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Abstract 
 
Portable devices such as cellular phones, PDAs, and laptops, are getting more 
and more powerful and are popular with users. One way to make these devices 
even more useful is to interconnect them in a Personal Area Network (PAN), and 
via this PAN a single dual interface device can enable all local devices to access 
services in other networks. To be able to reach the devices in the PAN from 
outside in a simple manner, some location independent form of addressing may 
be used. One attractive approach is to use Session Initiation Protocol (SIP). For a 
user anywhere in the Internet, SIP enables them to reach a user within this PAN 
by an address that does not depend on where the user is located. To make life 
more convenient for the callee, the selection of device for an incoming 
multimedia invitation can be made automatically, by utilizing context 
information when selecting the device.  
 
Consequently, a method is needed for allocating services to the devices that are 
most suitable for the service and for the moment. The current context in the PAN 
will affect this decision. This context information includes current status and 
capabilities of devices, the user, and their surroundings. The environment of a 
PAN is dynamic and thus this context information may change. This knowledge 
has to be reflected in the service allocation. This thesis will investigate and 
propose a method for how this service allocation is best performed. 
 
To be able to investigate this problem and develop a suitable method, knowledge 
in several areas is needed. First of all an understanding is needed of the concept 
of “context” and how it can be used when making decisions about service 
allocation. Furthermore, a method for collecting and managing context 
information has to be used.  
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Sammanfattning 
 
Portabla enheter såsom mobiltelefoner, PDA:er och bärbara datorer blir alltmer 
kraftfulla och vinner popularitet hos användarna. Ett sätt att få ut än mer av dessa 
enheter är att koppla ihop dem i ett Personal Area Network (PAN) och genom 
detta PAN låta alla lokala enheter nyttja tjänster i andra nätverk. För att nå 
enheterna i PAN:et från utsidan på ett enkelt sätt kan någon form av 
platsoberoende adressering användas. Ett attraktivt alternativ för detta ändamål är  
Session Initiation Protocol  (SIP). Med hjälp av SIP kan en användare på Internet 
nå en användare i ett PAN genom en adress som är platsoberoende. För att 
ytterligare underlätta för användaren i PAN:et kan valet av enhet vid en 
inkommande multimediainbjudning ske automatiskt genom användande av 
kontextinformation. 
 
Det behövs således en metod för att kunna allokera tjänster till de enheter som är 
mest passande för tillfället. PAN:ets aktuella kontext påverkar detta val. Denna 
kontextinformation berör aktuell status och funktionalitet hos enheter, användare 
och den övriga omgivningen. Miljön i ett PAN är av dynamisk karaktär där 
kontextinformationen ständigt förändras. Hänsyn till detta måste tas när 
tjänsteallokeringen sker. Denna rapport kommer att utreda och föreslå en metod 
för hur denna tjänsteallokering på bästa sätt kan genomföras.  
 
Att undersöka detta problem och komma fram till en lämplig metod kräver insikt 
i en rad områden. Dels måste en förståelse kring begreppet ”kontext” och hur den 
kan användas som grund för beslutsfattning vid tjänsteallokering utvecklas. 
Vidare måste en metod för insamling av information och hantering av densamma 
tas fram.  
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1. Introduction 
 
1.1 Overview 
 
Portable devices are gaining popularity among consumers as the devices are 
getting smaller, less expensive, and more user friendly; but at the same time 
many of these devices are more powerful than desktop computers a decade ago. 
The rapid evolution of cellular phones, PDAs, and laptops creates opportunities 
that haven’t existed before due to technical limitations. Today there is no longer 
a problem, when it comes to processing power, to stream high quality video or 
play a multiplayer 3D-game on a device that easily fits into a pocket. Often a 
user has and actually uses several of these devices at the same time. To make 
these devices even more useful to the user they should interact and exchange 
information, not only internally, but also with devices attached to other networks. 
 
By locally interconnecting the devices a Personal Area Network (PAN) can be 
formed. This network allows the devices to exchange information between each 
other and possibly also with external networks. Wireless communication is 
possible through the use of short-range radio, infrared, or ultrasound. Today 
Bluetooth™ [1] and Wireless LAN (WLAN) are the most important technologies 
for locally connecting these devices. Even though there are major differences in 
their design, these two wireless communication technologies can also be used 
side by side in a PAN. An important factor making this possible is the Bluetooth 
profiles, especially the PAN profile that can carry IP traffic. Furthermore, 
additional services can be accessed through a WLAN or PAN access point (AP) 
that is connected to an IP infrastructure as illustrated in  
Figure 1. 
 
 
 

 
 
Figure 1. A PAN connected to a LAN through an access point. 
 
 
The use of IP as the addressing protocol for the devices in the PAN has its 
advantages and disadvantages. IP is widely deployed, especially in fixed 
networks, which simplifies the communication between the PAN and existing 
networks. The problem with IP is the fact that it was originally designed for 
fixed networks and therefore addresses are topology dependent. IP assumes that 
the user resides at the same IP address during a communication session, and 
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preferably between sessions as well. Consequently, to make IP feasible in 
environments such as a PAN, where the user and devices may frequently move 
and change, IP needs additional functionality, i.e. Mobile IP [2]. 
 
Even if the problem of addressing devices can be solved at the network layer 
there are still difficulties with finding and contacting specific users. If for 
instance the IP address is used for finding a user this address has to be fixed, but 
in several cases, for instance when using dynamic addresses this is not possible. 
Consequently, some additional technique is needed. This technique should 
support the ability to contact a user independent of the IP address of the user’s 
(current) device. Using the Session Initiation Protocol (SIP) [3] to find and 
contact a user is one of several possible methods. 
 
SIP offers much of the functionality needed in a dynamic environment where 
users come and go and their IP addresse changes over time. Users can be 
anywhere on the Internet and still be reachable through their SIP address. One or 
more devices can share the same SIP URI and the user can be invited to and 
participate in several sessions at once. SIP is independent of the underlying 
transport protocol and the type of session that is to be established. In this thesis 
SIP will be used in several different ways. For the rest of this thesis we assume 
that an incoming request is a SIP request and that SIP can be used for internal 
communication when the allocation of the service to the SIP enabled devices 
takes place. 
 
 
1.2 Problem statement 
 
In this thesis we will look at the problem of forwarding multimedia invitations or 
allocating incoming service requests to the best suited devices in a PAN. The 
context of the entities in the PAN will be used when deciding if a given device is 
suitable or not. In some cases there will only be a single obvious choice, while in 
other cases several devices may be suitable and thus some selection process is 
needed in order to select the best alternative. 
 
In order to make these decisions, knowledge about the current context of the 
entities is needed. The environment of the PAN is assumed to be dynamic and as 
a result the context will change. The information used when making the 
allocations has to reflect this property, and the context information should be 
sufficiently up to date to make a suitable allocation.  
 
When new information is available there must be a way to utilize it. Existing 
information will be combined with the information in the incoming request to 
decide where to allocate the service. Consequently, up to date context 
information and some decision-making logic have to be available in order to 
select, for the service, the best suited device(s). 
 
As mentioned above, appropriate context information is needed by the allocation 
process at the right time. The process determines which information is collected 
and when it is collected. The question of when the information is collected 
depends on the performance requirements for the service allocation and the 
delays associated with the information collection and decision process. If the 
latency when communicating with the information source is high and the 
performance requirements of the allocation process are strict it may not be 
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possible to perform the collection of information when the service request 
arrives.   
 
If the collection of information is made in advance, possible restrictions on the 
amount of traffic generated must be taken into consideration. If communication 
in the network is expensive, the frequency of the information collection has to be 
low. However, this may conflict with the requirement for up to date information. 
If the information is not up to date, the allocation may be suboptimal, wrong, or 
in the worst case fail altogether.  
 
The question of which information should be collected is fairly interesting as 
well. One method is to collect as much information as possible about the entities 
that may be involved in the allocation. By doing this, there will never be a lack of 
information, but the cost may be excessive. Another approach is to only collect 
relevant information. Although this second alternative may appear much more 
attractive, the problem of deciding what information is relevant has to be solved. 
This is especially hard to determine before you know what the service request is. 
 
When a service request arrives it has to be analyzed to determine its 
requirements. This information is to be combined with the context information 
by some decision mechanism. A very detailed request may implicitly or even 
explicitly specify a certain device, while a less detailed request might not specify 
a specific device. If more than one device is capable of serving the request, 
several factors should be used when performing the allocation. These factors 
may include status of devices and users, device capabilities, and user 
preferences. 
 
The issues above require the design of a service allocation system capable of 
collecting, extracting, and analyzing context information and taking appropriate 
actions. It is the goal of this thesis to design, implement, and evaluate such a 
system. 
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2. Background 
 
To be able to fully understand the problem addressed in this thesis, some 
background information may be needed. In this section we will introduce basic 
definitions and some of the technologies essential for understanding the rest of 
this document. 
 
 
2.1 Context information 
 
First of all we need to define the term context. Many definitions exist and you 
may get a new definition from each person you ask. In this thesis context is the 
status and capabilities of an entity and its surroundings. The context of a user 
will not necessarily be the same as the context for the user’s cellular phone. 
However, the context of the user’s cellular phone will affect the context of the 
user.  
 
If context information can be used when allocating services to devices in a PAN 
many new possibilities arise. In the best case, the user not longer has to bother 
with static settings that control how and when a certain device should be used for 
communication. This can be decided by some node attached to the network, 
based on context information. 
 
 

2.1.1 Context awareness 
 
Context awareness is based on using context information in order to make 
decisions. This translates into taking different actions depending on the context 
of a device or a user. Depending on the characteristics of the context information 
that is used, the decisions may change frequently or infrequently. This is 
especially true if the context information is detailed and fluctuating.  
 
There are many different kinds of context information. Context information 
might describe the ambient light level or the type of display of a certain device. 
This information may at first look completely uncorrelated with what the user 
would like, but the combination can actually be useful. To illustrate this we will 
consider a simple example.  
 
Imagine a user equipped with two devices where one device has a Thin Film 
Transistor (TFT) display and the other has a Super Twisted Nematic (STN) 
display. The information on the STN display is unfortunately not clearly visible 
in bright sun light. Consequently it is better to receive visual information, such as 
a video stream, on the device with the TFT display if the context information 
about the ambient light level indicates that the user is outside and the sun is 
shining where the users’ STN display is.  
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2.1.2 Categorization of context information 
 
Some of the context information describes the device and its capabilities. 
Examples are bandwidth of the network connection, communication cost, 
available memory and available storage space. Other context information may 
describe more abstract information, such as patterns of user behaviour. Below 
are more examples of context information given and categorized by their 
relation. This division was proposed by Chen and Kotz [4]. 
 
 
Device context  network connectivity, available bandwidth, 

available memory, processing capabilities, battery 
level, display, communication cost, load, running 
processes, nearby resources 

 
User context  user name, user ID, user profiles, heart rate, 

respiration rate, muscle activity, emotional state, 
cognitive load, nearby users 

 
Physical context  ambient light level, noise level, temperature, 

humidity, air quality, location, orientation, speed, 
acceleration 

 
Time context   date, time, time zone, time source(s) 
 
 
 

2.1.3 Collecting context information 
 
The entities used for collecting the data that is later transformed into context 
information are called sensors. A sensor may be a physical device or 
implemented in software. For measuring temperature some kind of physical 
thermometer is required, such as a thermistor, equipped with an interface 
readable by a computer and driver software. On the other hand a sensor 
monitoring available user memory space in a device can be completely 
implemented in software. Some sensors reside in a device and monitor the device 
or the surrounding environment. The memory sensor mentioned above is a good 
example of a sensor found inside a device. Other sensors are placed outside the 
device, for example a thermometer placed on the wall in an office where the 
device is. 
 
The data delivered by the sensors needs to be interpreted, managed, and 
expressed in some way to be useful for applications. Furthermore, the context 
information may need to be stored somewhere and there must be some 
mechanism for exchanging context information between devices. The 
information relevant to a device could be stored locally or remotely. If the former 
approach is used, popular information will be duplicated. On the other hand, if 
the latter is used more communication is required. These issues, amongst others 
are being investigated in the ACAS project [5] (see section 3.5). 
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2.2 Personal Area Networks 
 
A Personal Area Network (PAN) is a set of devices near the user that are 
interconnected in some way. These devices may all be used to provide the user 
with some service. Examples of such devices are PCs, PDAs, printers, storage 
devices, cellular phones, and a variety of consumer electronics equipment. The 
difference between a PAN and a Local Area Network (LAN) is that the former is 
centred around one person, while the latter generally serves multiple users as it 
covers a larger area.  
 
A PAN may be a convenient way to synchronize and share data between 
personal devices. However, the idea of a PAN becomes much more attractive 
when the PAN is no longer isolated. Consequently, to make the PAN more 
useful it is often connected to an external network. Via this connection it is 
possible to interact with devices and users outside the PAN. Furthermore, the 
PAN may change depending on the environment. If a device nearby the user is 
allowed to join the PAN, preferably in a dynamic fashion, the user can take 
advantage of services provided by devices that are not always in direct 
possession of the user. For example, if the user enters a room with a projector, 
the user might now have the possibility to receive a video call utilizing this 
device. Accordingly, the PAN may logically span over devices that resides inside 
a LAN when a LAN gateway is within the PAN. 
 
The PAN concept isn’t that useful if the devices need cables for communication. 
Consequently, some wireless technique to connect the devices is needed. Several 
options exist. Today, the two most attractive are Wireless LAN (WLAN) and 
Bluetooth. A third, Zigbee [6], is just staring to appear. 
 
In this thesis, the actual technique for transferring data or forming networks is 
not very interesting. Instead, the focus is on what higher level services the 
communication technologies can support. Even if we do not care about how the 
data is transported, it is crucial to understand that it will indirectly affect the 
service allocation. For instance, it is not possible to stream high quality video to 
a device that can only receive data at a maximum rate of 60Kb/s. We will 
consider our underlying networks to be IP over Bluetooth™ or WLAN. 
 

2.2.1 Bluetooth 
 
Bluetooth™ allows devices within close proximity to join an ad hoc wireless 
network. The strength of Bluetooth is the simplicity of forming an ad hoc 
network. Two types of networks are possible in the Bluetooth architecture: 
Piconets and Scatternets.  
 
A Piconet is formed by a master that periodically emits requests. The slave will 
answer with its identification number. The Piconet consists of up to eight 
devices. To allow more devices in the Bluetooth network either the  Piconets can 
be interconnected and form a Scatternet or devices have to share the Piconet by 
switching between an active state and some other state. In theory, up to 10 
Piconets can overlap without excessive interference and moreover different 
Scatternets can be linked together forming a linear chain.  
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Some comments need to be made about the available bandwidth. Bluetooth 
devices can work in both circuit switched mode and packet switched mode. If the 
latter is used, asynchronous communication is possible where the maximum 
bandwidth is 712Kb/s in one direction and 57.6Kb/s in the opposite direction [1]. 
A more balanced alternative is 433.9Kb/s in both directions. However, these 
rates are theoretical upper bounds and are unlikely to be achieved in practise. 
 

2.2.2 Wireless Local Area Network 
 
A Wireless Local Area Network (WLAN) is another way to connect and transfer 
data between the devices. Basically, a WLAN is a LAN using radio waves in free 
space. A WLAN can be implemented in an infrastructure-based or an ad hoc 
network fashion. The former requires an access point and resembles a traditional 
LAN. The high bandwidth of a WLAN makes it a good complement to 
Bluetooth. By supporting data rates up to 54Mb/s in IEEE 802.11g [7] a WLAN 
enabled device has the ability to support services with high demands on 
bandwidth. However, higher bandwidth and large coverage area come at the 
price of greater power consumption.  
 
 
2.3 Service allocation and Service Discovery 
 
In this thesis service allocation is the act of forwarding an incoming request to 
the most suitable device. “Most suitable” refers to the device that has the best 
chance to successfully serve this specific request in a manner which will satisfy 
the user or process. A request is normally addressed to a specific user, but may 
be delivered to one or more devices, accessible to the addressed user. Note: 
Services could also target specific devices, but we will view this as a subset of 
requests to the users. 
 
The most important criteria for how successful a service allocation can be is up 
to date context information. Of course the decision logic needs to be capable of 
making proper decisions, but even if the service allocation system knows how to 
analyze and combine information, the decisions may not be accurate if this 
information is obsolete. 
 
Service allocations may vary in many different ways. Some allocation decisions 
are very simple, while others can be fairly complex. The type and amount of 
information needed by the allocation algorithm and the complexity of the 
algorithm itself will affect the delays associated with a service allocation. To give 
the reader a better understanding of a service allocation process and what 
problems may arise when doing one, we will consider three example service 
allocation algorithms. These service allocation examples will later on be used to 
describe algorithms and demands on the information collecting process.  
 
 
Service allocation A is an allocation algorithm which allocates the incoming 
service to the device that has not a certain process running. The reason is that if 
there is a process running on the device that is untrusted the device should not be 
allocated the service. Consequently, information about the running processes on 
all devices is needed and this information has to be processed for every available 
device in the allocation algorithm. Furthermore, the available bandwidth will also 
affect the choice of device. 
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Service allocation B allocates an incoming video request to the device that can 
best display video and has the most battery capacity left. This allocation depends 
on information both from the devices in the PAN and the incoming request. The 
information that will be used is listed below. 
 
Ambient light level – Indicating the current light level (the bigger value, the 
brighter the ambient light). 
Display size – The size of the display (the bigger, the better). 
Display type – The type of display. Some display types are easier to watch than 
other depending on the ambient light level. 
AvailableBandwidth – The current available bandwidth. More bandwidth allows 
higher bit rate CODECs.  
Capabilities – The capabilities of the device (indicates if it is capable of 
receiving a video stream). 
 
The information needed from the incoming request is the media descriptor (see 
section 2.5.1) that tells us about the requirements of the service. 
 
Service allocation C may allocate several devices in the PAN. This example 
assumes that the Context Aware Service Allocator (CASA) receives a service 
request that has more than one desire when it comes to media capabilities (both 
audio and video capabilities are requested). More concretely this means that there 
is more than one media descriptor in the incoming request. The service will be 
allocated to the device or devices that can best play the audio and video streams. 
Screen size and the number of speakers will be used to decide which devices to 
use. 
 
It is necessary to be aware of the available services in the network to be able to 
contact them and ask for information. In this thesis we will assume that the 
services in the network already are discovered. How this was done is not of 
interest here, it was addressed in the earlier report of Cecile Ayrault [8]. 
 
 
 
2.4 Session Initiation Protocol (SIP) 
 
The Session Initiation Protocol (SIP) is an application layer protocol that is 
capable of establishing and managing multimedia sessions. The session may 
have two or more participants, also called endpoints or User Agents (UAs). The 
UAs may come and go during a session, just as the media used in the session 
may change. SIP is designed to be generic and is independent of the underlying 
transport protocol and type of the session. One of the strengths of SIP is that the 
user only needs one address or more importantly, the rest of the world only needs 
to associate one Uniform Resource Identifier (URI) with a specific user. This 
single URI will be mapped to the user’s current location. 
 

2.4.1 Basic concepts 
 
A brief description of SIP can be further distilled into five basic concepts, 
namely: user location, user availability, user capabilities, session setup, and 
session management. User location deals with the problem of finding the end 
system that is to be invited to participate in a session. User availability ensures 
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that the user at that end system is actually interested in participating in a session. 
User capabilities are the media and media parameters that could be used in the 
session. Session setup consists of session parameter establishment at the 
involved parties and the invitation to start a session. After the session is initiated 
it can be modified and eventually terminated. These later activities are included 
in session management. 
 
A SIP architecture consists of a number of entities. The architecture includes 
four servers: the Location server, the Proxy server, the Redirect server, and the 
Registrar server. The Location server keeps information about the current 
location of an end system and is used by the Redirect and Proxy servers. Note 
that the Location server does not speak SIP. The Proxy server is responsible for 
routing and delivery. The Redirect server is used for finding a user. It takes the 
URI in a SIP request and maps it to zero or more UA addresses. These addresses, 
if any, are returned to the client. The Registrar server manages UA registrations. 
A UA needs to register at least one address before it can be used. Thus the 
Registrar server is consulted to locate registered users. Note that the servers are 
logical roles that can be played a single device. A common design [8] is to 
combine the Location, Redirect, and Registrar servers into a single server, simply 
called a Redirect server. The UA acts both as a server (UAS) and a client (UAC), 
depending on whether it is receiving or sending a request (respectively). 
 

2.4.2 Typical example 
 
To get an idea of how a session is established in SIP we will start with a simple 
example, shown in Figure 2. Assume that a user, Alice, is interested in talking to 
another user, Bob, by using her soft phone. Fortunately, Bob has a SIP capable 
device as well. To call Bob, Alice uses his SIP identity. This has the form of an 
address-of-record (AOR) URI that is unique to this user. The AOR can be used 
as the public address of a user and resembles an email address with a user name 
and a host name. Actually, the host name often simply is a domain name, it is 
then up to the DNS system to provide the correct host address(es) for the SIP 
server (that may map the AOR to another URI where the user might be 
available). Bob’s AOR is sip:bob@bobobert.com. This address is all Alice has to 
know to contact him. Her own address is sip:alice@alicenter.com.  
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Figure 2. Typical example of SIP message exchange. 
 
 
The only entity able to create an original request is the UAC. Accordingly, it is 
Alice’s UAC that initiates a session by sending an INVITE message to the end 
system it wishes to communicate with. In the scenario considered in Figure 2, the 
INVITE message from Alice will be sent to an outgoing proxy server in the same 
domain, namely alicenter.com. This proxy will forward the message to the next 
hop, which in this case is the proxy server in domain bobobert.com. A 100 
Trying message will be sent to Alice to inform her that the INVITE message was 
successfully received by the network and no retransmission is required. Other 
messages will be forwarded without any acknowledgement. The bobobert.com 
proxy server will forward the INVITE to Bob’s UA. Upon receiving the INVITE 
message Bob’s phone will start ringing and a 180 Ringing message will be 
returned to Alice. When the user at Bob’s phone (hopefully Bob himself) 
answers the phone a 200 OK response message is sent to Alice. After both the 
180 Ringing and 200 OK messages are received an ACK message is returned by 
Alice. This acknowledgement completes the three-way handshake. Media 
streams can now be established between Alice and Bob. When any of the 
participants, say Bob, wants to end the session and hangs up, the phone will send 
a BYE message to Alice’s phone which responds with a 200 OK. After this 
message the media streams for this call are torn down. 
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After this simple example we are ready to look at what happens behind the 
curtains, i.e. what the messages look like and what other entities have to be 
involved. 
 

2.4.3 SIP Message structure 
 
To get an idea of how a message in SIP is constructed we will look at the 
INVITE message from the example above (see Figure 3). Here only the most 
common fields are discussed. 
 

INVITE sip:bob@bobobert.com SIP/2.0  
Via: SIP/2.0/UDP 
pc123.alicenter.com;branch=z9hG4bK776asdhds  
Max-Forwards: 70  
To: Bob <sip:bob@bobobert.com>  
From: Alice <sip:alice@alicenter.com>;tag=1928301774  
Call-ID: a84b4c76e66710@pc123.alicenter.com  
CSeq: 314159 INVITE  
Contact: <sip:alice@pc123.alicenter.com>  
Content-Type: application/sdp  
Content-Length: 142 
 
/* SDP content */ 

 
Figure 3. An INVITE message (the SDP content is not shown). 
 
 
The first line specifies the message type (“INVITE” in this example). The 
“INVITE” is followed by the address of the addressee and the version of SIP that 
the caller supports. 
 
Via – specifies the transport protocol, the client’s host name or network address 
(and optionally port number), and a branch value that uniquely identifies the 
transaction and is used by the proxies for loop detection. The history of the 
message’s path through the network will be available in this field, it is added to 
by each proxy. 
 
Max Forwards – inserted by the UAC to limit the number of hops a request 
can traverse on the way to the destination. The recommended default is 70. 
 
To – contains the address of the recipient of the request. In the example above 
“Bob” is a display name (more convenient for the users) and thereafter follows 
the URI. Both SIP and SIPS URIs may be used. The latter is further explained in 
section 2.4.6. 
 
From – indicates the initiator of the request with a display name and a URI. A 
tag is included to uniquely identify the dialog. 
 
Call-ID – a globally unique identifier for this call. The identifier is generally 
based upon a random number and the host name or IP address of the UA. 
 
CSeq – CSeq or Command Sequence is a sequence number incremented for 
each new request within a dialog. The request method name is also included. 
This header field serves to order transactions within a dialog and can be used for 



 12

differentiating requests and retransmissions. When an ACK message or a 
CANCEL message is sent as a response to an INVITE message, the CSeq 
number is the same as in the INVITE message. 
 
Contact – contains a SIP or SIPS URI that points directly to the sender (Alice 
in the example). The address is composed of a user name at a fully qualified 
domain name (FQDN). An IP address may be used if the end system does not 
have a registered domain name. 
 
Content-type – the media type of the message body. In this example 
Session Description Protocol (SDP) [10] is used. See section 2.5 for more 
information. 
 
Content-length – the size in bytes of the message body. 
 

2.4.4 SIP Request messages 
 
SIP requests can only be created by the UAC. The request is sent to a server that 
takes appropriate actions depending on the content and type of the request. All 
the request messages except the ACK message are followed by a response. 
 
INVITE – As described in section 2.4.2 the INVITE message is the sent by the 
UAC to initiate a session. The message contains information about the caller, the 
upcoming session and of course the address of the addressee. A session is 
established after a three-way handshake is completed, where the INVITE 
message is the first message.  
 
ACK – The ACK message is sent by the UAC to confirm that the response to the 
INVITE request, namely the 200 OK, was received.  
 
BYE – The BYE message is sent by a client to terminate an ongoing session. 
 
CANCEL – Cancel a previous request. If a session is being cancelled before it is 
established this is the message that should be sent. Please note that the BYE 
message shouldn’t be used in this case. If a final response for the request already 
has been received, the CANCEL message will have no effect. CANCEL requests 
can be made by both proxies and UACs. 
 
REGISTER – The message used for registering a user. The address in the “To” 
header will be associated with the user. See section 2.4.7 for details about the 
registration process. 
 
OPTIONS – The OPTIONS message can be used for discovering information 
about another UA or a proxy (see section 2.4.9 for details). 
 

2.4.5 SIP response messages 
 
The response message sent by a server indicates success, failure, or provides the 
client with more information that may make the request successful. Many 
different response messages exist in SIP and they are grouped into six different 
types. Each response is identified with a three digit number where the first digit 
is the response type. 
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1xx: Provisional – the request was received by the server, but further processing 
is required. This message should be sent if the request is expected to take longer 
than 200ms to process, e.g., 100 Trying. 
  
2xx: Success – the action was successfully received and accepted, e.g., 200 OK 
 
3xx: Redirection – gives information about the callee´s new location or, if the 
call wasn’t successful even though the address was correct, possible alternative 
services, e.g., 302 Moved Temporarily  
 
4xx: Request Failure – the client has sent a request that contains bad syntax or 
cannot be fulfilled at this server and the client should modify the request or try 
another server, e.g., 404 Not found 
 
5xx: Server Failure – the request was valid, but the server was unable to 
process it successfully, e.g., 501 Not implemented 
 
6xx: Global Failure – the contacted server has enough information to claim that 
the request cannot be fulfilled anywhere in the system, e.g., 600 Busy 
everywhere 
 

2.4.6 SIP URI 
 
As briefly discussed in section 2.4.2 the SIP URI identifies the communication 
resource. This address is sufficient to initiate a session with the resource. The 
general form of a SIP URI is given below.  
 
sip:user:password@host:port;uri-parameters?headers 
 
The token “sip:” specifies that the URI is a regular SIP URI. There are two types 
of URIs in SIP, namely SIP and SIPS where the latter provides additional 
security. When a SIPS resource is contacted, the path from the initiator to the 
target domain should be secured. In practice this means that either Transport 
Layer Security (TLS) [11] or Secure Sockets Layer (SSL) [12] is used for 
protecting the data. 
 
“user:” the identifier of the particular resource at the host.  
 
“password:” the user’s password. However, this field is not recommended to 
be used due to the fact that it is sent in clear text. 
 
“host:” the IP-address or domain name where the resource is located. 
 
“port:” this field may optionally specify a port number where the request 
should be sent. If not specified, then the default port will be used (5060 for SIP 
and 5061 for SIPS). 
 
“uri-parameters:” an arbitrary number of parameters to the request, e.g., 
transport=tcp 
 
“headers” hold the values that should be present in the header of the request 
constructed from the URI, e.g., subject=meeting 
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2.4.7 Register 
 
To participate in a session the UA needs to register its contact URI at the 
Registrar server. Normally, this is the first thing that is done when a SIP enabled 
device, e.g. a SIP phone, comes online. For this purpose the Registrar server is 
contacted. Registration is initiated by the UAC by sending a REGISTER request, 
either directly to the Registrar server or via a Proxy server. If the registration is 
accepted the server will store a binding between the URI and one or more contact 
addresses. The Registrar server will respond with a 200 OK message if the 
registration was successful. The same REGISTER request message is used when 
the user wants to update an address, get the addresses stored on the server, or 
delete an address. 
 
The registration will expire after a certain time specified by the local policy. 
However, the client can suggest an expire interval in the REGISTER request. 
Because a binding is deleted when the registration expires it has to be renewed. 
The client learns the current expire interval in the 200 OK message from the 
registrar server. Now it is up to the client to renew the bindings before they 
expire, if the client wishes to be able to receive incoming invite requests. 
 
Before the REGISTER message can be sent the Registrar server has to be 
located. Several alternatives exist, such as manual configuration, DHCP, or DNS 
SRV Resource Records. 
 

2.4.8 Redirect 
 
In the example in section 2.4.2 the proxy forwarded the message to the next 
proxy or UA. Consequently the proxy server needs to know how to reach the 
next hop. However, this is not always the case. If the proxy hasn’t contacted the 
next hop before and thereby learned the address, a Redirect server may be 
contacted.  
 
To get the address of the next hop the proxy forwards the INVITE message to 
the Redirect server. This server will look up the destination in its table of 
registered users. If the callee can’t be found, then the server consults a dialling 
plan to determine where the INVITE should be sent. As mentioned earlier, the 
redirect server works closely together with the Location and Registrar servers. 
The Registrar server stores registration information at the Location server. The 
latter serves the Redirect server by providing information about where a user 
currently is located.  
 
The Redirect server returns routing information about how to reach the next hop 
to the proxy in a 302 Moved temporarily message. This message will be 
acknowledged by the proxy. The original INVITE message is then modified 
according to the routing information and sent to the next hop in the network. 
 
Figure 4 shows how the messages flow in the system when SIP phone A is trying 
to contact SIP phone B with an INVITE message. Here we use a SIP address to 
address a specific phone rather than a user. 
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Figure 4. An INVITE message is sent from SIP phone A to B. 
 
 

2.4.9 Determination of capabilities 
 
There exists one mechanism in SIP that allows a client to query a UA or a proxy 
server for its capabilities. This special request is called OPTIONS and makes it 
possible to get information about supported methods, content types, extensions, 
CODECs, etc. without sending an INVITE message to the server.  
 
When the server receives an OPTIONS request message it should return a 200 
OK message containing the information queried by the request. Allow, Accept, 
Accept-Encoding, Accept-Language, and Supported header fields should be 
present in the response message. 
 
Allow lists the methods that are supported by the server. Note that this field 
should not be included if the requested server is a proxy since a proxy is method 
agnostic. Accept specifies the supported formats of the message body. Accept-
Encoding and Accept-Language gives information about supported encodings 
and languages. Contact header fields may be present in the response to list 
alternative addresses for reaching the user.  
 
Furthermore, a body may be attached to the response. The type of the body is 
specified in the OPTIONS request message. The default body type is 
“application/sdp” and if this type is present the server should include a body with 
a listing of media capabilities. 
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An example of a 200 OK message sent in response to an OPTION request is 
shown below. 
 

SIP/2.0 200 OK  
Via: SIP/2.0/UDP 
pc123.alicenter.com;branch=z9hG4bKhjhs8ass877 
;received=192.0.2.4 
To: <sip:bob@bobobert.com>;tag=93810874 
From: Alice <sip:alice@alicenter.com>;tag=1928301774 
Call-ID: a84b4c76e66710 
CSeq: 63104 OPTIONS 
Contact: <sip:bob@bobobert.com> 
Contact: <mailto:bob@bobobert.com> 
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE 
Accept: application/sdp 
Accept-Encoding: gzip 
Accept-Language: en 
Supported: foo 
Content-Type: application/sdp 
Content-Length: 274 
  
/* SDP */ 

 
Figure 5. Example response to an OPTION request (the SDP body is not 
shown). 
 
 
2.5 SDP 
 
The Session Description Protocol (SDP) [10] describes multimedia sessions and 
is mainly used for session announcement and session invitation. It is a simple 
protocol and accordingly negotiation of session content or media encodings are 
not supported, rather it is an offer-accept model. However, it is possible to carry 
other protocols inside SDP. This feature is for example used when distributing 
media stream encryption keys in a secure manner, as used in MIKEY [13]. 
 
SDP is intended to be general purpose and can be used in many different 
applications. The most common one, and also the one we find the most relevant, 
is when it is used together with SIP to establish a media session. Here the SDP 
information is carried inside the SIP INVITE message and specifies for instance 
which CODECs should be used and between which IP addresses and ports the 
communication should take place. The other party will respond with 
acknowledgments of the descriptions that it accepts.  
 

2.5.1 Protocol format 
 
An advantage of SDP is that it is very simple, both to understand and to 
implement. The information carried by the protocol is coded in UTF-8 text 
format. Different letters are used as labels to identify the fields. The defined 
protocol structure is as follows. Optional items are marked with a ‘*’. 
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v=  (protocol version)  
o=  (owner/creator and session identifier)  
s=  (session name)  
i=* (session information)  
u=* (URI of description)  
e=* (email address)  
p=* (phone number)  
c=* (connection information)  
b=* (bandwidth information)  
z=* (time zone adjustments)  
k=* (encryption key)  
a=* (zero or more session attribute lines)  

 
Time description  
 

t=  (time the session is active)  
r=* (zero or more repeat times)  
 

Media description  
 
m=  (media name and transport address)  
i=* (media title)  
c=* (connection information)  
b=* (bandwidth information)  
k=* (encryption key)  
a=* (zero or more media attribute lines) 

 
 
The SDP parser expects that the labels appear exactly in the order specified 
above. It is possible to have several SDP session descriptions in the same packet. 
The ‘v=’ field marks the start of a new session description.  
 

2.5.2 SDP example 
 
An example of a SDP description is given in Figure 6. 
 
 

v=0 
o=- 4711 4711 IN IP4 130.237.251.216 
s=Example Session 
c=IN IP4 130.237.15.216 
t=0 0 
m=audio 1061 RTP/AVP 0 
a=rtpmap:0 PCMU/8000/1 
m=video 1062 RTP/AVP 31 
a=rtpmap:31 H261/90000 

 
Figure 6. A typical SDP body. 
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The following is an explanation of the less intuitive lines in the example. 
 
‘v=’: The version number is always set to zero.  
 
‘o=’: The owner/creator and session identifier. The syntax is o = <username> 
<session ID> <version> <net type> <address type> <address>. In this example 
the session ID and the version are the same. The username in the example is “-“, 
which is a placeholder for the real name. 
 
‘t=’: The time the session is active. The syntax is t= <start time> <stop time>. 
For unbounded time values 0 can be used, as in the example. 
 
‘m=’: The media name and transport address. The syntax is m= <media> 
<port>/<number of ports> <transport> <fmt list>. When the transport is 
RTP/AVP the <fmt list> is a list of integers specifying the CODEC that can be 
used. The list can be found in [14]. 
 
‘a=’: Session attribute. The syntax for the rtpmap is a= rtpmap: <payload type> 
<encode name>/<clock rate>[<encode parameters>]. In the example we use 
PCMU (G.711 µLaw) with a sample rate of 8 KHz. Several other attributes may 
be used [10].  
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3. Related work 
 
 
The problem of allocating services utilizing context awareness is similar to other 
problems, such as policy management, access control, and request distribution. 
In this section we will look at related work that may be of interest when 
considering context aware service allocation. 
 
 
3.1 Service Policy Management 
 
In his thesis ”Service Policy Management for User-Centric Services in 
Heterogeneous Mobile Networks” [15], Konstantinos Avgeropoulos looked into 
the issue of performing policy based management of a network with several 
UAs. The UAs form the user’s personal service network which could be for 
instance a PAN. An entity called a SIP Service Manager (SSM) was proposed for 
monitoring the service network and issuing polices. The SSM resides between 
the service network and the SIP backbone. Apart from the policy related 
components it combines proxy, UA, registrar, and redirect functionality.  
 
Avgeropoulos´ work is relevant to this thesis for several reasons. The problem of 
doing service policy management is related to service allocation. First, 
information in the request will be used together with information about the 
entities when issuing policies. The architecture for this process may be of interest 
for this thesis. Furthermore, Avgeropoulos introduces mechanisms for collecting 
information about the devices in the service network and also his use of SIP 
INVITE request multiplexing that may be interesting. However, his information 
collecting mechanism is based on polling which has drawbacks due to its 
communication overhead and this leads to scalability problems.  
 
 
3.2 Content-based request distribution 
 
Web-servers are often arranged in clusters on the Internet to distribute load and 
to increase service reliability. To distribute the incoming requests a so called 
Web switch is used. Consequently, all requests are sent to the same IP address. A 
Web switch can be implemented as a layer-4 or layer-7 switch. A layer-4 switch 
can only use the information in the transport layer for dispatching a request to a 
server. Things get more interesting when we consider a layer-7 switch. Here the 
content of the request can be used when dispatching the request. By using 
information about the servers together with the information acquired by 
analysing the request, the switch is able to perform content-based request 
distribution. The advantages when used in such web-server clusters is increased 
hit-rates in memory caches, increased storage scalability, and the ability to have 
specialized servers for certain types of requests, such as video or audio. 
 
When designing content-aware request distribution in general the performance of 
the web switches is the main issue. The request rate is often high and if too much 
processing is needed for each request, then the switch will be a bottleneck. 
Therefore the decision logic has to be simple and not depend on too much data. 
In this thesis, the entity that will allocate the service to the proper device will 
most likely not experience a request rate as high as in the server cluster. 
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3.2.1 Locality-Aware Request Distribution (LARD) 
 
LARD [16] is a specific policy for content-based request distribution. The main 
goal is to achieve high locality in the main memory of the servers. This means 
that when a specific object is requested the same server should handle that 
request each time. An object (and request) consequently are associated with a 
specific server. Of course some load balancing needs to occur, but that is not of 
interest in this thesis as it is likely that the best available device should be used as 
long as it can, then the next best, and so on. 
 
Even though LARD and other content-aware request distribution systems 
primary consider performance, the basic mechanism enables efficient service 
allocation. The incoming request has to be analyzed, and the content of the 
request will affect where the request will be forwarded. Information about the 
current state of the servers has to be available when request distribution is 
performed. This is the basis also of the problem considered in this thesis. While 
the reliability of the servers in a cluster can be considered high, the same 
assumption cannot be made about the devices in a PAN. Furthermore, the front-
end system and the servers are physically connected, usually with high 
bandwidth connections. On the contrary, the communication in a PAN can be 
expensive and in such cases should be kept to a minimum. 
 
 
3.3 Context-aware access control 
 
Another area where context information may be helpful is access control. Using 
context information can be a powerful tool when making access control 
decisions. In [17], a context-aware access control model for Web services is 
presented. By looking for example at the system resources, current time, and 
location of the user the authorization mechanism now has the ability to 
dynamically grant and adapt permissions of a user based on their current context.  
 
Furthermore, the paper proposes a tuple language to express context information, 
and algorithms to evaluate service access requests. Access patterns may be used 
when making access control decisions. If something differs from the normal 
pattern of a specific user, fewer privileges are given to that user. 
 
The ideas introduced in the context-aware access control system may also be 
useful in this thesis, especially when it comes to expressing context information 
internally and designing algorithms to evaluate the incoming requests. However, 
context awareness in the access control system concerns the context of the entity 
that makes the request, while in this thesis we are primarily interested in the 
context of the entity that receives the request. 
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3.4 Heterogeneous wireless network management 
 
Power consumption is often a critical issue in portable devices running on 
batteries. In [18] a policy for selecting the network interface that consumes less 
power, but still serves the needs of the application is presented. Two network 
interfaces were used, one Bluetooth interface and one WLAN 802.11b [7]. The 
Bluetooth interface provides low power consumption, but only moderate 
bandwidth, while the WLAN 802.11b interface offers high bandwidth, but 
consumes more power. If only a small amount of bandwidth is needed by an 
application (for instance when sending a text based e-mail) the Bluetooth 
interface can be used. For applications with higher bandwidth demands, such as 
when streaming video, the WLAN 802.11b interface is needed. The mechanism 
for selecting interface monitors the variations of application data consumption 
rate and dynamically changes interface if needed. 
 
Interesting for this thesis is to see both how bandwidth affects a service and how 
the need of an application (type of service) affects the choice of a device. The 
two types of interfaces considered in the paper are frequently used in PANs, 
which makes it highly relevant for this thesis.  
 
 
3.5 Allocating Web-Services  
 
When allocating Web-Services performance is an important issue. High volume 
Web-Services are often replicated over several servers to spread the load over 
different machines and to provide redundancy. An example of a Web-Service 
that spans over multiple machines and where performance is central is the search-
engine GoogleTM [21]. A Web-Service can be allocated randomly or by looking 
at the status of the Web-Service and/or the hosting nodes. A node hosting a Web-
Service replica may host copies of other Web-Services as well; which of course 
may impact performance. In [20], different schemes are proposed for allocating a 
Web-service. The most interesting schemes are Least Utilized and Least 
Response Time. Here, the status of the Web-Service has to be monitored and 
taken into consideration when allocating new service requests. The information 
describing the status of the Web-Service and the hosting nodes are called 
Performance Metadata. This status information is stored in a distributed registry 
that is consulted when a Web-Service allocation is about to be performed. Each 
node and Web-Service will update its utilization or response time in the registry 
either periodically of after a request is processed. The more often this 
information is reported, the more accurate allocation is possible. However, the 
reporting process implies additional processing overhead at the node. 
 
The problem of doing successful allocations in a Web-Service has similarities 
with doing service allocations in a PAN. The more sophisticated allocation 
schemes, namely Least Utilized and Least Response Time, shares the problem of 
keeping remote information up to date. When allocating Web-Services a 
suboptimal allocation will result in longer service times. In our system a 
suboptimal or faulty allocation may result in a session not being established. 
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3.6 Adaptive and Context-Aware Services (ACAS) project 
 
The ACAS project [5] considers the difficult issues of sensing, processing, and 
distributing context information. It has been shown that there is a need for both a 
context description language and architecture to manage the context information. 
There is a gap between the raw information given by the sensors and the 
information needed to make suitable conclusions about a certain condition. This 
gap is called a context gap. Filling the context gap makes the context information 
more useful. Combining different information may create new information that is 
much more useful than the original information. This process is called context 
refinement. 
 
The ACAS project proposes a language for exchanging and processing context 
information called Context Description Language [5]. This is a XML [19] based 
language for describing context where the context entity is the central focus.  
 
 

3.6.1 Architecture 
 
The central concept in the ACAS architecture is the Context Management Entity 
(CME). This entity consists of a context server (the server part of the CME), 
context manager (client part of the CME), and a context repository used by the 
context manager with service and sharing policy management (see Figure 7) 
 

 
 

Figure 7. The structure of the CME. 
 
 
 
The CME enabled entities form a context network. They know how to talk to and 
reach each other. The CME is employed on every device that wants to connect to 
the network and will provide the local applications with context information. On 
devices with very limited resources a simplified manager can be used to contact 
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a CME on another device and thereby use the more powerful device as a server 
for context information. The applications will subscribe with the context 
manager in order to receive context information. 
 
The context network can be static or dynamic. To provide a basic network or 
backbone for the context information the CMEs should have a static binding with 
at least one other CME. A connection with this CME is established on startup. 
The bindings may be manually or automatically configured (DHCP is one 
option). For example, the devices in possession of a certain user could have static 
bindings with each other and with CMEs representing the current location. By 
using dynamic bindings between CMEs the context network can be somewhat 
optimized and direct connections can be established between CMEs that wish to 
communicate. This will reduce the path length and optimize dataflow. 
 
When an application wishes to connect to the context network it will search for a 
local CME (locally, on a well known port) and request a connection. The CME 
can either accept the connection and serve the application, or refer it to another 
CME. If no local CME is found, a list of default CMEs to connect to should be 
consulted. Context-aware applications can use the context server interface to 
access managed context information. The context server may base its decision on 
whether or not the request should be served based on (local) service policies. If 
the request is accepted it will be passed on to the context manager for processing 
and management. 
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4. Design 
 
In this section we will look at the design of the context-aware service allocation 
system and discuss various issues that arise when an allocation is made. 
Furthermore, a number of techniques for making the system adaptive are 
presented. 
 
 
4.1 Motivation 
 
The main goal of the context-aware service allocation system proposed in this 
thesis is to make it more convenient for a user in a PAN to be reached and for 
other users to reach the user in the PAN. Ease of use is a very important aspect of 
the system design. The users of the system should not be bothered with manual 
settings. Preferably, they are not to notice the system at all. It should work 
silently in the background, always making accurate service allocations. 
 
Our system, called “Context Aware Service Allocator” (CASA), will ease 
communication between users in two ways. First, it will make the devices in the 
user’s PAN look like one device by enabling access to all of them by a single 
URL. This address is all that an initiator of a session has to know to reach the 
user in the PAN. Furthermore, this address will also be used for outgoing calls so 
that the internal structure and addressing never has to be revealed outside of the 
local system. An exterior initiator of a session can be seen as an indirect user of 
the CASA and has no knowledge about the PAN and the devices within. This 
user will never know about the CASA, provided that the delays associated with 
the session establishment are low enough not to be evident.  
 
The second way the system serves the user is choosing the device that is best 
suited for handling the incoming request for the moment. This service allocation 
process will directly affect the user in the PAN, but also the exterior user. Both 
will of course suffer from a bad service allocation where a suboptimal device or 
no device at all is allocated to the incoming service. 
 
The service allocation process requires context information about the PAN. The 
CASA will use a context network to gather this context information. This context 
network can have many different forms. In this work we will assume that this 
network has the same structure as the context management network introduced in 
the ACAS project [5]. However, CASA will also work with other types of 
context networks and as we will see later, a single stand-alone server may be 
enough for a smaller network with modest requirements on the context 
information.  
 
Because the type and performance of the context network can vary, the service 
allocation system has to be flexible and tolerant of high delays. As discussed later 
in section 4.5, the number of devices in the PAN and the delays associated with 
getting information from the context network will affect the total service 
allocation delay. This total delay has to be hidden from the users if it is too high 
to be tolerable. 
 
A delay longer than 1-2 seconds is considered to be annoying by most people, 
especially if there is no feedback during the waiting [22], [23]. Consequently, the 
goal is to allocate the service faster than this. 
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The allocation will be based on context information from the PAN, user settings, 
and information contained in the incoming request (e.g., the media descriptor 
located in the SDP body). Consequently, there are high demands on the accuracy 
of the context information. The decisions made by the CASA always have to be 
based on up to date information. A goal of the system design is to provide the 
allocating algorithm with as current information as possible. 
 
 
4.2 Basic design 
 
CASA will be partly based on the SIP Service Manager (SSM) designed by 
Konstantin Avgeropoulos [15]. SSM uses many of the same basic components 
needed for processing SIP requests and responses. 
 
The functionality of CASA and SSM are related and the two systems should be 
able to be used side by side. The design of CASA will make it possible to merge 
the two systems completely and have both policy management and context-aware 
service allocation functionality in one system. To make the description of the 
design easy to follow for the reader, the two systems will be separated throughout 
this document. However, to make clear which parts can be shared by the two 
systems we will start by looking at those components. 
 
As mentioned earlier, CASA will make all devices in the PAN look like one 
device to users outside the PAN. This is achieved by making them all reachable 
through one single SIP address. Consequently, the devices in the PAN have to 
register with CASA which will act as a proxy server.  
 
In order for the devices in the PAN to be able to register at the CASA a Registrar 
server is needed. This local registrar will work closely with the location service, 
which will keep the mappings between the network address and the SIP address 
stored in a hash table. Observe that the SIP address registered at the CASA will 
only be used internally. The location service will later be used when a service 
allocation occurs and the network address is needed to route the SIP message to 
the right device. This is due to CASA acting as a proxy. 
 
Each device will be managed by a Service Controller (SC) (see Figure 9). This 
SC is responsible for communication with the device and consequently an 
incoming message will be passed on to one or more SCs by CASA. The service 
allocation process determines which service controllers will be selected if the 
message is not part of an existing transaction. If it is, the message should be sent 
to the service controller that is participating in the transaction. 
 
All communication between the PAN and the outside nodes will go through 
CASA (see Figure 8) which works as a switch for the SIP messages. When a 
register request is received from a device in the PAN, it is switched to the 
registrar. When an incoming message is received, the message will be switched 
to the proper service controller. An outgoing request (other than a register) from 
one of the devices inside the PAN will be switched to the responsible SC. 
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Figure 8. Placement of the CASA. 
 
 
 
Now that the management of the devices inside the PAN has been covered it is 
time to look at how CASA is reachable from outside the PAN. By including a 
registration client in the design the CASA is able to register the Address Of 
Record (AOR) of the PAN at a service provider proxy. The AOR is the address 
that will be used for reaching the user and a device inside the PAN. Once this 
address is registered, all the service requests destined for the PAN will end up at 
the CASA. 
 
If all the devices in the PAN together are represented by a single address, the 
internal or local addresses need to be hidden when communicating with a user on 
the outside. Consequently, the address of each message sent from a device in the 
PAN needs to be changed in order to make the message look like it came from 
the official AOR (i.e., the CASA). This is similar to a Network Address 
Translation (NAT) or IP proxy. 
 
 
4.3 CASA specific design 
 
The components described above are necessary for registering the devices inside 
the PAN, registering the official AOR at the service provider proxy, and handling 
incoming and outgoing messages. Given this base functionality we are now ready 
to discuss the components needed for service allocation. Two main components 
will be added to the design: (1) the Device Allocating unit and (2) the 
Information Collector unit. Additionally, some enhancements will be made to the 
existing components. For an overview of the design, see Figure 9. 
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Figure 9. Overview of CASA. 
 
 
As shown in Figure 9, the Registration client is responsible for registering the 
AOR of the PAN at the service provider. Furthermore, a Registrar and a Location 
Service is available at the CASA in order to manage the registrations of the 
devices in the PAN. Three devices are registered in the example and every device 
is associated with a service controller that manages the communication with the 
device. The Device Allocating unit (DA) and the Information Collector unit (IC) 
are the core components of the CASA and are described in detail below. For 
more information about the Context Management Network (CMN), see section 
4.3.5. 
 

4.3.1 The Device Allocating unit 
 
First we examine the core of the CASA: the Device Allocating unit. The DA will 
make the actual service allocation decisions based on context information from 
the PAN and information provided in the incoming service request. These two 
sets of information are crucial for service allocation. A third important part 
affecting the outcome of device allocation is the allocation algorithm. The 
allocation algorithm determines how the DA uses the context information when 
making a decision. The allocation algorithm is the heart of the decision logic and 
may look very different depending on the context of the CASA (see section 4.3.3 
for more information about the allocation algorithm).  
 
The DA will always perform its work in the foreground, which implies that the 
delays associated with the service allocation decision process cannot be hidden 
from the user. The reason for this is that the service allocation decision has to be 
made (immediately) after the CASA receives the incoming service request. Even 
if the allocation algorithm is not using information in the request (which is 
possible) the service allocation decision should be taken as close in time to the 
actual allocation of the service as possible. If instead the service allocation 
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decision was made in advance, it could, and in most cases would, be based on 
potentially obsolete information. 
 
 

4.3.2 The Information Collector unit 
 
The other main component is the Information Collector unit (IC). The duty of the 
IC is to collect context information from the entities in the PAN. This 
information is later used by the DA when performing a service allocation. The IC 
will get the requested information from a context network or more specifically a 
server in a context network, which provides context information about the 
entities in the PAN.  
 
The context server is called CME (see section 4.3.5) and is assumed to be 
multithreaded. Likewise, each information request from the CASA is handled by 
a new thread within the IC in order to avoid waiting for earlier requests to finish. 
As discussed in section 4.5, the delays associated with the information collecting 
process may be visible to the users in some cases. If the information is collected 
in conjunction with the service allocation decision the delays associated with 
collecting the needed context information will be exposed to the external session 
initiator. 
 
 

4.3.3 The allocation algorithm 
 
The allocation algorithm can be seen as a standalone element and should be easy 
to alter or replace to satisfy the needs of the user in the PAN and CASA. In some 
scenarios the allocation algorithm may be simple and only need very limited 
amounts of information, i.e. one or two pieces of information from the devices 
and none from the incoming request may be enough. Other algorithms may 
require lots of information from all entities in the PAN and perhaps all the 
information contained in the incoming request. Different algorithms will generate 
very diverse loads on the DA and the hosting machine. 
 
While the allocation algorithms may differ a lot, there are a few sections that can 
be identified in most algorithms. Often the allocation algorithms consist of loops 
iterating over the information. In each of these iterations different values will be 
inspected and compared according to the rules specified in the algorithm. The 
rules are often of the form IF {} THEN {} ELSE {}. These simple rules are used 
for comparing values and often to find extreme values, that is the smallest or 
biggest value of a certain type. After all the information has been inspected some 
additional processing may be required. 
 
When an allocation algorithm is designed the priority of the properties and status 
of the devices in the PAN has to be decided. The algorithm designer has to 
decide for instance if available battery power is more important than available 
bandwidth. We will start by looking at service allocation A.  
 
The allocation algorithm in service allocation A depends on two pieces of 
information, namely RunningProcesses which is a list of the running processes at 
the device and the BatteryStatus. This algorithm consists of one main loop that 
iterates through the devices and searches for a certain process in the process list. 
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In the same loop the battery status variable is read. The device that does not have 
this specific process running, but has the most battery power left will be allocated 
the service.  
 
 
The allocation algorithm in service allocation B is more complex. Here context 
information such as ambient light level, display size and type, battery status, and 
device capabilities are used in the allocation algorithm together with information 
from the media descriptor in the incoming request. This allocation algorithm is 
designed with picture quality as the most important criterion and can be 
described as follows: 
 

1.  Extract the media descriptor from the incoming request 
2.  For each device do: 
2.a.  {Check if device is capable of receiving video 
2.b.  IF {AmbientLightLevel > threshold T} THEN {compare 

DisplayType} 
2.c.  Compare DisplaySize 
2.d.  Compare AvailableBandwidth} 
3.  Allocate service   

 
In the worst case, these five steps will be performed for every device in the PAN. 
The most important property is that the device is capable of receiving video. 
Consequently, this is checked first. The second thing to check is the ambient light 
level. The threshold T has to be decided by the algorithm designer by looking at 
the meaning of the value AmbientLightLevel. Suppose it can take on 5 different 
values where 1=completely dark and 5=bright sun light. If the threshold T=3, and 
the AmbientLightLevel is bigger, the DisplayType will matter (see section 2.1.1 
for an explanation why) and should thus be included in the comparisons. 
Consequently, if there are only two devices that have a display that performs well 
in bright light among the devices that are capable of receiving video, only those 
two will be left for next step where DisplaySize is compared. The reason is that 
in this algorithm we do not care about the device (or its display size) if the 
ambient light is so strong that its display is useless.  After this step 
AvailableBandwidth is compared. If more than one device is left after these 
eliminations they are equally good according to the algorithm and one of them is 
picked at random. 
 
The allocation algorithm has to know how to compare values. For example, 
knowledge about different display types is needed. It must know in advance that 
a TFT display is better than a STN display when ambient light level is taken into 
consideration. This information has to be available to the DA and the allocation 
algorithm. In fact, it has to be built into the algorithm. 
 
The algorithm in service allocation C consists of one loop. The loop iterates 
through the devices to find the biggest screen size and the largest number of 
attached speakers by looking at the DisplaySize and NumberOfSpeakers 
variables. When the loop has finished, the device (if the same device was chosen 
in both of the cases) or devices (if two different devices were chosen) will be 
allocated the service. 
 
While these example algorithms are pretty simple, an allocation algorithm can be 
very complex. If advanced AI is used together with rich context information 
some really ingenious allocations are possible. However, the design of such 
algorithms is out of the scope of this work. 
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4.3.4 The outcome of the allocation algorithm 
 
It is important to understand the difference between a satisfying and an accurate 
allocation. An allocation is considered satisfying if the user is pleased with the 
result. This means that the outcome of the allocation algorithm has to match the 
user’s wishes. If not, the user probably won’t be satisfied and will stop using the 
automatic service allocation feature. The best way of archiving satisfying 
allocations is thus to have customized allocation algorithms.  
 
An accurate allocation, as discussed in 4.5.1, has to do with the allocation 
algorithm only and not the user. An algorithm can be accurate but still 
unsatisfying. If the information used by the allocation algorithm is up to date, the 
allocation will be accurate. On-demand information fetching or call-backs will 
always lead to accurate allocations. However, the situation is different when 
prefetching information. To get an idea of how accurate an allocation can be, we 
have to look at how up to date the information is.  
 
If the information from a certain entity is updated (because of a change) at the 
context server with an interval (or a mean interval) Tupdate and this information is 
fetched with an interval Tfetch, the probability of having up to date information is 
Puptodate = 1 – (Tfetch / 2Tupdate) when Tfetch < Tupdate and Puptodate = (Tupdate / 2Tfetch) 
when Tfetch >= Tupdate. The probability of performing an accurate allocation 
depends on Puptodate for the information needed in the algorithm.  
 
Consider the algorithm of service allocation A and assume that prefetched 
information is used from three entities a, b, and c. The probability that the result 
of the allocation algorithm is accurate (Paccurate) is the product of all Puptodate for the 
information (provided that the information is updated independently at the 
server). Thus, in our example Paccurate =Puptodate(a) * Puptodate(b) *Puptodate(c). 
 
The conclusions that can be drawn is that (1) the shorter prefetch interval, the 
higher probability of having up to date information and (2) the more information 
needed by the allocation algorithm, the greater risk that the allocation will be 
inaccurate when using prefetched information. Observe that it is not a given that 
the allocation will be inaccurate just because the information is not up to date, 
but there is a risk. 
 
For example, consider a simple allocation algorithm that compares one value 
from each device and allocates the service to the device that has the largest value. 
If the devices in the PAN have similar values a missed update can cause the 
allocation to be inaccurate. However, if the values are far away from each other 
and only small changes occur a missed update of one of the values will not affect 
the outcome of the allocation. 
 
 

4.3.5 Communicating with the context management network 
 
Our system will work very closely with an entity in the context network called 
the CME, briefly introduced in section 3.5.1 and further described in [5]. The 
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CME is an important component of the context network serving applications, in 
our case the DA will utilize this context information in its decisions. It is possible 
to have a CME running on every device in a PAN (Figure 10), but this is not a 
requirement. Consequently, a CME may or may not reside on the same machine 
as the CASA. If the CME is external (Figure 11), it has to be reached through the 
network.  
 
 
 
 

 
 
Figure 10. Local CME. 
 
 
 
 

 
 
Figure 11. Remote CME. 
 
 
The advantage of having a CME available locally is the reduced communication 
costs for the traffic to and from the CME. All traffic can go over the loopback 
interface and the communication delays will be very low. In this scenario, no 
traffic will be generated in the network directly by the CASA. If the CME is not 
locally available on the same machine as the CASA it is accessed through the 
network. This inevitably implies greater communication delays and more traffic 
in the network.  
 
Ideally, from the point of view of the CASA, the CME always has all the 
information about all the entities in the PAN. Furthermore, this information is 
always up to date. At the time of writing this thesis no implementation of a CME 
exists and we do not know how near the ideal case a CME may perform. 
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Even though it is not the goal of this thesis to investigate the performance of a 
CME, we have to be prepared for some delays at the CME while the request for 
context information is being processed. The CME may be busy, or it may not 
have the information ready when receiving the request. Our system has to be 
tolerant to these possible additional delays. Furthermore we assume that the CME 
may or may not support call-backs, which means that the server automatically 
sends information to the CASA when it has changed.  
 
 
 
4.4 Information fetching approaches 
 
To be able to make proper decisions in the DA, up to date information is needed. 
If the CME doesn’t support call-backs two different approaches are suggested. 
Either this information is collected just when it is needed, that is when an 
incoming request arrives. This approach is called on-demand information 
fetching. The other way is to periodically collect context information and store it 
locally. The information is thus pre-fetched. If call-backs are supported, the 
CASA will always get recently changed information and consequently it doesn’t 
have to be fetched. These three approaches have advantages and disadvantages 
which we now will examine in the following sections. 
 
 

4.4.1 On-demand information fetching 
 
On-demand information fetching is the most simple and straight forward 
approach. When an incoming request arrives at the CASA the IC will be 
consulted to get context information. The IC connects to the context management 
network and queries the network for the information. The CME in the context 
management network will respond with the requested information. This 
information is then used by the DA to decide which devices are the most suitable 
for handling the request. 
 
The most obvious advantage of on-demand information fetching is that the 
context information used by the DA will always be up to date. However, the fact 
that the query to the context management network has to be made in conjunction 
with the incoming request causes problem. The root of the problem is that 
communication with the context management network (that is between the IC 
and the CME), will take some time. Thus the DA will have to wait for the IC to 
return the information before a service allocation decision can be made. This 
delay associated with fetching the context information can not be hidden from the 
user if on-demand information fetching is used. The obvious reason is that the 
context information has to be fetched before the incoming request is forwarded.  
 
Exactly how time consuming the communication with the CME is depends on 
several factors. First, as with all data communication the transmission and 
propagation delay will limit how fast data can be transferred. In an environment 
like a PAN the transmission delay is more important than the propagation delay 
because of the short distances. Additionally, the link type may affect the 
communication delays. In a PAN the communication will often take place over a 
wireless link which introduces slightly higher delays in comparison to a 
physically wired LAN due to lower bandwidth and longer contention time to 
access the media. 
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With a distance of 10 m between the sender and the receiver the propagation 
delay is ~10-7 s. If the link speed is 11 Mbps (802.11b) the transmission delay 
will be ~10-3 s when transferring 1KB. Thus, the propagation delay in this 
example is only ~1/104 of the total time. 
 
In addition to the delays associated with sending and receiving data on the 
network the CME will spend some time processing the request. As discussed in 
section 4.3.3 this time may vary and consequently the system has to be prepared 
for further delays. See section 5.2.3 for the total delays when fetching context 
information from the context server. 
 
In summary, the delays that can be expected when performing a service 
allocation are (1) the system to CME communication delay TComm (TComm = 
TComm_request + TComm_response), (2) CME request processing delay TCME, and of 
course (3) the time it takes to execute the allocation algorithm on the system 
TAlloc . Figure 12 shows a simplified scenario with an allocation only requiring 
one information fetch. The total delay (Ttot), which is the time between receiving 
the incoming request and the actual device allocation, depends on the number of 
devices in the PAN and the processing power of the machine hosting the CASA. 
The larger number of devices, the more information needs to be fetched and 
processed.  
 

 
 

Figure 12. On-demand information fetching delays when performing an 
allocation. Visible delay shaded in grey. 
 
 

4.4.2 Prefetching information 
 
To hide the delays occurring when the context information is fetched the 
information can instead be pre-fetched. The IC will now periodically contact the 
context information network and fetch context information that will be stored 
locally in the system. The delay associated with fetching context information 
from the context management network is now no longer visible to the user. The 
only remaining delay that can not be hidden is the time it takes to execute the 
allocation algorithm. Figure 13 shows a simplified scenario with an allocation 
only requiring one information fetch. 
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The polling interval has to be carefully chosen. If the polling is carried out often 
the information stored in the system will be more up to date, but the amount of 
interaction needed with the CME will grow. This is an important trade-off when 
polling for information.  
 
Pre-fetching information is an effective way to hide delays associated with 
fetching the information needed by the DA. The only delay observable for the 
user is the time spent processing the information when executing the allocation 
algorithm. 
 

 
 

Figure 13. Information prefetch delays when performing an allocation. 
Visible delay shaded in grey. 

 
 

4.4.3 Call-backs 
 
If the CME supports call-backs, the problem with high delays when fetching the 
information is eliminated. The CASA will be fed with fresh information 
continuously in the background. When the information is needed by the DA it 
will already be there, fully updated. The only problem with call-backs is the lack 
of control of the network utilization. Information is sent over the network when it 
has changed and not necessarily when it is needed (compared to on-demand) 
which means that information that never is used will be sent over the network (as 
in prefetch mode). The network utilization depends on the information source 
and not the incoming request rate (on-demand) or a predefined interval 
(prefetch). 
 
 
4.5 Deciding when to fetch information 
 
Different situations put different demands on the fetching process of context 
information. In some cases the PAN may consist of just a few entities providing 
only a small amount of context information. In others the PAN may include lots 
of entities (theoretically, hundreds of entities are possible), each capable of 
delivering very rich context information. Likewise, in some settings the context 
information network may be very responsive and deliver information with very 
low delays, while in other cases each request for information may take a 
considerable amount of time. Furthermore, the process of updating information 
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generates network traffic, which in some networks should be kept to a minimum 
due to high communication costs and power consumption. 
 
In section 4.4 three approaches for collecting context information were presented. 
By looking at the basic demands on a service allocator we will now try to find the 
best approach for collecting context information.  
 
 

4.5.1 High demands on accurate allocations 
 
An allocation is considered accurate if the device(s) that were the most suitable 
for handling the request, according to the allocation algorithm, at the moment 
when the service request arrived at the CASA, were allocated the service. The 
most important factor for an allocation to be accurate is thus to have up to date 
information for the allocation process. If old information is used by the allocation 
process, the device(s) that were the most suitable when that information was 
collected will be allocated the service. Provided that the information has changed 
in the meanwhile, an inaccurate or suboptimal allocation will be performed. 
 
If the information used by the allocation process is collected upon receiving the 
incoming service request an accurate allocation will be preformed, according to 
the definition above. If information is automatically updated at the CASA the 
allocation will be accurate as well. Consequently, on-demand information 
fetching or call-backs are preferred in this case. If delay is not an issue, the 
former should be used due to its low network utilization.  
 
 

4.5.2 High demands on low allocation delays 
 
As mentioned in section 4.4.1, there are three delays that will affect the total time 
Ttot that is needed for a service allocation when using on-demand information 
fetching. Two delays are associated with the information collecting process 
(TComm and TCME) and the third with the allocation process (TAlloc). The delay 
occurring when fetching all the information needed by the DA is called TIC. 
When collecting information on-demand the time TIC will be spent after the 
CASA receives the service request and consequently Ttot = TIC + TAlloc. On the 
other hand, when using call-backs or prefetching information Ttot = TAlloc.  
 
TIC is the time needed for collecting all the information needed. To get an 
indication of how large this delay can be, we have to look at the number of 
entities that are subject for information fetching (n), TComm, and TCME. If 
information is fetched only from one single entity (n=1) TIC = TComm + TCME. 
When information is needed from several entities TIC will depend on the amount 
of parallelism of the CME and IC.  
 
If the CME is capable of processing the requests in parallel TIC will be reduced. 
Its important to note that the size and cause of the delay TCME(i)  affects TIC. If for 
example the main part of TCME(i) is because of lack of resources in the CME, 
every thread on the CME may experience this delay. In this case it will not help 
that the CME is multithreaded, the delays for every request will be additive 
(although not necessarily linearly). On the other hand, if the main part of TCME(i) 
is spent by the CME waiting for the queried entity to answer a request, the next 
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request from the IC can be served in the meantime. Consequently, the largest 
processing time for a request will have big impact on TIC and TIC ≥ max(TCME(i)) 
+ (communication delays). 
 
Suppose that TIC is t ms for a certain PAN. This means that an allocation will 
take more than t ms in total (Ttot = t + TAlloc, where TAlloc > 0). However, if a 
maximum of t milliseconds are acceptable by the user, then on-demand 
information fetching can not be used. The system should instead prefetch 
information or use call-backs if supported. 
 
TAlloc is the time needed for the DA to execute the allocation algorithm. It 
depends on the complexity of the allocation algorithm, the number of devices, 
and the performance of the machine hosting the system. This delay is perhaps 
short in comparison with TIC, but is of course machine dependent. There are 
extreme cases where TAlloc can be considerable longer. If for example the hosting 
machine has insufficient amounts of free memory the information about the 
devices (which normally is kept in the main memory), will be swapped out on 
disk and trashing may occur upon accessing the information.  
 
 

4.5.3 Minimizing the amount of traffic 
 
In some environments network traffic is expensive and should be kept to a 
minimum. If information is collected frequently from the devices, the amount of 
traffic can be considerable. This applies especially to a PAN with many devices. 
Prefetching information periodically at short intervals is therefore not 
recommended if traffic costs or power consumption are an issue. Neither are call-
backs because there is no control over the update rate. Instead on-demand 
information fetching should be used if possible. 
 
If the prefetch interval is p seconds and the communication needs per prefetch is 
c bytes, c/p bytes will be sent every second. A simple example will show the 
amount of traffic that can be expected in a small PAN with 5 entities. Assume a 
combined request/response size of 10000 bytes (message sizes for the request 
and response messages including the context information in the response for the 
5 entities). Now totally 1000 bytes will be sent every second if the prefetch 
interval is 10 seconds. This means that 82.4 Mbytes will be shuffled between the 
system and the context network every day and occupy frame space in the 
network. Even though this traffic is only a small part of the total bandwidth 
(~0.2% for Bluetooth in 433.9Kbit/s mode and ~0.005% for 802.11b in 11Mbit/s 
mode) extra background traffic may be undesirable in some settings. This 
background traffic is comparable to the 802.11b network beacons which are sent 
every 100ms (typically). With a beacon frame size of 60 bytes a total of 50 
Mbytes is sent every day, just as beacons. 
 
 
 
4.6 Adapting to actualities  
 
The main goal of the system is to make it easier for the user in the PAN by 
automatically allocating the incoming service to the best suited device(s). The 
user may affect the choice of device(s) by changing preferences, but the average 
user is assumed to be uninterested in reconfiguring the system when conditions in 
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the PAN change. In this section a number of techniques are presented for making 
changes in the PAN more transparent. These changes may depend either on the 
way the user acts or the entities in the PAN. Each of these features can easily be 
deactivated if the user wishes to have more control over the system. 
 
 

4.6.1 Adapt to the request rate 
 
As discussed in section 4.5 the best way to hide delays associated with fetching 
the context information is to prefetch the information or use call-backs (if 
supported). However, prefetching information normally implies high network 
utilization which in some cases is undesired while call-backs can give 
uncontrollable network utilization if the information values are fluctuating 
widely. If both low delay service allocation and low network utilization is 
important, the system can be used in a mode where the information fetching 
method is dynamically adjusted to the utilization of the system.  
 
The system will start in on-demand mode for minimized network utilization. 
When the system starts receiving a certain number of service requests per unit of 
time the system will switch to prefetch or call-back mode if supported in order to 
minimize the delay of each service allocation. If the request rate later drops, the 
system will go back to on-demand mode. 
 
Of course the requests prior to the switch to prefetch or call-back mode will 
experience the delay associated with the on-demand information fetching. 
However, a system receiving service requests more frequently than the 
predefined interval will soon reduce these delays, while at the same time 
reducing network traffic during time periods with low activity, such as the 
middle of the night. 
 
 

4.6.2 Adapt to context network performance 
 
The performance of the context network may vary over time and depend on the 
(user’s or device’s) location. Even if the CME contacted in one room was very 
responsive, the CME in the next room may be a bad performer. As discussed in 
section 4.5, a slow context network can be hidden from the user by prefetching 
the needed information or using call-backs. However, it would be very 
inconvenient for the user to be required to actively choose the method. 
Consequently, a mechanism is needed that estimates TIC and selects the method 
that best suites the current situation. The main goal with this technique is 
reducing Ttot while at the same time trying to minimize the network utilization 
when call-backs are not supported. 
 
The system will start in prefetch mode and the first round of information fetching 
will be measured to estimate TIC. If TIC exceeds the threshold value predefined by 
the user, on-demand information fetching is out of the question. Consequently, 
the CASA has to continue to work in prefetch mode. To be able to adapt to new 
conditions in the PAN each information retrieval will be measured. If 
considerable changes to TIC are discovered (in this case if TIC suddenly turns out 
to be less than the threshold value) the system will switch information fetching 
mode. 
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The advantage with this technique is that the user does not have to bother with 
tricky settings when the conditions in the PAN changes. Actually, very little extra 
communication and processing are needed. The disadvantage is that if the system 
is in on-demand mode when switching to another CME (for example, changing 
rooms) the first incoming service request may experience delays if this new CME 
is slow.  
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5. Analysis 
 
To prove that a service allocation system for PANs is feasible we implemented 
the ideas presented in section 4. By implementing the system it is possible to 
identify possible problems with the design, but it also gave us the ability to 
perform tests that can give valuable input to other work in this area.  
 
 
5.1 Implementation 
 
In section 4 we proposed a system for allocating services called CASA, and also 
expressed a need for a context server to serve CASA with context information. 
We presented three different ways to get and update the context information at 
the CASA (see section 4.4). Furthermore, two techniques were introduced in 
section 4.6 in order to make changes in the environment of the PAN more 
transparent. All of the above were implemented in a prototype that shows that the 
components and techniques are feasible.  
 
To demonstrate how a service allocation may happen the service allocation 
algorithms in section 4.3.3 were implemented as well. These allocations were 
also used when testing the system (see section 5.2). 
 
 

5.1.1 Implementation tools 
 
The prototype was implemented in Java using the Java 2 Standard Edition SDK 
1.4.2_04 [25]. Java is a programming language well suited for prototyping due to 
its simplicity and debugging capabilities. Furthermore, Java is platform 
independent which makes it easy to perform tests on different platforms. The SIP 
signaling was facilitated by using an Application Programming Interface (API) 
called Java APIs for Integrated Network Framework, i.e., JAIN SIP, developed 
by the U.S. National Institute of Standards and Technology (NIST) [26]. 
 
To generate service requests and test the allocations, three different types of soft 
phones were used, namely Linphone (ver. 0.12.2) [27], Kphone (ver. 4.0.3) [28], 
and X-Lite (ver. 2.0) [29]. Linphone is designed for the GNOME desktop 
environment and consequently runs on Linux. Kphone is a Linux softphone as 
well, but developed for the K Desktop Environment (KDE). X-lite, on the other 
hand, is a softphone for Windows (including Windows CE) and MacOS.   
 
 

5.1.2 Implementation details 
 
The implementation shares several components with the SSM presented in [15]. 
Policy decisions and service allocations are closely related and it should be 
possible to use both mechanisms in conjunction with each other. The 
implementation allows the devices permitted by the policy decision to be used in 
the service allocation. Consequently, only devices allowed by the policies may be 
allocated the service. 
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To serve the CASA with context information a context server supporting all the 
information delivery methods, namely on-demand information fetching, 
prefetching, and call-backs is needed. This context server will act as a CME with 
server capabilities in a context network. The server should be external to CASA 
and able to run on a different machine. Furthermore, the server should be 
multithreaded so each request can be handled by its own thread.  
 
The server is contacted by sending a request specifying which information is 
wanted. In our prototype a static IP address is used to reach the server. Upon 
receiving the request, the server reads the requested information and returns it in 
a response message. The context information about the PAN is stored in objects 
on the server and the request/response messages are sent as serialized objects. To 
reduce the number of requests and make the communication more effective, it is 
possible to ask the context server for more than one information element and 
entity per request. This means that all information needed in the allocation 
algorithm can be requested and returned in two messages (but not necessarily 
only two packets). 
 
If call-backs are used the CASA will constantly listen for incoming information 
messages on port 8081 (currently unassigned according to Internet Assigned 
Numbers Authority (IANA) [30]). The context server will send information to 
this port whenever it is updated. When an information message arrives (similar to 
an on-demand or prefetch response message) the information stored in the CASA 
will be updated. 
 
All requests for context information are made through the IC which acts as a 
client. Each request is handled by a new thread. The IC is implemented 
supporting a generic interface. This design makes it easy to replace the current 
context server and the communication protocol with other solutions when 
available. The TCP protocol is used for data transport due to its reliability and 
flow control. 
 
The Device Allocator (DA) is responsible for choosing the devices that will 
handle the incoming service request. This is where the allocation algorithm is 
implemented and also where the context information is processed. The allocation 
algorithm is intended to be easy to replace to satisfy the needs of the user in the 
PAN. Consequently, the DA is implemented using an interface as well.  
 
Note that establishment of the RTP streams when more than one device is 
allocated the incoming service and the media needs to be forked is excluded from 
the implementation. We will only make sure that the right devices are allocated 
(invited to the session). Media forking can be handled in different ways [31]. One 
is to deliver multiple streams to the caller from different addresses, another is to 
let the RTP streams go through the gateway (i.e. CASA). Read more about this in 
section 6.2.  
 
For more details of the implementation, the reader can consult the Javadoc 
documentation provided with the code. Here each class and its associated 
methods are described in detail. 
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5.2 Test 
 
Given an implementation of a system for automatic service allocations it is time 
to prove that it actually works and that it performs as expected. There are several 
questions that need to be answered. Are the right devices allocated the service? 
How accurate is the allocation? Is the total delay for allocating a service 
acceptable? How do different delays affect the total delay? How much traffic can 
be expected on the context network with a certain information collection 
method? All these questions are answered in the following sections. 
 
As discussed in section 4.3.3 the example allocation algorithms were designed to 
show different properties and aspects of service allocations. These allocation 
algorithms will be used throughout all the tests.  
 
 

5.2.1 The correctness of a service allocation 
 
A fundamental requirement of the system is that the correct devices are allocated 
in a service allocation. The devices that are allocated the service are chosen by 
the allocation algorithm. Here we do not care if the allocation is accurate, only if 
the devices from the outcome of the allocation algorithm are allocated, i.e. 
receives an INVITE message with a correct body. Details about the example 
allocation algorithms can be found in section 4.3.3. 
 
In this test we will look at a PAN with 5 devices that are capable of providing 
some kind of service.  
 
Service allocation A allocates the incoming service to the device that does not 
have a certain process p running, but has the most battery power left. A list of the 
current running process and the battery status is needed from every device. 
Throughout all the tests the size of the process list was 1.8KB. 
 
When the service request arrived at CASA the devices in the PAN had the status 
shown in Table 1: 
 

 
Table 1. The status of the devices in the PAN before service allocation A. 
 
 
Result: Device 1 was allocated the service which satisfies the allocation 
algorithm. 
 
 
Service allocation B needs information about the ambient light level, device 
capabilities, display type, display size, and available bandwidth in order to select 

Device p in list (boolean) Battery status 
0 false 70 
1 false 93 
2 true 99 
3 false 24 
4 false 11 
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the device that can best play an incoming video stream. All information but the 
ambient light level is collected from the devices that may be allocated the 
service. The ambient light level value is fetched separately and comes from a 
device (device 5) that cannot handle a service request. Furthermore, the media 
descriptor of the incoming request needs to be read. 
 
When the service request arrived at CASA the devices in the PAN had the status 
presented in Table 2. The media descriptor in the incoming request held the text 
string “video”. 

 
 

 
Device Capabilities Display 

type 
Display 
size 
(pixels) 

Available 
bandwidth

Ambient 
light level 

0 video TFT 20480 9967 - 
1 video STN 20480 711 - 
2 video TFT 40960 901 - 
3 video TFT 40960 9609 - 
4 video TFT 20480 808 - 
5 - - - - 4 

 
Table 2. The status of the devices in the PAN before service allocation B. 
 
 
Result: Device 3 was allocated the service which is in accordance with the 
allocation algorithm. 
 
 
Service allocation C allocates the incoming service request to the device or 
devices that have the biggest screen size and the largest number of speakers.  
 
When the service request arrived at CASA the devices in the PAN had the status 
shown in Table 3. 
 
 

 
Table 3. The status of the devices in the PAN before service allocation C. 
 
 
 
Result: Device 1 was allocated the audio stream and device 3 the video stream 
which satisfies the allocation algorithm. 
 
 

Device Display size (pixels) Number of speakers 
0 20480 2 
1 20480 8 
2 40960 6 
3 40960 2 
4 20480 4 



 43

5.2.2 The accuracy of a service allocation 
 
As discussed in section 4.3.4 the accuracy of a service allocation depends on how 
up to date the context information is. If on-demand information fetching is used, 
the context information will always be up to date when needed because it is 
fetched after the service request arrived. Consequently, the allocation will always 
be accurate if on-demand information fetching is used. Likewise, the information 
will also be up to date when it is needed by the allocation when call-backs are 
used. In fact, the context information will always be up to date at the CASA 
when call-backs are used.  
 
The situation is different when the context information is prefetched. Now the 
context information stored at the CASA and used by the allocation algorithm can 
be outdated. Consequently, a service allocation based on prefetched context 
information will be more or less accurate. The prefetch interval and the update 
interval of the information at the context server will give us the probability that 
the information used by the CASA is up to date. If the context information is up 
to date when it is used it means that same information can be found on the 
context server.  
 
How inaccurate can a service allocation be, but yet be acceptable is up to the 
user. However, the lower the accuracy the greater the risk that the wrong 
device(s) is allocated the service. If a faulty allocation is totally unacceptable, 
prefetch should not be used at all. In this thesis, we accept an allocation outcome 
only if the probability that it is accurate is greater than 50%.  
 
To test how often the allocation algorithm is using outdated information we have 
to simulate changes in the context information at the server as well the incoming 
service requests. One way to study the consistency of the information at the 
server and the information used by the allocation algorithm is to call a special 
method on the server when the information is used by the CASA. This call will 
initiate a dump of the information to a buffer. If the information used in the 
allocation is dumped as well, these buffers can later be compared for consistency. 
The server and the CASA should run on the same machine when performing this 
test to avoid communication delays that otherwise will affect the dump method 
call. The call can now be a direct method call on the server object. 
 
We will test the consistency by having a fixed context information update 
interval (this can be seen as a mean update interval) and vary the prefetch interval 
to see how this affects the accuracy of the allocation by changing the prefetch 
interval. Each information update at the server indicates a change. 
 
The context information is updated at the server with a mean interval of 10 
seconds (uniformly distributed update times). Every time an incoming request 
arrives at the CASA the information is written to a log file, both at the CASA and 
the context server. The arrival rate of the requests was 1/T where T was 
uniformly distributed and mean(T)=10*Tfetch. Note that the updates from the 
devices are not necessarily always uniformly distributed in time. This depends on 
the sensors and the behavior of the measured quantity.  
 
In the first test information is only fetched from one device in order to see how 
the prefetching interval affects the amount of information that is up to date (i.e. 
matching the server’s information) at the CASA when a request arrives. The test 
was run for 200 incoming requests. The results are presented in Table 4. 
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Tfetch (seconds) Theoretical Puptodate Matching information 
1 0.95 0.94 
2.5 0.875 0.87 
5 0.75 0.74 
10 0.5 0.52 
20 0.25 0.27 
40 0.125 0.12 

 
Table 4. Theoretical values and test results for different prefetch intervals. 
Information about one single device was fetched. 
 
 
According to the reasoning in section 4.3.4 the accuracy of an allocation should 
drop when information from more devices are needed. To test this statement we 
will look how the accuracy of an allocation changes with the number of devices 
involved in the information prefetching process. A prefetch interval of 5 seconds 
was chosen for this test. 
 
 
 

Number of devices Theoretical Paccurate Matching information 
1 0.75 0.74 
2 0.56 0.53 
3 0.42  0.41 

 
Table 5. Theoretical values and test results for different numbers of devices 
with a prefetch interval of 5 seconds and a mean update interval of 10 
seconds. 
 
 
As Table 5 shows, the probability that the service allocation is accurate is already 
less than 50% when 3 devices are involved in the allocation. This means that 
even for a small PAN the prefetch rate has to be high to ensure that up to date 
information is used by the allocation algorithm. 
 
It is important to note that every change in information is only significant for the 
outcome of the allocation algorithm in a worst case scenario. Depending on the 
algorithm and the values used (e.g., how close the different values are in relation 
to each other or if thresholds are used) this is not always the case and a missed 
update can still lead to a accurate allocation. However, one should be aware that 
there is a risk that the allocation will be inaccurate, and that this risk is bigger if 
the context information is fetched with a long prefetch interval. 
 
 

5.2.3 The delay of a service allocation 
 
When a service allocation is performed different delays will slow down the 
allocation process. Some of the delays are visible to the user (the caller) while 
others are possible to hide by performing the tasks that generate the delays in the 
background. As discussed in section 4.4, the delay associated with executing the 
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allocation algorithm, TAlloc will always be visible to the user. The delays 
occurring when fetching information (TIC) will on the other hand only be visible 
when on-demand information fetching is used. In this series of tests we will 
examine the total delay for an allocation, both when fetching information in the 
background (prefetch or call-backs) and in the foreground (on-demand).  
 
When the context information is fetched in the background the delay related to 
the service allocation process depends only on the time it takes to run the 
allocation algorithm. TAlloc is of course highly dependent on the allocation 
algorithm, that is how it is implemented (for example how lists are searched) and 
how much context information it uses. The available processing power of the 
machine hosting the CASA is also important. To get an idea of the size of TAlloc 
we will look at the example algorithms A, B, and C. These tests were performed 
on a 2.4 GHz AMD Athlon64 (running in 32-bit mode) with 1024MB of RAM. 
The number of devices and the context information are the same as in section 
5.2.1. To measure time with higher precision than what is possible with the 
System.currentTimeMillis() a timing library written by Vladimir Roubtsov [32] 
using Java Native Interface (JNI) was used. 
 
Although the delays are machine dependent the following numbers will give an 
indication of what performance that can be expected of the proposed system and 
which delays that may lead to problem. 
 
Figures 14, 15 and 16 shows the delays of the allocation algorithms for different 
PAN sizes. 
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Figure 14. The delay associated with running the allocation algorithm A for 
different PAN sizes. The line is a linear curve fit to the measured values. 
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Figure 15. The delay associated with running the allocation algorithm B for 
different PAN sizes. 
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Figure 16. The delay associated with running the allocation algorithm C for 
different PAN sizes. 
 
As the Figures 14-16 show, service allocation A is the most time consuming 
algorithm. The reason is that the algorithm searches for a process in the process 
list for each device. Service allocation B utilizes information from the incoming 
service request and consequently this information has to be extracted and 
analyzed. This procedure takes 61µs, and needs to be done every time the 
allocation algorithm is executed. All algorithms were fed with context 
information that would cause the worst case for each algorithm. This means that 
even the algorithms that eliminate devices had to iterate through all devices in 
every loop. All of the example algorithms scale linear but this may not be the 
case for future algorithm used with the CASA. 
 
For 5 devices in the PAN the allocation algorithm delays were: 
 
Service allocation A: 419µs 
Service allocation B: 74µs 
Service allocation C: 1 µs  
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The SIP message handling, i.e. parsing the incoming message and composing the 
outgoing message took 4.898ms.  
 
When background information fetching is used the allocation algorithm delay 
and the SIP message handling will be the only delay visible to the user. None of 
these delays will be a problem when doing a service allocation as they together 
are much lower than the critical boundary of 1000ms. Even when the most 
complex service allocation algorithm (A) is used it will only take about 5.5ms 
before the INVITE message is ready to leave the CASA on the test machine for 
the example PAN with 5 devices.  
 
Furthermore, when the context information is fetched in the background it is 
possible to pre-compute the parts of the allocation algorithm that does not depend 
on information in the service request. By doing this, the visible part of TAlloc will 
be reduced. However, the pre-computation has to be performed every time new 
context information arrives at the CASA, which may be undesirable because of 
higher CPU utilization and power consumption. 
 
When the context information is fetched on demand or in the foreground neither 
the communication delays nor the allocation algorithm delay can be hidden. 
These delays will always be visible to the service request initiator. Figure 17 
shows the delays occurring when fetching information for a service allocation 
with different sizes of the PAN. In the following two tests, the context server 
resides on the same machine as the CASA. 
 
 

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600 700 800 900 1000

Num ber of devices

D
el

ay
 (m

s) Service alloc. A

Service alloc. B

Service alloc. C

 
Figure 17. Delays associated with on-demand context information fetching. 
 
 
As Figure 17 shows, up to nearly 800 devices can be included in the PAN before 
the information fetching delay gets too high in the test environment when service 
allocation B or C are used. If service allocation A is used the delay is slightly 
higher so the limit is ~650 devices. The reason is that the allocation algorithm 
requires more information which means larger response messages from the 
context server that takes a longer time to transfer. 
 
In the example PAN with five devices that are able to serve a request, on-demand 
context information fetching is no problem. As Figure 18 shows, none of the 
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service allocation examples take more than 25 ms. The reason why service 
allocation B takes the longest time is that this allocation algorithm requires 
information from one more device, the ambient light sensor. This sensor is 
located on a separate device in the example PAN. 
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Figure 18. Total delays for the example service allocations in the example 
PAN (N=5) when using foreground information fetching. 
 
 

5.2.4 The generated amount of traffic 
 
The amount of traffic that is generated by the communication between the CASA 
and the context server during a certain time period depends on several factors. 
The way that the context information is acquired is of course an important factor. 
On-demand information fetching requests all information needed in the 
allocation and consequently the generated traffic will be the sum of all 
information elements. How much traffic that is generated for a certain time 
period is dependent on the incoming service request rate.  
 
The incoming service request rate may look very different for different PANs. 
Many factors come into play. If the CASA for example is used by a mobile 
employee at the support department of a company the request rate can easily 
reach one request every fifth minute during the office hours. On the other hand, if 
the CASA is used by a recluse, the request rate can be a few incoming requests 
per year. Because the request rate depends on who is using the system and for 
what purposes it is difficult to predict what a typical request rate is. It is more 
important that the design of the CASA supports different usage scenarios. 
 
Prefetching generates the same amount of traffic that on-demand fetching 
generates for one request every fetching round (for the same allocation algorithm 
and the same number of entities in the PAN). Consequently, the total amount of 
traffic for a certain time period is highly dependent of the prefetch interval.  
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When call-backs are used the server will send information only when it is 
updated. This means that to predict the generated amount of traffic, the behavior 
of the entity reporting to the server has to be analyzed (of course the size of the 
information elements has to be known as well).  
 
Under these tests we will assume that the number of devices in the PAN subject 
for information fetching remains constant. It should be noted that service 
allocation B needs information about the ambient light level from a light sensor 
that we assume is located on a device that not is able to handle any incoming 
service. Consequently, if the PAN consists of N devices that can handle an 
incoming service, N+1 fetches is needed from the context server because 
information is fetched per entity. 
 
 
As mentioned above, the amount of traffic generated when using prefetch 
depends on the number of devices subject to fetching, the amount of information 
needed from each device, and the prefetch interval. Figure 19 shows the amount 
of traffic that will be generated per day for the prefetch intervals discussed in 
section 5.2.2 for a PAN with N=1, while Figure 20 shows the daily traffic 
amounts in the example PAN with 5 devices. 
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Figure 19. The generated amount of traffic with N=1 devices in the PAN 
when the context information is prefetched. 
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Figure 20. The generated amount of traffic with N=5 devices in the PAN 
when the context information is prefetched. 
 
 
As Figure 20 shows, a short prefetch interval generates lots of traffic. In the 
example PAN consisting of 5 devices more than 1 GB is sent to and from the 
context server every day if the prefetch interval is 1 second and a service 
allocation that depends on bulky data (e.g., allocation A) is used. If the 
communication is expensive, some other fetching technique should be 
considered. According to [33], the energy consumed per every bit transmitted in 
a 802.11b (11 Mb/s) network is 327 nJ (peak). This means that up to 
approximately 350J is consumed when fetching context information every 
day (service allocation A, prefetch interval = 1 s). 
 
 
The amount of traffic generated when using call-backs depends on the number of 
devices subject to fetching, the amount of information needed from each device, 
and the update interval at the context server. The last factor depends on the 
characteristics of the information, the sensors delivering the context information 
and the context server [5][24]. The update intervals in Figure 21 and 22 are the 
mean update intervals for each entity.  
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Figure 21. The generated amount of traffic with N=1 devices in the PAN 
when using call-backs. 
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Figure 22. The generated amount of traffic with N=5 devices in the PAN 
when using call-backs. 
 
 
The generated traffic amounts when the CASA uses on-demand information 
fetching are similar to prefetching with the difference that now the incoming 
request rate determines how often data is fetched and not a predefined prefetch 
rate. Figure 23 shows the amount of traffic generated for a single incoming 
service request for a certain PAN size. 
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Figure 23. Traffic generated in the context network after receiving a service 
request. 
 
 
As mentioned above, the rate of the context information fetching is an important 
factor of how much traffic that will be generated. When the information is 
prefetched a fixed prefetch rate will tell how often context information is fetched. 
If call-backs are used, it is instead the update rate of the information elements 
that determines how often new context information will arrive at the CASA. In 
the last case, when information is fetched on-demand, it is the incoming service 
request rate that determines how often information is fetched. Consequently, if 
the request rate is higher than either the prefetch rate (in prefetch mode) or the 
mean update rate (in call-back mode), more traffic will be generated compared to 
if the system was in background mode. As we will see in the next section, large 
amounts of traffic can be saved if the fetching mode is adjusted to the service 
request rate. 
 

5.2.5 Test the ability to adapt to the request rate 
 
By adapting the information fetching method to the request rate (see section 
4.6.1) the delays are lowered when the system is heavily used, but still the 
network traffic is kept to a minimum when the system is rarely used. In practice 
this means that the CASA will work in prefetch or call-back mode when the 
incoming request rate is high and in on-demand mode when it is low. This test 
shows that the CASA changes fetching mode depending on the request rate and 
how this affects the traffic amounts. 
 
The threshold value determining when the system should use background context 
information fetching is a balance between allocation delay and network 
utilization. A user concerned about high allocation delays should set a high 
threshold value, meaning that the CASA will switch to background mode as soon 
as another incoming request arrives at the system within that interval. On the 
other hand, if low network utilization is more important the threshold value 
should be small.  
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Consider a PAN that is used at work exclusively by an employee at the sales 
department. If for example the incoming service request rate is 2 per hour during 
office time in and the threshold value is 1 per hour the CASA will work in 
background mode after receiving the second service request. At the end of the 
day, when no service request arrives in 1 hour, the CASA will go back to on-
demand mode and avoid network traffic during the night. In this example, call-
back was used as the background information fetching technique with a mean 
update interval of 10 seconds. 
 
To visualize this example and test that the CASA really switches mode, incoming 
service requests were generated with a mean arrival rate of 2 per hour and the 
arrivals occurring according to a Poisson process. The example PAN consists of 
5 devices and service allocation A was used to select the device. Figure 24 shows 
when the service requests arrived at the CASA and which information fetching 
mode that was used. 
 
 

 
 
Figure 24. The incoming service requests and the resulting information 
fetching mode. Background information fetching mode in light gray. 
 
 
During this day 13 incoming requests arrived at the CASA. The third request (at 
t=10.39) made the system switch from on-demand mode to call-back mode. The 
subsequent requests arrived within one hour after each other and consequently 
the system stayed in call-back mode until one hour after request 12. This means 
that the system was in call-back mode for 4.91 hours. During this day a total of 
22.67 MB was sent between the CASA and the context information server. If the 
CASA should have been in call-back mode all the time, 110.51 MB would 
instead have been sent over the network. On the other hand, if the delay had been 
low enough to always fetch context information on-demand, only 157 KB would 
have been sent over the network. This shows that the cost of having low 
allocation delays often is paid for with increased network utilization in many 
networks.  Note that the cost in accuracy of the allocation when going from 
110.51 MB to 22.67 MB is zero because neither on-demand information fetching 
nor call-backs uses other than up to date context information. 
 
 

5.2.6 Test the ability to adapt to context network performance 
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The aim with the technique to adapt to context network performance (proposed in 
section 4.6.2) is to have control over network utilization and allocation delays. If 
the information fetching delay is low enough (lower than the predefined 
threshold value) on-demand information fetching will be used to minimize the 
amounts of traffic. On the other hand, if the delay is higher than acceptable when 
fetching information on-demand, the system will instead prefetch information. In 
this test it is uninteresting what causes the information fetching delay, only that 
there is a delay. We will instead show that the CASA switches between modes 
depending on the fetching delay and that it will have impact on the total 
allocation delay.  
 
To show the transition between the context information fetching modes a context 
server with adjustable delay for each request will be used. By altering the 
processing delay we can simulate different amounts of load on the context server. 
There are many possible reasons for why the fetching delay may change. For 
example the context server or some of the devices it communicates with may be 
overloaded. Figure 25 illustrates the behavior of the CASA when the fetching 
delays changes and the threshold value is set to 1000 ms. 
 
 

 
Figure 25. Adaptation to context network performance. The dots indicate 
context information fetches. 
 
 
The CASA starts in prefetch mode with a prefetch interval of 10 seconds. The 
first four fetches take longer than the allowed maximum of 1000 ms. Therefore, 
the system will remain in prefetch mode. Information fetch number 5, occurring 
at time t=40, takes less than 1000 ms and the CASA will now switch to 
on-demand information fetching. At t=54 a service request arrives at the system 
and information will be fetched to serve the allocation algorithm with up to date 
context information. The delay associated with this fetch is also lower than the 
threshold. The next service request arrives at t=1085 and this time the 
information fetch takes longer than allowed, thus the CASA switches to prefetch 
mode. 
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The amount of traffic generated by the system will be reduced when the system is 
in on-demand mode (t=40 to t=1085). Consider the example PAN with 5 devices. 
If the CASA is configured with service allocation A generating 12073 bytes per 
fetch, a total of 1.24 MB will be saved during this period of time. For service 
allocation B and C the numbers are 0.31 MB (3098 bytes per fetch) and 0.26 MB 
(2532 bytes per fetch) respectively. 
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6. Conclusions and future work 
 
The proposed service allocation system is able to use context information, 
gathered at a context server, to allocate the devices that can best serve an 
incoming service request. This concluding chapter presents findings and open 
issues that may be addressed in future work. 
 
 
6.1 Conclusions 
 
In this thesis we have looked at three different context information fetching 
methods, namely on-demand information fetching, prefetching, and call-backs. 
We have seen that the context information fetching method affects the accuracy 
of the allocation, the utilization of the context management network, and the 
delays associated with allocating a service request in different ways. 
 
On-demand information fetching is the most straight-forward approach for 
serving the allocation algorithm with context information. The CASA acts as a 
client and requests information from the server when needed, that is only when 
receiving an incoming service request. Because the context information is 
requested immediately after receiving the incoming service request, the 
information returned by the context server is up to date and the allocation will 
always be accurate. However, there are two disadvantages with on-demand 
information fetching. Firstly, because the context information is fetched in the 
foreground, the delays associated with the fetching process will be visible to the 
service request initiator. If the context server for some reason is overloaded, 
perhaps due to a large number requests, this will affect the total allocation time. 
Furthermore, there is no control over how much information will be sent in the 
context network when on-demand information fetching is used because the 
incoming service request rate is often unknown.  
 
One way to control the context network utilization is to prefetch the context 
information. Now information will be fetched in the background with a 
predefined interval. As long as the information subject to fetching isn’t 
fluctuating that much in size, the traffic amounts generated by the system can be 
calculated in advance, thus leading to a higher average rate, but a lower peak 
value. Furthermore, because the context information is fetched in the background 
and no communication is needed with the context server upon receiving the 
service requests, the time spent waiting for the context information is no longer 
visible to the user. The problem with prefetching the context information is that 
the accuracy of the service allocation can be low. Even if the update rate of the 
context information is low and the prefetch rate is high there is no guarantee that 
the information used in the allocation algorithm is up to date. Consequently, if 
the accuracy of a service allocation is important, the context information should 
not be prefetched.    
 
Instead of letting the system request context information, either upon receiving a 
service request or on a regular basis (both are pull methods), the context server 
can send or push context information to the system when it is updated. This 
approach of call-backs has several advantages. The most important is that the 
context information will always be up to date at the system. Moreover, the 
context server will send information to the system only when it is updated, which 
means that information that is already synchronized between the context server 
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and the system won’t occupy bandwidth in the network. However, it is important 
to understand that the update rate of the context information directly affects how 
often the context server will contact the system with new information. If the 
information is bulky, the amount of traffic generated can be considerable. At the 
same time, this technique can generate less traffic than on-demand information 
fetching if the information update rate is lower than the incoming service request 
rate. If communication costs are an issue, the update rates of the context 
information should be well understood or otherwise the information is better 
fetched on-demand.  
 
 
 
6.2 Future work 
 
While we show that multiple devices can be allocated one incoming service by 
forking and modifying the SIP INVITE message, the actual media streams still 
need to be established between the service request initiator and the allocated 
devices. When only one device is allocated the service, the media streams are 
established directly between the initiator and the selected device. But if several 
devices where allocated some mechanism to fork or replicate the media is 
needed. There are at least two ways of doing this [31]. Either the streams are 
established directly between the initiator and the allocated devices, or the CASA 
acts as a media proxy and splits/merges and distributes the media stream in the 
PAN. The first approach means less work for the CASA, but requires support for 
multiple stream endpoints at the initiator and more external traffic to/from the 
PAN. If instead the CASA acts as a proxy, the set of allocated devices will be 
hidden from the initiator and only one media stream needs to be established 
between the initiator and the CASA. However, this approach requires more logic 
and processing at the CASA when splitting and merging the media streams, but 
reduces external traffic.   
 
There is currently work in progress in the context network area [5]. CMEs and 
protocols for distributing context information are under development. When 
these parts are finished the CASA could use this protocol and get the context 
information from a context network built upon the CMEs. The CASA is designed 
to be easy to use with other protocols and context information infrastructures. 
 
To reduce traffic in the context network when using call-backs a mechanism that 
lets the CASA specify when new information should be sent could be added to 
the context server. This would make it possible to tell the server that a certain 
value only needs to be sent to the system if it exceeds a threshold value (that is 
sent to the server with the subscription). Such a mechanism is further described 
in [24]. 
 
Another way to avoid unnecessary communication with the context server is to 
add logic to the CASA that predicts changes in the context information. With this 
functionality it would be possible to use cached information instead of always 
asking the context server when information is needed. This would of course be 
most efficient with context information that changes at a relative fixed rate.  
 
The CASA would benefit from a service discovery method that could identify 
available services and include them into the set of services provided in the PAN. 
Such protocols exist [8], but are yet to be integrated with the CASA. 
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Lastly, security aspects have been left out in this work. Neither the context server 
nor the CASA includes any mechanism that guarantees that the context 
information really comes from the requested entity. Consequently, context 
information can easily be modified or eavesdropped between the endpoints. 
Authorization between the context server and the CASA combined with integrity 
protection and encryption would be desirable.  
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Appendices 
 
 
Appendix A – Abbreviations 
 
 
ACAS Adaptive and Context-Aware Services 
AOR  Address-Of-Record 
AP  Access Point 
API  Application Programming Interface 
AVP  Audio-Video Protocol 
CASA Context Aware Service Allocator 
CDXP  Context Data eXchange Protocol 
CME Context Management Entity 
CMN Context Management Network 
CODEC  Coder Decoder 
DHCP  Dynamic Host Configuration Protocol 
DNS  Domain Name System 
FQDN  Fully Qualified Domain Name 
IETF  Internet Engineering Task Force 
IP  Internet Protocol 
JAIN Java APIs for Integrated Network Framework 
KDE  K Desktop Environment 
LAN  Local Area Network 
LARD Locality-Aware Request Distribution 
MIKEY  Multimedia Internet KEYing 
NIST  National Institute of Standards and Technology 
PAN Personal Area Network 
PCM  Pulse Code Modulation 
PDA  Personal Digital Assistant 
RFC  Request For Comments 
RTP  Real-Time Protocol 
SDP  Session Description Protocol 
SIP  Session Invitation Protocol 
SRV  DNS Resource Record for locating services 
SSL  Secure Sockets Layer 
SSM  SIP Service Manager 
STN  Super Twisted Nematic 
TCP  Transmission Control Protocol 
TLS  Transport Layer Security 
TFT  Thin Film Transistor 
UA  User Agent 
UAC  User Agent Client 
UAS  User Agent Server 
URI  Uniform Resource Identifier 
UTF-8 Unicode Transformation Format-8 
WLAN  Wireless LAN 
XML  eXtensible Markup Language 
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