
Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LCN 2004-10

J O H A N N E S J A N S S O N

Context-aware Service Allocation in
Personal Area Networks

 3

Context-aware Service Allocation in
Personal Area Networks

J O H A N N E S J A N S S O N

Master of Science Thesis
Stockholm, Sweden 2004

2004.11.24

E x a m i n e r
P r o f . G e r a l d Q . M a g u i r e

(I M I T / K T H)

 i

Abstract

Portable devices such as cellular phones, PDAs, and laptops, are getting more
and more powerful and are popular with users. One way to make these devices
even more useful is to interconnect them in a Personal Area Network (PAN), and
via this PAN a single dual interface device can enable all local devices to access
services in other networks. To be able to reach the devices in the PAN from
outside in a simple manner, some location independent form of addressing may
be used. One attractive approach is to use Session Initiation Protocol (SIP). For a
user anywhere in the Internet, SIP enables them to reach a user within this PAN
by an address that does not depend on where the user is located. To make life
more convenient for the callee, the selection of device for an incoming
multimedia invitation can be made automatically, by utilizing context
information when selecting the device.

Consequently, a method is needed for allocating services to the devices that are
most suitable for the service and for the moment. The current context in the PAN
will affect this decision. This context information includes current status and
capabilities of devices, the user, and their surroundings. The environment of a
PAN is dynamic and thus this context information may change. This knowledge
has to be reflected in the service allocation. This thesis will investigate and
propose a method for how this service allocation is best performed.

To be able to investigate this problem and develop a suitable method, knowledge
in several areas is needed. First of all an understanding is needed of the concept
of “context” and how it can be used when making decisions about service
allocation. Furthermore, a method for collecting and managing context
information has to be used.

 ii

Sammanfattning

Portabla enheter såsom mobiltelefoner, PDA:er och bärbara datorer blir alltmer
kraftfulla och vinner popularitet hos användarna. Ett sätt att få ut än mer av dessa
enheter är att koppla ihop dem i ett Personal Area Network (PAN) och genom
detta PAN låta alla lokala enheter nyttja tjänster i andra nätverk. För att nå
enheterna i PAN:et från utsidan på ett enkelt sätt kan någon form av
platsoberoende adressering användas. Ett attraktivt alternativ för detta ändamål är
Session Initiation Protocol (SIP). Med hjälp av SIP kan en användare på Internet
nå en användare i ett PAN genom en adress som är platsoberoende. För att
ytterligare underlätta för användaren i PAN:et kan valet av enhet vid en
inkommande multimediainbjudning ske automatiskt genom användande av
kontextinformation.

Det behövs således en metod för att kunna allokera tjänster till de enheter som är
mest passande för tillfället. PAN:ets aktuella kontext påverkar detta val. Denna
kontextinformation berör aktuell status och funktionalitet hos enheter, användare
och den övriga omgivningen. Miljön i ett PAN är av dynamisk karaktär där
kontextinformationen ständigt förändras. Hänsyn till detta måste tas när
tjänsteallokeringen sker. Denna rapport kommer att utreda och föreslå en metod
för hur denna tjänsteallokering på bästa sätt kan genomföras.

Att undersöka detta problem och komma fram till en lämplig metod kräver insikt
i en rad områden. Dels måste en förståelse kring begreppet ”kontext” och hur den
kan användas som grund för beslutsfattning vid tjänsteallokering utvecklas.
Vidare måste en metod för insamling av information och hantering av densamma
tas fram.

 iii

Table of Contents

1. INTRODUCTION ..1

1.1 OVERVIEW ..1
1.2 PROBLEM STATEMENT ..2

2. BACKGROUND...4
2.1 CONTEXT INFORMATION ...4

2.1.1 Context awareness..4
2.1.2 Categorization of context information..5
2.1.3 Collecting context information...5

2.2 PERSONAL AREA NETWORKS..6
2.2.1 Bluetooth ..6
2.2.2 Wireless Local Area Network...7

2.3 SERVICE ALLOCATION AND SERVICE DISCOVERY ...7
2.4 SESSION INITIATION PROTOCOL (SIP)...8

2.4.1 Basic concepts ..8
2.4.2 Typical example..9
2.4.3 SIP Message structure..11
2.4.4 SIP Request messages ..12
2.4.5 SIP response messages...12
2.4.6 SIP URI ..13
2.4.7 Register ..14
2.4.8 Redirect ..14
2.4.9 Determination of capabilities ...15

2.5 SDP ..16
2.5.1 Protocol format ..16
2.5.2 SDP example ..17

3. RELATED WORK...19
3.1 SERVICE POLICY MANAGEMENT...19
3.2 CONTENT-BASED REQUEST DISTRIBUTION ..19

3.2.1 Locality-Aware Request Distribution (LARD) ...20
3.3 CONTEXT-AWARE ACCESS CONTROL...20
3.4 HETEROGENEOUS WIRELESS NETWORK MANAGEMENT ...21
3.5 ALLOCATING WEB-SERVICES ...21
3.6 ADAPTIVE AND CONTEXT-AWARE SERVICES (ACAS) PROJECT22

3.6.1 Architecture..22
4. DESIGN...24

4.1 MOTIVATION...24
4.2 BASIC DESIGN ...25
4.3 CASA SPECIFIC DESIGN ..26

4.3.1 The Device Allocating unit ...27
4.3.2 The Information Collector unit...28
4.3.3 The allocation algorithm..28
4.3.4 The outcome of the allocation algorithm..30
4.3.5 Communicating with the context management network30

4.4 INFORMATION FETCHING APPROACHES ...32
4.4.1 On-demand information fetching ...32
4.4.2 Prefetching information ...33
4.4.3 Call-backs ..34

4.5 DECIDING WHEN TO FETCH INFORMATION ..34
4.5.1 High demands on accurate allocations ..35
4.5.2 High demands on low allocation delays...35
4.5.3 Minimizing the amount of traffic ..36

4.6 ADAPTING TO ACTUALITIES ..36

 iv

4.6.1 Adapt to the request rate ..37
4.6.2 Adapt to context network performance...37

5. ANALYSIS ..39
5.1 IMPLEMENTATION...39

5.1.1 Implementation tools ..39
5.1.2 Implementation details ...39

5.2 TEST..41
5.2.1 The correctness of a service allocation ..41
5.2.2 The accuracy of a service allocation..43
5.2.3 The delay of a service allocation..44
5.2.4 The generated amount of traffic ...48
5.2.5 Test the ability to adapt to the request rate ..52
5.2.6 Test the ability to adapt to context network performance53

6. CONCLUSIONS AND FUTURE WORK ..56
6.1 CONCLUSIONS...56
6.2 FUTURE WORK ..57

7. REFERENCES ...59
APPENDICES...61

APPENDIX A – ABBREVIATIONS..61
APPENDIX B – TABLE OF FIGURES ..62
APPENDIX C – TABLE OF TABLES..63

 1

1. Introduction

1.1 Overview

Portable devices are gaining popularity among consumers as the devices are
getting smaller, less expensive, and more user friendly; but at the same time
many of these devices are more powerful than desktop computers a decade ago.
The rapid evolution of cellular phones, PDAs, and laptops creates opportunities
that haven’t existed before due to technical limitations. Today there is no longer
a problem, when it comes to processing power, to stream high quality video or
play a multiplayer 3D-game on a device that easily fits into a pocket. Often a
user has and actually uses several of these devices at the same time. To make
these devices even more useful to the user they should interact and exchange
information, not only internally, but also with devices attached to other networks.

By locally interconnecting the devices a Personal Area Network (PAN) can be
formed. This network allows the devices to exchange information between each
other and possibly also with external networks. Wireless communication is
possible through the use of short-range radio, infrared, or ultrasound. Today
Bluetooth™ [1] and Wireless LAN (WLAN) are the most important technologies
for locally connecting these devices. Even though there are major differences in
their design, these two wireless communication technologies can also be used
side by side in a PAN. An important factor making this possible is the Bluetooth
profiles, especially the PAN profile that can carry IP traffic. Furthermore,
additional services can be accessed through a WLAN or PAN access point (AP)
that is connected to an IP infrastructure as illustrated in
Figure 1.

Figure 1. A PAN connected to a LAN through an access point.

The use of IP as the addressing protocol for the devices in the PAN has its
advantages and disadvantages. IP is widely deployed, especially in fixed
networks, which simplifies the communication between the PAN and existing
networks. The problem with IP is the fact that it was originally designed for
fixed networks and therefore addresses are topology dependent. IP assumes that
the user resides at the same IP address during a communication session, and

 2

preferably between sessions as well. Consequently, to make IP feasible in
environments such as a PAN, where the user and devices may frequently move
and change, IP needs additional functionality, i.e. Mobile IP [2].

Even if the problem of addressing devices can be solved at the network layer
there are still difficulties with finding and contacting specific users. If for
instance the IP address is used for finding a user this address has to be fixed, but
in several cases, for instance when using dynamic addresses this is not possible.
Consequently, some additional technique is needed. This technique should
support the ability to contact a user independent of the IP address of the user’s
(current) device. Using the Session Initiation Protocol (SIP) [3] to find and
contact a user is one of several possible methods.

SIP offers much of the functionality needed in a dynamic environment where
users come and go and their IP addresse changes over time. Users can be
anywhere on the Internet and still be reachable through their SIP address. One or
more devices can share the same SIP URI and the user can be invited to and
participate in several sessions at once. SIP is independent of the underlying
transport protocol and the type of session that is to be established. In this thesis
SIP will be used in several different ways. For the rest of this thesis we assume
that an incoming request is a SIP request and that SIP can be used for internal
communication when the allocation of the service to the SIP enabled devices
takes place.

1.2 Problem statement

In this thesis we will look at the problem of forwarding multimedia invitations or
allocating incoming service requests to the best suited devices in a PAN. The
context of the entities in the PAN will be used when deciding if a given device is
suitable or not. In some cases there will only be a single obvious choice, while in
other cases several devices may be suitable and thus some selection process is
needed in order to select the best alternative.

In order to make these decisions, knowledge about the current context of the
entities is needed. The environment of the PAN is assumed to be dynamic and as
a result the context will change. The information used when making the
allocations has to reflect this property, and the context information should be
sufficiently up to date to make a suitable allocation.

When new information is available there must be a way to utilize it. Existing
information will be combined with the information in the incoming request to
decide where to allocate the service. Consequently, up to date context
information and some decision-making logic have to be available in order to
select, for the service, the best suited device(s).

As mentioned above, appropriate context information is needed by the allocation
process at the right time. The process determines which information is collected
and when it is collected. The question of when the information is collected
depends on the performance requirements for the service allocation and the
delays associated with the information collection and decision process. If the
latency when communicating with the information source is high and the
performance requirements of the allocation process are strict it may not be

 3

possible to perform the collection of information when the service request
arrives.

If the collection of information is made in advance, possible restrictions on the
amount of traffic generated must be taken into consideration. If communication
in the network is expensive, the frequency of the information collection has to be
low. However, this may conflict with the requirement for up to date information.
If the information is not up to date, the allocation may be suboptimal, wrong, or
in the worst case fail altogether.

The question of which information should be collected is fairly interesting as
well. One method is to collect as much information as possible about the entities
that may be involved in the allocation. By doing this, there will never be a lack of
information, but the cost may be excessive. Another approach is to only collect
relevant information. Although this second alternative may appear much more
attractive, the problem of deciding what information is relevant has to be solved.
This is especially hard to determine before you know what the service request is.

When a service request arrives it has to be analyzed to determine its
requirements. This information is to be combined with the context information
by some decision mechanism. A very detailed request may implicitly or even
explicitly specify a certain device, while a less detailed request might not specify
a specific device. If more than one device is capable of serving the request,
several factors should be used when performing the allocation. These factors
may include status of devices and users, device capabilities, and user
preferences.

The issues above require the design of a service allocation system capable of
collecting, extracting, and analyzing context information and taking appropriate
actions. It is the goal of this thesis to design, implement, and evaluate such a
system.

 4

2. Background

To be able to fully understand the problem addressed in this thesis, some
background information may be needed. In this section we will introduce basic
definitions and some of the technologies essential for understanding the rest of
this document.

2.1 Context information

First of all we need to define the term context. Many definitions exist and you
may get a new definition from each person you ask. In this thesis context is the
status and capabilities of an entity and its surroundings. The context of a user
will not necessarily be the same as the context for the user’s cellular phone.
However, the context of the user’s cellular phone will affect the context of the
user.

If context information can be used when allocating services to devices in a PAN
many new possibilities arise. In the best case, the user not longer has to bother
with static settings that control how and when a certain device should be used for
communication. This can be decided by some node attached to the network,
based on context information.

2.1.1 Context awareness

Context awareness is based on using context information in order to make
decisions. This translates into taking different actions depending on the context
of a device or a user. Depending on the characteristics of the context information
that is used, the decisions may change frequently or infrequently. This is
especially true if the context information is detailed and fluctuating.

There are many different kinds of context information. Context information
might describe the ambient light level or the type of display of a certain device.
This information may at first look completely uncorrelated with what the user
would like, but the combination can actually be useful. To illustrate this we will
consider a simple example.

Imagine a user equipped with two devices where one device has a Thin Film
Transistor (TFT) display and the other has a Super Twisted Nematic (STN)
display. The information on the STN display is unfortunately not clearly visible
in bright sun light. Consequently it is better to receive visual information, such as
a video stream, on the device with the TFT display if the context information
about the ambient light level indicates that the user is outside and the sun is
shining where the users’ STN display is.

 5

2.1.2 Categorization of context information

Some of the context information describes the device and its capabilities.
Examples are bandwidth of the network connection, communication cost,
available memory and available storage space. Other context information may
describe more abstract information, such as patterns of user behaviour. Below
are more examples of context information given and categorized by their
relation. This division was proposed by Chen and Kotz [4].

Device context network connectivity, available bandwidth,

available memory, processing capabilities, battery
level, display, communication cost, load, running
processes, nearby resources

User context user name, user ID, user profiles, heart rate,

respiration rate, muscle activity, emotional state,
cognitive load, nearby users

Physical context ambient light level, noise level, temperature,

humidity, air quality, location, orientation, speed,
acceleration

Time context date, time, time zone, time source(s)

2.1.3 Collecting context information

The entities used for collecting the data that is later transformed into context
information are called sensors. A sensor may be a physical device or
implemented in software. For measuring temperature some kind of physical
thermometer is required, such as a thermistor, equipped with an interface
readable by a computer and driver software. On the other hand a sensor
monitoring available user memory space in a device can be completely
implemented in software. Some sensors reside in a device and monitor the device
or the surrounding environment. The memory sensor mentioned above is a good
example of a sensor found inside a device. Other sensors are placed outside the
device, for example a thermometer placed on the wall in an office where the
device is.

The data delivered by the sensors needs to be interpreted, managed, and
expressed in some way to be useful for applications. Furthermore, the context
information may need to be stored somewhere and there must be some
mechanism for exchanging context information between devices. The
information relevant to a device could be stored locally or remotely. If the former
approach is used, popular information will be duplicated. On the other hand, if
the latter is used more communication is required. These issues, amongst others
are being investigated in the ACAS project [5] (see section 3.5).

 6

2.2 Personal Area Networks

A Personal Area Network (PAN) is a set of devices near the user that are
interconnected in some way. These devices may all be used to provide the user
with some service. Examples of such devices are PCs, PDAs, printers, storage
devices, cellular phones, and a variety of consumer electronics equipment. The
difference between a PAN and a Local Area Network (LAN) is that the former is
centred around one person, while the latter generally serves multiple users as it
covers a larger area.

A PAN may be a convenient way to synchronize and share data between
personal devices. However, the idea of a PAN becomes much more attractive
when the PAN is no longer isolated. Consequently, to make the PAN more
useful it is often connected to an external network. Via this connection it is
possible to interact with devices and users outside the PAN. Furthermore, the
PAN may change depending on the environment. If a device nearby the user is
allowed to join the PAN, preferably in a dynamic fashion, the user can take
advantage of services provided by devices that are not always in direct
possession of the user. For example, if the user enters a room with a projector,
the user might now have the possibility to receive a video call utilizing this
device. Accordingly, the PAN may logically span over devices that resides inside
a LAN when a LAN gateway is within the PAN.

The PAN concept isn’t that useful if the devices need cables for communication.
Consequently, some wireless technique to connect the devices is needed. Several
options exist. Today, the two most attractive are Wireless LAN (WLAN) and
Bluetooth. A third, Zigbee [6], is just staring to appear.

In this thesis, the actual technique for transferring data or forming networks is
not very interesting. Instead, the focus is on what higher level services the
communication technologies can support. Even if we do not care about how the
data is transported, it is crucial to understand that it will indirectly affect the
service allocation. For instance, it is not possible to stream high quality video to
a device that can only receive data at a maximum rate of 60Kb/s. We will
consider our underlying networks to be IP over Bluetooth™ or WLAN.

2.2.1 Bluetooth

Bluetooth™ allows devices within close proximity to join an ad hoc wireless
network. The strength of Bluetooth is the simplicity of forming an ad hoc
network. Two types of networks are possible in the Bluetooth architecture:
Piconets and Scatternets.

A Piconet is formed by a master that periodically emits requests. The slave will
answer with its identification number. The Piconet consists of up to eight
devices. To allow more devices in the Bluetooth network either the Piconets can
be interconnected and form a Scatternet or devices have to share the Piconet by
switching between an active state and some other state. In theory, up to 10
Piconets can overlap without excessive interference and moreover different
Scatternets can be linked together forming a linear chain.

 7

Some comments need to be made about the available bandwidth. Bluetooth
devices can work in both circuit switched mode and packet switched mode. If the
latter is used, asynchronous communication is possible where the maximum
bandwidth is 712Kb/s in one direction and 57.6Kb/s in the opposite direction [1].
A more balanced alternative is 433.9Kb/s in both directions. However, these
rates are theoretical upper bounds and are unlikely to be achieved in practise.

2.2.2 Wireless Local Area Network

A Wireless Local Area Network (WLAN) is another way to connect and transfer
data between the devices. Basically, a WLAN is a LAN using radio waves in free
space. A WLAN can be implemented in an infrastructure-based or an ad hoc
network fashion. The former requires an access point and resembles a traditional
LAN. The high bandwidth of a WLAN makes it a good complement to
Bluetooth. By supporting data rates up to 54Mb/s in IEEE 802.11g [7] a WLAN
enabled device has the ability to support services with high demands on
bandwidth. However, higher bandwidth and large coverage area come at the
price of greater power consumption.

2.3 Service allocation and Service Discovery

In this thesis service allocation is the act of forwarding an incoming request to
the most suitable device. “Most suitable” refers to the device that has the best
chance to successfully serve this specific request in a manner which will satisfy
the user or process. A request is normally addressed to a specific user, but may
be delivered to one or more devices, accessible to the addressed user. Note:
Services could also target specific devices, but we will view this as a subset of
requests to the users.

The most important criteria for how successful a service allocation can be is up
to date context information. Of course the decision logic needs to be capable of
making proper decisions, but even if the service allocation system knows how to
analyze and combine information, the decisions may not be accurate if this
information is obsolete.

Service allocations may vary in many different ways. Some allocation decisions
are very simple, while others can be fairly complex. The type and amount of
information needed by the allocation algorithm and the complexity of the
algorithm itself will affect the delays associated with a service allocation. To give
the reader a better understanding of a service allocation process and what
problems may arise when doing one, we will consider three example service
allocation algorithms. These service allocation examples will later on be used to
describe algorithms and demands on the information collecting process.

Service allocation A is an allocation algorithm which allocates the incoming
service to the device that has not a certain process running. The reason is that if
there is a process running on the device that is untrusted the device should not be
allocated the service. Consequently, information about the running processes on
all devices is needed and this information has to be processed for every available
device in the allocation algorithm. Furthermore, the available bandwidth will also
affect the choice of device.

 8

Service allocation B allocates an incoming video request to the device that can
best display video and has the most battery capacity left. This allocation depends
on information both from the devices in the PAN and the incoming request. The
information that will be used is listed below.

Ambient light level – Indicating the current light level (the bigger value, the
brighter the ambient light).
Display size – The size of the display (the bigger, the better).
Display type – The type of display. Some display types are easier to watch than
other depending on the ambient light level.
AvailableBandwidth – The current available bandwidth. More bandwidth allows
higher bit rate CODECs.
Capabilities – The capabilities of the device (indicates if it is capable of
receiving a video stream).

The information needed from the incoming request is the media descriptor (see
section 2.5.1) that tells us about the requirements of the service.

Service allocation C may allocate several devices in the PAN. This example
assumes that the Context Aware Service Allocator (CASA) receives a service
request that has more than one desire when it comes to media capabilities (both
audio and video capabilities are requested). More concretely this means that there
is more than one media descriptor in the incoming request. The service will be
allocated to the device or devices that can best play the audio and video streams.
Screen size and the number of speakers will be used to decide which devices to
use.

It is necessary to be aware of the available services in the network to be able to
contact them and ask for information. In this thesis we will assume that the
services in the network already are discovered. How this was done is not of
interest here, it was addressed in the earlier report of Cecile Ayrault [8].

2.4 Session Initiation Protocol (SIP)

The Session Initiation Protocol (SIP) is an application layer protocol that is
capable of establishing and managing multimedia sessions. The session may
have two or more participants, also called endpoints or User Agents (UAs). The
UAs may come and go during a session, just as the media used in the session
may change. SIP is designed to be generic and is independent of the underlying
transport protocol and type of the session. One of the strengths of SIP is that the
user only needs one address or more importantly, the rest of the world only needs
to associate one Uniform Resource Identifier (URI) with a specific user. This
single URI will be mapped to the user’s current location.

2.4.1 Basic concepts

A brief description of SIP can be further distilled into five basic concepts,
namely: user location, user availability, user capabilities, session setup, and
session management. User location deals with the problem of finding the end
system that is to be invited to participate in a session. User availability ensures

 9

that the user at that end system is actually interested in participating in a session.
User capabilities are the media and media parameters that could be used in the
session. Session setup consists of session parameter establishment at the
involved parties and the invitation to start a session. After the session is initiated
it can be modified and eventually terminated. These later activities are included
in session management.

A SIP architecture consists of a number of entities. The architecture includes
four servers: the Location server, the Proxy server, the Redirect server, and the
Registrar server. The Location server keeps information about the current
location of an end system and is used by the Redirect and Proxy servers. Note
that the Location server does not speak SIP. The Proxy server is responsible for
routing and delivery. The Redirect server is used for finding a user. It takes the
URI in a SIP request and maps it to zero or more UA addresses. These addresses,
if any, are returned to the client. The Registrar server manages UA registrations.
A UA needs to register at least one address before it can be used. Thus the
Registrar server is consulted to locate registered users. Note that the servers are
logical roles that can be played a single device. A common design [8] is to
combine the Location, Redirect, and Registrar servers into a single server, simply
called a Redirect server. The UA acts both as a server (UAS) and a client (UAC),
depending on whether it is receiving or sending a request (respectively).

2.4.2 Typical example

To get an idea of how a session is established in SIP we will start with a simple
example, shown in Figure 2. Assume that a user, Alice, is interested in talking to
another user, Bob, by using her soft phone. Fortunately, Bob has a SIP capable
device as well. To call Bob, Alice uses his SIP identity. This has the form of an
address-of-record (AOR) URI that is unique to this user. The AOR can be used
as the public address of a user and resembles an email address with a user name
and a host name. Actually, the host name often simply is a domain name, it is
then up to the DNS system to provide the correct host address(es) for the SIP
server (that may map the AOR to another URI where the user might be
available). Bob’s AOR is sip:bob@bobobert.com. This address is all Alice has to
know to contact him. Her own address is sip:alice@alicenter.com.

 10

Figure 2. Typical example of SIP message exchange.

The only entity able to create an original request is the UAC. Accordingly, it is
Alice’s UAC that initiates a session by sending an INVITE message to the end
system it wishes to communicate with. In the scenario considered in Figure 2, the
INVITE message from Alice will be sent to an outgoing proxy server in the same
domain, namely alicenter.com. This proxy will forward the message to the next
hop, which in this case is the proxy server in domain bobobert.com. A 100
Trying message will be sent to Alice to inform her that the INVITE message was
successfully received by the network and no retransmission is required. Other
messages will be forwarded without any acknowledgement. The bobobert.com
proxy server will forward the INVITE to Bob’s UA. Upon receiving the INVITE
message Bob’s phone will start ringing and a 180 Ringing message will be
returned to Alice. When the user at Bob’s phone (hopefully Bob himself)
answers the phone a 200 OK response message is sent to Alice. After both the
180 Ringing and 200 OK messages are received an ACK message is returned by
Alice. This acknowledgement completes the three-way handshake. Media
streams can now be established between Alice and Bob. When any of the
participants, say Bob, wants to end the session and hangs up, the phone will send
a BYE message to Alice’s phone which responds with a 200 OK. After this
message the media streams for this call are torn down.

 11

After this simple example we are ready to look at what happens behind the
curtains, i.e. what the messages look like and what other entities have to be
involved.

2.4.3 SIP Message structure

To get an idea of how a message in SIP is constructed we will look at the
INVITE message from the example above (see Figure 3). Here only the most
common fields are discussed.

INVITE sip:bob@bobobert.com SIP/2.0
Via: SIP/2.0/UDP
pc123.alicenter.com;branch=z9hG4bK776asdhds
Max-Forwards: 70
To: Bob <sip:bob@bobobert.com>
From: Alice <sip:alice@alicenter.com>;tag=1928301774
Call-ID: a84b4c76e66710@pc123.alicenter.com
CSeq: 314159 INVITE
Contact: <sip:alice@pc123.alicenter.com>
Content-Type: application/sdp
Content-Length: 142

/* SDP content */

Figure 3. An INVITE message (the SDP content is not shown).

The first line specifies the message type (“INVITE” in this example). The
“INVITE” is followed by the address of the addressee and the version of SIP that
the caller supports.

Via – specifies the transport protocol, the client’s host name or network address
(and optionally port number), and a branch value that uniquely identifies the
transaction and is used by the proxies for loop detection. The history of the
message’s path through the network will be available in this field, it is added to
by each proxy.

Max Forwards – inserted by the UAC to limit the number of hops a request
can traverse on the way to the destination. The recommended default is 70.

To – contains the address of the recipient of the request. In the example above
“Bob” is a display name (more convenient for the users) and thereafter follows
the URI. Both SIP and SIPS URIs may be used. The latter is further explained in
section 2.4.6.

From – indicates the initiator of the request with a display name and a URI. A
tag is included to uniquely identify the dialog.

Call-ID – a globally unique identifier for this call. The identifier is generally
based upon a random number and the host name or IP address of the UA.

CSeq – CSeq or Command Sequence is a sequence number incremented for
each new request within a dialog. The request method name is also included.
This header field serves to order transactions within a dialog and can be used for

 12

differentiating requests and retransmissions. When an ACK message or a
CANCEL message is sent as a response to an INVITE message, the CSeq
number is the same as in the INVITE message.

Contact – contains a SIP or SIPS URI that points directly to the sender (Alice
in the example). The address is composed of a user name at a fully qualified
domain name (FQDN). An IP address may be used if the end system does not
have a registered domain name.

Content-type – the media type of the message body. In this example
Session Description Protocol (SDP) [10] is used. See section 2.5 for more
information.

Content-length – the size in bytes of the message body.

2.4.4 SIP Request messages

SIP requests can only be created by the UAC. The request is sent to a server that
takes appropriate actions depending on the content and type of the request. All
the request messages except the ACK message are followed by a response.

INVITE – As described in section 2.4.2 the INVITE message is the sent by the
UAC to initiate a session. The message contains information about the caller, the
upcoming session and of course the address of the addressee. A session is
established after a three-way handshake is completed, where the INVITE
message is the first message.

ACK – The ACK message is sent by the UAC to confirm that the response to the
INVITE request, namely the 200 OK, was received.

BYE – The BYE message is sent by a client to terminate an ongoing session.

CANCEL – Cancel a previous request. If a session is being cancelled before it is
established this is the message that should be sent. Please note that the BYE
message shouldn’t be used in this case. If a final response for the request already
has been received, the CANCEL message will have no effect. CANCEL requests
can be made by both proxies and UACs.

REGISTER – The message used for registering a user. The address in the “To”
header will be associated with the user. See section 2.4.7 for details about the
registration process.

OPTIONS – The OPTIONS message can be used for discovering information
about another UA or a proxy (see section 2.4.9 for details).

2.4.5 SIP response messages

The response message sent by a server indicates success, failure, or provides the
client with more information that may make the request successful. Many
different response messages exist in SIP and they are grouped into six different
types. Each response is identified with a three digit number where the first digit
is the response type.

 13

1xx: Provisional – the request was received by the server, but further processing
is required. This message should be sent if the request is expected to take longer
than 200ms to process, e.g., 100 Trying.

2xx: Success – the action was successfully received and accepted, e.g., 200 OK

3xx: Redirection – gives information about the callee´s new location or, if the
call wasn’t successful even though the address was correct, possible alternative
services, e.g., 302 Moved Temporarily

4xx: Request Failure – the client has sent a request that contains bad syntax or
cannot be fulfilled at this server and the client should modify the request or try
another server, e.g., 404 Not found

5xx: Server Failure – the request was valid, but the server was unable to
process it successfully, e.g., 501 Not implemented

6xx: Global Failure – the contacted server has enough information to claim that
the request cannot be fulfilled anywhere in the system, e.g., 600 Busy
everywhere

2.4.6 SIP URI

As briefly discussed in section 2.4.2 the SIP URI identifies the communication
resource. This address is sufficient to initiate a session with the resource. The
general form of a SIP URI is given below.

sip:user:password@host:port;uri-parameters?headers

The token “sip:” specifies that the URI is a regular SIP URI. There are two types
of URIs in SIP, namely SIP and SIPS where the latter provides additional
security. When a SIPS resource is contacted, the path from the initiator to the
target domain should be secured. In practice this means that either Transport
Layer Security (TLS) [11] or Secure Sockets Layer (SSL) [12] is used for
protecting the data.

“user:” the identifier of the particular resource at the host.

“password:” the user’s password. However, this field is not recommended to
be used due to the fact that it is sent in clear text.

“host:” the IP-address or domain name where the resource is located.

“port:” this field may optionally specify a port number where the request
should be sent. If not specified, then the default port will be used (5060 for SIP
and 5061 for SIPS).

“uri-parameters:” an arbitrary number of parameters to the request, e.g.,
transport=tcp

“headers” hold the values that should be present in the header of the request
constructed from the URI, e.g., subject=meeting

 14

2.4.7 Register

To participate in a session the UA needs to register its contact URI at the
Registrar server. Normally, this is the first thing that is done when a SIP enabled
device, e.g. a SIP phone, comes online. For this purpose the Registrar server is
contacted. Registration is initiated by the UAC by sending a REGISTER request,
either directly to the Registrar server or via a Proxy server. If the registration is
accepted the server will store a binding between the URI and one or more contact
addresses. The Registrar server will respond with a 200 OK message if the
registration was successful. The same REGISTER request message is used when
the user wants to update an address, get the addresses stored on the server, or
delete an address.

The registration will expire after a certain time specified by the local policy.
However, the client can suggest an expire interval in the REGISTER request.
Because a binding is deleted when the registration expires it has to be renewed.
The client learns the current expire interval in the 200 OK message from the
registrar server. Now it is up to the client to renew the bindings before they
expire, if the client wishes to be able to receive incoming invite requests.

Before the REGISTER message can be sent the Registrar server has to be
located. Several alternatives exist, such as manual configuration, DHCP, or DNS
SRV Resource Records.

2.4.8 Redirect

In the example in section 2.4.2 the proxy forwarded the message to the next
proxy or UA. Consequently the proxy server needs to know how to reach the
next hop. However, this is not always the case. If the proxy hasn’t contacted the
next hop before and thereby learned the address, a Redirect server may be
contacted.

To get the address of the next hop the proxy forwards the INVITE message to
the Redirect server. This server will look up the destination in its table of
registered users. If the callee can’t be found, then the server consults a dialling
plan to determine where the INVITE should be sent. As mentioned earlier, the
redirect server works closely together with the Location and Registrar servers.
The Registrar server stores registration information at the Location server. The
latter serves the Redirect server by providing information about where a user
currently is located.

The Redirect server returns routing information about how to reach the next hop
to the proxy in a 302 Moved temporarily message. This message will be
acknowledged by the proxy. The original INVITE message is then modified
according to the routing information and sent to the next hop in the network.

Figure 4 shows how the messages flow in the system when SIP phone A is trying
to contact SIP phone B with an INVITE message. Here we use a SIP address to
address a specific phone rather than a user.

 15

Figure 4. An INVITE message is sent from SIP phone A to B.

2.4.9 Determination of capabilities

There exists one mechanism in SIP that allows a client to query a UA or a proxy
server for its capabilities. This special request is called OPTIONS and makes it
possible to get information about supported methods, content types, extensions,
CODECs, etc. without sending an INVITE message to the server.

When the server receives an OPTIONS request message it should return a 200
OK message containing the information queried by the request. Allow, Accept,
Accept-Encoding, Accept-Language, and Supported header fields should be
present in the response message.

Allow lists the methods that are supported by the server. Note that this field
should not be included if the requested server is a proxy since a proxy is method
agnostic. Accept specifies the supported formats of the message body. Accept-
Encoding and Accept-Language gives information about supported encodings
and languages. Contact header fields may be present in the response to list
alternative addresses for reaching the user.

Furthermore, a body may be attached to the response. The type of the body is
specified in the OPTIONS request message. The default body type is
“application/sdp” and if this type is present the server should include a body with
a listing of media capabilities.

 16

An example of a 200 OK message sent in response to an OPTION request is
shown below.

SIP/2.0 200 OK
Via: SIP/2.0/UDP
pc123.alicenter.com;branch=z9hG4bKhjhs8ass877
;received=192.0.2.4
To: <sip:bob@bobobert.com>;tag=93810874
From: Alice <sip:alice@alicenter.com>;tag=1928301774
Call-ID: a84b4c76e66710
CSeq: 63104 OPTIONS
Contact: <sip:bob@bobobert.com>
Contact: <mailto:bob@bobobert.com>
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE
Accept: application/sdp
Accept-Encoding: gzip
Accept-Language: en
Supported: foo
Content-Type: application/sdp
Content-Length: 274

/* SDP */

Figure 5. Example response to an OPTION request (the SDP body is not
shown).

2.5 SDP

The Session Description Protocol (SDP) [10] describes multimedia sessions and
is mainly used for session announcement and session invitation. It is a simple
protocol and accordingly negotiation of session content or media encodings are
not supported, rather it is an offer-accept model. However, it is possible to carry
other protocols inside SDP. This feature is for example used when distributing
media stream encryption keys in a secure manner, as used in MIKEY [13].

SDP is intended to be general purpose and can be used in many different
applications. The most common one, and also the one we find the most relevant,
is when it is used together with SIP to establish a media session. Here the SDP
information is carried inside the SIP INVITE message and specifies for instance
which CODECs should be used and between which IP addresses and ports the
communication should take place. The other party will respond with
acknowledgments of the descriptions that it accepts.

2.5.1 Protocol format

An advantage of SDP is that it is very simple, both to understand and to
implement. The information carried by the protocol is coded in UTF-8 text
format. Different letters are used as labels to identify the fields. The defined
protocol structure is as follows. Optional items are marked with a ‘*’.

 17

v= (protocol version)
o= (owner/creator and session identifier)
s= (session name)
i=* (session information)
u=* (URI of description)
e=* (email address)
p=* (phone number)
c=* (connection information)
b=* (bandwidth information)
z=* (time zone adjustments)
k=* (encryption key)
a=* (zero or more session attribute lines)

Time description

t= (time the session is active)
r=* (zero or more repeat times)

Media description

m= (media name and transport address)
i=* (media title)
c=* (connection information)
b=* (bandwidth information)
k=* (encryption key)
a=* (zero or more media attribute lines)

The SDP parser expects that the labels appear exactly in the order specified
above. It is possible to have several SDP session descriptions in the same packet.
The ‘v=’ field marks the start of a new session description.

2.5.2 SDP example

An example of a SDP description is given in Figure 6.

v=0
o=- 4711 4711 IN IP4 130.237.251.216
s=Example Session
c=IN IP4 130.237.15.216
t=0 0
m=audio 1061 RTP/AVP 0
a=rtpmap:0 PCMU/8000/1
m=video 1062 RTP/AVP 31
a=rtpmap:31 H261/90000

Figure 6. A typical SDP body.

 18

The following is an explanation of the less intuitive lines in the example.

‘v=’: The version number is always set to zero.

‘o=’: The owner/creator and session identifier. The syntax is o = <username>
<session ID> <version> <net type> <address type> <address>. In this example
the session ID and the version are the same. The username in the example is “-“,
which is a placeholder for the real name.

‘t=’: The time the session is active. The syntax is t= <start time> <stop time>.
For unbounded time values 0 can be used, as in the example.

‘m=’: The media name and transport address. The syntax is m= <media>
<port>/<number of ports> <transport> <fmt list>. When the transport is
RTP/AVP the <fmt list> is a list of integers specifying the CODEC that can be
used. The list can be found in [14].

‘a=’: Session attribute. The syntax for the rtpmap is a= rtpmap: <payload type>
<encode name>/<clock rate>[<encode parameters>]. In the example we use
PCMU (G.711 µLaw) with a sample rate of 8 KHz. Several other attributes may
be used [10].

 19

3. Related work

The problem of allocating services utilizing context awareness is similar to other
problems, such as policy management, access control, and request distribution.
In this section we will look at related work that may be of interest when
considering context aware service allocation.

3.1 Service Policy Management

In his thesis ”Service Policy Management for User-Centric Services in
Heterogeneous Mobile Networks” [15], Konstantinos Avgeropoulos looked into
the issue of performing policy based management of a network with several
UAs. The UAs form the user’s personal service network which could be for
instance a PAN. An entity called a SIP Service Manager (SSM) was proposed for
monitoring the service network and issuing polices. The SSM resides between
the service network and the SIP backbone. Apart from the policy related
components it combines proxy, UA, registrar, and redirect functionality.

Avgeropoulos´ work is relevant to this thesis for several reasons. The problem of
doing service policy management is related to service allocation. First,
information in the request will be used together with information about the
entities when issuing policies. The architecture for this process may be of interest
for this thesis. Furthermore, Avgeropoulos introduces mechanisms for collecting
information about the devices in the service network and also his use of SIP
INVITE request multiplexing that may be interesting. However, his information
collecting mechanism is based on polling which has drawbacks due to its
communication overhead and this leads to scalability problems.

3.2 Content-based request distribution

Web-servers are often arranged in clusters on the Internet to distribute load and
to increase service reliability. To distribute the incoming requests a so called
Web switch is used. Consequently, all requests are sent to the same IP address. A
Web switch can be implemented as a layer-4 or layer-7 switch. A layer-4 switch
can only use the information in the transport layer for dispatching a request to a
server. Things get more interesting when we consider a layer-7 switch. Here the
content of the request can be used when dispatching the request. By using
information about the servers together with the information acquired by
analysing the request, the switch is able to perform content-based request
distribution. The advantages when used in such web-server clusters is increased
hit-rates in memory caches, increased storage scalability, and the ability to have
specialized servers for certain types of requests, such as video or audio.

When designing content-aware request distribution in general the performance of
the web switches is the main issue. The request rate is often high and if too much
processing is needed for each request, then the switch will be a bottleneck.
Therefore the decision logic has to be simple and not depend on too much data.
In this thesis, the entity that will allocate the service to the proper device will
most likely not experience a request rate as high as in the server cluster.

 20

3.2.1 Locality-Aware Request Distribution (LARD)

LARD [16] is a specific policy for content-based request distribution. The main
goal is to achieve high locality in the main memory of the servers. This means
that when a specific object is requested the same server should handle that
request each time. An object (and request) consequently are associated with a
specific server. Of course some load balancing needs to occur, but that is not of
interest in this thesis as it is likely that the best available device should be used as
long as it can, then the next best, and so on.

Even though LARD and other content-aware request distribution systems
primary consider performance, the basic mechanism enables efficient service
allocation. The incoming request has to be analyzed, and the content of the
request will affect where the request will be forwarded. Information about the
current state of the servers has to be available when request distribution is
performed. This is the basis also of the problem considered in this thesis. While
the reliability of the servers in a cluster can be considered high, the same
assumption cannot be made about the devices in a PAN. Furthermore, the front-
end system and the servers are physically connected, usually with high
bandwidth connections. On the contrary, the communication in a PAN can be
expensive and in such cases should be kept to a minimum.

3.3 Context-aware access control

Another area where context information may be helpful is access control. Using
context information can be a powerful tool when making access control
decisions. In [17], a context-aware access control model for Web services is
presented. By looking for example at the system resources, current time, and
location of the user the authorization mechanism now has the ability to
dynamically grant and adapt permissions of a user based on their current context.

Furthermore, the paper proposes a tuple language to express context information,
and algorithms to evaluate service access requests. Access patterns may be used
when making access control decisions. If something differs from the normal
pattern of a specific user, fewer privileges are given to that user.

The ideas introduced in the context-aware access control system may also be
useful in this thesis, especially when it comes to expressing context information
internally and designing algorithms to evaluate the incoming requests. However,
context awareness in the access control system concerns the context of the entity
that makes the request, while in this thesis we are primarily interested in the
context of the entity that receives the request.

 21

3.4 Heterogeneous wireless network management

Power consumption is often a critical issue in portable devices running on
batteries. In [18] a policy for selecting the network interface that consumes less
power, but still serves the needs of the application is presented. Two network
interfaces were used, one Bluetooth interface and one WLAN 802.11b [7]. The
Bluetooth interface provides low power consumption, but only moderate
bandwidth, while the WLAN 802.11b interface offers high bandwidth, but
consumes more power. If only a small amount of bandwidth is needed by an
application (for instance when sending a text based e-mail) the Bluetooth
interface can be used. For applications with higher bandwidth demands, such as
when streaming video, the WLAN 802.11b interface is needed. The mechanism
for selecting interface monitors the variations of application data consumption
rate and dynamically changes interface if needed.

Interesting for this thesis is to see both how bandwidth affects a service and how
the need of an application (type of service) affects the choice of a device. The
two types of interfaces considered in the paper are frequently used in PANs,
which makes it highly relevant for this thesis.

3.5 Allocating Web-Services

When allocating Web-Services performance is an important issue. High volume
Web-Services are often replicated over several servers to spread the load over
different machines and to provide redundancy. An example of a Web-Service
that spans over multiple machines and where performance is central is the search-
engine GoogleTM [21]. A Web-Service can be allocated randomly or by looking
at the status of the Web-Service and/or the hosting nodes. A node hosting a Web-
Service replica may host copies of other Web-Services as well; which of course
may impact performance. In [20], different schemes are proposed for allocating a
Web-service. The most interesting schemes are Least Utilized and Least
Response Time. Here, the status of the Web-Service has to be monitored and
taken into consideration when allocating new service requests. The information
describing the status of the Web-Service and the hosting nodes are called
Performance Metadata. This status information is stored in a distributed registry
that is consulted when a Web-Service allocation is about to be performed. Each
node and Web-Service will update its utilization or response time in the registry
either periodically of after a request is processed. The more often this
information is reported, the more accurate allocation is possible. However, the
reporting process implies additional processing overhead at the node.

The problem of doing successful allocations in a Web-Service has similarities
with doing service allocations in a PAN. The more sophisticated allocation
schemes, namely Least Utilized and Least Response Time, shares the problem of
keeping remote information up to date. When allocating Web-Services a
suboptimal allocation will result in longer service times. In our system a
suboptimal or faulty allocation may result in a session not being established.

 22

3.6 Adaptive and Context-Aware Services (ACAS) project

The ACAS project [5] considers the difficult issues of sensing, processing, and
distributing context information. It has been shown that there is a need for both a
context description language and architecture to manage the context information.
There is a gap between the raw information given by the sensors and the
information needed to make suitable conclusions about a certain condition. This
gap is called a context gap. Filling the context gap makes the context information
more useful. Combining different information may create new information that is
much more useful than the original information. This process is called context
refinement.

The ACAS project proposes a language for exchanging and processing context
information called Context Description Language [5]. This is a XML [19] based
language for describing context where the context entity is the central focus.

3.6.1 Architecture

The central concept in the ACAS architecture is the Context Management Entity
(CME). This entity consists of a context server (the server part of the CME),
context manager (client part of the CME), and a context repository used by the
context manager with service and sharing policy management (see Figure 7)

Figure 7. The structure of the CME.

The CME enabled entities form a context network. They know how to talk to and
reach each other. The CME is employed on every device that wants to connect to
the network and will provide the local applications with context information. On
devices with very limited resources a simplified manager can be used to contact

 23

a CME on another device and thereby use the more powerful device as a server
for context information. The applications will subscribe with the context
manager in order to receive context information.

The context network can be static or dynamic. To provide a basic network or
backbone for the context information the CMEs should have a static binding with
at least one other CME. A connection with this CME is established on startup.
The bindings may be manually or automatically configured (DHCP is one
option). For example, the devices in possession of a certain user could have static
bindings with each other and with CMEs representing the current location. By
using dynamic bindings between CMEs the context network can be somewhat
optimized and direct connections can be established between CMEs that wish to
communicate. This will reduce the path length and optimize dataflow.

When an application wishes to connect to the context network it will search for a
local CME (locally, on a well known port) and request a connection. The CME
can either accept the connection and serve the application, or refer it to another
CME. If no local CME is found, a list of default CMEs to connect to should be
consulted. Context-aware applications can use the context server interface to
access managed context information. The context server may base its decision on
whether or not the request should be served based on (local) service policies. If
the request is accepted it will be passed on to the context manager for processing
and management.

 24

4. Design

In this section we will look at the design of the context-aware service allocation
system and discuss various issues that arise when an allocation is made.
Furthermore, a number of techniques for making the system adaptive are
presented.

4.1 Motivation

The main goal of the context-aware service allocation system proposed in this
thesis is to make it more convenient for a user in a PAN to be reached and for
other users to reach the user in the PAN. Ease of use is a very important aspect of
the system design. The users of the system should not be bothered with manual
settings. Preferably, they are not to notice the system at all. It should work
silently in the background, always making accurate service allocations.

Our system, called “Context Aware Service Allocator” (CASA), will ease
communication between users in two ways. First, it will make the devices in the
user’s PAN look like one device by enabling access to all of them by a single
URL. This address is all that an initiator of a session has to know to reach the
user in the PAN. Furthermore, this address will also be used for outgoing calls so
that the internal structure and addressing never has to be revealed outside of the
local system. An exterior initiator of a session can be seen as an indirect user of
the CASA and has no knowledge about the PAN and the devices within. This
user will never know about the CASA, provided that the delays associated with
the session establishment are low enough not to be evident.

The second way the system serves the user is choosing the device that is best
suited for handling the incoming request for the moment. This service allocation
process will directly affect the user in the PAN, but also the exterior user. Both
will of course suffer from a bad service allocation where a suboptimal device or
no device at all is allocated to the incoming service.

The service allocation process requires context information about the PAN. The
CASA will use a context network to gather this context information. This context
network can have many different forms. In this work we will assume that this
network has the same structure as the context management network introduced in
the ACAS project [5]. However, CASA will also work with other types of
context networks and as we will see later, a single stand-alone server may be
enough for a smaller network with modest requirements on the context
information.

Because the type and performance of the context network can vary, the service
allocation system has to be flexible and tolerant of high delays. As discussed later
in section 4.5, the number of devices in the PAN and the delays associated with
getting information from the context network will affect the total service
allocation delay. This total delay has to be hidden from the users if it is too high
to be tolerable.

A delay longer than 1-2 seconds is considered to be annoying by most people,
especially if there is no feedback during the waiting [22], [23]. Consequently, the
goal is to allocate the service faster than this.

 25

The allocation will be based on context information from the PAN, user settings,
and information contained in the incoming request (e.g., the media descriptor
located in the SDP body). Consequently, there are high demands on the accuracy
of the context information. The decisions made by the CASA always have to be
based on up to date information. A goal of the system design is to provide the
allocating algorithm with as current information as possible.

4.2 Basic design

CASA will be partly based on the SIP Service Manager (SSM) designed by
Konstantin Avgeropoulos [15]. SSM uses many of the same basic components
needed for processing SIP requests and responses.

The functionality of CASA and SSM are related and the two systems should be
able to be used side by side. The design of CASA will make it possible to merge
the two systems completely and have both policy management and context-aware
service allocation functionality in one system. To make the description of the
design easy to follow for the reader, the two systems will be separated throughout
this document. However, to make clear which parts can be shared by the two
systems we will start by looking at those components.

As mentioned earlier, CASA will make all devices in the PAN look like one
device to users outside the PAN. This is achieved by making them all reachable
through one single SIP address. Consequently, the devices in the PAN have to
register with CASA which will act as a proxy server.

In order for the devices in the PAN to be able to register at the CASA a Registrar
server is needed. This local registrar will work closely with the location service,
which will keep the mappings between the network address and the SIP address
stored in a hash table. Observe that the SIP address registered at the CASA will
only be used internally. The location service will later be used when a service
allocation occurs and the network address is needed to route the SIP message to
the right device. This is due to CASA acting as a proxy.

Each device will be managed by a Service Controller (SC) (see Figure 9). This
SC is responsible for communication with the device and consequently an
incoming message will be passed on to one or more SCs by CASA. The service
allocation process determines which service controllers will be selected if the
message is not part of an existing transaction. If it is, the message should be sent
to the service controller that is participating in the transaction.

All communication between the PAN and the outside nodes will go through
CASA (see Figure 8) which works as a switch for the SIP messages. When a
register request is received from a device in the PAN, it is switched to the
registrar. When an incoming message is received, the message will be switched
to the proper service controller. An outgoing request (other than a register) from
one of the devices inside the PAN will be switched to the responsible SC.

 26

Figure 8. Placement of the CASA.

Now that the management of the devices inside the PAN has been covered it is
time to look at how CASA is reachable from outside the PAN. By including a
registration client in the design the CASA is able to register the Address Of
Record (AOR) of the PAN at a service provider proxy. The AOR is the address
that will be used for reaching the user and a device inside the PAN. Once this
address is registered, all the service requests destined for the PAN will end up at
the CASA.

If all the devices in the PAN together are represented by a single address, the
internal or local addresses need to be hidden when communicating with a user on
the outside. Consequently, the address of each message sent from a device in the
PAN needs to be changed in order to make the message look like it came from
the official AOR (i.e., the CASA). This is similar to a Network Address
Translation (NAT) or IP proxy.

4.3 CASA specific design

The components described above are necessary for registering the devices inside
the PAN, registering the official AOR at the service provider proxy, and handling
incoming and outgoing messages. Given this base functionality we are now ready
to discuss the components needed for service allocation. Two main components
will be added to the design: (1) the Device Allocating unit and (2) the
Information Collector unit. Additionally, some enhancements will be made to the
existing components. For an overview of the design, see Figure 9.

 27

Figure 9. Overview of CASA.

As shown in Figure 9, the Registration client is responsible for registering the
AOR of the PAN at the service provider. Furthermore, a Registrar and a Location
Service is available at the CASA in order to manage the registrations of the
devices in the PAN. Three devices are registered in the example and every device
is associated with a service controller that manages the communication with the
device. The Device Allocating unit (DA) and the Information Collector unit (IC)
are the core components of the CASA and are described in detail below. For
more information about the Context Management Network (CMN), see section
4.3.5.

4.3.1 The Device Allocating unit

First we examine the core of the CASA: the Device Allocating unit. The DA will
make the actual service allocation decisions based on context information from
the PAN and information provided in the incoming service request. These two
sets of information are crucial for service allocation. A third important part
affecting the outcome of device allocation is the allocation algorithm. The
allocation algorithm determines how the DA uses the context information when
making a decision. The allocation algorithm is the heart of the decision logic and
may look very different depending on the context of the CASA (see section 4.3.3
for more information about the allocation algorithm).

The DA will always perform its work in the foreground, which implies that the
delays associated with the service allocation decision process cannot be hidden
from the user. The reason for this is that the service allocation decision has to be
made (immediately) after the CASA receives the incoming service request. Even
if the allocation algorithm is not using information in the request (which is
possible) the service allocation decision should be taken as close in time to the
actual allocation of the service as possible. If instead the service allocation

 28

decision was made in advance, it could, and in most cases would, be based on
potentially obsolete information.

4.3.2 The Information Collector unit

The other main component is the Information Collector unit (IC). The duty of the
IC is to collect context information from the entities in the PAN. This
information is later used by the DA when performing a service allocation. The IC
will get the requested information from a context network or more specifically a
server in a context network, which provides context information about the
entities in the PAN.

The context server is called CME (see section 4.3.5) and is assumed to be
multithreaded. Likewise, each information request from the CASA is handled by
a new thread within the IC in order to avoid waiting for earlier requests to finish.
As discussed in section 4.5, the delays associated with the information collecting
process may be visible to the users in some cases. If the information is collected
in conjunction with the service allocation decision the delays associated with
collecting the needed context information will be exposed to the external session
initiator.

4.3.3 The allocation algorithm

The allocation algorithm can be seen as a standalone element and should be easy
to alter or replace to satisfy the needs of the user in the PAN and CASA. In some
scenarios the allocation algorithm may be simple and only need very limited
amounts of information, i.e. one or two pieces of information from the devices
and none from the incoming request may be enough. Other algorithms may
require lots of information from all entities in the PAN and perhaps all the
information contained in the incoming request. Different algorithms will generate
very diverse loads on the DA and the hosting machine.

While the allocation algorithms may differ a lot, there are a few sections that can
be identified in most algorithms. Often the allocation algorithms consist of loops
iterating over the information. In each of these iterations different values will be
inspected and compared according to the rules specified in the algorithm. The
rules are often of the form IF {} THEN {} ELSE {}. These simple rules are used
for comparing values and often to find extreme values, that is the smallest or
biggest value of a certain type. After all the information has been inspected some
additional processing may be required.

When an allocation algorithm is designed the priority of the properties and status
of the devices in the PAN has to be decided. The algorithm designer has to
decide for instance if available battery power is more important than available
bandwidth. We will start by looking at service allocation A.

The allocation algorithm in service allocation A depends on two pieces of
information, namely RunningProcesses which is a list of the running processes at
the device and the BatteryStatus. This algorithm consists of one main loop that
iterates through the devices and searches for a certain process in the process list.

 29

In the same loop the battery status variable is read. The device that does not have
this specific process running, but has the most battery power left will be allocated
the service.

The allocation algorithm in service allocation B is more complex. Here context
information such as ambient light level, display size and type, battery status, and
device capabilities are used in the allocation algorithm together with information
from the media descriptor in the incoming request. This allocation algorithm is
designed with picture quality as the most important criterion and can be
described as follows:

1. Extract the media descriptor from the incoming request
2. For each device do:
2.a. {Check if device is capable of receiving video
2.b. IF {AmbientLightLevel > threshold T} THEN {compare

DisplayType}
2.c. Compare DisplaySize
2.d. Compare AvailableBandwidth}
3. Allocate service

In the worst case, these five steps will be performed for every device in the PAN.
The most important property is that the device is capable of receiving video.
Consequently, this is checked first. The second thing to check is the ambient light
level. The threshold T has to be decided by the algorithm designer by looking at
the meaning of the value AmbientLightLevel. Suppose it can take on 5 different
values where 1=completely dark and 5=bright sun light. If the threshold T=3, and
the AmbientLightLevel is bigger, the DisplayType will matter (see section 2.1.1
for an explanation why) and should thus be included in the comparisons.
Consequently, if there are only two devices that have a display that performs well
in bright light among the devices that are capable of receiving video, only those
two will be left for next step where DisplaySize is compared. The reason is that
in this algorithm we do not care about the device (or its display size) if the
ambient light is so strong that its display is useless. After this step
AvailableBandwidth is compared. If more than one device is left after these
eliminations they are equally good according to the algorithm and one of them is
picked at random.

The allocation algorithm has to know how to compare values. For example,
knowledge about different display types is needed. It must know in advance that
a TFT display is better than a STN display when ambient light level is taken into
consideration. This information has to be available to the DA and the allocation
algorithm. In fact, it has to be built into the algorithm.

The algorithm in service allocation C consists of one loop. The loop iterates
through the devices to find the biggest screen size and the largest number of
attached speakers by looking at the DisplaySize and NumberOfSpeakers
variables. When the loop has finished, the device (if the same device was chosen
in both of the cases) or devices (if two different devices were chosen) will be
allocated the service.

While these example algorithms are pretty simple, an allocation algorithm can be
very complex. If advanced AI is used together with rich context information
some really ingenious allocations are possible. However, the design of such
algorithms is out of the scope of this work.

 30

4.3.4 The outcome of the allocation algorithm

It is important to understand the difference between a satisfying and an accurate
allocation. An allocation is considered satisfying if the user is pleased with the
result. This means that the outcome of the allocation algorithm has to match the
user’s wishes. If not, the user probably won’t be satisfied and will stop using the
automatic service allocation feature. The best way of archiving satisfying
allocations is thus to have customized allocation algorithms.

An accurate allocation, as discussed in 4.5.1, has to do with the allocation
algorithm only and not the user. An algorithm can be accurate but still
unsatisfying. If the information used by the allocation algorithm is up to date, the
allocation will be accurate. On-demand information fetching or call-backs will
always lead to accurate allocations. However, the situation is different when
prefetching information. To get an idea of how accurate an allocation can be, we
have to look at how up to date the information is.

If the information from a certain entity is updated (because of a change) at the
context server with an interval (or a mean interval) Tupdate and this information is
fetched with an interval Tfetch, the probability of having up to date information is
Puptodate = 1 – (Tfetch / 2Tupdate) when Tfetch < Tupdate and Puptodate = (Tupdate / 2Tfetch)
when Tfetch >= Tupdate. The probability of performing an accurate allocation
depends on Puptodate for the information needed in the algorithm.

Consider the algorithm of service allocation A and assume that prefetched
information is used from three entities a, b, and c. The probability that the result
of the allocation algorithm is accurate (Paccurate) is the product of all Puptodate for the
information (provided that the information is updated independently at the
server). Thus, in our example Paccurate =Puptodate(a) * Puptodate(b) *Puptodate(c).

The conclusions that can be drawn is that (1) the shorter prefetch interval, the
higher probability of having up to date information and (2) the more information
needed by the allocation algorithm, the greater risk that the allocation will be
inaccurate when using prefetched information. Observe that it is not a given that
the allocation will be inaccurate just because the information is not up to date,
but there is a risk.

For example, consider a simple allocation algorithm that compares one value
from each device and allocates the service to the device that has the largest value.
If the devices in the PAN have similar values a missed update can cause the
allocation to be inaccurate. However, if the values are far away from each other
and only small changes occur a missed update of one of the values will not affect
the outcome of the allocation.

4.3.5 Communicating with the context management network

Our system will work very closely with an entity in the context network called
the CME, briefly introduced in section 3.5.1 and further described in [5]. The

 31

CME is an important component of the context network serving applications, in
our case the DA will utilize this context information in its decisions. It is possible
to have a CME running on every device in a PAN (Figure 10), but this is not a
requirement. Consequently, a CME may or may not reside on the same machine
as the CASA. If the CME is external (Figure 11), it has to be reached through the
network.

Figure 10. Local CME.

Figure 11. Remote CME.

The advantage of having a CME available locally is the reduced communication
costs for the traffic to and from the CME. All traffic can go over the loopback
interface and the communication delays will be very low. In this scenario, no
traffic will be generated in the network directly by the CASA. If the CME is not
locally available on the same machine as the CASA it is accessed through the
network. This inevitably implies greater communication delays and more traffic
in the network.

Ideally, from the point of view of the CASA, the CME always has all the
information about all the entities in the PAN. Furthermore, this information is
always up to date. At the time of writing this thesis no implementation of a CME
exists and we do not know how near the ideal case a CME may perform.

 32

Even though it is not the goal of this thesis to investigate the performance of a
CME, we have to be prepared for some delays at the CME while the request for
context information is being processed. The CME may be busy, or it may not
have the information ready when receiving the request. Our system has to be
tolerant to these possible additional delays. Furthermore we assume that the CME
may or may not support call-backs, which means that the server automatically
sends information to the CASA when it has changed.

4.4 Information fetching approaches

To be able to make proper decisions in the DA, up to date information is needed.
If the CME doesn’t support call-backs two different approaches are suggested.
Either this information is collected just when it is needed, that is when an
incoming request arrives. This approach is called on-demand information
fetching. The other way is to periodically collect context information and store it
locally. The information is thus pre-fetched. If call-backs are supported, the
CASA will always get recently changed information and consequently it doesn’t
have to be fetched. These three approaches have advantages and disadvantages
which we now will examine in the following sections.

4.4.1 On-demand information fetching

On-demand information fetching is the most simple and straight forward
approach. When an incoming request arrives at the CASA the IC will be
consulted to get context information. The IC connects to the context management
network and queries the network for the information. The CME in the context
management network will respond with the requested information. This
information is then used by the DA to decide which devices are the most suitable
for handling the request.

The most obvious advantage of on-demand information fetching is that the
context information used by the DA will always be up to date. However, the fact
that the query to the context management network has to be made in conjunction
with the incoming request causes problem. The root of the problem is that
communication with the context management network (that is between the IC
and the CME), will take some time. Thus the DA will have to wait for the IC to
return the information before a service allocation decision can be made. This
delay associated with fetching the context information can not be hidden from the
user if on-demand information fetching is used. The obvious reason is that the
context information has to be fetched before the incoming request is forwarded.

Exactly how time consuming the communication with the CME is depends on
several factors. First, as with all data communication the transmission and
propagation delay will limit how fast data can be transferred. In an environment
like a PAN the transmission delay is more important than the propagation delay
because of the short distances. Additionally, the link type may affect the
communication delays. In a PAN the communication will often take place over a
wireless link which introduces slightly higher delays in comparison to a
physically wired LAN due to lower bandwidth and longer contention time to
access the media.

 33

With a distance of 10 m between the sender and the receiver the propagation
delay is ~10-7 s. If the link speed is 11 Mbps (802.11b) the transmission delay
will be ~10-3 s when transferring 1KB. Thus, the propagation delay in this
example is only ~1/104 of the total time.

In addition to the delays associated with sending and receiving data on the
network the CME will spend some time processing the request. As discussed in
section 4.3.3 this time may vary and consequently the system has to be prepared
for further delays. See section 5.2.3 for the total delays when fetching context
information from the context server.

In summary, the delays that can be expected when performing a service
allocation are (1) the system to CME communication delay TComm (TComm =
TComm_request + TComm_response), (2) CME request processing delay TCME, and of
course (3) the time it takes to execute the allocation algorithm on the system
TAlloc . Figure 12 shows a simplified scenario with an allocation only requiring
one information fetch. The total delay (Ttot), which is the time between receiving
the incoming request and the actual device allocation, depends on the number of
devices in the PAN and the processing power of the machine hosting the CASA.
The larger number of devices, the more information needs to be fetched and
processed.

Figure 12. On-demand information fetching delays when performing an
allocation. Visible delay shaded in grey.

4.4.2 Prefetching information

To hide the delays occurring when the context information is fetched the
information can instead be pre-fetched. The IC will now periodically contact the
context information network and fetch context information that will be stored
locally in the system. The delay associated with fetching context information
from the context management network is now no longer visible to the user. The
only remaining delay that can not be hidden is the time it takes to execute the
allocation algorithm. Figure 13 shows a simplified scenario with an allocation
only requiring one information fetch.

 34

The polling interval has to be carefully chosen. If the polling is carried out often
the information stored in the system will be more up to date, but the amount of
interaction needed with the CME will grow. This is an important trade-off when
polling for information.

Pre-fetching information is an effective way to hide delays associated with
fetching the information needed by the DA. The only delay observable for the
user is the time spent processing the information when executing the allocation
algorithm.

Figure 13. Information prefetch delays when performing an allocation.
Visible delay shaded in grey.

4.4.3 Call-backs

If the CME supports call-backs, the problem with high delays when fetching the
information is eliminated. The CASA will be fed with fresh information
continuously in the background. When the information is needed by the DA it
will already be there, fully updated. The only problem with call-backs is the lack
of control of the network utilization. Information is sent over the network when it
has changed and not necessarily when it is needed (compared to on-demand)
which means that information that never is used will be sent over the network (as
in prefetch mode). The network utilization depends on the information source
and not the incoming request rate (on-demand) or a predefined interval
(prefetch).

4.5 Deciding when to fetch information

Different situations put different demands on the fetching process of context
information. In some cases the PAN may consist of just a few entities providing
only a small amount of context information. In others the PAN may include lots
of entities (theoretically, hundreds of entities are possible), each capable of
delivering very rich context information. Likewise, in some settings the context
information network may be very responsive and deliver information with very
low delays, while in other cases each request for information may take a
considerable amount of time. Furthermore, the process of updating information

 35

generates network traffic, which in some networks should be kept to a minimum
due to high communication costs and power consumption.

In section 4.4 three approaches for collecting context information were presented.
By looking at the basic demands on a service allocator we will now try to find the
best approach for collecting context information.

4.5.1 High demands on accurate allocations

An allocation is considered accurate if the device(s) that were the most suitable
for handling the request, according to the allocation algorithm, at the moment
when the service request arrived at the CASA, were allocated the service. The
most important factor for an allocation to be accurate is thus to have up to date
information for the allocation process. If old information is used by the allocation
process, the device(s) that were the most suitable when that information was
collected will be allocated the service. Provided that the information has changed
in the meanwhile, an inaccurate or suboptimal allocation will be performed.

If the information used by the allocation process is collected upon receiving the
incoming service request an accurate allocation will be preformed, according to
the definition above. If information is automatically updated at the CASA the
allocation will be accurate as well. Consequently, on-demand information
fetching or call-backs are preferred in this case. If delay is not an issue, the
former should be used due to its low network utilization.

4.5.2 High demands on low allocation delays

As mentioned in section 4.4.1, there are three delays that will affect the total time
Ttot that is needed for a service allocation when using on-demand information
fetching. Two delays are associated with the information collecting process
(TComm and TCME) and the third with the allocation process (TAlloc). The delay
occurring when fetching all the information needed by the DA is called TIC.
When collecting information on-demand the time TIC will be spent after the
CASA receives the service request and consequently Ttot = TIC + TAlloc. On the
other hand, when using call-backs or prefetching information Ttot = TAlloc.

TIC is the time needed for collecting all the information needed. To get an
indication of how large this delay can be, we have to look at the number of
entities that are subject for information fetching (n), TComm, and TCME. If
information is fetched only from one single entity (n=1) TIC = TComm + TCME.
When information is needed from several entities TIC will depend on the amount
of parallelism of the CME and IC.

If the CME is capable of processing the requests in parallel TIC will be reduced.
Its important to note that the size and cause of the delay TCME(i) affects TIC. If for
example the main part of TCME(i) is because of lack of resources in the CME,
every thread on the CME may experience this delay. In this case it will not help
that the CME is multithreaded, the delays for every request will be additive
(although not necessarily linearly). On the other hand, if the main part of TCME(i)
is spent by the CME waiting for the queried entity to answer a request, the next

 36

request from the IC can be served in the meantime. Consequently, the largest
processing time for a request will have big impact on TIC and TIC ≥ max(TCME(i))
+ (communication delays).

Suppose that TIC is t ms for a certain PAN. This means that an allocation will
take more than t ms in total (Ttot = t + TAlloc, where TAlloc > 0). However, if a
maximum of t milliseconds are acceptable by the user, then on-demand
information fetching can not be used. The system should instead prefetch
information or use call-backs if supported.

TAlloc is the time needed for the DA to execute the allocation algorithm. It
depends on the complexity of the allocation algorithm, the number of devices,
and the performance of the machine hosting the system. This delay is perhaps
short in comparison with TIC, but is of course machine dependent. There are
extreme cases where TAlloc can be considerable longer. If for example the hosting
machine has insufficient amounts of free memory the information about the
devices (which normally is kept in the main memory), will be swapped out on
disk and trashing may occur upon accessing the information.

4.5.3 Minimizing the amount of traffic

In some environments network traffic is expensive and should be kept to a
minimum. If information is collected frequently from the devices, the amount of
traffic can be considerable. This applies especially to a PAN with many devices.
Prefetching information periodically at short intervals is therefore not
recommended if traffic costs or power consumption are an issue. Neither are call-
backs because there is no control over the update rate. Instead on-demand
information fetching should be used if possible.

If the prefetch interval is p seconds and the communication needs per prefetch is
c bytes, c/p bytes will be sent every second. A simple example will show the
amount of traffic that can be expected in a small PAN with 5 entities. Assume a
combined request/response size of 10000 bytes (message sizes for the request
and response messages including the context information in the response for the
5 entities). Now totally 1000 bytes will be sent every second if the prefetch
interval is 10 seconds. This means that 82.4 Mbytes will be shuffled between the
system and the context network every day and occupy frame space in the
network. Even though this traffic is only a small part of the total bandwidth
(~0.2% for Bluetooth in 433.9Kbit/s mode and ~0.005% for 802.11b in 11Mbit/s
mode) extra background traffic may be undesirable in some settings. This
background traffic is comparable to the 802.11b network beacons which are sent
every 100ms (typically). With a beacon frame size of 60 bytes a total of 50
Mbytes is sent every day, just as beacons.

4.6 Adapting to actualities

The main goal of the system is to make it easier for the user in the PAN by
automatically allocating the incoming service to the best suited device(s). The
user may affect the choice of device(s) by changing preferences, but the average
user is assumed to be uninterested in reconfiguring the system when conditions in

 37

the PAN change. In this section a number of techniques are presented for making
changes in the PAN more transparent. These changes may depend either on the
way the user acts or the entities in the PAN. Each of these features can easily be
deactivated if the user wishes to have more control over the system.

4.6.1 Adapt to the request rate

As discussed in section 4.5 the best way to hide delays associated with fetching
the context information is to prefetch the information or use call-backs (if
supported). However, prefetching information normally implies high network
utilization which in some cases is undesired while call-backs can give
uncontrollable network utilization if the information values are fluctuating
widely. If both low delay service allocation and low network utilization is
important, the system can be used in a mode where the information fetching
method is dynamically adjusted to the utilization of the system.

The system will start in on-demand mode for minimized network utilization.
When the system starts receiving a certain number of service requests per unit of
time the system will switch to prefetch or call-back mode if supported in order to
minimize the delay of each service allocation. If the request rate later drops, the
system will go back to on-demand mode.

Of course the requests prior to the switch to prefetch or call-back mode will
experience the delay associated with the on-demand information fetching.
However, a system receiving service requests more frequently than the
predefined interval will soon reduce these delays, while at the same time
reducing network traffic during time periods with low activity, such as the
middle of the night.

4.6.2 Adapt to context network performance

The performance of the context network may vary over time and depend on the
(user’s or device’s) location. Even if the CME contacted in one room was very
responsive, the CME in the next room may be a bad performer. As discussed in
section 4.5, a slow context network can be hidden from the user by prefetching
the needed information or using call-backs. However, it would be very
inconvenient for the user to be required to actively choose the method.
Consequently, a mechanism is needed that estimates TIC and selects the method
that best suites the current situation. The main goal with this technique is
reducing Ttot while at the same time trying to minimize the network utilization
when call-backs are not supported.

The system will start in prefetch mode and the first round of information fetching
will be measured to estimate TIC. If TIC exceeds the threshold value predefined by
the user, on-demand information fetching is out of the question. Consequently,
the CASA has to continue to work in prefetch mode. To be able to adapt to new
conditions in the PAN each information retrieval will be measured. If
considerable changes to TIC are discovered (in this case if TIC suddenly turns out
to be less than the threshold value) the system will switch information fetching
mode.

 38

The advantage with this technique is that the user does not have to bother with
tricky settings when the conditions in the PAN changes. Actually, very little extra
communication and processing are needed. The disadvantage is that if the system
is in on-demand mode when switching to another CME (for example, changing
rooms) the first incoming service request may experience delays if this new CME
is slow.

 39

5. Analysis

To prove that a service allocation system for PANs is feasible we implemented
the ideas presented in section 4. By implementing the system it is possible to
identify possible problems with the design, but it also gave us the ability to
perform tests that can give valuable input to other work in this area.

5.1 Implementation

In section 4 we proposed a system for allocating services called CASA, and also
expressed a need for a context server to serve CASA with context information.
We presented three different ways to get and update the context information at
the CASA (see section 4.4). Furthermore, two techniques were introduced in
section 4.6 in order to make changes in the environment of the PAN more
transparent. All of the above were implemented in a prototype that shows that the
components and techniques are feasible.

To demonstrate how a service allocation may happen the service allocation
algorithms in section 4.3.3 were implemented as well. These allocations were
also used when testing the system (see section 5.2).

5.1.1 Implementation tools

The prototype was implemented in Java using the Java 2 Standard Edition SDK
1.4.2_04 [25]. Java is a programming language well suited for prototyping due to
its simplicity and debugging capabilities. Furthermore, Java is platform
independent which makes it easy to perform tests on different platforms. The SIP
signaling was facilitated by using an Application Programming Interface (API)
called Java APIs for Integrated Network Framework, i.e., JAIN SIP, developed
by the U.S. National Institute of Standards and Technology (NIST) [26].

To generate service requests and test the allocations, three different types of soft
phones were used, namely Linphone (ver. 0.12.2) [27], Kphone (ver. 4.0.3) [28],
and X-Lite (ver. 2.0) [29]. Linphone is designed for the GNOME desktop
environment and consequently runs on Linux. Kphone is a Linux softphone as
well, but developed for the K Desktop Environment (KDE). X-lite, on the other
hand, is a softphone for Windows (including Windows CE) and MacOS.

5.1.2 Implementation details

The implementation shares several components with the SSM presented in [15].
Policy decisions and service allocations are closely related and it should be
possible to use both mechanisms in conjunction with each other. The
implementation allows the devices permitted by the policy decision to be used in
the service allocation. Consequently, only devices allowed by the policies may be
allocated the service.

 40

To serve the CASA with context information a context server supporting all the
information delivery methods, namely on-demand information fetching,
prefetching, and call-backs is needed. This context server will act as a CME with
server capabilities in a context network. The server should be external to CASA
and able to run on a different machine. Furthermore, the server should be
multithreaded so each request can be handled by its own thread.

The server is contacted by sending a request specifying which information is
wanted. In our prototype a static IP address is used to reach the server. Upon
receiving the request, the server reads the requested information and returns it in
a response message. The context information about the PAN is stored in objects
on the server and the request/response messages are sent as serialized objects. To
reduce the number of requests and make the communication more effective, it is
possible to ask the context server for more than one information element and
entity per request. This means that all information needed in the allocation
algorithm can be requested and returned in two messages (but not necessarily
only two packets).

If call-backs are used the CASA will constantly listen for incoming information
messages on port 8081 (currently unassigned according to Internet Assigned
Numbers Authority (IANA) [30]). The context server will send information to
this port whenever it is updated. When an information message arrives (similar to
an on-demand or prefetch response message) the information stored in the CASA
will be updated.

All requests for context information are made through the IC which acts as a
client. Each request is handled by a new thread. The IC is implemented
supporting a generic interface. This design makes it easy to replace the current
context server and the communication protocol with other solutions when
available. The TCP protocol is used for data transport due to its reliability and
flow control.

The Device Allocator (DA) is responsible for choosing the devices that will
handle the incoming service request. This is where the allocation algorithm is
implemented and also where the context information is processed. The allocation
algorithm is intended to be easy to replace to satisfy the needs of the user in the
PAN. Consequently, the DA is implemented using an interface as well.

Note that establishment of the RTP streams when more than one device is
allocated the incoming service and the media needs to be forked is excluded from
the implementation. We will only make sure that the right devices are allocated
(invited to the session). Media forking can be handled in different ways [31]. One
is to deliver multiple streams to the caller from different addresses, another is to
let the RTP streams go through the gateway (i.e. CASA). Read more about this in
section 6.2.

For more details of the implementation, the reader can consult the Javadoc
documentation provided with the code. Here each class and its associated
methods are described in detail.

 41

5.2 Test

Given an implementation of a system for automatic service allocations it is time
to prove that it actually works and that it performs as expected. There are several
questions that need to be answered. Are the right devices allocated the service?
How accurate is the allocation? Is the total delay for allocating a service
acceptable? How do different delays affect the total delay? How much traffic can
be expected on the context network with a certain information collection
method? All these questions are answered in the following sections.

As discussed in section 4.3.3 the example allocation algorithms were designed to
show different properties and aspects of service allocations. These allocation
algorithms will be used throughout all the tests.

5.2.1 The correctness of a service allocation

A fundamental requirement of the system is that the correct devices are allocated
in a service allocation. The devices that are allocated the service are chosen by
the allocation algorithm. Here we do not care if the allocation is accurate, only if
the devices from the outcome of the allocation algorithm are allocated, i.e.
receives an INVITE message with a correct body. Details about the example
allocation algorithms can be found in section 4.3.3.

In this test we will look at a PAN with 5 devices that are capable of providing
some kind of service.

Service allocation A allocates the incoming service to the device that does not
have a certain process p running, but has the most battery power left. A list of the
current running process and the battery status is needed from every device.
Throughout all the tests the size of the process list was 1.8KB.

When the service request arrived at CASA the devices in the PAN had the status
shown in Table 1:

Table 1. The status of the devices in the PAN before service allocation A.

Result: Device 1 was allocated the service which satisfies the allocation
algorithm.

Service allocation B needs information about the ambient light level, device
capabilities, display type, display size, and available bandwidth in order to select

Device p in list (boolean) Battery status
0 false 70
1 false 93
2 true 99
3 false 24
4 false 11

 42

the device that can best play an incoming video stream. All information but the
ambient light level is collected from the devices that may be allocated the
service. The ambient light level value is fetched separately and comes from a
device (device 5) that cannot handle a service request. Furthermore, the media
descriptor of the incoming request needs to be read.

When the service request arrived at CASA the devices in the PAN had the status
presented in Table 2. The media descriptor in the incoming request held the text
string “video”.

Device Capabilities Display

type
Display
size
(pixels)

Available
bandwidth

Ambient
light level

0 video TFT 20480 9967 -
1 video STN 20480 711 -
2 video TFT 40960 901 -
3 video TFT 40960 9609 -
4 video TFT 20480 808 -
5 - - - - 4

Table 2. The status of the devices in the PAN before service allocation B.

Result: Device 3 was allocated the service which is in accordance with the
allocation algorithm.

Service allocation C allocates the incoming service request to the device or
devices that have the biggest screen size and the largest number of speakers.

When the service request arrived at CASA the devices in the PAN had the status
shown in Table 3.

Table 3. The status of the devices in the PAN before service allocation C.

Result: Device 1 was allocated the audio stream and device 3 the video stream
which satisfies the allocation algorithm.

Device Display size (pixels) Number of speakers
0 20480 2
1 20480 8
2 40960 6
3 40960 2
4 20480 4

 43

5.2.2 The accuracy of a service allocation

As discussed in section 4.3.4 the accuracy of a service allocation depends on how
up to date the context information is. If on-demand information fetching is used,
the context information will always be up to date when needed because it is
fetched after the service request arrived. Consequently, the allocation will always
be accurate if on-demand information fetching is used. Likewise, the information
will also be up to date when it is needed by the allocation when call-backs are
used. In fact, the context information will always be up to date at the CASA
when call-backs are used.

The situation is different when the context information is prefetched. Now the
context information stored at the CASA and used by the allocation algorithm can
be outdated. Consequently, a service allocation based on prefetched context
information will be more or less accurate. The prefetch interval and the update
interval of the information at the context server will give us the probability that
the information used by the CASA is up to date. If the context information is up
to date when it is used it means that same information can be found on the
context server.

How inaccurate can a service allocation be, but yet be acceptable is up to the
user. However, the lower the accuracy the greater the risk that the wrong
device(s) is allocated the service. If a faulty allocation is totally unacceptable,
prefetch should not be used at all. In this thesis, we accept an allocation outcome
only if the probability that it is accurate is greater than 50%.

To test how often the allocation algorithm is using outdated information we have
to simulate changes in the context information at the server as well the incoming
service requests. One way to study the consistency of the information at the
server and the information used by the allocation algorithm is to call a special
method on the server when the information is used by the CASA. This call will
initiate a dump of the information to a buffer. If the information used in the
allocation is dumped as well, these buffers can later be compared for consistency.
The server and the CASA should run on the same machine when performing this
test to avoid communication delays that otherwise will affect the dump method
call. The call can now be a direct method call on the server object.

We will test the consistency by having a fixed context information update
interval (this can be seen as a mean update interval) and vary the prefetch interval
to see how this affects the accuracy of the allocation by changing the prefetch
interval. Each information update at the server indicates a change.

The context information is updated at the server with a mean interval of 10
seconds (uniformly distributed update times). Every time an incoming request
arrives at the CASA the information is written to a log file, both at the CASA and
the context server. The arrival rate of the requests was 1/T where T was
uniformly distributed and mean(T)=10*Tfetch. Note that the updates from the
devices are not necessarily always uniformly distributed in time. This depends on
the sensors and the behavior of the measured quantity.

In the first test information is only fetched from one device in order to see how
the prefetching interval affects the amount of information that is up to date (i.e.
matching the server’s information) at the CASA when a request arrives. The test
was run for 200 incoming requests. The results are presented in Table 4.

 44

Tfetch (seconds) Theoretical Puptodate Matching information
1 0.95 0.94
2.5 0.875 0.87
5 0.75 0.74
10 0.5 0.52
20 0.25 0.27
40 0.125 0.12

Table 4. Theoretical values and test results for different prefetch intervals.
Information about one single device was fetched.

According to the reasoning in section 4.3.4 the accuracy of an allocation should
drop when information from more devices are needed. To test this statement we
will look how the accuracy of an allocation changes with the number of devices
involved in the information prefetching process. A prefetch interval of 5 seconds
was chosen for this test.

Number of devices Theoretical Paccurate Matching information
1 0.75 0.74
2 0.56 0.53
3 0.42 0.41

Table 5. Theoretical values and test results for different numbers of devices
with a prefetch interval of 5 seconds and a mean update interval of 10
seconds.

As Table 5 shows, the probability that the service allocation is accurate is already
less than 50% when 3 devices are involved in the allocation. This means that
even for a small PAN the prefetch rate has to be high to ensure that up to date
information is used by the allocation algorithm.

It is important to note that every change in information is only significant for the
outcome of the allocation algorithm in a worst case scenario. Depending on the
algorithm and the values used (e.g., how close the different values are in relation
to each other or if thresholds are used) this is not always the case and a missed
update can still lead to a accurate allocation. However, one should be aware that
there is a risk that the allocation will be inaccurate, and that this risk is bigger if
the context information is fetched with a long prefetch interval.

5.2.3 The delay of a service allocation

When a service allocation is performed different delays will slow down the
allocation process. Some of the delays are visible to the user (the caller) while
others are possible to hide by performing the tasks that generate the delays in the
background. As discussed in section 4.4, the delay associated with executing the

 45

allocation algorithm, TAlloc will always be visible to the user. The delays
occurring when fetching information (TIC) will on the other hand only be visible
when on-demand information fetching is used. In this series of tests we will
examine the total delay for an allocation, both when fetching information in the
background (prefetch or call-backs) and in the foreground (on-demand).

When the context information is fetched in the background the delay related to
the service allocation process depends only on the time it takes to run the
allocation algorithm. TAlloc is of course highly dependent on the allocation
algorithm, that is how it is implemented (for example how lists are searched) and
how much context information it uses. The available processing power of the
machine hosting the CASA is also important. To get an idea of the size of TAlloc
we will look at the example algorithms A, B, and C. These tests were performed
on a 2.4 GHz AMD Athlon64 (running in 32-bit mode) with 1024MB of RAM.
The number of devices and the context information are the same as in section
5.2.1. To measure time with higher precision than what is possible with the
System.currentTimeMillis() a timing library written by Vladimir Roubtsov [32]
using Java Native Interface (JNI) was used.

Although the delays are machine dependent the following numbers will give an
indication of what performance that can be expected of the proposed system and
which delays that may lead to problem.

Figures 14, 15 and 16 shows the delays of the allocation algorithms for different
PAN sizes.

0
10
20

30
40
50
60
70

80
90

100

0 200 400 600 800 1000

Num ber of devices

D
el

ay
 (m

s)

Figure 14. The delay associated with running the allocation algorithm A for
different PAN sizes. The line is a linear curve fit to the measured values.

 46

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 200 400 600 800 1000

Num ber of devices

D
el

ay
 (m

s)

Figure 15. The delay associated with running the allocation algorithm B for
different PAN sizes.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 200 400 600 800 1000

Num ber of devices

D
el

ay
 (m

s)

Figure 16. The delay associated with running the allocation algorithm C for
different PAN sizes.

As the Figures 14-16 show, service allocation A is the most time consuming
algorithm. The reason is that the algorithm searches for a process in the process
list for each device. Service allocation B utilizes information from the incoming
service request and consequently this information has to be extracted and
analyzed. This procedure takes 61µs, and needs to be done every time the
allocation algorithm is executed. All algorithms were fed with context
information that would cause the worst case for each algorithm. This means that
even the algorithms that eliminate devices had to iterate through all devices in
every loop. All of the example algorithms scale linear but this may not be the
case for future algorithm used with the CASA.

For 5 devices in the PAN the allocation algorithm delays were:

Service allocation A: 419µs
Service allocation B: 74µs
Service allocation C: 1 µs

 47

The SIP message handling, i.e. parsing the incoming message and composing the
outgoing message took 4.898ms.

When background information fetching is used the allocation algorithm delay
and the SIP message handling will be the only delay visible to the user. None of
these delays will be a problem when doing a service allocation as they together
are much lower than the critical boundary of 1000ms. Even when the most
complex service allocation algorithm (A) is used it will only take about 5.5ms
before the INVITE message is ready to leave the CASA on the test machine for
the example PAN with 5 devices.

Furthermore, when the context information is fetched in the background it is
possible to pre-compute the parts of the allocation algorithm that does not depend
on information in the service request. By doing this, the visible part of TAlloc will
be reduced. However, the pre-computation has to be performed every time new
context information arrives at the CASA, which may be undesirable because of
higher CPU utilization and power consumption.

When the context information is fetched on demand or in the foreground neither
the communication delays nor the allocation algorithm delay can be hidden.
These delays will always be visible to the service request initiator. Figure 17
shows the delays occurring when fetching information for a service allocation
with different sizes of the PAN. In the following two tests, the context server
resides on the same machine as the CASA.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

Num ber of devices

D
el

ay
 (m

s) Service alloc. A

Service alloc. B

Service alloc. C

Figure 17. Delays associated with on-demand context information fetching.

As Figure 17 shows, up to nearly 800 devices can be included in the PAN before
the information fetching delay gets too high in the test environment when service
allocation B or C are used. If service allocation A is used the delay is slightly
higher so the limit is ~650 devices. The reason is that the allocation algorithm
requires more information which means larger response messages from the
context server that takes a longer time to transfer.

In the example PAN with five devices that are able to serve a request, on-demand
context information fetching is no problem. As Figure 18 shows, none of the

 48

service allocation examples take more than 25 ms. The reason why service
allocation B takes the longest time is that this allocation algorithm requires
information from one more device, the ambient light sensor. This sensor is
located on a separate device in the example PAN.

0 5 10 15 20 25

A

B

C

Se
rv

ic
e

al
lo

ca
tio

n

Total de lay (m s)

IC delay

Allocation alg. delay

Message processing delay

Figure 18. Total delays for the example service allocations in the example
PAN (N=5) when using foreground information fetching.

5.2.4 The generated amount of traffic

The amount of traffic that is generated by the communication between the CASA
and the context server during a certain time period depends on several factors.
The way that the context information is acquired is of course an important factor.
On-demand information fetching requests all information needed in the
allocation and consequently the generated traffic will be the sum of all
information elements. How much traffic that is generated for a certain time
period is dependent on the incoming service request rate.

The incoming service request rate may look very different for different PANs.
Many factors come into play. If the CASA for example is used by a mobile
employee at the support department of a company the request rate can easily
reach one request every fifth minute during the office hours. On the other hand, if
the CASA is used by a recluse, the request rate can be a few incoming requests
per year. Because the request rate depends on who is using the system and for
what purposes it is difficult to predict what a typical request rate is. It is more
important that the design of the CASA supports different usage scenarios.

Prefetching generates the same amount of traffic that on-demand fetching
generates for one request every fetching round (for the same allocation algorithm
and the same number of entities in the PAN). Consequently, the total amount of
traffic for a certain time period is highly dependent of the prefetch interval.

 49

When call-backs are used the server will send information only when it is
updated. This means that to predict the generated amount of traffic, the behavior
of the entity reporting to the server has to be analyzed (of course the size of the
information elements has to be known as well).

Under these tests we will assume that the number of devices in the PAN subject
for information fetching remains constant. It should be noted that service
allocation B needs information about the ambient light level from a light sensor
that we assume is located on a device that not is able to handle any incoming
service. Consequently, if the PAN consists of N devices that can handle an
incoming service, N+1 fetches is needed from the context server because
information is fetched per entity.

As mentioned above, the amount of traffic generated when using prefetch
depends on the number of devices subject to fetching, the amount of information
needed from each device, and the prefetch interval. Figure 19 shows the amount
of traffic that will be generated per day for the prefetch intervals discussed in
section 5.2.2 for a PAN with N=1, while Figure 20 shows the daily traffic
amounts in the example PAN with 5 devices.

0

50

100

150

200

250

300

350

1 2.5 5 10 20 30 40

Prefetch interval (s)

Tr
af

fic
 p

er
 d

ay
 (M

B)

Service alloc A
Service alloc B
Service alloc C

Figure 19. The generated amount of traffic with N=1 devices in the PAN
when the context information is prefetched.

 50

0

200

400

600

800

1000

1200

1 2.5 5 10 20 30 40

Prefetch interval (s)

Tr
af

fic
 p

er
 d

ay
 (M

B)

Service alloc A
Service alloc B
Service alloc C

Figure 20. The generated amount of traffic with N=5 devices in the PAN
when the context information is prefetched.

As Figure 20 shows, a short prefetch interval generates lots of traffic. In the
example PAN consisting of 5 devices more than 1 GB is sent to and from the
context server every day if the prefetch interval is 1 second and a service
allocation that depends on bulky data (e.g., allocation A) is used. If the
communication is expensive, some other fetching technique should be
considered. According to [33], the energy consumed per every bit transmitted in
a 802.11b (11 Mb/s) network is 327 nJ (peak). This means that up to
approximately 350J is consumed when fetching context information every
day (service allocation A, prefetch interval = 1 s).

The amount of traffic generated when using call-backs depends on the number of
devices subject to fetching, the amount of information needed from each device,
and the update interval at the context server. The last factor depends on the
characteristics of the information, the sensors delivering the context information
and the context server [5][24]. The update intervals in Figure 21 and 22 are the
mean update intervals for each entity.

 51

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 35 40

Update interval (s)

Tr
af

fic
 p

er
 d

ay
 (M

B)

Service alloc A
Service alloc B
Service alloc C

Figure 21. The generated amount of traffic with N=1 devices in the PAN
when using call-backs.

0

50

100

150

200

250

5 10 15 20 25 35 40

Update interval (s)

Tr
af

fic
 p

er
 d

ay
 (M

B)

Service alloc A
Service alloc B
Service alloc C

Figure 22. The generated amount of traffic with N=5 devices in the PAN
when using call-backs.

The generated traffic amounts when the CASA uses on-demand information
fetching are similar to prefetching with the difference that now the incoming
request rate determines how often data is fetched and not a predefined prefetch
rate. Figure 23 shows the amount of traffic generated for a single incoming
service request for a certain PAN size.

 52

0

200

400

600

800

1000

1200

0 50 100 150 200 250 300 350 400 450 500

Num ber of devices

G
en

er
at

ed
 tr

af
fic

 (K
B

)

Service alloc. A

Service alloc. B

Service alloc. C

Figure 23. Traffic generated in the context network after receiving a service
request.

As mentioned above, the rate of the context information fetching is an important
factor of how much traffic that will be generated. When the information is
prefetched a fixed prefetch rate will tell how often context information is fetched.
If call-backs are used, it is instead the update rate of the information elements
that determines how often new context information will arrive at the CASA. In
the last case, when information is fetched on-demand, it is the incoming service
request rate that determines how often information is fetched. Consequently, if
the request rate is higher than either the prefetch rate (in prefetch mode) or the
mean update rate (in call-back mode), more traffic will be generated compared to
if the system was in background mode. As we will see in the next section, large
amounts of traffic can be saved if the fetching mode is adjusted to the service
request rate.

5.2.5 Test the ability to adapt to the request rate

By adapting the information fetching method to the request rate (see section
4.6.1) the delays are lowered when the system is heavily used, but still the
network traffic is kept to a minimum when the system is rarely used. In practice
this means that the CASA will work in prefetch or call-back mode when the
incoming request rate is high and in on-demand mode when it is low. This test
shows that the CASA changes fetching mode depending on the request rate and
how this affects the traffic amounts.

The threshold value determining when the system should use background context
information fetching is a balance between allocation delay and network
utilization. A user concerned about high allocation delays should set a high
threshold value, meaning that the CASA will switch to background mode as soon
as another incoming request arrives at the system within that interval. On the
other hand, if low network utilization is more important the threshold value
should be small.

 53

Consider a PAN that is used at work exclusively by an employee at the sales
department. If for example the incoming service request rate is 2 per hour during
office time in and the threshold value is 1 per hour the CASA will work in
background mode after receiving the second service request. At the end of the
day, when no service request arrives in 1 hour, the CASA will go back to on-
demand mode and avoid network traffic during the night. In this example, call-
back was used as the background information fetching technique with a mean
update interval of 10 seconds.

To visualize this example and test that the CASA really switches mode, incoming
service requests were generated with a mean arrival rate of 2 per hour and the
arrivals occurring according to a Poisson process. The example PAN consists of
5 devices and service allocation A was used to select the device. Figure 24 shows
when the service requests arrived at the CASA and which information fetching
mode that was used.

Figure 24. The incoming service requests and the resulting information
fetching mode. Background information fetching mode in light gray.

During this day 13 incoming requests arrived at the CASA. The third request (at
t=10.39) made the system switch from on-demand mode to call-back mode. The
subsequent requests arrived within one hour after each other and consequently
the system stayed in call-back mode until one hour after request 12. This means
that the system was in call-back mode for 4.91 hours. During this day a total of
22.67 MB was sent between the CASA and the context information server. If the
CASA should have been in call-back mode all the time, 110.51 MB would
instead have been sent over the network. On the other hand, if the delay had been
low enough to always fetch context information on-demand, only 157 KB would
have been sent over the network. This shows that the cost of having low
allocation delays often is paid for with increased network utilization in many
networks. Note that the cost in accuracy of the allocation when going from
110.51 MB to 22.67 MB is zero because neither on-demand information fetching
nor call-backs uses other than up to date context information.

5.2.6 Test the ability to adapt to context network performance

0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Hour

Incom ing service reques t

Office hours

 54

The aim with the technique to adapt to context network performance (proposed in
section 4.6.2) is to have control over network utilization and allocation delays. If
the information fetching delay is low enough (lower than the predefined
threshold value) on-demand information fetching will be used to minimize the
amounts of traffic. On the other hand, if the delay is higher than acceptable when
fetching information on-demand, the system will instead prefetch information. In
this test it is uninteresting what causes the information fetching delay, only that
there is a delay. We will instead show that the CASA switches between modes
depending on the fetching delay and that it will have impact on the total
allocation delay.

To show the transition between the context information fetching modes a context
server with adjustable delay for each request will be used. By altering the
processing delay we can simulate different amounts of load on the context server.
There are many possible reasons for why the fetching delay may change. For
example the context server or some of the devices it communicates with may be
overloaded. Figure 25 illustrates the behavior of the CASA when the fetching
delays changes and the threshold value is set to 1000 ms.

Figure 25. Adaptation to context network performance. The dots indicate
context information fetches.

The CASA starts in prefetch mode with a prefetch interval of 10 seconds. The
first four fetches take longer than the allowed maximum of 1000 ms. Therefore,
the system will remain in prefetch mode. Information fetch number 5, occurring
at time t=40, takes less than 1000 ms and the CASA will now switch to
on-demand information fetching. At t=54 a service request arrives at the system
and information will be fetched to serve the allocation algorithm with up to date
context information. The delay associated with this fetch is also lower than the
threshold. The next service request arrives at t=1085 and this time the
information fetch takes longer than allowed, thus the CASA switches to prefetch
mode.

 55

The amount of traffic generated by the system will be reduced when the system is
in on-demand mode (t=40 to t=1085). Consider the example PAN with 5 devices.
If the CASA is configured with service allocation A generating 12073 bytes per
fetch, a total of 1.24 MB will be saved during this period of time. For service
allocation B and C the numbers are 0.31 MB (3098 bytes per fetch) and 0.26 MB
(2532 bytes per fetch) respectively.

 56

6. Conclusions and future work

The proposed service allocation system is able to use context information,
gathered at a context server, to allocate the devices that can best serve an
incoming service request. This concluding chapter presents findings and open
issues that may be addressed in future work.

6.1 Conclusions

In this thesis we have looked at three different context information fetching
methods, namely on-demand information fetching, prefetching, and call-backs.
We have seen that the context information fetching method affects the accuracy
of the allocation, the utilization of the context management network, and the
delays associated with allocating a service request in different ways.

On-demand information fetching is the most straight-forward approach for
serving the allocation algorithm with context information. The CASA acts as a
client and requests information from the server when needed, that is only when
receiving an incoming service request. Because the context information is
requested immediately after receiving the incoming service request, the
information returned by the context server is up to date and the allocation will
always be accurate. However, there are two disadvantages with on-demand
information fetching. Firstly, because the context information is fetched in the
foreground, the delays associated with the fetching process will be visible to the
service request initiator. If the context server for some reason is overloaded,
perhaps due to a large number requests, this will affect the total allocation time.
Furthermore, there is no control over how much information will be sent in the
context network when on-demand information fetching is used because the
incoming service request rate is often unknown.

One way to control the context network utilization is to prefetch the context
information. Now information will be fetched in the background with a
predefined interval. As long as the information subject to fetching isn’t
fluctuating that much in size, the traffic amounts generated by the system can be
calculated in advance, thus leading to a higher average rate, but a lower peak
value. Furthermore, because the context information is fetched in the background
and no communication is needed with the context server upon receiving the
service requests, the time spent waiting for the context information is no longer
visible to the user. The problem with prefetching the context information is that
the accuracy of the service allocation can be low. Even if the update rate of the
context information is low and the prefetch rate is high there is no guarantee that
the information used in the allocation algorithm is up to date. Consequently, if
the accuracy of a service allocation is important, the context information should
not be prefetched.

Instead of letting the system request context information, either upon receiving a
service request or on a regular basis (both are pull methods), the context server
can send or push context information to the system when it is updated. This
approach of call-backs has several advantages. The most important is that the
context information will always be up to date at the system. Moreover, the
context server will send information to the system only when it is updated, which
means that information that is already synchronized between the context server

 57

and the system won’t occupy bandwidth in the network. However, it is important
to understand that the update rate of the context information directly affects how
often the context server will contact the system with new information. If the
information is bulky, the amount of traffic generated can be considerable. At the
same time, this technique can generate less traffic than on-demand information
fetching if the information update rate is lower than the incoming service request
rate. If communication costs are an issue, the update rates of the context
information should be well understood or otherwise the information is better
fetched on-demand.

6.2 Future work

While we show that multiple devices can be allocated one incoming service by
forking and modifying the SIP INVITE message, the actual media streams still
need to be established between the service request initiator and the allocated
devices. When only one device is allocated the service, the media streams are
established directly between the initiator and the selected device. But if several
devices where allocated some mechanism to fork or replicate the media is
needed. There are at least two ways of doing this [31]. Either the streams are
established directly between the initiator and the allocated devices, or the CASA
acts as a media proxy and splits/merges and distributes the media stream in the
PAN. The first approach means less work for the CASA, but requires support for
multiple stream endpoints at the initiator and more external traffic to/from the
PAN. If instead the CASA acts as a proxy, the set of allocated devices will be
hidden from the initiator and only one media stream needs to be established
between the initiator and the CASA. However, this approach requires more logic
and processing at the CASA when splitting and merging the media streams, but
reduces external traffic.

There is currently work in progress in the context network area [5]. CMEs and
protocols for distributing context information are under development. When
these parts are finished the CASA could use this protocol and get the context
information from a context network built upon the CMEs. The CASA is designed
to be easy to use with other protocols and context information infrastructures.

To reduce traffic in the context network when using call-backs a mechanism that
lets the CASA specify when new information should be sent could be added to
the context server. This would make it possible to tell the server that a certain
value only needs to be sent to the system if it exceeds a threshold value (that is
sent to the server with the subscription). Such a mechanism is further described
in [24].

Another way to avoid unnecessary communication with the context server is to
add logic to the CASA that predicts changes in the context information. With this
functionality it would be possible to use cached information instead of always
asking the context server when information is needed. This would of course be
most efficient with context information that changes at a relative fixed rate.

The CASA would benefit from a service discovery method that could identify
available services and include them into the set of services provided in the PAN.
Such protocols exist [8], but are yet to be integrated with the CASA.

 58

Lastly, security aspects have been left out in this work. Neither the context server
nor the CASA includes any mechanism that guarantees that the context
information really comes from the requested entity. Consequently, context
information can easily be modified or eavesdropped between the endpoints.
Authorization between the context server and the CASA combined with integrity
protection and encryption would be desirable.

 59

7. References

[1] Bluetooth consortium, "Bluetooth core specification v.1.2",

https://www.bluetooth.org/foundry/adopters/document/Bluetooth_Core_Spe
cification_v1.2, November 2003.

[2] C. Perkins, "IP Mobility Support for IPv4", Internet RFC 3344, August
2002.

[3] J. Rosenberg, et al., "SIP: Session Initiation Protocol", Internet RFC 3261,
June 2002.

[4] G. Chen and D. Kotz, “A Survey of Context-Aware Mobile Computing
Research”, Department of Computer Science, Dartmouth College, 2000

[5] C-G. Jansson, et al., “Context Data Distribution - Concepts and Approaches
in the ACAS Project”, Wireless@KTH, Royal Institute of Technology, May
2004

[6] ZigBee Alliance, URL: http://www.zigbee.org/, accessed November 9,
2004.

[7] Institute of Electrical and Electronics Engineers, Inc. "IEEE 802 standard",
http://www.ieee.org/portal/index.jsp?pageID=corp_level1&path=about/802s
td&file=index.xml&xsl=generic.xsl, June 2004

[8] C. Ayrault, “Service discovery for Personal Area Networks”. Master's
thesis, Royal Institute of Technology (Stockholm),
http://vvv.it.kth.se/docs/Reports/DEGREE-PROJECT-REPORTS/040826-
Cecile_Ayrault-with-covers.pdf, August 2004.

[9] L. Dang, et al., “Practical VoIP: Using VOCAL”, O'Reilly, 2002, ISBN 0-
596-00078-2.

[10] M. Handley, and V. Jacobson, "SDP: Session Description Protocol", Internet
RFC 2327, April 1998.

[11] T. Dierks, and C. Allen, Internet RFC 2246, "The TLS Protocol Version
1.0", January 1999.

[12] Netscape Communication Corp, “The SSL protocol”,
http://developer.netscape.com/docs/manuals/security/sslin/contents.htm#104
1986, September 1998

[13] J. Arrko, et al., "MIKEY: Multimedia Internet KEYing", Internet RFC 3830,
August 2004.

[14] H. Schulzrinne, et al., "RTP Profile for Audio and Video Conferences with
Minimal Control", Internet RFC 1890, January 1996.

[15] K. Avgeropoulos, “Service Policy Management for User Service Policy
Management for User-Centric Centric Services in Heterogeneous Mobile
Networks”. Master's thesis, Royal Institute of Technology (Stockholm),
http://vvv.it.kth.se/docs/Reports/DEGREE-PROJECT-REPORTS/040401-
Konstantinos_Avgeropoulos-with-cover.pdf, March 2004.

[16] Vivek S. Pai, et al., "Locality-Aware Request Distribution in Cluster-based
Network Servers", In Proceedings of the Eighth International Conference on

 60

Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), San Jose, California, October 1998.

[17] R. Bhatti, et al., "A Trust-based Context-Aware Access Control Model for
Web-Services", Publication in 3rd International Conference on Web
Services (ICWS), San Diego, July 2004.

[18] W. Qadeer, et al., “Heterogeneous wireless network management”,
http://akebono.stanford.edu/users/tajana/papers/PACS03.pdf, PACS 2003.

[19] T. Bray et. al., “Extensible Markup Language (XML) 1.0 (Second Edition)”,
http://www.w3.org/TR/2000/REC-xml-20001006, October 2000.

[20] E. Alwagait and S. Ghandeharizadeh, "A Comparison of Alternative Web
Service Scheduling and Allocation Policies", IEEE International
Conference on Services Computing (SCC), Shanghai, China, September
2004.

[21] Google, URL: http://www.google.com, accessed September 20, 2004.

[22] J. Nielsen, “Usability engineering”, Morgan Kaufmann Pub, 1994, ISBN 0-
12-518406-9.

[23] B. Schneiderman, "Response Time and Display Rate in Human Performance
with Computers", Computing Surveys 16, no. 3, 1984, p. 265-285.

[24] A. Wennlund, “Context-aware Wearable Device for Reconfigurable
Application Networks”, Master's thesis, Royal Institute of Technology
(Stockholm), http://vvv.it.kth.se/docs/Reports/DEGREE-PROJECT-
REPORTS/030430-Andreas_Wennlund.pdf, April 2003.

[25] Java Technology, Sun Microsystems, Inc. URL: http://java.sun.com,
accessed September 20, 2004.

[26] Projet IP telephony / VOIP, URL: http://snad.ncsl.nist.gov/proj/iptel/,
accessed September 20, 2004.

[27] Linphone.org, URL: http://www.linphone.org/, accessed September 20,
2004.

[28] WIRLAB - Network Research Center, URL: http://www.wirlab.net/kphone/,
accessed September 20, 2004.

[29] Xten.com, URL: http://www.xten.com/, accessed September 20, 2004.

[30] Internet Assigned Numbers Authority (IANA) Port Numbers, URL:
http://www.iana.org/assignments/port-numbers, accessed November 9,
2004.

[31] M. Shankar, “SIP Forked Media”, IETF Internet Draft, draft-shankar-sip-
forked-media-00.txt, Februari 2001, expired.

[32] V. Roubtsov, High precision timer library,
URL:http://www.javaworld.com/javaworld/javaqa/2003-01/01-qa-0110-
timing.html, accessed October 5, 2004.

[33] R. Min, "Energy and Quality Scalable Wireless Communication", Ph.D.
Thesis, Massachusetts Institute of Technology, Cambridge, (MA),
http://www.mit.edu/~rmin/research/min-phd-thesis.pdf, June 2003.

 61

Appendices

Appendix A – Abbreviations

ACAS Adaptive and Context-Aware Services
AOR Address-Of-Record
AP Access Point
API Application Programming Interface
AVP Audio-Video Protocol
CASA Context Aware Service Allocator
CDXP Context Data eXchange Protocol
CME Context Management Entity
CMN Context Management Network
CODEC Coder Decoder
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
FQDN Fully Qualified Domain Name
IETF Internet Engineering Task Force
IP Internet Protocol
JAIN Java APIs for Integrated Network Framework
KDE K Desktop Environment
LAN Local Area Network
LARD Locality-Aware Request Distribution
MIKEY Multimedia Internet KEYing
NIST National Institute of Standards and Technology
PAN Personal Area Network
PCM Pulse Code Modulation
PDA Personal Digital Assistant
RFC Request For Comments
RTP Real-Time Protocol
SDP Session Description Protocol
SIP Session Invitation Protocol
SRV DNS Resource Record for locating services
SSL Secure Sockets Layer
SSM SIP Service Manager
STN Super Twisted Nematic
TCP Transmission Control Protocol
TLS Transport Layer Security
TFT Thin Film Transistor
UA User Agent
UAC User Agent Client
UAS User Agent Server
URI Uniform Resource Identifier
UTF-8 Unicode Transformation Format-8
WLAN Wireless LAN
XML eXtensible Markup Language

 62

Appendix B – Table of figures

FIGURE 1. A PAN CONNECTED TO A LAN THROUGH AN ACCESS POINT. 1
FIGURE 2. TYPICAL EXAMPLE OF SIP MESSAGE EXCHANGE................................ 10
FIGURE 3. AN INVITE MESSAGE (THE SDP CONTENT IS NOT SHOWN). 11
FIGURE 4. AN INVITE MESSAGE IS SENT FROM SIP PHONE A TO B.................... 15
FIGURE 5. EXAMPLE RESPONSE TO AN OPTION REQUEST (THE SDP BODY IS NOT

SHOWN). .. 16
FIGURE 6. A TYPICAL SDP BODY... 17
FIGURE 7. THE STRUCTURE OF THE CME. ... 22
FIGURE 8. PLACEMENT OF THE CASA... 26
FIGURE 9. OVERVIEW OF CASA. ... 27
FIGURE 10. LOCAL CME.. 31
FIGURE 11. REMOTE CME. .. 31
FIGURE 12. ON-DEMAND INFORMATION FETCHING DELAYS WHEN PERFORMING

AN ALLOCATION. VISIBLE DELAY SHADED IN GREY. 33
FIGURE 13. INFORMATION PREFETCH DELAYS WHEN PERFORMING AN

ALLOCATION. VISIBLE DELAY SHADED IN GREY... 34
FIGURE 14. THE DELAY ASSOCIATED WITH RUNNING THE ALLOCATION

ALGORITHM A FOR DIFFERENT PAN SIZES. THE LINE IS A LINEAR CURVE FIT
TO THE MEASURED VALUES... 45

FIGURE 15. THE DELAY ASSOCIATED WITH RUNNING THE ALLOCATION
ALGORITHM B FOR DIFFERENT PAN SIZES.. 46

FIGURE 16. THE DELAY ASSOCIATED WITH RUNNING THE ALLOCATION
ALGORITHM C FOR DIFFERENT PAN SIZES.. 46

FIGURE 17. DELAYS ASSOCIATED WITH ON-DEMAND CONTEXT INFORMATION
FETCHING. ... 47

FIGURE 18. TOTAL DELAYS FOR THE EXAMPLE SERVICE ALLOCATIONS IN THE
EXAMPLE PAN (N=5) WHEN USING FOREGROUND INFORMATION FETCHING.
.. 48

FIGURE 19. THE GENERATED AMOUNT OF TRAFFIC WITH N=1 DEVICES IN THE
PAN WHEN THE CONTEXT INFORMATION IS PREFETCHED.......................... 49

FIGURE 20. THE GENERATED AMOUNT OF TRAFFIC WITH N=5 DEVICES IN THE
PAN WHEN THE CONTEXT INFORMATION IS PREFETCHED.......................... 50

FIGURE 21. THE GENERATED AMOUNT OF TRAFFIC WITH N=1 DEVICES IN THE
PAN WHEN USING CALL-BACKS.. 51

FIGURE 22. THE GENERATED AMOUNT OF TRAFFIC WITH N=5 DEVICES IN THE
PAN WHEN USING CALL-BACKS.. 51

FIGURE 23. TRAFFIC GENERATED IN THE CONTEXT NETWORK AFTER RECEIVING A
SERVICE REQUEST. .. 52

FIGURE 24. THE INCOMING SERVICE REQUESTS AND THE RESULTING
INFORMATION FETCHING MODE. BACKGROUND INFORMATION FETCHING
MODE IN LIGHT GRAY. ... 53

FIGURE 25. ADAPTATION TO CONTEXT NETWORK PERFORMANCE. THE DOTS
INDICATE CONTEXT INFORMATION FETCHES. ... 54

 63

Appendix C – Table of tables

TABLE 1. THE STATUS OF THE DEVICES IN THE PAN BEFORE SERVICE

ALLOCATION A.. 41
TABLE 2. THE STATUS OF THE DEVICES IN THE PAN BEFORE SERVICE

ALLOCATION B. ... 42
TABLE 3. THE STATUS OF THE DEVICES IN THE PAN BEFORE SERVICE

ALLOCATION C. ... 42
TABLE 4. THEORETICAL VALUES AND TEST RESULTS FOR DIFFERENT PREFETCH

INTERVALS. INFORMATION ABOUT ONE SINGLE DEVICE WAS FETCHED. 44
TABLE 5. THEORETICAL VALUES AND TEST RESULTS FOR DIFFERENT NUMBERS

OF DEVICES WITH A PREFETCH INTERVAL OF 5 SECONDS AND A MEAN
UPDATE INTERVAL OF 10 SECONDS. .. 44

www.kth.se

IMIT/LCN 2004-10

