
Design Of
A Peer-to-peer-based
Scalable Grid Service

A Job Meta-Scheduling service

V L A D I M I R M A R I N K O V I C

Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LECS-2004-59

Design Of

A Peer-to-peer-based

Scalable Grid Service
A Job Meta-Scheduling Service

By

Vladimir Marinkovic

The Royal Institute of Technology

Stockholm, October 2004

Examiner:
Vladimir Vlassov
Institute of Microelectronics and
information technology, IMIT
The Royal Institute Of Technology

Industrial Supervisor:
Konstantin Popov

Swedish Institute of Computer Science
(SICS)

II

Abstract
Grid technology is evolving. Open Grid Service Architecture (OGSA) defines

grid services based on Web services technology. The grids are starting to expand

towards another popular resource-sharing technology: the peer-to-peer overlay

networks. As grids are evolving, issues of scalability need to be addressed. P2P is

a very scalable resource sharing technology. These two technologies are con-

verging towards each other.

The project includes study and a survey of Grid services (in the context of OGSA:

Open Grid Service Architecture), technologies for Web services, P2P overlay

networks, and related work. As a case study, the thesis presents design of a job

meta-scheduling Grid service. The service is based on the peer-to-peer (P2P)

technology, namely, on the DKS (Distributed K-ary search System) that is a

structured P2P system. The service incorporates the properties of the system it is

based on, such as decentralization, fault-tolerance, self-organization and scala-

bility.

Sammanfattning
Grid-tekniken utvecklas. Open Grid Service Architecture (OGSA) definierar Grid

services med hjälp av Web services-teknik. Långsamt börjar gridar också ex-

pandera mot en annan trendig teknik för resursdelning: peer-to-peer nätverk.

När gridar växer måste frågor kring skalbarhet lösas. P2P-nätverk är en väldigt

skalbar teknik för delning av resurser. Dessa tekniker konvergerar långsamt mot

varandra.

Projektet inkluderar litteraturstudie och genomgång av dessa tre tekniker Gridar,

Web service och P2P-nätverk. Som fallstudie presenterar rapporten en design av

en tjänst för schemaläggning av jobb i gridar. Den är baserad på P2P-teknik,

närmare bestämt på DKS (Distributed K-ary search System), som är ett struktur-

erat P2P-system. Tjänsten får egenskaper av systemet den baseras på, såsom de-

centralisering, feltolerans, självorganisation och skalbarhet.

III

IV

Table of Contents

1 Introduction 1

1.1 Goals And Expected Results..1

2 Background 3

2.1 Peer-To-Peer Computing (P2P).......................................3

2.1.1 Architecture...3

2.1.2 Approaches..5

2.2 Web Services..7

2.2.1 Messaging Protocol – SOAP..9

2.2.2 Web Services Description Protocol - WSDL..................10

2.2.3 Service Discovery And Publishing..................................11

2.3 Grid Services..12

2.3.1 Virtual Organizations..14

2.3.2 Grid Architecture..14

2.3.3 OGSA And OGSI..16

2.3.4 Globus Toolkit And GRAM...18

2.3.5 Grids And Peer-To-Peer Networks..................................23

3 Design 25

3.1 The Model..25

3.2 The Design...26

3.2.1 Client View..27

3.2.2 Service Architecture..28

3.2.3 Service Definition...31

3.2.4 Searching For A Node..32

4 Implementation Issues 41

4.1 Classes..41

4.1.1 Grid Service Component..41

4.1.2 Peer-to-peer Component...42

4.2 Joining And Leaving..43

4.3 P2P Messaging...43

4.4 Searching..46

4.4.1 Directories...46

V

4.5 Listening...47

5 Conclusions 49

5.1 Future Work...49

6 Appendix A 51

6.1 Service Definitions...51

7 List Of Abbreviations 57

8 References 59

VI

Table of figures

Figure 1 – An Informal System Architecture ...4

Figure 2 – A Typical Web Service Setup ...8

Figure 3 – Communication With SOAP Messages9

Figure 4 – Grid Architecture ..15

Figure 5 – Grid Architecture ..16

Figure 6 – The Hourglass Model Of GRAM ..19

Figure 7 – A Typical Communication In GRAM21

Figure 8 – The GLUE Schema Of The Computing Element Of The
Indexing Service ...22

Figure 9 – Client-side View Of The Service ..27

Figure 10 – Components Of The Meta-scheduling Service28

Figure 11 – Job Allocation Scheme ..30

Figure 12 – The One-to-one Scheme ..34

Figure 13 – The One-to-many Scheme: Node Advertisement35

Figure 14 – The One-to-many Scheme: Searching For A Lightly Loaded
Node ..36

Figure 15 – The Many-to-many Scheme ..37

Figure 16 – The Broadcast Scheme ...39

VII

VIII

Design Of A Peer-to-peer-based Scalable Grid Service - Introduction

1 Introduction
The grid technology provides an infrastructure for coordinated resource sharing

in multi-institutional, virtual organizations. The grid communities are wishing to

create an infrastructure that will allow creation of a widespread,global collabora-

tion network. People should be able to join and share resources with other mem-

bers of that network. The amount of effort for joining the network, either for a re-

source sharing or a service consumption, should be minimized.

If this is to be achieved, the technology should be based on open standards for

service invocation, service look-up, etc. The standards must be extensible, to be

able to support further development and evolution of the technology. The Web

services are open-standard, extensible infrastructure for service description, invo-

cation and look-up. They are text-based, i.e. XML-based, and are attractive for

use within grid systems. In recent years efforts were made to adopt this technolo-

gy into the grids.

Current implementations of the grids are quite closed, mostly centralized sharing

environments. In spite of that, the grid systems are getting bigger. The virtual or-

ganizations are growing in size. Researchers are expecting the virtual organiza-

tions to start introducing the economical component in the grids, i.e. start renting

the computational power, the storage space and the network bandwidth. This will

further lower the bounds for membership in a grid system, which will grow even

more. With the growth, the technology will have to address issues of scalability

and ease of deployment.

The peer-to-peer overlay network is a scalable technology, which have similar

goals of distributed resource sharing. An overlay network is a network that runs

on top of another network, such as a TCP/IP network. The overlay contains the

connectivity information, closest peers, etc. The great scalability of these systems

is very attractive for the grid environments. Because of the common goal, re-

searchers are starting to look into whether the technology of P2P systems can be

adopted into the grid environments.

1

Design Of A Peer-to-peer-based Scalable Grid Service - Introduction

1.1 Goals And Expected Results
The main purpose of this Master thesis project is two-fold:

1. Study of related work on Grid and Web services, (structured) over-

lay networks with DHT functionality and their use in P2P applica-

tions;

2. Design of at least one of Grid services (such as meta-scheduling

service) based on the overlay network infrastructure called the

DKS system developed at KTH and SICS. The main features of

the Grid service to be achieved are good scalability and low-cost

self-organization.

We expect that design of a Grid service on the structured overlay network with

DHT functionality will help to evaluate whether the DHTs are useful and conve-

nient (easy to use) for Grid services, as well as help to evaluate other properties

of the structured network that might be useful for Grid services.

Expected results of this project include (but not limited to):

1. A survey of the three technologies: Grids, Web services and P2P

overlay networks; and related work towards the implementation of

OGSA.

2. An architecture (structure, interfaces, algorithms and protocols) of

a Grid service as a peer-to-peer application based on an overlay

network with DHT functionality.

1.2 Structure Of The Thesis
The thesis is structured as follows. Chapter 2 presents the survey of studied tech-

nologies. It is divided into three sections, each covering a studied technology:

Peer-to-peer (P2P) Computing, Web Services and Grid Services. The design of a

peer-to-peer-based meta-scheduling grid service is presented in Chapter 3. In

chapter 4, some implementation issues are presented and clarified. The conclu-

sions in the project are summarized in chapter 5. The appendix includes a listing

of a service definition as well as a listing of a Java interface.

2

Design Of A Peer-to-peer-based Scalable Grid Service - Background

2 Background

2.1 Peer-To-Peer Computing (P2P)
Peer-to-peer (P2P) computing is still a young technology and still evolves. Many

researchers are trying to define P2P computing.

Shirky in [3] defines the P2P like this:

“P2P is a class of applications that takes advantage of resources -- stor-

age, cycles, content, human presence -- available at the edges of the Inter-

net. Because accessing these decentralized resources means operating in

an environment of unstable connectivity and unpredictable IP addresses,

P2P nodes must operate outside the DNS system and have significant or

total autonomy from central servers.”

Milojicic in [1] defines the term P2P as:

“The term 'peer-to-peer' (P2P) refers to a class of systems and applica-

tions that employ distributed resources to perform a critical function in a

decentralized manner.”

What is common in all definitions is that some terms are reoccurring, such as: de-

centralized, distributed, resources and sharing.

2.1.1 Architecture
The goal with P2P systems is to share distributed resources between equivalent

nodes (peers). Different P2P systems have taken different approaches to solving

this problem (see section 2.1.2). All these approaches must solve some infrastruc-

tural problems, such as maintenance of connections, group management, routing

of messages, etc, and on top of that infrastructure, build some resource sharing

services or applications.

Milojicic in [1] talks about an informal P2P system architecture, where the com-

ponents of an abstract P2P system are presented. The architecture is depicted in

Figure 1. The ordering of the components does not strictly follow the layering.

3

Design Of A Peer-to-peer-based Scalable Grid Service - Background

The communication component is responsible for maintaining an application-lev-

el connection to other peers in a dynamic environment of a P2P system. The com-

ponent for discovery is responsible for discovering other nodes (peers) in a P2P

system. The component for locating and routing is responsible for locating dis-

tributed resources in the network and for routing of messages. This is where ma-

jor differences exist between different approaches to P2P computing.

Security, in a distributed manner, is one of the most difficult things to achieve in

P2P systems. Since nodes are acting both as clients and servers, peers that wish to

access resources must authenticate. This is often solved by centralizing the issues

of security.

The resource aggregation is concerned with aggregation of resources. The relia-

bility component in P2P systems is concerned with reliable behavior of the sys-

tem. This is often solved by taking advantage of redundancy, for example: restart-

ing of computation, resending of messages, replication of data.

The components in class-specific layer represent different classes of P2P applica-

tions. The scheduling applies to compute-intensive applications and the meta-data

applies to content and file management applications. The messaging applies to

collaborative applications and the management component is concerned with the

management of the underlying P2P infrastructure.

4

Application-specific
 layer

Tools Applications Services

Class-specific
 layer

Schedul-
ing

Meta-data Messaging Manage-
ment

Robustness
 layer

Security Resource
aggregation

Reliability

Group Management
 layer

Discovery Locating and routing

Communication
 layer

Communication

Figure 1 – An Informal System Architecture

Design Of A Peer-to-peer-based Scalable Grid Service - Background

In the Application layer the components, the tools, the applications and the ser-

vices, implement the functionality of a P2P application, such as the distributed

scheduling, the file sharing, the collaborative applications, such as the chatting

and the messaging.

2.1.2 Approaches
There are different approaches to, or models of, the peer-to-peer computing. A

couple of different classifications of P2P systems exists. The systems can be di-

vided into three generations of P2P systems, i.e. according to steps of evolution.

In an another classification, the models of the P2P systems can be divided into:

➢ Centralized model

➢ Flooding model

➢ Document routing model

➢ DHTs

Actually the Document routing model and DHTs are based on the same idea and

can be classified into the same group. Here, they are divided because the DHT

model is of great importance for future work in the project.

Centralized Model

This model was implemented by the pioneering P2P applications such as Napster

[21], [22]. In this model, the peers connect to a centralized directory where they

publish a list of files that they are sharing. The search queries are sent to this cen-

tralized directory, which then searches for the best match. Download of a file is

executed by direct access between peers.

Another view of this model is that there exist two services offered by this net-

work: a directory service and a storage service. The directory service is central-

ized and the storage service is distributed [2].

The centralized organization of this model has the disadvantage of having a cen-

tralized repository that is queried by every peer. This can result in some limits in

scalability, if the number of peers or the requests increases. Another disadvantage

is that there exists a single point of failure in this model. If the centralized direc-

tory is to fail, the whole network will stop functioning. There also exists some

centralized infrastructure that must be maintained [1]. Since all requests are sent

to the directory, the requests are not propagated through the network. This will

give a low traffic of messages in the network.

5

Design Of A Peer-to-peer-based Scalable Grid Service - Background

Flooding Model

In this model peers use the flooding algorithm to communicate with other peers.

This model is used by Gnutella [23]. To be able to participate in a network, a peer

has to know an IP-address of one peer, from which it learns about the other peers

by flooding. The peers are directly connected to some small number of peers in

the network. The discovery of the shared resources, in this model, is done by

flooding a request to all directly connected peers, which, in their turn, flood the

request to their directly connected peers, etc. The request is propagated through

the network. The propagation of the request is limited by a Time-To-Live value.

Peers that receive the request and do share the requested resource will answer di-

rectly to the requesting peer.

This flooding approach is pure P2P, i.e. has no centralized component and is

completely distributed, but does not scale well. The intensive message passing

demands high network bandwidths. In limited communities it can be an efficient

algorithm. An effort was made by P2P communities (e.g. Kazaa [20], Gnutella

[23]) to limit the demand on bandwidth by introducing “super-peers”. These “su-

per-peers” act like directory services, and reduce flooding. Caching of recent re-

quests is another way of reducing the message passing within the network.

Document Routing Model

Another model is the document routing model, used by FreeNet [26]. Peers in a

P2P systems of this model are assigned a random identification number. Each

peer knows about some predefined number of other peers. When a document is

published, a checksum is calculated based on its content and filename. The docu-

ment is then routed towards a peer with most similar ID number. If the current

peer has the most similar ID number, then the document is stored. The requests

for a document are routed in the same manner. Every peer that receives a docu-

ment during the routing will keep a local copy of it.

This model is very efficient in large, global communities. The down side of this

model is that a document's checksum must be known in advance. The other prob-

lem that can occur in these networks is the islanding problem. The network can

split in parts with no link to each other. A P2P systems implementing this model

can't have high data location guarantees.

6

Design Of A Peer-to-peer-based Scalable Grid Service - Background

Distributed Hash Tables (DHTs)

These systems, such as Chord [27], Pastry [24], Tapastry [25], CAN, DKS, are

based on the idea of document routing, but are trying to achieve an abstraction of

distributed hash tables (DHTs). The primary goal of these algorithms is to reduce

the number of hops when locating a resource in the network and to reduce the

size of routing tables. An efficient DHT allows balanced distribution of data

among the nodes and a logarithmic-time lookup.

A peer, or a node, is assigned an identifying number based on a cryptographic

hash of some system attribute, such as the IP-address. The peers are then joined

into a network in some algorithm-specific, structured manner. In Chord, a circular

identifier space is used, while in CAN a d-dimensional space. Pastry/Tapastry

uses a mash.

For storing data (making resources available) into a DHT, the key-data pairs are

used. A key for a data item is obtained through hashing. Both keys and peer iden-

tifiers are hashed into the same identifier space. The key-data pairs are stored at

nodes according to the given structure. The structured topology of the network

makes locating data (resources) a routing problem. The routing tables are of a

logarithmic size in Chord, Pastry and Tapestry. The CAN algorithm has a fixed

number (d) of entries in the routing tables. Also there exists a maximum path

length in such structured networks. Therefore, the DHTs can have high look-up

guarantees.

Distributed K-ary Search System (DKS)

The DKS system is a structured peer-to-peer overlay network. It implements the

DHT functionality. The DKS is based on Chord and is well described by the

above description of the DHTs. It uses a virtual k-ary spanning tree of hight

logk(N),

where N is number of nodes in the network. The lookup is resolved by following

a path of the spanning tree. The Chord uses a binary spanning tree. This ensures

logarithmic lookup path length. The DKS organizes the peers in a circular identi-

fier space and has the routing tables of logarithmic size.

In the DKS the identifier space is larger then the actual number of the participat-

ing nodes. Every node is responsible for some interval of the identifier space.

When a data is stored into the DKS, the data is forwarded towards the node which

7

Design Of A Peer-to-peer-based Scalable Grid Service - Background

is responsible for identifier given by the hashed key of that data. Since the keys

and the identifiers are both hashed into the same identifier spare, the storing of

the data is a matter of the routing. When data arrives to the node responsible for

the identifier given by the key, it is stored there. The lookup is the opposite opera-

tion. Given a key, there is a node which is responsible for that part of the identifi-

er space. The request for data-retrieval is forwarded to that node.

Besides the DHT functionality, the DKS system provides other services, such as

efficient broadcast and multicast of messages. For a detailed description of the

DKS, see [31],[32],[33].

2.2 Web Services
When the Web services technology emerged, big companies, such as IBM, Mi-

crosoft, Sun, etc, have realized the potential power of it in the e-Business. They

have driven the development and the evolution of this technology. This has re-

sulted in a fast research and development of the Web services. The standardiza-

tion of the de facto standard protocols is done by The World Wide Web Consor-

tium (W3C).

IBM in [5] defines the Web services to be:

“A technology that allows applications to communicate with each other in

a platform- and programming language-independent manner. A Web ser-

vice is a software interface that describes a collection of operations that

can be accessed over the network through standardized XML messaging. It

uses protocols based on the XML language to describe an operation to ex-

ecute or data to exchange with another Web service. A group of Web ser-

vices interacting together in this manner defines a particular Web service

application in a Service-Oriented Architecture (SOA).”

W3C in [6] defines a the Web service like this:

“[Definition: A Web service is a software system designed to support inter-

operable machine-to-machine interaction over a network. It has an inter-

face described in a machine-processable format (specifically WSDL). Oth-

er systems interact with the Web service in a manner prescribed by its de-

scription using SOAP messages, typically conveyed using HTTP with an

XML serialization in conjunction with other Web-related standards.]”

8

Design Of A Peer-to-peer-based Scalable Grid Service - Background

The Web services provide an interface for distributed applications to communi-

cate. It defines a set of protocols that enables applications to publish, search, pro-

vide and consume a service. All protocols are based on XML, which makes the

Web services platform- and programming language-independent.

Conceptually, there are three different roles in a typical Web service communica-

tions:

➢ Service Provider – A platform that provides a service

➢ Service Consumer – An application that searches and consumes a

service

➢ Service Registry – A searchable registry of services. It has knowl-

edge of where a service provider is and how a service is consumed.

A typical Web service communication is depicted in Figure 2. When a service

provider wishes to publish a service it will create a service description using the

Web Services Description Language (WSDL) protocol. This description tells a

service consumer what a request for service invocation should contain and how a

response from the service provider will contain. (For more detail WSDL see sec-

tion 2.2.3)

This description, together with other information on how the service provider

should be contacted, is published at a service registry. When a service consumer

wishes to consume a service, it first searches the service registry for an appropri-

ate service and receives a service description. Having the service description the

9

Figure 2 – A Typical Web Service Setup

Service Consumer
Service Provider

Directory

1. Register

3. Description

4. Communication based
on WSDL description

SOAP messages

2. Query

Design Of A Peer-to-peer-based Scalable Grid Service - Background

consumer knows how to invoke a service. The entire message passing between

these three roles is done over a messaging protocol called the SOAP.

2.2.1 Messaging Protocol – SOAP
SOAP is a lightweight, XML based protocol used for exchanging messages. It is

stateless and one-way messaging protocol. By combining a SOAP messages and

underlying protocols or application-specific data, it can be used to achieve more

complex communications (e.g. request/response, conversations, etc). SOAP relies

on underlying protocols for network access (see Figure 3). The SOAP messages

can be used in combination with, or enveloped in, a variety of protocols, such as

HTTP, SMTP, FTP, etc.

SOAP provides an envelope for sending structured data from a SOAP sender to a

SOAP receiver. The SOAP envelope consists of two parts: a SOAP header and a

SOAP body.

The SOAP header is optional. The header is used for passing non-application-

specific data from a sender to a receiver. This data can be directives or some con-

textual information for processing of the message. Subsequent blocks of the head-

er are called header blocks.

The SOAP body contains an application payload. The contents of the SOAP body

of a message are purely application-specific, and are not part of the SOAP speci-

fication [8].

10

Figure 3 – Communication With SOAP Messages

SOAP

Network

Application

Request

Response

SOAP

Network

Application

Design Of A Peer-to-peer-based Scalable Grid Service - Background

2.2.2 Web Services Description Protocol - WSDL
Web Services Description Language (WSDL) is an XML format for describing a

Web Service and how they should be bound to a network address. A service is

modeled as a set of endpoints operating on messages containing either document-

oriented or procedure-oriented information. Web services are defined by using

the following six major elements: Types, Message, Port Type, Binding, Port and

Service. These elements can be classified into [9]:

➢ The service interface definition (Binding, PortType, Message and

Types)

➢ The service implementation definition (Service and Port)

The service interface definition contains reusable elements and is a reusable ser-

vice definition that can be used by many service implementation definitions. The

PortType element defines the operations of Web service. Operations describe ac-

tions for the messages supported by a Web service. WSDL has four operations

that an endpoint can support [7]:

➢ One-way. A message received – no response required

➢ Request-response - Request received - send a response

➢ Solicit-response - A request for a response

➢ Notification - A message sent

Input and output parameters of an operation are defined by the Message element.

The Types element describes complex types that are used within a message. The

Binding element defines a message format and protocol details for operations and

messages defined by a particular portType.

The service implementation definition describes how a service interface is imple-

mented by a service provider. A service is modeled by the service element, which

can contain several Port elements. The Port element associates a binding from in-

terface definition to an endpoint, URL.

These two definitions might be divided into two separate documents. This is be-

cause of the re-usability of the interface definitions. An interface may be defined

according to some industrial standards and implemented in many services at

many companies. This is not a requirement, though. All six within a single docu-

ment may define a Web service, as well.

When a service consumer finds a service it wishes to consume, the description of

the service must be processed. The description contains enough information to

11

Design Of A Peer-to-peer-based Scalable Grid Service - Background

generate SOAP messages, which are to be sent to a Web service, as well as to de-

code a reply-message from the service.

WSDL is the minimum standard service description that is necessary for correct

invocation of Web services. WSDL defines how a service is consumed. Addition-

al descriptions are necessary to fully describe a service, such as in what context is

the service relevant [9].

2.2.3 Service Discovery And Publishing
A service consumer must have the service description to be able to consume a

service. The Web service must publish this information, so that it is accessible by

the consumer. The simplest scenario is with statically linked services. This means

that at the design time, a developer have located a Web service that is to be con-

sumed by the application, retrieved a description of the service and made it avail-

able to the application on the local (or remote, but accessible) file system.

A more complex scenario is that service is not known at the design time. In this

case the Web service must be located and the description retrieved at run-time.

For this purpose, some kind of repository is necessary. Universal Description and

Integration (UDDI) is a powerful, searchable directory for Web service publica-

tion.

UDDI was originally developed by uddi.org. Uddi.org was comprised by the

technology and business leading companies in an effort to enable companies and

individuals to quickly and easily find and use Web services. Eventually, UDDI

was transferred to OASIS. It is not part of the standardization effort done by

W3C.

UDDI provides a definition of a set of services supporting the description and dis-

covery of [9]:

1. businesses, organizations, and other Web Services providers,

2. the Web Services they make available, and

3. the technical interfaces, which may be used to access those ser-

vices.

UDDI is based on a common set of standards, including HTTP, XML, XML

Schema, and SOAP.

12

Design Of A Peer-to-peer-based Scalable Grid Service - Background

The UDDI registry is a logically centralized directory. Physically it is a distribut-

ed service with multiple root nodes. Nodes replicate data with each other on a

regularly. When a business registers with one instance of the registry service, the

data is automatically replicated to other root nodes. Then, it is freely available for

anyone who wishes to invoke provided services.

There are four different types of UDDI nodes [9]:

➢ Internal Enterprise Application UDDI node – Node for Web ser-

vices that will be accessed only by internal enterprise applications

➢ Portal UDDI node – Node for Web services that will be accessed

by business partners

➢ Partner Catalog UDDI node – Node for Web services that will be

accessed only by particular company

➢ E-marketplace UDDI node – Node for publicly available services

In UDDI, Web services are organized by businesses. The entries contain basic in-

formation on businesses, detailed business data, information about company's

business properties. All information must be provided at time of publication of a

service. The information can be added to the UDDI registry via Web site. There

are also tools, which exploit programmatic service interfaces, to register with the

UDDI directory.

The directory supports mechanism for finding Web services based on type of in-

terface, the binding information, properties, taxonomy of the service, business in-

formation, etc.

2.3 Grid Services
The term “the Grid” first appeared in mid 1990s in a proposal for distributed

computing infrastructure for advanced science and engineering [7].

IBM defines grid computing in [14]:

“Grid computing enables the virtualisation of distributed computing and

data resources such as processing, network bandwidth, and storage capac-

ity to create a single system image, granting users and applications seam-

less access to vast IT capabilities. At its core, grid computing is based on

an open set of standards and protocols that enable communication across

heterogeneous, geographically dispersed environments.”

13

Design Of A Peer-to-peer-based Scalable Grid Service - Background

As by the Globus Alliance in [15], grids are

"The Grid refers to an infrastructure that enables the integrated, collabo-

rative use of high-end computers, networks, databases, and scientific in-

struments owned and managed by multiple organizations."

The basic problem grid computing is trying to solve is defined by Ian Foster in

[11]:

“The real and specific problem that underlies the Grid concept is coordi-

nated resource sharing and problem solving in dynamic, multi-institution-

al, virtual organizations.”

The resources in this context have broad meaning, such as computational power,

network bandwidth, storage space, etc. A virtual organization (VO) is a set of in-

dividuals or physical organizations that share the resources according to prede-

fined set of rules [11].

The vision of grid computing environment is often described as analogous to a

power grid [28]. When an appliance is plugged in the user of the power grid can

receive the electrical power, without bothering from where and how this power is

delivered. A local utility store will provide an interface through which the electri-

cal power grid can be accessed. The infrastructure will provide a virtual genera-

tor. This virtual generator consists of many different power sources. This grid is

very reliable and adopts to consumers demands.

A grid environment can be described in same way. When the basic infrastructure

is installed, the user will be able to access a virtual computer through an appropri-

ate interface. This virtual computer is reliable and adopts according to the con-

sumer's demands. The virtual computer consists of a variety of different re-

sources, which are not visible to the user, just as power sources are not visible to

consumer of electrical power.

The grid computing is quite new technology and has not fully evolved. To be able

to reach the above-mentioned vision, a reliable and secure infrastructure must ex-

ist. This infrastructure must be built upon general standards and syntaxes, such as

Open Grid Services Architecture (OGSA).

14

Design Of A Peer-to-peer-based Scalable Grid Service - Background

2.3.1 Virtual Organizations
The basic idea behind grids is resource sharing between physical organizations, to

enable access to computational and storage power, collaboration and number of

accessible instrumentation, etc. A group of individuals or physical organizations

that share resources between each other according to some predefined rules are

called virtual organization (VO). When a VO is created, representatives of physi-

cal organizations must meet, formally establish a VO, agree upon and define poli-

cies, describe contributions and responsibilities. After that, administrative privi-

leges are assigned to some entity. This administrative entity will then assign priv-

ileges to all other entities within the VO. All participants must install appropriate

middleware and expose their shared resources to the middleware. The users can

then access and use resource within the limitation of assigned rights.

The sharing relationships within the VO are very dynamic. They can vary over

time of day and in resources involved. Access to a resource can be allowed to

some user groups and not to others. All these rules depend on the agreement,

which is established at the time of the creation of the VO.

The concept of virtual organizations enables groups of organizations to share re-

sources in some controlled fashion. This allows participants to collaborate and

achieve common goals.

2.3.2 Grid Architecture
The architecture of grids can be divided in layers, as described in [11]. The com-

ponents of the architecture are structured into layers. The components within

same layer share characteristics. The layering of the grid architecture follows the

hourglass model of layering. There are five layers in the architecture, which is de-

picted in Figure 4:

➢ Fabric

➢ Connectivity

➢ Resources

➢ Collective

➢ Application

The Fabric layer provides resources, which are made accessible through grid pro-

tocols. The resources can be physical (such as sensors, measurement equipment,

etc) as well as logical (such as computer clusters, distributed file systems, etc).

15

Design Of A Peer-to-peer-based Scalable Grid Service - Background

The components in the Fabric layer

implement resource-specific opera-

tions. At minimum, the resources

must implement enquiry mecha-

nisms for state, structure and capa-

bilities, as well as resource man-

agement mechanisms, which pro-

vide control of quality of service.

The connectivity layer defines

communication and authentication protocols required for network transactions

between resources. Communication requirements include transport, routing and

naming. Authentication should have the following properties:

➢ Single sign-on

➢ Delegation

➢ Integration with local security solutions

➢ User-based trust relationships

The resource layer builds on communication layer and provides protocols for se-

cure negotiation, initiation, monitoring, control, accounting and payment. There

are two classes of protocols in this layer:

➢ Information protocols - to query the state of a resource

➢ Management protocols - to negotiate access to a resource

The collective layer in the architecture provides services and protocols, which co-

ordinate multiple resources. Protocols and services in this layer provide a wide

range of sharing scenarios, such as:

➢ Directory services

➢ Co-allocation, scheduling and brokering services

➢ Workload management systems and collaboration frameworks

➢ etc

The application layer is where grid applications are implemented. Applications

may use any of the protocols and services defined in any of the layers. They

should be designed in terms of services.

16

Figure 4 – Grid Architecture

Application

Collective

Resources

Connectivity

Fabric

Design Of A Peer-to-peer-based Scalable Grid Service - Background

2.3.3 OGSA And OGSI
In recent years, the grid community (the Global Grid Forum [16] and the Globus

Alliance [15]) have made a lots of efforts to make the grid system architecture

based on web services concepts and technologies. The results of these efforts are

the Open Grid Service Architecture (OGSA) and Open Grid Service Infrastruc-

ture (OGSI).

Key advantages of Web services technologies that make them attractive to be em-

ployed for Grid Services include interpretability based on open text-based stan-

dards, modularity and ability for incremental implementation.

OGSA defines the architecture of a grid, including the infrastructure and the pro-

gramming model for grid services. It introduces the notion of services to the grid

environment, and focuses on the services that are provided, rather then physical

(or logical) resources that are shared. OGSI defines the infrastructure that is re-

quired to achieve the properties of grid services defined in OGSA.

OGSA defines a layered architecture of grids. The layering consists of four layers

(see Figure 5) [17]:

➢ Resources - physical resources and logical resources

➢ Web services, plus the OGSI extensions that define grid services

➢ OGSA architected services

➢ Grid applications

The resources layer represents the

shared resources in the grid. Re-

sources can be physical or logical.

Web services layer is the second lay-

er in the OGSA architecture. To-

gether with OGSI, it defines grid

services, the basic infrastructure.

OGSA architected grid services lay-

er implements grid services, such as program execution, data services, and core

services. Grid applications layer is where grid applications are implemented.

These applications consume services offered within a grid.

To be able to implement a grid service there must exist some infrastructure that

addresses grid services requirements. First, the grid environment can be very dy-

17

Grid Applications

OGSA architected services

Web Services + OGSI Interfaces

Resources

Figure 5 – Grid Architecture

Design Of A Peer-to-peer-based Scalable Grid Service - Background

namic. A state of resources, sharing policies, dispatched work, system state, etc,

may change and services may appear and disappear. The basic infrastructure must

be able to handle creation, destruction and life cycle of services. Second, grid ser-

vices have state. They can have attributes and data associated with them. This is

something Web services can't handle. The OGSI specification defines grid ser-

vices, which are built on top of Web services. It extends the definition of Web

services (WSDL in particular) to provide dynamic, stateful and manageable Web

services that are able to model grid resources.

The extensions, which OGSI is contributing to the web services layer, consist of

five interfaces. The following are the interfaces defined in OGSI [13]:

➢ GridService

➢ Factory

➢ Notification

➢ ServiceGroup

➢ HandleResolver

Among these, the most important is the GridService. A grid service must imple-

ment this interface. It is the basic interface in OGSI. The behavior encapsulated

by the GridService interface is that of querying and updating and managing the

termination of the instance. Grid services that implement the ServiceGroup inter-

face are grid services that maintain information about a group of other grid ser-

vices.

A factory is used by a client to create a grid service instance. A client invokes a

create operation on a factory and receives as response an identifier for the newly

created service instance. The newly created grid service instance should be regis-

tered with a handle resolution service. The Factory interface must extend the

GridService interface.

A grid service that implements the HandleResolver interface is called a handle re-

solver. When a grid service is instantiated by a factory, an identifier is returned.

This identity is composed of two parts, a Grid Service Handle (GSH) and a Grid

Service Reference (GSR). The HandleMap interface provides the means to obtain

a GSR given a GSH. (For more detail on GSH and GSR see [12]).

18

Design Of A Peer-to-peer-based Scalable Grid Service - Background

A grid services' state changes as systems runs. Many interactions between ser-

vices require notification of changing state. Grid services support an interface to

permit other grid services to subscribe to changes.

2.3.4 Globus Toolkit And GRAM
The Globus Toolkit (GT) is developed by Globus Alliance [15]. It is an imple-

mentation of the Open Grid Services Infrastructure (OGSI) and provides a set of

software components, that can be used either independently or together to devel-

op higher-order services and/or applications. These components provide function-

ality for security, communication, information infrastructure, data management,

resource management, fault detection, and portability. Some of the the core com-

ponents are:

➢ The Globus Resource Allocation and Management (GRAM) pro-

vides resource allocation and process creation, monitoring, and

management services.

➢ The Grid Security Infrastructure (GSI) provides a single-sign-on,

run-anywhere authentication service.

➢ The Indexing service (generally called information service) pro-

vides information about available resources and services.

All necessary APIs (Application Programming Interfaces) and the command line

utilities are provided with the software. For further information on the GT, see

[15].

Grid Resource Allocation And Management (GRAM)

The Grid Resource Allocation and Management (GRAM) is a set of service com-

ponents that provide a single standard interface for requesting and using remote

resources for job execution. This interface allows clients to access a large variety

of resources through one interface, and vice versa, allows the resources to com-

municate with clients through a single interface. In the hourglass model, depicted

in Figure 6, the GRAM is neck of the hourglass. Above the GRAM there are ap-

plications and higher-order services, such as meta-schedulers and resource bro-

kers. Below the GRAM are local control and access mechanisms.

19

Design Of A Peer-to-peer-based Scalable Grid Service - Background

The GRAM allows a client to submit, monitor and shutdown jobs remotely.

There are four basic services that are provided by the GRAM (for detailed infor-

mation, see [29].):

➢ (Master) Managed Job Factory Service (MJFS)

➢ Managed Job Service (MJS)

➢ File Stream Factory Service (FSFS)

➢ File Stream Service (FSS)

All jobs are executed on local systems as local users. The Grid Security Infras-

tructure (GSI) is used to authenticate both users and resources. It provides a

mechanism for mapping a GSI identity to a local user account. This way a job can

be executed as a local user.

The specification of resources for execution of a job is written in the Resource

Specification Language (RSL). It is the XML-based language and a lot of power

of the GRAM lies in it. With the attributes defined in RSL, such as executable,

arguments, directories, execution times, etc, requirements for a job execution can

be described in detail. If the attributes are not efficient, then the RSL allows ex-

tending the original set of attributes.

There are two containers associated with the GRAM, the Master Hosting Envi-

ronment (MHE) and the User Hosting Environment (UHE). The MHE contains

components for message redirection and instantiation of new UHEs. The Master

20

Figure 6 – The Hourglass Model Of GRAM

Design Of A Peer-to-peer-based Scalable Grid Service - Background

Managed Job Factory Service (MMJFS) is responsible for configuration of the

Redirector component (see Figure 7; 1).

A client that wishes to execute a job must first instantiate a Managed Job Service

(MJS). This is done by invoking the createService operation (see Figure 7; 2) of

an instance of the Managed Job Factory Service (MJFS) in the UHE. When an

operation-call arrives to the Redirector it has to find out what UHE this message

should be forwarded to. It asks the Starter UHE component, which authenticates

the user and maps it to the local user (see Figure 7; 3). If the UHE is not up and

running (see Figure 7; 6), the Launch UHE component is contacted (see Figure 7;

4). It will launch an UHE for the user (see Figure 7; 5). The URL of the UHE is

forwarded back to the Redirector. The operation-call is then forwarded to the

MJFS service in the UHE. All subsequent messaging from this client will be redi-

rected to this UHE, immediately (see Figure 7; 8).

The operation createService is invoked on the MJFS in the UHE (see Figure 7;

7). The result of this operation is a new instance of MJS service which will exe-

cute the request and schedule the job in the local scheduling system. To start the

execution itself, the start operation must be invoked on the newly created MJS.

If a file staging, or a redirection of standard input and output is necessary, the File

Stream Factory Service (FSFS) is used to instantiate the File Stream Service

(FSS) which is then used to stream files, standard output or standard input to the

given location.

The GRAM does not provide scheduling or resource brokering capabilities, nei-

ther does it provide accounting and billing features. It is assumed that these fea-

tures are supplied by the local management mechanisms such as a queuing sys-

tem or a scheduler.

Global meta-schedulers aren't developed by Globus, and should be provided by

third-party providers. The main task of a meta-scheduler is to assist users (i.e.

clients) in choosing an instance of GRAM, according to some previously decided

algorithm, on which a job will execute. The simplest algorithm for choosing an

instance is Round-Robin, i.e. equally spread jobs among existing instances. More

advanced algorithms might be developed, so that the load of a node is considered.

21

Design Of A Peer-to-peer-based Scalable Grid Service - Background

Information Services

In a grid, services contain some service data that defines their state. There could

exist several instances of same service in the grid, and they can be distinguished

by their state. This service data is represented in a standardized way, through the

Service Data Elements (SDEs). The information services, also called Manage-

ment and Discovery Services (MDS), is a broad framework that includes any part

of a grid that generates, registers, indexes, aggregates, subscribes, monitors,

queries, or displays the service data. Information services are implemented as In-

dexing Service and are one of the base services in the Globus Toolkit. [30]

Querying of different service data provides information about the resources. This

information can be used for discovery of the resources or selection or optimiza-

tion. This is important for design of applications and higher-order services. A

wide variety of information about resources can be queried. For example, from

22

Figure 7 – A Typical Communication In GRAM

Master Hosting Environment
(MHE)

Redirector

Master
Managed Job

Factory Service
(MMJFS)

Starter UHE Launch UHE

Managed Job
Factory Service

(MJFS)

Managed
Job Service

(MJS)

User Hosting Environment (UHE)

2

1

7

4

File Stream
Service
(FSS)

File Stream
Factory Service

(FSFS)

8
56

3

Local
Scheduling

system

LEGEND:
1. Configuration of the Redirector
2. Arrival of createService call
3. Ask for URL of UHE
4. Requesting new UHE
5. Launching of UHE
6. Waiting for UHE to start
7. Forwarding of createService call
8. Subsequent messaging

Design Of A Peer-to-peer-based Scalable Grid Service - Background

the Computing Element (CE), one could get information about a load on a partic-

ular processor, an architecture of a processor (an instruction set), policies on a

particular host, a file system on a particular host, etc. The GLUE schema of the

CE in the indexing service is shown in Figure 8. The figure depicts a schema of

the available information about the resources (hosts). This information can be re-

trieved from the CE.

23

Figure 8 – The GLUE Schema Of The Computing Element Of The Indexing
Service

(Figure borrowed from: http://www.cnaf.infn.it/~sergio/datatag/glue/CE/)

Design Of A Peer-to-peer-based Scalable Grid Service - Background

The information services also provide a registry of the grid services, which are

available for client to use. A registry allows for soft-state registration of services.

The services may register and update information as needed.

2.3.5 Grids And Peer-To-Peer Networks
The basic motivation behind the grid computing is sharing of some distributed re-

sources between the participants over an overlay network. This is also the goal of

peer-to-peer computing. As a matter of fact, some P2P networks have often been

referred to as grids. Although, the grids and the P2P are solving the same issue of

the distributed resource sharing there exist differences between these two tech-

nologies. In recent years, scientists are starting to recognize similarities and dif-

ferences between these two technologies, in order to combine the positive aspects

of both technologies [18], [19].

Development of grid computing has been driven by large physical organizations,

such as universities and companies, which VOs consist of. The participants can

be trusted and are well behaved. These large organization can afford expensive

equipment and very good network connectivity. This is why diversity of shared

resources within the grids is very high. Since high quality of service is required,

special effort is made to maintain it. Deployment of new resources requires plan-

ning of resources, network infrastructures, etc, to achieve high availability and

performance of the system. The deployments require lot of effort and are costly.

The grid systems are mostly used for intensive computations and data manipula-

tions. This will result in high activities. These high activities, authentication re-

quirements and sharing policies are some of reasons why the most topologies of

the grid systems are centralized. This makes most grid systems unscalable.

On the other hand, we have the P2P networks which development has mostly

been driven by the file-sharing communities. In these communities anonymity is

highly valued and there are no trust assumptions. There are no requirements for a

centralized administrative infrastructure. This makes the P2P systems highly scal-

able, with millions of participants. The cost of deployment of new resources in a

P2P system is very low. No planning of infrastructures is necessary and deploy-

ments consist mostly of installation of new software.

24

Design Of A Peer-to-peer-based Scalable Grid Service - Background

Since most participants of the currently implemented P2P systems are private per-

sons who can't afford an expensive equipment, the variety of the resources is very

low. The file-sharing and sharing of computational power are the most popular

services. The network connectivity is also poor. There are no quality of service

guarantees in the P2P systems. All this contributes to low availability and perfor-

mance of the system.

The vision described at the beginning of the section 2.3, requires properties of

both technologies. It requires the diversity and the availability of resources, the

high quality of service and the good performance of the system, which all are

properties of a grid system. But it also requires the scalability, the low cost of de-

ployment of new resources and the easy, “out-of-box” access to the system,

which are properties of a P2P system.

25

Design Of A Peer-to-peer-based Scalable Grid Service - Background

26

Design Of A Peer-to-peer-based Scalable Grid Service - Design

3 Design
In large, global grid environments, the centralized meta-scheduling services

might not be able to handle the large number of the GRAM instances and re-

quests. There should exist some more scalable solution. A peer-to-peer-based

meta-scheduling service would probably be more scalable and provide a better

service.

A peer-to-peer-based meta-scheduling service is to be designed as a case study in

this project. The service must be grid enabled, that is, all requests, responses, and

notifications must follow the requirements of the OGSA and OGSI models. It

should be able to act as a part of a larger grid system. The service must internally

be based on a peer-to-peer system with the DHT functionality, particularly on the

DKS system. A consequence of this requirement is that the system must be de-

centralized. There may not exist any centralized components and no single point

of failure. The service must be scalable. In other words, the service must be able

to handle, in a scalable manner, an increasing number of participating nodes. The

algorithm for look-up of a lightly loaded node must be scalable.

3.1 The Model
The GRAM components are developed to manage job executions on a local sys-

tem (a physical machine or a cluster of computers). A meta-scheduler is responsi-

ble for scheduling jobs on different installations of GRAM. It has the global view

of the state of the distributed system and can, according to some algorithm, assign

a job on the most suitable system. A meta-scheduler is not concerned with what

jobs are and how they are executed; it is only concerned with how to distribute

jobs so that original requirements on the meta-scheduler are achieved.

In this case, requirements for the meta-scheduler are that it should achieve an ap-

proximately well-balanced system. Also, this meta-scheduler must be able to han-

dle one more parameter other then load. It should be able to assign jobs based on

architecture required for the execution of a job.

Real systems are dynamic. Capacities of nodes are changing at any given time. A

node might initiate a local execution, which will change the capacity of that node.

27

Design Of A Peer-to-peer-based Scalable Grid Service - Design

Also, jobs that are scheduled for execution in the GRAM might change capacity

requirements at some point. This introduces a requirement for a dynamic load-

balancing within the meta-scheduling system. In other words, a complete meta-

scheduling service should be able to handle job migration between nodes, due to

an overload. A design of such a service requires a larger effort. The time limita-

tions of this project, however, demand a simplified model of the system.

In the simplified model, the capacities of nodes are constant and may not change

in time. The jobs that arrive to the meta-scheduling service must have some maxi-

mum execution time. This time will never be exceeded and will always be con-

stant, i.e. will never vary in time. With these assumptions, the system will never

have a state such that a migration of a job is necessary. The meta-scheduling ser-

vice should only consider the assignment of jobs to nodes. When a job is assigned

to a certain node, it will execute and finish execution there.

If the system, at the moment of a request arrival, can't handle the execution of the

requested job, i.e. all nodes are highly loaded and can not accept another job exe-

cution, it should consider the execution of that job as failed and notify the client

that the execution of the job has failed because of the system saturation. The

queuing of jobs should not be done. If necessary this functionality can be added

to the system, but is not considered here because of the time restrictions.

In the conclusion, the service is a higher-order service, that will interconnect

many instances of the GRAM in a scalable network. The primary goal is to

achieve an approximately well-balanced system, where all nodes are almost

equally loaded. From the client's point of view, it will help a client to find a

GRAM instance which is most suitable for a job execution.

3.2 The Design
A very valuable property of a system is that it should be deployable in an already

existing system with very little, if any, programming effort. As little changes to

the existing system is made, the better. This produces an idea of making this

meta-scheduling service transparent to the system. It is placed between the clients

and the GRAM instances and none of them should really see any difference.

Since the meta-scheduling service will hide a number of GRAM instances from

clients, it will be very difficult to achieve the transparency for instance-specific

28

Design Of A Peer-to-peer-based Scalable Grid Service - Design

operations, such as life-time management and notification operations. It will re-

quire an larger effort, which is not allowed by time-restrictions. This is why we

will concentrate on the transparency of the most important operation, the opera-

tion for instantiating a MJS, the createService operation.

The system must be able handle the dynamic nature of a P2P system. The partici-

pants of the service should be able to enter and leave as they wish without affect-

ing the service in any crucial way. This introduces a requirement of many entry

points. In particular, all nodes that participate in the P2P overlay network should

also have the ability to receive a request for a job execution. If any of the nodes in

the system fail, the service will not completely fail, as any other node in the sys-

tem is able to replace it.

3.2.1 Client View
From a client point of view, this service should behave as any installation of

GRAM. A client that is written to access the GRAM services, should be able to

access this service with very little, if any, additional coding. The service should

be transparent and all necessary information, which is needed for the scheduling

decisions, should be extracted from the existing RSL description of a job.

When a client wishes to execute a job, it should first locate an entry point for the

service by searching the local indexing service. When the scheduling service is

located and a WSDL description is retrieved, a request may be sent to the entry

point. The request is a createService operation, equivalent to the operation on the

MJFS. The client will receive a Grid Service Handle (GSH) or a Grid Service

Reference (GSR) as a result of the request. This will be a handle, or reference, of

the MJS service that will be responsible for the execution of the job (see Figure

9). All further communication between the client and the MJS service will be per-

formed directly.

If the requested resource is not available the client will be notified. In this case

the resource is computational power. If the system is saturated, then the resource

is not available. The system is saturated when there exists no node which can ac-

cept the job execution at the time of the request arrival, i.e. all nodes are highly

loaded.

29

Design Of A Peer-to-peer-based Scalable Grid Service - Design

3.2.2 Service Architecture

Components

The service can be divided into two components: the Grid service and the P2P

component (see Figure 10). The two components cover different functionalities of

the service.

The Grid service component contains the code which defines the service. This is

where the operation of the service are implemented. These operations should use

the functionality provided by the P2P component. This component will interact

with the Grid environment and thereby the clients.

When a request is received by the service, a search for a suitable node has to be

performed and the request forwarded to that node. This is handled within the P2P

component. This component uses the P2P overlay network of nodes (the DKS

system) to execute an algorithm for a look-up of lightly loaded nodes and the

code for forwarding of requests.

30

Figure 10 – Components Of The Meta-scheduling Service

Figure 9 – Client-side View Of The Service

Client

Indexing
service

Register

Description

Query

Service

createService

GSH/GSR or
error

P2P component

Grid Service

DKS

GT3

Design Of A Peer-to-peer-based Scalable Grid Service - Design

All nodes participating in this meta-scheduling system have the same compo-

nents. The nodes are all entry points for the service and can receive requests. The

service does not depend on a particular set of nodes, but can exist no matter

which nodes and how many of them are participating in the network. Clients can

always access the service, even if most of the nodes fail.

Architecture Overview

When a request for job execution is received by an entry point, the service will

first check whether the node that received the request has enough resources to ex-

ecute the job. If so, the request is forwarded to the local installation of the

GRAM. The service should try to minimize the amount of network traffic. It

should strive to minimize the time-overhead when allocating jobs. If the node that

received the request is highly loaded and can't accept another job execution, then

a search for a node that can accept jobs must be performed.

The DKS overlay network is searched for a node that is lightly loaded. Four

search schemes are presented in the section 3.2.4. All algorithms must have same

interface, so that algorithms could be replaced without extra coding effort. The

search is performed according to some scheme. If a lightly loaded node is found,

the request will be forwarded, from within the search scheme, through peer-to-

peer overlay network from the entry-point node to the lightly loaded node. If it is

not found, the client should be notified about the saturation of the system. For

more detailed discussion of searching schemes, see section 3.2.4.

The lightly loaded node will then, in its turn, forward the request to the local in-

stance of the GRAM. The forwarding of the request through the P2P network is

not necessary. The request can be sent directly to the GRAM instance on that

node. By forwarding the request through the P2P overlay network, processing of

requests can be, in some future work, easier added to the system. Processing of

requests can be for example statistical processing (counting arriving requests),

queuing of requests, etc.

When request arrives to the local GRAM instance it will be processed by the

MMJFS. The result of the request, the GSH or the GSR of the newly created MJS

service, will be returned to the node. This result must be sent back to the request-

ing client. The client expects to receive the result from the entry-point to which it

has sent the request. To preserve the transparency of the service, the result must

31

Design Of A Peer-to-peer-based Scalable Grid Service - Design

be sent back to the node which served as an entry-point. The result will be for-

warded through the P2P overlay network. This is done for the same reasons as for

the request.

When the resulting GSH/GSR is received by the originated node, it will forward

the GSH/GSR back to the client. From this point on, the client can communicate

directly with the MJS service. The transparency is preserved and the client thinks

at any time that it actually communicates with a GRAM instance. The described

communication is depicted in Figure 11.

The Growth Of The P2P Overlay Network

The service is composed of many nodes which are connected and can communi-

cate through a peer-to-peer overlay network. In any P2P system, nodes may ar-

rive (i.e. join) and leave. The growth of the network must be handled in some

way. Since the service will be a part of a grid environment, it's natural to design

these administrative tasks as a service which has two operations: join and leave.

The main advantage of the service-oriented approach is that the infrastructure,

which is available in the Globus toolkit, for authentication and security can be

used to authenticate nodes that wish to join the service.

The join operation in the DKS system is executed by the joining node. The ser-

vice-oriented approach requires that the operation of joining is executed by a

node that is already participating in the P2P network, on the joining node's behalf.

32

Figure 11 – Job Allocation Scheme

Search
&

forward

GSH/GSR
or error

Client

GRAM

P2P
Service

GRAM

DKS NETWORK

P2P
Service

A Node A Node

GSH/GSR
or error

createService

createService
on local GRAM

Forward request

Design Of A Peer-to-peer-based Scalable Grid Service - Design

This is not supported by the current implementation of the DKS system, why de-

signing the service-oriented approach would be somewhat complicated and would

require a big effort. The time restrictions within the project doesn't allow that ef-

fort.

One solution is to let those operations be as is, and let any node that wishes to

participate, to join without any authentication. This approach introduces the as-

sumptions of the well-controlled access of the network and the well-behaved en-

vironment and community. These assumptions allow the security issues not to be

considered.

3.2.3 Service Definition
To achieve the required transparency of the service, the service should be defined

by the service definition of the MJFS in the GRAM. The WSDL description of

the MJFS service and the corresponding Java interface are listed in Appendix A

and only described in this section. The meta-scheduling service should implement

all operations. This will make service easily deployed in new environments with

very little, if any, programming effort.

MJFS is an OGSI compliant service. That means that all operations which are de-

fined in the OGSI specification [13] are implemented by the service. These opera-

tions are defined according to the specification. The MJFS service is a factory

service which can serve as notification sink and source. Therefore, it should im-

plement the grid service operations, the factory service operations and the opera-

tions for notification sink and source. This is eight operations in total.

There are five operations defined for any OGSI compliant grid service. These op-

erations are:

➢ destroy – Destroys the service

➢ requestTerminationBefore – requests change of the termination

time of the service. The request specifies the latest desired termi-

nation time.

➢ requestTerminationAfter – requests change of the termination time

of the service. The request specifies the earliest desired termination

time.

➢ setServiceData – modifies a service data element's values.

➢ findServiceData – Queries the service data.

33

Design Of A Peer-to-peer-based Scalable Grid Service - Design

These operations perform the service data and lifetime management and should

be applied on the service itself. When called, these operations should perform the

service data and lifetime management on the meta-scheduling service. Since the

meta-scheduling service does not keep any data elements, implementation of the

service data management operations is not required. Since the meta-scheduling

service should be a persistent service, the destruction of the service should not be

handled by a client. So even lifetime management operations should not be im-

plemented in meta-scheduling service. The definitions must exist, but the opera-

tions shouldn't do anything.

There are two notification source and sink operations. These are:

➢ subscribe – subscribes the service for notifications from another

service.

➢ deliverNotification – registers a client as a receiver of notifications.

The operation subscribe must be defined in any service that wishes to send out

notifications. The operation deliverNotification must be defined in any service

that wishes to receive notifications from another service. The meta-scheduling

service should not send out any notifications, so the notification source operation

shouldn't be implemented. The service could subscribe for some notifications

from another service, such as notifications from indexing service. How the ser-

vice will retrieve information from indexing service is a question of an imple-

mentation.

The most important operation of the eight operations which are defined in MJFS,

is the factory service operation, createService operation. This is the operation

which is called when a client wishes to initiate an execution of a job. It needs to

request from the MJFS an instance of the MJS service. The operation takes one

parameter, the RSL specification of the job, which is to be executed. This opera-

tion must be implemented in the meta-scheduling service. When the operation is

invoked by a client, the meta-scheduling service should perform the allocation of

the job.

All operations are defined by the OGSI specification. For more detailed descrip-

tion of the operations, see [13]. For further information on the functionality of the

MJFS service please see [29].

34

Design Of A Peer-to-peer-based Scalable Grid Service - Design

3.2.4 Searching For A Node
When a request is received by a node, which serves as entry-point, it will first

check if the job can be executed locally. If not, another suitable node must be

found somewhere in the system. The search is performed according to some

scheme. Four schemes are described below. Three of them are based on the

schemes presented in [31]. Two of those four schemes will be described, but not

considered, since they are out of the scope of this project. The interface of these

schemes must be unified. The replacement of a scheme should not require large

programming effort.

In any scheme, the system must decide whether a node is suitable for execution.

The decisions are based on several parameters. First, a node should not accept a

job execution if its load is high. Only nodes with a low level of load should ac-

cept a job execution. Second, a node should not accept a job execution if its re-

sources don't fit the requirements specified in the RSL specification of the job.

These requirements can include any parameter available in the definition of the

RSL language.

Extracting Parameters

When a client calls the createService operation it has to supply, a RSL specifica-

tion of resources that execution of the job requires. This specification contains the

information that can be extracted and used for making the scheduling decisions.

The execution may depend on several different parameters, not only on load. A

job, for example, might demand a certain architecture of the node where the exe-

cution will be performed.

The parameters, which a job requires, can be extracted from the RSL specifica-

tion by parsing the XML code. If a parameter is needed for the scheduling deci-

sion, but is not provided by the client in the RSL specification, the default values

should be specified. For example, the default value for an instruction set of a pro-

cessor might be i386.

Making A Decision

The meta-scheduling service must primarily take into account the load of nodes.

This is crucial for providing the approximately load-balanced system. In other

hand, the meta-scheduling service may take into account other parameters speci-

fied in the RSL specification.

35

Design Of A Peer-to-peer-based Scalable Grid Service - Design

A load of a node (processor) can be retrieved from the indexing services. A load

of a processor is specified by the three averaged values, during one, five and 15

minutes. Which value the service will use, depends on how responsive the system

should be, and is a matter of an implementation. In the further discussions, we

will assume that a current load of a processor is

l = ce:Last15Min.

The wanted level of the load, L, should be specified on every node. This level is

the utilization which is wanted on that node. The lightly and heavily loaded nodes

are then defined as following:

The heavily loaded node: l ≥ L

The lightly loaded node: l < L

A node should only accept a job execution if and only if that node is lightly load-

ed.

Other parameters that will be used for making a scheduling decision may be used

to provide more accurate assigning of jobs. Parameters that are considered must

be available both in the RSL definition and in the information services. The RSL

can be extended if necessary, so the limitations are in the information services.

One-to-one Scheme

This scheme is based on a direct communication between nodes. The P2P net-

work is used only for routing of messages and connecting the nodes. The network

is searched randomly for a lightly loaded node. To locate a lightly loaded node a

random identifier is chosen and the node responsible for that identifier is contact-

ed. A request for job execution is sent. The decision whether to accept or decline

the request is made by the contacted node, locally. If it accepts, it should forward

the request to the local GRAM instance. If the contacted node didn't accept the

job execution, the next random node is chosen and contacted (see Figure 12). The

process repeats until a node accepts a job or the whole system is searched.

This scheme has the advantage of the simplicity of the algorithm. There are no

repositories that must be maintained and there is no advertisement of the nodes

properties. The decisions are made locally and are based on the current state of

the node, rather then on a state which was advertised some time ago. There are no

racing conditions that must be considered, as well. In most environments random

selections of nodes will produce a very good hit-rate.

36

Design Of A Peer-to-peer-based Scalable Grid Service - Design

The downside of this scheme is that any node might be contacted, not only highly

loaded nodes, but even those that don't match other requested properties, such as

the architecture. These nodes are not suitable no matter what their load is. This

will produce a higher network traffic.

One-to-many Scheme

This scheme is based on maintaining repositories, the directories, of lightly load-

ed nodes. The directories should contain the information about the load of nodes

as well as other parameters which should be used when making the scheduling

decisions. Such parameters could be the architectures of nodes, etc. There should

exist d directories, where d is much less then the number of nodes in the system,

N. A well-known hash function h' is used to hash a lightly loaded node into a di-

rectory. The hash function h' should result in the interval [0, d[. A directory j is

hashed by using another well-known hash function h, and then stored on the node

responsible for the identifier given by h(j). A lightly loaded node l advertise its

load and other parameters to a node responsible for the identifier

i = h(h'(l)).

When a node shifts from a lightly loaded state to a highly loaded state it should

remove itself from the directory. This should be done by advertising a high load

to the node responsible for the directory. The node should then remove the adver-

tising node from the directory. The advertisement of the nodes is depicted in Fig-

ure 13.

37

Figure 12 – The One-to-one Scheme

Can you execute this job?

Can you execute this job?

GSH/GSR or error

Heavily
loaded
node

Lightly
loaded node

Searching
node

No!

Design Of A Peer-to-peer-based Scalable Grid Service - Design

Nodes in a P2P system might fail, i.e. leave without cleaning up. This is why an

entry in a directory should be time-limited. If a lightly loaded node didn't adver-

tise itself within a time limit T, its entry should be removed. To be sure that they

are listed in a directory, nodes should advertise themselves periodically, with a

period T/2. This will, eventually, remove all unavailable nodes from the directo-

ries.

When the system is searched for a lightly loaded node, the searching node picks a

random directory j. The query is sent to the node which is responsible for that di-

rectory, i.e. is responsible for the identifier h(j). The directory is searched for

nodes that match the requirements specified in the query. A list of possible nodes

is sent back to the searching node (see Figure 14).

The information that was retrieved from the directory might be not updated. The

nodes might actually be highly loaded. In the worst case, the node could have

failed and left garbage in the directory. A request for a job execution is sent to the

node. If the node is still participating, it will make a decision whether it wishes

and is able to accept the job execution. If it accepts, it should forward the request

to the local GRAM instance. If it rejects the request, the searching node should

contact the next lightly loaded node in the list, and so on. If the list does not con-

tain any lightly loaded nodes, the next random selected directory is queried. The

38

Figure 13 – The One-to-many Scheme: Node Advertisement

Advertise m
e

as light!

Adver
tise

 m
e a

s li
ght

Lightly
loaded node

Lightly
loaded node

8

7

6

5

4

3

2

1

Node
with

directory

Advertise me as heavy!

(i.e. remove my entry!)

Heavily
loaded node

Design Of A Peer-to-peer-based Scalable Grid Service - Design

process continues until the whole system is searched without result (see Figure

14).

The DHT functionality of the P2P network is used in this scheme to store the di-

rectories. The directories provide filtering, so that the nodes we're not interested

in are not bothered with the requests. The downside is that very a little amount of

nodes is handling the directories and will have to communicate intensively with

all other nodes. In a very busy environment this might cause an overload due to

processing of the large amount of queries. A solution is to increase the number of

directories, so that the load due to processing queries is spread out. But this num-

ber may not become too large, because when the number of directories is compa-

rable to the number of nodes, this scheme will reduce to an inefficient variant of

the one-to-one scheme.

The Many-to-many Scheme

The many-to-many scheme is further development of the previous scheme, the

one-to-many scheme. In this scheme, besides the directories of lightly loaded

nodes, directories of jobs waiting for executions are also kept in the DHT. If a

node is lightly loaded it should search the directories of pending jobs to find a job

39

Figure 14 – The One-to-many Scheme: Searching For A Lightly Loaded Node

Can you execute this job?

Can you execute this job?

GSH/GSR or error

Heavily
loaded
node

Lightly
loaded node

Searching
node

No!

Who can execute this job?

2 and 5

8

7

6

5

4

3

2

1

Node
with

directory

Design Of A Peer-to-peer-based Scalable Grid Service - Design

it can execute. Both the entry-point nodes and the lightly loaded nodes perform

the search (see Figure 15). This should reduce the search time. As a consequence

of the pending jobs directories, the system will keep on accepting the requests

and advertise the jobs, even if the system is saturated.

The advertisement of the pending jobs requires that the requests for job execu-

tions should be queued somewhere, until nodes, on which they will be executed,

are found. This queuing is the actual reason the system will keep on accepting the

requests although saturated. But, requiring the introduction of the queues in the

system is against the assumption that was made at the beginning of this chapter.

This is why this scheme is out of the scope of this project and will not be consid-

ered further.

The Broadcast Scheme

In this scheme querying of the system for lightly loaded nodes is performed by

broadcasting a message into the system. The k-ary spanning tree in the DKS

could be used to filter out the heavily loaded nodes. The spanning tree, in the

DKS would allow us to perform the filtering of the querying results in a scalable

manner and the node, from which the request originates, would receive a small

number of messages compared to the number of participating nodes (see Figure

16).

40

Figure 15 – The Many-to-many Scheme

Lightly
loaded
node

Lightly
loaded node

Node with
a job

Ad
ve

rti
se

 th
e

jo
b

8

7

6

5

4

3

2

1

Node with
node-directory

Node with
job-directory

Is there a job I can execute?

Talk to 7

Who can execute this job?

Talk to 5

Searching
node Adv

ert
ise

 m
e a

s li
gh

tly
 lo

ad
ed

!

Design Of A Peer-to-peer-based Scalable Grid Service - Design

The current DKS implementation doesn't provide an access to the K-nary span-

ning tree of the P2P network. This means that the broadcasting scheme can't be

realized in the way described above. The only way a broadcast could be used is to

broadcast a request and let the whole system answer back to the requester, basi-

cally making a snapshot of the system. But this is not desirable, as thousands and

thousands of messages could flood the requester and thereby creating a DDOS at-

tack unintentionally. This version of the algorithm could be classified as danger-

ous for the participating nodes.

The broadcasting scheme will not be considered further in this project.

41

Figure 16 – The Broadcast Scheme

6 75

3 42

1

9 108 12 1311

Broadcast of the query

Collection of results

LEGEND:

Design Of A Peer-to-peer-based Scalable Grid Service - Design

42

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

4 Implementation Issues
The implementation of the meta-scheduling service should be done in the Java

programming language. The main components that should be used for realization

of the service are the Globus Toolkit 3.2 and the DKS system. The current imple-

mentation of the DKS is developed in the Java, which somewhat dictates the re-

quirement of what development tools should be used when implementing the ser-

vice.

4.1 Classes
There should exist two classes that cover the functionality of the meta-scheduling

service. The functionality should be divided according to the components de-

scribed in section 3.2.2. The classes presented in the following subsections are the

basic classes in an implementation of the service. There will exist other classes

that are necessary for use of the DKS system, such as a class that extends the

DKSMessageReceiver class. These classes could also be realized as subclasses.

4.1.1 Grid Service Component
The first class extends the service implementation, GridServiceImpl, and imple-

ments the interface of the MJFS, MasterManagedJobFactoryService. This class

should implement only the functionality of a grid service. No reference to peer-

to-peer network should be included. This class should only use the functionality

provided by the P2P component. The outline of the class can be found below.

Outline Of The MetaScheduler Class

Please observe that this is an outline and not a complete and

correct code.

public class MetaScheduler extends GridServiceImpl implements

MasterManagedJobFactoryService {

 public MetaScheduler() {};

 public void createService(...) {}

 public void deliverNotification(...) {}

 public void subscribe(...) {}

 public ExtensibilityType setServiceData(...) {}

 public void destroy() {}

43

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

 public TerminationTimeType requestTerminationAfter(...) {}

 public TerminationTimeType requestTerminationBefore(...) {}

 public ExtensibilityType findServiceData(...) {}

}

Some of the methods might be implemented as empty calls, that is, the operations

do nothing. The method createService must be implemented in any implementa-

tion because this method performs the operation of scheduling.

4.1.2 Peer-to-peer Component
The second class should implement the functionality related to the peer-to-peer

overlay network. This includes the joining, the leaving, the searching schemes

and the forwarding of requests, etc. A proposition of a possible outline of the

class is provided below.

Outline Of The P2PComponent Class

Please observe that this is an outline and not the complete and

correct code.

public class P2PComponent {

 public P2PComponent () {};

 public forwardRequest(...) {}

 public execute(...) {}

 public boolean isExecutable(...) {}

}

In the class above the basic methods are specified. The method forwardRequest is

used for searching for an appropriate node and the forwarding of a request to it. It

should return a result of running the createService operation on a local instance of

the GRAM on some node. If no available nodes are found, it should raise an ex-

ception. The method execute should execute the createService operation on the

local instance of the GRAM for the specified job. The method isExecutable

should check if the specified job can be executed on the node.

The class should be implemented for each searching scheme separately, although

the peer-to-peer component contains some functionality which is independent of

searching scheme. It is necessary to mix these functionalities to reduce the num-

ber of messages which are sent between the nodes.

44

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

4.2 Joining And Leaving
At the creation time of the service, the code for joining the newly created node

must be executed. The constructor of the P2PComponent class must join the

node. If the node is to be joined into the overlay network, it must know about at

least one node that already participates in it. This information must either be

hard-coded, provided as a parameter when starting the service or saved in a con-

figuration file. A private method may be added to the P2PComponent class to

handle the joining. This method could be used for other start-up tasks. At start-up,

the node might wish to advertise itself into a directory, so that it can receive re-

quests from the very beginning. This is not necessary, though, since the node will

frequently check its state and advertise itself if necessary.

A node should call the leave operation in the DKS system when the service is

about to be shut down. This is not required, though. A node should be able to

leave the network without calling the leave operation and the system must handle

it. The system must be able to handle failing nodes. A private method may be

added to the P2PComponent class to handle the leaving. This method could per-

form other tasks associated with the shutdown of the service, such as advertising

a high load. An advertisement of a high load will effectively remove a node from

any directory.

4.3 P2P Messaging
When searching the P2P overlay network for lightly loaded nodes some messag-

ing will have to be performed. In the two schemes described in previous section,

three messages are used:

➢ Request job execution

➢ Advertise

➢ Query

The messages could be XML-based, since all other technologies are using the

XML-based messaging protocols. A parser for XML code must be included in an

implementation, since the RSL specifications must be parsed. The use of the

XML in the P2P messaging will not demand much more programming effort.

A request for a job execution should contain a RSL specification of the job, so

that a node can extract the relevant data and decide whether it can execute the

job. Besides the RSL specification no other data has to be sent. So, the RSL spec-

45

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

ification can serve as a request message. To be sure that there are no misunder-

standings of the meaning of the message, the RSL specification can be wrapped

into a '<request>' tag, as example shows.

Request Message

<request>

 <rsl:rsl>

 ...

 </rsl:rsl>

</request>

When a request is received by a node, it should check whether it can provide the

resources specified in the RSL specification. If it can, then it should contact the

local GRAM instance and request creation of MJS and return the resulting

GSH/GSR. If it can't provide the requested resources, it should return a reject

message. Outlines of these messages are proposed below.

Request Result Message

Result message can have two different outlines. First, the

result of creation of MJS service:

 <request:result>

 <reference>

 ...

 </reference>

 </request:result>

Second, when the request is rejected by the node:

 <request:result>

 <reject/>

 </request:result>

The querying message should contain the RSL specification, as well, since the fil-

tering of a directory will be performed according to it. Beyond this, no other data

is necessary for the querying. Also this message must be wrapped so that no mis-

understanding can arise.

46

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

Querying Message

<query>

 <rsl:rsl>

 ...

 </rsl:rsl>

</query>

When a node receives a querying message, it should search the directory and cre-

ate a list of all nodes which meet the criteria specified in the RSL specification.

The list should be returned as a resulting message. A possible outline of the re-

sulting message is shown below.

Query Result

<query:result>

 <node id=”...”/>

 <node id=”...”/>

 <node id=”...”/>

 ...

</query:result>

The advertising message have several purposes. The message has the purpose of

advertising a lightly loaded node. The second purpose is to keep an entry updated.

At the same time, it serves as a keep-alive message that will keep an entry in the

directory. Also, this message can be used to remove a node from a directory by

advertising a node as heavy. The message must include, at least, the following in-

formation:

➢ Identifier – The unique identifier in the P2P overlay network

➢ Load level – [High/low] Whether advertising high or low load

➢ Load – Current load of node

➢ Preferred load – Preferred load of node

More information can be added. This information could be other parameters of a

node, such as an architecture, etc.

Advertisement Message

<advertise id=”...”

level=[high | low]

load=”...”

preferred=”...” />

47

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

When a node receives an advertisement message it should first check if advertise-

ment is for a high or a low load. If it is for a low load, then it should add the ad-

vertising node into the directory it is responsible for. If the node is already in the

directory, it should update, in the entry, the time-stamp, the load information and

other information about a node. If the advertisement message is advertising a high

level of load, the node responsible for the directory should remove the advertising

node from the directory.

4.4 Searching
A searching scheme is implemented in the method forwardRequest. The method

should perform the search and, at the same time, forward the request to the found,

lightly-loaded node. The merging of these two apparently different tasks is neces-

sary for the reduction of messaging in the overlay network. When directly for-

warding a request, there is no need for reservation of resources or such. The re-

quest for a job execution can be rejected in two levels: first by a peer-to-peer

node and, second, by the GRAM. The rejection from a peer-to-peer node should

result in a further search. The message of this rejection is defined in section 4.3.

The rejection from GRAM, should be forwarded back to the client.

In the forwardRequest method, a searching scheme should be implemented. Be-

cause of its simplicity, the one-to-one scheme can be implemented within this

method. On the other hand the one-to-many scheme is more complex and requires

the extra functionality. Additional, private, methods should be introduced to han-

dle the directories. Also a data-structure must be introduced to handle the entries

in the directories.

4.4.1 Directories
The directories can be implemented using any data structure: linked lists, hash ta-

bles, etc. A special class may be defined which will be used as a data-element in

the directories. This data element must contain the following fields:

➢ Identifier – The unique identifier in the P2P overlay network

➢ Load – Current load of node

➢ Preferred load – Preferred load of node

These are basic parameters, which are used when deciding whether a job could be

executed on this node, and must exist in a directory. Additional fields may be in-

48

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

troduced if other parameters, such as an instruction set, are used for the decision-

making.

An advertisement message must result in an update of the directory. A node

should be removed from the directory if it advertises a high load, and the entry

should be updated if it advertises a low load. This can be handled by a single

method, updateDirectory, since update of an entry is simply removing and adding

that entry.

When a query message arrives, the directory must be searched for nodes that fit

the query. This can be done in a separate method, queryDirectory. A list of nodes

should result by calling this method. The list should only contain identifiers of

nodes. No other information is necessary.

4.5 Listening
When receiving messages in the DKS system, a listener class is used for handling

the event. A listener class must extend the DKSMessageReceiver class, which is

defined by the DKS implementation. The listener class can be defined as subclass

or in-line class. The possible messages that could be received by a node are de-

fined in section 4.3.

When a node receives a message the listener class handles it by calling appropri-

ate functions. If the request-for-execution message is received, then the node

should call the method isExecutable, to check if the job can be executed on the

node. If it can, then the execute method should be called and the result forwarded

back to the requesting node. If the advertisement message is received, the update-

Directory method should be called, to update the entry in the directory, which this

node is responsible for. If the querying message is received, then the queryDirec-

tory method should be called to build up a list of nodes.

49

Design Of A Peer-to-peer-based Scalable Grid Service - Implementation issues

50

Design Of A Peer-to-peer-based Scalable Grid Service - Conclusions

5 Conclusions
In this project, three technologies have been studied: the grids, the web services

and the peer-to-peer overlay networks. In the second phase of the project, we

have tried and succeeded in designing a grid service, which is based on the peer-

to-peer overlay network technology, and provided the architecture. This has re-

sulted in a grid service that is scalable, self-organized, fault-tolerant and distribut-

ed. The service can handle failing nodes and it has no single point of failure. The

service is a meta-scheduling service for the GRAM. Two resource-searching

schemes have been considered: the one-to-one and the one-to-many scheme.

From the work presented in the report, we can conclude that the peer-to-peer

overlay networks with the Distributed Hash Tables (DHTs) functionality, in par-

ticular the DKS, can be used within a grid environment for a realization of grid

services.

5.1 Future Work
The implementation of the design is a natural step in the work. The implementa-

tion will provide a working prototype, which can then be tested and evaluated.

The results of the future work must show whether the design has the desirable

performances.

A long term goal is to provide a more complex design and implementation of the

meta-scheduling service. Also, the goal is to incorporate the peer-to-peer overlay

network technology in other services, which are today available in a grid environ-

ment.

51

Design Of A Peer-to-peer-based Scalable Grid Service - Conclusions

52

Design Of A Peer-to-peer-based Scalable Grid Service - Appendix A

6 Appendix A

6.1 Service Definitions
The meta-scheduling service must have the same interface as the MMJFS. The

port-type definition should be basically the same. The port-type definition of the

MMJFS is listed below. The associated Java interface is listed, as well.

Port-type Definition Of The MMJFS In The GRAM
<?xml version="1.0" encoding="UTF-8"?>

<definitions name="MasterManagedJobFactoryService"

 targetNamespace="http://www.globus.org/namespaces/2003/04/mmjfs"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:gwsdl="http://www.gridforum.org/namespaces/2003/03/gridWSDLE

xtensions"

 xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/OGSI"

 xmlns:tns="http://www.globus.org/namespaces/2003/04/mmjfs"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<import location="../../ogsi/ogsi.gwsdl"

 namespace="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

<portType name="MasterManagedJobFactoryService">

 <operation name="createService">

 <input message="ns36:CreateServiceInputMessage"

 xmlns:ns36="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <output message="ns37:CreateServiceOutputMessage"

 xmlns:ns37="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns38:ExtensibilityNotSupportedFaultMessage"

 name="ExtensibilityNotSupportedFault"

 xmlns:ns38="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns39:ExtensibilityTypeFaultMessage"

 name="ExtensibilityTypeFault"

 xmlns:ns39="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns40:ServiceAlreadyExistsFaultMessage"

 name="ServiceAlreadyExistsFault"

 xmlns:ns40="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns41:FaultMessage"

 name="Fault"

 xmlns:ns41="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

 <operation name="deliverNotification">

 <input message="ns35:DeliverNotificationInputMessage"

53

Design Of A Peer-to-peer-based Scalable Grid Service - Appendix A

 xmlns:ns35="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

 <operation name="subscribe">

 <input message="ns0:SubscribeInputMessage"

 xmlns:ns0="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <output message="ns1:SubscribeOutputMessage"

 xmlns:ns1="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns2:ExtensibilityNotSupportedFaultMessage"

 name="ExtensibilityNotSupportedFault"

 xmlns:ns2="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns3:ExtensibilityTypeFaultMessage"

 name="ExtensibilityTypeFault"

 xmlns:ns3="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns4:TargetInvalidFaultMessage"

 name="TargetInvalidFault"

 xmlns:ns4="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns5:FaultMessage"

 name="Fault"

 xmlns:ns5="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

 <operation name="setServiceData">

 <input message="ns48:SetServiceDataInputMessage"

 xmlns:ns48="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <output message="ns49:SetServiceDataOutputMessage"

 xmlns:ns49="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns50:ExtensibilityNotSupportedFaultMessage"

 name="ExtensibilityNotSupportedFault"

 xmlns:ns50="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns51:ExtensibilityTypeFaultMessage"

 name="ExtensibilityTypeFault"

 xmlns:ns51="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns52:CardinalityViolationFaultMessage"

 name="CadinalityViolationFault"

 xmlns:ns52="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns53:MutabilityViolationFaultMessage"

 name="MutabilityViolationFault"

 xmlns:ns53="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns54:ModifiabilityViolationFaultMessage"

 name="ModifabilityViolationFault"

 xmlns:ns54="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns55:TypeViolationFaultMessage"

 name="TypeViolationFault"

 xmlns:ns55="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns56:IncorrectValueFaultMessage"

 name="IncorrectValueFault"

 xmlns:ns56="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns57:PartialFailureFaultMessage"

 name="PartialFailureFault"

 xmlns:ns57="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

54

Design Of A Peer-to-peer-based Scalable Grid Service - Appendix A

 <fault message="ns58:FaultMessage"

 name="Fault"

 xmlns:ns58="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

 <operation name="destroy">

 <input message="ns67:DestroyInputMessage"

 xmlns:ns67="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <output message="ns68:DestroyOutputMessage"

 xmlns:ns68="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns69:ServiceNotDestroyedFaultMessage"

 name="ServiceNotDestroyedFault"

 xmlns:ns69="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns70:FaultMessage"

 name="Fault"

 xmlns:ns70="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

 <operation name="requestTerminationAfter">

 <input message="ns59:RequestTerminationAfterInputMessage"

 xmlns:ns59="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <output message="ns60:RequestTerminationAfterOutputMessage"

 xmlns:ns60="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns61:TerminationTimeUnchangedFaultMessage"

 name="TerminationTimeUnchangedFault"

 xmlns:ns61="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns62:FaultMessage"

 name="Fault"

 xmlns:ns62="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

 <operation name="requestTerminationBefore">

 <input message="ns63:RequestTerminationBeforeInputMessage"

 xmlns:ns63="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <output message="ns64:RequestTerminationBeforeOutputMessage"

 xmlns:ns64="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns65:TerminationTimeUnchangedFaultMessage"

 name="TerminationTimeUnchangedFault"

 xmlns:ns65="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns66:FaultMessage"

 name="Fault"

 xmlns:ns66="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

 <operation name="findServiceData">

 <input message="ns42:FindServiceDataInputMessage"

 xmlns:ns42="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <output message="ns43:FindServiceDataOutputMessage"

 xmlns:ns43="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns44:ExtensibilityNotSupportedFaultMessage"

 name="ExtensibilityNotSupportedFault"

 xmlns:ns44="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns45:ExtensibilityTypeFaultMessage"

55

Design Of A Peer-to-peer-based Scalable Grid Service - Appendix A

 name="ExtensibilityTypeFault"

 xmlns:ns45="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns46:TargetInvalidFaultMessage"

 name="TargetInvalidFault"

 xmlns:ns46="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 <fault message="ns47:FaultMessage"

 name="Fault"

 xmlns:ns47="http://www.gridforum.org/namespaces/2003/03/OGSI"/>

 </operation>

</portType>

<gwsdl:portType extends="ogsi:NotificationSource

ogsi:NotificationSink ogsi:Factory"

 name="MasterManagedJobFactoryService"/>

</definitions>

56

Design Of A Peer-to-peer-based Scalable Grid Service - Appendix A

Java Interface For MJFS In GRAM
/**

 * MasterManagedJobFactoryService.java

 *

 * This file was auto-generated from WSDL

 * by the Apache Axis WSDL2Java emitter.

 */

package org.globus.ogsa.base.gram.mmjfs;

public interface MasterManagedJobFactoryService extends

org.gridforum.ogsi.GridService {

 public void createService(org.gridforum.ogsi.TerminationTimeType

terminationTime, org.gridforum.ogsi.ExtensibilityType creationParameters,

org.gridforum.ogsi.holders.LocatorTypeHolder locator,

org.gridforum.ogsi.holders.TerminationTimeTypeHolder currentTerminationTime,

org.gridforum.ogsi.holders.ExtensibilityTypeHolder extensibilityOutput) throws

java.rmi.RemoteException, org.gridforum.ogsi.ServiceAlreadyExistsFaultType,

org.gridforum.ogsi.ExtensibilityTypeFaultType,

org.gridforum.ogsi.ExtensibilityNotSupportedFaultType,

org.gridforum.ogsi.FaultType;

 public void deliverNotification(org.gridforum.ogsi.ExtensibilityType

message) throws java.rmi.RemoteException;

 public void subscribe(org.gridforum.ogsi.ExtensibilityType

subscriptionExpression, org.gridforum.ogsi.LocatorType sink,

org.gridforum.ogsi.ExtendedDateTimeType expirationTime,

org.gridforum.ogsi.holders.LocatorTypeHolder subscriptionInstanceLocator,

org.gridforum.ogsi.holders.TerminationTimeTypeHolder currentTerminationTime)

throws java.rmi.RemoteException, org.gridforum.ogsi.TargetInvalidFaultType,

org.gridforum.ogsi.ExtensibilityTypeFaultType,

org.gridforum.ogsi.ExtensibilityNotSupportedFaultType,

org.gridforum.ogsi.FaultType;

 public org.gridforum.ogsi.ExtensibilityType setServiceData

(org.gridforum.ogsi.ExtensibilityType updateExpression) throws

java.rmi.RemoteException, org.gridforum.ogsi.ModifiabilityViolationFaultType,

org.gridforum.ogsi.PartialFailureFaultType,

org.gridforum.ogsi.TypeViolationFaultType,

org.gridforum.ogsi.MutabilityViolationFaultType,

org.gridforum.ogsi.CardinalityViolationFaultType,

org.gridforum.ogsi.ExtensibilityTypeFaultType,

org.gridforum.ogsi.IncorrectValueFaultType,

org.gridforum.ogsi.ExtensibilityNotSupportedFaultType,

org.gridforum.ogsi.FaultType;

57

Design Of A Peer-to-peer-based Scalable Grid Service - Appendix A

 public void destroy() throws java.rmi.RemoteException,

org.gridforum.ogsi.ServiceNotDestroyedFaultType, org.gridforum.ogsi.FaultType;

 public org.gridforum.ogsi.TerminationTimeType requestTerminationAfter

(org.gridforum.ogsi.ExtendedDateTimeType terminationTime) throws

java.rmi.RemoteException, org.gridforum.ogsi.TerminationTimeUnchangedFaultType,

org.gridforum.ogsi.FaultType;

 public org.gridforum.ogsi.TerminationTimeType requestTerminationBefore

(org.gridforum.ogsi.ExtendedDateTimeType terminationTime) throws

java.rmi.RemoteException, org.gridforum.ogsi.TerminationTimeUnchangedFaultType,

org.gridforum.ogsi.FaultType;

 public org.gridforum.ogsi.ExtensibilityType findServiceData

(org.gridforum.ogsi.ExtensibilityType queryExpression) throws

java.rmi.RemoteException, org.gridforum.ogsi.TargetInvalidFaultType,

org.gridforum.ogsi.ExtensibilityTypeFaultType,

org.gridforum.ogsi.ExtensibilityNotSupportedFaultType,

org.gridforum.ogsi.FaultType;

}

58

Design Of A Peer-to-peer-based Scalable Grid Service - List of Abbreviations

7 List Of Abbreviations
CE – Computing Element
DDOS – Distributed Denial Of Service
DHT – Distributed Hash Table
DKS – Distributed K-nary System
FSFS – File Stream Factory Service
FSS – File Stream Service
GRAM – Globus Resource Allocation Manager
GSH – Grid Service Handle
GSI – Grid Security Infrastructure
GSR – Grid Service Reference
GT – Globus Toolkit
GT3 – Globus Toolkit, version 3
MDS – Management and Discovery Service
MHE – Master Hosting Environment
MJFS – Managed Job Factory Service
MJS – Managed Job Service
MMJFS – Master Managed Job Factory Service
OGSA – Open Grid Service Architecture
OGSI – Open Grid Service Interface
P2P – Peer-To-Peer
RSL – Resource Specification Language
SDE – Service Data Element
SOAP – Simple Object A Protocol
UDDI – Universal Description and Integration
UHE – User Hosting Environment
VO – Virtual Organization
WSDL – Web Services Description Language
XML – Extensible Markup Language

59

Design Of A Peer-to-peer-based Scalable Grid Service - List of Abbreviations

60

Design Of A Peer-to-peer-based Scalable Grid Service - References

8 References
[1] “Peer-To-Peer Computing”, Dejan S. Milojicic, Vana Kalogeraki, Rajan

Lukose, Kiran Nagaraja, Jim Pruyne, Bruno Richard, Sami Rollins, Zhichen

Xu, HP Labratories Palo Alto, HPL-2002-57, March 2002

[2] “A Framework For The Understanding, Optimization and Design Of

Structured Peer-To-Peer Systems”, Sameh El-Ansary, Licentiate of

Philosophy Dissertation at Royal Institute of Technology, 2003

[3] “What Is P2P ... And What Isn't”, Clay Shirky, O'Reilly OpenP2P.com,

http://www.openp2p.com/pub/a/p2p/2000/11/24/shirky1-whatisp2p.html

[4] Web services, URL: http://www.w3.org/2002/ws/

[5] “New to SOA and Web services”, IBM developerWorks,

http://www-106.ibm.com/developerworks/webservices/newto/websvc.html

[6] “Web Services Architecture”, W3C Working Group Note 11 February 2004,

http://www.w3.org/TR/ws-arch/

[7] “Web Services Description Language (WSDL) 1.1”, Erik Christensen,

Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, W3C Note 15

March 2001, http://www.w3.org/TR/wsdl

[8] “SOAP Version 1.2 Part 0: Primer”, Nilo Mitra, W3C Recommendation 24

June 2003, http://www.w3.org/TR/2003/REC-soap12-part0-20030624/

[9] “Web Services Conceptual Architecture”, Heather Kreger, IBM Software

Group, May 2001,

http://www-306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf

[10] “Distributed Computing Research Issues in Grid Computing”, Henri

Casanova, in Quarterly Newsletter for the ACM Special Interest Group on

Algorithms and Computation Theory (SIGACT News), Vol. 33, Num. 2,

Sept. 2002.

[11] “The Anatomy of the Grid: Enabling Scalable Virtual Organizations”, I.

Foster, C. Kesselman, S. Tuecke, International J. Supercomputer

Applications, 15(3), 2001.

61

Design Of A Peer-to-peer-based Scalable Grid Service - References

[12] “The Physiology of the Grid: An Open Grid Services Architecture for

Distributed Systems Integration”, I. Foster, C. Kesselman, J. Nick, S.

Tuecke, OpenGrid Service Infrastructure WG, Global Grid Forum, June 22,

2002.

[13] “Open Grid Services Infrastructure (OGSI) Version 1.0.”; S. Tuecke, K.

Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T.

Sandholm, P. Vanderbilt, D. Snelling, Global Grid Forum Draft

Recommendation, 6/27/2003.

[14] IBM Grid Computing – “What is grid computing”,

URL: http://www-1.ibm.com/grid/about_grid/what_is.shtml

[15] The Globus Alliance, URL: http://www.globus.org/

[16] Global Grid Forum, URL: http://www.gridforum.org/

[17] “A visual tour of Open Grid Services Architecture”, Jay Unger, Matt

Haynos, http://www-106.ibm.com/developerworks/grid/library/gr-visual/

[18] “On Death, Taxes, and the Convergence of Peer-to-Peer and Grid

Computing”, Ian Foster and Adriana Iamnitchi, 2nd International Workshop

on Peer-to-Peer Systems (IPTPS'03), February 2003, Berkeley, CA.

[19] “Grid Computing for the Masses: An Overview”, Kaizar Amin, Gregor von

Laszewski, and Armin R. Mikler, Proceedings of the Second International

Workshop on Grid and Cooperative Computing (GCC 2003), December 7-

10 2003, Shanghai, China

[20] Kazaa Inc., http://www.kazaa.com/

[21] Napster Inc., http://www.napster.com/

[22] OpenNap project, http://opennap.sourceforge.net/

[23] RFC-Gnutella, http://rfc-gnutella.sourceforge.net/

[24] Pastry project, http://www.research.microsoft.com/~antr/Pastry/

[25] Tapastry project, http://www.cs.berkeley.edu/~ravenben/tapestry/

[26] FreeNet project, http://freenetproject.org/

[27] Chord project, http://www.pdos.lcs.mit.edu/chord/

[28] “Grid computing: What are the key components?”, Bart Jacob,

http://www-106.ibm.com/developerworks/library/gr-overview/

[29] WS GRAM Documentation,

http://www-unix.globus.org/toolkit/docs/3.2/gram/ws/index.html

62

Design Of A Peer-to-peer-based Scalable Grid Service - References

[30] Information Services/MDS,

http://www-unix.globus.org/toolkit/docs/3.2/infosvcs/ws/index.html

[31] “Load Balancing in Structured P2P Systems”, Ananth Rao, Karthik

Lakshminarayanan, Sonesh Surana, Richard Karp, Ion Stoica, 2003

[32] “A Framework for Structured Peer-to-Peer Overlay Networks”, Luc Onana

Alima, Ali Ghodsi, Seif Haridi, In LNCS volume 3267 of the post-

proceedings of the Global Computing 2004 (pp. 223-250), Springer-Verlag

[33] “Multicast in DKS(N, k, f) Overlay Networks”, Luc Onana Alima, Ali

Ghodsi, Per Brand, Seif Haridi, In Proceedings of the 7th International

Conference on Principles of Distributed Systems (OPODIS'2003), Springer-

Verlag, Berlin, 2004

63

