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Abstract 
 
This report investigates time management in COTS based distributed simulation using 
HLA. Discussions are limited to discrete event simulation and conservative 
algorithms. The COTS Simulation Package Emulator (CSPE) is used as an 
experimental tool. Its architecture is modified to use HLA as middleware. 
 
A time management algorithm is designed and implemented in Java for an 
asynchronous entity passing using the non-persistent object type interactions and 
using the two different time management methods TimeAdvanceRequest (TAR) and 
NextEventRequest (NER). 
 
Experiments are carried out on an isolated local area network with seven computers. 
The HLA RTI 1.3-NG Version 5 is used. Three variables, external/internal event 
ratio, workload and lookahead, are varied in different experiments and tested in four 
federate configurations. A middleware based on the Chandy-Misra-Bryant (CMB) 
algorithm is also tested on the same hardware and under the same circumstances. 
 
The results are compared and analysed. Both TAR and NER have the same results in 
all experiments and the analysis shows that these methods are actually doing the same 
in the developed algorithm. Their results are found to be equal or faster than CMB in 
all federate configurations except the configuration that doesn’t have any feedback 
loop, in which CMB is a little bit faster than HLA. 
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1 Introduction 
 
The aim of this thesis is to investigate time management in Commercial Off The Shelf 
(COTS) based distributed simulations using HLA. This chapter is divided into five 
sections. The first section will give a short introduction. The second will motivate 
why the aim is valuable. The third will describe the objectives that have been 
identified to fulfil the aim. The fourth will describe how they will be carried out. The 
last section will show the organisation of this report. 

1.1 Preliminaries 
Banks et al. (2001) define a simulation as “the imitation of the operation of a real-
world process or system over time” (p. 3). Computer simulations are useful when you 
want to know something about how a real-world system works without actually 
building the system. They are today used in many different areas, from manufacturing 
and health care to business and military applications. 
 
COTS simulation packages (CSPs) can be used to build simulations models (Swain 
2003). These packages are often very user friendly with graphical user interfaces for 
building and visualization of the model and with tools for statistical analysis and 
reporting. 
 
Distributed simulation is concerned with the execution of simulation on computers 
that are geographically apart (Fujimoto 1999). 
 
The High Level Architecture (IEEE 1516.2000) is an architecture developed for 
reusability and interoperability of simulations. It was first developed by the Defense 
Modeling and Simulation Office (DMSO) in the United States for military 
applications but has become a de-facto standard for distributed simulation. 
 
There have been many attempts to connect COTS simulations packages to each other 
but the many approaches are currently not compatible (Taylor, et al., 2003). There are 
even differences between the approaches that uses HLA. To unify research and 
development the HLA-CSP Interoperability Forum (HLA-CSPIF) has been 
established. The goal of the forum is to inform and to create standards. 
 
Even though some COTS simulations packages support the possibility to link 
externally written code in C++, VBA or Java to the simulation models, many of the 
internal functions and variables needed to create a distributed simulation are not 
available to the externally linked modules (Taylor, et al., 2003). 
 
The COTS simulation packages and models involved in a distributed simulation must 
agree on the format and manner data is passed between the models. The 
representation of an object and its attributes must be equal at the sending and the 
receiving models and they must also agree what mechanism for object transfer that 
should be used since several exist. (Taylor, et al., 2003) 
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1.2 Motivation 
The overhead in a distributed simulation can be split into three parts, see Figure 1-1. 
 
The first part is the overhead in the CSP execution. This overhead is difficult to 
reduce without access to the source code and must be reduced by the CSP 
manufactures. 
 
The second part is the overhead for the ordering of events and time management 
between the models involved in the distributed simulation. This could be reduced 
using smarter algorithms. 
 
The last part is the overhead for the network and the hardware that is used. Faster 
networks, network protocols and hardware could speed up the simulation. 
 

Figure 1-1. Overhead in a distributed simulation divided into three parts. 
 
As we can see, the ordering of events and time management is important for the 
overall performance of the simulation. HLA supports several methods for this 
management. It would be beneficial to see how these methods can be used in a COTS 
based distributed simulation and how well they perform in comparison to other types 
of middleware. 

1.3 Aim and Objectives 
The aim of this thesis is to investigate time management in COTS based distributed 
simulations using HLA. To achieve the aim six objectives have been defined. They 
and their justifications (in italics) are presented below: 
 
1. Perform a literature review 
 
By reading relevant papers I will get background and better understanding of the 
problem. 
 
2. Create a framework in which time management in COTS based distributed 
simulations using HLA can be investigated 
 
By creating a framework based on the literature survey it will be possible to identify 
which parts to implement later. 
 

CSP execution 

Event-ordering and time management 

Network and hardware 
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3. Implement interesting areas of the framework 
 
By implementing interesting areas of the framework it will be possible to do 
experiments and get results. 
 
4. Carry out experiments and evaluate the results 
 
By doing experiments and evaluating the results it will be possible to find out which 
mechanisms are most efficient.  
 
5. Propose efficient mechanisms 
 
By proposing the mechanisms that are found to be efficient the result of the work can 
be beneficial for others. 
 
6. Disseminate the research findings. 
 
By presenting the research and the results in a report and in a presentation others 
will be able to utilize the results in their research. 

1.4 Research Approach 
For each objective a method has been defined: 
 
1. Perform a literature review 
 
Relevant papers concerning simulation, distributed simulation and HLA will be read. 
 
2. Create a framework in which time management in COTS based distributed 
simulations using HLA can be investigated 
 
Identify and explain which mechanisms for time management exist based on the 
literature survey. Some interesting methods will be chosen for implementation and 
experiments. 
 
3. Implement interesting areas of the framework 
 
Implementation will be made using the latest version available of Java to make it 
compatible with the work earlier made at Brunel University by Mustafee (2003). HLA 
RTI 1.3-NG Version 5 will be used since this is the RTI version the university has 
access to. 
 
4. Carry out experiments and evaluate the results 
 
The benchmark proposed in Mustafee (2003) will be used since this is a desire from 
my supervisor. The benchmark is specially developed for distributed simulations. 
Experiments will be made on machines with equal hardware connected to each other 
over a separated local area network.  
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5. Propose efficient mechanisms 
 
Efficient mechanisms will be proposed and compared to the performance of another 
middleware based on the Chandy-Misra-Bryant algorithm. 
 
6. Disseminate the research findings 
 
The work and the results will be presented in a report. A presentation will be held in 
Sweden. 

1.5 Organisation of the Report 
The remaining six chapters of this report are each connected to one of the objectives 
identified above. Each chapter is outlined below: 
 
Chapter 2 gives a background to simulation, COTS packages, distributed simulation 
and HLA. The purpose of this chapter is to present the relevant knowledge needed to 
understand the report. 
 
Chapter 3 offers a deeper understanding of the problem to be solved and why it is 
interesting to solve it. Different methods to solve the problems are discussed. 
 
Chapter 4 describes the design and implementation in general for the possible 
different methods. Details will be presented for the method that will be implemented. 
 
Chapter 5 describes the benchmark used and how the experimentation was done. The 
equipment and programs used in the experimentation will be explained. The results 
will be shown in graphs together with the results of the middleware using the Chandy-
Misra-Bryant algorithm. 
 
Chapter 6 analyses the results and discusses advantages and disadvantages of the 
experimental tool that has been used and HLA as middleware for COTS simulation 
packages. 
 
Chapter 7 summarizes the report and presents what conclusions that can be made 
from the analysis of the results. Future work will also be discussed. 
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2 Background 
 
This chapter will give a background to simulation, COTS packages, distributed 
simulation and HLA. The purpose of this chapter is to give relevant knowledge 
needed to understand the report. 

2.1 Simulation 

2.1.1 Introduction 
As already noted in chapter one, Banks et al. (2001) define a simulation as “the 
imitation of the operation of a real-world process or system over time”. Simulations 
are useful when you want to know something about how a system works without 
actually building the system. 
 
This can increase knowledge of the system and save money since it is possible to test 
different approaches and parameters to find the best solution(s). Sometimes is it also 
dangerous to build the real system, as in the case of nuclear and weapon system. 
Simulations are today used in many different areas, from manufacturing and health 
care to business and military applications. 
 
It is not always good to do a simulation. It can, for example, cost more money than it 
saves since simulation modelling and analysis requires special training and takes time. 
An analytical solution to the problem might also be possible and easier to do. 
 
A simulation model breaks down into certain components.  The objects in a system 
are called entities and its properties are called attributes. An activity is a time period 
with a specified length. All variables that are needed to describe the system at any 
time are called the state variables and define the state of the system. An event is an 
occurrence that may change the state of the system and occurs at an instant of time. 
(Banks, et al., 2001) 
 
As an example of this, if a factory production chain is being studied, different parts 
might enter the factory, being put together and then exit the factory as finished 
products. These parts can be some of the entities in the model. When a part is being 
processed in a workstation this is an activity that takes a certain time. The number of 
available workstations can be one of the state variables of the system. A simulation 
can be a good idea if the company is considering buying a new workstation and wants 
to know how much it will improve the factory’s total performance. This is good to 
know before the decision to buy that workstation is taken. 
 
Simulations can be built using different approaches but common for most of them is 
that they have a simulation executive, a simulation clock and an event list. The 
simulation executive has the overall control of the system. The simulation clock keeps 
track of the current simulation time, which determines what events that should be 
executed. The event list contains all known future events, often ordered by their time 
stamp. 
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2.1.2 Discrete Event-based Simulations 
Real-world systems can usually be divided into continuous and discrete systems (Law 
and Kelton, 2000). In a continuous system the state of all variables is changed 
continuously over time. For example, the level of water behind a dam and the 
temperature in an electric component. 
 
In a discrete system the state of all variables is only changed at specific points in time. 
For instance, the case of the numbers of customers waiting in a queue and the 
numbers of calls going on in a telephone network. Simulations of discrete systems are 
called discrete event-based simulations.  
 
This report will limit its discussions to discrete event-based simulations. 

2.1.3 Execution Mechanisms 
Several different mechanisms exist for the simulation execution. The most common in 
discrete event-based simulations is the three phase method, but there are also different 
activity based and event based methods. The three phase method is the only method 
that will be described here, see Figure 2-1. The advantages of this method are that it is 
a safe and effective method that reduces risk of error, especially in large and complex 
models. (Paul and Balmer, 1998) 
 

Figure 2-1. The Three Phase Method 
(Paul and Balmer, 1998). 

 
In the first phase (A) is the simulation clock is changed to the time of the next event in 
the event list. Only events can change the state of the system and since there were no 
events between the old time and the new time nothing could have happened with the 
simulation there. In the second phase (B) all events at the new time are executed. In 
the third and last phase (C) all conditional events are tested to see if any of these can 
be executed. An example of a conditional event can be an entity waiting for a 
workstation to be available. 

Start simulation, initialization 

A. Move simulation clock 

B. Execute bound events 

C. Execute conditional events 

Interrupt or finish? 

Stop simulation, report 

Yes

No 
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2.2 Distributed Simulation 

2.2.1 Introduction 
Distributed simulation is concerned with the execution of simulation on computers 
that are geographically apart (Fujimoto 1999). For example, it can be motivated to 
distribute the simulation if a simulation model or some information used in the 
simulation (e.g. databases) only exist on a specific location. It might also be motivated 
if you want to use many models that already exist, maybe built using different CSPs, 
to build a bigger one. 
 
If factories are used as an example again, a distributed simulation can be useful if the 
company wants to simulate a whole production chain where many factories are 
involved. Suppose some of these factories are owned by other companies that do not 
want to share information about how their factories are built. By using a distributed 
simulation the factories’ simulation models can be kept secret at computers located at 
the different companies. The only data that is shared over the network is entities 
arriving and leaving the factories. 
 
An important distinction between a sequential and a distributed simulation is that the 
state variables and the system objects cannot be shared in a distributed simulation as 
they can be in a simulation running on just one computer. This is also the case with 
the simulation clock and the event list. How data is shared and what data that is 
shared between the computers will dramatically affect the over-all performance of the 
distributed simulation. 

2.2.2 Parallel Simulation 
Parallel simulation, an area closely related to distributed simulation, concerns the 
execution of simulations on a tightly coupled computer system, e.g. a supercomputer 
or a shared memory multiprocessor (Fujimoto 2003). Parallel simulation can be used 
to reduce the length of the simulation execution time by letting more processors work 
or to enable larger simulations since they may not be enough memory on one single 
machine. 
 
Distributed and parallel simulation have historically been differentiated as two 
different areas but with new computer paradigms such as clusters of workstations and 
grid computing there is no longer a clear border between these areas (Fujimoto 2003). 
This report, however, limits its discussions to distributed simulations on computers 
that are geographically apart and connected to each other over a network. 

2.2.3 Time Management 
Events sent in a distributed simulation can be classified as time stamp ordered (TSO) 
events or receive order (RO) events among others. TSO events must be executed at 
specific time stamps while RO events are executed in the order they are received. 
 
To ensure that events are processed in the correct order and to make sure that a 
repeated simulation with the same input produces the same result, synchronisation 
between the computers involved in a distributed simulation is needed. This 
synchronisation is called time management. 
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Time management algorithms can be classified as conservative or optimistic. 
Conservative algorithms always makes sure events are “safe” to execute before they 
are executed. An event is said to be safe when it can be guaranteed no other events 
will arrive with a smaller time stamp. All events are always executed in the correct 
order. 
 
To know which events that are safe to execute each model, below referred as logical 
process (LP), must know at what time stamps all other models earliest can produce 
new events. To be able to do that the lookahead values are used. Fujimoto (1999) 
defines lookahead as: “If LP is at simulation time T, and it can guarantee that any 
message it will send in the future will have a time stamp of at least T+L regardless of 
what message it may later receive, the LP is said to have a lookahead of L”. A 
model’s lookahead value is set depending on the structure of the model and must be 
well known by the other simulation models before the distributed simulation may 
start. 
 
Optimistic algorithms allow events to be executed out of order, but if this occurs a 
recovery process will start to roll back time and to reset the state variables to their 
values at the time where the wrong event was executed. This means an optimistic 
algorithm must save information for this recovery during the execution. The two main 
problems with this approach are I/O operations that cannot be undone and memory 
resources.  
 
Whether conservative or optimistic algorithms perform better, depends on the 
application (Fujimoto 2003). This report limits its discussions to conservative 
algorithms. 

2.2.4 The Chandy-Misra-Bryant (CMB) algorithm 
Synchronization problems and solutions were first developed in the late 1970’s. 
Bryant  (1977) and Chandy and Misra (1978) developed a conservative algorithm that 
has been referred as the Chandy-Misra-Bryant (CMB) algorithm. 
 
If a distributed simulation uses this algorithm, each LP establishes a direct link to all 
other LPs it want to be able to send messages to. All messages must be sent with non-
decreasing time stamps and all LPs must have one buffer for each incoming link. 
Figure 2-2 illustrates this with an example. LP A receives messages from the source. 
It processes them and then sends them to either LP B or C. They are then sent to LP D 
before they leave to model through the sink. 

Figure 2-2.  Model using the Chandy-Misra-Bryant algorithm 

LP A 

Source Sink 

LP B 

LP C 

LP D 

or 
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To know what message a LP should execute next, it scans all its buffers for the 
message with the lowest time-stamp. If any buffer is empty it must wait until it 
receives a message from that link since that message might have a lower time stamp 
than any in the other buffers. As soon as the LP knows what message it should 
execute next, it moves its simulation clock forward to this time, remove the message 
from the buffer and execute it. 
 
In the example above, LP A, B and C only have one buffer each, which mean they 
will not have any problem with deciding what message to execute. If they have any 
messages in their buffers they will execute the one with the lowest time stamp. LP D 
has two buffers since it can receive messages from both LP B and C. It cannot 
proceed until it has received a message from both B and C. 
 
One problem with the simplest version of the CMB algorithm is that deadlock 
situations can appear. Suppose LP A chooses to send all messages to LP B and none 
to LP C. In this case LP C will never send anything to LP D. If that is the case, a 
deadlock situation has occurred since LP D is waiting until it has received a message 
from both B and C. To avoid situations like this null messages can be used. A null 
message is an empty message with only a time-stamp. 
 
There are several ways to use null messages. One simple solution is to send a null 
message to all outgoing links every time the simulation clock has changed in a LP. 
This will allow other LPs to proceed. In our case, LP A would also send a null 
message to LP C when it is sending something to LP B. As soon as LP C executes 
that null messages it would send a null message to LP D. 
 
The problem with a lot of null messages being used is that they might slow down the 
overall performance of the simulation. More optimised algorithms exist that uses 
fewer null messages (Fujimoto 1990). Other solutions are constructed to detect and 
recover from deadlock situations (Chandy and Misra 1981). 
 
The CMB algorithm will be further studied in Section 6.3.2. 

2.2.5 HLA 
An architecture developed for the reusability and interoperability of simulations is the 
High Level Architecture (IEEE 1516.2000). It was originally created by the Defense 
Modeling and Simulation Office in United States for military applications but has 
during the latest few years become a de-facto standard for distributed simulation. 
 
The HLA consists of a set of rules and an interface specification but does not 
prescribe any specific implementation and computer language. Below follows a short 
introduction to HLA, its terms and components. 

The Run-Time Infrastructure 

All LPs that are involved in the distributed simulation are called federates. Federates 
are connected to each other in a federation through the Run-Time Infrastructure 
(RTI). The RTI makes sure simulation time advances correctly in every federate and 
also handles object updates and message passing between federates. 
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The RTI is divided into three components. The RTI Executive (RtiExec) creates and 
manages multiple federations within a network. For every new federation a Federation 
Executive (FedExec) is created that manages joining and resigning of federates. The 
RTI Library (libRTI) is built-in in all federates and provides HLA services to 
federates. (DMSO) 
 
The RTI Library has two classes, the RTI Ambassador and the Federation 
Ambassador, that are used for communication between the federate and the RTI. The 
RTI Ambassador is used when the federate wants to use a service provided by the 
RTI. This is done with function calls. The Federation Ambassador, an abstract class 
that must be implemented in federates’ code, is used for the call-back functions each 
federate is obliged to provide. This is illustrated in Figure 2-3. 
 

Figure 2-3. Different RTI components in a federation. 

Object Management 

HLA supports an advanced object management. All objects that can exist in the 
federation are declared in the FED file. After a federate has joined a federation it 
informs what objects and attributes it can publish (i.e., generate) and what objects and 
attributes it wants to subscribe to (i.e., receive). 
 
Objects can be wholly owned by one federate or shared between many federates. If an 
object is shared, only one federate can own a specific attribute at any time. The owner 
of an attribute is responsible for updates of the values. An attribute can be static or 
dynamic. A static attribute is owned by the same federate throughout its life time and 
no other federate can update its value. The ownership of a dynamic attribute can be 
moved from one federate to another using the push and pull methods. 
 
The push method is used when a federate informs RTI that it does not want to own the 
object any more. RTI will then inform all other federates that this object is available 
and those who are interested can request ownership. 
 
The pull method is used when a federate asks RTI if it can receive ownership of an 
object owned by another federate. The RTI will then ask the current owner or owners, 
if they can release their ownership. After this is done the RTI will inform the 
requester that it has gained ownership. 
 
Interactions are a special type of objects that can be sent between federates. They are 
non-persistent. After an interaction has been received by the receiving federate it is 
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removed from the RTI. It is not possible for a federate to publish or subscribe only 
some of the object’s attributes. They have to choose between “all” or “nothing”. 

Time Management 

The RTI handles the time management within the federation. Different federates in a 
federation can use different time management policies. The time in a federate always 
moves forward but the current time in all federates may not be the same. 
 
A regulating federate is a federate that regulates the time for federates that are 
constrained. A federate can be regulating and/or constrained or neither regulating nor 
constrained. A regulating federate may associate its activities (e.g. updating objects 
and sending interaction) with a specific time stamp. A constrained federate 
subscribing these objects and interactions will receive them at the specified times. 
 
This can be illustrated with an example. Suppose we have four federates in the 
distributed simulation, see Figure 2-4. The first one is only regulating, the second one 
is only constrained, the third is both regulating and constrained and the last one is 
neither regulating nor constrained. The two regulating federates (1 and 3) may not 
generate any TSO events with a time stamp lower than their current time + their 
lookahead. The two constrained (2 and 3) may not advance further than the Lower 
Bound Time Stamp (LBTS). The LBTS is the earliest time a regulating can generate 
an event. Federate D may advance to any time. 

Figure 2-4. Example with regulated and constrained federates. 
The federates time axes are shown together with their current time and scheduled events. 

 
All federates that are regulating or constrained must continually request new times 
from the RTI. A call-back will occur to the federate ambassador when the request is 
granted. A federate that is only regulating will get this call-back directly while a 
federate that is constrained will have to wait until the RTI can guarantee that no 
regulating federate will send anything with a time stamp smaller than the time that 
will be granted. 
 
The HLA mainly has three different methods that can be used for time requests. The 
timeAdvanceRequest method will grant a time equal to the time requested, as soon as 
the RTI can guarantee that all TSO events with a lower or equal time stamp to the 
time requested has been delivered to the federate. The nextEventRequest method will 
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grant a time equal to the lowest of the requested time and the time stamp of the next 
TSO event. The call-back will occur as soon as all events with a time stamp equal to 
the time that will be granted has been delivered. The flushQueueRequest method is 
used for optimistic simulations and will not be discussed in this report. 
 
All federates must specify their lookahead values (see section 2.2.3) when they 
become regulating. When a regulating federate requests a new time with the time-
AdvanceRequest method it promises that it will not send any time stamp ordered 
events with a time stamp lower than the requested time + lookahead. If the federate 
instead requests the new time with the nextEventRequest method it promises that it 
will not send any time stamp ordered events with a time stamp lower than the granted 
time + lookahead. A regulating federate can have a zero-lookahead but this is not 
desirable since constrained federates have to wait more and it can also invoke design 
problems. 
 
Table 2-1 shows a summary of the methods that can be used for time requests. 
 

Method The time that will be granted is… 
The federate promise it will not 
generate any TSO events before… 

timeAdvanceRequest  the requested time requested time + lookahead 
nextEventRequest  what is lowest of the requested time 

and the next TSO event. 
granted time + lookahead 

Table 2-1. Summary of methods for time requests. 

2.3 COTS Distributed Simulation 

2.3.1 COTS Simulation Packages 
Commercial Off the Shelf (COTS) simulation packages (CSPs) can be used to build 
and execute computer simulations. There are over twenty packages (Swain 2001), e.g. 
Arena, Automod, Sigma, Simul8 and Witness. 
 
Typically they allow the user to build, visualize, save and reuse simulation models, 
often using a user-friendly graphical user interface. They may also have tools for 
statistical analysis and reporting. Furthermore, they usually have built-in support for 
various random distributions that can be used for arrival and service times of entities. 

2.3.2 Access Internal Data Problems 
Before data can be transferred from one model to another, the data must be accessed. 
The problem is that CSPs hide access to internal functions and variables that is needed 
in the distributed simulation. While almost all CSPs have some possibility to access 
the internal data there is no standardized approach. (Boer and Verbraeck 2003; 
Taylor, et al., 2003). 
 
Some CSPs support the possibility to link an external program (e.g. Excel and Visual 
Basic) to stop and start the simulation, to introduce entities or to alter a parameter in 
the model. Other CSPs use DLL “plug-ins” programmed in for example C++ or Java 
to do this. The CSPs can also have a COM interface or a dedicated interface library 
that can be used by an external program. (Taylor, et al., 2003). 
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2.3.3 Data Types and Attribute Names Problems 
Which data types CSPs support may differ from package to package. Some CSPs 
support many attribute types such as string, real, integer, etc. (e.g. eM-Plant), while 
others only support the type real (e.g. Arena) (Boer and Verbraeck 2003). Even the 
names of an entity’s attributes may be different in two models.  
 
If two models created in different CSPs should be linked together in a distributed 
simulation there is a need to translate data when it is passed from one model to 
another. By using a wrapper it is possible to map original attribute values to new 
translated values (Boer and Verbraeck 2003). The original and new attribute values 
are saved in a temporal instance table. 
 
Figure 2-5 shows an architecture for attribute type inconsistency with two simulation 
models. Each model has a wrapper with a table of mapped attributes. 
 

Figure 2-5. Architecture for Attribute Type Inconsistency 
(Boer and Verbraeck 2003) 

 
Suppose, as an example, Simulation Model 1 produces a car entity with the attribute 
colour set to ‘blue’ and send this entity to Simulation Model 2. The second model is 
limited compared to the first one in the way that it only supports attribute types that 
are numbers. Wrapper 2 must translate the colour to a number. It checks in its 
temporal instance table if it has ever received an entity with this colour and what 
number is has been mapped to. If not, a new number is mapped to this colour and the 
old and new attribute values are saved in the table. If entities later are passed back to 
the first model their attributes will first be translated back to their original values. 

2.3.4 Time Management Problems 
A sequential simulation, executing on one computer, often uses the three-phase 
algorithm and moves its clock to the time of the next scheduled event in the A phase, 
as seen in section 2.1.3. In a distributed simulation, however, all federates have their 
own current simulation time and events passed between federates. 
 
Events that are scheduled by a COTS simulation package’s simulation executive are 
called internal events. Time stamped event messages that are received from another 
model are called external events. Internal events are ordered by the package’s event 
list (see section 2.1.1) whereas external events are ordered by the time management 
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middleware, for example by the RTI if HLA is used as middleware. (Taylor, Sharpe 
and Ladbrook 2003) 
 
The problem is how the COTS simulation package should determine the next event to 
process. Should it be the next internal one taken from the event list or the next 
external one offered from the middleware? Four different approaches will be 
described in section 3.2. 
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3 Method 
 
This chapter will present the problem to be solved in detail and why it is interesting to 
solve it. Different methods that can be used will be discussed. 

3.1 Analysis of CSP Interoperability 
Even though HLA has become a de facto standard for distributed simulation there is 
still a need to specify the format and manner objects are passed between the CSP’s 
involved in the simulation. The HLA-CSP Interoperability Forum has therefore 
defined six reference models (Taylor 2003) that can be used to illustrate this: 
 
Type I. Asynchronous Entity Passing 
Type II. Synchronous Entity Passing 
Type III. Shared Resources 
Type IV. Shared Events 
Type V. Shared Data Structure 
Type VI. Shared Conveyor 
 
To illustrate the CSP Interoperability problems that exist some of the reference 
models will be described below. Type I and II will be described in section 3.1.1 and 
Type III will be described in section 3.1.2. 

3.1.1 Asynchronous and synchronous entity passing 
If there is no intermediate or direct feedback when an entity is passed from one model 
to another this is called asynchronous entity passing. Figure 3-1 shows two factories 
F1 and F2 that each consists of an arrival source Soi, a queue Qi, a workstation Wi, a 
resource Ri and an exit sink Sii (where i is the factory identifier). 
 

Figure 3-1. Example of distributed simulation with an asynchronous entity passing. 
Adopted from (Taylor 2003) 

 
When parts arrive from the arrival source they are put in the queue to wait for the 
workstation to be available. When the workstation is free a new part will be loaded 
from the queue (if any is in the queue), and then processed. If the workstation is 
broken down, a repairman must fix it before the processing can continue. The 
repairman is depicted with the resource. When the workstation has finished the part 
will exit the factory via the exit sink and instantly arrive at the arrival source of the 
next factory. 
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The federate containing factory F1 must publish the parts leaving the model in a 
manner and format so that the federate containing factory F2 can understand. The 
object and attribute names and the data format of all attributes must be identical.  
 
If instead synchronous entity passing is used, the models that are involved in the 
simulation must be synchronized with each other. In the example shown above, this is 
for example needed if the receiving factory F2 has a bounded queue Q2. If the queue 
is full, factory F1 must delay the passing of new entities. To know when factory F1 is 
allowed to send entities the two models need to be synchronized. 

3.1.2 Shared Resources 
Another form of interoperability between CSP’s can be two models that share a 
resource. Figure 3-2 shows two factories sharing one resource R, for example one 
repairman that serves both workstations in the two factories. He can only fix one 
workstation at the same time. 
 

Figure 3-2. Example of distributed simulation with a shared resource. 
Adopted from (Taylor 2003) 

3.2 Time management algorithms 
As seen in section 2.3.4 it is a problem how a COTS simulation package should 
determine the next event to process. This problem concerns the ordering of external 
and internal events. Four different approaches will be described below, based on the 
discussion by Taylor, Sharpe and Ladbrook (2003). All approaches are based on the 
conservative time management method. 

3.2.1 Event List Externalisation (EE) 
A simple solution is to treat all events as external events. Each event that is scheduled 
within the simulation package is externalised and sent through the middleware to 
itself. The middleware will in this way always offer the next event. The problem with 
this approach is that it will need redevelopment of the COTS simulation packages. 

3.2.2 Permission Request (PR) 
In this approach the simulation executive asks the middleware for permission to do 
the A phase in the three phase algorithm. Phase A moves the simulation clock to the 
time of the next scheduled event (see also section 2.1.3). The middleware will then 
answer by either (a) granting permission to advance, (b) passing an event with a 
timestamp or (c) requesting the simulation executive to wait. 
 
If the middleware is sure that no external event will arrive to this model with a time 
stamp lower than the time stamp of the next internal event it will grant permission to 

Factory F1 

So1 Q1 W1 Si1 

R 
Factory F2

So2 Q2 W2 

R 

Si2 



17 

advance. If it knows that there is such an external event, it will pass this event to the 
model and the simulation clock will be moved to the time of this event and Phases B 
and C will be performed as normal. If the middleware cannot be sure whether an 
external event will arrive, it will request the simulation executive to wait until further 
notice. 

3.2.3 Incremental Advance (IA) 
If it is not possible to obtain the next event time from the event list, the time must be 
advanced by the smallest possible time unit of the federate. At each new time any 
internal events are first executed. The simulation executive will then ask the 
middleware if there is any safe external event to execute. 
 
Even in this approach, three answers are possible. If there is an external event and the 
time stamp of this is higher than the current simulation time, the simulation executed 
will be allowed to do another cycle. If there is an external event with a time stamp 
equal to the current simulation time, this will be passed to the federate. If the 
middleware cannot identify the next safe external event, the simulation executive will 
be requested to wait until further notice. 

3.2.4 External Control (EC) 
In the last approach the control of the time advancement is moved from the simulation 
package to the middleware. The middleware can order the simulation executive to (a) 
advance to a given time, (b) advance to a given time and then execute a new external 
event, and (c) wait. As with incremental advance there is no need to obtain the next 
event in the event list. 
 
If the middleware has found it safe to advance to a certain time, it will inform the 
simulation executive about that time. Any internal events with a time stamp lower 
than or equal to this time will be executed as normal. After that the simulation 
executive will stop executing until it receives a new order. 
 
If the middleware has instead identified a new external event it will pass the event and 
its time stamp to the simulation executive. Any internal events with a time stamp less 
than this time will first be executed. After that the external event and any other 
internal event scheduled at this time will be executed. The simulation will then stop 
until new orders arrive. 

3.2.5 Discussion 
Advantages and disadvantages of the four algorithms are discussed by Taylor, Sharpe 
and Ladbrook (2003). They suggest considering two factors in the discussion of 
which algorithm that is the best: technological intervention (affects the 
implementation cost) and performance. Below is a summary of their discussion about 
the different algorithms. 
 
Event list externalisation can be immediately discounted since this will mean too 
many changes of the COTS simulations packages. The event lists are implemented in 
various ways to improve efficiency and this approach will also be too package 
specific. 
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Permission request and incremental advance both require an interaction with the 
middleware before each time advance. External control needs less interaction as it can 
execute many events before it has reached the time it has been instructed to advance 
to. Both permission request and external control require that new events can be placed 
in the event list. 
 
Incremental advance adds a major overhead of step by step time advance and has no 
advantage compared to permission request, which except from the time-step part, 
would have a similar implementation. 
 
Permission request has been compared against external control in a performance test 
(Taylor, et al., 2002). The results shows that external control is much faster than 
permission request if the ratio of internal to external events is high, i.e. few external 
events. They perform equally for a lower ratio. 
 
The conclusion of the discussion is that external control appears to be the best option 
both in terms of technological intervention and performance. 

3.3 The CSP Emulator (CSPE) 
The CSP Emulator (CSPE) is a tool developed to investigate how different 
middleware perform in a COTS based distributed simulation (Mustafee 2003). This 
section will describe what CSPE is and what it can be used for. 

3.3.1 Architecture 
A distributed COTS simulation can be divided into three different parts, see Figure 
3-3: The COTS simulation package with its model, the distributed simulation 
middleware and a CSP handler that communicates with both the CSP and the 
middleware. 

 

Figure 3-3. A general overview of a distributed COTS simulation. 
The simulation is divided into three different parts: CSP, CSP handler and middleware. 

 
The CSP handler is needed to create a common interface for all CSPs in a distributed 
simulation. The different packages today have various solutions for how external code 
can interact with the simulation model (OLE Automation, COM, Active X interfaces 

COTS simulation package 

Model 

CSP handler 

Distributed simulation 
middleware 

Entity passing 

Object transfer, time 
synchronization 

COTS simulation package 

Model 

CSP handler 

Distributed simulation 
middleware 



19 

etc.). It would be preferable if all kinds of middleware could communicate with the 
CSP in the same way. 
 
The CSPE consists of a simulation executive, an event list, a simulation clock and an 
event generator. CSPE is deterministic, which means that there is no randomisation 
within the simulation that is performed. CSPE is also limited to only simulate the 
behaviour of one assembly line. 
 
The assembly line uses the First Come First Served Pipeline Workflow Queuing 
Model, see Figure 3-4, and consists of a variable number of machines that all have 
variable setup and processing times. The machine queues have unbounded buffers and 
the machines start to work as soon as there is an entity waiting in their queue. The 
configuration of the machines is specified in a file. 
 

Figure 3-4. First Come First Served Pipeline Workflow Queuing Model. 
 
Mustafee’s implementation of CSPE is programmed in Java. CSPE communicates 
with the CSPE handler through sockets connections, see Figure 3-5. The CSPE listens 
to port X02 and the handler listens to port X01 (where X is a federate number). The 
socket connections are setup before the simulation is started. 
 

Figure 3-5. An overview of a distributed simulation using CSPE.  
The simulation is divided into three different parts: CSPE, CSPE handler and middleware. 

 

3.3.2 API Calls for CSPE Handler 
CSPE uses external control (EC), see section 3.2.4, as synchronizing algorithm. It has 
three API calls for input messages to the CSPE and three API calls for output 
messages from the CSPE. 
 
The API calls used for input messages to the CSPE are advance(time), advance(time, 
entity) and start(). See Table 3-1. The first one is used if the middleware has 
determined a safe time for the CSPE to advance to. Any event in the internal event list 
with a time stamp lower or equal to this time will be executed. The second one is used 
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if the middleware has determined a safe external event which is passed to the CSPE. 
Any internal event in the event list with a time stamp lower or equal to this time will 
be executed before the external event is executed. The last API call is used to signal 
the start of the simulation. 
 
advance(time) Safe for the CSPE to advance to this time. 
advance(time, entity) Safe for the CSPE to advance to this time. Then executed 

the entity being passed. 
start() Signals the start of simulation. 

Table 3-1. Summary of API calls used by CSPE handler for input messages. 
 
The API calls used for output messages from the CSPE are output(time), output(time, 
entity) and terminate(), see Table 3-2. The first one is used for the CSPE to inform the 
middleware of its current time. The second one is used to send an entity to another 
federate and the last one is used to inform the middleware that the CSPE has executed 
a certain amount of entities specified at start-up. 
 
output(time) The current simulation time of CSPE. 
output(time, entity) An entity for transfer to another federate and the time when 

it should arrive.1 
terminate() Signals the end of simulation. 

Table 3-2. Summary of API calls used by CSPE handler for output messages. 
 
The variable entity is as a string containing the following data (separated with an “*”): 

• Names of the federates to send the entity to 
• Names of all federates that has processed this entity 
• Entity name 
• Event type 

3.4 Methodology 
As seen in section 1.2, the ordering of events and time management is important for 
the overall performance of a distributed simulation. The overhead of the CSP 
execution is not possible to reduce without redevelopment of the CSP software.  
Better network and hardware can be used for better performance, but of more interest 
is to investigate how the overhead of the middleware could be reduced. 
 
By using CSPE it will be possible to concentrate this work to how HLA can be used 
for time management in a COTS based distributed simulation. CSPE is created to be a 
benchmarking tool with possibilities to use different federate configurations and 
different variable settings. It has support for the external control synchronization 
algorithm and Reference Model I (for asynchronous entity transfers). 
 

                                                
1 The version of CSPE that is specified in (Mustafee 2003) has a slightly different use of output(time, 
entity). The time is there the current simulation time. The time when the entity should arrive is then 
calculated by the handler by taking the current time and add the federate’s lookahead. This is however 
a limited method that has been changed in later versions. 
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The fact that CSPE only supports one synchronization algorithm and one reference 
model can of course been seen as a limitation and a disadvantage for the use of CSPE. 
External control has however been found to be the best synchronization algorithm, as 
seen in section 3.2.5. It would also be interesting to investigate the performance of 
HLA in all reference models but this is not possible within the time space of this work 
 
An advantage of CSPE is that it during the simulation saves information that makes it 
possible to trace an entity to a particular position of a particular workstation queue 
through its lifetime. This could be useful in the verification of the middleware, to see 
that object and time management works correctly. 
 
To investigate time management in COTS distributed simulation using HLA and 
CSPE I will first transform the CSPE architecture to an architecture that is using 
HLA. I will then choose which methods that are best for object management.  An 
algorithm for the time management will be designed. 
 
Implementation of the design will be made using the latest version available of Java, 
that is 1.4.2, and the HLA RTI 1.3-NG Version 5. Experiments using the benchmark 
proposed in Mustafee (2003) will be used and the result will be compared to the 
performance of another middleware based on the Chandy-Misra-Bryant algorithm. 
Analysis of the results will show if HLA is good for COTS distributed simulation. 
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4 Design and Implementation 
This chapter will describe the design and implementation in general for the different 
methods discussed in the previous chapter. Details will be given for the method that 
will be implemented. 

4.1 CSPE-HLA Architecture 
Figure 4-1 shows the architecture of a distributed simulation of CSPE using HLA as 
middleware (CSPE-HLA). CSPE-HLA consists of two parts, the CSP handler and the 
HLA code, that both are integrated into the same program. Communication between 
CSPE and CSPE handler is done with socket connections. 
 

Figure 4-1. An overview of a distributed COTS simulation using HLA. 
The simulation is divided into three parts: CSP, CSP handler and HLA middleware. 

 
For the HLA integration version 5 of the RTI 1.3-NG has been used. It supports for 
both C++ and Java. The federate part of the HLA code is unique for each program 
using HLA and has to be programmed while the RTI part is general and is included as 
a Java or C++ library. 

4.2 Object management 

4.2.1 Object Update or Interactions? 
As mentioned in the section 2.2.5, different methods exist to send object updates 
between federates in HLA: dynamic object update with push and pull methods, static 
object update and the non-persistent method with interactions. 
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It has by experimentation been shown that sending interactions is eventually more 
efficient for passing entities between federates than updating a static attribute value 
and that both those methods are faster than the dynamic update techniques (Yen 
2003). Since I cannot see any other advantages for any of the other methods in the use 
with CSPE-HLA I have chosen to use interactions for entity passing in CSPE-HLA. 

4.2.2 The Entity Transfer Specification 
A specification for how entities could be transferred between COTS simulatation 
packages using interactions has been proposed by HLA-CSPIF (Taylor, Turner, Low 
2003). The specification first makes some definitions before the interaction classes 
use is described. A summary of the specification is given below. 
 
An entity has a name and zero or more attributes and is defined as follows. 
 

entity = {entityName, attributes*} 
 
An entity that is sent from one model to another has a source, the model the entity 
leaves, and a destination, the model at which it arrives. When an entity leaves a CSP 
the CSP must be able to provide the following information to the CSP handler: 
 
 output(entity, time, source, destination) 
 
When the CSP handler at the receiving federate passes the entity to the CSP it must 
provide the following information to the CSP: 
 
 input(entity, time, source) 
 
Time is defined as the time when an entity exits a source model and instantaneously 
arrives at the destination model. It is assumed that both models use time in the same 
way (considering resolution etc.). Source and destination are used to determine the 
appropriate entry point at the destination model. 
 
The specification suggests an interaction class hierarchy with three levels, see Figure 
4-2.  Each destination has one interaction class named transferEntityToFedDest where 
“transferEntity” is unique for each type of entity and “FedDest” is the name of the 
destination. Each of these classes also has one subclass for each federate that can send 
entities to this federate, named transferEntityFedSoToFedDest, where “FedSo” is the 
name of the source. There is also one super class, named transferEntity, that a 
federate can subscribe to receive all entities (for purposes of monitoring, 
visualization, etc.). 
 
During initializing a federate will indicate what federates it is capable of sending 
entities to by publishing various transerEntityFedSoToFedDest interaction classes. It 
will also subscribe to all transferEntityToFedDest interaction classes to indicate it is 
capable of receiving entity from other federates. 
 
When a CSP later wants to send an entity to another federate the CSP handler will use 
the correct interaction class for this transfer. 
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Figure 4-2. Interaction Class Hierarchy. 
Adopted from (Taylor, Turner, Low 2003). 

4.2.3 Design 
Even though the full Transfer Entity Specification provides a good solution for how 
entities can be transferred between COTS simulation packages I have found the class 
hierarchy and interaction use to be unnecessary complex for the entity transfers 
needed by CSPE. Instead I have used a simpler approach to pass entities.  
 
Only one interaction class exists for each federate named after the federate. A federate 
that wants to receive entities from other federates subscribes to the interaction with its 
name at initialisation. All federates that want to send entities to this federate publishes 
that interaction. See Figure 4-3. 
 

Figure 4-3. Two federates sending entities to one another using interactions. 
Federate B and C want to send entities to Federate A and are publishing the interaction class named 

“A”. Federate A is subscribing to this class. 
 
The interaction classes have one parameter, named message, that is used for the entity 
(source and destination included) in the same data format that is used by CSPE 
handler for the output and advance methods, see section 3.3.2. 

4.2.4 Implementation 
CSPE and CSPE-CMB uses a Federate Definition File to specify what other federates 
a federate is connected to. Each federate has its own file. The file consists of a list of 
federates that can send entities to the federate and a list of federates the federate can 
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send entities to. For compatibility reasons with CSPE and CSPE-CMB, the same file 
format is used even for CSPE-HLA. 
 
A federate that wants to use an interaction class to send or receive objects must use 
the interaction class’s handle that is a unique number. The handle is requested from 
the RTI by calling the method getInteractionClassHandle(name) where name is the 
name of the interaction class. CSPE-HLA stores all handles to classes it publishes in a 
hash table with the class names as keys for fast access since they are needed every 
time an entity is sent. 
 
To publish and subscribe to an interaction class a federate uses the methods 
publishInteractionClass(handle) and subscribeInteractionClass(handle). To send and 
receive objects the methods sendInteraction(handle, parameters, time, tag) and 
receiveInteraction(handle, parameters, time, tag, eventRetractionHandle) are used. 
handle is the interaction class’s handle, parameters is the parameters of the 
interaction class (in this case only message, see section 0), time is the time stamp of 
the object, tag is used for user-specified messages (not used in CSPE-HLA) and 
eventRetractionHandle is a unique identity for each TSO event in the federation (used 
in optimistic simulations for the retraction of objects, but not used in CSPE-HLA). 

4.3 Time management 

4.3.1 Which of the Time Advance Methods To Use? 
As mentioned in section 2.2.5, HLA has mainly three methods for time advancement: 
timeAdvanceRequest, nextEventRequest and flushQueueRequest. There are also two 
variants, timeAdvanceRequestAvailable and nextEventRequestAvailable, that are used 
for federations with zero-lookahead but that is out of the scope for this thesis. This 
section will discuss what methods that can be used for the time synchronization 
algorithms Permission Request and External Control. 
 
The method flushQueueRequest can directly be sorted out for all algorithms, at least 
for the approaches described in section 3.2, since it doesn’t guarantee that it will 
deliver all events in time stamp order. When flushQueueRequest is invoked, all events 
that exist in the receive queue will be delivered to the federate. If this method should 
be used with any of the synchronization algorithms, they must first be modified to be 
able to pass external events without giving the simulation executive permission to 
advance to the time of the passed event. Except from what events that are released to 
the federate this method is similar to the timeAdvanceRequest method and will not be 
discussed further. 
 
The methods timeAdvanceRequest and nextEventRequest are very similar except 
from what the federate that uses them promises. Recall from section 2.2.5 and Table 
2-1 that a federate that calls timeAdvanceRequest promises it will not generate any 
TSO events with a time stamp lower than the requested time + lookahead. A federate 
that calls nextEventRequest promises it will not generate any TSO events with a time 
stamp lower than the granted time + lookahead. 
 
For Permission Request the method timeAdvanceRequest cannot be used. The reason 
is that by calling this method, events that are buffered in the receive queue can be 
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delivered to the federate. Suppose one of these events has a time stamp, tevent, that is 
smaller than the time that is requested by the simulation executive, trequested, (equal to 
the time of the next internal event). If this event, when it is executed, generates a new 
external event this new external event can be sent with a time stamp not smaller than 
tevent + lookahead. This time can however be smaller than the time the federate had 
promised not to generate any TSO events before, that is trequested + lookahead for 
timeAdvanceRequest. 
 
For External Control both timeAdvanceRequest and nextEventRequest can be used.  

4.3.2 Time Update Cycle 
This section will propose an approach how CSPE-HLA can use External Control for 
time and object management when CSPE uses HLA as middleware. The approach can 
be described as a cycle that goes on and on until the simulation is ended. Figure 4-4 
shows an algorithm for this and the approach is also illustrated with a sequence 
diagram, see Figure 4-5. 
 

While simulation not ended do 
 Query minimum next event time from RTI 
 Pass time to CSPE if not equal to last time sent 
 Receive events from CSPE and pass to RTI 
 Wait until new simulation time is received from CSPE 
 Request RTI to advance to new time 
 Receive events from RTI and pass to CSPE 
 Wait until time advance is granted 
End while 

Figure 4-4. Algorithm for CSPE-HLA. 
 
The time update cycle starts with that the CSPE-HLA middleware asks RTI for the 
minimum time when a message could arrive to this federate, using the method 
queryMinNextEventTime(). The answer will depend on the current time and 
lookahead values of the other federates and whether any messages are queued in the 
receive-buffer. CSPE-HLA will inform CSPE what simulation time it could advance 
to since it can be guaranteed that no messages will arrive earlier than this time by 
calling advance(time). 
 
CSPE will now execute all events in its event list that has a time stamp lower or equal 
to the received time. If outgoing messages are generated these will be passed to 
CSPE-HLA by calling output(time, entity), which, in turn, passes them on using 
interactions with the method sendInteraction(entity, time). After each time the 
simulation clock is changed in CSPE it will inform CSPE-HLA about its new time by 
calling output(time). After CSPE has executed all events it could, it will inform 
CSPE-HLA this by returning the time that it was allowed to advance to. 
 
CSPE-HLA will request this new time from the RTI with either 
timeAdvanceRequest(time) or nextEventRequest(time). If any messages are queued in 
the receive-buffer with a time equal to this time they will be received with the method 
receiveInteraction(entity, time) and passed to CSPE using advance(time, entity). After 
all messages have been received and RTI knows that no more messages will come at 
the requested time, the new time will be granted with timeAdvanceGrant() and 
advance(time). 
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A new time update cycle now begins with CSPE-HLA asking for the minimum time 
when a message could arrive. 

Figure 4-5.  Sequence diagram of the time update cycle in CSPE-HLA. 
 

Pseudo Code 

Below follows a pseudo code implementation of the time update cycle in CSPE-HLA: 
 
Double lastCSPETime = 0.0 
Double lastGrantedTime = 0.0 
Double lastTimeSentToCSPE = 0.0 
Boolean simulationEnded = false 
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Method run() 

Connect to RTI and set lookahead, timeRegulated and timeConstrained. Connect to CSPE. 
Start simulation by calling start() in Handler 
While simulationEnded == false Do 

Query minimum next event time from RTI by calling queryMinNextEventTime(). Set 
minNextEventTime = received time 
If minNextEventTime > lastTimeSentToCSPE Then 

Let CSPE advance to the new time by calling advance(minNextEventTime) 
End If 
While lastCSPETime <= lastGrantedTime And simulationEnded == false Do 
 Sleep thread for a short time 
End While 
If simulationEnded == false Then 

Ask RTI to advance to lastCSPETime by calling timeAdvanceRequest(lastCSPETime) in 
RTI and await callback to timeAdvanceGrant. Set lastGrantedTime = time granted. 

End If 
End While 
Disconnect from federation and CSPE 

End Method 
 
Method output(time) 

Current simulation time is received from CSPE-Handler. Set lastCSPETime = time 
End Method 
 
Method output(time, entity) 

Send entity as a TSO event by calling sendInteraction(..). The time is the time the event should be 
received. 

End Method 
 
Method terminate() 

Set simulationEnded = true 
End Method 
 
Method receiveInteraction(time, entity) 

Send entity to CSPE by calling advance(time, entity) in CSPE-Handler. 
Set lastTimeSentToCSPE = time 

End Method 

4.4 Code Implementation 

4.4.1 Class Structure 
Figure 4-6 shows a class structure for CSPE-HLA. To make it easier to understand, 
the classes are put in the same way as the different parts of the overview of a 
distributed COTS simulation using HLA in Figure 4-6. 
 
CspeHla is a super class that different HLA approaches can extend. It contains all 
methods and variables that the different approaches have in common. I have 
implemented two approaches that, except from the what time advance method they 
use, are very similar. CspeHlaTar uses TimeAdvanceRequest and CspeHlaNer uses 
NextEventRequest. 
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Figure 4-6. Class Structure for CSPE-HLA. 
 

4.4.2 CSPE-Handler 
For compatibility with CSPE and CSPE-CMB I have based CSPE-Handler on code 
from the implementation in (Mustafee 2003). The main change in the new version of 
CSPE-Handler is that the handler and the middleware have been completely 
separated. The handler’s API calls for output messages from CSPE has been put in an 
interface that classes that wants to use the handler must implement. 
 
The new version of CSPE-Handler consists of the following classes: CspeHandler 
(main class), CspeHanderMiddleware (interface mentioned above), 
CspeHandlerClient (used to send messages to CSPE), CspeHandlerServer and 
CspeHandlerServerThread (both used to receive messages from CSPE). 

4.4.3 RTI 
CspeHla uses RTIAmbassador in the RTI library as an object to send messages to the 
RTI. When the RTI wants to do a call-back, for example to say that a new time is 
granted or to pass a new interaction, it makes a function call to the 
FederateAmbassador. To have support for API calls the RTI can do it therefore 
extends the NullFederateAmbassador found in the RTI library. Only the methods that 
the middleware wants to use are overridden in FederateAmbassador. 
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5 Experimentation 
This chapter will describe the benchmark that was used and how the experimentation 
was done. The equipment and programs that were used in the experimentation will be 
explained. The results will be shown in graphs together with the results of the 
middleware using the Chandy-Misra-Bryant algorithm. 

5.1 Benchmark 
The benchmark proposed by Mustafee (2003) has been used. It uses three different 
experiments that are performed using four different federate configurations. The 
federate configurations will be described below in section 5.1.1 and the experiments 
will be described in section 5.1.2. 

5.1.1 Federate Configurations 

Pipeline 

The pipeline federate configuration is the simplest of the configurations. It consists of 
six federates connected to each other as a pipeline, see Figure 5-1. Entities are 
generated in federate A (source) and are then passed in one direction through all 
federates until they finally are removed after been processed in federate F (sink). This 
can for example be a model of production chain. 
 

Figure 5-1. Pipeline Federation Configuration. 
Adopted from (Mustafee 2003) 

Local Feedback 

The local feedback federate configuration is almost designed as the pipeline federate 
configuration but makes it possible for entities to be returned to the previous federate, 
see Figure 5-2. This can be a model of a production chain where entities can be 
returned if they are found to be incorrect. 
 

Figure 5-2. Local Feedback Federation Configuration. 
Adopted from (Mustafee 2003) 

 
In this benchmark half of the entities are returned. All entities are also forwarded to 
the next federate to avoid a situation where federates in the beginning of the chain 
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stop the simulation before later federates has received the number of entities that has 
been specified. 

Client Server 

The client server federate configuration consists of the five federates A-E (sources) 
that generates entities and then passes them to federate F (sink), see Figure 5-3. 
Federate F will return half of the entities to the federate that created them, a form of 
local feedback, and remove the rest of them. 

Figure 5-3. Client Server Federation Configuration.  

Fully Interconnected 

The fully interconnected federate configuration consists of six federates (sources) that 
each generates new entities, processes, and passes them in a round-robin fashion to 
other federates, see Figure 5-4. Every federate can send and receive entities to and 
from every other federate. 

Figure 5-4. Fully Interconnected Federate Configuration. 
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5.1.2 Experiments 
The benchmark has three experiments: variable internal/external ratio, variable 
workload and variable lookahead. 

Variable External/internal Event Ratio 

As seen in section 3.2, the ratio of external and internal events can be important as it 
for some time synchronization approaches can affect the performance for distributed 
simulations. It would therefore be interesting to see how different middleware 
perform at different external/internal event ratios. 
 
The test varies the number of federates in the pipeline workflow each CSPE simulates 
to change the external/internal event ratio. This method to change the ratio is easy to 
implement but the drawback is that the experiments execute different amount of 
events in total and cannot easily be compared with each other. There are, however, no 
problems to compare the results from one experiment with one middleware with the 
results from the same experiment with other types of middleware. 
 
Table 5-1 shows the setup for the experiments with variable external/internal ratio. 
 

Experiment Entities Federates 
External 
events 

Internal 
events 

External/ 
internal 

ratio 

Machine 
Setup 
time 

Machine 
Processing 

time Lookahead 
1 1000 1 1 1 1 5 5 10 
2 1000 2 1 2 0.5 5 5 10 
3 1000 5 1 5 0.2 5 5 10 
4 1000 10 1 10 0.1 5 5 10 
5 1000 20 1 20 0.05 5 5 10 

Table 5-1. Variable external/internal ratio. 

Variable Workload 

This test varies the workload by varying the number of entities each federate must 
process. Table 5-2 shows the setup for the experiments with variable workload. 
 

Experiment Entities Federates 
External 
events 

Internal 
events 

External/ 
internal 

ratio 

Machine 
Setup 
time 

Machine 
Processing 

time Lookahead 
1 1 5 1 5 0.2 5 5 10 
2 10 5 1 5 0.2 5 5 10 
3 100 5 1 5 0.2 5 5 10 
4 250 5 1 5 0.2 5 5 10 
5 500 5 1 5 0.2 5 5 10 
6 1000 5 1 5 0.2 5 5 10 

Table 5-2. Variable workload. 

Variable Lookahead 

The lookahead federates can affect how far in time other federates can proceed before 
they must wait for each other, see also section 2.2.5 and 4.3. This can affect the 
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overall performance of the distributed simulation and it is therefore interesting to see 
how different types of middleware perform with different lookahead values. 
 
This test varies the lookahead each federate has. Table 5-3 shows the setup for the 
experiments with variable lookahead. 
 

Experiment Entities Federates 
External 
events 

Internal 
events 

External/ 
internal 

ratio 

Machine 
Setup 
time 

Machine 
Processing 

time Lookahead 
1 1000 5 1 5 0.2 5 5 2 
2 1000 5 1 5 0.2 5 5 4 
3 1000 5 1 5 0.2 5 5 6 
4 1000 5 1 5 0.2 5 5 8 
5 1000 5 1 5 0.2 5 5 10 

Table 5-3. Variable lookahead. 

5.2 Test Environment 

5.2.1 Computers and Network 
The performance tests have been carried out on seven computers connected through a 
isolated local area network. Six computers run one federate each and the last 
computer run the RTI Executive (only for HLA tests). All computers also run 
programs used for test automation, see section 5.2.2 for details. Version 5 of RTI 1.3-
NG has been used. The speed of the network was 10 Mbit. 
 
Setup for the 6 computers running federates: 
Intel Pentium III 650 MHz, 256 mb RAM 
Windows 2000/Windows XP 
 
Setup for the computer running the RTI executive: 
Intel Pentium III 950 MHz, 256 mb RAM 
Windows XP 

5.2.2 Automatic Tests 
Before each test software had to initialised and started with correct settings. This 
setup took approximately 1-3 minutes. Each test had an execution time between 1 
second and 16 minutes depending on the settings. If every time advance algorithm, 
federate configuration and variable setting should be executed one single time almost 
200 tests were needed. To be able to do all tests, I had to develop software that 
automates the tests. 
 
The software, named PerformanceTests, consists of six servers, one for each federate 
machine, and one client. The servers listen for incoming socket connections. The 
client connects to each machine and transmits the commands needed to start CSPE 
and CSPE-HLA/CSPE-CMB with the correct settings for a specific test. In the code 
of the client it is possible to set some variables to choose what tests that should be 
performed. 
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Performance Evaluator, a program that measures the simulation execution time 
developed by Mustafee (2003), has been integrated into the client of 
PerformanceTests. PerformanceTests gets all the results from the Performance 
Evaluator and saves them in a comma-separated log file that easily can be imported 
into Microsoft Excel. 

5.2.3 Program Execution Order 
The servers of PerformanceTests are first started at all federate machines. Then the 
client is started. It connects to all servers. For HLA tests, it will also launch RTI 
Executive and wait for it to initialise. The client sends out commands how to start 
CSPE and CSPE-CMB/CSPE-HLA to all servers. 
 
After all programs has initialised and established the right connections to each other, 
every federate has informed the Performance Evaluator that they were ready. The 
Performance Evaluator has then started a timer and informed all federates to start the 
simulation. When all federates has reported back that they have finished the 
simulation the timer has been stopped. The time has been saved in a log file. 
 
After both CSPE and CSPE-HLA/CSPE-CMB have exited on a federate machine the 
server will report back to the client. The client will either exit or start a new test by 
sending news command to the servers. Figure 5-5 shows the execution order of 
PerformanceTests. 
 

Figure 5-5. Execution order of PerformanceTests 

5.3 Results 
Below follow the results of the experiments performed in the form of graphs. For 
comparison the results from the Chandy-Misra-Bryant algorithm are also illustrated in 
all graphs. They were obtained using the same hardware. Every different test was run 
three times. Since the tests were run on an isolated network the deviation was very 
small. The values presented in the graphs are the mean values. 
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5.3.1 Pipeline 

Figure 5-6. Pipeline: Variable External / Internal Event Ratio 

Figure 5-7. Pipeline: Variable Workload 

Figure 5-8. Pipeline: Variable Lookahead 
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5.3.2 Local Feedback 

Figure 5-9. Local Feedback: Variable External / Internal Event Ratio 

Figure 5-10. Local Feedback: Variable Workload 

Figure 5-11. Local Feedback: Variable Lookahead 
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5.3.3 Client Server 

Figure 5-12. Client Server: Variable External / Internal Event Ratio 

Figure 5-13. Client Server: Variable Workload 
 

Figure 5-14. Client Server: Variable Lookahead 
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5.3.4 Fully Interconnected 

Figure 5-15. Fully Interconnected: Variable External / Internal Event Ratio 

Figure 5-16. Fully Interconnected: Variable Workload 
 

Figure 5-17. Fully Interconnected: Variable Lookahead 
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6 Analysis 
This chapter will analyse the results and discuss advantages and disadvantages of 
using CSPE as an experimental tool and HLA as middleware for CSPs. 

6.1 Different CMB and RTI Implementations 
When we analyse the results we must consider, as seen in Section 2.2.5, that HLA 
does not prescribe any specific implementation. In this report we have used a HLA 
RTI 1.3-NG Version 5 developed by DMSO for the experiments. Other 
implementations of RTI exist and how they perform is of course not possible to 
discuss using the results in this report. 
 
We must also consider, as seen in Section 2.2.4, that several versions of the CMB 
algorithm exist. The version that has been used in the experiments uses null messages 
to avoid deadlock situations. Null messages are sent to all outgoing links of a federate 
after an event has been executed. However, it is a little bit optimised since it never 
sends a null message to an outgoing link if a message or a null message with the same 
time stamp already has been sent through that link. 
 
When NER, TAR, HLA and CMB are mentioned in the following sections, we mean 
the versions that have been used in the experiments. 

6.2 Similar Results for NER and TAR 
The first we can note is that both NextEventRequest (NER) and TimeAdvance-
Request (TAR) in every experiment give almost the same results. Any differences can 
in fact depend on normal divergences in the measurement. 
 
The similar results can be explained if we study the algorithms that have been used, 
see section 4.3.2. The time update cycle in a federate always starts with a query to the 
RTI for the minimum next event time. This is the time when an event earliest can 
arrive to this federate. The time is passed to the simulation executive, the simulation 
advances and a new current simulation time is returned. The returned time is used to 
request a new time from the RTI. This value is always equal or lower than the time of 
the next event and NER and TAR will therefore execute in the same way.  
 
Other algorithms may give other results. See also the discussion in section 7.2. The 
results from the two methods are below mentioned as HLA. 

6.3 Differences Between HLA and CMB 
HLA is faster than or equal to CMB in all configurations except the Pipeline. HLA 
has more or less similar results for the all configurations while CMB is much slower 
on Local Feedback, Client Server and Fully Interconnected compared to its results on 
the Pipeline. 
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6.3.1 Centralised and Decentralised Approaches 
The implementation of DMSO's RTI is not well known but from the results it is 
reasonable to believe that at least the time advance procedure use a centralised 
approach since the different federate configurations show so similar results. 
 
CMB is totally decentralised. Every federate knows which other federates that can 
send messages to it and will stop the execution until it has received a message from 
each of these federates. To avoid deadlock situations a lot of null messages are sent to 
other federates to inform about the current simulation time. 
 
The Pipeline is the only configuration where there is no feedback loop. All entities are 
generated in federate A, passed through all federates in one direction and then finally 
removed in federate F. In this configuration every federate only has to wait for one 
other federate and as soon a new message arrives it can be processed.  

6.3.2 Comparison of Feedback Loop Handling Between CMB and HLA 
In this section we will see how feedback loop is handled by CMB and HLA. We will 
use an example to show the differences in the way they work. 

Example with CMB 

Figure 6-1 shows the initial state for a feedback loop configuration with the three 
federates A, B and C. Federate A is the source and federate C is the sink. The current 
simulation time is 0 in all federates (shown inside each federate’s square). No 
messages are stored in any of the receive queues (shown with N/A in the figure). All 
federates has a process time and lookahead of 10 time units. Federate B and C does 
not have any internal events scheduled. 
 

Figure 6-1. Initial state for a feedback loop configuration. 
Three federates A, B and C.  The current simulation time is shown inside each federate's square. 

 
At time 0 federate A will start to process entity E1. Federate A will now send a 
message to federate B that it can start process entity E1. This message must be sent 
now since the lookahead is equal to the process time (10 time units). 
 
Since the receive queues at federate B and C are empty they will send null messages 
to federate A and C to avoid a possible deadlock. These messages will arrive at time 
10. Both federate A and C can only receive messages from federate B and can 
therefore safely advance to time 10 when the null messages are received. Figure 6-2 
shows the current state. 
 

A: 0 B: 0 C: 0 

N/A N/A 

N/A N/A
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Figure 6-2. State after two null messages and one entity have been sent.  
 
Federate A can now stop the processing of entity E1 and start with entity E2 instead. 
By the same reason as before federate A must immediately send a message with entity 
E2 to federate B that will arrive at time 20. 
 
When federate B has received the null message from federate C it knows it is safe to 
process the message from federate A received at time 10. Federate B will now start to 
process entity E1 and the current simulation time in B will advance to 10. This will 
result in a new null message sent to federate A and a message with entity E1 to 
federate C. Both these message will arrive at time 20. 
 
When federate C receives the first null message from federate B it will send a new 
null message to federate B that will arrive at time 20. 
 
Figure 6-3 shows the current state. 
 

Figure 6-3. State after two null messages and two entities have been sent.  
 
Considering this example it is not difficult to see that an increasing number of number 
of federates or a smaller lookahead value will increase the number of deadlock 
situations and null messages needed in the system. 

Example with HLA 

The same model is used in this example with HLA as middleware. No null messages 
are sent when HLA is used. Each of the federates must instead frequently ask RTI for 
time advancements. Figure 6-4 shows the initial state. The current simulation time is 0 
in all federates. 
 

Figure 6-4. Initial state for a feedback loop configuration. 
Three federates A, B and C.  The current simulation time is shown inside each federate's square. 

 
All federates have declared their lookahead when they initialised with RTI. As seen in 
the algorithm from Chapter 4, see Figure 4-4, the first step is in the time update cycle 

A: 10 B: 0 C: 10 

10 null 10 null 

10 E1 10 null

A: 10 B: 10 C: 10 

20 null 20 null 

20 E2 20 E1

A: 0 B: 0 C: 10 
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to query RTI for the time when an event earliest can arrive to the federate. Since the 
lookahead is 10, all federates will get 10 as response. All federates are now allowed to 
advance to this time and perform any internal events with a time stamp lower or equal 
to this time. 
 
Federate A is the only federate with an internal event at this stage. At time 0 it will 
start to process entity E1. It will also send this entity to federate B with an interaction. 
The interaction will be received at time 10. At time 10 it will stop the processing of 
entity E1 and start with E2. E2 will also be sent to federate B. It will arrive at time 20. 
Figure 6-5 shows the current state. 
 

Figure 6-5. State after one entity has been sent. 
 
The next step is to request RTI to advance the time. Each federate will request the 
time they were allowed to advanced to, in this case 10 for all. All federates requests 
will be granted as soon as RTI knows it is safe to advance to the requested times and 
each federate has received any external events waiting in the receive queue with a 
time equal to the requested time. Federate B will receive the first interaction with 
entity E1 but entity E2 will remain in the queue. It will directly send entity E1 to 
federate C to be received at time 20. 
 
All federates will now once again query the RTI for the minimum time of the next 
event. Since all federates have requested time 10 this mean no events can arrive 
earlier than at time 20 because of the lookahead of 10.  
 
As can be seen, there is no need for null messages but the federates must wait for each 
other when they make a time advance request. More federates mean more federates to 
wait for and smaller lookahead values means more loops in the time update cycle. 
How the federates interconnected is, however, not that important which the similar 
results for HLA from the different federate configurations show. 
 

A: 10 B: 10 C: 10 
10 E1 
20 E2
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7 Conclusion  
This chapter will summarize the report and present what conclusions that can be made 
from the analysis of the results. Future work will also be discussed. 

7.1 Summary 
The aim of the work was to investigate time management in COTS based distributed 
simulation using HLA. Discussions were limited to discrete event simulation and 
conservative algorithms. 
 
The CSPE “experimental methodology” was derived from Mustafee (2003). It was 
found to be a useful tool for the performance testing of different types of middleware. 
The CSPE architecture was modified to use HLA as middleware. A time update cycle 
algorithm was designed and implemented in Java. Version 5 of RTI 1.3-NG 
developed by DMSO was used. 
 
Reference Model I (Taylor 2003) with asynchronous entity passing was implemented 
using the non-persistent object type interactions and the two different time 
management methods TimeAdvanceRequest (TAR) and NextEventRequest (NER). 
 
The experiments were carried out on an isolated local area network with seven 
computers. The three variables external/internal event ratio, workload and lookahead 
was varied in different experiments and tested in four federate configurations. The 
Chandy-Misra-Bryant (CMB) middleware derived from Mustafee (2003) was also 
tested on the same hardware and under the same circumstances. 
 
A special program was developed to automate the testing since there were many tests 
to perform. With five-six variable settings in three different experiments, four federate 
configurations and three types of middleware there was almost 200 tests that all 
needed to be run several times. 
 
The results were compared and analysed. Both TAR and NER gave the same results 
and the analysis showed that these methods were actually doing the same in the 
algorithm used. Their results, mentioned as just HLA now, were found to be equal or 
faster than CMB in the three federate configurations with feedback loop. CMB was 
found to be a little bit faster than HLA in the Pipeline federate configuration. 

7.2 Conclusions 
This section will discuss the insights I gained about HLA, CMB and CSPE during the 
work. 

7.2.1 HLA 
I have found HLA to be very useful for distributed simulation. In fact it can be used 
for other forms of distributed computing as well with its advanced object and time 
management, its support for other features such as synchronization barriers and data 
distribution management. 
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HLA has become a de-facto standard for distributed simulation. A lot of research is 
carried out on how to use HLA in different areas and applications. As seen in section 
2.2.5, it doesn’t prescribe any specific implementation and computer language. This 
means different techniques can be used to implement the distributed services as long 
as the developers follow the HLA rules and interface specification. This construction 
and the fact that many are using the standard make HLA future-safe for new computer 
languages and new distributed algorithms. 
 
The weak side of HLA is that it is very complex even if you often only need to use 
parts of all methods defined in the API. When I implemented support for Reference 
Model I with unbounded buffers (described in section 3.1) I only had to use a limited 
number of HLA’s all methods. This complexity can indicate that HLA is very 
“heavyweight” standard with a lot of unnecessary functions for COTS distributed 
simulations. 
 
The experiments in this report show, however, that the performance of HLA is 
comparable with the “lightweight” middleware CMB and also in models with 
feedback loops it is much faster. It is also not unlikely that the implementation of 
more complicated reference models will need to use more of HLA’s methods. 
 
The complexity makes the learning curve high and it takes a long time before you 
have learned everything. 

7.2.2 DMSO RTI 1.3-NG Version 5 
The RTI version I used in my experiments seemed to be buggy. The RTI software 
could deadlock, and it often did, when federates were resigning from a federation. I 
spent many days to find a solution to this problem. Finally I had to implement a 
feature in the automatic test program that killed processes at the client and the servers 
if the RTI had deadlocked. 
 
Another bad thing with the RTI version I used was a method called tick() that is not a 
part of the HLA standard. It must, however, be called frequently to give process time 
to the RTI ambassador. The method can be called with or without two arguments that 
specifies the lower and upper bound of the time being allocated to tick(). How tick() is 
used in the program was found to be extremely important for the overall performance. 
Not well-chosen values could mean double execution time or even worse. The values 
I found to be best and that I used in my experiments was tick(0.0, 0.0). 

7.2.3 CMB 
The Chandy-Misra-Bryant (CMB) algorithm was fast for the federate configuration 
without feedback loop but slow for the other configurations tested. The algorithm is 
simple and easy to understand. The CMB middleware doesn’t have any built-in 
support for any advanced distributed computing methods, only message passing, and 
is alone not developed enough for future interoperability issues. 

7.2.4 CSPE 
I found the CSPE “experimental methodology” to be very useful for distributed 
simulation experiments. CSPE makes it possible to investigate different kinds of 
middleware and vary federate configurations and variable settings. The architecture 
consist of the three parts CSPE, CSPE handler and the middleware. This dividing 
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separates the simulation’s internal implementation from the middleware in a very 
good way. The handler also has a good API for communication with CSPE. 
 
Since the structure of CSPE is well known (see Mustafee 2003), it is possible to 
implement more functionality to investigate new COTS interoperability problems. For 
example, if you want to do experiments on bounded buffers, you can implement 
support for this into CSPE, add new function calls to the API and then develop 
middleware that can provide this functionality. You will have full control of all parts 
and it will be possible to try different solutions. 
 
Without a tool such as CSPE, distributed simulation experiments with COTS 
simulation packages would be limited to the API calls that the software developers 
implement in their packages. It is also reasonable to believe that it will take a lot more 
time to try different solutions if real CSP packages would be used in the experiments.  
 
CSPE however, needs further development to support more reference models when 
these will be designed, implemented and tested. The version of CSPE I used (and the 
only one that currently exists) can also be improved a little bit in future versions if the 
number of classes is reduced. 

7.3 Future Research and Development 

7.3.1 Other RTI Versions 
It is difficult to compare HLA to other middleware when the implementation is not 
standardized and can differ in different RTI implementations. It would therefore be 
interesting to compare the results I got using DMSO RTI 1.3-NG Version 5 with 
results from experiments, carried out using the same circumstances, with other RTI 
implementations. It would also be interesting to compare these results to a simple 
centralized approach since the results is similar for the different federate 
configurations. 

7.3.2 Combination of External Control and Permission Request 
In the end of my work I found that it is probably possible to combine the external 
control (EC) and permission request (PR) synchronization algorithms in a new 
algorithm. 
 
EC was used in this work to control CSPE. The middleware defined a safe time that 
the simulation executive was allowed to advance to. When this time was reached, it 
returned the time to the middleware to let it know the current simulation time. This 
time was then used to request time advancement from the RTI. If, instead, the time of 
the next scheduled internal event should be returned, it sometimes would be possible 
to request a higher time and in this way speed up the simulation since other federate 
may have to wait less. 
 
This is, however, only possible if the NextEventRequest method is used since the 
federate in this case only promise that it will not send any external events earlier than 
the granted time + lookahead, see section 2.2.5. The granted time will be equal what 
is lowest of the time of the next event that will received and the requested time. 
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This is a form of PR since CSPE requests to advance to its next internal event. If no 
external event arrives it will be allowed to do that. If a higher safe time can be defined 
by the middleware CSPE will be allowed to advance to this higher time instead. 
 
Figure 7-1 shows the sequence diagram for the time update cycle of this algorithm. 

Figure 7-1. Sequence diagram of the time update cycle of the EC/PR algorithm 
 

7.3.3 Other reference models 
In this work only Reference Model I was implemented and performance tested. Other 
more reference models, for example bounded buffers, can demand more of the 
middleware and maybe give other results. It would be interesting to investigate how 
HLA can be used with these reference models. 
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I think it is difficult or maybe even impossible to implement Reference Model II 
(synchronous entity passing with bounded buffer) in a middleware that is using HLA, 
if the distributed simulation should be conservative and if the lookahead value should 
not be set to 0. The receiver of an entity must be able to respond that the buffer is full 
and that the entity cannot be sent yet. This response must, however, arrive at the same 
time as the entity is sent if the sending federate should not start processing the next 
entity. This demands a lookahead of 0. 
 
An alternative to a lookahead of 0 is maybe that sender always is aware of the status 
of the receiver’s buffer. This assumes that processing times at the receiver is known 
and that only one federate can send entities to the receiving federate. This alternative 
seems to be very complicated and a lookahead of 0 is presumably the only real 
solution. The problem with a lookahead of 0 is that is will probably give bad overall 
performance. 
 
An optimistic approach would not have this problem. In any cases more reference 
models must be investigated to be able to answer which middleware that is best for 
COTS based distributed simulations. 
 
CSPE needs further development if more reference models should be implemented 
and tested. It would also be interesting to see if the middleware performance changes 
if the processing times of the workstations are randomised. Today all processing times 
are fixed values that can be specified. 
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Appendix A – Table of Acronyms 
 
API Application Programming Interface 
CMB Chandy-Misra-Byrant 
COTS Commercial Off the Shelf 
CSP COTS Simulation Package 
CSPE COTS Simulation Package Emulator 
CSPE-CMB CSPE using CMB for time management 
CSPE-HLA CSPE using HLA for time management 
DLL Dynamic Link Library 
DMSO Defense Modeling and Simulation Office in US 
EC External Control 
EE External List Externalisation 
FED Federation Execution Details 
FedExec Federation Executive 
HLA High Level Architecture 
HLA-CSPIF HLA-CSP Interoperability Forum 
IA Incremental Advance 
IEEE Institute of Electrical and Electronics Engineers 
LBTS Lower Bound Time Stamp 
libRTI RTI Library 
LP Logical Process 
NER Next Event Request 
PR Permission Request 
RO Receive Order 
RTI Run-Time Infrastructure 
RtiExec RTI Executive 
TAR Time Advance Request 
TSO Time Stamp Order 

 

 


