

An agent-based system for Grid
services provision and selection

G U S T A F N I M A R

Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LECS-2004-64

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

ii

An agent-based system for Grid
services provision and selection

G U S T A F N I M A R

Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LECS-2004-64

E x a m i n e r
A s s o c . P r o f . V l a d i m i r V l a s s o v

(I M I T / K T H)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

ii

Abstract

During these last years we have seen a dramatically increase of services and products
accessible over the Internet. In addition to this, the number of service requestors has
increased along with the general public’s interest in using the Internet as a marketplace.
Considering these two facts it’s becoming impossible to continue this progress unless we
find ways to bring these two parts together.

An agent-based system for Grid services provision and selection is an agent-based
architecture for provision, selection and (in the future) composition of Grid services, with
respect to a user’s requirement. The idea is to organize the agent architecture as a
marketplace where service providers and requestors can meet and negotiate about
services. A user specifies its requirement to an agent, who starts to negotiate with the
agents provisioning services.

The main delivery of this project is a prototype implementing the architecture in Java. We
will use Grid services based on the Open Grid Services Architecture (OGSA) and the
agent architecture will be implemented using an existing agent software platform. The
delivered prototype of system architecture was realized using Globus Toolkit 3 [23], i.e. a
well-known implementation of OGSA, as well as the JADE agent platform [38]. This
prototype was used in the evaluation tests of the proposed agent architecture.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

iv

Sammanfattning

Under de senaste åren har de blivit en dramatisk ökning av antalet produkter och tjänster
som görs tillgängliga över Internet. Dessutom bör det tilläggas att antalet användare av
tjänsterna har ökat i samband med allmänhetens växande intresse av att använda Internet
som en marknadsplats. Om man reflekterar över dessa två fakta är de lätt att se att detta är
en ohållbar utveckling om vi inte hittar nya lösningar för att föra de två parterna samman.

An agent-based system for Grid services provision and selection, är en agent-baserad
arkitektur för att erbjuda, välja och (i framtiden även) komponera Grid service-baserade
tjänster, utifrån en användares krav. Den huvudsakliga idén är att organisera arkitekturen
som en marknadsplats där användare som erbjuder tjänster kan förhandla om dessa med
dem som är i behov av dem. En användare som söker efter en tjänst beskriver den för sin
agent som därefter börjar förhandla med agenter som erbjuder tjänster.

Den huvudsakliga utdelningen av det här projektet kommer att vara en prototyp av
arkitekturen i Java. Vi kommer att använda oss av Grid Services, vilket är tjänster
baserade på Open Grid Services Architecture (OGSA). Vidare så kommer vår arkitektur
att förverkligas på en existerande mjukvaru-platform för agenter. Den levererade
prototypen använde sig av Globus Toolkit 3 [23], som är en välkänd implementering av
OGSA, likväl som agent-plattformen JADE [38]. Prototypen användes vid utvärderingen
av den föreslagna agent-arkitekturen.

TABLE OF CONTENTS

1 INTRODUCTION..1
1.1 MOTIVATION...1
1.2 PROJECT GOALS ..1
1.3 RELATED WORK ..2
1.4 STRUCTURE OF THESIS ..2

2 RELATED TECHNOLOGIES ..3
2.1 GRIDS ..3
2.2 WEB SERVICES..3

2.2.1 WSDL...4
2.2.2 SOAP..8
2.2.3 SOAP Message ..8
2.2.4 SOAP Transports...9
2.2.5 UDDI ...9

2.3 GRID SERVICES..10
2.3.1 Stateful Web services...10
2.3.2 WSDL Extensions and Conventions..13
2.3.3 Globus Toolkit 3 ..14

2.4 AGENTS ...15
2.4.1 Intelligent Agents...16
2.4.2 Multi-Agent Systems ..16
2.4.3 Market structure ..16
2.4.4 Agent Communication Languages ..16
2.4.5 Agent content language...17
2.4.6 Multi-Agents Toolkits ..19
2.4.7 Java..20

2.5 ONTOLOGY..21
2.5.1 OWL...21
2.5.2 OWL-S..21
2.5.3 Tools ..22

2.6 COMPOSITION..23
2.6.1 Linear Logic ..23

3 ANALYSIS AND DESIGN ...25
3.1 TERMINOLOGY ..25
3.2 SCENARIOS OF SYSTEM USAGE..25

3.2.1 Service requestor ...25
3.2.2 Service provider...26
3.2.3 Detailed Scenario ..26

3.3 USE CASES...26
3.3.1 Provision of service ...27
3.3.2 Selection of service..28

3.4 INTERACTION ..28
3.4.1 Provision of service ...29
3.4.2 Selection of service..29

3.5 AGENT-TO-AGENT INTERACTION ..30
3.5.1 Service Provision Agent Protocols ...30
3.5.2 Service Selection Agent Protocols ..31

3.6 MESSAGE CONTENT ..31
3.7 MATCHING ALGORITHM..33
3.8 INFORMATION FLOW ...34
3.9 COMPOSITION..37

3.9.1 Overview of the proposed design ..37
3.9.2 LL representation of services and proof intuition ..38

4 IMPLEMENTATION ...39
4.1 DEVELOPMENT PLATFORM..39

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

vi

4.2 AGENTS ...39
4.2.1 ServiceProvisionAgent ..39
4.2.2 ServiceSelectionAgent ...40

4.3 CONTENT...42
4.3.1 lang ..42
4.3.2 owls ..42
4.3.3 wsdl ..43

4.4 GRID..43
4.5 MATCHER..43
4.6 STORAGE ...43
4.7 GRID SERVICE EXTENSION ..44
4.8 USER MANUAL ..45

5 VALIDATION..46
5.1 GENERATING A GRID SERVICE ONTOLOGY DESCRIPTION ...46
5.2 ASSIGNMENT OF A REGISTRY ...47
5.3 REALIZING A DETAILED SCENARIO OF SYSTEM USAGE ...48

6 EVALUATION...51
6.1 TEST-BED PLATFORM ..51
6.2 PERFORMANCE BASED ON TIME MEASUREMENTS...51

6.2.1 Provision of service ...52
6.2.2 Selection of service..53
6.2.3 Matching algorithm...55

6.3 MEMORY USAGE ...57
6.3.1 Agents ..57
6.3.2 Service description ..58

6.4 EVALUATION SUMMARY ...58
7 CONCLUSIONS ..59
8 FUTURE WORK ...61
9 REFERENCES...62
A. ABBREVIATIONS ..65
B. PROTOTYPE MANUAL..66
C. GENERATED SERVICE DESCRIPTIONS IN OWL-S..67
D. OWL-S VALIDATION RESULTS..75
E. EXECUTION PRINTOUTS OF VALIDATION OF DETAILED SCENARIO76
F. PROTOTYPE DOCUMENTATION ..79

TABLE OF FIGURES

FIGURE 2.1 INVOCATION OF A WEB SERVICE...4
FIGURE 2.2 AN EXAMPLE TYPES ELEMENT...5
FIGURE 2.3 AN EXAMPLE OF WSDL MESSAGE ELEMENTS..6
FIGURE 2.4 AN EXAMPLE WSDL PORTTYPE ELEMENT. ..6
FIGURE 2.5 AN EXAMPLE WSDL BINDING ELEMENT USING SOAP ON TOP OF HTTP.7
FIGURE 2.6 AN EXAMPLE WSDL SERVICE ELEMENT INCLUDING A PORT ELEMENT..7
FIGURE 2.7 AN EXAMPLE SOAP MESSAGE. ...8
FIGURE 2.8 DIFFERENT WAYS TO ACCESSING A GRID SERVICE..11
FIGURE 2.9 AN EXAMPLE DESCRIPTION OF A SERVICE DATA ELEMENT..13
FIGURE 2.10 AN EXAMPLE GWSDL PORTTYPE ELEMENT. ..13
FIGURE 2.11 GLOBUS TOOLKIT 3 CORE ARCHITECTURE [23]. ...15
FIGURE 2.12 A FIPA ACL INFORM MESSAGE. ...17
FIGURE 2.13 FIPA-REQUEST PROTOCOL [26]...17
FIGURE 2.14 A SIMPLE RDF DOCUMENT..18
FIGURE 2.15 AN EXAMPLE FIPA RDF ACTION [31]. ...19
FIGURE 2.16 STRUCTURE OF AN AGORA AGENT [32]...20
FIGURE 3.1 USE CASES OF THE SYSTEM. BOTH SELECTION AND PROVISION OF SERVICE ARE DIVIDED INTO

SEVERAL MINOR USE CASES. ..27
FIGURE 3.2 COLLABORATION DIAGRAM DESCRIBING THE INTERACTION BETWEEN DIFFERENT PARTS OF THE

SYSTEM USED TO PROVISION SERVICES...29
FIGURE 3.3 COLLABORATION DIAGRAM DESCRIBING THE INTERACTION BETWEEN DIFFERENT PARTS OF THE

SYSTEM USED TO SELECT SERVICES ..30
FIGURE 3.4 THE PROTOCOLS USED BY THE SERVICE PROVISION AGENT. THE REGISTER MESSAGE IS A

PLATFORM SPECIFIC METHOD AND IS NOT TO BE MISTAKEN FOR FIPA ACL MESSAGE...........................31
FIGURE 3.5 THE PROTOCOLS USED BY THE SERVICE SELECTION AGENT. THE SEARCH AND RESULT MESSAGES

ARE PLATFORM SPECIFIC METHODS AND ARE NOT TO BE MISTAKEN FOR FIPA ACL MESSAGES.31
FIGURE 3.6 A FIPA RDF ACTION REQUESTING A SEARCH AT SPA1...32
FIGURE 3.7 A RESPONSE CONTAINING THE RESULT OF THE FIPA RDF ACTION MESSAGE.32
FIGURE 3.8 THE SERVICE MATCHING ALGORITHM. ..33
FIGURE 3.9 THE INFORMATION FLOW IN THE SYSTEM..36
FIGURE 3.10 THE DESIGN OF THE SERVICE COMPOSER...38
FIGURE 4.1 METHOD FOR ASSIGNING A NEW SERVICE. ..40
FIGURE 4.2 METHOD FOR SEARCH FOR A SERVICE. ..42
FIGURE 4.3 THE SERVICE DATA TYPE OWLSDATATYPE...44
FIGURE 4.4 IMPORTING THE OWL-S SERVICE DATA TYPE..44
FIGURE 4.5 INSTATIATING A OWL-S SERVICE DATA ELEMENT..45
FIGURE 4.6 THE INITIALIZATION METHOD, OPTIONAL FOR GT3 GRID SERVICES...45
FIGURE 5.1 VALIDATION OF GRID SERVICE DESCRIPTION GENERATION..47
FIGURE 5.2 VALIDATION OF THE INTERACTION WITH THE REGISTRY. ...48
FIGURE 5.3 PRINOUT OF A SPA EXTRACING SERVICE FROM A VOREGISTRY..48
FIGURE 5.4 THE VALIDATION OF THE DETAILED SCENARIO OF SYSTEM USAGE...49
FIGURE 6.1 THE TIME CONSUMED BY DIFFERENT PARTS OF THE SYSTEM WHEN PROVISIONING A SERVICE.53
FIGURE 6.2 THE TIME CONSUMED BY DIFFERENT PART OF THE SYSTEM WHEN SELECTING A SERVICE.55
FIGURE 6.3 THE SCALABILITY OF THE MATCHING ALGORITHM. ..56
FIGURE 6.4 THE TIME CONSUMED BY THE DIFFERENT MATCHING PASSES...57

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

viii

 TABLE OF TABLES

TABLE 2.1 THE PREDEFINED PORTTYPES IN OGSI. ...14
TABLE 2.2 CONNECTIVES AND OPERATORS IN LINEAR LOGIC..24
TABLE 3.1 EXPLANATION OF THE MOST IMPORTANT TERMS USED IN THE DOCUMENT......................................25
TABLE 3.2 THE FIPA COMMUNICATIVE ACTS USED IN THE PROJECT. ...30
TABLE 4.1 BEHAVIOURS OF THE SERVICE PROVISION AGENT...40
TABLE 4.2 BEHAVIOURS OF THE SERVICE SELECTION AGENT. ...41
TABLE 5.1 THE METHODS IMPLEMENTED IN THE SAMPLE GRID SERVICE. ...46
TABLE 5.2 THE SPAS AND THEIR SERVICES IN THE DETAILED SCENARIO OF SYSTEM USAGE.49
TABLE 6.1 THE TIME CONSUMED BY DIFFERENT PARTS OF THE SYSTEM WHEN PROVISIONING A SERVICE.52
TABLE 6.2 THE TIME CONSUMED BY DIFFERENT PART OF THE SYSTEM WHEN SELECTING A SERVICE.54
TABLE 6.3 MEMORY USAGE. ..58

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 1

1 Introduction

This report is the first step in a research towards an architecture based on Agent-Enabled
Logic-Based Web Services Selection and Composition [1] at IMIT at the Royal Institute of
Technology (KTH). The report is also written with respect to a Master Thesis in
Distributed and Parallel systems.

The main focus of this report is to examine provision and selection of a special type of
Web services (in our case Grid services), in an agent-based system. This includes
developing an architecture prototype defining and implementing the functionalities
mentioned above. We will also briefly look into how the system could be extended to
include composition of services. The evaluation of the architecture will be based on the
prototype and will hopefully be of interest for the latter steps in the research.

We’ll start out with a motivation for the area of research. Then there will be a more
detailed description of the overall goals of the project, followed by some related work.
Finally we’ll look at background technologies including the concepts Grids, Web
services, Grid services, Multi-Agent Systems as well as intelligent agent.

1.1 Motivation

Let’s say that you are planning to take a trip matched together by several shorter distances
and means of conveyance. You have heard of a traveling agency that is providing
complete traveling packages, e.g. traveling from Hjo to Kista can result in taking a bus to
Skövde, a train to Stockholm and finally taking the subway to Kista. We assume that all
the major traveling businesses provide a Web service-based interface for querying routes
and time, as well as for booking tickets.

The idea here is for the agency to customize a service for the traveler by composing the
services provided by the different businesses. Perhaps you are only concerned with the
traveling time, or with the overall price. These are things considered by the agency when
composing your journey.

This example is only one possible usage, and there are many more. The demand for new
ways to bring providers and requestors of services together is increasing rapidly with the
number of actors on the market.

1.2 Project Goals

As mentioned earlier this Master Thesis is the first step in a bigger research towards a
novel solution for active Web Services selection and composition [1]. The goal of the
overall research is to develop a logic-based technique for composition and negotiation of
Web services, in an agent-based architecture.

In the first step of the project, i.e. this Master thesis, we will look at selection and
composition of services in Grids, i.e. Grid services. In order to be able to select a service
one must provide it first. Therefore Grid service provision will also be a part of the
project. The aim of the project is to design an architecture for Grid service provision,
selection and finally (if time allows) composition. Using this design a system prototype is
to be implemented, covering the functionality of provision and selection (not

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

2

composition), based on an agent cooperative model. The prototype will be the base for our
evaluation of the architecture.

1.3 Related work

Selection and composition of Web services has been addressed in many research systems
lately. Comparing these systems, one can easily see that there is no universal solution to
the problem, or at least not yet.

Perhaps the most important feature of Web services is its platform and programming
languages independence. This independence is possible due to techniques like Universal
Description, Discovery, and Integration (UDDI) [2], Web Services Description Language
(WSDL) [3] and Simple Object Access Protocol (SOAP) [4] making it possible to
discover, bind and invoke Web services across a network. These techniques are also the
foundation of Grid services.

There have been several works on combining agents with Grid services. MyGrid is an e-
science project with the goal to provide technique for biologists and bioinformaticians to
run experiments by composing workflows [5]. MyGrid make use of several agent
techniques such as Agents, Agent Communication Language and negotiation when
reaching agreements. Another system of interest is MAGGIS [6], i.e. a Multi-Agent
system architecture for monitoring of Grid services. DAMLJessKB [7] is a software with
the intent to read, interpret and allowing for querying of DAML+OIL[8] documents. As
the name reveals it uses the Java Expert System Shell (Jess) [9], i.e. is a rule engine for
Java. The main benefit with the DAMLJessKB is that it allows for reasoning about
supplied DAML+OIL documents. This feature has been used in the DAML-S Matcher
[10], which is an agent matching DAML-S [11] documents, i.e. documents for describing
Web services.

The goal of the overall project is to develop a technique for selection and composition of
Web services based on logic with high expressive power (such as Linear Logic [12]).
There has been some research in this area and especially interesting are technologies
based on the same type of logic ([13] and [14]).

1.4 Structure of thesis
The reminder of this thesis is structured as follows: Chapter 2 covers the technologies
related to the thesis; Chapter 3 presents the analysis and the proposed design of the
system; Chapter 4 describes the implementation of the proposed design; after the
implementation has been covered the thesis concentrates on validation and evaluation, of
the implemented prototype, separately in Chapter 5 and 6; the conclusions drawn from the
thesis is found in Chapter 7; and finally Chapter 8 includes future work.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 3

2 Related technologies

The following chapter will describe technologies related to the project and it will be used
as the knowledge base for the rest of the document. The first sections will cover Grids and
Web services which will lead us into Grid services. Then we’ll look at Agents and finally
a section about ontologies. The reason, for covering ontologies in this chapter, is that it
will be used to increase our expressiveness in the agent-to-agent negation. This will
hopefully result in a well-formed communication and ease a future extension of the
system.

2.1 Grids
The idea to share data and computing resources across a network is rather old – but never
the less a hot topic. Grid computing is a quite new approach that has increased its
popularity during the last decade. A Grid represents resources (computers, servers and
data storages) connected together as a large virtual computer. The aim of Grid computing
systems is to present a large set of resources, provided by heterogeneous systems, in a
uniform way.

A Grid computing system (such as Open Grid Service Architecture (OGSA) [15]) is
defined by an open set of standards and protocols making it possible for communication
between heterogeneous systems. The Grid is also said to be transparent, i.e. it keeps the
complexity hidden from the user, for whom the system appears in a coherent way.

Like peer-to-peer (P2P) Grid computing supports sharing of files. But in contrast to P2P
systems Grid computing allows many-to-many sharing, and is extended not only to
support files but also other resources. Perhaps Grid computing has more in common with
Clusters, at least both of them support sharing of computing resources. The difference
here lies in the fact that Clusters are both geographically and platform dependent.

The Grid system architecture we’ll be using in this project is OGSA, which is based on
Web services. Therefore it’s crucial at least to get the idea of Web services to understand
OGSA’s Grid services.

2.2 Web Services
Web services are a distributed computing paradigm for creating applications based on the
client/server model. What makes Web services special is the fact that it’s using simple
Internet-based standards, making it possible for interoperable machine-to-machine
interaction in a platform- and language-independent manner over a network. This should
be studied in comparison with other technologies such as CORBA [16], and Java RMI
[17] that are bound to highly dependent clients and servers.

Web services themselves are just serving as a software interface describing a set of
operations, which are accessible over the network using XML [18] messages. This
Description is written in a machine-processable Description language (e.g. WSDL) that
allows other systems to use this description to interact with the Web service. Web services
also define discovery methods used to locate relevant service providers.

Web services are deployed on the network by a service provider, i.e. a person or
organization providing the service. Then there’s usually a service broker that helps a
provider and a requestor of a service to find each other. The most common ways are to

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

4

build the broker as an index or a registry over published services. The service requestor
can use a broker to find the requested service and then it uses the description language to
bind (negotiate settings before accessing the service) to the service.

Figure 2.1 describes the steps (in chronological order) taken when invoking a Web
service. In the first step the service provider registers its services at the broker. After the
services have been registered service requestors can search the broker for suitable
services. Once a suitable service has been found the service requestor can use the
information provided by the broker to receive additional information needed to invoke the
service. This information is provided by a WSDL document (described in detail below).
Using the WSDL document the service requestor can specify its messages in order to
invoke the operation of interest.

Figure 2.1 Invocation of a Web Service.

In contrast to Grid services, Web services are stateless and thereby cannot remember
values of operations carried out.

2.2.1 WSDL
To be able to use a service one must know how to interact with or take advantage of the
service. Web Services Description Language (WSDL) [3] is an XML-based Language
used for this purpose, i.e. describing how to interact with a Web service. Due to the fact
that WSDL is based on XML makes it independent of programming languages as well as
development environments. A WSDL document describes the different operations that
can be carried out, how to invoke these operations, and the expected result. It also defines
supported protocols, e.g. SOAP.

A WSDL document is structured as a logical tree (of elements) where the root is a
definitions element holding six other elements for describing a service. These elements
can be categorized into three different groups depending on the information they are
holding, namely: Service Interface, Service Binding, and Service Implementation. These

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 5

elements will be explained further below using an example Web Service called
RoutePrice service. The service provides price lookup of a given route.

2.2.1.1 Service Interface
The first group contains the Types, Message and PortTypes elements. The characteristics
of this group are that it contains information, independent of platforms, protocols or
programming languages, about supported operations, and the data being exchanged.

The types element
The types element contains different data type definitions that are used to describe the
messages being exchanged. WSDL prefers if the types are described in XML Schema
Definition (XSD) to keep high interoperability and platform independence. XSD specifies
how to formally describe elements in an XML document. Figure 2.2 holds an example
types element defining two types, i.e. GetRoutePriceRequest and RoutePrice.

Figure 2.2 An example types element.

The message element
The message element represents an abstract definition of the data being exchanged
between providers and requestors. Every message consists of one or more logical parts,
one for each parameter of a Web service operation. Each part associates with a concrete
type defined in the Types element. Every operation has at least one of the two messages
input and output, where the former describe input parameters and the latter the return data
of an operation. In Figure 2.3 both input and output messages are defined. The messages
only consist of a single logical body part.

 <types>
 <schema
 targetNamespace=http://travelbusiness.com/routeprice.xsd
 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="GetRoutePriceRequest">
 <complexType>
 <all>
 <element name=”route" type="string"/>
 </all> ServiceSelectionAgent
 </complexType>
 </element>

 <element name="RoutePrice">
 <complexType>
 <all>
 <element name="price" type="float"/>
 </all>
 </complexType>
 </element>
 </schema>
 </types>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

6

Figure 2.3 An example of WSDL Message elements.

The portType element
The portType element encloses a set of operations supported by the Web service. Each
operation element includes its messages, in this example it has input and output messages.
In Figure 2.4 the portType RoutePricePortType is defined. The portType includes a single
operation called GetRoutePrice.

Figure 2.4 An example WSDL portType element.

A WSDL portType (basically the end of a communication link) can support one of the
four transmission primitives:

o One-way. The requestor sends a message to the provider. This will render an input
 element.
o Request-response. The requestor sends a message to the provider, who sends a
 correlated message back. This gives us both an input and output element specifying
 the format for the request and response.
o Solicit-response. Same as the Request-response primitive but here the provider
 sends the first messages and the requestor the correlated response.
o Notification. The provider sends a message to the requestor. Here we have an
 output element.

In addition to the input and output messages WSDL specifies a fault message that has the
abstract format of an error message. The fault message is only available in the Request-
response and Solicit-response primitives where a response message is expected.

2.2.1.2 Service Bindings
The Service Binding is the second group and it only contains the Binding element. Here
one can find supported protocols and the encoding of messages used.

The binding element
Given a protocol the binding element provides concrete details about a particular
portType, i.e. protocol details for operations and the format of messages supported by the
portType. Notice that there can be several bindings for a single portType (a portType can
support more than one protocol). In Figure 2.5 there’s a binding element associated with
the RoutePricePortType.

 <portType name="RoutePricePortType">
 <operation name="GetRoutePrice">
 <input message="tns:GetRoutePriceInput"/>
 <output message="tns:GetRoutePriceOutput"/>
 </operation>
 </portType>

 <message name="GetRoutePriceInput">
 <part name="body" element="xsd1:GetRoutePriceRequest"/>
 </message>

 <message name="GetPriceOutput">
 <part name="body" element="xsd1:RoutePrice"/>
 </message>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 7

Figure 2.5 An example WSDL binding element using SOAP on top of HTTP.

2.2.1.3 Service Implementation
The last group of elements holds implementation dependent details about how a client
invokes the operations provided by the Web service. Figure 2.6 holds a service element
defining a service called RoutePriceService. The service is associated with the binding
element in Figure 2.5.

Figure 2.6 An example WSDL service element including a port element.

The service element
The service element encloses a set of related port elements and defines the name of the
service. The related ports have the following relationship:

o There is no communication among the related ports.
o When several ports share a port type but binds different addresses, the ports are
 alternatives to the same service.
o The supported port types of some related ports can be used by a customer to
 determine which services to be used.

The port element
The port element basically specifies an endpoint, where the service requestor can bind or
connect to, for accessing the service. This is done simply by assigning an address to a
binding.

<service name="RoutePriceService">
 <documentation>Route price lookup service</documentation>

 <port name="RoutePricePort" binding="tns:RoutePriceBinding">

 <soap:address
 location="http://travelbusiness.com/travelquote"/>
 </port>
</service>

 <binding name="RoutePriceSoapBinding"
type="tns:RoutePricePortType">

 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetRoutePrice">

<soap:operation
soapAction="http://travelbusiness.com/GetRoutePrice"/>

 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

8

2.2.2 SOAP
A service requestor must use one of the supported protocols described in the binding
element (in a WSDL document) to invoke the capabilities of a Web service. Simple
Object Access Protocol (SOAP) [4] is the most frequently used protocol, almost
becoming a de-facto standard when it comes to Web services. SOAP is based on XML
and its specification contains

o the syntax for messages
o and a model for exchanging them,
o rules for the encoding of data in messages,
o instruction for transporting SOAP over HTTP,
o and finally it defines a model for performing Remote Procedure Calls (RPC).

We will look at some parts of the specification.

2.2.3 SOAP Message
Using the example in Figure 2.7, we’ll go through the different elements building a SOAP
message. The example is constructed as a request to an operation in the WDSL document
found in Figures 2.2-2.6, and therefore the Header element is excluded.

Figure 2.7 An example SOAP message.

2.2.3.1 Envelope
As the name reveals Envelope is the root element of a SOAP message. It includes the
other elements, i.e. Header and Body. Envelope contains attributes for defining
namespaces and properties for encoding of data in the message. The URI
http://www.w3.org/2003/05/soap-envelope is the namespace of example in Figure 2.7.
Depending on the namespace one can tell the SOAP version used. If the version isn’t
recognized a fault message is returned.

2.2.3.2 Header
In addition to the data carried in a message there can be other vital parts as well, e.g. a
message can be part of a series of messages in a business transaction. Because it’s not
feasible to define every possible extension to SOAP, the Header element was introduced.
The purpose is to allow users to define extensions without modifying the payload or the
overall structure of the message. The Header element is optional in a SOAP message (as
we see in Figure 2.7), but in order of presence it must be defined as the first child element
of an Envelope.

<Env:Envelope
 xmlns:Env="http://www.w3.org/2003/05/soap-envelope/"
 Env:encodingStyle="http://www.w3.org/2003/05/soap-encoding/">
 <Env:Body>
 <m:GetRoutePrice xmlns:m="Some-URI">
 <symbol>BUS-402</symbol>
 </m:GetRoutePrice>
 </Enc:Body>
</Enc:Envelope>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 9

2.2.3.3 Body
The Body element is the payload of an SOAP message and it holds the application-
specific data, e.g. a query for the price of a route.

2.2.4 SOAP Transports
We need a way to send, or to transport, our SOAP messages from the sender to the
receiver. There are no restrictions in the specification regarding the means of transport.
Although most developers use the well-tested Hypertext Transfer Protocol (HTTP) [19]
one might go for Carriers Pigeons as well.

2.2.4.1 SOAP on top of HTTP
Hypertext Transfer Protocol (HTTP), the standard protocol of the web, is a good choice
when it comes to carrying SOAP messages; mostly because of its wide acceptance. It’s so
well suited that rules for using the protocol is included in the SOAP specification.

In the specification HTTP Post is defined as the standard method for sending SOAP
messages, and additionally the HTTP response for responding to one. The specified URI
found in the HTTP header is the receiver of the message, e.g. a Web service.

2.2.5 UDDI
In similarity to surfing the web it’s not always the case that address of the requested Web
service is known in advanced, or one might not know any suited services. Having this
problem while surfing the web most users would probably turn to an index service
searching for the requested page. Universal Discovery Description and Integration
(UDDI) [2] can be seen as an index service for Web services, where users can publish and
discover Web services.

In a UDDI registry a business can register itself and its services. Each business will be
represented by an XML document. A description of a business is divided into three
categories: “white pages” holds information about the business such as the address and
fax; “yellow pages” includes information categorizing services based on taxonomy (i.e.
classification of services based on a few characteristics); and finally “green pages” holds
the technical information about the services provided by the business.

2.2.5.1 UDDI architecture
An UDDI registry consists of one or several UDDI nodes that together manage the data
stored in the registry. The data in the registry is replicated among the UDDI nodes. The
data is called simply UDDI data and is divided into four core types:

These are businessEntity, which describes a business or an organization providing Web
services; businessService that describes a set of related Web services all provided by the
same businessEntity; bindingTemplate holds the necessary information for invoking a
service; and finally the tModel that provides a technical model consisting of reusable
concepts such as transport, protocol and namespace.

The core data structures are assigned a unique key when the data is published. The key is
used as an identifier in the system.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

10

2.3 Grid services
As stated before, Grid services are based on Web services but they are conformed under a
set of conventions defined by the Open Grid Services Infrastructure (OGSI) specification
[20]. In similarity to Web services you can say that Grid services are also a WSDL-
defined service. But Grid services have an extended syntax when it comes to WSDL and
introduces new concepts such as service data, stateful instances, references, and
notifications of services. Considering some of these concepts you can claim that Grid
services have characteristics similar to distributed object-based systems [20]. But there are
some characteristics that do differ, such as inheritance, services instance mobility,
development approach, and hosting technology.

In order to clarify the differences between Web- and Grid services we will look at some of
the major characteristics that are introduced by OGSI Version 1.0:

o Enabled stateful Web services
o Extended Web service interfaces to include Service Data
o Asynchronous notifications of state changes
o Service groups
o Extended the portType
o Lifecycle management (creation and destruction of Grid services)
o GSH and GSR (references to instances of services).

Some of these concepts important to this project will be covered in the text.

2.3.1 Stateful Web services
The first concept in the list is probably the most important one, i.e. the introduction of
stateful Web services. As mentioned before regular Web services are stateless, i.e. values
won’t be preserved from one invocation to another.

When interacting with a Web service it’s done directly towards the service. The service
makes no difference regarding the requestor of the service, all are treated as equals. To
interact with a Grid service one must use an instance of the service and each client using
the same instance is treated equally (as seen in Figure 2.8). An instance of a service can
be compared with an instance in Object Oriented programming. Each instance has its own
state as well as a unique name. Furthermore, an instance is associated with one or more
Grid Service Handles (GSHs), and one or more Grid Service References (GSRs), more
about this later. The instance is named by its GSHs, i.e. in the form of URIs.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 11

Figure 2.8 Different ways to accessing a Grid service.

2.3.1.1 Grid Service Handles and References
When a requestor needs the Grid service instance it uses the service’s handle and
reference. The Grid Service Handle contains a permanent pointer to the service instance (a
GSH must indisputably for all time point the same Grid service instance) and therefore it
doesn’t hold any detailed information about how to access the service instance. A GSH is
translated, using a HandleResolver, into a Grid Service Reference (GSR). A GSR
provides the information needed to access the service (a GSR can have the format of a
WSDL document or a CORBA IOR [16]). The GSR is considered valid as long as the
associated Grid service instance exists, but notice that the GSR may become invalid even
if the instance still exists (due to time constraints). In such cases the requestor should use
the GSH to resolve a new GSR.

As mentioned above a HandleResolver is a Grid service that resolves a GSH into a GSR.
When registering a service it’s required that the service is registered with at least one
HandleResolver, called its home HandleResolver. This home HandleResolver is found in
the GSH. One problem is how to obtain the GSR of the HandleResolver. The solution is
to make all the HandleResolvers support a bootstrapping operation and a common
protocol (HTTP or HTTPS).

2.3.1.2 Creation and destruction of instances
To create a service instance a requestor needs to invoke the operation createService.
createService is located on a Grid service with a portType that extends the Factory
portType, or another portType defining methods for creating instances of Grid services.

Now when we have seen how to create an instance one might want to know how they are
destroyed. Actually there is an instance destruction operation defined in the GridService
portType (that must be extended by every Grid service). Another approach is to let a
client create an instance valid for a specific period of time and when the time expires the

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

12

instance is destroyed. When using this approach the client negotiates with the factory
about the time constraints of the instance.

2.3.1.3 Time in OGSI
When a service requestor negotiates the expiration time of a GSR, or when it determines
if an instance has expired it needs to model time. OGSI uses the GMT global time
standard. Furthermore a synchronization protocol (such as Network Time Protocol) is
needed for clients and servers to synchronize with GMT global time.

2.3.1.4 Service Data
We’ve been talking about how Grid services can be thought of as stateful Web services,
but in order to complete this description we need to extend the interface to include
operations on state data. OGSI introduces an approach called Service Data that provides
requestors with methods on the state data. The Service Data is local for every instance of
a Grid service and there is no restriction on the quantity of Service Data Elements. A
Service Data Element can hold non-technical information not suited for WSDL, such as
cost, frequency of updates etc.

To avoid creating operations for every Service Data Element some basic operations for
manipulating the data are included in the mandatory GridService portType. Basic
operations like query, update and notification of change of Service Data Elements.

Service Data Elements (SDEs) are included in the portType element that they are
associated with. The values of a SDE are simply called Service Data Element values, or
SDE values. These values can be specified statically in the portType or dynamically
assigned during runtime.

In Figure 2.9 is an example description of a Service Data Element meant to be used in a
Route Price service, i.e. a service for looking up prices of routes. The Service Data
Element specifies three elements, where each one is holding a value. The first element hits
is intended for storing the number of invocations of the Route Price Service instance. The
lastRoute is supposed to hold the most recently resolved route. The final element statistics
is meant to hold some additional statistic values.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 13

Figure 2.9 An example description of a Service Data Element.

2.3.2 WSDL Extensions and Conventions
As we already know OGSI uses WSDL to describe the interfaces of its Grid services. Due
to the fact that WSDL doesn’t support extensions, and given the restriction that all Grid
services must extend the GridService portType, OGSI defines an extension element to
handle this in WSDL 1.1 (this will be supported in WSDL 1.2 [21]). This extension only
concerns the portType element of a WSDL document and is defined in a separate
namespace with the prefix gwsdl. Figure 2.10 shows an example portType element
extending the obligatory GridService portType. The portType includes the operation
GetRoutePrice and the RoutePriceData SDE (seen in Figure 2.9).

Figure 2.10 An example gwsdl portType element.

Apart from the GridService there are several other predefined portTypes (such as
HandleResolver and Factory) in OGSI.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="RoutePriceData"
 targetNamespace="http://travelbusiness.com/travelquote/RoutePriceSDE"
 xmlns:tns="http://travelbusiness.com/travelquote/RoutePriceSDE"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
<wsdl:types>
<schema
targetNamespace="http://travelbusiness.com/travelquote/RoutePriceSDE"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="RoutePriceDataType">
 <sequence>
 <element name="hits" type="int"/>
 <element name="lastRoute" type="string"/>
 <element name="statistics" type="string"/>
 </sequence>
 </complexType>
</schema>
</wsdl:types>
</wsdl:definitions>

<gwsdl:portType name="RoutePricePortType" extends="ogsi:GridService">
 <operation name="GetRoutePrice">
 <input message="tns:GetRoutePriceInputMessage"/>
 <output message="tns:GetRoutePriceOutputMessage"/>
 <fault name="Fault" message="ogsi:FaultMessage"/>
 </operation>
 <sd:serviceData name="RoutePriceData"
 type="data:RoutePriceDataType" minOccurs="1" maxOccurs="1"
 mutability="mutable" modifiable="false" nillable="false">
 </sd:serviceData>
</gwsdl:portType>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

14

2.3.2.1 Grid services portTypes
There are several predefined portTypes in the OGSI specification covering some common
distributed computing patterns. With one exception (NotificationSink) they all extend the
mandatory GridService portType. Therefore when implementing a Grid service
application it must extend one of the predefined portTypes listed in Table 2.1.

portType name Description
GridService standard portType including the

mandatory behaviour of the service
model

HandleResolver maps a GSH to a GSR
NotificationSource includes notification subscription
NotificationSubscription defines the relationship between a

source and a sink
NotificationSink defines an operation for delivering

notification messages
Factory defines the standard operation for

creating grid service instances
ServiceGroup allows clients to manage service

groups
ServiceGroupRegistration operations making it possible for

Grid services to join and leave
ServiceGroups

ServiceGroupEntry defines the relationship between an
instance of a Grid service and a
ServiceGroup it’s participating in

Table 2.1 The Predefined portTypes in OGSI.

GridService portType
The GridService portType holds the interface of the core functionality required by a Grid
Service. This includes operations for manipulating Service Data elements and for
destroying Grid service instances. The portType also includes several predefined Service
Data elements, e.g. factoryLocator, gridServiceHandle, gridServiceReference and
terminationTime.

The GridService portType can be compared to the standard Object in Object Oriented
programming (which is the superclass of all classes).

2.3.3 Globus Toolkit 3
The Globus Toolkit 3 (GT3) is a complete implementation of the Open Grid Service
Infrastructure (OGSI) and it’s seen by many as a de facto standard in Grid middleware
[22]. Globus Toolkit isn’t just an OGSI implementation; it includes a lot of other services,
utilities, etc.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 15

Figure 2.11 Globus Toolkit 3 Core architecture [23].

The white boxes in Figure 2.11 represent the GT3 Core services. Together they provide
the essential parts for building and executing Grid services. The OGSI Reference
Implementation provides implementation of the predefined portTypes listed in Table 2.1.
These can be configured by the service provider to suit its own services. The Security
Infrastructure implementation provides means for authentication and secure messaging.
The parts seen so far are only the base for building Grid services and they aren’t providing
services during run time. The System-Level Services (such as logging-, management- and
administration Grid services) on the other hand include services for maintaining Grid
services. GT3 Base Services implement several services as job management, index
services (allowing us to discover Grid services), and Reliable File Transfer

All the services described above must interact with the Grid Service Container, i.e. the
OGSI run time environment. This container handles the maintaining of instances as well
as incoming messages.

2.4 Agents
There are many definitions regarding the notion of an Agent. One thing that they usually
have in common is ability of autonomous action. Other than that, the definitions usually
have some differences.

In an attempt to clarify things we’ll use the following definition of an Agent:

An agent is an autonomous software program acting on behalf of a user, capable of
interacting with the environment it’s situated in, to achieve its goals.

Using this definitions and the example given in the motivation of this project, one can
describe a travel agent as: an autonomous software program, interacting with other agents
and Web services in order to find the best traveling package with respect to the
requirement and priorities of the traveler.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

16

2.4.1 Intelligent Agents
The above example requires some intelligence of the agent to succeed in planning and
ordering the best tickets for the trip. Considering this example we’ll go through a list of
suggested capabilities of an intelligent agent, by Wooldridge and Jennings (1995) [24].

o Reactivity. The tickets for a route in the overall plan taken by bus have sold out.
 The agents now rebuild its plan and the route will be taken by train instead.

o Proactiveness. In order to plan the trip the agent starts by contacting different
 traveling businesses, querying for price and timetables.

o Social ability. The agent must be able to interact with the traveler and other agents,
 e.g. to confirm orders or to negotiate price.

2.4.2 Multi-Agent Systems
Connecting intelligent agents together will give us a Multi-Agent System (MAS). These
are some possible characteristics of MASs [25]:

o Agents has incomplete information or capability to solve problems on their own
o No global control of the system
o Decentralized data
o Asynchronous Computation

The interaction of agents can be self-interested or cooperative, where the latter will be the
focus of this project. In a cooperative Multi-Agent System agents can share a common
goal, or at least they can use each other’s expertise to reach their own.

2.4.3 Market structure
The organizational structure of a MAS is concerned with the ways agents communicate
and coordinate. The structure can take many different shapes but our interests in this
project lie within a Market structure.

In a Market structure the control is distributed among the agents, that is competing for
services or other resources, e.g. to buy tickets for a route. The valuation of services is
mostly based on money but there can be other valuations as well. Among the default
functionality of a Market structure one should find support for matchmaking, negotiation,
communication and coordination. In addition to this the Market should have an open
architecture and provide users means for exchanging the default functionality.

2.4.4 Agent Communication Languages
In order for agents to cooperate in a MAS, effective communication is required. One of
the first Agent Communication Languages (ACLs) was Knowledge Query and
Manipulation Language (KQML). KQML is a message-based language and can be
thought of as an envelope format for messages, or as the outer language of a message. The
thing that made KQML unique is the fact that it’s based on speech acts, i.e. to treat
messages as actions. Every message has a performative describing the intent of the
message, e.g. advertise and ask-one. A KQML message has no restriction regarding the
content of the message.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 17

Due to some flaws in KQML the Foundation for Intelligent Physical Agents (FIPA)
developed its own ACL similar to KQML. The FIPA ACL defines 20 different
communicative acts (that corresponds to KQML performatives) along with their semantic
interpretation. The two most important communicative acts are inform and request. The
former is used by a sender to convince the receiver of the content and the latter is used by
the sender to request an action to be carried out at the receiver. FIPA also has
specifications covering message protocols and agent platforms.

Figure 2.12 A FIPA ACL inform message.

In Figure 2.12 there is an example of an FIPA ACL inform message and in Figure 2.13
there is an FIPA-request protocol.

Figure 2.13 FIPA-request protocol [26].

2.4.5 Agent content language
The Agent Communication Language (ACL) is also known as the outer language and
basically is a carrier of messages. An ACL can carry any type of message and it has no
restriction regarding the language of the content. E.g. the content can be express in
Semantic Language (SL) [27], Knowledge Interchange Format (KIF)[28] or in Resource
Description Framework (RDF). Due to the fact that this project is closely connected to
Grid services it becomes natural to have a content language expressed in XML. FIPA
RDF is a content language fulfilling our needs regarding functionality and RDF is also
recommended to be expressed in XML [29].

(inform
 :sender BusCompanyAgent
 :receiver TravelingAgencyAgent
 :content (price trip 100)
 :language sl
 :ontology travel
)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

18

2.4.5.1 FIPA RDF Content Language
Before describing FIPA RDF Content Language it’s necessary to at least have an idea
about what the Resource Description Framework (RDF) is. As the name reveals RDF is a
framework used for describing and exchanging metadata, i.e. information about
information. RDF is basically about describing resources — a resource can be anything,
but it must be represented by an URI.

RDF uses a triple called a statement when describing resources. A statement consists of
three resources, i.e. a subject, an object and a predicate. The subject is associated with the
object using the predicate. The subject could e.g. be mailto:nimar@kth.se, the predicate
http://www.it.kth.se/~it00_gni/Author and the object
http://www.it.kth.se/~it00_gni/Masterthesis. This could be translated into “Nimar is the
author of the Master thesis”. In Figure 2.14 is the resulting RDF document presented in
XML. This example is closely related to an example given by [30].

Figure 2.14 A simple RDF document.

FIPA RDF Content Language extends RDF to support basic functionality for expressing
Objects, Propositions and Actions. An Object represents an identifiable entity in the
domain; a Proposition is an extension of the RDF statement to include an additional truth
value; and an Action expresses an act to be carried out by an object. This basic extension
is called fipa-rdf0. FIPA defines several extensions but those won’t be of interest in the
scope of this project. The most important extension in our case is the ability to model
Actions. In Figure 2.15 is an example action called JohnAction1. One can see that a
namespace called fipa is included in the document and that every resource declared in this
namespace is a part of the fipa-rdf0 extension. An Action has three properties: an act
represents the action to be carried out; an actor represents the entity to carry out the
action; and finally an argument (an optional property) that can work as an input to execute
the act.

<?xml version="1.0" encoding="UTF-8" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:home="http://www.it.kth.se/~it00_gni/>
 <rdf:Description
about="http://www.it.kth.se/~it00_gni/masterthesis">
 <home:Author rdf:resource="mailto:nimar@kth.se"/>
 </rdf:Description>
</rdf:RDF>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 19

Figure 2.15 An example FIPA RDF Action [31].

2.4.6 Multi-Agents Toolkits
There is no universal definition of what Multi-Agent Toolkit is, or what it’s supposed to
include. Let’s say that it’s a software platform giving agent developers a higher
abstraction, and allowing them to implement agents with the desired features.

One of the initial goals of this project was to develop two prototypes on different Multi-
Agents Toolkits. For that reason we looked closer into Java Agent Development
Environment (JADE) and Agora in order to examine their capabilities.

2.4.6.1 JADE
Java Agent Development Environment (JADE) is a fully Java-based Open Source
middleware for the development of multi-agent applications. According to the developers
of JADE (TILAB [38]) it’s the most frequently used Agent platform. The middleware is
said to comply with the FIPA specification and it gives developers a higher level of
abstraction. JADE also includes tools for debugging and deploying.

The agent platform can be distributed among heterogeneous machines, as long as JAVA
run time environment is available. A platform includes a set of active containers, i.e. a
running instance of the JADE environment and each container can hold several agents.
Every platform must have a single special container, called a main-container. The main-
container is the first container to be started and it must always be active because all the
other containers (in a platform) are connected to it.

Agents use message passing to communicate in JADE (the platform keeps a private FIFO
queue for every agent in the system). The messages follow the FIPA ACL specification.
Agents can fetch their messages by using polling, blocking, timeout or pattern matching.
The full FIPA communication model is implemented in JADE.

The easiest way to implement functionality in JADE is to use the predefined behaviors,
e.g. OneShotBehaviour which is only executed once. The behaviors are organized as a
FIFO queue where the scheduler runs the first behavior. The executing behavior must
release the control in order for others to run.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas/fipa-rdf0#">

 <fipa:Action rdf:ID="JohnAction1">
 <fipa:actor>John</fipa:actor>
 <fipa:act>open</fipa:act>
 <fipa:argument>
 <rdf:bag>
 <rdf:li>door1</rdf:li>
 <rdf:li>door2</rdf:li>
 </rdf:bag>
 </fipa:argument>
 </fipa:Action>
</rdf:RDF>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

20

2.4.6.2 Agora
Agora is a software architecture supporting implementation of software agents and agent-
based marketplaces [32]. A central concept of Agora is an Agora node, i.e. a cooperative
node allowing agents to communicate, coordinate and to negotiate. In other words one can
say that an Agora node is a meeting place for agents allowing for cooperative work.

When initiating a new Agora node there are some default agents created on the fly. The
Agora Manager is a default agent providing general managing and matchmaking
functions. The Coordinator allows for coordination between agents and finally the
Negotiator provides functionality for conflict resolution.

In addition to Agora nodes and the default agents, Agora also has Registered Agents.
Basically the default agents are Registered agents with predefined functionality. When
talking about market places a Registered agent can be either a seller or a buyer. These
Agents can communicate in a peer-to-peer manner or through the Agora Manger. The
messages are carried in a FIPA ACL and are sent via the Message Proxy as seen in Figure
2.16. The agent can communicate with a user as well, using the Log system. Each agent
maintains a Knowledge Base containing a Prolog-based representation of its rules,
messages and facts.

Figure 2.16 Structure of an Agora agent [32].

2.4.7 Java
Java is the high-level Object Oriented programming language central to this project,
mostly because of its nice features when it comes to software agent developing. Java is an
interpreted language where a program is compiled into an intermediate language, called
Bytecode. The Bytecode is then interpreted at the target machine during runtime.
Therefore Java is platform independent and it only requires a runtime library to be able to
run applications. Furthermore Java supports a security mechanism called sandboxing, i.e.
running untrusted applications in a secure way, by giving it limited access to system
resources.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 21

The main objection against Java is probably an insufficient performance, especially when
it comes to thread handling. This is addressed in JADE by assigning only one thread of
control to each agent. Concurrency in JADE is achieved by having the agent adopting
some predefined behaviours.

2.5 Ontology
When talking about exchanging knowledge one can say that an ontology is a specification
of concepts. Furthermore one can say that it’s an attempt to create a simplified view of the
world (we are trying to represent). Ontologies can be used by agents as a vocabulary when
they communicate with each other. In this project we will focus on the Web Ontology
Language (OWL) and especially on a service oriented ontology based on OWL called
OWL-S.

2.5.1 OWL
OWL is a semantic markup language, allowing for exchanging information about
ontologies, based on Resource Description Framework (RDF) [33]. One can say that
OWL is a vocabulary extension to RDF but it also puts restrictions on the ordinary RDF
vocabulary. The main benefit with OWL is that it provides a much richer expressiveness
than the RDF Schema (RDFS). There are three different species of OWL: OWL full,
which is a union of RDF and the OWL syntax and gives the user full expressiveness;
OWL DL is a subset of OWL full and is closely related to Description Logic (DL); and
finally OWL lite, which is a subset of OWL DL with focus on simplicity for developers.
The usage of species in OWL increases the flexibility while the user can choose the
species fulfilling his requirements.

2.5.2 OWL-S
OWL-S is an ontology based on the OWL language with the main purpose to provide a
mark-up language for representation of Web services [34]. The idea is to allow for
automatic discovery, invocation, composition and interoperability, and execution
monitoring of Web services. Previous versions of OWL-S where known as DAML-S and
where built upon a predecessor of OWL called DAML.

In OWL-S a service is represented by the class Service, which holds three other classes
used when describing it. First there’s the ServiceProfile, which is a class describing what
is required of a requestor of a service and even more important — what is provided for
them. The ServiceProfile becomes especially interesting when talking about provision and
selection of services. Furthermore there is a class called ServiceModel describing how a
service works; and finally a description on how to access the service, is found in the
ServiceGrounding class. Due to the fact that this project is concerned with Provision and
Selection of services we will focus on the ServiceProfile. We will also shortly consider
the ServiceModel (and especially the ProcessModel) which has interesting features when
describing composite services.

2.5.2.1 The ServiceProfile
As mentioned above the ServiceProfile is a description on what to expect from a service.
This can be used by both by a services requestor to describe a requested service or by a
service provider to describe its provided services. To find a suitable service for the
requestor is consequently a matter of matching the provided services against the
requested.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

22

The ServiceProfile holds information such as service name, text description and contact
information (optional in version 1.0). It also holds functional information describing
parameters, preconditions and the effect of the service. The ServiceProfile also contains
attributes for classifying services. Some properties, especially interesting regarding this
project, are serviceName, hasInput, hasOutput and serviceCategory. The first property
serviceName is the name of the service and can be used as an identifier. hasInput refers to
the one or several Input resources, i.e. parameters required when executing the service. In
contrast to hasInput, hasOutput refers to one or several ConditionalOutput, this because
one might not now the outcome of a service execution. The ConditionalOutput makes it
possible to associate conditions to the output parameters. The final property of interest,
serviceCategory, includes information for categorization of services. There are few (if
any) constraints about how make use of this property. serviceCategory contains the four
text fields: categoryName is the name of the category and it could e.g. be represented by
literal or an URI; taxonomy refers to an URI or a literal of the taxonomy currently used;
value points to the value of the service in the current taxonomy; and finally code which
stores some code associated with type of service.

2.5.2.2 The ServiceModel
Once a service has been selected the ServiceProfile becomes rather useless. In order to
interact with the service a description of how the service works is needed. This is given by
the ServiceModel. OWL-S 1.0 defines a subclass of the ServiceModel called the
ProcessModel. The central concept of the ProcessModel is the process entity, i.e. a data
transformation from a set of inputs to the corresponding set of outputs. Another viewpoint
is that a process is a state transformer. In similarity to the ServiceProfile a process has
inputs, output, preconditions and effects. When describing the same service these
properties are naturally the same, though this isn’t required.

The ProcessModel defines the three different types of processes, i.e. atomic, simple and
composite. Atomic processes are directly invocable (by sending the appropriate input
message). Furthermore they have no sub processes, i.e. they appear to be executed in an
atomic way (to the requestor). Simple processes are not directly invocable, i.e. they are
not associated with any grounding. But like atomic processes they appear to be executed
in an atomic way. Simple processes are used as elements of abstraction, e.g. to view a
special usage of an atomic process or in a simplified representation of a composite
process. The final type, i.e. the composite process, consists of several other processes
(which can include other composite processes). Each composite process must have some
kind of control structure of its composition. The control construct can be associated with
additional properties, allowing for ordering or conditional execution of the sub processes.
The OWL-S specification predefines several control structures such as Sequence, Split
and If-Then-Else.

2.5.3 Tools
When working with ontologies it’s desirable to have an Application Programming
Interface (API) easing the work, e.g. handling the parsing of input messages. In spite of
the fact that OWL-S is a quite new technology, and there aren’t a lot of tools available
yet, we have managed to find some tools of interest.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 23

2.5.3.1 Jena
Jena is open source semantic Web framework for Java initiated by a research group at HP
[35]. Jena includes an RDF API together with a parser and a writer of RDF in XML.
Persistent storage is also supported by use of a database engine, which support RDQL
[36] queries. The most interesting part in our case is the Ontology API that has support for
OWL along with some other languages. The Ontology API is closely coupled to a rule
based reasoning system.

2.5.3.2 OWL-S API
OWL-S API is a Java API for managing OWL-S [37], i.e. to parse, write and execute
services based on OWL-S. The API support several versions of OWL-S, including OWL-
S 1.0. OWL-S API is built on top of Jena, which is providing the underlying data model.

2.6 Composition
When searching for a service it might be the case that a single service fulfilling the
requirements is nowhere to be found. This doesn’t mean that the requirements can’t be
fulfilled by combining several services into a composite one, i.e. using composition of
services. In order to increase the flexibility and the hit rate of the system we considered
composition of services. As mentioned in the section covering related work, the goal of
the over-all project is to develop a technique for selection and composition of Web
services based on logic with high expressive power. The main benefit of using logic,
when composing services, is that it can be guaranteed that the composed service fulfills
the requirements. We choseLinear Logic (LL) due to the fact that it fulfilled our
requirements and it’s probably one of the most investigated ones.

2.6.1 Linear Logic
Linear Logic (LL) can be seen as a refinement of classical logic; it considers process
states, events, or resources rather than truth values. Furthermore the propositions aren’t
considered to be static unchanging facts but dynamical properties or finite resources. In
order to simplify things one could say that assumptions correspond to resources and the
conclusions to requirements fulfilled by spending the given resources.

We will go through some of the major changes between classical logic and LL. First of all
two structural rules seen in the classical logic has been removed, namely contraction and
weakening. One could say that the former allows us to use a premise (or assumption)
unlimited number of times and the latter allows us to prove a proposition using irrelevant
or unused premises. This isn’t allowed in LL due to the fact that each assumption is
expected to be used exactly once in each proof. Removing the two structural rules leads
us to the next major change, i.e. introduction of two forms of conjunctions and
disjunctions. Both of them have a multiplicative as well as an additive form. These are
described further in Table 2.2. The final change to be considered is the introduction of
modality, i.e. a storage or reuse operator. There are two different modality operators (both
described in Table 2.2). Modality can be used to distinguish between non-consumable
resources as information from consumable ones as memory. Another important concept,
the linear implication, is also described in Table 2.2.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

24

Name Example
expression

Description

Additive conjunction Α & Β Either A or B, it’s “one’s own
choice”.

Multiplicative conjunction Α ⊗ Β This expression stands for the usage
of A and B at the same time.

Additive disjunction Α ⊕ Β Either A or B, but it’s “someone
else’s choice”.

Multiplicative disjunction Α ℘ Β The meaning is “if not A then B”.
Modality (unlimited
creation)

!Α This expression provides unlimited
use of resource A.

Modality (unlimited
comsumption)

?Α This modality operation provides
unlimited consumption of resource A.

Linear implication A —o B The linear implication can be thought
of as “B can be derived using A
exactly once.”

Table 2.2 Connectives and operators in linear logic.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 25

3 Analysis and design

The aim of this chapter is to discover the functionality required of the system, along with
a plan on how it could be implemented. The first sections in the chapter will describe how
the system might be used and what functionality to expect. Then there will be sections
focusing on the interaction in the system. After that we will look at the information flow
in the system.

3.1 Terminology
The most important terms, crucial for understanding this chapter, are explained in Table
3.1. Some of the terms are only defined within the scope of this project while others are
widely accepted.

Term Explanation
Service Provision Agent (SPA) An agent handling the service requestor’s

part in a negotiation of services.
Service Selection Agent (SSA) An agent handling the service provider’s part

in a negotiation of services.
Directory Facilitator (DF) A predefined agent holding a directory where

other agents can publish themselves and
search for others.

Ontology An ontology is a specification of concepts. It
can be used by agents as a vocabulary when
they communicate with each other.

Virtual Organization (VO) A set of individuals/organizations conformed
under a set of rules for sharing resources.

VORegistry A registry included in Globus Toolkit 3
allowing other Grid services to register and
lookup services within a Virtual
Organization.

Table 3.1 Explanation of the most important terms used in the document

3.2 Scenarios of system usage
There will be two different types of users in the system; those who provide services and
the ones requesting them. In the first two scenarios of system usage we will see how both
sides can make use of the system. The final scenario is more detailed and it will be used
as a base when testing the implemented prototype.

3.2.1 Service requestor
Clark Kent is studying computer science. In one of the courses he is taking, a huge
mathematical problem has come in his way. Using his own work station isn’t really an
option due to the fact that he needs the results right away, and running the problem on his
work station could take forever. Instead Clark reminds himself of a system available at
school for selection and composition of Grid services. If he could find a Grid service with
the required storage capacity, a fee not too big for his student loans, and with the required
CPU capacity the problem would be solved. The next day Clark starts his school day by

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

26

instantiating his own agent with the directives to find a suitable service. Clark feels
relieved when his agent presents him plenty of services fulfilling his requirements. His
only problem now is to choose among the services.

3.2.2 Service provider
Lois Lane runs a quite large company working with 3D rendering. The company has just
invested in a new super computer with high computational power along with large data
storage. At the present time the computer is rarely fully loaded and Lois hates to see the
waste of resources. Therefore Lois comes up with the idea to offer computational power
to outside companies and others, using Grid service technology. Lois talks to her staff
administering the super computer and they suggest connecting the computer to a novel
system where agents negotiate Grid services in a market place. Lois decides to go along
with the suggestion and in a nearby future the money spent on the super computer will
hopefully be repaid.

3.2.3 Detailed Scenario
We have all seen the huge success of Short Message Service (SMS), i.e. a service for
mobile phones allowing for users to send short messages to each other. Lex Luther owns a
small company providing services for mobile users. But due to the fact that his company
is rather small, in comparison with the large mobile communications providers, he has a
hard time trying to keep up with the competition. Lex must somehow make use of the
competition between the large companies. He finds out that most of the companies
provide services such as SMS, ring tones, MMS and number lookup to their users by the
means of Grid service technology. One of the main reasons why Grid services are well-
suited for these kinds of services is the ability to attach additional Service Data (such as
cost and currency). Furthermore, it might be convenient to charge a user for all messages
sent using its instance instead of charging each message sent.

When Lex hears about an agent-based system for Grid service provision and selection he
comes up with the brilliant idea to use the system for providing the services offered by
other companies. Each company will be represented by a Service Provision Agent,
handling the providing part in a negotiation over services. Lex will provide the
counterpart (Service Selection Agent) configured to select the cheapest service of interest,
e.g. sending SMS.

Using this system Lex will always provide the cheapest service to his costumers. His own
income will instead be based on advertisement on his nowadays well visited site.

3.3 Use cases
Use cases are a widely used method for capturing functionality and behaviour of a system.
A Use case describes the interaction between the system and an outside party trying to
achieve a goal while using the system. The focus of this project lies within selection and
provision of Grid services. Therefore it becomes quite natural to use selection and
provision of services as the two main types of Use cases. The Use cases will be described
in details below.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 27

Use Cases

Create SSA Create SPA

User requesting
services User providing

service

«extends»

Search for
service

Assign
Service(s)

Update
Registry

«extends»

«extends»

Figure 3.1 Use cases of the system. Both selection and provision of service are divided into several

minor Use cases.

3.3.1 Provision of service
In order to select a service we must find a way to provision them first. This includes
finding a way to describe Grid services and making these descriptions available for agents
handling the service providing part in a negotiation, i.e. a Service Provision Agent (SPA).
Furthermore the SPA must be found by the counterpart of a negotiation, i.e. the Service
Selection Agent (SSA). This can be solved by having the SPA publishing itself in a
Directory Facilitator. The Service Provision Agent must also be updated when new
services appear or when services become unavailable.

The Use case Provision of service can be divided into three minor Use cases (as seen in
Figure 3.1). First there is one describing the creation of a new Service Provision Agent.
Secondly, there is a Use case covering assignment of a service or several services to a
SPA, and finally a Use case dealing with updating of the registry.

Creation of a Service Provision Agent
When a new market place is set up the only agents initialized are a number of predefined
agents included in the architecture, e.g. a Directory Facilitator. Therefore in order to
provision services in the market place at least one Service Provision Agent must be
instantiated.

Assignment of Services
To provision a service one must assign it to a Service Provision Agent. Assigning services
one at a time might become inefficient when dealing with larger organizations. A solution
to this problem is to assign an entire Virtual Organization to a SPA. But it isn’t always the
case that all the services are meant for provisioning. Therefore in our solution a registry
(in our case the VORegistry), holding the address along with a description of each offered
service, is given to the SPA instead. Our solution supports both assigning a single service
at a time, or if one like, a whole registry.

When a new service is assigned to a SPA the properties of the new service must be
translated into an ontology object (currently supported by the SPA). The ontology will be
the vocabulary used when negotiating about services.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

28

Updating the registry
When assigning a service or a Virtual Organization to a Service Provision Agent, it
includes caching a description of the service or the current state of the registry at the SPA.
Caching is an efficient way to avoid the communication delay when working with few
registries and it also minimizes the logic required in the registry (such as advanced search
algorithms). To keep the registry and the services coherent with the associated SPA we
need to notify the SPA whenever changes are applied to the registry.

3.3.2 Selection of service
Selecting a service is a matter of matching the provided services against the one described
by a user. A Service Selection Agent handles the user’s part in a negotiation over services,
and the counterpart, i.e. the service provider, is handled by a Service Provision Agent. In
similarity to the Use case covering provision of service we have divided this Use case into
separate parts (as seen in Figure 3.1). The parts are: Create Service Selection Agent and
Search for service.

Create Service Selection Agent
As mentioned in the Use case describing creation of SPA there are no Service Selection
Agents in the system when the market place is set up. Therefore one must instantiate at
least one SSA in order to be able to make use of the system’s selection service.

Search for service
When a Service Selection Agent has been instantiated one might want to start negotiating
over services. In order to do so, a SPA or several SPAs (under the condition that they all
use the same ontology) must be chosen. We have restricted our negotiation not to
automatically include all the available SPAs. The motivation for this is mainly based on
scalability issues; hence there can be a great number of SPAs in a market place. Another
reason is the restriction to only use a single ontology when making a query and due to the
fact that the system supports multiple ontologies. Instead the SSA chooses among the
SPAs available in the Directory Facilitator. The goal is to enable for the user to specify
the depth of the search.

When it’s decided which of the SPAs to interact with, a sample service is constructed
using the associated ontology supported both by the SSA and the SPAs. The reason for
allowing multiple ontologies is to increase the flexibility of the system; it’s not feasible to
find an ontology suited for all Virtual Organizations and kinds of services.

The SPA searches its storages for services matching the sample service. The negotiation
will hopefully result in a list of possible services.

3.4 Interaction
Whether we consider selection or provision of services it’s required from the agents to
interact with each other. First we will be using collaboration diagrams to describe this
interaction on a higher level of abstraction. Then a more detailed description will be given
for each agent-to-agent interaction in sequential diagrams. In similarity to the Use cases
we have divided the interaction into two collaboration diagrams, one describing selection
and the other provision of service.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 29

3.4.1 Provision of service
Except for the three Use cases regarding provision of service a user’s ability to create and
add Grid services (to a Virtual Organization) has been included in the collaboration
diagram (1.1-1.2 in Figure 3.2). This isn’t really part of the system and it’s therefore not
described in any particular Use case. In contrast to this updating the registry (5.1-5.7 in
Figure 3.2) has a direct effect on the system and is therefore described in a Use case.

As mentioned above a user providing services must instantiate a Service Provision Agent
in order to provision its services in the system (2). After an instantiation a user can assign
either single services or one or several Virtual Organizations to the SPA. Assigning a
Virtual Organization can be seen as assigning multiple single services. Therefore we will
only give a textual description of assignment of a VO.

The first step after a user has initiated an assignment of a Virtual Organization is to fetch
all the services located in the Registry belonging to the Virtual Organization (4.2-4.3).
The SPA fetches the information needed to construct a description of each service (using
a supported ontology) found in the registry (4.4-4.5). Finally the SPA publishes itself at
the Directory Facilitator (if not registered before) (4.6). If the registry would change after
being assigned to a SPA (typically a new service is added) the registry triggers a
notification message that is sent to the associated SPA (5.1-5.3). This would cause the
SPA to update the list of services held by the registry (5.4-5.5) and to update its local
storage (5.7).

Directory Facilitator SPA

3.4 or 4.6: if not published publish

2: Invoke agent

3.1: Add single service

4.1: Add VO

Registry

4.2 & 5.4: G
et se

rvic
es

4.3 & 5.5: L
ist

of se
rvic

es

5.3: N
otify

 about u
pdate

Grid services

1.1: Create service

5.1: Update services

1.2: Register service

5.2: Update registry

User providing
service

3.2, 4.4 or 5.6: Get info
3.3, 4.5 or 5.7: Info

Figure 3.2 Collaboration diagram describing the interaction between different parts of the system

used to provision services.

3.4.2 Selection of service
In the collaboration diagram describing selection of services (see Figure 3.3) the Service
Selection Agent interacts with two different agents. When a search is initiated by an users
the agent first downloads a list of available SPAs from the Directory Facilitator (2.1-2.3).
Then the SSA automatically selects the SPAs to interact with (based on the supported
ontologies). Finally the SSA translates (the user specified) service of interest into the
ontology of concern. The SSA then starts negotiating with the SPA (or the SPAs) about

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

30

suitable services (2.4-2.5). When the search has timed out the result is shown to the user
(2.6).

SSA

Directory Facilitator

SPA

1.1: Invoke agent
2.1: Search for service

2.6: View results

User requesting
service

2.2
: R

eq
ue

st
lis

t o
f S

PAs

2.3
: L

ist
 of

 S
PAs

2.4: (Find (Service :name ...))
2.5: (Result (Service ...))

Figure 3.3 Collaboration diagram describing the interaction between different parts of the system

used to select services

3.5 Agent-to-agent interaction
When two agents communicate with each other it’s required to have an effective
communication language. FIPA ACL is probably one of the most well-defined Agent
Communication Languages (ACLs) and it’s also widely accepted. Therefore it will be
used as the outer language when agents communicate in this project. We’ll be using
sequential diagrams to specify the different FIPA communicative acts exchanged. A short
description of the communicative acts used in the protocols will be given in Table 3.2.

Communicative act Description
inform The sender of an inform ACL wants

the receiver to believe that the contents
of the message (i.e. a statement) is true.

request The sender of a request ACL wants the
receiver agent to perform some action.

Table 3.2 The FIPA Communicative acts used in the project.

The agent-to-agent communication is only initiated by the Service Provision Agent and
the Service Selection Agent. Therefore their interactions with other agents will be
separated into two different sequential diagrams.

3.5.1 Service Provision Agent Protocols
As seen in Figure 3.4, a Service Provision Agent registers at the Directory Facilitator
(DF). The communication with Directory Facilitator is specific for each agent platform,
but it’s described in Figure 3.4 using some kind of register message. When the SPA is
registered at the DF it’s considered to be available for any SSA wanting to start a
negotiation.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 31

SPA Directory Facilitator

register(SPA)
Add Service(s)

Figure 3.4 The Protocols used by the Service Provision Agent. The register message is a platform

specific method and is not to be mistaken for FIPA ACL message.

3.5.2 Service Selection Agent Protocols
The steps required when selecting services in the system are described in Figure 3.5.
These steps include the Service Selection Agent to interact with two other agents. The
first agent to interact with is the Directory Facilitator (DF). This interaction is described in
Figure 3.5 using messages to represent the platform specific methods as seen in Figure
3.4. The messages of concern are the search and the corresponding result messages. These
are used by the SSA when it searches the DF for available SPAs.

Using an ontology the SSA formalizes the user’s query, which is then sent to the selected
SPA (or SPAs) using a FIPA ACL request message. The SPA tries to match the requested
service with the ones assigned to it. The result is then sent back to the SSA using an FIPA
ACL inform message.

SSA Directory Facilitator

search(SPAs)

result(SPAs)

SPA

request(Service)

inform(Service)

Search for
service

View results

Figure 3.5 The Protocols used by the Service Selection Agent. The search and result messages are

platform specific methods and are not to be mistaken for FIPA ACL messages.

3.6 Message Content
There are two messages, not specified by the agent platform, in the system. These are the
inform and request messages seen in Figure 3.5. The request message is in this case sent
(by a Service Selection Agent) as a proposition (to the receiving Service Provision Agent)
to initiate a search. The message must therefore contain both its purpose, i.e. requesting a
search for services, and not less important criteria for the requested service.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

32

We will use FIPA RDF Content Language as our base content language; because it
supports expressing actions and due to fact that it can easily be expressed in XML. An
example action expressed in FIPA RDF is given in Figure 3.6. Each action has an actor,
an act and optionally an argument element. The actor is the agent requested to execute the
proposed action, which is described by the act. Input to the action can be held in the
argument element. In Figure 3.6 it’s requested of the SPA1 agent to find a service
described by the argument element.

Figure 3.6 A FIPA RDF Action requesting a search at SPA1.

Every action is identified with its own id. This is important when associating the action
with its response. In Figure 3.7 is the response message to the action given in 3.6. The
response message has an element named done, which notifies the requestor, of the
proposed action, if it was successfully executed or not. If the action was successfully
executed the result element will hold the produced output, if any. The result message in
Figure 3.7 notifies the agent requesting the service in Figure 3.6 that the action was
successfully carried out. Hopefully the receiver of the message will also find the best
match when extracting the content of the argument element.

Figure 3.7 A response containing the result of the FIPA RDF Action message.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas#">

 <rdf:Description about="45">
 <fipa:done>true</fipa:done>
 <fipa:result>
 <... service described in OWL-S .../>
 </fipa:result>
 </rdf:Description>
</rdf:RDF>

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:fipa="http://www.fipa.org/schemas#">

 <fipa:Action rdf:ID="45">
 <fipa:actor>SPA1</rdf:actor>
 <fipa:act>findService</rdf:act>
 <fipa:argument>
 <... description of requested service in OWL-S .../>
 </fipa:argument>
 </fipa:Action>
</rdf:RDF>)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 33

3.7 Matching algorithm
The goal of the system is to select the service best suited for a user’s requirements. This is
possible by translating the user’s requirements into a synthetic service (represented in the
chosen ontology) and then comparing it to the provided services expressed in the same
ontology. This project will focus on the OWL-S ontology for representation of services.
Therefore will OWL-S also be the base for the matching algorithm.

In order for the matching algorithm to achieve tolerable results, it should comprise
following properties:

o Encourage the requestors as well as the providers of services to be detailed in their
descriptions of services.

o Include semantic matching of inputs and outputs.
o Allowing for prioritizing the search categories.

Figure 3.6 shows a matching algorithm comprising these features. The algorithm matches
the requested service against all the services provided by the Service Provision Agent.
Each of the provided service is assigned an integer called a score — a high score means
that that the service is well suited. The service that receives the highest score is the one
returned to the requestor (which will encourage requestors and providers of services to
give detailed descriptions of their services). The score is based on a weighted addition of
the result of four different comparison methods. The weights make it possible for
prioritizing between the methods, e.g. when using a simple SMS service the output
parameters might be uninteresting. The first method matches the inputs parameters; the
second the output parameters; the third the names of the services; and finally the fourth
method matches the taxonomy. More detailed descriptions of the methods will be given in
the upcoming sections.

Figure 3.8 The service matching algorithm.

Service Match(reqestedService, providedServices){
 int highestScore
 Service hasHighestScore

 for all providedService in providedServices do{
 int currScore = 0
 currScore += weightInput *
 matchInput(reqestedService, providedService)
 currScore += weightOutput *
 matchOutput(reqestedService, providedService)
 currScore += weightName *
 matchName(reqestedService, providedService)
 currScore += weightTaxonomy *
 matchTaxonomy(reqestedService, providedService)

 if currScore > highestScore do{
 highestScore = currScore
 hasHigestScore = providedService
 }
 }
 return hasHigestScore
}

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

34

3.7.1.1 Matching input parameters
When matching parameters the main concern is to match the type of the parameters rather
than their names. Furthermore we’re not interesting in the order the parameters are
positioned in. A matching succeeds when there is a one-to-one mapping between the input
parameters of the requested services and the input parameters of the provided service
currently being matched. Another way for the matching to succeed is when no input
parameter is specified in either description.

3.7.1.2 Matching output parameters
The matching of output parameters is identical to the matching of input parameters
(described in 3.7.1.1).

3.7.1.3 Matching service names
Matching service names is done by comparing the names of the services using a lexical
analyser. One approach is to demand the names to be identical. Another less restrictive
approach is to allow one of the names to be a substring of the other, e.g. a service named
add would match a service called addition. This last approach is the one chosen for our
matching of names.

3.7.1.4 Matching taxonomy
Taxonomy allows for valuation of services. This can be useful for requestors with a
limited budget. There is no restriction in the OWL-S specification about how to use their
taxonomy. The taxonomy consists of the four fields Code, CategoryName, Taxonomy and
Value. When matching taxonomy we will require that the Code, CategoryName and
Taxonomy fields are equal when comparing the two descriptions. The values are
considered to match when the requestors value is less than, or equal to, the one being
compared.

3.8 Information flow
The information flowing in the system is basically different forms of service descriptions.
Figure 3.9 shows how these service descriptions are transformed as well as their
connections to each other, i.e. via information processing classes. New information can
enter the system in two different ways. One possibility is when Service Selection Agent
(SSA) creates a new synthetic service (selection of service). The other, when a Service
Provision Agent (SPA) fetches the WSDL document along with the associated Service
Data Elements from a Grid service (provision of service). First we’ll consider the former
case when a new synthetic service is created.

When a user wants to locate a service, it first needs to specify the requirement for the
service. This will basically result in a WSDL operation and some Service Data Elements.
These objects will be converted into a single service description object in the preferable
ontology, using a WSDL 2 ontology translator (i.e. a class translating a WSDL document
into a specified ontology object). Once the object has been constructed it’s to be sent to a
SPA (as the content of an ACL) and is therefore (with the use of an ontology writer)
transformed into an XML document representing the service. The receiving SPA resolves
the ACL and extracts the XML document, which is retransformed back to an ontology
object (using a class called an ontology reader). The object will be matched against the
advertised service description objects (located in the local storage) using a Service
Matcher. The Service Matcher will return the best matching object, which the ontology
writer transforms in to an XML document. The XML document will be sent back to the

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 35

SSA in an ACL message. The content XML document is once again extracted form the
ACL message and is transformed (using an ontology reader) into an ontology object. The
ontology object hopefully matches the user’s requirements.

The other flow of information is when a new Grid service is assigned to a SPA (called
provision of service). Using the Grid Service Handle (GSH) of the Grid service the SPA
fetches the WSDL document along with associated Service Data Elements. The WSDL
service creator then converts the WSDL document into one or several WSDL operation
objects (one for each operation not considered to be a standard Grid service operation).
Each WSDL operation object is combined with the Service Data Elements in the WSDL 2
Ontology translator creating an ontology object representing the service. These objects
are then stored in the local storage for latter comparison with incoming service requests.

The main reason, why service descriptions represented in XML are translated into object-
based service description, is to facilitate the extraction of data from service descriptions.
This is a huge benefit when handling a large number of service descriptions in the
matching algorithm. The translation from XML to object doesn’t necessarily cause
information loss as long as the translator and the ontology object implements the entire
ontology.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

36

Figure 3.9 T
he inform

ation flow
 in the system

.

W
S

D
L

D
ocum

ent

W
S

D
L

S
ervice

creator

W
S

D
L

operation
object(s)

G
rid service

S
ervice D

ata
elem

ent(s)

W
SD

L 2
O

ntology
translator

S
ervice

description
object in
ontology

S
torage

m
anager

S
torage

R
equested
W

S
D

L
operation

A
dditional

data

W
S

D
L 2

O
ntology

translator

S
ervice

description
object in
ontology

O
ntology
w

riter

S
ervice

description in
X

M
L (R

D
F)

S
ervice

M
atcher

O
ntology
reader

S
ervice

description
object in
ontology

S
ervice

description
object in
ontology

O
ntology
w

riter

S
ervice

description in
X

M
L (R

D
F)

O
ntology
reader

S
ervice

description
object in
ontology

G
rid

service
S

ervice Provision
Agent

Service Selection
Agent

Figure 3.9 The information flow in the system.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 37

3.9 Composition
As mentioned in the section covering composition in related technologies (2.8), one can
increase the hit rate and flexibility of the system by introducing composition of services.
In this section we’ll see how support for composition could be implemented in our
prototype. Our proposed design is closely related to a system architecture for Web service
composition described by J. Rao, P. Küngas and M. Matskin [13]. Their architecture is
based on a Linear Logic theorem prover called RAPS. First of all we will give an
overview of our proposed design. Then the most crucial parts of the design will be
described in further details.

3.9.1 Overview of the proposed design
Extending our design to include composition of services will result in replacing the
proposed matching algorithm with a new one, which supports composition. The
agent-to-agent communication doesn’t necessarily need to be changed; the SSA can still
send the requested service in a findService action and receive the corresponding result in a
response message. So the SPA receiving a findService message will try to compose a
service on behalf of the SSA (using its locally stored service descriptions). Notice that the
matching algorithm could still result in service represented by a single atomic process (i.e.
a single invocable service).

Figure 3.10 visualizes the actions taken by the (composition) matching algorithm of a
SPA when receiving a request message. First of all the locally stored advertised services
are translated (using the translator) into extralogical axioms in LL, which are latter used
by the theorem prover. The requested service description however is translated into a LL
sequent, i.e. the formalized statement that we are trying to prove. The classes and other
properties are sent to the adaptor, which will ask the semantic reasoner to investigate if
there are any subtypes. The subtypes (if any) are then sent to the theorem prover as LL
axioms. The LL theorem now tries to prove the sequent, i.e. to see if the advertised
services can be combined to fulfill the requirements. If a proof can be derived it’s
translated into OWL-S process model.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

38

Composed
Service

Description in
OWL-S 1.0

LL theorem
prover

Translator

Advertised
Service

Descriptions
in OWL-S 1.0

Service composer

Adaptor

Semantic
Reasoner

Ontologies

Classes and
properties

Proof

Extralogical
axioms

S
em

antic
im

plication

P
ro

po
si

tio
na

l
va

ria
bl

es
O

nt
ol

og
y

m
od

el

S
ubtyping

relations

Requested
Service

Description in
OWL-S 1.0

Figure 3.10 The design of the service composer.

3.9.2 LL representation of services and proof intuition
As said in the section covering the OWL-S ServiceModel (2.5.2.2) a service is either
represented by an atomic or a composite process. The latter is included in a composite
service description and is built upon combining a set of atomic processes (which is
included in an atomic service description). Despite of the ServiceModel all services can
have functional and non-functional requirement. Inputs, outputs and exceptions are
considered to be functional. Non-functional (such as price and CPU load) on the other
hand are classified into certain categories. Considering these facts this will bring us to the
following LL formula for requesting a composite service:

Γ;∆c ¶ (Ι —o (O ⊕ E)) ⊗ ∆r

The Γ in the formula represents the extralogical axioms, i.e. the advertised (atomic)
services presented in LL (in the form ∆c ¶ (Ι —o (O ⊕ E)) ⊗ ∆r). The ∆c represents a
conjunction of non-functional constraints, and the ∆r is a conjunction corresponding of
non-functional results. The functionality of requested composite service is described by (Ι
—o (O ⊕ E)). I represents the input parameters and O the corresponding output
parameters. E is a representation of the exception thrown by the service. Intuitively one
could say that the composite service is built by combining atomic services that together
take the input set I and generates output set O (or E).

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 39

4 Implementation

The prototype is implemented using the JADE platform. Our intent was to implement two
prototypes, the other based on the Agora platform. Since the Agora platform wasn’t fully
implemented, we have restricted our implementation to only support the JADE platform.
In this chapter we will go through some details about the implementation of the prototype,
and when doing that we will use the created Java packages as our basic structure. The
implementation of the agent architecture has been divided into the five packages: agents,
content, grid, matcher and storage. Except for the listed packages we will also look at the
additional service data element added to the Grid services.

The prototype consists of 27 packages, 34 classes and 10 interfaces including the ones
used for testing. The total size of the source classes is 109 Kbytes and they together
contain 3812 lines of code (including comments and white spaces). In addition to this
several classes of the owl-s-1.0.1 API has been rebuilt to suit our project. In order to test
the prototype a Grid service providing mobile services was implemented. The
implementation includes source code, a Service Data Element, and the obligatory gwsdl
document.

4.1 Development platform
We used several software tools to ease the development of the prototype. Due to the fact
that both JADE 3.1 [38] and GT 3.2 [39] were to be used and that they both support Java,
it became a natural choice when considering implementation languages. The following
version and edition was used: Java (TM) 2 SDK (Standard Edition) Version 1.4.2 [40].
The code of the prototype was written in Borland JBuilder X Enterprise [41]. As
mentioned above we used the APIs of JADE 3.1 and GT 3.2. In addition to those libraries
we used owl-s-1.0.1 [37] and Jdom 1.0 [42] (including their libraries).

When developing the Grid service we used Eclipse 3.0 [43] with the additional Globus
Toolkit Plug-in for Eclipse 0.2.0 [44]. The reason why we used a different environment
when developing Grid services was the nice features of the plug-in.

4.2 Agents
The agents package holds the agents implementations for the supported platforms. As
mentioned above JADE is the only considered platform at the time, so the package
includes a single package called jade. The jade package holds implementations of the
agents based on the JADE platform, i.e. the ServiceProvisionAgent and the
ServiceSelectionAgent.

4.2.1 ServiceProvisionAgent
The Service Provision Agent (SPA) is implemented by the class ServiceProvisionAgent
which extends the obligatory JADE Agent class. Considering the Use case Provision of
service (3.3.1) the SPA should, except for creation of the agent (which is handled by the
platform), include functionality for assigning services and updating of a registry. In
addition to this the ServiceProvisionAgent includes functionality for performing service
matching (using the matcher package), based on incoming requests from a Service
Selection Agent. As mentioned in the section describing JADE (2.3.6.1), the actions of
each agent are based on behaviours. The behaviours needed to cover the functionality
required of a SPA are listed in Table 4.1.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

40

Behaviour Description
addService Assigns a service to a SPA given a GSH.

Using the WSDL document representing
the service all the operations, not
considered to be standard Grid service
operations, are translated into service
descriptions. The descriptions are then
handed to the local storage.

addVO Fetches the GSHs of all the services located
in the registry. Each of the services is
added to the SPA’s storage using the
addService behaviour.

ListenForReq A cyclic behaviour that listens for incoming
requests. If a message is received it will be
parsed and the right action will be taken.

RegisterSPA Registers itself at the Directory Facilitator.
SearchAndResponse Searches the local storage for the requested

service and sends the result back.
Table 4.1 Behaviours of the Service Provision Agent.

Assignment of a service
In figure 4.1 is the method for assigning a new service to a SPA. The first thing it does is
to add new addService behaviour. If the agent isn’t already registered at the Directory
Facilitator it will add a RegisterSPA behaviour and finally start listening for incoming
requests, i.e. adding a ListenForReq behaviour.

Figure 4.1 Method for assigning a new service.

4.2.2 ServiceSelectionAgent
The Service Selection Agent (SSA) is implemented by the class ServiceSelectionAgent
and just like the ServiceProvisionAgent class it extends the JADE Agent class.
Considering the Use case Selection of service 3.3.2) one can easily see that the class
ServiceSelectionAgent must include functionality, allowing users to search for services.
In similarity to the ServiceProvisionAgent, creation of the agent is supported by the
platform, and won’t therefore be covered. The behaviours used by the agent are listed in
Table 4.2.

 public void addService(String GSH){

 addBehaviour(new addService(this, GSH));

 if (!isRegistered){
 isRegistered = true;
 addBehaviour(new RegisterSPA(this));
 addBehaviour(new ListenForReq(this));
 }
 }

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 41

Behaviour Description
GetSPAs Searches the Directory Facilitator for

available SPAs.
Receive A cyclic behaviour that listens for incoming

result messages. Messages are parsed and if
it contains search results it’s stored in a
result vector. The behaviour can be
terminated by calling the setDone method.

SearchSPA Searches a given SPA for the requested
services, i.e. sending an ACL requested
with a findService Action.

Timeout A “waker” behaviour, i.e. a behaviour that
sleeps for a while and then wakes up.
Timeout wakes up after a given timeout
and terminates the collection of search
results and starts evaluating the results.

Table 4.2 Behaviours of the Service Selection Agent.

Search for service
One interesting method is the search method (seen in Figure 4.2), i.e. the method
initializing a search for a service. Every search is identified with a unique identification
number which rendered by calling the getID method. Before starting a new search the
vector responsible for temporary storage of the result is cleared. The first behaviour
executed will be the GetSPAs, which fetches a list of available SPAs. Secondly a parallel
behaviour, containing one or more SearchSPA behaviours, is executed. Each of the
SearchSPA behaviours will send a request to one of the available SPAs. Finally a second
parallel behaviour is executed including both a receive behaviour (collecting results) and a
Timeout behaviour (terminating the search after the given timeout). The Timeout
behaviour will also sort the collected results which will render the best suited service.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

42

Figure 4.2 Method for search for a service.

4.3 Content
The content package includes classes for managing the content carried in the ACL
messages together with classes used when working with WSDL documents. The package
has been divided into three sub packages, i.e. lang, owls and wsdl.

4.3.1 lang
The lang package includes several classes used when working with the content languages
included in the ACL messages. The language used in the prototype is FIPA RDF
expressed in XML. Because there are no restrictions about how to express FIPA RDF we
have decided to have interfaces representing both the Action and the Description classes.
The interfaces define methods for translating the class into a string representation along
with method for setting and getting the different parameters. In the prototype we have
classes implementing both of the interfaces for expressing FIPA RDF, in XML (seen in
section 3.6).

The lang package also includes the interface createObject which defines methods for
extracting the content from a given ACL message and returning the associated object, e.g.
an Action. In the prototype we have included support for XML in the class
createObjectImpl.

4.3.2 owls
Like the name reveals the owls package includes classes with functionality for managing
the OWL-S ontology (2.4.2). The package consists of a Writer and a Reader interface and
implementations of those interfaces supporting OWL-S version 1.0 [34]. The Writer
interface defines a method for converting an ontology object into to a string. The reverse
method, i.e. converting a string into an ontology object, is defined by the Reader interface.
The interfaces allows for implementing various ontologies. The reader and writer
implementations are closely connected to the OWL-S API, which has been rewritten to

 public void search(Object service, int maxResults, int timeout){
 String id = getID();
 SequentialBehaviour s = new SequentialBehaviour();
 ParallelBehaviour p1 = new ParallelBehaviour();
 ParallelBehaviour p2 = new ParallelBehaviour();
 Receive receive = new Receive(this, id);

 results.removeAllElements();

 for (int i = 0; i < Math.min(CONCURRENTSEARCH, maxResults); i++)
 p1.addSubBehaviour(new SearchSPA(this, service, id));

 p2.addSubBehaviour(receive);
 p2.addSubBehaviour(new Timeout(this, timeout, receive));

 s.addSubBehaviour(new GetSPAs(this));
 s.addSubBehaviour(p1);
 s.addSubBehaviour(p2);

 addBehaviour(s);
 }

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 43

suit this project; mostly because it included uncompleted parts and didn’t include methods
vital to the project.

4.3.3 wsdl
The wsdl package contains an interface defining methods for translating WSDL
documents into ontology-based service descriptions. In addition to this, it contains another
interface, defining methods for creating new synthetic services descriptions. The former
interface is used by a SPA when adding a new Grid service and the latter can be used by a
SSA when creating a service description, holding the user’s requirements. The prototype
supports the OWL-S ontology language and is implemented using the rewritten OWL-S
API mentioned above.

4.4 Grid
The classes communicating directly with Grid services are located in the package
grid.services. The package contains methods for extracting Service Data elements given a
GSH. This is done using method defined in the Globus Toolkit 3 API, findServiceData.
The Service Data element in this project is defined with respect to OWL-S (more about
this in section 4.6). Finally the package contains descriptions of the obligatory Grid
service operations. These descriptions are used when deciding the method to advertise
given a WSDL document— there is no point in advertising an obligatory Grid service
operation.

4.5 Matcher
The next package called matcher includes classes for matching the requested service
description, against the ones being advertised. Each of the supported ontologies must be
represented by a class implementing the standard ServiceMatcher interface. Furthermore,
a service description can only be compared to other service descriptions advertised in the
same ontology. The Matcher implemented in the prototype will only support matching of
service descriptions expressed in OWL-S and it’s a realization of the algorithm described
in section 3.7.

Matching of input and output parameter types, in the implemented matching algorithm, is
based on the URI of the types. This means that providers and requestors of services can
define their own types. The implemented matcher is rather strict and will only accept a
precise one-to-one parameter mapping, i.e. the requested and the provided service must
have an equal amount of parameters as well as an equal amount of each parameter type.

4.6 Storage
The classes responsible for storing the assigned services at a Service Provision Agent are
found in the storage package. The only requirement is the usage of an obligatory interface
called Storage. This means that the storage can be implemented using various
technologies, e.g. using a database or a simple Vector (currently supported by the
prototype). The Storage interface defines methods for adding, removing and listing all
available services. The latter is used when calling the method for matching of services.
When extending the prototype to support several ontologies one must be able to fetch all
provisioned services for each ontology. One possibility is to have storage representing
each ontology. Another approach is to store an identifier of the ontology along with the
service description. This way the storage can decide to only return the service descriptions
defined in a given ontology.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

44

4.7 Grid service extension
When describing a service one might want to express non-technical properties, or
technical ones not found in a WSDL document. One way to solve the problem is to define
Service Data elements holding the additional properties. The ontology currently supported
by the prototype OWL-S, includes such properties. Some are crucial in our algorithm for
matching services, e.g. the data fields of the Service Category. In the proposed solution
we created a Service Data element called OwlsDataType holding the necessary properties
(seen in Figure 4.3). The element is defined as an XML Schema and contains the four
strings categoryName, taxonomy, value and code. To keep the flexibility the Service Data
Element is defined in a separate file called OwlsSDE.xsd.

Figure 4.3 The Service Data Type OwlsDataType.

The Service Data type can then be imported into any Grid service description using
import seen in Figure 4.4.

Figure 4.4 Importing the OWL-S Service Data type.

Then one must create the element inside the Service Data namespace (sd) and set the
properties of the new element (as seen in Figure 4.5). The OwlsDataType in Figure 4.5
has the following properties: it must occurs once and only once; its values cannot be
changed over time (mutability); the values cannot be modified; and its value cannot be nil
(nillable). Service Data elements are declared inside the portType element.

<import location="OwlsSDE.xsd" namespace=
"http://globus.org/master/thesis/service/OwlsService/OwlsSDE"/>

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions name="OwlsData"
 targetNamespace=
 "http://globus.org/master/thesis/service/OwlsService/OwlsSDE"
 xmlns:tns=
 "http://globus.org/master/thesis/service/OwlsService/OwlsSDE"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<schema targetNamespace=
"http://globus.org/master/thesis/service/OwlsService/OwlsSDE"
attributeFormDefault="qualified" elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema">

 <complexType name="OwlsDataType">
 <sequence>
 <element name="categoryName" type="string"/>
 <element name="taxonomy" type="string"/>
 <element name="value" type="string"/>
 <element name="code" type="string"/>
 </sequence>
 </complexType>

</schema>
</wsdl:types>
</wsdl:definitions>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 45

Figure 4.5 Instatiating a OWL-S Service Data element.

Due to the fact that the values of the SDE cannot be changed they must be set inside the
Grid service when it’s instantiated, i.e. inside the postCreate method shown in Figure 4.6.
The first thing after calling the constructor of the super class is to create a SDE. Then we
instantiate the class OwlsDataType, that represents the OWL-S Service Data type. After
the values of the OwlsDataType object has been set, we simply add them to our SDE. At
this point the SPAs can access the SDE using the Grid Service Handle of the requested
service along with methods for finding Service Data in GT3.

Figure 4.6 The initialization method, optional for GT3 Grid services.

4.8 User manual
The prototype runs on top of the JADE platform. So in order to run the agents a JADE
container must be initialized. The class path of the container will also be the one used
when invoking the agents. Therefore all the library dependencies of the agents must be
included when bringing up the agent container, e.g. GT 3.2 libraries, JADE 3.1, Jdom 1.0,
owl-s-1.0.1 (rebuild), the libraries of owl-s-1.0.1, our OwlsDataType, and finally the
classes of the master thesis. After the container has been brought up agents can be
invoked using the container GUI. When a Service Provision Agent is invoked a simple
GUI is presented, with functionality for assigning a simple service or a whole registry. At
this point there is no GUI for the Service Selection Agent. Services can be created by
calling the NewServiceImpl.createService() method. A search is initiated by calling the
search method with the defined parameters (including a service description). A more
detailed description can be found in Appendix B.

<sd:serviceData name="OwlsData" type="data:OwlsDataType"
 minOccurs="1" maxOccurs="1" mutability="mutable"
 modifiable="false" nillable="false">
</sd:serviceData>

public void postCreate(GridContext context)
 throws GridServiceException {

 // Call super class's postCreate
 super.postCreate(context);

 // Create a Owls Service Data element
 OwlsSDE = this.getServiceDataSet().create("OwlsData");

 // Create an OwlsDataType instance
 owlsDataValue = new OwlsDataType ();

 owlsDataValue.setCategoryName("currency");
 owlsDataValue.setCode("LESS THAN");
 owlsDataValue.setTaxonomy("sek");
 owlsDataValue.setValue("10.5");

 // Sets the values of the Service Data OwlsDataType values
 OwlsSDE.setValue(owlsDataValue);

 // Add the Service Data Element to the Service Data set.
 this.getServiceDataSet().add(OwlsSDE);
}

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

46

5 Validation

This chapter will cover the most important parts of the validation of the implemented
prototype. One can say that validation means testing whether the implementation fulfils
the proposed design. The first two sections will validate minor (nevertheless important)
parts of the system, i.e. generating a Grid service ontology description and assignment of
a Registry. The final section will be validating the whole system when realizing a detailed
scenario of system usage (described in section 3.2.3).

5.1 Generating a Grid service ontology description
In order to test whether the generator of Grid service descriptions worked satisfactory, a
sample Grid service was implemented (or at least parts of it). The sample Grid service
defines four simple operations (seen in Table 5.1), where each operation is supposed to
implement a service for mobile phones. One of the main reasons why Grid services are
well-suited for these kinds of services is the ability to attach additional Service Data,
which in this case is based on taxonomy. The functionality of the operations isn’t really
implemented. Hence, this is only a test considering generation of Grid service descriptions
and invocation of the service won’t be needed.

Method name Input Output Intended functionality
sendSMS String message,

long number
boolean status To send a SMS with the

message as content to the
number given by the long.
The method returns true if
the method succeeds.

sendMMS String message,
long number

boolean status To send the given MMS
message to the number
held by the long. The
method returns true if the
method succeeds.

sendRingTone int tone,
long number

boolean status The intended functionality
is to send the ring tone
represented by the given
int to the given number.
The method returns true if
the method succeeds.

sendPicture int picture,
long number

boolean status The intent is to send the
picture associated with the
given int to the given
number. The method
returns true if the method
succeeds.

Table 5.1 The methods implemented in the sample Grid service.

In addition to the listed operations the Grid service imported the OwlsDataType seen in
section 4.6. categoryName where set to currency, code to LESSTHAN, taxonomy to sek

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 47

and the value where set to 1.3. These values where assigned to each of the ontology
descriptions.

When deploying the Grid service to the application server, a WSDL document
representing the service is generated (see Figure 5.1). When running our test program
test.TestProgram with the GSH representing the sample Grid service it generated four
ontology descriptions (one for each operation). The TestProgram writes the ontology
descriptions represented in RDF/XML into a text document. The generated service
descriptions can be found in Appendix D. A visual description of the validation test can
be seen in Figure 5.1.

WSDL
Document

WSDL
Service
creator

WSDL
operation
object(s)

Owls Service
Data

WSDL2OWLs

OWL-S 1.0
Service

Description
Object

OWLSWriter

OWL-S 1.0
Service

Description
 in XML (RDF) Grid

serviceTestProgram

Figure 5.1 Validation of Grid service description generation.

In order to validate the generated services each one of them where syntactically checked
using the OWL-S Validator [45] — a web-based tool for validation of OWL-S
documents. All of the considered OWL-S service descriptions passed the syntactic
checker. The validation results can be seen in Appendix E.

5.2 Assignment of a Registry
In order to test the functionality of the VORegistry ten different GSHs where assigned to
it. The assignment where implemented in the test.TestProgram. Then a Service Provision
Agent where instantiated and given the directions to extract the services from the registry
(defined as findServiceData in Figure 5.2). The interaction between the different parts of
the system (in validation test) can be seen in the collaboration diagram below, i.e. Figure
5.2.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

48

SPA TestProgram VORegistry

add(GSH, content, time)

findServiceData(GetNamesQuery)

ExtensibilityType

addService(GSH)

Figure 5.2 Validation of the interaction with the registry.

The SPA prints the extracted addresses before trying to assign them. The printout can be
seen in Figure 5.3.

Figure 5.3 Prinout of a SPA extracing service from a VORegistry.

These are also the addresses added to the registry by the test program. Considering this
simple example one can easily see that the interaction with the registry fulfils our
requirements.

5.3 Realizing a detailed scenario of system usage
The last validation test is the most complex one and it will cover both provision and
selection of services. The test will be an attempt to realize the detailed scenario of system
usage described in section 3.2.3. That scenario describes the business man Lex who tries
to take advantage of large companies providing services for mobile phone users. The idea
is to provide and select the best suited services using an agent-based system for Grid
service provision and selection.

In our realization of the scenario there are four companies providing services and each
one of them is represented by a unique Service Provision Agent (as seen in Figure 5.4).
The SPAs registers at the Directory Facilitator after its sample services (using a method in
the TestProgram) has been stored locally. The service requested by the SSA, or at least a
representation of that service, is fetched from the test program as well. The services
provisioned by each agent are listed in Table 5.2.

Registry Entry 0: http://www.globus.org/some/grid/service01
Registry Entry 1: http://www.globus.org/some/grid/service02
Registry Entry 2: http://www.globus.org/some/grid/service03
Registry Entry 3: http://www.globus.org/some/grid/service04
Registry Entry 4: http://www.globus.org/some/grid/service05
Registry Entry 5: http://www.globus.org/some/grid/service06
Registry Entry 6: http://www.globus.org/some/grid/service07
Registry Entry 7: http://www.globus.org/some/grid/service08
Registry Entry 8: http://www.globus.org/some/grid/service09
Registry Entry 9: http://www.globus.org/some/grid/service10

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 49

SSA

SPA

SPA

TestProgram

Directory Facilitator

getReqService
storeServices

search register

findService(reqService)

matched service

Figure 5.4 The validation of the detailed scenario of system usage.

Agent Operations Service Category

sendSMS(message:String, number:long)
-> (status:boolean)

sendMMS(message:MMS, number:long)
-> (status:boolean)

sendRingTone(tone:int, number:long)
-> (status:boolean)

spa1

sendPicture(picture:int, number:long)
-> (status:boolean)

catogoryName: currency
code: LESSTHAN
taxonomy: sek
value: 1.3

SMSSender(message:String, number:int)
-> void

MMSSender(message:MMS, number:int)
-> void

RingToneSender(tone:int, number:int)
-> void

spa2

PictureSender(pic:int, number:int)
-> void

catogoryName: currency
code: LESSTHAN
taxonomy: sek
value: 1.4

sendSMS(message:String, number:long)
-> (status:boolean)

sendMMS(message:MMS, number:long)
-> (status:boolean)

sendRingTone(tone:int, number:long)
-> (status:boolean)

spa3

sendPicture(picture:int, number:long)
-> (status:boolean)

catogoryName: currency
code: LESSTHAN
taxonomy: sek
value: 1.6

birthdaySMS(message:string, number:long,
time:dateTime) -> (status:boolean)

birthdayMMS(message:MMS, number:long,
time:dateTime) -> (status:boolean)

birthdayRingTone(tone:int, number:long,
time:dateTime) -> (status:boolean)

spa4

birthdayPicture(pic:int, number:long,
time:dateTime) -> (status:boolean)

catogoryName: currency
code: LESSTHAN
taxonomy: sek
value: 1.3

Table 5.2 The SPAs and their services in the detailed scenario of system usage.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

50

We will see three different scenarios of service selection. In the first scenario a service for
sending SMS will be selected. The second scenario will focus on selection of a MMS
service, and in the final scenario the target will be a service suitable for sending pictures
at a given time.

The test results, i.e. the printouts of the executions, are presented in Appendix E. The
results shows the requested service, the services obtained from each SPA and finally the
service considered (by the SSA) to be the best match. Considering these simple scenarios
the matching algorithm selects the most suitable service.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 51

6 Evaluation

In this chapter the performance of the system will be tested. We will first look at the time
consumed by different parts of the system. Then we will try to measure the memory usage
of the most vital parts of the system. The evaluation is technique for developers to see
where the system can be improved and to use the measurement to calculate how the
system behaves in untested environments.

6.1 Test-bed platform
The computer running the tests was an AMD Athlon 1800+ with 512 MB in RAM. The
operative system was Microsoft Windows XP Professional SP1.

To run the agent platform (and the agents) the following software were used: Java (TM) 2
SDK (Standard Edition Version 1.4.2) [40], Jade 3.1 agent platform [38], a modified
version of owl-s-1.0.1 [37], Jdom 1.0 [42], and the GT 3.2 libraries [39].

The hosting environment used for GT3.2 where Apache Ant 1.6 [46] together with
Tomcat 4.1 [47] (i.e. a servlet container). Furthermore we used JUnit 3.8.1 [48],
HSQLDB 1.7.2 [49] and Python version 2.3.4 [50].

In addition to above mentioned tools we also used Borland® Optimizeit™ Enterprise
Suite 6 [51] to run some fine-grained evaluation tests. Opimizeit is a tool for isolating and
resolving performance of Java (J2EE) applications.

6.2 Performance based on time measurements
This section will concentrate on performance based on time measurement. Three different
test scenarios will be run testing the agent architecture. The first will measure the time
spent on different parts (e.g. methods or behaviors) of the system when dealing with
provision of service. The second will focus on selection of service, and the final one will
be a fine-grained evaluation of the matching algorithm.

Due to the fact that the standard function for system time in Java is rather imprecise,
especially when ran under Windows, we created our own timer based on the
undocumented class sun.misc.Perf. The class, included in Java SDK since version 1.4.2,
allows for accessing the high performance timer of the CPU. Our timer is based on
comparing the frequency with the clock ticks of the CPU.

The measurement will be based on printouts, e.g. printing the time in the beginning of a
method and comparing it with a printout in the end. We also ran some additional tests,
using Optimizeit, to resolve where the bottlenecks might be located. Otimizeit allows us
to see the time consumed by different parts of the system, using methods as the level of
granularity.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

52

6.2.1 Provision of service
To provision a Grid service a Service Provision Agent creates service descriptions, given
the Grid service’s WSDL document and additional Service Data. To test the performance
of a SPA provisioning a service, the example Grid service from the validation test was
used (5.1). The service was provisioned ten times before the test values were recorded.
The main reason for not having the first values recorded is the high latency of the web
server when a Grid service is instantiated (and the Grid service host environment is
outside the scope of this project). The values recorded from the test can be seen in Table
6.1 and Figure 6.1. As seen in the figure as well as the table it’s the creation of the WSDL
object that dominates the consumed time.

The concerned
system function

Start time
(ms since test

start)

Duration
(ms)

Percentage of the
total time

consumption (%)
Add service 0 1209 100.0
Create WSDL 2 1131 93.5
Get Service Data 1134 54 4.5
Store service 1 1189 2 0.2
Store service 2 1192 1 <0.1
Store service 3 1194 3 0.2
Store service 4 1198 8 6.6

Table 6.1 The time consumed by different parts of the system when provisioning a service.

The bottom bar in Figure 6.1, i.e. Add service, represents the entire behavior of
provisioning a Grid service. Create service, i.e. the part responsible for more than 90 % of
total time consumption, parses the WSDL document of the given Grid service and
translates it into a WSDLService object. Get Service Data simply fetches the service data
of the Grid service.Given a WSDLService object and additional Service Data, Store
service translates them into a single service description (in the preferable ontology),
which is finally stored in the local storage (in the evaluation tests a simple Java Vector
was used). As seen in the validation example (5.1) the Grid service will be represented by
four ontology objects. This can also bee seen in Figure 6.1 where the Store service
method is represented four times (one for each ontology object).

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 53

Figure 6.1 The time consumed by different parts of the system when provisioning a service.

In order to motive the large time consumption of create WDSL we did a supplementary
evaluation test using Optimizeit. Our intent was to locate the methods responsible for the
high execution costs. As expected the supplementary test also held the creation of WSDL
objects responsible for being the most time consuming part. When traversing through the
methods calls it’s quite easy to see that our WSDL parser, i.e.
org.apache.axis.wsdl.gen.Parser, is responsible for the large time consumption.
Traversing further through the method calls we found that the parser builds a symbolic
table, which was the single largest contribution to the high execution costs. If one would
like the system to become more time efficient (regarding provision of services) it might be
a good idea to replace the current parser with a new one, less time consuming.

6.2.2 Selection of service
In similarity to the evaluation test regarding selection of service (6.2.2) we used an
example from Chapter 5. When evaluating selection of service we used the realization of
the detailed scenario of system usage (5.3). We did time measurements on the Service
Selection Agent as well as the four Service Provision Agents. The results can be seen in
Table 6.2 and Figure 6.2 (as with provision of service the test was run ten times before
any values were recorded). Each color in the diagram represents a unique agent.

0 200 400 600 800 1000 1200 1400
Elapsed time [ms]

Add service

Create WSDL

Get Service Data

Store Service

Store Service

Store Service

Store Service

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

54

Agent The concerned
system

function

Start time
(ms since test

start)

Duration
(ms)

Percentage of the
total time

consumption (%)
ssa1 search 0 813 100.0

 init search 0 1 0.1

 Get SPAs 1 16 2.0

 search SPA #1 17 16 2.0

 search SPA #2 34 15 1.8

 search SPA #3 67 15 1.88

 search SPA #4 114 12 1.5

 parsing msg 165 136 16.7

 parsing msg 318 19 2.3

 parsing msg 338 24 3.0

 parsing msg 363 14 1.7

 timeout 809 4 0.5

 sort results 809 4 0.5

spa1 parsing msg 29 4 0.5

 Match and
response

33 114 14.0

 Maching 63 24 3.0

spa2 parsing msg 49 2 0.2

 Match and
response

111 54 6.6

 Maching 148 4 0.5

spa3 parsing msg 82 13 1.6

 Match and
response

169 125 15.4

 Maching 275 4 0.5

spa4 parsing msg 128 2 0.2

 Match and
response

171 77 9.5

 Maching 77 4 0.5

Table 6.2 The time consumed by different part of the system when selecting a service.

The bottom bar represents the entire search initiated by the SSA, i.e. all the behaviors and
methods executed in order to achieve a search in the system. The reason why the search
doesn’t terminate when the last result message has been parsed is that it’s based on a
timeout (set to 500 ms in the example). When the SSA timeouts it sorts the incoming
results and selects the best suited service. The reason why the first parsing of message
consumes a larger amount of time than its followers could be the parallel execution of
agents. We also think that this parallel execution has an impact on the time consumed by
other agents, such as spa 3 and spa 4 seen in Figure 6.2. So the latency here will be a
balance between of the timeout, the allowed concurrency and the (not so easily controlled)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 55

load of the host running the agent platform. The first two parameters are user defined
while the last one dependent of the hosting environment.

0 100 200 300 400 500 600 700 800 900

Elapsed time [ms]

search

init search

Get SPAs

search SPA #1

search SPA #2

search SPA #3

search SPA #4

parsing msg

parsing msg

parsing msg

parsing msg

timeout

sort results

parsing msg

Match and response

Maching

parsing msg

Match and response

Maching

parsing msg

Match and response

Maching

parsing msg

Match and response

Maching

■ spa 4
■ spa 3
■ spa 2
■ spa 1
■ ssa 1

Figure 6.2 The time consumed by different part of the system when selecting a service.

As with the former evaluation test (covering provision of service) we used Optimizeit to
locate the bottlenecks of the system use case (running the same test case). The results
showed that the Jade platform itself consumes nearly 60 % of the overall CPU usage.
Apart from the platform, reading service descriptions consumes nearly 22 %, and writing
them about 18 %, of the overall CPU usage. So, if one would like to minimize the
response time of a search one might start consider optimizing the ontology reader and
writer implementations.

6.2.3 Matching algorithm
The final time-based evaluation tests, considering the matching algorithm, will not be run
on top of the agent platform. Instead the tests were implemented in the class
test.TestProgram.

Each time the algorithm tries to find the best suited service, it matches all the advertised
services against the requested one. The first test concerns the scalability of the algorithm,
i.e. how the algorithm would be affected as the number of advertised services increases.
The measured affect is off course the time consumed to find the best match. The
algorithm was tested with 5, 10, 20, 40, 60, 80, 100, and finally 120 synthetically

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

56

generated services that were advertised. Each service had a random name, two random
inputs, one random output, as well as a random value of the taxonomy. The test results
can be seen in Figure 6.3. The tests were executed several times before values were
recorded. Furthermore, each test was recorded ten times and an average calculated. As
seen in the figure the time consumed by the algorithm scales linear with the number of
advertised services.

0

20000

40000

60000

80000

100000

120000

0 20 40 60 80 100 120 140

Number of advertised services [#]

To
ta

l t
im

e
[µ

s]

Figure 6.3 The scalability of the matching algorithm.

If there is a large number of services in the system one might want to improve the
scalability of the algorithm. One of the most common ways to improve scalability is to
add some kind of parallelism, e.g. the algorithm could spawn a new thread for each search
criteria. Due to the fact that thread handling is quite inefficient in Java and that the
solution requires the server to have multiple processors (to gain speedup) it might not be
satisfying (especially when it comes to a marketplace with a large number of agents).
Another solution could be to narrow the search down into several more detailed search
criteria (like in a binary search), e.g. one could divide the advertised services into groups,
dependent of the number of input (or output) parameters.

The next test focused on how the consumed time was balanced inside the algorithm. The
test considered the four matching passes, where each of them was measured with respect
to time consumption. The test was executed matching a service against 100 advertised
ones. The test results can be seen in Figure 6.4. As can be seen in the figure, the matching
of inputs consumes more time than corresponding matching of outputs. The reason for
this lies within the fact that the requested as well as the advertised services has two input
parameters, and only one output parameter. One could claim that the consumption of the
input matching should be four times as high as the output matching (due to the fact that
each requested parameter is compared to every advertised one). The reason why this isn’t
the case is quite simple; the matched parameters are no longer to be considered to be a

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 57

match for the parameters left. The matching of names consumes nearly half as much as
the matching of taxonomy, even though it only compares one field (the name) instead of
four. This is a result of the two-way matching described in section 3.7.1.3.

0

200

400

600

800

1000

1200

1400

input: output: name: taxonomy:

A
ve

ra
ge

 ti
m

e
[µ

s]

Figure 6.4 The time consumed by the different matching passes.

6.3 Memory usage
The aim of this section is to evaluate the memory usage of parts our agent-based system.
The JADE platform with the required libraries but without any of our agents consumes
about 14 Megabytes when ran on our test bed platform (this value is highly platform and
hardware specific). It’s said that the JADE platform is highly adjustable to its target host
[52].

When running our memory usage test we used the Sizeof class described in the article
[53]. The class uses widely used method of calculating used memory as:

Runtime.totalMemory() - Runtime.freeMemory().

The most interesting part of the class is its garbage collections method (preferable
executed in advanced of the method calculating used memory). The intent is to stabilize
the heap before measuring the amount of used memory.

6.3.1 Agents
If we want to achieve scalability it’s important to allow a great number of simultaneous
agents in the system. Therefore it’s interesting to measure the memory usage of each
invoked agent. It’s not possible to set an upper limit hence it’s dependent of the host
environment. To get the average memory consumption the memory usage was measured
before and after the invocation of several agents. The tests covered both the SPA and the
SSA. The results can be seen in Table 6.3.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

58

6.3.2 Service description
The memory usage of the service description is another object with a great impact on the
scalability. Hence each service will be represented by a service description and because
there will probably be a greater number of services descriptions than agents (hence SPAs
not providing services are unnecessary). To measure the memory used to store a service
description object we created an example service in OWL-S. The size was measured by
instantiating the service object hundreds of times and to use this data to calculate an
average memory usage. The values of can be seen in Table 6.3.

Object Memory usage
(per instance) in Kbytes

Percentage of their
combined sizes (%)

Service Selection Agent 7.5 5.9
Service Provision Agent 20.4 16.0

OWL-S Service
description object

99.3 78.0

Total 127.3 100.0
Table 6.3 Memory usage.

One can easily see that the number of provisioned services in the system (which will
render service description objects) has the greatest impact on the memory consumption.
This will also be the factor limiting the scalability of the system (with respect to memory
usage).

6.4 Evaluation summary
The first evaluation tests considered the performance of the system related to time, i.e. the
time consumption in different parts of the system. We constructed three different test-
cases, where the first covered provision of service. Running the first test made it quite
clear that our WSDL parser consumed over 90 % of the overall time. The second test,
focusing on selection of services, held the Jade platform responsible for over 60 % of time
consumption. Apart for the platform the conversion of ontology objects into XML
documents, and vice versa, were the most time consuming parts (with about 18 % of the
overall time consumption for writing and 22 % for reading XML documents). The third
test, considering time consumption, was a fine-grained test of the matching algorithm.
The algorithm consists of four different matching passes, where the matching of
taxonomy was the most time consuming one (according to the test). We consider the
following parts to be potential bottlenecks: the WSDL parser, the writer and the reader of
XML documents, and finally the matching algorithm when it comes to large amounts of
advertised services.

In addition to the time-based evaluation tests we also measured the memory usage of the
system. Our measurements included both of the agents as well as the OWL-S service
description, where the latter consumes 78 % of the total amount of memory (when
combining the compared objects).

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 59

7 Conclusions

In this report we have described our approach to create an agent-based system for Grid
service provision and selection and how to extend this system to support composition.
The system is based on communicating agents which negotiate services on behalf of
providers and requestors of services. Grid service can be provisioned one at a time or
several services can be assigned using a registry. When a service is provisioned, i.e.
assigned to a Service Provision Agent (SPA), it’s translated into a service description in
any suitable ontology (e.g. OWL-S). This translation is based on the WSDL document as
well as additional Service Data Elements held by the Grid service. When a service
requestor wants to initiate a search for services, its Service Selection Agent (SSA) creates
a synthetic service description representing the requested service. Using the synthetic
service the agent sends messages requesting search to be carried out at some (by the
agent) selected SPAs. When a request for a search is received at an SPA it extracts all its
advertised services (i.e. the provisioned ones) from it local storage and match them
against the requested one, using a matching algorithm. The best matches (at most one
service per SPA) are returned the SSA.

In order to test our ideas a prototype, realizing our design (except for composition), was
implemented in Java [40] on top of Jade [38]. We ran several tests validating our
prototype against the requirements defined in the design. The tests covered: validating
generation of service descriptions using a sample WSDL document (along with Service
Data Elements); assignment of a registry holding Grid Service Handles; and the final test
considered the entire system, when realizing a detailed scenario of system usage.
According these validation tests our prototype fulfils the requirement defined in the
proposed design.

The system was also evaluated using the implemented prototype running on a test-bed
(described in section 6.1). The first evaluation tests measured the time consumed by
different parts of the system. The system was tested regarding provision of service,
selection of service, and finally the matching algorithm were carefully tested. When
considering provision of service the part of the system interacting with the grid container
(in our case an Apache server) consumed more than 90 % of the total time. This could be
a result of that the test-bed isn’t powerful enough to run both the agent platform and the
grid container. But when running a more fine-grained test one can easily see that the
Apache WSDL parser was, without any doubt, the most time consuming element. The
second test considered selection of services using the detailed scenario of system usage
realized in our final validation test. The overall time consumed by this test is highly
dependent of the timeout value (the time waiting for results) set be the SSA when it
initiates a search. Apart for the timeout value one can see that both the parsing and the
writing of XML-messages consume about 20 % of the time. This wasn’t any surprise and
won’t be considered to be a major problem, due to the fact that parsing usually is time
consuming and in our approach it’s unavoidable. Furthermore, the tests showed that the
Jade agent platform itself consumed most (about 60 %) of the execution time. The final
evaluation test (based on time measurements) was a fine-grained evaluation of the
implemented matching algorithm. This test covered both measurements of the time
consumed by matching different parts of the service descriptions, as well as the increasing
overall time consumption when adding advertised services to the local storage. In the
former test case one can see that the matching of taxonomy consumes the largest amount
time. This is a result of the four fields matching required when comparing two

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

60

taxonomies. One can also see that the time spent on input and output parameter matching
is a function of the number of parameters at the requested as well as the advertised
services — increasing the number of parameters will increase the time consumed by
matching them. The latter evaluation test of the matching algorithm was an attempt to
measure its scalability with respect to time consumption. As one could guess the time
consumption of the algorithm scaled linearly with respect to the number of advertised
services. This could be improved by narrowing down the search criteria rather than adding
parallelism to the algorithm. The reason why parallelism isn’t well suited for the system
lies within the facts, that thread handling is quite inefficient in Java, and that the system
might handle a large number of agents concurrently.

Apart from measuring the time consumption of different parts of the system prototype it
was tested regarding its memory usage. The results show that a service description
consumes nearly 80 % of the total memory usage, which in this case is a service
description, combined with instances of both of the agents. Due to the fact that our
prototype stores its advertised service descriptions in a Java vector makes it highly
dependent of the amount of available memory at the hosting machine. The prototype
doesn’t hold any constraint on how the local storage is implemented (as long as it
implements the given interface). One solution when it comes to large amount of service
descriptions would be to use data bases.

We have seen how the scalability issues regarding memory usage can be solved, but not
the ones concerning time consumption. There are several ways to control the time
consumed upon initiating a search for service. The easiest way is probably to set the
timeout value. However, this is problematic because initiating an extensive search may
render in loosing results arriving after the timeout. To solve the search scalability issues
(regarding time consumption) one must adjust the timeout value as well as the maximum
allowed search concurrency to suit the hosting environment.

The system presented in this thesis will hopefully offer great guidance for the future work,
i.e. the overall project working towards a novel solution for Agent-Enabled Logic-Based
Web Services Selection and Composition [1].

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 61

8 Future work

This master thesis project is the first step in a research project towards a novel solution for
Agent-Enabled Logic-Based Web Services Selection and Composition [1]. In order to
simplify things one could say that the future work of this project is to convert the
presented system into the architecture described in [1]. One of the most crucial changes
will be to replace Grid services with its predecessor Web services. This will probably be
rather trivial, while most of the technologies used are adapted for Web services. However,
there are some parts of the current system that might need some extra elaboration before
implemented in the new architecture. For example the additional information stored in
Service Data Elements must be presented using some other technology. Furthermore, the
VORegistry won’t be available when using Web services, a similar solution using an
UDDI registry instead should be feasible.

In addition to converting the system to handle Web services, there is work left regarding
the design as well as the implementation of the logic-based service composition
algorithm. This includes translating Web service into Linear Logic as well as writing the
theorem prover.

It’s also crucial to investigate the security aspects of the system before taking it into use.
If the future architecture is implemented on top of Jade one can with rather small means
enforce user-to-agent authentication as well as message integrity and confidentiality. The
permissions granted for each users of the Jade platform can also be specified in a policy
file. Except for the agent platform it might be necessary to have some security regarding
interacting with the UDDI registry and the invocation of the provisioned Web services.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

62

9 References

[1] M Matskin and V Vlassov, Agent-Enabled Logic-Based Web Services Selection and

Composition. Research Project Proposal 2004.
[2] T. Bellwood et al., Universal description, discovery and integration specification

(UDDI) 3.0. [Online], 2003. Available: http://uddi.org/pubs/uddi-v3.00-published-
20020719.htm

[3] E. Christensen et al., Web services description language (WSDL) 1.1. [Online].
Available: http://www.w3.org/TR/wsdl/

[4] D. Box et al., Simple object access protocol (SOAP) 1.1, 2001. [Online]. Available:
http://www.w3.org/TR/SOAP/

[5] L Moreau et. al., On the Use of Agents in a BioInformatics Grid. 2003.
[6] S. Wang et. al.,A Multi-Agent System Architecture for End-User Level Grid

Monitoring Using Geographic Information Systems (MAGGIS): Architecture and
Implementation. 2003.

[7] J. Kopena and W. Regli. DAMLJessKB: A tool for reasoning with the semantic web.
October 28, 2002.

[8] I. Horrocks, F. van Harmelen, and P. Patel-Schneider. DAML+OIL.Technical report.
[Online]. http://www.daml.org/2001/03/daml+oil-index.html, March 2001.

[9] Sandia National Laboratories. Java Expert System Shell. [Online].
http://herzberg.ca.sandia.gov/jess/

[10] Stefan Tang. Matching of Web Service specifications using DAML-S descriptions.
March 18th, 2004.

[11] D. Martin, M. Burstein G. Denker et. al. DAML-S (and OWL-S) 0.9 Draft Release.
[Online]. http://www.daml.org/services/daml-s/0.9/

[12] J.-Y. Girard. Linear Logic. Theoretical Computer Science, Vol. 50, pp. 1--102, 1987.
[13] J. Rao, P. Küngas, M. Matskin. Logic-based Web Services Composition: from

Service Description to Process Model. 2004.
[14] J. Rao, P. Küngas, M. Matskin. Application of Linear Logic to Web Service

Composition. 2003.
[15] I. Foster, C. Kesselman, J. Nick and S. Tuecke. The Physiology of the Grid: An

Open Grid Services Architecture for Distributed Systems Integration. Globus
Project, 2002.

[16] Object Management Group. CORBA™/IIOP™ Specification. [Online].
http://www.omg.org/technology/documents/formal/corba_iiop.htm

[17] Sun Microsystems. Java Remote Method Invocation. [Online].
http://java.sun.com/products/jdk/rmi/

[18] T. Bray et. al., Extensible Markup Language (XML) 1.0 (Second Edition). [Online].
http://www.w3.org/TR/2000/REC-xml-20001006

[19] World Wide Web Consortium. Hypertext Transfer Protocol [Online].
http://www.w3.org/Protocols/

[20] S.Tuecke et. al., Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid
Forum, June 2003.

[21] World Wide Web Consortium. Web Services Description Language (WSDL)
Version 1.2. W3C Working Draft 3 March 2003, [Online].
http://www.w3.org/TR/2003/WDwsdl12-20030303

[22] L. Ferreira et. al. Introduction to Grid Computing with Globus. IBM Reedbooks,
September 2003. [Online]. http://www.redbooks.ibm.com/

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 63

[23] T. Sandholm and J. Gawor. Globus Toolkit 3 Core – A Grid Service Container
Framework. July 2003.

[24] M. Wooldrige and N. R. Jennings. Intelligent agents: theory and practice. 1995.
[25] Katia P. Sycara. Multiagent Systems. Publication of The American Association for

Artificial Intelligence, Summer 1998.
[26] Foundation for Intelligent Physical Agents. FIPA 97 Specification, Part 2. [Online].

http://www.fipa.org/specs/fipa00018/OC00018A.html
[27] Foundation for Intelligent Physical Agents. FIPA SL Content Language

Specification. [Online]. http://www.fipa.org/specs/fipa00008/
[28] X3T2 Ad Hoc Group. Knowledge Interchange Format Specification. [Online].

http://logic.stanford.edu/kif/specification.html
[29] World Wide Web Consortium. RDF/XML Syntax Specification (Revised). [Online].

http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
[30] Pierre-Antoine Champin. RDF Tutorial. April 5, 2001.
[31] Foundation for Intelligent Physical Agents. FIPA RDF Content Language

Specification. [Online]. http://www.fipa.org/specs/fipa00011/
[32] S. A. Petersen, J. Rao and M. Matskin. AGORA Multi-agent Architecture for

Implementing Virtual Enterprises. In Proceedings of the Norwegian Information
Technology Conference (NIK'2003), Tapir, 2003.

[33] World Wide Web Consortium. OWL Web Ontology Language Overview. [Online].
http://www.w3.org/TR/owl-features/

[34] The OWL Services Coalition. OWL-S: Semantic Markup for Web Services.
[Online]. http://www.daml.org/services/owl-s/1.0/

[35] Brian McBride. An Introduction to RDF and the Jena RDF API. [Online].
http://jena.sourceforge.net/tutorial/RDF_API/

[36] World Wide Web Consortium. RDQL - A Query Language for RDF. [Online].
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

[37] Evren Sirin. OWL-S API. [Online]. http://www.mindswap.org/2004/owl-s/api/
[38] Telecom Italia Lab. Jade 3.1. [Online]. http://jade.tilab.com/
[39] The Globus Alliance. Globus Toolkit 3.2. [Online].

http://www-unix.globus.org/toolkit/
[40] Sun Microsystems. Java 2 Platform, Standard Edition (J2SE). [Online].

http://java.sun.com/j2se/
[41] Borland. JBuilder X Enterprise. [Online]. http://www.borland.com/jbuilder/
[42] The JDOM ™ Project. Jdom 1.0. [Online]. http://jdom.org/
[43] Eclipse Foundation. Eclipse 3.0. [Online]. http://www.eclipse.org/
[44] B. Sotomayor, M. López and T. Sánchez. A Globus Toolkit Plug-in for Eclipse.

[Online]. http://gt3ide.sourceforge.net
[45] Evren Sirin. OWL-S Validator. [Online].

http://www.mindswap.org/2004/owl-s/validator/
[46] Apache Software Foundation. Apache Ant 1.6. [Online]. http://ant.apache.org/
[47] Apache Software Foundation. Tomcat 4.1. [Online].

http://jakarta.apache.org/tomcat/index.html
[48] E. Gamma and K. Beck. JUnit 3.8.1. [Online]. http://www.junit.org/
[49] HSQLDB Developers Group. HSQLDB 1.7.2. [Online].

http://hsqldb.sourceforge.net/
[50] Python Software Foundation. Python 2.3.4. [Online]. http://www.python.org/
[51] Borland. Borland® Optimizeit™ Enterprise Suite 6. [Online]

http://www.borland.com/optimizeit

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

64

[52] F. Bellifemine, G. Caire, A. Poggi and G. Rimassa. JADE A White Paper.
September 2003.

[53] Vladimir Roubtsov. Java Tip 130: Do you know your data size? [Online].
http://www.javaworld.com/javaworld/javatips/jw-javatip130.html

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 65

A. Abbreviations

ACL Agent Communication Language

API Application Programming Interface

CORBA Common Object Request Broker Architecture

DF Directory Facilitator

FIPA Foundation for Intelligent Physical Agents

GSH Grid Service Handle

GSR Grid Service Reference

GT3 Globus Toolkit 3

HTTP Hypertext Transfer Protocol

JADE Java Agent Development Environment

KQML Knowledge Query and Manipulation Language

MAS Multi-Agent Systems

MMS Multimedia Messaging Service

OGSA Open Grid Services Architecture

OGSI Open Grid Services Infrastructure

OWL Web Ontology Language

OWL-S Ontology Web Language for Services

RDF Resource Description Framework

RDFS Resource Description Framework Schema

RPC Remote Procedure Call

SDE Service Data Element

SMS Short Message Service

SOAP Simple Object Access Protocol

SPA Service Provision Agent

SSA Service Selection Agent

UDDI Universal Discovery Description and Integration

URI Uniform Resource Identifier

VO Virtual Organization

WSDL Web Services Description Language

XML eXtensible Markup Language

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

66

B. Prototype manual

This appendix is supposed to guide users attempting to make use of the prototype system.
First is a short description on how to bring up a Jade agent container, which is necessary
in order to run the prototype system’s agents. We will also give a brief description
covering how providers and requestors can interact with the system.

The agent platform
In order to run the agents one must set up the agent platform. In Jade this means bringing
up a main container. After the main container is brought up several other containers can
be connected to it extending the platform. We used the following command to bring up a
main container:

java -classpath <classpath> jade.Boot -gui

The classpath (represented by <classpath>) must include the agent classes along with
their class dependencies. The example container is brought up using the -gui option,
which allows us to interact with the agent platform using a GUI. The GUI can be used to
invoke as well as terminate agents.

Service provider
Using the system for provision of services one must at least invoke one
agents.jade.SPA.ServiceProvisionAgent. Our suggestion is to use the Jade GUI when
invoking agents (which is covered in the Jade documentation [38]). When a
ServiceProvisionAgent is invoked it automatically presents a simple GUI (seen in
Appendix figure 1).

Appendix figure 1 The ServiceProvsionAgent GUI.

The GUI allows for assignment of a single service as well as a VORegistry.

Service Requestor
If one would like to use the system for selection of services instead, one should invoke an
agents.jade.SSA.ServiceSelectionAgent. In similarity to the above mentioned
ServiceProvisionAgent, agent invocation can be managed using the Jade GUI. But the
agents differ when it comes to their own GUIs; hence the ServiceSelectionAgent doesn’t
provide one. Instead a WSDL-based service can be synthetically created using the
NewServiceImpl.createService() method. Then the service can be translated into an
OWL-S ontology object using the WSDL2OWLs.createService() method. To initiate a
search for a service one simply call the search() method with the requested ontology
object (along with the parameters timeout and maxResults). These methods are described
further in the prototype documentation (see Appendix F).

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 67

C. Generated service descriptions in OWL-S

sendPicture

<?xml version="1.0"?>
<rdf:RDF
 xmlns:grounding="http://www.daml.org/services/owl-
 s/1.0/Grounding.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#">
 <process:ProcessModel rdf:ID="ProcessModel">
 <process:hasProcess>
 <process:AtomicProcess rdf:ID="Process">
 <process:hasOutput>
 <process:Output rdf:ID="out0">
 <rdfs:label>value</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#boolean"/>
 </process:Output>
 </process:hasOutput>
 <process:hasInput>
 <process:Input rdf:ID="in1">
 <rdfs:label>arg2</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#long"/>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="in0">
 <rdfs:label>arg1</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#int"/>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>
 </process:hasProcess>
 <service:describes>
 <service:Service rdf:ID="Service">
 <service:presents>
 <profile:Profile rdf:ID="Profile">
 <profile:ServiceCategory rdf:parseType="Resource">
 <profile:value>1.3</profile:value>
 <profile:categoryName>currency</profile:categoryName>
 <profile:taxonomy>sek</profile:taxonomy>
 <profile:code>LESSTHAN</profile:code>
 </profile:ServiceCategory>
 <profile:hasOutput rdf:resource="#out0"/>
 <profile:hasInput rdf:resource="#in0"/>
 <profile:hasInput rdf:resource="#in1"/>
 <rdfs:label>sendPicture</rdfs:label>
 <profile:serviceName>sendPicture</profile:serviceName>
 <profile:textDescription>
 sendPicture(arg1:int, arg2:long) -> (value:boolean)
 </profile:textDescription>
 <service:presentedBy rdf:resource="#Service"/>
 </profile:Profile>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

68

 </service:presents>
 <service:supports>
 <grounding:WsdlGrounding rdf:ID="Grounding">
 <service:supportedBy rdf:resource="#Service"/>
 <grounding:hasAtomicProcessGrounding>
 <grounding:WsdlAtomicProcessGrounding rdf:ID=
 "AtomicProcessGrounding">
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>

<grounding:portType>OwlsServicePort</grounding:portType>

<grounding:operation>sendPicture</grounding:operation>

 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

<grounding:wsdlOutputMessage>sendPictureOutputMessage</grounding:wsdlOut
putMessage>
 <grounding:owlsProcess rdf:resource="#Process"/>
 <grounding:wsdlOutputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>

<grounding:wsdlMessagePart>value</grounding:wsdlMessagePart>
 <grounding:owlsParameter rdf:resource="#out0"/>
 </grounding:wsdlMessageMap>
 </grounding:wsdlOutputMessageParts>
 <grounding:wsdlInputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#in0"/>

<grounding:wsdlMessagePart>arg1</grounding:wsdlMessagePart>
 </grounding:wsdlMessageMap>
 <grounding:wsdlMessageMap>

<grounding:wsdlMessagePart>arg2</grounding:wsdlMessagePart>
 <grounding:owlsParameter rdf:resource="#in1"/>
 </grounding:wsdlMessageMap>
 </grounding:wsdlInputMessageParts>

<grounding:wsdlInputMessage>sendPictureInputMessage</grounding:wsdlInput
Message>

<grounding:wsdlDocument>http://127.0.0.1:8080/ogsa/services/simple/math/
service?WSDL</grounding:wsdlDocument>
 </grounding:WsdlAtomicProcessGrounding>
 </grounding:hasAtomicProcessGrounding>
 </grounding:WsdlGrounding>
 </service:supports>
 <service:describedBy rdf:resource="#ProcessModel"/>
 </service:Service>
 </service:describes>
 </process:ProcessModel>
</rdf:RDF>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 69

sendSMS

<?xml version="1.0"?>
<rdf:RDF
 xmlns:grounding="http://www.daml.org/services/owl-
 s/1.0/Grounding.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#">
 <process:ProcessModel rdf:ID="ProcessModel">
 <process:hasProcess>
 <process:AtomicProcess rdf:ID="Process">
 <process:hasOutput>
 <process:Output rdf:ID="out0">
 <rdfs:label>value</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#boolean"/>
 </process:Output>
 </process:hasOutput>
 <process:hasInput>
 <process:Input rdf:ID="in1">
 <rdfs:label>arg2</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#long"/>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="in0">
 <rdfs:label>arg1</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#string"/>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>
 </process:hasProcess>
 <service:describes>
 <service:Service rdf:ID="Service">
 <service:presents>
 <profile:Profile rdf:ID="Profile">
 <profile:hasOutput rdf:resource="#out0"/>
 <profile:hasInput rdf:resource="#in0"/>
 <profile:hasInput rdf:resource="#in1"/>
 <profile:ServiceCategory rdf:parseType="Resource">
 <profile:value>1.3</profile:value>
 <profile:code>LESSTHAN</profile:code>
 <profile:taxonomy>sek</profile:taxonomy>
 <profile:categoryName>currency</profile:categoryName>
 </profile:ServiceCategory>
 <rdfs:label>sendSMS</rdfs:label>
 <profile:serviceName>sendSMS</profile:serviceName>
 <service:presentedBy rdf:resource="#Service"/>
 <profile:textDescription>
 sendSMS(arg1:string, arg2:long) -> (value:boolean)
 </profile:textDescription>
 </profile:Profile>
 </service:presents>
 <service:supports>
 <grounding:WsdlGrounding rdf:ID="Grounding">
 <service:supportedBy rdf:resource="#Service"/>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

70

 <grounding:hasAtomicProcessGrounding>
 <grounding:WsdlAtomicProcessGrounding
rdf:ID="AtomicProcessGrounding">

<grounding:wsdlOutputMessage>sendSMSOutputMessage</grounding:wsdlOutputM
essage>
 <grounding:wsdlOutputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#out0"/>

<grounding:wsdlMessagePart>value</grounding:wsdlMessagePart>
 </grounding:wsdlMessageMap>
 </grounding:wsdlOutputMessageParts>
 <grounding:owlsProcess rdf:resource="#Process"/>
 <grounding:wsdlInputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>

<grounding:wsdlMessagePart>arg1</grounding:wsdlMessagePart>
 <grounding:owlsParameter rdf:resource="#in0"/>
 </grounding:wsdlMessageMap>
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#in1"/>

<grounding:wsdlMessagePart>arg2</grounding:wsdlMessagePart>
 </grounding:wsdlMessageMap>
 </grounding:wsdlInputMessageParts>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>

<grounding:portType>OwlsServicePort</grounding:portType>
 <grounding:operation>sendSMS</grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

<grounding:wsdlInputMessage>sendSMSInputMessage</grounding:wsdlInputMess
age>

<grounding:wsdlDocument>http://127.0.0.1:8080/ogsa/services/simple/math/
service?WSDL</grounding:wsdlDocument>
 </grounding:WsdlAtomicProcessGrounding>
 </grounding:hasAtomicProcessGrounding>
 </grounding:WsdlGrounding>
 </service:supports>
 <service:describedBy rdf:resource="#ProcessModel"/>
 </service:Service>
 </service:describes>
 </process:ProcessModel>
</rdf:RDF>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 71

sendRingTone

<?xml version="1.0"?>
<rdf:RDF
 xmlns:grounding="http://www.daml.org/services/owl-
s/1.0/Grounding.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#">
 <process:ProcessModel rdf:ID="ProcessModel">
 <process:hasProcess>
 <process:AtomicProcess rdf:ID="Process">
 <process:hasOutput>
 <process:Output rdf:ID="out0">
 <rdfs:label>value</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#boolean"/>
 </process:Output>
 </process:hasOutput>
 <process:hasInput>
 <process:Input rdf:ID="in1">
 <rdfs:label>arg2</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#long"/>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="in0">
 <rdfs:label>arg1</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#int"/>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>
 </process:hasProcess>
 <service:describes>
 <service:Service rdf:ID="Service">
 <service:presents>
 <profile:Profile rdf:ID="Profile">
 <profile:serviceName>sendRingTone</profile:serviceName>
 <profile:hasOutput rdf:resource="#out0"/>
 <rdfs:label>sendRingTone</rdfs:label>
 <profile:hasInput rdf:resource="#in0"/>
 <profile:hasInput rdf:resource="#in1"/>
 <profile:ServiceCategory rdf:parseType="Resource">
 <profile:taxonomy>sek</profile:taxonomy>
 <profile:code>LESSTHAN</profile:code>
 <profile:categoryName>currency</profile:categoryName>
 <profile:value>1.3</profile:value>
 </profile:ServiceCategory>
 <service:presentedBy rdf:resource="#Service"/>
 <profile:textDescription>
 sendRingTone(arg1:int, arg2:long) -> (value:boolean)
 </profile:textDescription>
 </profile:Profile>
 </service:presents>
 <service:supports>
 <grounding:WsdlGrounding rdf:ID="Grounding">
 <service:supportedBy rdf:resource="#Service"/>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

72

 <grounding:hasAtomicProcessGrounding>
 <grounding:WsdlAtomicProcessGrounding
rdf:ID="AtomicProcessGrounding">

<grounding:wsdlInputMessage>sendRingToneInputMessage</grounding:wsdlInpu
tMessage>

<grounding:wsdlOutputMessage>sendRingToneOutputMessage</grounding:wsdlOu
tputMessage>
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>

<grounding:portType>OwlsServicePort</grounding:portType>

<grounding:operation>sendRingTone</grounding:operation>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>
 <grounding:owlsProcess rdf:resource="#Process"/>
 <grounding:wsdlOutputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#out0"/>

<grounding:wsdlMessagePart>value</grounding:wsdlMessagePart>
 </grounding:wsdlMessageMap>
 </grounding:wsdlOutputMessageParts>

<grounding:wsdlDocument>http://127.0.0.1:8080/ogsa/services/simple/math/
service?WSDL</grounding:wsdlDocument>
 <grounding:wsdlInputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>

<grounding:wsdlMessagePart>arg1</grounding:wsdlMessagePart>
 <grounding:owlsParameter rdf:resource="#in0"/>
 </grounding:wsdlMessageMap>
 <grounding:wsdlMessageMap>

<grounding:wsdlMessagePart>arg2</grounding:wsdlMessagePart>
 <grounding:owlsParameter rdf:resource="#in1"/>
 </grounding:wsdlMessageMap>
 </grounding:wsdlInputMessageParts>
 </grounding:WsdlAtomicProcessGrounding>
 </grounding:hasAtomicProcessGrounding>
 </grounding:WsdlGrounding>
 </service:supports>
 <service:describedBy rdf:resource="#ProcessModel"/>
 </service:Service>
 </service:describes>
 </process:ProcessModel>
</rdf:RDF>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 73

sendMMS

<?xml version="1.0"?>
<rdf:RDF
 xmlns:grounding="http://www.daml.org/services/owl-
 s/1.0/Grounding.owl#"
 xmlns:profile="http://www.daml.org/services/owl-s/1.0/Profile.owl#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:process="http://www.daml.org/services/owl-s/1.0/Process.owl#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:service="http://www.daml.org/services/owl-s/1.0/Service.owl#">
 <process:ProcessModel rdf:ID="ProcessModel">
 <process:hasProcess>
 <process:AtomicProcess rdf:ID="Process">
 <process:hasOutput>
 <process:Output rdf:ID="out0">
 <rdfs:label>value</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#boolean"/>
 </process:Output>
 </process:hasOutput>
 <process:hasInput>
 <process:Input rdf:ID="in1">
 <rdfs:label>arg2</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#long"/>
 </process:Input>
 </process:hasInput>
 <process:hasInput>
 <process:Input rdf:ID="in0">
 <rdfs:label>arg1</rdfs:label>
 <process:parameterType rdf:resource=
 "http://www.w3.org/2001/XMLSchema#string"/>
 </process:Input>
 </process:hasInput>
 </process:AtomicProcess>
 </process:hasProcess>
 <service:describes>
 <service:Service rdf:ID="Service">
 <service:presents>
 <profile:Profile rdf:ID="Profile">
 <profile:hasOutput rdf:resource="#out0"/>
 <profile:hasInput rdf:resource="#in0"/>
 <profile:serviceName>sendMMS</profile:serviceName>
 <profile:hasInput rdf:resource="#in1"/>
 <profile:textDescription>
 sendMMS(arg1:string, arg2:long) -> (value:boolean)
 </profile:textDescription>
 <rdfs:label>sendMMS</rdfs:label>
 <service:presentedBy rdf:resource="#Service"/>
 <profile:ServiceCategory rdf:parseType="Resource">
 <profile:code>LESSTHAN</profile:code>
 <profile:value>1.3</profile:value>
 <profile:taxonomy>sek</profile:taxonomy>
 <profile:categoryName>currency</profile:categoryName>
 </profile:ServiceCategory>
 </profile:Profile>
 </service:presents>
 <service:supports>
 <grounding:WsdlGrounding rdf:ID="Grounding">
 <service:supportedBy rdf:resource="#Service"/>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

74

 <grounding:hasAtomicProcessGrounding>
 <grounding:WsdlAtomicProcessGrounding
rdf:ID="AtomicProcessGrounding">
 <grounding:wsdlOperation>
 <grounding:WsdlOperationRef>
 <grounding:operation>sendMMS</grounding:operation>

<grounding:portType>OwlsServicePort</grounding:portType>
 </grounding:WsdlOperationRef>
 </grounding:wsdlOperation>

<grounding:wsdlOutputMessage>sendMMSOutputMessage</grounding:wsdlOutputM
essage>
 <grounding:wsdlInputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#in0"/>

<grounding:wsdlMessagePart>arg1</grounding:wsdlMessagePart>
 </grounding:wsdlMessageMap>
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#in1"/>

<grounding:wsdlMessagePart>arg2</grounding:wsdlMessagePart>
 </grounding:wsdlMessageMap>
 </grounding:wsdlInputMessageParts>
 <grounding:owlsProcess rdf:resource="#Process"/>

<grounding:wsdlInputMessage>sendMMSInputMessage</grounding:wsdlInputMess
age>
 <grounding:wsdlOutputMessageParts
rdf:parseType="Collection">
 <grounding:wsdlMessageMap>
 <grounding:owlsParameter rdf:resource="#out0"/>

<grounding:wsdlMessagePart>value</grounding:wsdlMessagePart>
 </grounding:wsdlMessageMap>
 </grounding:wsdlOutputMessageParts>

<grounding:wsdlDocument>http://127.0.0.1:8080/ogsa/services/simple/math/
service?WSDL</grounding:wsdlDocument>
 </grounding:WsdlAtomicProcessGrounding>
 </grounding:hasAtomicProcessGrounding>
 </grounding:WsdlGrounding>
 </service:supports>
 <service:describedBy rdf:resource="#ProcessModel"/>
 </service:Service>
 </service:describes>
 </process:ProcessModel>
</rdf:RDF>

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 75

D. OWL-S validation results

Validation Results

Number of services found: 1
Number of valid services: 1

Service: http://www.it.kth.se/~it00_gni/sendSMS.xml#Service (Version: 1.0)
Name: sendSMS
Description: sendSMS(arg1:string, arg2:long) -> (value:boolean)

Validation Results

Number of services found: 1
Number of valid services: 1

Service: http://www.it.kth.se/~it00_gni/sendMMS.xml#Service (Version: 1.0)
Name: sendMMS
Description: sendMMS(arg1:string, arg2:long) -> (value:boolean)

Validation Results

Number of services found: 1
Number of valid services: 1

Service: http://www.it.kth.se/~it00_gni/sendRingTone.xml#Service (Version: 1.0)
Name: sendRingTone
Description: sendRingTone(arg1:int, arg2:long) -> (value:boolean)

Validation Results

Number of services found: 1
Number of valid services: 1

Service: http://www.it.kth.se/~it00_gni/sendPicture.xml#Service (Version: 1.0)
Name: sendPicture
Description: sendPicture(arg1:int, arg2:long) -> (value:boolean)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

76

E. Execution printouts of validation of detailed scenario

SMS service

ssa1: REQUIRED SERVICE:
ssa1:
ssa1: operation: SMS(msg:string, number:long) -> (status:boolean)
ssa1: Category name: currency
ssa1: code: LESSTHAN
ssa1: taxonomy: sek
ssa1: value: 1.5

ssa1: RESULT SERVICES:
ssa1:
ssa1: operation: sendSMS(message:string, number:long) ->
(status:boolean)
ssa1: Category name: currency
ssa1: code: LESSTHAN
ssa1: taxonomy: sek
ssa1: value: 1.6
ssa1:
ssa1: operation: birthdaySMS(message:string, number:long, time:dateTime)
->(status:boolean)
ssa1: Category name: currency
ssa1: code: LESSTHAN
ssa1: taxonomy: sek
ssa1: value: 1.2
ssa1:
ssa1: operation: SMSSender(message:string, number:int) -> ()
ssa1: Category name: currency
ssa1: code: LESSTHAN
ssa1: taxonomy: sek
ssa1: value: 1.4
ssa1:
ssa1: operation: sendSMS(message:string, number:long) ->
(status:boolean)
ssa1: Category name: currency
ssa1: code: LESSTHAN
ssa1: taxonomy: sek
ssa1: value: 1.3

ssa1: BEST MATCH:
ssa1:
ssa1: operation: sendSMS(message:string, number:long) ->
(status:boolean)
ssa1: Category name: currency
ssa1: code: LESSTHAN
ssa1: taxonomy: sek
ssa1: value: 1.6

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 77

MMS service

ssa2: REQUIRED SERVICE:
ssa2:
ssa2: operation: MMS(msg:MMS, number:int) -> (status:boolean)
ssa2: Category name: currency
ssa2: code: LESSTHAN
ssa2: taxonomy: sek
ssa2: value: 1.5

ssa2: RESULT SERVICES:
ssa2:
ssa2: operation: MMSSender(message:MMS, number:int) -> (status:boolean)
ssa2: Category name: currency
ssa2: code: LESSTHAN
ssa2: taxonomy: sek
ssa2: value: 1.4
ssa2:
ssa2: operation: sendMMS(message:MMS, number:long) -> (status:boolean)
ssa2: Category name: currency
ssa2: code: LESSTHAN
ssa2: taxonomy: sek
ssa2: value: 1.3
ssa2:
ssa2: operation: birthdayMMS(message:MMS, number:long, time:dateTime) ->
(status:boolean)
ssa2: Category name: currency
ssa2: code: LESSTHAN
ssa2: taxonomy: sek
ssa2: value: 1.2
ssa2:
ssa2: operation: sendMMS(message:MMS, number:long) -> (status:boolean)
ssa2: Category name: currency
ssa2: code: LESSTHAN
ssa2: taxonomy: sek
ssa2: value: 1.6

ssa2: BEST MATCH:
ssa2:
ssa2: operation: MMSSender(message:MMS, number:int) -> (status:boolean)
ssa2: Category name: currency
ssa2: code: LESSTHAN
ssa2: taxonomy: sek
ssa2: value: 1.4

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

78

Picture on date

ssa3: REQUIRED SERVICE:
ssa3:
ssa3: operation: Picture(pic:int, number:long, time:dateTime) ->
(status:boolean)
ssa3: Category name: currency
ssa3: code: LESSTHAN
ssa3: taxonomy: sek
ssa3: value: 2.0

ssa3: RESULT SERVICES:
ssa3:
ssa3: operation: sendPicture(picture:int, number:long) ->
(status:boolean)
ssa3: Category name: currency
ssa3: code: LESSTHAN
ssa3: taxonomy: sek
ssa3: value: 1.3
ssa3:
ssa3: operation: PictureSender(picture:int, number:int) ->
(status:boolean)
ssa3: Category name: currency
ssa3: code: LESSTHAN
ssa3: taxonomy: sek
ssa3: value: 1.4
ssa3:
ssa3: operation: sendPicture(picture:int, number:long) ->
(status:boolean)
ssa3: Category name: currency
ssa3: code: LESSTHAN
ssa3: taxonomy: sek
ssa3: value: 1.6
ssa3:
ssa3: operation: birthdayPicture(picture:int, number:long,
time:dateTime) -> (status:boolean)
ssa3: Category name: currency
ssa3: code: LESSTHAN
ssa3: taxonomy: sek
ssa3: value: 1.2

ssa3: BEST MATCH:
ssa3:
ssa3: operation: birthdayPicture(picture:int, number:long,
time:dateTime) -> (status:boolean)
ssa3: Category name: currency
ssa3: code: LESSTHAN
ssa3: taxonomy: sek
ssa3: value: 1.2

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 79

F. Prototype documentation

Package agents.jade.SPA

This package contains the classes specific for the Service Provision Agent based on the Jade
platform.

Class ServiceProvisionAgent

public class ServiceProvisionAgent extends Agent

Title: ServiceProvisionAgent
Description: An agent handeling the service providing part in a negotiation about services.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Fields

time

publictime

Constructors

ServiceProvisionAgent

public ServiceProvisionAgent()

Methods

setup

protected void setup()

Is called by the platform when the agent is brought up. It initiates the translator, the storage,
the matcher and the gui.

match

public java.lang.Object match(Object service)

Matches the given service against the ones located in storage.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

80

Parameters
 service - the service to be matched.
Returns
 The best match.

addService

public void addService(String GSH)

Assigns the given service to the agent.
Parameters
 GSH - the GSH of the servie to be added.

addVirtualOrganization

public void addVirtualOrganization(String GSH)

Assigns all the services found in the registry to the agent.
Parameters
 GSH - the GSH of the registry to be searched.

storeService

public void storeService(WSDLOperation service, Object[] data)

Translates a WSDL service into the current ontology and stores it in the local storage.
Parameters
 service - the service to be translated and stored.
 data - additional service data used in translation.

register

public void register()

Registers the agent at the Directory Facilitator.

print

public void print(String msg)

Prints the given string to the standard output.
Parameters
 the - message to be printed.

takeDown

protected void takeDown()

takeDown is called before Agent termination and includes clean-up instructions.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 81

Package agents.jade.SPA.behaviours

This package contains the classes implementing behaviours for the Service Provision Agent
based on the Jade platform.

Class SearchAndResponse

public class SearchAndResponse extends OneShotBehaviour

Title: SearchAndResponse
Description: Searches the local storage for the requested service and and returns the result to
the requestor.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

SearchAndResponse

public SearchAndResponse(ServiceProvisionAgent spa, ACLMessage msg,
Action action)

Constructor of SearchAndResponse.
Parameters
 spa - the agent holding the storage.
 msg - the request message.
 action - the reqeusted action.

Methods

action

public void action()

Searches the local storage and returns the results.

Class RegisterSPA

public class RegisterSPA extends OneShotBehaviour

Title: RegisterSPA
Description: Register the invoking agent at the Directory Facilitator.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

82

 1.0

Constructors

RegisterSPA

public RegisterSPA(ServiceProvisionAgent spa)

Constructor of RegisterSPA.
Parameters
 spa - the SPA to be registered.

Methods

action

public void action()

Registers the SPA.

Class ListenForReq

public class ListenForReq extends CyclicBehaviour

Title: ListenForReq
Description: Listens for incoming search requests.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

ListenForReq

public ListenForReq(ServiceProvisionAgent spa)

Constructor of ListenForReq.
Parameters
 spa - the initiating agent.

Methods

action

public void action()

Listens for incoming messages. If it's a valid request the request is handed over to a
SearchAndResponse behaviour.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 83

Class addVO

public class addVO extends OneShotBehaviour

Title: addVO
Description: Searches the given registry and assigns all the found services to the requesting
agent.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

addVO

public addVO(ServiceProvisionAgent spa, String GSH)

Constructor of addVO.
Parameters
 spa - the requesting agent.
 GSH - the GSH of the registry to be searched.

Methods

action

public void action()

Searches the registry and for each service found it calls the addService method at requesting
agent.

Class addService

public class addService extends OneShotBehaviour

Title: addService
Description: A behaviour adding the service represented by the given GSH.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

addService

public addService(ServiceProvisionAgent spa, String GSH)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

84

Constructor of addService.
Parameters
 spa - the requesting agent.
 GSH - the GSH of the service to be added.

Methods

action

public void action()

The method adding the service.

Package agents.jade.SPA.gui

This package contains the classes implementing a simple GUI for the Service Provision Agent
based on the Jade platform.

Class GUI

public class GUI extends JFrame implements ActionListener

Title: GUI
Description: A simple GUI for the Service Provision Agent.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

GUI

public GUI(ServiceProvisionAgent spa)

Constructor of GUI
Parameters
 spa - the agent represented by the GUI.

Methods

actionPerformed

public void actionPerformed(ActionEvent e)

The method called when an action is performed. Could be to add a service, add a VO or to
exit.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 85

showErrorMsg

public void showErrorMsg(String msg)

Shows an err msg dialog.
Parameters
 msg - the message to be shown.

Package agents.jade.SSA

This package contains the classes specific for the Service Selection Agent based on the Jade
platform.

Class ServiceSelectionAgent

public class ServiceSelectionAgent extends Agent

Title: ServiceSelectionAgent
Description: An agent handeling the service requesting part in a negotiation about services.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

ServiceSelectionAgent

public ServiceSelectionAgent()

Methods

setup

protected void setup()

Is called by the platform when the agent is brought up. It initiates e.g. the reader, the writer
and the matcher.

addResult

public void addResult(String service)

Adds a search result to the result vector.
Parameters
 service - the service description.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

86

getResults

public java.lang.Object[] getResults()

Return a array holding the result services.
Returns
 The result services.

sortResults

public java.lang.Object sortResults(Object service)

Sorts the results using the matching algorithm.
Parameters
 service - the requested service.
Returns
 The best match.

printService

public void printService(Object service)

Prints the given service to the standard output.
Parameters
 service - the service to be printed.

printResults

public void printResults()

Prints the services in the result vector.

updateSPAs

public void updateSPAs(DFAgentDescription[] description)

Updates the list of available SPAs.
Parameters
 description - description of the requested SPA

getNextSPA

public synchronized DFAgentDescription getNextSPA()

Returns the next SPA in the list of available SPAs.
Returns
 The next SPA or null if empty.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 87

print

public void print(String msg)

Prints the given string to the standard output.
Parameters
 msg - the message to be printed.

getID

public java.lang.String getID()

Returns a new search ID.
Returns
 The new id.

search

public void search(Object service, int maxResults, int timeout)

Initiates a search for services matching the given service.
Parameters
 service - the requested service.
 maxResults - maximum number of results.
 timeout - the timeout, which is the time waiting for result messages.

takeDown

protected void takeDown()

takeDown is called before Agent termination and includes clean-up instructions.

Package agents.jade.SSA.behaviours

Begin with a one sentence summary about this package. Follow with the remainder of your
description. Package Specification This package contains the classes implementing
behaviours for the Service Selection Agent based on the Jade platform.

Class Timeout

public class Timeout extends WakerBehaviour

Title: Timeout
Description: A behaviour that sleeps a given time and then terminates the behaviour receiving
messages.
Copyright: Copyright (c) 2004

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

88

Company: IMIT/KTH
Version
 1.0

Constructors

Timeout

public Timeout(ServiceSelectionAgent ssa, int timeout, Receive
receive, Object service)

Constuctor of Timeout.
Parameters
 ssa - the agent initiating the timeout.
 timeout - the timeout in milli seconds.
 receive - the receiving behaviour.
 service - the requested service.

Methods

handleElapsedTimeout

protected void handleElapsedTimeout()

The method executed after the timeout. It terminates the receiving behaviour and sorts the
results.

Class SearchSPA

public class SearchSPA extends OneShotBehaviour

Title: SearchSPA
Description: A behaviour that sends a search request to the SPA with the service description
fetch form given agent.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

SearchSPA

public SearchSPA(ServiceSelectionAgent ssa, Object service, String
id)

Constructor of SearchSPA.
Parameters
 ssa - the agent requesting the search.
 service - the requested service.
 id - the id of the search.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 89

Methods

action

public void action()

Fetches a SPA from the list of available SPAs and sends it a search request.

Class Receive

public class Receive extends SimpleBehaviour

Title: Receive
Description: A behaviour initated by an agent to listen for search result messages util done is
set to true.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

Receive

public Receive(ServiceSelectionAgent ssa, String id)

Constructor of Receive.
Parameters
 ssa - the agent waiting for results.
 id - the identification value of the search.

Methods

action

public void action()

Listens for incoming result messages. If a result message is received it's stored at the agent.

setDone

public void setDone(boolean done)

Sets the flag that decides if the behaviour should continue to listen for messages.
Parameters
 done - true to terminate the behaviour otherwise false.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

90

done

public boolean done()

Is used by the platform to see if the behaviour is finnished.
Returns
 True if the behaviour is done otherwise false.

Class GetSPAs

public class GetSPAs extends OneShotBehaviour

Title: GetSPAs
Description: A behaviour called by an agent to get the list of available Service Provision
Agents from the Directory Facilitator.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

GetSPAs

public GetSPAs(ServiceSelectionAgent ssa)

Constructor of GetSPAs.
Parameters
 ssa - the agent requesting the list.

Methods

action

public void action()

Searches the Directory Facilitator for available SPAs and returns the given results to the
agent.

Package agents.jade.ServiceDescriptions

This package contains classes focusing on agent service descriptions for the Jade platform.

Class ServiceDescriptions

public class ServiceDescriptions

Title: ServiceDescriptions

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 91

Description: A class creating agent Service Descriptions.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

ServiceDescriptions

public ServiceDescriptions()

Methods

getSPAOWLSDescription

public static ServiceDescription getSPAOWLSDescription()

Creates a Service Description of a Service Provision Agent supporting fipa-rdf0 and OWL-S
1.0.
Returns
 A service description of a SPA.

Package grid.services

This package contains classes and package associated with Grid services.

Class GSOperation

public class GSOperation

Title: GSOperation
Description: A class containing the standard Grid service operation names.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Fields

DESTROY

public static finalDESTROY

FINDSERVICEDATA

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

92

public static finalFINDSERVICEDATA

SETSERVICEDATA

public static finalSETSERVICEDATA

REQUESTTERMINATIONAFTER

public static finalREQUESTTERMINATIONAFTER

REQUESTTERMINATIONBEFORE

public static finalREQUESTTERMINATIONBEFORE

Constructors

GSOperation

public GSOperation()

Package grid.services.serviceData

This package include classes and interfaces for managing Service Data.

Interface GetServiceData

public interface GetServiceData

Title: GetServiceData
Description: An interface for resolving service data given a GSH.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Methods

getServiceData

public java.lang.Object[] getServiceData(String GSH)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 93

Package grid.services.serviceData.impl

Class OWLSData

public class OWLSData implements GetServiceData

Title: OWLSData
Description: An implementation of the GetSerivce Data interface that supports the
OWLSDataType.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

OWLSData

public OWLSData()

Constructor of OWLSData.

Methods

getServiceData

public java.lang.Object[] getServiceData(String GSH)

Returns an array of service data objects given a GSH.
Parameters
 GSH - the GSH of the service.
Returns
 The array of service data objects.

Package content.owls

This package contains interfaces and packages for ontology-based service descriptions.

Interface Writer

public interface Writer

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

94

Title: Writer
Description: An interface for writers of service descriptions.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Methods

write

public java.lang.String write(Object service)

getOntology

public java.lang.String getOntology()

Interface Reader

public interface Reader

Title: Reader
Description: An interface for readers of service descriptions.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Methods

read

public java.lang.Object read(String service)

getOntology

public java.lang.String getOntology()

Package content.owls.impl

This package holds implementation for managing OWL-S 1.0 ontology service descriptions.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 95

Class WriterImpl

public class WriterImpl implements Writer

Title: WriterImpl
Description: A class implementing the Writer interface. It support OWL-s 1.0.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

WriterImpl

public WriterImpl()

Constructor of WriterImpl.

Methods

getOntology

public java.lang.String getOntology()

Returns the supported ontology.
Returns
 the ontology.

write

public java.lang.String write(Object service)

Given a service object it returns a string representing the service.
Parameters
 service - the service object to be converted.
Returns
 the string representing the service.
Throws
 -

Class ReaderImpl

public class ReaderImpl implements Reader

Title: ReaderImpl
Description: A class implementing the Reader interface. It support OWL-s 1.0.
Copyright: Copyright (c) 2004
Company: IMIT/KTH

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

96

Version
 1.0

Constructors

ReaderImpl

public ReaderImpl()

Constructor of ReaderImpl.

Methods

getOntology

public java.lang.String getOntology()

Returns the supported ontology.
Returns
 the ontology.

read

public java.lang.Object read(String service)

Parses the given string and returns a Service Object.
Parameters
 service - the string representing the service.
Returns
 the Service object.
Throws
 - -

Package content.lang

This package contain language specific classes as well as interfaces used when agents
communicate.

Interface Description

public interface Description

Title: Description
Description: An interface for an Description message.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 97

Methods

getLanguage

public java.lang.String getLanguage()

getOntology

public java.lang.String getOntology()

getEncoding

public java.lang.String getEncoding()

setDone

public void setDone(boolean done)

setDone

public void setDone(String done)

setResult

public void setResult(String result)

getDone

public boolean getDone()

getResult

public java.lang.String getResult()

toString

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

98

public java.lang.String toString()

Interface CreateObject

public interface CreateObject

Title: CreateObject
Description: An interface for parsing message content.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Methods

createObject

public java.lang.Object createObject(ACLMessage msg)

Interface Action

public interface Action

Title: Action
Description: An interface for an Action message.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Fields

FINDSERVICE

public static finalFINDSERVICE

Methods

getLanguage

public java.lang.String getLanguage()

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 99

getOntology

public java.lang.String getOntology()

getEncoding

public java.lang.String getEncoding()

setActor

public void setActor(String actor)

setAct

public void setAct(String act)

setArgument

public void setArgument(String arg)

getID

public java.lang.String getID()

getActor

public java.lang.String getActor()

getAct

public java.lang.String getAct()

getArgument

public java.lang.String getArgument()

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

100

toString

public java.lang.String toString()

Package content.lang.fipardf0

This package holds classes implementing fipa-rdf-0.

Class FipaDescription

public class FipaDescription extends FIPA implements
Description

Title: FipaDescription
Description: A class representing a FIPA RDF Description.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Fields

DESC

public static finalDESC

ABOUT

public static finalABOUT

DONE

public static finalDONE

RESULT

public static finalRESULT

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 101

TRUE

public static finalTRUE

FALSE

public static finalFALSE

Constructors

FipaDescription

public FipaDescription(String about)

Constuctor of FipaDescription.
Parameters
 about - the id of the action it's describing.

Methods

setDone

public void setDone(boolean done)

Sets whether the action was successfully executed.
Parameters
 done - true if it was successful otherwise false.

setDone

public void setDone(String done)

Sets whether the action was successfully executed.
Parameters
 done - representing true or false.

setResult

public void setResult(String result)

Sets the result of the action.
Parameters
 result - the results.

getDone

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

102

public boolean getDone()

Returns the status of the action.
Returns
 True if it was successful otherwise false.

getResult

public java.lang.String getResult()

Returns the status of the action.
Returns
 A string representing the status.

build

public Document build()

Builds the document of the description.
Returns
 The result document.

Class FipaAction

public class FipaAction extends FIPA implements Action

Title: FipaAction
Description: A class representing a FIPA RDF Action.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Fields

ACTION

public static finalACTION

ID

public static finalID

ACTOR

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 103

public static finalACTOR

ACT

public static finalACT

ARG

public static finalARG

Constructors

FipaAction

public FipaAction(String id)

Constructor of FipaAction.
Parameters
 id - the id of the message.

Methods

setActor

public void setActor(String actor)

Sets the actor of the action.
Parameters
 actor - the actor.

setAct

public void setAct(String act)

Sets the act of the action.
Parameters
 act - the act.

setArgument

public void setArgument(String arg)

Sets the argument of the action.
Parameters
 arg - the argument.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

104

getID

public java.lang.String getID()

Returns the id of the action.
Returns
 The id.

getActor

public java.lang.String getActor()

Returns the actor of the action.
Returns
 The actor.

getAct

public java.lang.String getAct()

Returns the act of the action.
Returns
 The act.

getArgument

public java.lang.String getArgument()

Returns the argument of the action.
Returns
 The argument.

build

public Document build()

Builds the document of the action.
Returns
 The result document.

Class CreateObjectImpl

public class CreateObjectImpl implements CreateObject

Title: CreateObjectImpl
Description: Prarses the content of ACL messages into fipa-rdf0.
Copyright: Copyright (c) 2004

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 105

Company: IMIT/KTH
Version
 1.0

Constructors

CreateObjectImpl

public CreateObjectImpl()

Constructor of CreateObjectImpl.

Methods

createObject

public java.lang.Object createObject(ACLMessage msg)

Parses the content ACLMessage into the associated FIPA object.
Parameters
 msg - the ACLMessage carring the content of interest.
Returns
 The parsed FIPA object.

isFipaDescription

public boolean isFipaDescription(Document doc)

Checks whether the given document is a FIPA Description.
Parameters
 doc - the document to be checked.
Returns
 True if the document is a FIPA Description, false otherwise.

Package content.wsdl

This package contains interfaces and packages for managing WSDL documents.

Interface WSDL2Onto

public interface WSDL2Onto

Title: WSDL2Onto
Description: An interface for translating a WSDL document into a service object.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

106

Methods

createService

public java.lang.Object createService(WSDLOperation op, Object[]
data)

Interface NewService

public interface NewService

Title: NewService
Description: An interface for creating new WSDL service descriptions.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Methods

createServce

public WSDLOperation createServce(String operationName, String[]
inNames, QName[] inTypes, String[] outNames, QName[] outTypes)

Package content.wsdl.impl

This package contains classes for creating new WSDL document as well as converting
existing ones.

Class WSDL2OWLs

public class WSDL2OWLs implements WSDL2Onto

Title: WSDL2OWLs
Description: An implementation of the WSDL2OWLs interface supporting OWL-S 1.0. This
class is an reconstruction of an class in the owl-s api.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 107

WSDL2OWLs

public WSDL2OWLs()

Constructor of WSDL2OWLs.

Methods

createService

public java.lang.Object createService(WSDLOperation op, Object[]
data)

Creates a new service object in OWL-S.
Parameters
 op - the WSDL operation to be converted.
 data - additional service data.
Returns
 the constructed service object.

createOWLS

public Service createOWLS(WSDLOperation op, String serviceName,
String textDescription, String[] inputNames, String[] inputTypes,
String[] inputGroundings, String[] outputNames, String[] outputTypes,
String[] outputGroundings)

Creates a service object in OWL-S given a WSDL operation.
Parameters
 op - the WSDL opreation.
 serviceName - name of the service.
 textDescription - a text description of the service.
 inputNames - array containing input names.
 inputTypes - array containing input types.
 inputGroundings - array containing input groundings.
 outputNames - array containing output names.
 outputTypes - array containing output types.
 outputGroundings - array containing output groundings.
Returns
 the generated service object.

Class NewServiceImpl

public class NewServiceImpl implements NewService

Title: NewServiceImpl
Description: An implementation of the NewService interface for creation of WSDL service
descriptions.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

108

Constructors

NewServiceImpl

public NewServiceImpl()

Constructor of NewServiceImpl.

Methods

createServce

public WSDLOperation createServce(String operationName, String[]
inNames, QName[] inTypes, String[] outNames, QName[] outTypes)

Creates a WSDL service descriptions.
Parameters
 operationName - the service name.
 inNames - the input names.
 inTypes - the input types.
 outNames - the output names.
 outTypes - the output types.
Returns
 the generated WSDL service description.

Package matcher

This package contains interface for service matching as well as implementations of service
matchers.

Interface ServiceMatcher

public interface ServiceMatcher

Title: ServiceMatcher
Description: An interface for matching of service descriptions.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Methods

match

public java.lang.Object match(Object subject, Object[] advertisment)

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 109

Package matcher.impl

This package holds implementations of service matchers.

Class OWLSMatcher

public class OWLSMatcher implements ServiceMatcher

Title: OWLSMatcher
Description: An implementation of the ServiceMatcher interface with support for matching of
OWL-S 1.0.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Constructors

OWLSMatcher

public OWLSMatcher()

Constructor of OWLSMatcher.

OWLSMatcher

public OWLSMatcher(int weightInput, int weightOutput, int weightName,
int weightTaxonomy)

Constructor of OWLSMatcher that set the weights of matching.
Parameters
 weightInput - the weight for input matching.
 weightOutput - the weight for output matching.
 weightName - the weight for names matching.
 weightTaxonomy - the weight for taxonomy matching.

Methods

match

public java.lang.Object match(Object service, Object[] services)

Matches the given service against the array of services and returns the best match found.
Parameters
 service - the requested service.
 services - the advirtsed services.
Returns
 The best match.

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004

110

Package storage

This package specifies a storage interfaces and holds a package with storage implementations.

Interface Storage

public interface Storage

Title: Storage
Description: An interface for storing of service objects.
Copyright: Copyright (c) 2004
Company: IMIT/KTH
Version
 1.0

Methods

add

public void add(Object service)

remove

public void remove(Object service)

getServices

public java.lang.Object[] getServices()

Package storage.impl

This package holds storage implementations.

Class StorageImpl

public class StorageImpl implements Storage

Title: StorageImpl
Description: An implementation of of the Storage inteface using a simple Vector.
Copyright: Copyright (c) 2004

An agent-based system for Grid services provision and selection

Gustaf Nimar – IMIT/KTH – 2004 111

Company: IMIT/KTH
Version
 1.0

Constructors

StorageImpl

public StorageImpl()

Constructor of StorageImpl.

Methods

add

public void add(Object service)

Adds a service to the storage.
Parameters
 service - the service to be added.

remove

public void remove(Object service)

Removes a service from the storage.
Parameters
 service - the service to be removed.

getServices

public java.lang.Object[] getServices()

Returns a list of all available services.
Returns
 All the available services.

