between the statically and dynamically sized lists.

 46

The bulk and free areas are treated identically in the two versions, except for the bulk
vacancies. In the first version, a separate list has to be saved along with the bulk grids
containing the bulk holes location. This is solved by using the contents pointer of the
grid structure as a pointer to the list, but it demands special code when handling the
bulk areas with vacancies. On the other hand, there is no need to construct a vacancy
list every time a bulk grid of this type is accessed, because the list can be used
directly. In the second version there’s no need for special treatment, the bulk vacancy
list is just stored as any normal vacancy list. This is something that shows another
benefit of saving the vacancy list with the grids.

There are a few more bits and pieces that are similar for both versions and deserve
some mentioning. When reading from a free or bulk area grid, there is no need to
decompress the data into a matrix. Both free and bulk areas only contain one type of
site, except for the odd bulk holes which can easily be checked without
decompression. Unfortunately, in the first version the surface areas must always be
decompressed, even just to read them. Writing to a grid of type free or bulk area, or
surface area in the first version, will force the grid to be decompressed into a matrix,
and that matrix would need to be allocated. To reduce the number of system calls for
memory a pool of sub matrices is created. When writing to an area that would
normally cause a matrix to be allocated, the needed memory is instead fetched from
the pool. Only if the pool is empty will the system be asked to allocate more memory.

As mentioned earlier, because of the memory usage being of lesser importance than
the execution time, the second model version was chosen for the parallel
implementation.

7.3 Parallel algorithm implementation

The completely updated sequential version of the code was a good base for the
parallel versions. The description of the implementation is in the second part of this
section. First follows a brief background of the pthreads library which was used to
allow parallelization of the code.

7.3.1 Pthreads library
The pthreads library defines a standard set of C routines for multithreaded
programming. Pthreads is short for Portable Operating System Interface (POSIX)
threads which is an IEEE standard. PASC (Portable Application Standards
Committee) [21] is the group that created and continuously develops the POSIX
standards. The library ensures thread management and synchronization which is
portable between different systems.

From now on the worker processes of the parallel sintering simulation algorithm will
be referred to as threads.

7.3.2 The parallel implementation phase
The first phase of the parallel implementation consisted of putting threads in charge
of the Monte Carlo steps. The necessary parts had to be taken from the main program
and put into the thread’s work load. The implementation was based on the last
strategy of the design in section 6.3.1. I.e. the work load consisted of each thread
picking grids for execution from a shared queue. The grids were then subjected to the

 47

same treatment as the entire model is in the original program. Vacancies within the
grid are randomly selected and a move is attempted in a random direction. The reason
for implementing this strategy is because it is the most suitable for a shared-memory
system, also the queue automatically ensures load balancing between the threads and
reading and writing grids are kept at a minimum.

As expected, forcing the threads to wait at the end of Monte Carlo step took a
substantial amount of time. Not only did the waiting threads cause the added time, but
also the fact that all the threads started picking grids off the queue at the same time
and at the same place. Therefore, the sliding window idea of section 6.3.1 was
implemented resulting in the threads never having to stop at end of the MCS. This
puts a lower bound on the number of grids; there must be enough grids so that the
threads don’t hit the end of the sliding window. If the number of grids is over that
bound gaining access to the shared queue is the only time limiting factor left when
ensuring that threads have grids to work on. This factor puts an upper bound on the
number of grids. Using too many grids will cause an increased number of accesses to
the shared queue, and thus, more situations where a thread has to wait. Using the
sliding window meant that a status indicator had to be added to all grids. If a grid has
its status set as running, another thread may not try to pick it from the list, nor may a
thread run any other grid in its immediate neighbourhood.

Moving on to the actual shared queue, it was first simply sorted by grid index. This
meant that the threads would pick grids next to each other, resulting in many grid
locks. Of the three queue arrangements suggested in section 6.3.1, the static sorting
described in Figure 28 was deemed best. The random approach was not much better
than the first grid index sorted implementation. Two neighbouring grids could still
randomly be placed next to each other in the queue, and cause a grid lock situation.
The dynamic sorting approach is, on the other hand, near to perfect but was discarded
because of the time spent updating the queue.

The second implementation phase investigated the further reduction of grid lock
situations based on the design ideas of section 6.3.2. Since the grid selection strategy
chosen already forced the code to commit to grid local vacancy lists instead of a
global vacancy list, that design issue was no longer of interest. The locking of nine
neighbouring grids, as seen in Figure 30, proved to cause a lot of grid lock situation,
even with the improved grid selection algorithm in place. Therefore the vacancy list
was mapped into four squares, each representing a corner of the grid Figure 31. The
Monte Carlo algorithm no longer randomly picked vacancies within the grid, but
instead was run separately for each vacancy list square. The change from a thread
locking nine neighbouring grids down to three neighbouring grids proved to nearly
eliminate all grid lock situations. In fact, the elimination is effective enough that there
is no need to consider breaking up the grids into smaller parts.

From the first phase, any grid lock situation was resolved by pausing the thread that
failed to obtain a lock, and waiting for it to be unlocked. The reordering of vacancy
list sequence and vacancy annihilation unlocking mechanism described in section
6.3.3 were now considered. Trying another vacancy list, when a grid lock situation
has arisen, only made the program run slower. This is due to the fact that the division
of the grid into four parts already nearly eliminated all such grid lock situation. Also,
the grid lock situation is resolved quickly, since the thread owning the needed lock

 48

only needs to perform work on a quarter of the grid before unlocking the
neighbourhood. The complexity of adding any of the vacancy annihilation grid lock
solutions was, in combination with the low number of annihilation that occurs,
grounds for not trying to implement the mechanisms. Also, when following the
annihilation line through the bulk of a particle, those grids should be free since they
contain no vacancies. Therefore the only problem is a grid locked at the opposite
surface of the annihilating grain boundary vacancy. If the grid is locked because of
being a neighbour to a running grid, the grid lock situation will be resolved quickly.
The real issue is when the grid causing the lock situation is an actual running grid.
But, because of the relatively few annihilations performed during a Monte Carlo step,
implementing any of the grid lock mechanisms is expected to give very limited
improvements (if any).

Before the third phase the code went through an extensive peer review. Generally, the
third phase then involved the code receiving several face lifts in the shape of extended
commentary, added type definitions and structures, and more constants. This ensured
that the code is easier to understand and modify. Most importantly, the third phase
removed all, up to this date, known bugs.

The fourth, and last, phase was perhaps the most important phase. Synchronization
between the threads had to be reduced; this meant identifying the parts of the code
resulting in bottlenecks. Once those parts were identified, they had to be remade as
best possible to allow for better concurrency. Because of the limitation of not being
allowed to alter the core simulation algorithm, this was fairly difficult.

In the end, the implementation resulted in doubling the amount of code found in the
updated original version (Section 7.1), leaving almost only the Monte Carlo
validation of a move unaltered.

 49

8. Evaluation

This chapter describes evaluation of the proposed parallel version of the simulation
algorithm. The chapter consists of four sections. The first section contains a brief
description of the tools used for evaluation. The second part deals with the
correctness of the new parallel version of the simulation algorithm. The correctness is
based on the original algorithm data and the model’s microstructure. In the third
section the new memory model is evaluated. The memory needed for different sized
models and grid dimensions is analyzed and also compared with the memory demand
in the original version. Finally, performance evaluation of the parallel simulation
program is presented in the last section. Not only will the execution time compared to
the original version be compared, but other important factors such as performance for
different model, grid sizes and number of threads. These factors show the scalability
of the program.

8.1 Tools

GNU gprof [10] is one important tool that was used to better understand which parts
of the program are critical for increased performance. Gprof is used to profile
programs and an example of such a profile can be seen in Appendix A.

The UNIX command time is not a tool but a shell script. It measures the real life time
a program spent executing, and also the CPU time used by the program in both user
and system mode. It is important to note that for parallel execution the CPU time will
be the sum of each individual threads CPU usage.

8.2 Correctness

Assessing the correctness of the new parallel version is perhaps the most important
part of the evaluation. It must have maintained the same basic sintering model as the
original program had. To ensure that the sintering simulation is still accurate, the
visual result and the data outputs of the original and the parallel version is compared.

The visual evaluation consists of making sure that the particles roughly have the same
shape at the end of the simulation. The data output is the porosity and rugosity of the
model, as described in Section 4.3, for different Monte Carlo steps. These values are
compared between the two program versions for each time interval.

Table 3: The two different models used for evaluation.

Model Particles Radius Atoms Vacancies
Small 4 64 59374 1607
Large 4 128 237619 3316

It should be noted that because of the limitations in the original simulation program
the particle models used for evaluation are small. The comparisons are based on the
two memory models listed in Table 3.

 50

8.2.1 Visual
The visualization is based on an in-built graphics generator of the original program.
Because of the changes in the memory model, the graphics generator is not part of the
parallel version. Instead, a converter was written which transform a file containing the
new type of model to the old type. The resulting file can then be run with the original
program and its graphics generator.

The converter also allows the two different versions to run with the exact same input.
And it makes possible comparisons between the new and the original data
initializations methods. Based on such comparisons, the two shape based data
initialization algorithm were proven incorrect, as described in the last part of section
7.1.

The simulation generated images from two different sized models can be seen in
Figure 33 and Figure 34. Each figure has two images: one from the original version
and one from the parallel version. The outline of the particles in both figures is almost
identical between the two versions’ images. There is also a similarity between the
outline of the particles between the two figures. This is important, since the particle
mass should strive to achieve a form which has a low surface energy. Inside the
shape, each individual particle is slightly different in the images. This is due to the
randomness of the atom movements in the algorithm, especially along the border
between the particles. Because the end results of the simulations are similar and in
parts identical, the microstructure and its behaviour from the original version is
maintained in the parallel version.

Figure 33: The particle structure after successful simulation of the small model (Table 3) as generated

by the original program (left) and the parallel program (right).

Figure 34: The particle structure after successful simulation of the large model (Table 3) as generated

by the original program (left) and the parallel program (right).

 51

There is one difference between the images, which is not part of the actual particle
mass, and that is the white outline that can be seen around the particles of the original
version. This phenomenon is due to the incorrect update of surface vacancies and it is
described in section 6.1.1. Thus, it has no importance concerning the correctness of
the parallel version.

8.2.2 Porosity and rugosity
The visualization has proven that the sintering algorithm is maintained correctly in
the parallel version, at least at the very end of the simulation. To prove that it also
behaves correctly during the course of the simulation the output data will need to be
compared. The porosity and rugosity is calculated at different time intervals of a
sintering simulation. The underlying equations which the calculations are based on
are described in section 4.3. Even between simulation runs the values at each interval
is different, depending on both the input model and the randomness of the algorithm.
Therefore to get a more accurate comparison the average from 10 and 5 different
simulations is used.

Figure 35 shows the results gained when using the small model (Table 3). As can be
seen both the porosity and rugosity values are similar. That is especially true for the
first two million Monte Carlo steps where the absolute error is within 0.05 (Figure
36). At the last part of the simulation process the parallel program diverges to zero at
a much faster rate than the original program. This is to be expected, because the
changes to the update of the vacancy list described in section 6.1.1. The parallel code
will have a very small list in the end, and therefore quickly annihilate the last pore
vacancies. The original code, on the other hand, has a list the size of all the surface
vacancies found during the entire process, therefore it takes time before it randomly
finds and removes all pore vacancies.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0
21

0
42

0
63

0
84

0
10

50
12

60
14

70
16

80
18

90
21

00
23

10
25

20
27

30

MCS (k)

Porosity (Original)

Porosity (Parallel)

Rugosity (Original)

Rugosity (Parallel)

Figure 35: Plotting the average porosity and rugosity from 10 simulations of both the original and

parallel sintering program using the small model (Table 3).

 52

The reduction in Monte Carlo step due to the correct update of the vacancy list
becomes more noticeable when moving on to larger models. In Figure 37, the parallel
version completes the simulation about two million Monte Carlo steps earlier than the
original version. During the earlier parts of the simulations, when the vacancy lists
are still roughly the same size, both the porosity and rugosity values are within a
neglect able margin of error. Thus, for the problem sizes that the original code can
handle, the parallel version behaves correctly.

-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0

18
0

36
0

54
0

72
0

90
0

10
80

12
60

14
40

16
20

18
00

19
80

21
60

23
40

25
20

27
00

MCS (k)

Error (Porosity)

Error (Rugosity)

Figure 36: Plot of the porosity and rugosity difference between the original and parallel simulations

for each Monte Carlo step.

 53

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0

90
0

18
00

27
00

36
00

45
00

54
00

63
00

72
00

81
00

90
00

99
00

10
80

0

11
70

0

12
60

0

13
50

0

14
40

0

MCS (k)

Porosity (Original)

Porosity (Parallel)

Rugosity (Original)

Rugosity (Parallel)

Figure 37: Plotting the average porosity and rugosity from five simulations of both the original and

parallel sintering program using the large model (Table 3).

8.3 Memory usage

Evaluation of the memory usage is not limited to the small sized models of Table 3.
Instead, the original program’s memory usage can be derived from the model size,
which is based on the particle radius. There will be no need to run the original data
initiation algorithm, which will allow for larger model sizes than it can really handle.
It is also relevant to evaluate the memory usage of the new memory model based on
different grid dimensions.

For the small sized models, that the original simulation code can handle, the new
memory model doesn’t offer much improvement (Figure 38). But already at a radius
of 512 atoms the difference starts to show. At a point between the radius of 2048 and
4096 the original model ends up being larger than one gigabyte. When the new
memory model passes the 100 megabyte mark, the original model has already gone
beyond 100 gigabytes. This proves the grid based model to be extremely successful,
even though many of the compression schemes considered during the design were
discarded (Section 7.2).

 54

0

100

200

300

400

500

600

700

800

900

1,000

64 128 256 512 1024 2048 4096 8192 16384 32768

Radius

M
em

or
y

(M
B

)

Original

Parallel

Figure 38: Memory used by the original and parallel version for models with four particles.

The grid dimensions play an important part in the size of the model. The compression
achieved by the partitioning varies but more important is the difference in overhead
size for keeping all the grids stored in a list. The influence of different memory
structure on the total memory usage for grid dimensions can be seen in Figure 39.

0
20
40
60
80

100
120
140
160
180
200

32 64 128 64 128

32 64 64 128 128
Grid height and w idth

M
em

or
y

(M
B

)

Grid list

Grid data

Vacancy list

Figure 39: The memory needed for a model with four particles and 16384 atoms in radius; the

memory needed is broken up into the grid list, grid data and vacancy list.

The vacancy list plays a very small role, because it is dynamic instead of static
(section 7.2). Since the chunks that make up the list are relatively small (set to four
vacancies per allocation in Figure 39), its size is dependant on the number of
vacancies in the model, rather than the grid dimensions. But the vacancy list is also

 55

part of the overhead data. Each grid has a structure containing pointers to four
vacancy lists and four vacancy counters. Four of each because of the division of the
grid into squares as described in section 6.3.2. The overhead is also due to saving the
type of grid (section 5.1), a pointer to the grid’s contents and the status of the grid.
The status is whether the grid is being executed by a thread or not (section 7.3.2). In
total, the overhead is 32 bytes for any type of grid. The last part of Figure 39, the grid
data, is the memory needed to store the contents of each grid. Only grids of type pore
and surface add to that number. A smaller grid dimension means fewer grids of those
types, and also that less memory is needed to store the contents of those grids.

8.4 Parallel performance

Because of the fact that the number of Monte Carlo steps varies between each
simulation run, and also varies greatly between the original and parallel version,
performance measurements should not be based on execution time of a simulation. In
order to achieve a common ground between the original and parallel programs the
comparisons are based on CPU time spent per MCS. Furthermore, the measurement is
done on the first million Monte Carlo steps, because then the original and parallel
algorithms have roughly the same workload. This is based on the fact that over a
million MCS the parallel version has a noticeable lower number of vacancies in its
workload made apparent by a smaller porosity value (Figure 35).

The parallel performance evaluation was run on two different multiprocessor systems
(Table 4). Agave is slightly faster than Altix64, but it is a shared system where the
number of CPUs and memory available cannot be guaranteed. Altix64 has the
advantage of ensuring that all pre-specified resources (such as CPUs and memory) are
available throughout the entire program execution. Unfortunately, Altix64 is heavily
used, and it is therefore difficult to run applications needing too many resources.
Also, Altix64 suffered from many forced reboots and system failures due to power
loss. Because of this Altix64 was mainly used for the correctness evaluations in
Section 8.2.

Table 4: List of the two available multiprocessor systems.

 Agave Altix64
CPUs 12 64
CPU type SUN UltraSPARC III Intel Itanium II
Clock speed N/A 900 MHZ
RAM memory 24 GB 64 GB
System bus 2.9 GB/s N/A
Operating System SUN Solaris 9 SGI ProPac 2.4

As can be seen in Figure 40, the parallel version greatly outperforms the original
simulation program. Even at small models the difference is noticeable, although that
is mainly because of the sequential based changes made in the parallel version
(Section 7.1). Since the measurement is only taken from the first million MCS, the
original version can be run with larger models than it normally can handle. For those
models, the original program would in reality not ever be able to finish the sintering
simulation. The reason for this is ones again the failure to correctly update the
vacancy list (Section 6.1.1). Models with particle radii over 250 atoms result in the

 56

original version to eventually have such a big vacancy list, that the actual moveable
vacancies are almost never randomly selected. Thus, the simulation will never finish
within a reasonable amount of time. It is for the larger models that the parallelization
of the algorithm enhances the performance, rather than being a result of the sequential
based changes.

0

10

20

30

40

50

60

0 100 200 300 400 500 600

radius

tim
e

/ M
C

S
(m

s)

Original

Parallel

Figure 40: The performance of the original and parallel versions of the sintering simulation,

measured in time per Monte Carlo step.

Section 7.3.2 mentions an expected upper and lower bound on the parallel
performance based on the number of grids in the model and the number of threads
used. The Figure 41 shows this expectation to be true where the optimal number of
grids for five or more threads is around 1800. When there are more than 1800 grids,
the high number of accesses to the common grid list forces the threads to wait for
each other. When there are less than 1800 grids, the threads will have to wait because
of either reaching the end of the sliding window or grid lock situations.

0

2

4

6

8

10

12

6000 4560 3420 2700 2160 1824 1520 1320 1155

grids

tim
e

/ M
C

S
(m

s)

3

4

5

6

7

8

Figure 41: Performance of the parallel sintering simulation on a model with 512 atoms in each

particle radius, for a varied number of grids and threads.

 57

The sequential changes making up the bulk of the parallel program’s performance
improvements over the original version when dealing with smaller models can be
seen in Figure 42. Unlike in Figure 41, the time per MCS stays fairly constant
regardless of the number of threads. The sequential performance is still dependant on
the number of grids. This is due to the fact that more grids means lower load times,
whereas less and larger grids means a fewer number of grid accesses.

0

0.5

1

1.5

2

2.5

930 620 420 315 240 192 156 130 110

grids

tim
e

/ M
C

S
(m

s)

3

4

5

6

7

8

Figure 42: Same as in Figure 41, but the model now has 128 atoms in each particle radius.

It should be noted that in both Figure 41 and Figure 42 the time per MCS is subject to
a slight degree of error because of the randomness in the workload. The figures still
paint the general pictures of which grid and thread settings may be optimal for the
two radiuses. Another factor to bear in mind is that the figures were based on results
from simulations on Agave (Table 4) and therefore it cannot be guaranteed that eight,
or even seven, CPUs were available during the entire execution of the simulation.

The expected result called for the parallel sintering application to be able to run a
model with 40000 atoms in each particle radius. The memory model has shown to be
capable of handling such a model. Unfortunately, the time and resource constraint
sets it beyond the scope of this report. Assuming that the parallel time per MCS is
linear in Figure 40 the Equation 9 can be fitted to the data, where r is the radius.

116.01034.1 2 +⋅⋅= − r
MCS

T (9)

A rough estimation of the number of MCS needed can be calculated with Equation 10
which was derived by Sutton et al. [29].

325 83045.071.48819999107003.2 rrrMCS ⋅+⋅+⋅−⋅= (10)

 58

The total time needed on Agave, using between six and eight processors, is then
estimated by Equation 11.

MCS
MCS

TT ⋅= (11)

For a model having 40000 atoms in each particle radius, the estimated time and MCS
needed are steps6.4 and steps13104.5 ⋅ . The total time is an unacceptable s14105.2 ⋅
or nearly eight million years. But this is estimations based on the Agave system with
not even 8 processors available. There are other factors to consider as well. Equation
10 is based on the original version, whereas Figure 35 and Figure 37 show that the
parallel version greatly reduces the number of MCS. Also, the time needed for each
MCS should not be treated as a constant. As the number of vacancies in the model
decrease, so will the time per MCS. Meaning that in the estimation the maximum
time per MCS is used, because it is measured from the first million MCS of the
simulation execution.

 59

9. Conclusions and future work

In this master thesis studies of sintering, diffusion, sparse data storage and parallel
implementation of Monte Carlo algorithms were combined to improved performance
of a sequential sintering simulation application. A grid-based solution was used to
break up the simulation model, i.e. all individual sites within four particles and their
immediate surrounding. The division of the model allowed for locally sparse data to
be used which resulted in greatly reduced memory usage (Figure 38). Parallelization
was achieved by allowing processes perform concurrent Monte Carlo steps on
separate, independent grids. Working on subsets of the grids and using a good grid
selection strategy resulted in a high degree of independence among the grids.
Evaluation proved the speed-up gained through parallel execution to be a factor of 10
(Figure 40) and the simulation time decreases when adding more processors (Figure
41).

9.1 Conclusions

As always when dealing with simulations of a real life phenomenon it is important to
understand the background and underlying processes. In this case diffusion is the
underlying process that makes sintering possible. Perhaps the most serious aspect of
this project was to ensure that the core of the original sequential simulation algorithm
was kept intact through the transaction to a parallel program. Regardless of how much
performance can be gained by alteration of the algorithm, the sintering process must
remain the same. As such, the real life aspect of the algorithm is a severe limitation to
the evolution of the simulation program, but it also sets an effective block on the
project scope. In the end, performance gain through parallelization was possible
without the core of the simulation algorithm being altered. Thus, the single most
important goal of this project was reached.

The employment of a grid based division of the particle model used for the simulation
proved to result in an extremely good memory usage reduction. It easily meets the
goal of being able to handle billions of atoms and in fact, the expected memory usage
was beaten by more than a factor of ten. This proves just how efficient the divide-
and-conquer strategy is. The design also gives several ideas concerning further
memory reduction, in case future simulation will demand millions of atoms in the
particle radius.

Although the memory model met with the expected results, the parallel performance
did not. The available system resources and time for this project were not enough to
run any large models, nor were they enough to give a good estimation of the
scalability. Scalability could only be proven for up to six or seven processors, where
it did give an increased performance for each added processor, which was one of the
goals.

The choice of system is always important for any parallel algorithm. Monte Carlo
algorithms generally perform well on a distributed scheme, and therefore this report,
and its shared memory implementation, should be treated as a stepping stone between
the sequential and full parallel version of the sintering simulation. This is to be
concluded from the fact that a distributed memory scheme on a network of processors
more readily allows scalability beyond 64 CPUs, as will be needed for larger models.

 60

9.2 Future work

One important aspect to implement into the algorithm is the possibility to have
particles of different kinds of atoms. There are several new things that needs
considering when simulating this. Firstly, the diffusion rate might differ between
atom types and, secondly, a particle may only allow a certain concentration of
different atom types. This is something that is being worked on at MINMET.

Another part of future work is to allow for particles of different sizes and different
shapes. This would obviously mean a complete rewrite of the data initialization phase
which currently heavily depends on the circular form of the particles. The difference
in sizes would only amount to a change in determining the centre of each particle.
The actual simulation algorithm would work just as well with any size or shape of
particles, if the data is initialized correctly.

As mentioned in the conclusion, ones the problem size becomes really large, it is
expected that the need for process power will expand beyond the realms of current
shared memory architecture. In the future, an attempt should be made to adapt the
algorithm to a distributed architecture. This project was from the beginning set out to
be an implementation of the sintering code to a cluster of computer, i.e. a network of
processors and distributed memory. But since the network was not set up on time,
shared memory architecture had to be used instead.

 61

10. References

1. Akl, S. G., The design and analysis of parallel algorithms. 1989: Prentice-
Hall International Editions. ISBN: 0-13-200073-3.

2. Alford, N., Lecture Course in Materials,
http://www.eeie.sbu.ac.uk/research/pem/Materials%20Lectures/Chapter%206
%20%20CERAMICS.pdf. 08-12-2004.

3. Andrews, G. R., Foundations of multithreaded, parallel, and distributed
programming. 2000: Addison Wesley Longman Inc. ISBN: 0-201-35752-6.

4. Beichl, I. M., Teng, Y. A., Blue, J. L. Parallel Monte Carlo simulation of
MBE growth. in 9th International parallel processing symposium. 1995. Santa
barbara.

5. Cerezo, A., Mechanisms of migration,
http://www.materials.ox.ac.uk/teaching/diffusion/DiffusionLecture1.pdf.
08/12/2004.

6. Cheung, A. L., Reeves, A. P. Sparse data representation for a data-parallel
computation. in Scalable High Performance Computing Conference. 1992.
Williamsburg, VA USA.

7. Cvetanovic, Z., Freedman, E. G., Nofsinger, C. Efficient decomposition and
performance of parallel PDE, FFT, Monte Carlo simulations, simplex, and
sparse solvers. in Conference on High Performance Networking and
Computing. 1990: New York.

8. DeWitt, D. J., Kabra, N., Luo, J., Patel, J. M., Yu, J. Client-server paradise. in
20th International Conference on Very Large Data Bases. 1994. Santiago,
Chile: Morgan Kaufmann Publishers Inc.

9. Dowson, G., Powder metallurgy: the process and its products. 1st ed. 1990,
Bristol: A. Hilger. ISBN: 0-85-274006-9.

10. Fenlason, J., GNU gprof, http://www.gnu.org/software/binutils/manual/gprof-
2.9.1/gprof.html. 08/12/2004.

11. German, R. M., Powder metallurgy science. 1st ed. 1984, Princeton, N.J.:
Metal Powder Industries Federation. ISBN: 0-91-840460-6.

12. Gray, T., 13 Aluminum,
http://www.theodoregray.com/PeriodicTable/Elements/013/index.s7.html.
08/12/2004.

13. Hearn, D., Baker, M. P., Computer graphics. 1986: Prentice-Hall
International. 352. ISBN: 0-13-165598-1.

14. Hercog, D., Generalised sliding window protocol, in Electronics Letters
Online. 2002.

15. Hössinger, A., Langer, E., Selberherr, S., Parallelization of a Monte Carlo ion
implantation simulator. IEEE transactions on computer-aided design of
integrated circuits and systems, 2000. 19(5): p. 560-567.

16. Kingery, W. D., Introduction to ceramics. 2nd ed. 1976, New York: Wiley.
ISBN: 0-47-147860-1.

17. Lin, C., Chung, Y., Liu, J. Data distribution schemes of sparse arrays on
distributed memory multicomputers. in International Conference on Parallel
Processing Workshops. 2002.

18. McKellar, A. C., Coffman Jr, E. G., Organizing matrices and matrix
operations for paged memory systems. Communications of the ACM, 1969.
12(3): p. 153 - 165.

 62

19. Miura, K. Vectorization and parallelization of transport Monte Carlo
simulation codes. in Winter Simulation Conference. 1990. New Orleans.

20. Moran, C., Sintering - My Industry - Applications & Equipment,
http://us.lindegas.com/international/web/lg/us/likelgus.nsf/DocByAlias/nav_m
et_heat_sin. 08/12/2004.

21. PASC, PASC Information Server, http://www.pasc.org/. 21/12/04.
22. Porter, D. A., Easterling, K. E., Phase transformations in metals and alloys.

2nd ed. 1992, London: Chapman & Hall. ISBN: 0-41-245030-5.
23. Postula, A., Abramson, D., Logothetis, P. The design of a specialised

processor for the simulation of sintering. in the 22nd EUROMICRO
Conference. 1996. Prague.

24. Rice, P., INT32DC Data Communications Lecture #9,
http://ironbark.bendigo.latrobe.edu.au/courses/bcomp/c202/2003/L09/L09.ht
ml. 08/12/2004.

25. Ripoll, D. R., Thomas, S. J. A parallel Monte Carlo search algorithm for
conformational analysis of proteins. in Supercomputing '90. 1990. New York.

26. Sarawagi, S., Stonebraker, M. Efficient organization of large
multidimensional arrays. in Tenth International Conference on Data
Engineering. 1994: IEEE Computer Society.

27. Seamons, K. E., Winslett, M., A Data Management Approach for Handling
Large Compressed Arrays in High Performance Computing. Frontiers of
Massively Parallel Computation, 1995: p. 119 - 128.

28. Shewmon, P. G., Diffusion in solids. 2nd ed. 1989, Warrendale, Pa.: Minerals
Metals & Materials Society. ISBN: 0-87-339105-5.

29. Sutton, R. A., Schaffer, G. B., An atomistic simulation of solid state sintering
using Monte Carlo methods. Materials Science and Engineering A, 2002. 335:
p. 253-259.

30. Ujaldon, M., Zapata, E. L., Sharma, S. D., Saltz, J., Parallelization
Techniques for Sparse Matrix Applications. Journal of parallel and
distribution computing, 1996.

31. Ujaldon, M., Zapata, E. L., Sharma, S. D., Saltz, J. Experimental evaluation of
efficient sparse matrix distribuations. in 10th international conference on
Supercomputing. 1996. Philadelphia, United States: ACM Press.

32. University, K., Diffusion mechanisms,
http://www.eng.ku.ac.th/~mat/MatDB/MatDB/source/Proc/kinetics/vacancy/v
acancy.htm. 08-12-2004.

 63

11. Abbreviations

IEEE Institute of Electrical and Electronics Engineers
ITEE School of Information Technology and Electric Engineering
KTH Royal Institute of Technology
MCS Monte Carlo Step
MINMET Department of Mining, Minerals and Materials Engineering
MPI Message Passing Interface
PASC Portable Application Standards Committee
POSIX Portable Operating System Interface
UQ University of Queensland

 64

12. Appendix

A. Profiling results

This appendix contains the profiling results of the original program run on an input
with the large model (Table 3) as input. The profiling was done with the gprof tool.

Each sample counts as 0.01 seconds.
 % cumulative self self total
 time seconds seconds calls Ts/call Ts/call name
 65.70 10944.25 10944.25 main
 20.18 14306.01 3361.76 nn
 10.02 15974.73 1668.72 count_ones
 1.67 16252.33 277.60 chk_pore_pinch
 1.30 16469.01 216.68 grain
 1.03 16641.38 172.37 move_atom_back
 0.07 16652.76 11.38 chk_atom_type
 0.03 16657.29 4.53 chk_vac
 0.00 16657.35 0.06 rugos
 0.00 16657.39 0.04 vacancy_annihilation
 0.00 16657.42 0.03 find_vac_and_atoms
 0.00 16657.43 0.01 find_next_pixel
 0.00 16657.43 0.00 482 0.00 0.00 sqrt
 0.00 16657.43 0.00 9 0.00 0.00 tanh
 0.00 16657.43 0.00 8 0.00 0.00 expm1
 0.00 16657.43 0.00 5 0.00 0.00 exp

 % the percentage of the total running time of the
time program used by this function.

cumulative a running sum of the number of seconds accounted
 seconds for by this function and those listed above it.

 self the number of seconds accounted for by this
seconds function alone. This is the major sort for this
 listing.

calls the number of times this function was invoked, if
 this function is profiled, else blank.

 self the average number of milliseconds spent in this
ms/call function per call, if this function is profiled,
 else blank.

 total the average number of milliseconds spent in this
ms/call function and its descendents per call, if this
 function is profiled, else blank.

name the name of the function. This is the minor sort
 for this listing. The index shows the location of
 the function in the gprof listing. If the index is
 in parenthesis it shows where it would appear in
 the gprof listing if it were to be printed.

