
 i

�

�������	��
����������
���� � � �

�����	�����������	�� � � �

�

�

�

�

���������������� � � �

�

�

�

�

�

�

�

��� ����� �

������������������������������������! ��	"��#�
���$%%&� � � �

�

��������������������������������������'�'�()�*��$%%&�%+�

�

 ii

 iii

Master Thesis IMIT/LECS/ [2004 - 06]

Master of Science Thesis

In Internetworking

by

Renzheng Wang

Stockholm, June 2004

Supervisor: Robert Senger

Examiner: Vladimir Vlassov

 Thomas Sjöland

 iv

Acknowledgements

I would first like to thank Dr. Vladimir Vlassov, Associate Professor, at the Department of
Microelectronics and Information Technology (IMIT), KTH, my examiner who has always given me
kind help and supports throughout this thesis.

I want to thank my co-examiner Thomas Sjöland, who arranged and examined my thesis presentation
in KTH.

I also thank Robert Senger, my supervisor in BMW-CarIT, who has always given me a hand when I
have had questions or got in trouble with my work.

Thanks to Dr. Thomas Stauner for reading through my thesis draft and giving me many valuable
suggestions.

Thanks to Jie Tang, Oliver Noelle, Paul Hoser and all the colleagues in BMW-CarIT who have given
me helps and supports in this half a year time.

I am grateful to my parents and my sister, who always encourage me through the phone from my
homeland far away; I also thank my girl friend, Gefei, who is always beside me, sharing every piece
of joy and bitterness in this half year with me. Without their love and support, I could not get through
this thesis in the end.

 v

Abstract

Most of the computer systems today, both hardware and software are all pursuing the best average-
case utilization and performance of the system. However, the real-time system is one exception. It has
goals fairly different from the conventional systems. In a real-time system, the temporal behavior of
the system is regarded as the key issue, such as whether a task's deadlines can be met or not.
Therefore in real-time systems, the predictability and worst-case execution time are much more
important than the average performance. Such differences make the development work to build a real-
time system highly distinct from other conventional systems. From hardware architecture to operating
system, from software engineering to the programming language, all these subjects are given new
criteria to evaluate when they are applied in real-time systems.

For the fast growing demand on real-time systems in the fields of modern telecommunication,
aviation and automotive industry, real-time systems are now expected to take more complex and
sophisticated tasks and be more efficient to build. The Real-time Java technologies are hence
emerging in recent years aimed to make the Java language more suitable for building real-time
applications. Thus many well-known advantages of Java are available to benefit and ease the
development work of real-time systems.

This thesis focuses on the feasibility and applicability of real-time Java technologies in the domain of
automotive real-time systems. It starts with the survey on the real-time system design theories. Some
predominant scheduling theories such as the rate-monotonic scheduling theory and the deadline
monotonic scheduling theory are introduced and analyzed here. Then the thesis compares the
different real-time Java solutions theoretically by revealing both their conceptual advantages and
drawbacks. Finally, a set of benchmark applications and an automotive real-time sample application
are designed, implemented and deployed on each chosen solutions. The results are then compared and
analyzed. Thus, the state of the art of real-time Java technologies applied in automotive system is
evaluated and concluded.

 vi

Table of Contents
Acknowledgements... iv

Abstract ...v

Table of Contents.. vi

List of Figures ... ix

List of Tables .. xi

Chapter 1 Introduction ... 1

1.1 Background and Motivation... 1

1.1.1 Real-time Conception ... 1

1.1.2 Java For Embedded Systems... 2

1.1.3 Real-time Problems in the Typical Java Virtual Machine .. 2

1.1.4 Overview of Existing Real-time Java Solutions ... 4

1.2 Summary of Contributions... 4

1.3 Thesis Layout... 6

Chapter 2 Real-time System Design .. 7

2.1 Basic Characteristics of Real-time Systems... 7

2.1.1 Hard, Soft Real-time and Safety-critical System .. 7

2.1.2 Two approaches to the predictability .. 9

2.2 Scheduling Analysis... 10

2.3 Fixed priority Preemptive Scheduling Theory... 13

2.3.1 Background Knowledge: Liu and Layland’s Research in 1973.. 13

2.3.2 Exact Completion Time Analysis for RMA.. 15

2.3.3 Generalized Rate Monotonic Scheduling Theory ... 17

2.3.4 Deadline monotonic scheduling theory... 24

2.4 Practical Concerns about Fixed Priority Preemptive Scheduling .. 26

2.5 Other Important Issues in Real-time System Design ... 28

2.5.1 Hardware Architectures in Real-time System... 29

2.5.2 Programming Language Issues in Real-time System Design ... 30

2.5.3 Worst-case Execution Time Analysis for High Level languages 30

Chapter 3 Overview of Automotive System Technologies.. 32

3.1 Typical In-Vehicle Network Architecture ... 33

3.2 Typical Real-time Operating System in Automotive system: OSEK .. 34

3.3 Control Area Network (CAN) in Automotive Systems ... 36

 vii

3.3.1 Data Frame of CAN... 37

3.3.2 CAN Bus Arbitration Mechanism ... 38

3.3.3 Real-time Concerns about CAN bus ... 39

3.4 Future Prospects for Automotive Technologies ... 39

3.4.1 Dynamic Real-time Operating Systems .. 39

3.4.2 OSGi.. 41

Chapter 4 Different Real-time Java Techniques Comparison .. 43

4.1 Garbage Collection... 44

4.1.1 Garbage Collector Technique Overview ... 44

4.2 Real Time Specification of Java... 45

4.2.1 Main Features in RTSJ .. 45

4.2.2 Scheduling ... 47

4.2.3 Memory Management ... 48

4.2.4 Thread Synchronization... 50

4.2.5 Asynchronous Event Handling.. 50

4.2.6 Asynchronous Control Transfer .. 50

4.2.7 Asynchronous Thread Termination ... 51

4.2.8 Physical Memory Access .. 51

4.3 PERC.. 51

4.3.1 Real-time Garbage Collector in PERC.. 51

4.3.2 Virtual Machine Management API and Improved Timer Services 53

4.3.3 Other Features of PERC .. 53

4.3.4 Remarks on PERC Real-time Java Solution.. 54

4.4 Jamaica ... 55

4.5 Non-real-time Code Reuse Issue Discussion.. 56

Chapter 5 Evaluation Methodology.. 58

5.1 Survey on the Typical Automotive Real-time Application .. 58

5.1.1 Survey of Running Environment of Automotive Real-time Applications 59

5.1.2 Survey of Typical Automotive Real-time Tasks Behaviors .. 60

5.2 Define Functions for Sample Automotive Real-time Application ... 62

5.2.1 Incoming Messages ... 63

5.2.2 Workflows for Each Message Handler.. 63

5.2.3 Time Constraints in the Sample Application... 65

 viii

5.3 Finding Necessary Parameters needed by Scheduling Analysis.. 66

5.4 Define the Functions of Benchmark Application... 69

Chapter 6 Design and Implementation... 70

6.1 Benchmark Application Design and Implementation .. 70

6.1.1 High Resolution Timer for the Benchmark... 70

6.1.2 Memory Allocation Time Test.. 71

6.1.3 Thread and Synchronization ... 72

6.1.4 Timer Test ... 76

6.1.5 JNI Access Time Test ... 77

6.1.6 Asynchronous Event Handling Test ... 79

6.2 Sample Application Design and Implementation .. 80

6.2.1 CAN Bus Access Library and its Predictability Concern ... 80

6.2.2 Data Structures of the Sample Application... 81

6.2.3 Workflow of the Sample Application ... 82

6.3 Remote Graphic Controller for the Benchmark Application ... 83

6.3.1 Runtime Overhead and Temporal Influence Issues .. 84

6.3.2 Automatic Graphic Chart Generating Function .. 85

6.4 Estimation of Implementation Workload in this Thesis .. 86

Chapter 7 Test Deployment and Result Analysis .. 87

7.1 Test-bed Environment.. 87

7.2 Test Deployment Strategy.. 88

7.2.1 Alternatives of Execution Mode ... 88

7.2.2 AOT Compilation Settings and Execution Options .. 89

7.3 Test Results and Analysis .. 90

7.3.1 Benchmark Application Test .. 90

7.3.2 Sample Application Test... 95

Chapter 8 Conclusion and Future Prospects .. 102

8.1 Summary of Results... 102

8.2 Limitations and Future Prospects... 104

Appendix A Use-case Diagrams for the Benchmark Application ... 106

Appendix B Benchmark Test Cases and Results ... 107

References.. 129

 ix

List of Figures
Figure 2-1 Time-utility function chart for hard real-time system[8].. 7

Figure 2-2 Time-utility function chart for soft real-time system[8] ... 8

Figure 2-3 Time-utility function chart of safety-critical system[8].. 9

Figure 2-4 Real-time tasks scheduling problem... 11

Figure 2-5 Example to show how priority ceiling protocol solve the blocking chain problem 20

Figure 3-1 Current BMW 7 series on-board supply system structure. Boxes are ECUs...................... 32

Figure 3-2: Typical Electrical Control Unit network architecture[19]... 33

Figure 3-3: OSEK OS Overview[21] ... 34

Figure 3-4 OSEK COM's layer model[21]... 35

Figure 3-5 Layered structure in a CAN node[23]... 37

Figure 3-6 CAN Data frame[23] .. 38

Figure 3-7 QNX RTOS microkernel and system architecture [27].. 40

Figure 3-8 Common OSGi implementation architecture ... 42

Figure 4-1 Typical GC phases.. 45

Figure 4-2 RTSJ Real-time Thread class Hierarchy[38] .. 47

Figure 4-3: Garbage collector and threads in typical Java virtual machine[29]................................... 48

Figure 4-4: Garbage collector and threads running in RTSJ[29] ... 48

Figure 4-5 Hierarchy of classes in RTSJ memory model[38] .. 49

Figure 4-6 Java heap in PERC virtual machine[33] ... 52

Figure 4-7: PERC GC – two-space copying strategy[33] .. 52

Figure 4-8: Threads Running in Jamaica (Red blocks represent the incremental GC work)[29] 55

Figure 5-1 Flow Diagram to show the methodology used when defining the functions of sample

application and benchmark application .. 58

Figure 5-2 Typical CAN network in vehicle and Real-time tasks running environment 59

Figure 5-3 A layered view on the implementation of an automotive real-time task 61

Figure 5-4 Separated View of Gateway ECU and its subtask.. 62

Figure 5-5 Workflow of handling Vehicle Speed Message ... 63

Figure 5-6 Workflow of handling Tire Pressure Message ... 64

Figure 5-7 Workflow of handling Steering Wheel Angle Message ... 64

Figure 5-8 Workflow of handling Obstacle Distance Message.. 65

Figure 6-1 Sequence Diagram of retrieving high resolution time in benchmark application............... 71

Figure 6-2 Class Diagram for the Memory Allocation Time Test ... 72

 x

Figure 6-3 Java Thread life-cycle and state-transfer diagram.. 74

Figure 6-4 Sequence diagram: thread notification context-switch time test.. 74

Figure 6-5 Sequence diagram: thread yielding context-switch time test ... 75

Figure 6-6 Sequence Diagram: thread priority inversion test .. 76

Figure 6-7 Sequence Diagram: One-shot timer test... 77

Figure 6-8 Class Diagram: asynchronous event handling test ... 78

Figure 6-9 Sequence Diagram: asynchronous event handling test .. 79

Figure 6-10 Class Diagram of the sample application ... 81

Figure 6-11 Sequence Diagram for Sample Application: start all handlers... 82

Figure 6-12 Sequence Diagram for Sample Application: handle new message 83

Figure 6-13 Screen-shot of the Remote Graphic Controller for the benchmark application 84

Figure 6-14 Sequence diagram: deploy benchmark test through remote control 85

Figure 6-15 A sample chart generated by the remote graphic controller application 85

Figure 6-16 Package structure of the implementation work in this thesis ... 86

Figure 7-1 Test bed hardware environment ... 87

Figure 7-2 Test results for the sample application... 100

 xi

List of Tables
Table 2-1 Exact completion time test example .. 16

Table 2-2 Key attributes of the real-time platform... 27

Table 4-1 RTSJ features with NIST core requirements ... 47

Table 4-2 Differentiation between Real-time Java technology standards proposed by PERC producer

.. 55

Table 5-1 Incoming Messages Information.. 63

Table 5-2 Messages handling deadlines ... 65

Table 5-3 Priority assignment of the tasks in the sample application .. 66

Table 5-4 Necessary parameters for the scheduling analysis ... 68

Table 5-5 Functions to be provided by the benchmark application.. 69

Table 7-1 Execution Options of the chosen JVMs... 89

Table 7-2 Necessary parameters and their values for sample application scheduling analysis............ 97

1

Chapter 1 Introduction

Nowadays Java technologies have become more and more popular in the computer world for its
platform independence, better reliability, fully object-oriented structure and flexibility of code reuse.
All these good features also make the Java language a good candidate for building real-time
applications in many embedded system development domains, such as automotive, avionic and
industrial automation. But, to fulfill the requirement of such time-critical and cost-effective systems,
some work still needs to be done to improve the predictability and runtime performance of classical
Java. This is why the Real-time Java technology came into being during the recent few years.
Currently most of the Real-time Java solutions have addressed and solved the main unpredictability in
the classical Java virtual machine, which make Java unsuitable for the real-time systems, such as,
long-time garbage collection delay, threads priority inversion etc. However, to what degree a specific
real-time java solution could achieve its real-time performance to meet the demand of automotive
systems is still in need of further investigation. This thesis analyzes, compares and evaluates the
applicability of several Real-time Java solutions in the automotive systems, both in theory and in
practice.

1.1 Background and Motivation

Nowadays billions of embedded systems, large or small, fast or slow, are widely used in almost every
field of our lives, while a lot of others are just being investigated, invented and produced. Since more
and more embedded systems have been applied into strictly time-critical or even safety-critical
systems, the real-time characteristics of these embedded systems become more and more important.
Therefore, in the automotive electronic system domain, a real-time development environment should
be chosen for building the next-generation in-car system. Such a development environment should
include hardware platforms, communication buses (or networks), operating systems, and
programming languages together with its corresponding development tools. Among all these issues,
choosing a better programming language plays an essential role because it will directly determine the
whole technology set to be used and how the development team will be grouped or even established.
This stringent demand formed the initial motivation of this thesis: to evaluate the real-time Java
technology applied in the automotive systems. Some background knowledge including real-time
system concepts, benefits of bringing real-time Java and the existing problems of typical Java
platform will be briefly introduced in this section.

1.1.1 Real-time Conception

What does the term “real-time” exactly mean? There is usually a common misunderstanding, which
implies that, a real-time system is just a system either ‘very fast’ or ‘immediately reactive’. But
unfortunately, neither of these two vague definitions is correct. According to the definition proposed
by Burns and Wellings [1], the term ‘real-time’ means “any information processing activity or system
which has to respond to externally generated input stimuli within a finite and specified delay”. This
means the execution time of the real-time tasks can be not necessarily very short but should be

 2

predictable and guaranteed within a specific deadline. According to the above definition, two kinds of
real-time systems can be classified: hard real-time system and soft real-time system.

Within a hard real-time system, it is “absolutely imperative that responses occur within the specified
deadline”, while in the soft real-time system, it is “response times are important, but the system will
still function correctly if deadlines are occasionally missed”[1]. This means that in a hard real-time
system, each of the task deadlines must be fulfilled; in case one failure occurs in any of such
deadlines, it could possibly cause a catastrophic disaster and make the whole system unacceptable.
One example of such systems can be the brake control system inside a car. On the other hand, a soft
real-time system puts less pressure on such time constraints. All deadline fulfillments are of course
preferred, however, a few deadline delays can be accepted. One example of such a soft real time
system is the multi-media controller system.

1.1.2 Java For Embedded Systems

Most of the applications running in embedded systems today are developed in C or C++. Several
explicit shortcomings exist in these languages, such as, complexity and error tendency brought by
manual memory management, poor code portability among different systems, difficulties of choosing
and using appropriate libraries, lack of security proving mechanisms etc. A very natural deduction
will make people turn to Java, a well-structured object-oriented language. Compared with C and C++,
Java has several explicit advantages, such as:

�� Java can help developers to improve their productivities because of its high level of abstraction.

�� Java’s grammar and semantics are highly refined, so it is not as complex as C++ and is easier to
grasp.

�� Java has a sophisticated security mechanism to prove system security.

�� Java supports dynamic loading of new classes.

�� Java is highly dynamic, supporting lots of objects/threads created at run time.

�� Java supports component integration and reuse.

�� Java language and platforms support application portability.

All the above features make Java a good candidate for the language used in embedded systems to
bring more productivity, security, efficiency and portability.

However, Java is not perfectly defined for real-time applications, it still has several drawbacks which
prevent it to be a real-time programming language.

1.1.3 Real-time Problems in the Typical Java Virtual Machine

1.1.3.1 Garbage Collection

One of the advantages brought by Java is that Java can relieve programmers from messy memory
management work by providing a garbage collector mechanism that can automatically scan and

 3

withdraw the discarded memory blocks. But apparently, such mechanism also brings the
unpredictability of the execution time of the application, since the underlying garbage collector thread
cannot be detected by the programmers and may become running at any time, preempting the user
threads and causing unexpected delay.

So, to make Java a truly real-time language, a certain mechanism must be provided to make the
garbage collector more predictable. Normally, this is the most delicate work to be carefully designed
and implemented by the real-time Java producers.

1.1.3.2 Threads synchronization and resource sharing

Just like C++, Java also supports the multithread technology for more complex applications to be
easily implemented. The monitor mechanism is supplied by Java, denoted by a keyword:
synchronized, to solve the resource mutual exclusion problems among the threads. In real-time
systems, such a mechanism could introduce other problems, such as: priority inversion.

Priority Inversion can be explained by the following example: Three Java threads H, M and L running
together in a Java virtual machine, each of which respectively has the higher, medium and lower
priority. Consider this situation: thread L enters a monitor first and will keep this resource until it
finishes, then the thread H enters after L, it has to wait for the resource until L releases it; therefore it
gives out the CPU and waits until the monitor is available. Here thread M comes and for thread M,
nothing special prevents it from running. So according to the priority discipline, thread M will
preempt thread L and finish its work first. Finally, the order of the finish time of three threads will be:
M, L and H [2].

Priority inversion is apparently not a good situation we expected to see, because the thread with
highest priority carries the most critical task and needs to run to end urgently, but when the above
scenario appears, it will have to wait for all the threads superior to the monitor holder thread, which
could possibly have the lowest priority. In order to make Java more real-time, such problems must be
addressed.

1.1.3.3 Dynamic loading

One flexible feature Java provides is that, the classes needed at runtime can be loaded dynamically.
This casts another problem that influences Java’s predictability, because at any time during one thread
running, there may be a new class, which has not been used and needs to be loaded. Since this part of
work may include disk accesses, the total loading time can be hard to predict. This is also a potential
threat to the real-time Java implementation.

1.1.3.4 Native method call

A very useful mechanism provided by Java is the ability to call the native code written in a platform
dependent language like C or C++. It is called Java Native Interface (JNI). Just like the good features
mentioned in this section, JNI also makes the real-time Java implementation harder to realize. This is
because, when a certain Java thread calls some native code, the control of either the garbage collector

 4

or a certain scheduler will be hardly able to reach such code, and consequently, more unpredictable
events are likely to happen, outside the control of the developer.

1.1.3.5 Performance

Once again, as an interpreted programming language, the performance of Java must be considered
when being ported into embedded systems for real-time development. Given the specific hardware
platform, if a Java application is much slower than the C program that can finish the same task, this
real-time Java solution will not be a good choice because it may not fulfill the short time constraints
that the C program can, and therefore has to rely on hardware platform update.

1.1.3.6 Other issues

Besides all the aspects mentioned above, there are also some other issues that may cause some
problems and need to be taken care of by the real-time Java solution provider, for instance, dynamic
calls and type checking, asynchronous thread termination and so on.

1.1.4 Overview of Existing Real-time Java Solutions

As we can see from the previous section, it is really not easy to make Java real-time. While,
fortunately, there are already many solutions carried out in this area. The most influential solutions
are listed below:

�� Specifications:

o Real-Time Specification of Java[3], produced by The Real-Time for Java Expert
Group (RTJEG) under Java Community Process (JCP) sponsored by Sun
Microsystems.

o Real-Time Core Extensions[4], produced by Real-Time Java™ Working Group in J
Consortium

�� Products:

o Jamaica[5], real-time Java virtual machine produced by Aicas Company

o PERC[6], real-time Java virtual machine produced by NewMonics

o AJile[7] - aJile System: Java direct execution processor, a hardware real-time Java
implementation

The above solutions more or less differ one from another. Their similarities and differences will be
compared more in detail in the following chapters.

1.2 Summary of Contributions

Since there are already several real time Java solutions available, several questions are rising on the
horizon: Is real-time Java today mature enough to be a possible solution for the automotive systems in

 5

the future? If so, which of the real time Java technologies today is more suitable to be used to build
real-time applications in automotive systems? This thesis unveils the answers of the above questions.

In general, the differences between these real time Java solutions can be summarized into the
following aspects:

��Different focusing real-time domains. Some solutions focus on the hard real-time
implementation, while some others provide the soft real-time ones.

��Different implementation strategies used to approach real-time Java. For example, to fight
against unpredictable garbage collection work, RTSJ, PERC and Jamaica all have different
strategies.

��Different dependencies on the underlying platform, such as some specific processor types or
some specific operating systems etc.

��Different API scopes support, such as standard J2SE API, or J2ME CDC/CLDC, or some
extra APIs for some specific functionalities

��Different resource requisites, such as, processor speed requisite, ram capacity requisite and so
on

��Different complexity and flexibility due to various implementations and development
environment provisions

��Different real-time capabilities like predictability, precision, reliability and so on

��Different performance provided, such as binary code size, running speed

In addition, the suitability of these solutions with typical environment for automotive development is
an important criterion to measure in this thesis.

Based on the above measuring criteria, this thesis accomplishes the evaluation work by the following
work steps:

��Theoretical analysis about the feasibility, complexity and suitability of applying real-time
Java into automotive systems

 At this part of work, an overview of the real-time system theory, a requirement analysis for
the automotive real-time development domain and a theoretical analysis about the existing
real-time Java solutions are provided in this thesis.

��Design and implementation of a benchmark suite for evaluating the common real-time
characteristics in the chosen Java virtual machines.

��Design and implementation of a sample automotive application that carries time-critical tasks.
This sample application, on one hand, makes a synthetic evaluation of real-time java
solutions, and on the other hand shows a way of doing real-time automotive applications in
Java.

 6

��Deploy the benchmark applications and the sample application on both non-real-time Java
virtual machine and real-time Java virtual machine, collect the test results and evaluate the
chosen Java environments by analyzing the results.

All of the above four steps of work will be described in detail in this thesis.

1.3 Thesis Layout

In the second chapter of this thesis, an overview of real-time system design is provided. The
overview starts with an introduction to the characteristics of real-time system, and then one important
research domain in real-time systems, scheduling analysis, is presented. Particularly, the fixed priority
preemptive scheduling theory is discussed in detail for its natural suitability with Java language.
Some practical issues concerning the fixed priority preemptive scheduling are discussed after that. At
the end of the second chapter, some other important subjects in the real-time system design domain
will be briefly overviewed including the hardware architecture, programming language and worst-
case execution time estimation etc.

In chapter three, we will look into the current automotive system technologies. The basic
characteristics of automotive system are introduced first. Then some predominant technologies used
to build in-vehicle real-time systems, including the OSEK real-time operating system and Control
Area Network (CAN) bus system, are then reviewed. To address the fast growing demand on building
more complex and secure applications in the vehicle, some prospective technologies are listed at the
end of chapter three.

In chapter four, theoretical analysis and comparison among the important real-time Java technologies
today are deployed. The chosen real-time Java solutions to analyze include Real-time Specification of
Java, PERC real-time Java virtual machine and Jamaica virtual machine.

Chapters five and six together describe the processes of creating the evaluation applications step by
step. The applications include a set of benchmark applications and a sample automotive real-time
application. The methodology, design and implementation issues are presented in a considerable
order in these two chapters.

In chapter seven, the applications created in the previous stage of this thesis are deployed on the
different Java platforms. One non-real-time embedded Java solution: IBM J9 and one influential real-
time Java solution: PERC are both tested for a comparison. The test results are then listed and
analyzed.

In chapter eight, the current situation of real-time Java technologies and their applicability in the
automotive system domain are concluded based on both theoretical analysis and practical experiments
accomplished in this thesis. The limitation of this thesis and future work in this area are also
discussed in the final chapter.

The appendix and references are attached at the end of this thesis.

 7

Chapter 2 Real-time System Design

In this chapter, firstly, the basic characteristics of real-time systems will be briefly introduced. Then,
we will give an overview on the real-time scheduling theory, with more emphasis on the fixed
priority preemptive scheduling, which is closer to the existing real-time Java solutions. For the next
section, some practical concern on how to carry through a fixed priority preemptive scheduling
analysis will be observed. The last part of this chapter will be remarks of some important issues
involved in the embedded real-time system design.

2.1 Basic Characteristics of Real-time Systems

As we have introduced in Chapter 1, there are the two main types of real-time systems: hard real-time
systems and soft real-time systems. The main difference between these two types of real-time systems
is the different punishments they take for the possible missing deadlines. This section will begin with
a further and more legible clarification of the difference, and then will introduce two approaches to a
real-time system.

2.1.1 Hard, Soft Real-time and Safety-critical System

To aid the analysis and classification for the real-time systems, we import a time-utility function to
distinguish different real-time systems [8]. The function shows the distribution of the system’s utility
through the time.

The time-utility function for a hard real-time system is depicted in Figure 2-1. The function shows
that the system is able to obtain its utility if the task is finished after the start time and before the
deadline, whereas, after the deadline, the utility will immediately go to zero, which means the whole
system will become useless in that case.

ut
ili

ty

time
start time deadline

Figure 2-1 Time-utility function chart for hard real-time system[8]

 8

The time-utility chart for a soft real-time system is shown in Figure 2-2. First, the system can surely
get the utility when the task is finished between start time and deadline, moreover, it can also obtain
some utility while the task finish time is delayed beyond the deadline. That means that the whole
system can be still useful when a tolerant number of task deadlines are missed.

ut
ili

ty

time
start time deadline

Figure 2-2 Time-utility function chart for soft real-time system[8]

Besides the soft and hard real-time systems, another type of real-time systems, which is also
frequently mentioned, is the safety-critical system. A safety-critical system is a real-time system that
carries real-time control tasks whose failure can directly lead a life-threatening impact. Such systems
therefore have rigorous constraints about the temporal behaviors of tasks. Strictly speaking, this kind
of system belongs to the hard real-time systems. But, the time-utility function of safety-critical system
(Figure 2-3) shows its different characteristics from the common hard real-time system because of the
severe consequence after the time failure.

As Figure 2-3 shows, if a task in a safety-critical system finishes before the start time or after the
deadline, not only the whole system will lose all its utility, but also there will be actual damages
(negative utilities) occurring to the system. Therefore, in most of the safety-critical systems, special
concerns are taken to guarantee the time constraints in system, such as placing redundant hardware to
achieve fault tolerance.

Furthermore, the hard real-time tasks and the soft real-time tasks do not always contradict each other.
Sometimes, they can coexist in the same system. We call such a system a hybrid real-time system.
Normally, within a hybrid real-time system, the hard real-time tasks execute at higher priorities, while,
the soft real-time ones execute at lower priorities and make the best efforts on the rest of the resources
in the system.

 9

ut
ili

ty

time

start time deadline

dam
age

Figure 2-3 Time-utility function chart of safety-critical system[8]

2.1.2 Two approaches to the predictability

A natural question for the real-time application design domain is:

Can a single layer of the platform (such as an operating system or a real-time programming language
platform) bring the real-time performance for the entire system?

The answer is, it depends. The following descriptions about two ways of approaching predictability
may be able to answer this question more explicitly.

To achieve predictability of the system, there are primarily two different approaches: One is the layer-
by-layer approach (microscopic) and the other one is the top-layer approach (macroscopic) [9].

The layer-by-layer approach requires that, from the lowest layer to the highest layer, each layer of the
real-time system must be built to provide the predictability guarantees so that all the upper layers can
rely on it. In such a way, the predictability of the whole system can be proved a priori. The system
built by this approach can gain more deterministic time guarantee and hence behave more predictably.
This layer-by-layer approach is suitable for building hard real-time systems, especially the safety-
critical ones. However, if the target system is too sophisticated and complex, this approach may be
too complicated to apply.

The top-layer approach can then complement the layer-by-layer approach. It only considers the
behavior of the highest layer of the system and provides many mechanisms to prevent the missing of
the deadlines. This approach apparently has less complexity, but it normally cannot a priori guarantee
the real-time performance due to the unpredictable lower layers of the system. Therefore, the top-
layer approach is more suitable for building soft real-time applications on top of a complicated
system.

 10

Now we can get a clear answer for the question raised in the beginning of this subsection. An
individual tool or application, which is located at on the top of the system, may achieve the soft real-
time performance, but due to the lack of predictability in the rest layers of the system, such
environment cannot be used for the development of hard real-time applications. For doing the hard
real-time applications, all the layers in the system should all support the temporal guarantees to prove
the predictability of the overall system. This also indicates that, to build a hard real-time system, the
choices made on the hardware platform, operating system, language runtime environment (for
example, the Java virtual machine for the running of Java application) and real-time applications all
influence the final real-time performance of the system. In the case of a distributed real-time system,
special care also needs to be taken about the communication media’s predictability. In the later part of
this thesis, the layer-by-layer approach will be applied to analyze the predictability of the target
system.

2.2 Scheduling Analysis

Because of the particular concern about the timing behavior, real-time application development
requires a different software engineering method than those in the non-real-time software
development domains. In a real-time application’s development life cycle, the typical software
lifecycle phases are given more meanings and responsibilities. Timing constraints of a real-time
application must be taken good care of during all these phases of the development. From the
requirement specification to the architectural design, from the detailed design to the implementation,
the temporal issues should be considered and verified throughout the time. During the unit test phase
and the system integration phase, the temporal behavior of the system should be inspected and
verified more carefully. The result from these phases can be essential to prove the acceptability of the
whole system.

In addition to these typical phases, a special analysis phase, called real-time scheduling analysis, is
introduced into the real-time application lifecycle. The main purpose of this part of the work is to
analyze, test and verify the applicability of the real-time tasks a priori before the design. The
scheduling analysis work can greatly improve the reliability of the system and provide the theoretical
proof for the practical implementation. Therefore, it plays an essential role in the real-time application
development.

First, let us analyze the necessity of the real-time scheduling work by introducing a typical real-time
task scenario, which represents the common problem to deal with in the real-time application
development. Here we assume that these tasks are in a single processor environment, which indicates
that all the tasks share the same processor and therefore a mechanism must be provided for sharing
the execution time of this CPU among all the tasks.

 11

Figure 2-4 Real-time tasks scheduling problem

As shown in Figure 2-4, there are a few real-time tasks. Each of these tasks carries an amount of work
to complete and has a predefined deadline to keep up with. For example, real-time task1 has a task
release period of T1, a task deadline D1 and a task execution time of C1. In this specific scenario, the
period for each task can be constant or uncertain.

To classify the real-time tasks further, we introduce three terms in the real-time system domain,
which represent three different releasing behaviors. They are periodic, aperiodic and sporadic. The
tasks, which have constant periods of release time, we call them periodic tasks. For aperiodic and
sporadic tasks, both of them belong to the non-periodic tasks[10]. The differences between these two
types of non-periodic tasks can be described as follows: Aperiodic tasks are those whose task
invocation frequencies are unbounded, meaning that it is possible that, in a short period of time,
several releases of one aperiodic task occur simultaneously. Aperiodic tasks make it theoretically
inevitable that there may be more than one instance of the same task process coexisting in the system
at some time. Whereas, sporadic tasks are those that have a maximum release frequency (that is to
say, there exits a minimum interval between each two consequent releases of one sporadic task) such
that only one instance of a particular sporadic process can be active at a time.

Since we have a certain set of these real-time tasks, periodic or non-periodic, we have to somehow
manage the CPU time to share among these tasks, so that, any of these tasks’ deadlines won’t be
missed. Given the specific conditions of all these tasks, such as periods (for periodic ones), execution
times and deadlines, a scheduling method should be chosen to prove the possibility of running these
real-time tasks on the target platform before implementation, and try to obtain as much schedulability
and as less complexity as possible. For example, for the set of real-time tasks shown in Figure 2-4,
suppose real-time task1 is periodic and has a period of 100 milliseconds, its deadline and task
execution time respectively are 100 ms and 50 ms; real-time task2 is also periodic and has 50 ms
period, 40 ms deadline and 30 ms execution time. In such a case, a simple scheduling analysis can be
performed to prove the unfeasibility of this task set. Because, the total CPU utilization totalU should

 12

be not less than 1taskU (the expected utilization for task1)+ 2taskU (the expected utilization for task2),

which is
50 30

100 50
ms ms
ms ms

+ equals to 1.1; apparently, the CPU utilization in a single processor platform

cannot exceed 1.0. As we can see, such analysis can reject an inappropriate task set in advance,
without leaving the failure unchecked until the implementation, and thus can greatly help the whole
development process. Furthermore, a real-time system without being proved by scheduling analysis
can only rely on being verified by mass scale tests, which is certainly costly and can only provide
empirical probability statistics. All these reasons can clearly show the necessity and great benefits of
doing scheduling analysis in the real-time system development.

Based on the different task priority assignment strategy, the real-time scheduling methods can be
classified into two categories:

1. Fixed priority scheduling:

2. Dynamic priority scheduling

Furthermore, if we classify the scheduling methods once again by the preemptability of the under-
lying runtime environment, we thus get three more specific scheduling method categories (the method
of dynamic priority non-preemptive is seldom used):

1. Fixed priority non-preemptive scheduling

2. Fixed priority preemptive scheduling

3. Dynamic priority preemptive scheduling

For the first category of scheduling methods, within a fixed priority non-preemptive scheduling
environment, each real-time task has its own fixed priority that will not change at runtime; the feature
of non-preemptive requires that a task in the system, no matter whether its priority is higher or lower,
is never allowed to preempt another task that is running on the processor. This kind of scheduling
does not provide so much flexibility. If there is any demand to make the original task set expand after
the design or implementation, this will lead to a lot of redesign work and in the worst-case, the whole
net task set may have to be rescheduled again. Nevertheless, by applying such static scheduling, a
real-time system can achieve very high predictability. Therefore, it is most suitable in the device that
has limited computation ability and only handles a small set of real-time tasks with relatively simple
logic.

On the contrary, the dynamic priority preemptive scheduling allows the priorities of the tasks in the
system changing at runtime, and a task with higher priority can always preempt the lower priority
task, which is executed on the processor. The scheduling method of Earliest Deadline First
(abbreviated as EDF) belongs to this category. The general idea of this method is to check tasks’
deadlines at runtime and rearrange their priorities according to their deadline. The task with the
earliest or to say the most stringent deadline will get the highest priority, and therefore can preempt
other tasks to run first. Such scheduling method brings much flexibility and almost exists
independently with individual task sets. Moreover, such scheduling method can help the system
achieve very high CPU utilization. However, such flexible algorithm also induces a problem that the
runtime behaviors of the tasks are very difficult to adjust in case some exceptional purpose requires it.

 13

Also, the predictability provided by the dynamic priority preemptive scheduling is not so reliable as
the fixed-priority scheduling can provide.

The fixed priority preemptive scheduling lies in between the above two scheduling methods. The
priorities of tasks stay constant during the runtime, and once a higher priority task is ready to run, it
should always be able to preempt the executing lower priority tasks. Such scheduling method mixes
good features of the above two scheduling methods and can therefore build a reliable real-time system
with also sufficient flexibility.

Java, as an advanced object-oriented language, supports prioritized multithreads to be used in the user
applications, and provides a preemptive runtime environment for the multiple threads running in it.
Though the specification of the Java virtual machine does not explicitly oblige that the higher priority
thread should be more eligible to run than the lower ones, most of the real-time Java solutions today
implement their platform in this way. Therefore, among the above three scheduling methods, the most
suitable one that can be well adopted in real-time Java platforms is the preemptive fixed priority
scheduling. The following sections of this chapter will look into this scheduling theory more in detail.

2.3 Fixed priority Preemptive Scheduling Theory

In this section, first, some fixed priority preemptive scheduling knowledge basis will be introduced,
and then, some important improvements made by the mature rate-monotonic scheduling theory:
generalized rate-monotonic scheduling theory are presented; at last, the deadline-monotonic
scheduling is briefly introduced.

2.3.1 Background Knowledge: Liu and Layland’s Research in 1973

Early at 1973, Liu and Layland performed a successful research on the scheduling algorithms in the
hard real-time environment[11]. Some of their results became the basis of many scheduling theory
popularly used today, especially for the fixed priority preemptive scheduling domain, such as Rate
Monotonic Scheduling (RMS) and Deadline Monotonic Scheduling (DMS). In this section, let us first
examine some essential assumptions made in the beginning of their paper defining the problem
domain, and then introduce the interesting conclusions made and proved in their research.

Assumptions:

I. In a single processor, multiple real-time tasks are running in a preemptive way and share
the processor time. The time for the processor to switch between tasks can be neglected.

II. All tasks are periodic, which means each task has its own constant period to be invoked.

III. The deadline of each task is the same as that task’s period. That is to say, each task has to
be finished before the next release of it.

IV. All tasks are independent to one another, which means that a certain task does not depend
on the initialization or execution results of any other tasks.

V. The execution time for each task is constant, which means, the processor time needed by one
task to finish its job without interference will not change in any period.

 14

From the assumptions above, Liu and Layland drew and proved the following important Theorems
[11]:

Theorem 2-1 A critical instant for any task occurs whenever the task is requested simultaneously

with requests for all higher priority tasks.

This theorem is quite useful when analyzing multiple periodic tasks. It forms a simple and worst case
scenario, a so-called critical instant or a critical time zone, for the scheduling works to focus and
analyze on. If the task set is proved to be schedulable in this time zone, it can be concluded that this
task set can be scheduled in any other time period too.

Theorem 2-2 If a feasible fixed priority assignment exists for some task set, the rate-monotonic

priority is also feasible for that task set.

This theorem proves the optimality of rate-monotonic scheduling given the assumptions mentioned
previously.

Theorem 2-3 For a set of m tasks with fixed priority order, the least upper bound to processor

utilization is 1/(2 1)mU m= × − .

Note: here the processor utilization of a task set can be calculated as:
1

m
i

i i

C
U

T=

=� , where m denotes

the number of tasks, iC denotes the execution time of task i and iT denotes for the period of task i.

(One can refer to Liu and Layland’s paper for the detailed proof of this theorem).

From this theorem, we can easily get the following practical conclusions:

For two real-time tasks, the upper bound of processor utilization will be 1/ 22 (2 1)× − , which is 0.83.

For three tasks, the factor would be 0.78.

If the number of the tasks turns to be a large one, the upper bound processor utilization will be close
to 1/lim (2 1) ln 2m

m
m

→∞
× − = , which is about 0.69 in value.

In practice, a simple and efficient test can be deployed here to check the schedulability of a real-time
task set.

I. If the processor utilization factor U= iU� = i

i

C
T� > 1, the task set is not schedulable. A

new revised task set needs to be defined, or more powerful hardware platform is needed.

II. If the processor utilization factor U= iU� = i

i

C
T� < 0.69, this set of tasks is schedulable.

 15

III. If the processor utilization factor U= iU� = i

i

C
T� < 1/(2 1)mm× − where m denotes the

number of the tasks, this set of tasks is schedulable.

IV. If the utilization is greater than 1/(2 1)mm× − , an exact schedulability analysis is required to
find a specific, more precise solution.

Though this quick schedulability test is rather rough, it is still useful for classifying the schedulability
problems quickly.

The theorems founded by Liu and Layland are still not sufficient to solve many practical problems
because of the strict assumptions that are made in front. But the results drawn in their paper still
contributes a lot to the research in the hard real-time scheduling domain during the following thirty
years. Most of the later researchers build their theories based on these useful results. Later in this
chapter, some important improvements made for rate monotonic scheduling theory will be introduced.
These improvements make rate monotonic theory and its close relative, deadline monotonic theory
more and more mature in the scheduling analysis domain. Till now these two scheduling theories are
widely used in the fixed priority preemptive system to analyze and design hard real-time applications.

2.3.2 Exact Completion Time Analysis for RMA

In 1986, Joseph and Pandya [12] founded a way of making exact analysis of schedulability of a real-
time task set using fixed priority scheduling algorithm, and proved that this exact schedulability test is
both sufficient and necessary. The idea of this exact analysis can be described as below:

Given the same assumptions as described in 2.3.1, a real-time task set contains several tasks to be
scheduled. According to Liu and Layland’s research result about the critical time zone, first, a leading
theorem can be drawn as follows [13]:

Theorem 2-4 For a set of independent period tasks, if a task iτ meets its first deadline i iD T≤ ,

when all the higher priority tasks are started at the same time, then it will meet all its deadlines in

the future with any other task start times.

For a certain task iτ under its critical instant phasing, factor
1

()
i

i j
j i

t
W t C

T=

� �
= � �

� �
� describes the

cumulative time for this task, where iC denotes execution time of a task iτ , and iT denotes the

period of that task.

According to the above theorem, it is not difficult to find that, iτ will meet its deadline if ()iW t t= at

some time t, where 0 it D≤ ≤ . Equivalently, a task will meet its deadline if and only if there is a t,

0 it D≤ ≤ , at which
()

1iW t
t

≤ . The smallest t that satisfies this inequality is the worst-case

completion time of t in any of its execution period. So the following theorem can be summarized:

 16

Theorem 2-5 Let a periodic task set 1, 2 3... n,τ τ τ τ be given in priority order and scheduled by a

fixed priority-scheduling algorithm. If i iD T≤ , then iτ will meet all its deadlines under all task

phasing if and only if:

0
1

min 1
i

i
j

t D
j j

C t
t T≤ ≤ =

� �
≤� �

� �� �
�

The entire task set is schedulable under the worst-case phasing if and only if:

01
1

max min 1
i

i
j

t Di n
j j

C t
t T≤ ≤≤ ≤ =

� �
≤� �

� �� �
�

To compute and test using this theorem, one can simply create a sequence of times 0 1 2, , ...S S S where

0
1

i

j
j

S C
=

=� , 1 ()n i nS W S+ = . If for the first n, 1n n iS S D+= ≤ , then iτ is schedulable, and nS is the

worst-case completion time. If the tests show that, none of nS can be found to fulfill the condition

1n n iS S D+= ≤ , task iτ is not schedulable. This is what we often call a completion time test.

An example is put here to explain this completion time test method more clearly.

Real-time Task Execution Time: C Task Period: T

A 10ms 30ms

B 10ms 40ms

C 12ms 52ms

Table 2-1 Exact completion time test example

Given a set of real-time tasks A, B and C. Their execution time and task period can be found in Table
2-1.

According to the rate-monotonic scheduling rules, the priorities of tasks A, B and C are set in a
descending order because of their ascending periods. Thus, we have: A B cP P P> > .

Let us use the disciplines drawn from Liu and Layland’s paper to do the preliminary schedulability
test:

a b cU U U U= + + = 10/30 + 10/40 + 12/52 = 0.33 + 0.20 + 0.23 = 0.81 < 1

 According to Theorem 2-3, when m= 3, the least upper bound processor utilization is 0.78 < 0.81. So
we need a more exact analysis to check the schedulability of this task set.

 17

For task A: 0aS = 10, 1aS = (10)aW = 10 = 0aS . So, task A is schedulable.

For task B: 0bS = 10 + 10 = 20; 1bS = (20)bW = 10 + 10 = 20 = 0bS . So, task B is also schedulable.

For task C:

0 110 10 12 32; (32) 2 10 10 12 42;c c cS S W= + + = = = × + + =

2 (42) 2 10 2 10 12 52;c cS W= = × + × + =

3 2(52) 2 10 2 10 12 52c c cS W S= = × + × + = = .

That is to say, at the worst case, task C will meet its deadline exactly by the end of its period. So, task
C is schedulable too. Consequently, the whole set is proved schedulable.

2.3.3 Generalized Rate Monotonic Scheduling Theory

To relax the restrictions and limitations in Liu and Layland’s research and bridge the gap between
rate monotonic theory and the industrial development. Sha and Rajkumar founded the Generalized
Rate Monotonic Scheduling theory (GRMS) and fixed an amount of practical problems[13].

2.3.3.1 Task Synchronization Problem and Solutions

First, according to the assumption IV made in Liu and Layland’s research (2.3.1), tasks should be
independent and never interact with each other. But for practical uses, this condition can hardly be
fulfilled. So, GRMS puts the task synchronization issues into discussion.

First of all, to keep the consistency of the system, a mutual exclusion mechanism must be provided,
such as semaphores, locks, monitors and so on.

For any of the mechanisms mentioned above, the priority inversion problem is inevitable. Once the
priority inversion problem exists, the bounded execution time of a task involved in synchronization
cannot be estimated or is too pessimistic to analyze the schedulability. To settle this problem down,
two approaches were raised in GRMS: the priority inheritance protocol and the priority ceiling
protocol[14]. In these two protocols, the priority ceiling protocol is derived from the priority
inheritance protocol and provides several advantages in comparison to it. We will introduce the ideas
behind these two approaches and compare their similarities and differences. Additionally, the reason
why we pay so much attention to these two mechanisms is that, some existing real-time Java
solutions claimed that, they had priority inversion mechanism supported in their system to prevent
priority inversion, while, some of others support priority ceiling for the same purpose. To better
evaluate these real-time Java solutions, this thesis will analyze these two protocols more in detail in
order to attain a deeper understanding of them.

Priority Inheritance Protocol

The following criteria define the priority inheritance protocol:

 18

1. The mutual exclusion resource is guarded by a binary semaphore1 in order to keep the system’s
consistency. The semaphore has two states: locked and unlocked. When no task accesses the
resource, the semaphore is in an unlocked state. If one task gets the lock and accesses the
resource, the semaphore will be set in the locked state. Meanwhile, if there is another task
applying for the access of the same resource, it has to be blocked and wait in the queue for that
semaphore. The queue is organized in a prioritized way so that the task that has the highest
priority will be invoked first after the semaphore is unlocked. Tasks with the same priority will
be invoked in a First Come First Serve way (FCFS).

2. The priority of task T will be raised if a lock it holds blocks another task with a higher priority.
Task T will then be given a higher priority, which is the same with the blocked task (This is why
we call it a priority inheritance protocol). The temporary priority raised period will be from the
time the higher priority task is blocked until task T finishes its access to the mutual resource (The
period of accessing the mutual resource is also called the critical section of this task to that
mutual resource). After the priority inheritance period, the task’s priority will fall back to its
original value.

3. Priority inheritance is transitive. For example, suppose that tasks T1, T2 and T3 respectively
have the higher, medium and lower priority. If T3 blocks T2, and T2 blocks T1, T3 will inherit
the priority of T1 via T2.

4. The operations of priority inheritance and resumption must be indivisible to keep the consistence
of the runtime system.

Now let us look at the priority inversion scenario mentioned in the first chapter in the priority
inheritance mechanism.

Three tasks H, M, L respectively has the higher, medium and lower priority. Task L applies to access
a mutual resource first, since no previous task is accessing the resource at the time, the semaphore on
this resource is still unlocked. So L is given the lock and starts to access the resource. Before L
finishes its work in its critical section, task H is invoked and starts to run. It preempts L from running
because of the higher priority it has. After H runs for a while, it also applies to access the same
mutual resource that L accessed. Because L still holds the lock, task H is blocked and yields the
processor. According to the priority inheritance protocol, task L’s priority is raised to the same
priority with H, and L goes on its work in its critical section. Meanwhile, task M is invoked and starts
to run. Since its priority is less than the temporary priority that L has, it has to wait L to finish its
work on the mutual resource. After L finishes the resource access, it gives up the lock and returns to
its original priority, and at the same time, task H is awakened from the queue of the resource. It then
preempts L, locks the semaphore and works on the resource. After H finishes its work, task M runs
and finishes its work. At last, task L awakes again and finishes at the end.

As we can see here, priority inversion is effectively prevented by the priority inheritance protocol.
But two problems still remain in the system using the priority inheritance mechanism.

1 We just choose semaphore as a sample mutual exclusion mechanism; in practice, this can also be monitor, rendezvous or

any other effective mutual exclusion mechanism.

 19

First, the priority inheritance protocol cannot prevent the deadlocks. For example, if task T1 and T2
both need to access mutual exclusion resource S1 and S2, and T1’s operation order is: lock S1, lock
S2, release S2, release S1, while T2’s operation order is: lock S2, lock S1, release S1, release S2. We
can easily prove that a scenario can possibly occur where T1 holds the lock of S1 and T2 holds the
lock of S2, and both of them wait for the other resource and they are both blocked. A deadlock is then
formed.

Though the problem of deadlock can be solved by, for example, imposing a rule of totally ordering
resource accesses. Still, a second problem exists. That is, a chain of blocking can be formed. For
instance, tasks H, M, L still represent the tasks with descending priorities. H needs to access resources
S1 and S2. But before it starts, task L grasped the lock of S1 and was preempted by M, which entered
a bit later and got the lock of S2. If H is invoked at this time, it has to wait for L’s critical section on
S1 and M’s on S2 after that. Priority inheritance cannot help in this case. Thus, a blocking chain is
formed.

Priority Ceiling Protocol

To solve the two problems existing in priority inheritance systems, the priority ceiling protocol is thus
invented. The general idea about this protocol is to ensure that when a task T preempts the critical
sections of other tasks and wants to enter its own critical section, it has to have a higher priority than
the priority ceilings of all the preempted critical sections to get the permission. The priority ceiling of
a mutual resource denotes the priority of the highest priority task that may use the resource. Within
the priority ceiling protocol, a task T is allowed to start a critical section only if T’s priority is higher
than all priority ceilings of all the mutual resources locked by other tasks, otherwise, it will be
blocked and wait in the queue of the resource it applied for, and the preempted tasks that cause the
block of T will inherit T’s priority.

It is easy to prove that the priority-ceiling protocol can also prevent the priority inversion. Now we
will examine how the priority-ceiling protocol prevents the deadlocks and also avoids the blocking
chain problems.

For the deadlock problem, we use the example that described the situation. We assume that the
priority of task T1 P1 is greater than that of task T2 P2, and for resources S1 and S2, no tasks other
than T1 and T2 will use them. So they both have a priority ceiling of P1. Suppose that T2 starts first
and applies to lock S2, since there is no other critical section existing at the moment, T2 gets the lock
of S2 and executes its operations inside its critical section for S2. T1 then starts to run and preempts
T2, when the time T1 needs for the lock of S1, priority ceiling protocol will compare the priority of
T1 (P1) with the priority ceiling of the preempted locked resource S2, which is also P1. Because the
priority of T1 is no higher than P1, T1 is thus blocked and T2 inherits the priority of T1 and continues
its operations in the critical section. After T2 finishes accessing S2, S1 and unlocks them, its priority
falls back to original so that T1 will get back to run. As we can see, deadlock is successfully
prevented by the priority ceiling protocol.

 20

Figure 2-5 Example to show how priority ceiling protocol solve the blocking chain problem

Figure (a) shows the problem in priority inheritance protocol; Figure (b) shows how the same

circumstance under priority ceiling protocol

For the blocking chain problem, consider the previously mentioned example. In that case, the priority
ceiling protocol comes into play when task M enters and tries to lock S2. Since S1 has been locked by
task L, and S1’s priority ceiling will be the priority of H, which is higher than M’s priority, thus M
will be blocked and L will inherit its medial priority. When task H starts and asks for the lock of S1, it

 21

just needs to wait for one critical section of task L in S1, and then it can get the resources it needs to
run on. Figure 2-5 describes more clearly how priority-ceiling protocol solves the blocking chain
problem. For a more strict proof of these properties of priority ceiling protocol, one can refer to the
published paper[14]

After the introduction to the two protocols, we will now turn back to the scheduling analysis and
discuss the schedulability issues after the synchronization among tasks is considered. Differences of
priority inheritance protocol and priority ceiling protocol will be shown in this section.

According to the results of Sha, Rajkumar and Lehoczky’s study on priority inheritance and priority
ceiling protocols[14], these two protocols have been proved to have the following scheduling
properties.

Theorem 2-6 Under the priority inheritance protocol, give a task T0 for which there are n lower

priority tasks {T1, T2… Tn}, task T0 can be blocked for at most the duration of one critical section

in each of the blocking sets 0,iβ (where 0,iβ refers to the set of the longest critical sections of Ti

that can block T0)

Theorem 2-7 Under the priority inheritance protocol, if there are m semaphores which can block

task T, T can be blocked by at most m times.

Given the above two theorems, a worst-case blocking duration for one task can be calculated. For
example, if there are four semaphores that can potentially block task T and three lower priority tasks,
T can be blocked for a maximum duration of three longest critical sections of the three lower priority
tasks.

Theorem 2-8 Under the priority ceiling protocol, a task Ti can be blocked for at most the duration

of one element of Betai (where Betai refers to the sets of the longest critical sections that can block

Ti)

As we can see, the worst-case blocking time of a task under the priority ceiling protocol can also be
calculated, and the bound time is well optimized rather than the pessimistic result calculated under the
priority inheritance protocol.

Given the above theorems, the following extended theorems for Rate Monotonic Scheduling theory
can be drawn.

Theorem 2-9 A set of n periodic tasks using the priority ceiling protocol can be scheduled by the

rate-monotonic algorithm if the following conditions are satisfied:

,1 ,i i n∀ ≤ ≤
1/31 2

1 2 3

... (2 1)ii i

i i

C C BC C
i

T T T T T
+ + + + ≤ −

 22

Theorem 2-10 A set of n periodic tasks using the priority ceiling protocol can be scheduled by the

rate-monotonic algorithm for all tasks phases if

,1 ,i i n∀ ≤ ≤

1

(,)
min 1

i
j k i

jk l Ri
j k j k k

T lT BCi
U

lT T lT lT

−

∈

� �� �
+ + ≤� �� �

� �� �� �� �
�

In both of the above theorems, iC and iT denote the execution time and task period of task iτ . iU is

the utilization of task iτ . iB is the worst case blocking time for iτ , and

{ }(,) |1 , 1,...., /i i kR k l k i l T T= ≤ ≤ = � �� � .

Theorem 2-10 can also be described in a more convenient way by importing a parameter iW . iW here

denotes the window (time interval) starting from the release of task iτ , which we attempt to insert the

computation time of tasks into. A formula for iW can be set up:

1

()

n
n i

i i i j
j hp i j

W
W B C C

T
+

∈

� �
= + + � �

� �� �
� (2.1)

Thus, a similar exact completion time test as illuminated in 2.3.2 can be used here too.

2.3.3.2 Aperiodic and Sporadic Events Handling

After the task synchronization issues considered, GRMS also addresses another restriction in the
assumptions in Liu and Layland’s research. That is, how to handle the aperiodic and sporadic tasks as
well as the periodic tasks.

There are several algorithms proposed for solving the above problems. Each of them has their own
advantages and drawbacks. A brief overview on these algorithms will be presented here.

Two common and relatively simple approaches among them were proposed in the early stages. They
are background processing and polling tasks. The idea behind the background processing approach is
that the arrived aperiodic events will be pending in the system queue until the processor gets idle time
after executing periodic tasks. While the polling strategy is to construct a periodic task, which keeps
polling aperiodic events in a fixed rate; when the polling task comes into execution and there are no
pending aperiodic tasks pending, it will yield its execution time to the other periodic tasks and
suspend until the next period. These two strategies are simple to implement, but their drawbacks are
evident. The background processing approach won’t have any guarantees on the aperiodic events
being served in time when the utilization of processor is high, and the polling approach will give a
long average response time if its period is set long; if its period is set too short, it will be a waste of
execution time. Therefore, these two approaches are only suitable to serve for the aperiodic or
sporadic events which are soft real-time or do not have any time constraints at all.

 23

To cater for the demand of serving hard real-time aperiodic and sporadic events, later on, three
recommendable approaches were raised: priority exchange server, deferrable server and sporadic
server. The main idea of the first two approaches is to preserve an amount of processor time for
aperiodic events handling and replenish this execution time periodically. Their difference lies on the
priority assignment for the handling server. For the priority exchange server, as its name indicates, it
will exchange its priority with the coming periodic task if there are no aperiodic events coming. In an
extreme case, the priority of a priority exchange server will decrease from the highest priority it has to
the bottom priority when there is no event arriving within the whole period. For the deferrable server,
it keeps its high priority throughout the time. Once an aperiodic event arrives, it will be served as a
high priority task and could possibly preempt the current periodic task.

The sporadic server approach, raised by Sha et al in 1989[15], gives a more sophisticated strategy
with special concern about the possible burst releases situation of the aperiodic events (several
aperiodic tasks arrive simultaneously). The main idea in this approach is that, a high priority task for
servicing aperiodic tasks is created, and the sporadic server preserves its server execution time at its
high priority level until an aperiodic request occurs. The server replenishes its execution time after
some or all of the execution time is consumed by aperiodic task execution.

However, none of these three approaches can guarantee the deadlines of aperiodic events, since
theoretically there can a particular time period when an arbitrarily large amount of events arrive and
cause the execution time insufficient to meet all of their deadlines. But in case of sporadic events,
there is always a minimum interval between two events’ arrival, the schedulability could therefore be
analyzed in a worst-case to guarantee their deadlines being met. It has been proved that a periodic
task set that is schedulable with a task, T, is also schedulable if T is replaced by a sporadic server with
the same period and execution time. For more details about the sporadic server such as performance
and implementation issues, one can refer to the doctoral thesis of Brinkley Sprunt[16].

2.3.3.3 Earlier deadline issue in rate monotonic theory

According to the assumption III that made in Liu and Layland’s paper (2.3.1), the deadline of a
periodic task should always be the same with its period. However in the practical point of view, this
assumption can be hardly fulfilled in the development in real world. Quite a few realistic tasks
demand a shorter deadline than their release periods. Though, to address this problem, deadline
monotonic scheduling analysis is more eligible, there is still a different approach to fit this situation
into the rate monotonic scheduling analysis theory. Let us give a glimpse of this approach and look
into the deadline monotonic theory in the next section.

Suppose that a task t’s deadline D is before the end of its period T. Let E=T-D. That is, the task t has
a deadline earlier than E. We can consider this in another way that the task has an end of the period
deadline but has an extra blocking time by lower priority tasks for a duration of E. So the effect can
be modeled as if task t’s utilization is increased by E/T. Combining the theorem 4, a following
theorem can be drawn:

Theorem 2-11 A set of n periodic tasks scheduled by the rate-monotonic algorithm will always meet

its deadlines, for all task phases, if:

 24

1/1 2

1 2

,1 , (2 1)ii i i

i

C B EC C
i i n i

T T T
+ +∀ ≤ ≤ + + + ≤ −� (2.2)

The completion time test introduced in the earlier sections can be extended here to add parameter E
into the formula and get a more accurate schedulability test.

2.3.4 Deadline monotonic scheduling theory

In practical industrial real-time systems, some tasks in the system can possibly have such
characteristics: the deadline of the task is less than its period. For the reason that rate monotonic
scheduling theory always demands the period of a task to be equal to its period, so RMS is not
suitable any more in this case. A similar scheduling theory, deadline monotonic scheduling theory
was then proposed by Leung in 1982[17]. The main idea of this theory is that the priorities of tasks
can be assigned according to their deadlines instead of their periods; the task that has a shorter
deadline will be assigned a higher priority. Particularly, when the all tasks’ deadlines are equal to
their periods, the deadline monotonic scheduling will have the same effect as the rate monotonic
scheduling.

The closeness in concepts between RMS and DMS makes their properties and analysis methods quite
similar. So in this section, we only bring some interesting improved results given in Deadline
Monotonic scheduling theory.

First of all, for the deadline monotonic scheduling theory, Theorem 2-1 drawn from RMS in the
previous section about critical instance can be also adopted here. In fact, the theorem is applicable to
any fixed priority preemptive scheduling theory. And for Theorem 2-2, it can also be proved that if a
feasible priority assignment exists for some task set, the deadline monotonic priority assignment is
feasible for that task set.

Similar to the exact analysis in RMS, deadline monotonic scheduling also has a sufficient and
necessary schedulability test. And it can be described as a practical algorithm written in pseudo-code
below (the algorithm did not put the blocking factor into consideration):

 25

Algorithm 2-1 Schedulability algorithm in Deadline-Monotonic Scheduling[10]

where

1

1

y
x
y z

z z

x
I C

T

−

=

� �
= � �

� �
�

In addition, the algorithm defined above can also be used to guarantee the deadline of any sporadic
events in the system. Since every sporadic event should have a minimum interval between two
releases, so, in a worst-case, one sporadic handler can be taken as a periodic task with the period
equal to the minimum interval. The priority of a handler can be assigned according to the deadline of
the corresponding sporadic event. Therefore, even without the aid of a sporadic server, the sporadic
events with hard deadline still can be scheduled using deadline monotonic scheduling.

 26

2.4 Practical Concerns about Fixed Priority Preemptive Scheduling

Besides the issues of task synchronization, non-periodic events handling and shorter deadline than
period mentioned in the previous sections, there are still many practical issues not addressed in
practice. It seems that the gap between scheduling analysis and development work in the real world is
still large.

As the general theoretical background introduced in the previous sections, this section will do more
analysis on the practical issues of priority preemptive scheduling, and take them into consideration
when scheduling tasks, so that the theoretical analysis work of this thesis could help and conduct the
rest of the thesis.

PLATFORM REQUIREMENTS

The implementation of preemptive priority based scheduling raises a set of explicit demands to the
underlying runtime environment.

1) The runtime environment should provide a preemptive multi-tasks scheduling mechanism with a
sufficient range of priorities.

A sufficient range of priorities here means that the range of priorities in a specific platform should be
well enough to fulfill the requirements of most real-time applications running on it. For instance,
POSIX OS standard demands its implementations to have 65 unique priorities: 0 to 64; While, in real-
time specification of Java, the scheduler is required to have 28 unique levels of priority.

2) The context switch overhead must be bounded

In practice, multiple tasks in a single processor will be scheduled in different queues so that they can
get the processor time for running according to the corresponding scheduling algorithm. The time
overhead to move one task from one queue to another, for example from the delay queue to the run
queue, cannot be neglected. Though, this overhead is always related to the number of the tasks in
queues, as a real-time application platform the underlying system should have a way of predicting the
time cost for context switch before runtime. Thus, during the scheduling analysis the worst-case
context switch time can be taken into calculation and help to get the realistic result.

3) Predictable tick driven scheduler overhead

The most common strategy of proving timing behavior of both periodic tasks and non-periodic tasks
is to use a tick driven background scheduler, which is in charge of invoking periodic tasks and polling
non-periodic events. The execution time for one operation of such a scheduler can be trivial, but
considering its constant behavior, this overhead should be counted in the scheduling analysis as well.
Hence, the overhead caused by tick driven scheduler should be predictable.

In summary, the key attributes of the underlying platform are summarized and listed in the following
Table 2-2:

 27

Notation Description
P
swC Cost of context switch away from a periodic task - may be a function of maximum

size of delay queue

R
swC Cost of context switch to a task currently in the run queue

CLKC Clock interrupt handler cost (no tasks being moved)

CLKT Clock interrupt handler period

PERC Cost of moving one task from the delay queue to the run queue

S
swC Cost of context switch away from a sporadic task – when it suspends waiting for its

next release

SPC Cost of releasing a sporadic task (i.e. putting it on the run queue)

INTC Cost of an interrupt handler that just releases a sporadic task

Table 2-2 Key attributes of the real-time platform

Suppose that the above parameters in the platform can be predicted or calculated by some means. The
next step of work will be applying these parameters into the rate monotonic scheduling formula we
got in the previous sections.

CONTEXT SWITCH OVERHEAD

After examining the behavior of each task from its invocation to its suspension, we find that two
context switches are involved. One is to move a task from the delay queue to the run queue and
activate it, and the other is to move the task away from the run queue back to the delay queue. Thus,
we can modify the formula (2.1) into:

1

()

()
n

n P R P Ri
i i i sw sw j sw sw

j hp i j

W
W B C C C C C C

T
+

∈

� �
= + + + + + +� �

� �� �
� (2.3)

TICK DRIVEN SCHEDULER OVERHEAD

In a tick driven scheduler, the scheduler acts as a periodic task with a constant period tickT . We use

tickC to denote the bounded execution time of each period tickT . Then to add tick overhead into

scheduling analysis, we can extend the formula 2.1 into:

1

()

()
n n

n p r p ri i
i i i sw sw j sw sw CLK

j hp i j CLK

W W
W B C C C C C C C

T T
+

∈

� � � �
= + + + + + + +� � � �

� � � �� �
� (2.4)

 28

For the realistic requirement of the real-time applications, there are some other variations of the
scheduling formula. We concluded them as follows:

RELEASE JITTER CONCERN

One periodic task is considered to have exact constant period all along in the above analysis.
However in practice, this is not always true. The invocation of a periodic task can be delayed by the
tick driven timer or the handling overhead of a periodic event, we say that this task suffers from a
release jitter. During the design of the real-time application, the release jitter overhead must be
considered and kept in a bounded time. Let iJ represent the worst-case release jitter suffered by task

iτ . iR represents the response time for task iτ . We can get:

TRUEi i iR R J= +

Considering a release jitter can practically make the time between two releases of one task narrower
than its real period, we can get such a variation of formula 2.2:

1

()

n
n i i

i i i j
j hp i j

W J
W B C C

T
+

∈

� �+= + + � �
� �� �

� (2.5)

ARBITRARY DEADLINES

In case that the deadline of a task is greater than its period, none of the previous discussion can handle
this situation. Since when deadline is less than (or equal) to the period, it is only necessary to consider
a single release of each task: the critical instant, when all higher priority tasks are released at the same
time. But when deadline is greater, more releases other than one must be considered. We assume that
the release of a task will be delayed until any previous releases of the same task have completed. For
each potentially overlapping release we define a separate window W(q), where q is just an integer
identifying a particular window (i.e. q =0,1,2, . . .). Hence, we get the following formula on W(q):

1

()

()
() (1)

n
n i

i i i j
j hp i j

W q
W q q C B C

T
+

∈

� �
= + + + � �

� �� �
� (2.6)

Other practical issues such as inconstant computation time, multi-deadline tasks, internal deadlines,
offsets and phases execution, one can refer to Alan Burns research in 1994[18].

2.5 Other Important Issues in Real-time System Design

In this section, we will consider more issues that are also important for the real-time system design
other than the scheduling analysis. First, some remarks on the hardware architecture issues will be
brought out; and then the programming language concern in the real-time system development will be
discussed; the last part of this section will be the analysis on how to estimate the worst-case execution
time in a high-level programming language[9].

 29

2.5.1 Hardware Architectures in Real-time System

Within a common computer system, the hardware architecture is usually optimized for a high
utilization in the average case. But, this conventional situation just contradicts with the criterion of
the real-time system scheduling, which mainly puts more emphasis on the worst-case execution time
analysis. The optimization techniques used in the conventional hardware architecture, which can
influence the real-time system design, include parallel processing (pipelining), caching and direct
memory access (DMA) etc. With such technologies used in the underlying hardware platform, the
temporal behavior of the upper system will be very hard to predict or can only be estimated over-
pessimistically[9].

Pipelining Impact

To improve the throughput of a processor, many modern computer architectures adopt the pipelining
technology, which pipes the machine instructions to achieve executing them on processors in parallel.
Using the pipelining technique can greatly improve the processor average performance. However, for
the well-known breaking problem within pipelining technology caused by branch instructions, the
worst-case execution time of such a hardware platform is very pessimistic. To approach more exact
estimation of the worst-case execution time in a pipelined hardware platform, special analysis tools
containing the detailed knowledge of underlying hardware architecture must be provided. However,
such tools can hardly be found for most of the industrial products.

Cache Impact

Fetching data from the off-processor sources normally represents the performance bottleneck in the
hardware architecture. Therefore, the cache technology was introduced to reduce such operations.
However, to what degree caching can improve the overall performance during a specific period of
time largely depends on the cache-hit percentage of that period. So, to estimate the worst-case
execution time more accurately, a complex analyzing tool, which is able to emulate the cache
behavior, is required.

Direct Memory Access Impact

Direct Memory Access (DMA) technology was invented to release the central processor from the
burden of handling mass memory manipulations. But in case that DMA controller can operate in a
cycle stealing mode or a burst mode, it induces much unpredictability into the system. In practice,
such impacts must be considered and put into estimation for the worst case execution time.

All the above discussions indicate that the technologies used in modern hardware architecture bring
many difficulties into the real-time system design domain. They make the system’s temporal behavior
very hard or even impossible to predict. Therefore, in order to successfully design and implement
real-time systems, especially the hard real-time ones, choosing and analyzing the hardware
architecture of the underlying platform are absolutely necessary.

 30

2.5.2 Programming Language Issues in Real-time System Design

Normally, a high level programming language used in the real-time system development domain
should fulfill the requirements below (as discussed in [9]):

��It should provide deterministic temporal behavior of programs.

��It should support strong type checking, exception handling and thus provide a secure and reliable
runtime environment for the programs.

��It should support multiprogramming and provide effective mechanism for task synchronization.

��It should support good hardware access; especially, the ability to access the peripheral device
drivers is essential to the real-time system implementation.

��It should support large-scale real-time application development.

��The programs written in it should be convenient to maintain.

The high level programming languages that are currently used in practice include implementation
languages such as C/C++ and real-time languages such as ADA and PEARL.

The Java language fulfills most of the above requirements except for the first one and fourth one. To
cater for the first requirement, many unpredictable features of Java, as mentioned in Chapter 1, must
be addressed; and for the fourth requirement, JNI seems to be a way of solving this problem, but how
well JNI is integrated in a specific real-time Java solution will still take effect on the Java language’s
ability of accessing low level hardware devices.

2.5.3 Worst-case Execution Time Analysis for High Level languages

As we mentioned earlier in this chapter, the scheduling analysis needs to know the execution times of
the programs a priori. Such a requirement demands the real-time developers to deploy a worst-case
execution time analysis for their programs in early stages of the development cycle.

There are some certain rules to analyze the worst-case execution time for a high level language[9].

First, the source code of the high level language should be parsed into basic temporal units such as
straight-line code blocks, condition sentence, loops and method invocation and return etc. The
temporal behaviors of these basic units should be analyzed and estimated. If possible, the assembly
language or machine code representation of these basic units should be calculated to get more
accurate results.

Second, each of the condition blocks and loop blocks are calculated in such a way: a condition
block’s worst-case execution time is equal to the longer branch; a loop block’s worst-case execution
time is equal to the execution time of the loop body multiplied by the maximal number of iterations.

At last, the nested structures in the compiled source code should be searched recursively until the
innermost basic unit level is reached. Thus, the execution time of all the function blocks including the
outermost one is then obtained.

 31

In case of Java, for the first phase, some special issues should be paid more attention to, such as
memory allocation, dynamic loading etc. As for the third phase, more concern about thread
manipulation should be considered, such as thread startup time, thread context-switch time and so on.

 32

Chapter 3 Overview of Automotive System Technologies

A vast increase in automotive electronic systems, coupled with related demands on power and design,
has created an array of new engineering opportunities and challenges

-Gabriel Leen & Donal Heffernan

As being investigated and analyzed by Gabriel Leen and Donal Heffernan[19], there is a rapid growth
of electronic systems inside the vehicle systems, which replace more and more traditional in-car
components from mechanical units into electrical ones. In current BMW 7 series, there are more than
sixty Electrical Control Units (often abbreviated as ECU), which are connected by five different types
of buses (shown in Figure 3-1).

Figure 3-1 Current BMW 7 series on-board supply system structure. Boxes are ECUs[20]

Even for some critical units like anti-lock brake system (ABS), engine management system, are now
being created using modern electronic, computer and communication technologies. On the other hand,
such rapidly growing demands also make the software design tasks much more complicated than
before. One of the challenges is to build more and more sophisticated hard real-time (sometimes
safety-critical) software in the vehicle.

 33

In section 3.1, the typical in-vehicle network architecture will be briefly introduced.

In section 3.2, we will present a typical real-time operating system (RTOS), OSEK, which is widely
used on the powerful ECUs carrying real-time tasks. Both the advantages and the shortcomings of
this RTOS will be discussed.

In section 3.3, the Control Area Network (CAN) bus system will be inspected, because the CAN bus
has been widely used to build the in-car real-time communication network, and it is also chosen to be
the underlying bus system for the sample automotive application developed in this thesis.

In the last section of this chapter, some of the latest technologies and concepts, which may be brought
into the future automotive systems will be briefly prospected.

3.1 Typical In-Vehicle Network Architecture

The typical architecture of the ECU network inside the vehicle can be shown in Figure 3-2, an
amount of distributed ECU being connected by several specific types of buses. First, the processor
speeds of the ECUs vary a lot depending on their functionalities, ranging from several kilohertz up to
several hundred million Hertz. The bus systems are also chosen based on the functionality
requirements and the various bus properties, such as the bandwidths or the real-time features etc.

Figure 3-2: Typical Electrical Control Unit network architecture[19]

In such a distributed in-vehicle network, the gateway ECU, which acts as a central ECU that connects
different buses, normally takes on more important tasks.

 34

The typical tasks that are carried by the gateway ECU contains:

��Collecting data received from buses, which are detected by the sensor and sent by the end node
ECU;

�� Inspecting the status of each end ECU on the bus; make the appropriate reaction according to
their changes;

��Exchanging data between two bus systems, sometimes even more than two bus systems are
connected to the gateway ECU and take part in the message exchanges.

�� Sending messages to the end ECU if necessary, in order to adjust the behaviors of some in-car
components.

Therefore, the gateway ECU plays an essential role in the automotive system. Both of the hardware
platform and the software architecture should be carefully chosen.

3.2 Typical Real-time Operating System in Automotive system: OSEK

As mentioned in the previous section, some ECU in the vehicle takes more complicated tasks and
therefore has more powerful hardware support. To ease the software development on such ECUs,
especially some hard real-time tasks, a Real-Time Operating System (RTOS) normally will be
installed to provide more convenient development interfaces and real-time support. One typical RTOS
product, which is widely used in the market today, is OSEK [21] (an abbreviation of a German term
with the meaning “Open Systems and the Corresponding Interfaces for Automotive Electronics”).

Figure 3-3: OSEK OS Overview[21]

Two specifications and one language compose the OSEK system, where OSEK OS is the operating
system specification; OSEK COM is the communication specification, and the OSEK Implementation
Language (OIL) is a modeling language for describing the configuration of an OSEK application and
operating system. Both of OSEK OS and OSEK COM provide application program interface (API)
standards for automotive real-time application development.

 35

An overview of architecture of OSEK OS can be shown in Figure 3-3:

An OSEK COM’s layer model is presented in Figure 3-4 to show conceptual model of OSEK COM
and its positioning within the OSEK architecture.

Figure 3-4 OSEK COM's layer model[21]

In an OSEK OS, eight kinds of services are provided, they are:

1) Task management and Scheduler: controlling tasks such as activating or terminating a task;
providing scheduler for the tasks. The scheduler in OSEK is priority based and event-driven. The
preemptability of the scheduler is configurable.

2) ISR (Interrupt Service Routine) management: providing the possibilities to use service calls in
ISRs. ISRs always have higher priorities than tasks in the application.

3) Resource management: using priority ceiling protocol to synchronize system resources, which are
shared among tasks.

4) Counters: keeping the number of the ticks elapsed, providing the time basis for the alarm.

5) Alarms: controlling tasks according to the timer (triggered by counters). Thus, counters and
alarms together provide the time dependent services, whereas the rest of the services are all event-
driven.

6) Events: serving as a task signaling mechanism; serving for tasks suspending and waking during
the synchronization

 36

7) Communication: providing services including sending and receiving messages between tasks.
Messages can be queued or not queued (This part of the services needs to refer to the CPU
internal communication in the COM standard)

8) Error Handling and hook routines: providing a mechanism with system callback routines to
handle the errors that might occur in a program; providing routines for initialization or debugging.

The main features of the OSEK system can be summarized as follows:

��OSEK is a static operating system which has no dynamic handling of system resources

��Generates kernel individually for every single application

��Does not have dynamic memory management nor any kind of IO services

��Configuration is part of the application development

�� Provides several strategies to set up a real time environment, such as

o Prioritized Tasks;

o ISR based event mechanism and messaging service

o Counters and alarms for timing

o Mutual exclusion guaranteed resource management…etc

OSEK is a highly concise real-time operating system with limited services provided. All the
development work should be written in C so that some low level delicate tasks could be done. So the
developers still have to face the hardware driver, task switch logics and a lot of memory management
work. All these works are very low-level and error-prone, and will consequently decrease the
productivity of the whole development process.

Nowadays, many new concepts and technologies, such as OSGi framework [22], have emerged to
help automotive system developer’s build more complex applications. Such tendencies has brought
prospects as well as challenges into this area, that the in-car ECU need to have a platform with
support of at least one advanced and powerful OO language, and support of distributed application
development in order to build more complicated automotive applications with more efficiency.

3.3 Control Area Network (CAN) in Automotive Systems

CAN is a serial communication protocol which supports distributed real-time control systems and
provides a high level of security[23].

It has the following distinguished properties, which make CAN an ideal candidate for building in-car
real-time communication systems.

�� Prioritization of messages

��Guarantee of latency times

��Configuration flexibility

 37

��Multicast reception with time synchronization

�� System wide data consistency

��Multi-master

��Error detection and signaling

��Automatic retransmission of corrupted messages as soon as the bus is idle again

��Distinction between temporary errors and permanent failures of nodes and autonomous switching
off of defect nodes

The layered structure of one CAN node is shown in Figure 3-5.

Figure 3-5 Layered structure in a CAN node[23]

3.3.1 Data Frame of CAN

The data frame of CAN is composed of seven different fields as shown in Figure 3-6.

 38

Figure 3-6 CAN Data frame[23]

The most significant field in the data frame during message routing is the Arbitration field. The value
of the Arbitration field serves two purposes:

1. Describes the meaning of the data as an identifier

2. Controls bus arbitration

The first part of the Arbitration field is the Identifier of the CAN frame. This ID, instead of containing
some destination address, contains a code identifying the meaning of the data. During the sending, the
CAN station will send the frame ID to the bus in a multicast manner. All the stations, which desire to
know the content identified by this ID, will set filters in their bus interface chips to match the code of
this ID and whenever this ID is available on the bus, they will receive it and notify the processing
element of the station to handle it. While, for the other stations that are not interested in this message,
they simply filter out the ID and ignore this message when it appears on bus.

For the rest of the fields, ‘Start of Frame’ is used to synchronize all the stations when one of the
stations starts transmission first; The control field specifies the number of bytes in the data field; The
CRC field contains a 15 bit CRC check, and the ack field is used to acknowledge correct reception of
a message.

3.3.2 CAN Bus Arbitration Mechanism

One feature of CAN bus that must be mentioned is its bus arbitration mechanism. This mechanism
successfully handles the collision situation on the bus. Once there is a collision, it does not avoid
collisions, instead, it uses the collision to compare the frame identifiers and leave the frame with the
highest priority on the bus.

CAN makes use of a wired-OR (or wired-AND) bus to connect all the stations. Two values of a bit
represent whether it is dominant or recessive.

When the bus is free, any stations on the bus may start to transmit a message. If two or more stations
start transmitting messages at the same time, the bus access conflict is resolved by bitwise arbitration
using the ID field of the data frame. During arbitration every transmitter compares the level of the bit

 39

transmitted with the level that is monitored on the bus. If these levels are equal the unit may continue
to send. When a ’recessive’ level is sent and a ’dominant’ level is monitored (see Bus Values), the
unit has lost arbitration and must withdraw without sending one more bit. Under such mechanisms,
the frame with the highest priority ID can always win the arbitration and be sent onto the bus.

3.3.3 Real-time Concerns about CAN bus

As mentioned earlier in this section, CAN has several built-in features, which make it very suitable to
build the in-car real-time network. However, to be a ‘real’ hard real-time communication protocol,
which can provide timing guarantee for the messages on it, CAN is still not the perfect one for its
event-triggered bus concept lying behind, which lacks enough predictability. For CAN a maximum
busload of 50% is often recommended for non-critical applications [24]. And for real-time critical
applications on CAN bus, a maximum busload of approximately 20 - 30% is suggested in [25]. To
achieve more predictability in order to help the work of hard real-time scheduling, the protocol built
on a time triggered concept is preferred, such as the Time Triggered CAN (TTCAN). Furthermore, to
keep both the flexibility and simplicity of the events triggered bus and the high predictability of the
time triggered bus, new communication systems with hybrid architecture have been deduced from the
specification of future bus protocols, such as FlexRay[26]

3.4 Future Prospects for Automotive Technologies

In recent years, many new technologies and concepts have emerged to cater for the rapidly increasing
demand in the automotive software development domain, such as dynamic real-time operating system
technologies and OSGi framework.

3.4.1 Dynamic Real-time Operating Systems

Since static real-time operating systems like OSEK cannot satisfy the fast growing demand of
building large, complex real-time applications, several dynamic RTOS products come into being in
recent years, such as VxWorks and QNX Neutrino. For the reason that this thesis adopts QNX as the
operating system in the test-bed environment, we will take it as an example to illustrate the
mainstream technologies and concepts involved in the dynamic real-time operating systems today.

QNX RTOS

The real-time operating system developed by QNX Software Systems represents a new concept of the
next-generation real-time operating systems. It delivers the open systems POSIX API in a robust,
scalable form suitable for a wide range of systems -- from tiny, resource-constrained embedded
systems to high-end distributed computing environments[27].

The main features of QNX RTOS include:

�� Scalable system size

QNX RTOS offers the customer the option to scale a microkernel OS simply by including or omitting
the particular processes that provide the functionality required. In such a way, the customer can use a

 40

single microkernel OS for a very wide range of applications. Rather than changing operating systems
products, customers can easily scale the needed system upon a microkernel OS by adding additional
components such as file systems, networking, graphical user interfaces, and so on.

�� POSIX implementation

POSIX is the acronym for Portable Operating System Interface. It is a proposed operating system
interface standard aiming to support application portability at the source-code level. Some of its
standards such as POSIX 1003.1, POSIX Real-time Extensions and POSIX Thread Standard can
greatly contribute to the development in the real-time embedded system domain. So, implementing
the POSIX standard API could be a rather important criterion when choosing a real-time operating
system in the future.

��Highly concise microkernel architecture

The scalable feature of QNX mentioned above is mainly contributed by the concise microkernel
architecture. As shown in Figure 3-7, in the QNX RTOS, most of the conventional in-kernel
components, such as file system, process manager etc, are taken out of the kernel to make a highly
concise and flexible approach. The microkernel of QNX only provides a few fundamental services,
such as thread services, signal services, message passing services, synchronization services, timer
services etc.

Figure 3-7 QNX RTOS microkernel and system architecture [27]

��Message-based inter-process communication

 41

Real-time and other mission-critical applications generally require a dependable form of IPC, because
the processes that make up such applications are so strongly interrelated. The QNX RTOS’s message-
passing strategy can help bring more reliability and predictability to the applications.

�� Support of cross development

To help the development work on the QNX RTOS, a cross-hosted development environment is also
provided by the QNX group. Such convenient tools will greatly improve the efficiency of the real-
time development work.

3.4.2 OSGi

The Open Services Gateway Initiative (OSGi) [22] was founded in March 1999 for creating open
specifications for the network delivery of managed services to local networks and devices. With more
than eighty member companies today, OSGi has become a leading standard for the next-generation
Internet services to homes, small offices and in-vehicle systems.

The OSGi specifications provide an open standard for remote programmable devices. The scopes of
the specifications include software downloading, application life cycle management, programming
environment security, device driver management, configuration management, user management and a
remote administration model. The OSGi specification contains Java APIs and a clear and concise
definition of their semantics.

The technical work required to generate OSGi Specifications is conducted within approved expert
groups. One of the three OSGi expert groups, which deal with OSGi architecture, is Vehicle Export
Group(VEG). “The Vehicle Expert Group is working on tailoring and extending the generic OSGi
Service Platform core specifications for use in in-vehicle environments. The VEG receives much of
the input from automotive, telematics and transport member companies to ensure the specifications
produced are well suited to their target environment.” [28]. This shows the close connection between
the OSGi and modern automotive technologies.

The following entities are involved in the OSGi solution:

�� Service Platform

An application server that is connected to both the local networks and the wide area network
(sometimes, Internet)

�� Service Provider

The provider of the specific value-added services, which are deployed on the Service Platform

��Gateway Operator

It offers the Service Provider a safe environment to execute and is responsible for the integrity of this
environment. It fully controls the Service Platform through the management application such as
installing or removing applications etc. In an automotive OSGi implementation in vehicle, the
Gateway ECU often acts as the Gateway Operator.

�� Internet Service Provider

 42

To provide the Internet access

��Local networks and devices

They are connected to the Service Platform by local wired or wireless networks so that all the services
in there can be accessed. In such a way, the resource limited embedded devices can be connected to
the wide area network.

Common stack architecture in an OSGi implementation (in the gateway) can be shown in Figure 3-8.

Some OSGi terminologies are introduced here:

��Bundle

The OSGi service implementation and deployment package. Normally, a bundle is implemented as a
JAR file, which contains service classes, Java libraries or native libraries etc.

�� Framework

The actual service container, or to say, bundle container, which provides environment for the
deployed services and manages them.

Figure 3-8 Common OSGi implementation architecture

Although, for the time being, the OSGi specification is merely applied in the non-real-time
application development domains, such as in-car multimedia services, vehicle diagnoses service etc.
It is evident that there will be a strong demand to integrate the automotive applications and networks,
both non-real-time and real-time, in order to provide more sophisticated and convenient in-car
services. Therefore, the expansion of OSGi technologies used in automotive systems raises big
challenges as well as great prospects for the real-time Java technologies.

 43

Chapter 4 Different Real-time Java Techniques Comparison

To make a Java program run in a predictable way, there are many committees and companies being
devoted to it. These entities have made a lot of efforts and raised several different approaches to
improve the real-time behavior of Java. All these solutions can be roughly classified into three
categories:

��Hardware support approaches

For example: aJile System [7]

��Language extension specifications and their implementations

For example: Real-time Specification of Java[3], Real-time Core Extensions[4]

��Other software solutions with their own architectures and implementations

For example: the PERC Java Virtual Machine[6], the Jamaica Virtual Machine[5]

Considering the goals of this thesis and the limited time of achieving them, this thesis cannot traverse
all these solutions and their technical details. So, due to the determined target hardware platform
(Transmeta processor) and the fixed operating system (QNX) in this thesis1, we only choose the
compatible ones among all real-time Java solutions as the candidate solutions and deploy the
evaluation on them. This part also shows the difficulty of importing a certain real-time Java solution
into a specific industry domain. The compatibility with the hardware platform, the operating system
or even some specific hardware driver, all these issues must be taken into consideration to choose an
appropriate solution.

After considering all the above issues plus the hardware requirement and product maturity concern,
two real-time Java products and one conventional embedded Java product are chosen primarily in this
thesis. They are PERC Java Virtual Machine from NewMonics (real-time), Jamaica Virtual Machine
from Aicas (real-time) and J9 Virtual Machine from IBM (Non-real-time).

However, as more and more experiments done to these three Java virtual machine products, we find
that the Jamaica virtual machine tends to be more instable on the test-bed environment. It fails on
supporting several important experiments of this thesis. Hence, we can only remove it from the listed
target platforms we will test on. But still, the special methodology and theory existing in Jamaica are
worth to study. So, for the test deployment and experimental evaluation of this thesis, the PERC
virtual machine and IBM J9 will be the final two platforms to test on. As for the theoretical study on
different real-time Java technologies, we still give a brief introduction to Jamaica virtual machine and
hope that it could be more mature and convenient in the future to fulfill the requirement of complex
real-time application development in automotive systems.

Both the PERC virtual machine and the Jamaica virtual machine belong to the third category, which
is the individual software solution. In this chapter, the main features and technologies of these two

1 For more information about the evaluation test-bed in this thesis, the reader can refer to Chapter 7.

 44

approaches are introduced respectively. In addition, since the Real-time Specification of Java plays a
very important role in the real-time Java domain, though its implementations cannot be evaluated in
this thesis because of their incompatibility with the target hardware platform and operating system,
we will still bring an overview on its main features in order to set up a reference solution to compare
with the later two approaches.

Since the garbage collection mechanism brings so many impacts on the real-time performance of Java,
some background knowledge on garbage collection will be briefly introduced right after the foreword,
and then in each of the following sections on the different real-time Java solutions technique
description part, we recalled the garbage collector issue and compare the different strategies for
memory allocation and garbage collection. Some other important issues, such as the strategy for
thread synchronization, will also be mentioned for each real-time Java solution and get compared so
that in such a horizontal way a theoretical evaluation can be accomplished more clearly. In the last
section of this chapter, we will make a discussion on the code reuse issues raised in practice.

4.1 Garbage Collection

As mentioned in the first chapter, automatic garbage collection mechanism of Java raised a great
challenge to the real-time Java implementers. To provide a real-time feature, a specific solution must
choose a way to conquer the unpredictability caused by garbage collector. In order to examine and
evaluate different solutions on garbage collection better, some preliminary knowledge about the
garbage collector is necessary and should be observed first.

4.1.1 Garbage Collector Technique Overview

A traditional garbage collector is well known for its long running time and unpredictability of
invocation. Typically a garbage collector is realized as an independent thread with a sufficiently high
priority, which cannot be preempted by the other user threads. Thus, once it is invoked, it will not
stop until all the collection work in this cycle finishes. Generally, one cycle of GC work contains the
following four phases as follows (shown in Figure 4-1):

Root Scanning

Check through the non-heap area i.e. all the registers and the stack, to find all root references and the
objects they are referring to.

Mark

Mark all the reachable objects in the heap recursively, these objects will be regarded as alive and kept
staying continuously in the memory

Sweep

In this phase, all the unmarked dead objects will be swept and reclaimed.

 45

Compact

In order to prevent the heap area from being fragmentized and unable to allocate any large object, in
this phase, the garbage collector will move the living objects together and free more large blocks of
memory for further allocation

Figure 4-1 Typical GC phases[29]

Apparently, among the four phases, the work in ‘Compact’ tends to be the most dangerous and time-
consuming phase and may cause much unpredictability. In a typical Java virtual machine this part of
the work will not be interrupted until finishing in order to keep the memory space consistent. A real-
time garbage collector must make the time period of this part of the work bounded and predictable,
while at the same time, reclaiming enough memory for applications to use. This task becomes the
trickiest problem that the real time Java implementers, who provide a real-time garbage collector,
have to face.

Now, let us look at the real time Java solutions one by one.

4.2 Real Time Specification of Java

The Real-Time Specification of Java (RTSJ) was carried out by the Real-time Java Experts Group
(RTJEG) in the year 2000. It aims to make a common standard for the real-time Java implementers to
follow. It addressed several issues that determine the real-time performance of Java and
correspondingly provided strategies. Generally, there are seven main areas covered by RTSJ, which
construct the seven main features of it.

4.2.1 Main Features in RTSJ

These features include[3]:

(Existing features in Java that are not deterministic)

 46

• Thread Scheduling and Dispatching

• Memory Management

• Synchronization and Resource Sharing

(Additional features that should be provided to support the real-time software development)

• Asynchronous Event Handling

• Asynchronous Transfer of Control

• Asynchronous Thread Termination

• Physical Memory Access

These features are generally guided by a set of core requirements for real-time Java concluded on a
workshop, which was sponsored by the National Institute of Technology (NIST) during 1998 to 1999.
The final workshop report, published in September 1999[30], defines nine core requirements as
follows:

1. The specification must include a framework for the lookup and discovery of available profiles.

2. Any garbage collection that is provided shall have bounded preemption latency.

3. The specification must define the relationships among real-time Java threads at the same level of
detail as is currently available in existing standards documents.

4. The specification must include APIs to allow communication and synchronization between Java
and non-Java tasks.

5. The specification must include handling of both internal and external asynchronous events.

6. The specification must include some form of asynchronous thread termination.

7. The core must provide mechanisms for enforcing mutual exclusion without blocking.

8. The specification must provide a mechanism to allow code to query whether it is running under a
real-time Java thread or a non-real-time Java thread.

9. The specification must define the relationships that exist between real-time Java and non-real-
time Java threads.

Table 4-1 can show how RTSJ satisfies all these requirements except for the first one, which is
beyond RTSJ’s primary scope. Additionally, the feature of ‘Access to physical memory’ provided by
RTSJ is not motivated by the requirements but it is added into RTSJ to cater for some practical
demands existing in industrial real-time software development.

In RTSJ, the authors decided to support real-time programming in Java by defining features and
semantics with extended APIs. In such a way, RTSJ can lead the programmers managing thread
execution and reducing the overall unpredictability of execution for certain thread types. The
extension upon standard Java API explicitly causes some impacts on the real-time development such
as code reuse problems or flexibility issues. Whether it is necessary to impose such an API extension

 47

and how to tradeoff between keeping standard API and extending standard API will be discussed at
the end of this chapter, after both of the candidate real-time Java solutions have been introduced.

NIST core requirements RTSJ Features

1 2 3 4 5 6 7 8 9

Scheduling N/A S S

Memory Management N/A S S

Synchronization N/A S S S

Asynchronous event handling N/A S S

Asynchronous transfer of control N/A

Asynchronous thread termination N/A S S

Physical memory access N/A

Table 4-1 RTSJ features with NIST core requirements[31]

We now briefly look into each of RTSJ’s features and explain their usages as well as the help they
brought to the real-time development.

4.2.2 Scheduling

RTSJ requires its implementation to have at least 28 unique priorities in the system and also provide a
fixed-priority preemptive thread dispatcher. This shows that the scheduling method in RTSJ has been
confined to the fixed-priority preemptive one, which we have discussed in detail in Chapter 2. The
reason why RTSJ chooses 28 as the least number of unique priorities in the system is that, according
to some earlier research done by L. Sha et al[32], system with 32 unique priorities one can expect
close to the optimal schedulability, and the RTSJ implementation, as part of the underlying system,
should better leave some priorities for the system usage.

Figure 4-2 RTSJ Real-time Thread class Hierarchy[38]

 48

The scheduling part of RTSJ also defines a set of APIs for implementers to follow. Three classes:
Scheduler, SchedulingParameters and ReleaseParameters should be provided to control the
schedulable threads or event handlers. For Java threads that have temporal constraints, RTSJ defines
two types of real-time thread: RealtimeThread and NoHeapRealtimeThread. The difference between
these two threads is that the prior one can access the objects on the heap but the latter one cannot.
Since RTSJ does not require a real-time garbage collector implemented, the difference indicates that
one RealtimeThread’s temporal behavior could be interfered by the garbage collection work, while
the NoHeapRealtimeThread can run even when the garbage collection is running in the background.
The two types of real-time threads therefore provide alternatives for the developers to choose between
the real-time tasks with loose time constraints and the tasks with stringent deadlines. In addition, the
regular threads in RTSJ do not have any guarantees for their temporal behaviors. The thread class
architecture of RTSJ is shown in Figure 4-2.

4.2.3 Memory Management

Facing the unpredictable garbage collector problem, RTSJ chooses a way to keep the traditional
garbage collector implementation and create other memory areas rather than the heap for the real time
memory allocation. Thus, it becomes possible for the real time thread to preempt the garbage
collector thread because there is no memory interference between the two threads. Figure 4-3 and
Figure 4-4 show the different threads running states between the traditional Java virtual machine and
the virtual machine under RTSJ.

Figure 4-3: Garbage collector and threads in typical Java virtual machine[29]

Figure 4-4: Garbage collector and threads running in RTSJ[29]

 49

As we can see in Figure 4-4, the real time threads (NoHeapRealtimeThread) rt1 and rt2 can aways
preempt the garbage collector and complete their real-time tasks in time. But the other user threads,
which are using the common Java thread class, will still run in an unpredictable mode. This implies
that, the existing codes with usage of standard Java library will not get the real time feature by just
putting themselves onto the RTSJ defined virtual machine. The drawback here seems not trivial, since
many companies will prefer a real-time Java solution that could allow them to reuse the existing
codes to achieve real-time. However, as we have analyzed in the Chapter two, the real-time software
development requires all the phases, especially scheduling analysis, design and implementation, to
consider the temporal issues in every detailed part of the application. Without such careful design, the
existing Java code may contain many inappropriate structures and workflows to make it very hard or
even impossible to guarantee its predictability. Therefore, the solution from RTSJ forces the
developer to fit the application into their structure and reconsider the temporal behavior in the
application from the top down. This may be more appropriate than to just move the whole application
to a new environment to run and pray for it.

Back to the memory management strategy of RTSJ, RTSJ introduces the notion of memory area,
which denotes the region of memory that one can allocate for object creation. Besides the common
heap memory area for Java, there are three new types of memory area defined in RTSJ, they are
physical memory, immortal memory and scoped memory (shown in Figure 4-5). Physical memory is
the memory area for developers to create particular important objects, such as objects to put into
nonvolatile RAM. Immortal memory is a memory pool that all the objects allocated within it will live
until the whole program terminates, never reclaimed. Immortal object allocation is suitable to be used
in the hard real-time systems for more predictable memory behavior.

Figure 4-5 Hierarchy of classes in RTSJ memory model[38]

Scoped memory is an important concept brought by RTSJ. It lets the developer allocate and manage
their objects in a memory area, where the lifetimes of objects allocated in it are bounded within a
syntactic scope. When the system enters such syntactic scope, each new operation can allocate
memory from the scoped memory for objects. When this syntactic scope ends up, the system will
destroy all the objects allocated in it and reclaim their memory.

 50

4.2.4 Thread Synchronization

For the synchronization and resource sharing aspect, RTSJ requires the priority inheritance strategy
implemented as a must by default to avoid the priority inversion problem. The priority ceiling
emulation policy is also specified by RTSJ for the implementations that want to support it. In addition,
it also provides the possibility that allows the implementers to override the default synchronization
policy to add more synchronization mechanisms.

RTSJ requires the implementations providing the fixed upper bound time for the program to enter a
synchronized block with the monitor in an unlocked state.

RTSJ also defines the mechanism for the communication between threads, especially between the
real-time threads and the non-real-time ones. Through a unidirectional queue, it can be ensured that
the real-time thread will not be blocked by the non-real-time ones during the communication.

4.2.5 Asynchronous Event Handling

In RTSJ, the asynchronous event handling mechanism is carried out by two classes: AsyncEvent and
AsyncEventHandler. The AsyncEvent represents any type of events, including the events occurred
outside JVM such as hardware interrupt, and the events created inside JVM for some specific
conditions reached. Whenever the AsyncEvent fires, the system will dispatch an AsyncEventHandler
for it. An AsyncEventHandler is a thread-like schedulable object. When the event fires, the run()
method of it will be invoked just like a thread. As for the implementation of such AsyncEventHandler,
much fewer resources than for the actual thread can be realized. Thus, the system is able to handle a
large amount up to tens of thousands of AsyncEvents with must fewer actual threads.

The Timer class defined in RTSJ is also a special kind of AsyncEvent. There are two forms of Timers:
OneShotTimer and PeriodicTimer, which the former one only fires once at a specific time and the
later one fires periodically with a specific interval. Each fire of these timers will be handled by an
AsyncEventHandler and hence can be scheduled and guaranteed the temporal constraints.

By defining the asynchronous event handling mechanisms, RTSJ forms a convenient and effective
way to schedule and handle both periodic and non-periodic tasks.

4.2.6 Asynchronous Control Transfer

The Asynchronous Control Transfer (ACT) technology is introduced into RTSJ to solve such
practical problems: the computation time of an algorithm is highly variable. Given the time bound for
the computation, there may be such circumstances that demand the control transferred from
computation to the result transmission as soon as possible in order to catch the deadline. The ACT
mechanism can then help in such cases. The main idea to approach ACT in RTSJ is to import an
AsynchronouslyInterruptedException(AIE) into the thread, which requires ACT. The methods that
allow ACT should explicitly declare to throw the AIE and when the control goes into such methods,
an outside call of this thread’s interrupt() method can immediately lead to an AIE thrown in that
method and achieve fast ATC. If the interrupt() method is called when the control goes into a method
that doesn’t declare to throw AIE, the system will create an AIE and set it to a pending state. Till the

 51

next time control enters method with the declaration, this AIE will be thrown. In addition, an AIE will
also be set to a pending state when the control is in, returns to or enters a synchronized block.

4.2.7 Asynchronous Thread Termination

Rather than the current unsafe approach of terminating a thread, such as method Thread.stop() and
Thread.destoy(), the asynchronous thread termination part of RTSJ aims at asynchronously
terminating a thread safely and efficiently. By combining the asynchronous control transfer
mechanism and the asynchronous event handling strategy, this goal can be easily and effectively
achieved.

4.2.8 Physical Memory Access

RTSJ introduces the physical memory access technology into Java so that more direct and convenient
memory operations can be conducted for special purpose. Two kinds of physical memory accesses
can be done by the classes defined in RTSJ. One is through class RawMemoryAccess, you can
construct an object to represent a range of physical addresses, and then access the physical memory
with byte, short, int, long, float and double by using the set<type>() and get<type>() methods. The
second way of accessing physical memory is to use VTPhysicalMemory, LTPhysicalMemory or
ImmortalPhysicalMemory. These three classes allow programmers to create objects representing a
range of physical memory addresses where Java objects can be allocated.

4.3 PERC

As an independent Real-time Java solution, PERC virtual machine tries to provide a real-time system
development environment in a different way rather than RTSJ. First, it chooses to implement a real-
time incremental garbage collector in the system to avoid the unpredictability caused by memory
manipulation. It also provides a set of individual APIs and tools for the developer to check and
control the behaviors of the virtual machine either outside the application or right in the program.
Furthermore, PERC supports all the J2SE libraries except for the graphic interface packages (which
means neither awt nor swing is available) and supports JNI technology as well as the direct memory
access feature[33]. The following sections will look into their approaches in detail.

4.3.1 Real-time Garbage Collector in PERC

To achieve the real-time feature in Java, instead of creating different memory areas to evade
interference of GC as defined in RTSJ, PERC tries to implement a predictable real-time garbage
collector. Their real-time garbage collection solution is to use an incremental two-space copying
strategy. Figure 4-6 and Figure 4-7 together describe a typical garbage collection scenario in PERC
virtual machine.

As shown in Figure 4-6, at runtime, the memory space of the Java heap in PERC virtual machine will
be divided into several regions with the same size (the number of regions can be configured before
the virtual machine starts). Whenever the garbage collector runs, two of these regions will be selected

 52

out to form the to and from spaces for the copying garbage collection. For the rest of the regions, the
typical mark and sweep work will be conducted as described earlier this chapter. Note that, the
compact work is not applied here mainly because the memory defragment task is carried out in the
chosen two regions by the two-space copying strategy. In other words, for each pass of garbage
collection, only two regions of memory can be defragmented and the whole heap memory can be kept
utilizable by choosing different copying regions each time.

Figure 4-6 Java heap in PERC virtual machine[33]

The two-space copying strategy can be explained by Figure 4-7. After the mark phase of the garbage
collection, all the in-use objects in the from-space, such as A, B and C in the figure, will be copied to
the to-space one by one. Two benefits lie in this copying behavior: one is that after the copying, all
the memory in from-space will be reclaimed so that a big free block is available in heap; the other
benefit is that, compared to the common compact operation in the typical garbage collector, this
copying approach always keeps the valid objects in the memory so that this work can be preemptive
and resumed without destroying the integrity of the system.

Figure 4-7: PERC GC – two-space copying strategy[33]

 53

To summarize, the real-time garbage collector in the PERC virtual machine has the following features:

��Preemptive: As we have discussed, the two-space copying work can be preempted by other
threads when necessary.

�� Incremental: This means, the garbage collection work can be divided into many small
incremental work and therefore can reduce the GC impact on the schedulability and predictability
of the tasks.

��Accurate: the PERC real-time garbage collector uses an accurate way to conduct the GC work.
(Here, accurate is in contrast to the conservative garbage collector which references objects less
accurately in the mark phase)

��Defragmenting: This feature benefits from the two-space copying strategy.

��Paced: In the PERC real-time garbage collector approach, the incremental GC work can be paced
slowly in some cases to save the CPU time for the stringent high priority real-time task. There is a
pacing agent inside the virtual machine, which controls the GC pacing as well as performs enough
GC work for later allocation. The behavior of the pacing agent can be configured before the
runtime by setting some general temporal attributes of the real-time tasks. PERC API also
provides the possibility of communicating with pacing agent at runtime. In addition, the pacing
agent follows some basic principles of rate-monotonic theory to adjust the GC operations.

4.3.2 Virtual Machine Management API and Improved Timer Services

PERC virtual machine provides a set of API for the developers to control and manage the behaviors
of the virtual machine as they requires[34]. The services in these VM management APIs include:

��Query and modify the maximum number of heap allocation regions

��Query and modify the priority and frequency of the real-time garbage collector

��Determine how much CPU time to be used for a particular Java thread

��Determine which thread should hold the lock of a particular synchronization monitor and which
threads should be waiting for the particular synchronization monitors.

��Query the RTOS native priority of a particular PERC thread

��Query the duration of a PERC thread’s tick period and time-slice duration.

��Query how much time the PERC virtual machine has been idle and how much CPU time has been
consumed at each priority level of threads (to assist rate-monotonic scheduling analysis).

4.3.3 Other Features of PERC

Other features provided by PERC can be summarized as follows:

�� For thread synchronization issues, PERC implements priority inheritance mechanism to avoid
priority inversion problem.

 54

�� PERC virtual machine fully supports J2SE 1.3 libraries (except for GUI packages).

��Besides supporting JNI with real time guarantees, PERC also provides an alternative native
interface: PNI (PERC native interface) and the API for accessing physical memory.

��To improve the runtime performance of the Java applications, PERC provides JIT(Just In Time)
compiler and AOT(Ahead Of Time) compiler besides the basic interpreter.

�� Several tools are provided for debugging and profiling the applications.

4.3.4 Remarks on PERC Real-time Java Solution

The PERC real-time Java approach mainly focuses on providing a convenient and efficient way of
developing embedded Java program with real-time demands. It is suitable to be used in the soft real-
time application development area (as they often call it a firm real-time). This is because some
important strategies in their solution to help the real-time development are based on empirical or
experimental knowledge, such as the GC pacing, runtime adjusting virtual machine parameters
feature and so on. And the necessary theoretical scheduling analysis work in the hard real-time
domain is not well supported and hence is difficult to be applied within PERC virtual machine.
Furthermore, PERC is more suitable for building relatively large applications with a relatively
powerful hardware environment. Thus their efforts on the J2SE libraries support can be well utilized.

Table 4-2 shows the philosophies from PERC technical group about the different real-time Java
solutions’ properties due to the different real-time requirement.

Mission-Critical Java (real-time)

VM Properties

Traditional Java
virtual machine
(Non-real-time)

Soft Real-time Hard Real-time Safety Critical

Library Support J2SE J2SE Special Subset More restrictive
subset

Garbage
Collection

Exhibits pauses in
excess of 10

seconds

Real-time GC No No

Manual Memory
Disposition

No No Yes No

Stack Memory
Allocation

No No Yes Yes

Dynamic Class
Loading

Yes Yes Yes No

Thread Priorities Unpredictable
priority clusters
and priority aging

Fixed
preemptive,
distinct

Fixed preemptive,
distinct

Fixed
preemptive,
distinct

 55

Priority Inversion
Avoidance

None Priority
Inheritance

Priority Inheritance
and Priority Ceiling

Priority Ceiling

Asynchronous
Transfer of
Control

No Yes Yes No

Approximate
Performance

x 0.9x 2-3x 2-3x

Typical Memory
Footprint

16+Mbytes 16+Mbytes 64Kbytes-1Mbyte 64-128 Kbytes

Table 4-2 Differentiation between Real-time Java technology standards proposed by PERC

producer[35]

Particularly, the PERC development teams claim that, they are now implementing the hard real-time
Java solutions and will try to integrate them within the PERC virtual machine in the coming months.

4.4 Jamaica

Jamaica real-time Java solution is provided by Aicas Company. It aims to implement a hard real-time
Java virtual machine by providing a hard real time garbage collector and at the same time
guaranteeing that the execution time of all the primitive Java operations are bound and predictable
[36]. Some of its main techniques to achieve real time Java can be summarized as below:

�� A hard real time garbage collector

Instead of keeping the garbage collector as they were like in RTSJ, the Jamaica virtual machine

implements its own garbage collector with hard real time guarantee. This is obtained by dividing

the GC work into small tasks, which are running incrementally during the small interval of the

user threads (such an interval is called synchronization point in their publications) as shown in

Figure 4-8.

Figure 4-8: Threads Running in Jamaica (Red blocks represent the incremental GC work)[29]

 56

The general techniques in this garbage collector are:

��Saving root references for constant time of root scanning

��Coloring and write barrier strategy for separated marking and sweeping work

��Fixed size heap blocks to avoid memory defragment work

��Automatically inserted synchronization points with the frequency related with allocated
memory prove a sufficient garbage collection work being done.

�� Priority Inheritance strategy used for avoidance of priority inversion

�� JNI supported with real time guarantee, as well as an alternative native interface provided: JBI

�� Dynamic linking supported

�� Tools provided for real time and embedded system development

Several technologies of performance improvement provided, such as, Ahead Of Time compiling,
smart linking, configuration and profiling etc.

4.5 Non-real-time Code Reuse Issue Discussion

Since several real-time products claims that they have such advantages in their system that all the
existing Java codes can be reused and gain the real-time performance by simply switching to their
real-time Java environments, a question is then raised: Is it possible that, the existing codes can get
real-time performance without any modification by just changing the underlying platform into a real-
time one?

To answer this question, we should remind and summarize some of the results we get in Chapter 2:

First, the essential processes required for building a real-time system can be summarized as follows:

1. Defining the time constraints

This part of work is apparently the most important and influential part that directly determines the
possibilities and difficulties of the consequent works.

2. Analyzing the runtime behaviors of the task set

This part of work is mainly aimed at the applications with multiple tasks, which require a certain
scheduling mechanism provided by the underlying platform.

3. Choosing appropriate scheduling theories and algorithms

4. Applying scheduling theories, such as assigning priorities to tasks according to the chosen
scheduling algorithm.

5. Verifying schedulability of the task set by deploying the scheduling analysis

All the above processes are necessary to the real-time system development for its definition, analysis,
implementation and verification.

 57

As for the existing code, which is designed and implemented without these real-time issues
considered, it may have its runtime behavior analyzed during the design, and may be assigned some
deadlines afterwards. But without the third, fourth and fifth processes done, it is impossible for this
code to achieve the real-time behavior seriously by just executing in a real-time platform.

After the discussion, we can now give a clear answer for the raised question before: It is not feasible
to get the existing non-real-time code real-time by exporting them to a real-time environment.

Therefore, from this point to review the real-time Java solutions again, we know that, the strategy to
provide extra semantics and APIs for the real-time development, such as RTSJ has done, is
appropriate and will not cause much inconvenience. As for the approaches, which claim to provide
real-time feature for existing Java code, it is not so easy to achieve that as it seems to be.

 58

Chapter 5 Evaluation Methodology

In the previous three chapters, we have gathered enough background knowledge of this thesis: real-
time system characteristics and real-time scheduling methods; technologies widely used in
automotive systems and their future prospects; theoretical analysis on the different real-time Java
solutions.

In this chapter, we will approach an effective method to evaluate the chosen real-time Java solutions
based on the given background knowledge. There are two goals for the evaluation work in this thesis,
one is to reveal the real-time performance provided by the chosen Java environments, the other one is
to test the feasibility and flexibility of developing real-time Java automotive applications conducted
by the fixed priority preemptive scheduling theory.

The evaluation work is then divided into two subtasks:

First, design a set of benchmark applications in order to test the important parameters of each solution,
such as memory allocation time, thread startup time and so on.

Second, design a sample application, which carries the typical logic of the real-time application in
automotive systems. The design work here will refer to some of the results got from the benchmark
tests and try to practice the real-time scheduling analysis to help and guide the design.

The detailed behavior and functions of the sample applications and benchmark application will be the
output of this part of work. To get a clear clue of the work and arrange the tasks in a reasonable way,
this thesis adopts a purpose-driven methodology, which means all the works are driven by the
purpose of this thesis. That is: to evaluate the applicability of the real-time Java solutions in the
automotive systems.

Therefore, the work to define both sample application and benchmark application will be arranged as
Figure 5-1 shows.

Figure 5-1 Flow Diagram to show the methodology used when defining the functions of sample

application and benchmark application

5.1 Survey on the Typical Automotive Real-time Application

The evaluation work in this thesis mainly concentrates on examining the applicability of the candidate
real-time solutions in the automotive real-time systems domain. So, to get a clear scope for the
requirement of evaluation, we can follow the purpose-driven way to observe what the typical
automotive real-time application behaves, where the real-time Java platform should be involved and

 59

what functions the real-time Java is supposed to provide. After such work has been done, we can then
reasonably define the functions of the sample application in this thesis.

5.1.1 Survey of Running Environment of Automotive Real-time Applications

As mentioned in Chapter 3, the CAN bus has several natural well-defined properties, which can be
used to provide a real-time communication channel among in-car ECUs. Therefore, nowadays, the
CAN bus is widely used in the in-car electronic systems to connect ECUs, which are involved in the
time-critical tasks, such as Engine ECU or Brake ECU. Normally, one real-time task will be carried
out by more than one ECU, Figure n shows the typical network environment, where a real-time
application runs.

Figure 5-2 Typical CAN network in vehicle and Real-time tasks running environment[37]

Under such typical in-car network, a typical real-time task’s behavior is described as the following
steps:

1. The Engine ECU examines the status of engine every 100 milliseconds and send a message
containing this information onto the CAN bus.

2. The Gateway ECU listens and receives these messages from the bus, and at the same time
receives other similar messages that carry status information of other parts of the vehicle.

3. In the Gateway ECU, every time when some new Engine status message arrives, a specific
handler program will handle this message and do some necessary calculation to check if the
engine is currently in a healthy state. In some more complicated cases, this handler program
could combine several status messages and check the synthetic status for a set of in-car
components.

4. If after the calculation, it indicates that the engine has been in or would possibly be in an
unsafe state, some appropriate operations must be managed and deployed by the handler

 60

program within a predefined deadline, such as sending warning message to Displayer ECU to
notify the driver or sending control message to the Brake ECU to slow down the car etc.

5. The related ECUs get the above emergency messages and make the corresponding reactions
as informed by the messages. In such a way, a potential danger can be avoided.

As we can see, most of the logic and actions in the workflow of this real-time task resides in the
Gateway ECU. It acts as a data collector, a status inspector and also an emergency routine operator.
This essential role of the Gateway ECU determines that, it has more powerful hardware support than
the other end node ECUs. So some more complex software can run on it such as a real-time operating
system or other real-time application platforms.

A Java virtual machine normally runs on top of a specific operating system1 and hence demands a
relatively more powerful hardware platform than other embedded programming languages. Therefore,
importing Java into the Gateway ECU could be a most natural idea. In this thesis, we will follow this
idea and build up a test bed environment as the typical environment shown in Figure 5-2 for the
evaluation work. More detail about the test bed environment, one can refer to Chapter section of this
thesis.

Since the physical environment (including the target device and the network topology) for deploying
real-time Java has been chosen, let us observe behaviors of typical automotive real-time tasks more in
detail so as to reveal the functions and responsibilities that the Gateway ECU has.

5.1.2 Survey of Typical Automotive Real-time Tasks Behaviors

As described in the previous subsection, most of the real-time tasks are carried out by more than one
ECU. The hardware platforms of these ECUs can vary a lot depending on their different
functionalities. For some important ECUs, such as Gateway ECU acting as a central gateway
connecting different buses, their processor speed can be several Million Hertz. While, for some
simple ECUs that only take the responsibility of obtaining data from the sensor and put them onto the
bus in a fixed rate, it is enough for them to be running in a processor with just several Kilo Hertz.
Apparently, not all of the ECUs involved in a real-time task can be equipped with a real-time Java
environment. Therefore, for the scope of this thesis, we must inspect the functions, which ‘Java’
ECUs are supposed to take and try to separate them from the entire real-time task. After such a work
done, we can then confine and concentrate on the subtask that ‘real-time Java ECU’ takes.

As mentioned in section 2.1.2 in this thesis, to build a hard real-time system, we need to adopt the
layer-by-layer approach to ensure the predictability. A rough partition of layers can be shown in
Figure 5-3. Here we assume that, the gateway ECU has been equipped with one specific real-time
Java environment. Then, we got four layers:

�� Function layers: Represent the specific real-time task’s logic and workflow

1 Here, we assume that there is no special hardware support for Java code.

 61

��Compiler and Interpreter layer: This layer is introduced here to provide a running
environment for Java. This should be replaced by an individual Real-time Java solution
during the evaluation.

��Communication Layer: This layer abstracts all the underlying communication media. It can
be roughly taken as a composition of the Data Link layer, Network layer and Transport layer
of the ISO/OSI reference model. All the message routing, message composing, decomposing
and the frame management are handled in this layer.

Figure 5-3 A layered view on the implementation of an automotive real-time task

��Hardware Layer: This layer represents all the necessary hardware needed in this environment.

Including the CPU, RAM, I/O devices and so on.

Now we can inspect the predictability of these layers bottom up.

The hardware layer’s predictability is not difficult to guarantee. Normally, with the help of profiling
tools, people can calculate the needed processor cycles out by analyzing the machine codes
(instructions) of the applications, and then easily get the execution time by dividing the frequency of
the processor. It is always true that the hardware is much more predictable than the software.

The predictability of the communication layer largely depends on the protocols applied in the network.
By adopting some real-time featured protocols, such as CAN, TTCAN, TTP1 or Flexray, the message
transfer time on this layer can be bounded and predicted.

For the compiler and interpreter layer and the function layer of the Gateway ECU, their predictability
will be focused and examined later in this thesis. The function layer’s predictability in simple ECUs
can be provided by means of low level programming or with the help of some light weight RTOS.

After the above analysis, we can draw the following conclusion that, except for the function layer and
compiler and interpreter layer of the Gateway ECU, all other parts, which are involved into a
distributed automotive real-time task, can achieve timing predictability by deploying some
appropriate technologies. Thus, we can separate the entire real-time task into several subtasks:

1 TTP denotes for Time Triggered Protocol.

 62

1. Simple ECUs, in a fixed rate, retrieve status information of in-car components and send them
onto the network.

2. The messages go through the communication layer. From simple ECUs, passing the network
to the Gateway ECU.

3. The Gateway ECU receives these messages, does some necessary calculation and checks the
status of the whole set of in-car components. In case that some inappropriate situations are
found, the Gateway ECU will react by sending corresponding messages to the related ECUs
in the vehicle.

As the first and second subtasks in the above list have been proved to be able to provide predictability.
We can therefore split the task, and also the time constraints. Then, each of the subtasks will have
their own deadline and can be treated separately.

Figure 5-4 Separated View of Gateway ECU and its subtask

In such a way, we can eventually confine the position and functions of the target real-time Java
platform. As shown in Figure 5-4, the field encircled by the dashed represents the main area this
thesis focuses on. Both the sample automotive real-time application and the benchmark applications
are built to run within this field. The rough functions or to say behaviors of the sample application
could be:

��Handle the periodic messages events from the network

��Calculate and check the new states of the specific set of in-car components

�� Send emergency messages in case of improper situation observed

5.2 Define Functions for Sample Automotive Real-time Application

After the behaviors of the sample application are confined, we need to provide a detailed context and
realistic task to specify certain functions of the sample application so that for the next step, both the
scheduling analysis and the sample application design can be launched based on it.

The functions of the sample application will be specified by the following three parts: specification of
the incoming messages; the workflow of each message handler and the time constraints.

 63

5.2.1 Incoming Messages

The specification of the incoming messages can be organized as a table. There are altogether four
incoming messages for the sample application to handle. Their name, description, period of sending
are shown in Table 5-1

Message Name Message Description Send Period

Vehicle Speed Message Contains the newest speed of the vehicle 100ms

Tire Pressure Message Contains the newest values of all tires’ pressures 500ms

Steering Wheel Angle Message Contains the newest angle value of the steering
wheel

200ms

Obstacle Distance Message Contains the newest distances from the vehicle to
the obstacles around the vehicle

100ms

Table 5-1 Incoming Messages Information

5.2.2 Workflows for Each Message Handler

The workflow of handling ‘Vehicle Speed Message’ is described by Figure 5-5.

For this part of the sample application’s work, the handler only needs to update the newest vehicle
speed value in the memory. But, for the consideration of mutual exclusion, it has to make the update
through the Java monitor of the speed object.

Figure 5-5 Workflow of handling Vehicle Speed Message

The workflow of handling ‘Tire Pressure Message’ is described by Figure 5-6.

After the arrival of ‘Tire Pressure Message’, the handler should check the status of all tires’ pressure
values, if any of them exceeds the predefined upper bound value or goes below the lower bound value,
the handler will send the corresponding message onto the bus for proper reaction.

 64

Figure 5-6 Workflow of handling Tire Pressure Message

The workflow of handling ‘Steering Wheel Angle Message’ is described by Figure 5-7.

Figure 5-7 Workflow of handling Steering Wheel Angle Message

After the ‘Steering Wheel Angle Message’ arrives, its handler will be invoked to run. First, it will
enter the monitor of the steering angle object, which stores the newest value of steering wheel angle
in the memory. When the handler gets the lock, it then updates the object with the newest value it gets
from the message. After leaving the monitor, the handler begins to check whether the angle’s value is

 65

too large and exceeds a predefined threshold. If it does, a corresponding message will be sent on the
bus to make the reaction.

The workflow of handling ‘Obstacle Distance Message’ is described by Figure 5-8.

Figure 5-8 Workflow of handling Obstacle Distance Message

The handler of Obstacle Distance Message first needs to retrieve the steering angle value from the
memory through the monitor of the steering angle object. And then, it goes into the speed monitor to
get the newest value of speed. After enough information is gathered, the handler calculates the
potential knock time of the vehicle to the obstacle according to three parameters: vehicle speed,
steering angle and obstacle distance. If the time result indicates a dangerous state, the handler will
send out a proper message onto the bus, for example a control message to stop the vehicle.

5.2.3 Time Constraints in the Sample Application

The following table shows the deadlines of each message-handling task:

Message Handling Type Period (ms) Deadline (ms)

Speed Message Handling 100 100

Tire Pressure Message Handling 500 200

Steering Wheel Angle Message Handling 200 150

Obstacle Distance Message Handling 100 70

Table 5-2 Messages handling deadlines

 66

The start time phase of each message is randomized. But once the first message of each type is sent,
the consequent messages of that type will follow it being sent in the predefined fixed rate.

5.3 Finding Necessary Parameters needed by Scheduling Analysis

Given the requirement for the sample application, the design work could consequently follow.
However, before working on the design of the application, we will first try to make a scheduling
analysis for the whole task set, try to reveal the necessary parameters we need for the analysis. These
necessary parameters can then guide the benchmark application design, which means that an
important purpose that the benchmark application takes is to provide the necessary parameters for the
scheduling analysis. At the same time, through comparing the different values of the same parameter
in different Real-time Java environments, the real-time performances of these RTJ solutions can be
evaluated.

First, we need to fix the scheduling algorithm we will use. Since several attributes of Java determine
that only the preemptive fixed priority scheduling algorithms can be applied, we will only focus on
and choose the algorithm from this category.

When choosing between the Rate-monotonic scheduling theory and deadline-monotonic scheduling
theory, we find that the tasks’ deadlines shown in Table 5-2 are not all equal to their period; three of
them have the deadlines shorter than their periods. Therefore, we believe that, the deadline-monotonic
scheduling theory is more suitable to be applied in our case.

Before introducing the fixed priority preemptive scheduling theory into analysis, we assume that all
the real-time Java platforms we evaluate can support this scheduling theory and can therefore provide
bounded and predictable values for all necessary parameters required during the analysis.

Now let us examine the necessary parameters step by step.

PRIORITY ASSIGNMENT

First of all, all the four handlers can be taken as the periodic tasks. Their priorities will be assigned
according to the deadline-monotonic theory, which means the task with earlier deadline will be
assigned a higher priority. The final priority assignment is shown in Table 5-3. Here, the priority of
each task is set relatively to the highest priority of the four, denoted by P. The value of P will be
determined respectively under each real-time Java environment to be evaluated.

Task No. Task Description Period (ms) Deadline (ms) Priority

1 Handling Speed Message 100 100 P-1

2 Handling Tire Pressure Message 500 200 P-3

3 Handling Steering Wheel Angle Message 200 150 P-2

4 Handling Obstacle Distance Message 100 70 P

Table 5-3 Priority assignment of the tasks in the sample application

 67

THREAD SYNCHRONIZATION CONSIDERATION

Considering three message handlers need the use of two mutual exclusive resources, the blocking
issues must be counted. So, we can first try the formula (2.1) on our task set:

1

()

n
n i

i i i j
j hp i j

W
W B C C

T
+

∈

� �
= + + � �

� �� �
�

Here, iTask ’s response time iR can be given by the smallest n
iW , where 1n n

i iW W −=

The parameters to examine in this formula:

jT is the period of each task, its value for each task can be found in Table 5-3.

iB is the worst-case blocking time for iTask , we have assumed this blocking time would be bounded

in each of the real-time Java solution, though this depends on the specific priority-inversion
avoidance mechanism applied in each solution. We will examine this characteristic in each test Java
environment in the benchmark tests.

iC is the worst-case execution time for iTask despite of higher priority tasks preemption or blocking

issues. We will follow the routines concluded in 2.5.3 to examine the value of this parameter.

CONTEXT SWITCH OVERHEAD CONSIDERATION

In practice, the overhead of two Java threads’ context switch cannot be neglected. According to the
discussion in the Chapter 2, by importing two parameters: P

swC and R
swC , we can extend our formula

into:

1

()

()
n

n P R P Ri
i i i sw sw j sw sw

j hp i j

W
W B C C C C C C

T
+

∈

� �
= + + + + + +� �

� �� �
�

where Table 2-2 can be referred for P
swC and R

swC ’s definitions.

Here, iTask ’s response time iR can be also given by the smallest n
iW , where 1n n

i iW W −=

Observing that P
swC and R

swC always appear as the sum value of the two in the formula. We can

combine them into one parameter P R
sw sw swC C C= + for convenience and test its value in the

benchmark application. Thus, the formula can shorten into:

1

()

()
n

n i
i i i sw j sw

j hp i j

W
W B C C C C

T
+

∈

� �
= + + + +� �

� �� �
�

 68

RELEASE JITTER CONSIDERATION

Though we have assumed that, each of these four tasks can be taken as a periodic task, there will still
be some time that one of their releases is delayed. Especially, if we consider the Gateway ECU is not
the generator but the receiver of the messages, the arrival time of the messages could be delayed
because of the jitter that occurred in the communication media. Therefore, we need to bring in the
release jitter parameter into the formula we use.

1

()

()
n

n i i
i i i sw j sw

j hp i j

W J
W B C C C C

T
+

∈

� �+= + + + +� �
� �� �

�

where, iJ denotes the maximum release jitter delay that iTask may meet.

Here, iTask ’s response time iR can be given by n
i iJ W+ where n

iW is the smallest one that

satisfies the equation 1n n
i iW W −=

Since there can be many possible reasons that can lead to a release jitter and some of them are out of
scope of this thesis, we will try to determine the value of iJ in an empirical way during the

evaluation.

To make a summary of all the necessary parameters for the scheduling analysis for sample application
(including those we have known), we get the following table:

Parameters Description

T Period between two consequent task releases

D Deadline relative to the release of task

J Maximum release jitter delay

*B Maximum blocking delay

* swC Context-switch overhead (Equal to P
swC + R

swC)

*C Worst-case execution time of the task (without blocking or preemption)

P Priority of the task (determined by specific scheduling theory applied)

R Response time of the task (calculated)

Table 5-4 Necessary parameters for the scheduling analysis

(Parameters with * should be part of the benchmark’s criteria)

 69

5.4 Define the Functions of Benchmark Application

There are altogether two criteria that can guide the benchmark application’s functions. The first
criterion is the parameters required by the scheduling analysis work for the sample real-time
application, which we have concluded in the Table 5-4; the second criterion is the most important
features for real-time Java that are listed in the Real-Time Specification of Java, as we have
introduced in 4.2.1.

After combining these two criteria together, we get a list of functions that the benchmark application
should provide, as shown in Table 5-5.

Function Name Description

Memory allocation time test Test the time for one real-time Java platform to allocate a certain
size of memory (for the worst-case execution time of tasks)

Thread startup time test Test the time for a certain real-time Java platform to start a new
thread

Priority Inversion test Test if an effective mechanism to avoid priority inversion is
provided by a certain real-time Java platform

Thread context switch time test Test the time for a certain real-time Java platform to switch the
context from one thread to another

JNI access time test Test the time for a certain real-time Java platform to access the
native code through Java Native Interface

One-shot Timer test Test the precision of the one-shot timer in a certain real-time
Java platform

Periodic Timer test Test the precision of the periodic timer in a certain real-time Java
platform

Asynchronous event handling test Test the performance of a certain real-time Java platform to
handle asynchronous events

Table 5-5 Functions to be provided by the benchmark application

Some comments on these functions:

The test results from the tests in the benchmark should only be considered as an experimental
reference for the scheduling analysis work. For more accurate exact data, a large scale and long
period of tests must be taken and some probability and statistics methods have to be used to analyze
on the results.

Since the benchmark application also takes the responsibility of testing the real-time Java solutions in
a general way, some of the test results are not aimed to serve the scheduling analysis, such as the
timer test, asynchronous event handling test and so on. The results from these tests are more
reflecting the overall performance of the candidate solutions.

 70

Chapter 6 Design and Implementation

The implementation work in this thesis can be divided into three parts. Besides the sample automotive
real-time application and the benchmark application suite, to better deploy and analyze the final
evaluation, a remote graphic controller application is implemented to help the control and result
generation. So, in this chapter, all these three parts of implementation work will be introduced,
including their design and the detail logic of codes in some essential parts.

6.1 Benchmark Application Design and Implementation

The functions that the benchmark application should provide have been concluded in Table 5-5 in
Chapter 5. According to these functions, we can visualize the behaviors of the benchmark application
by a use-case diagram (see Appendix A).

Before we go into the design of each individual test in the benchmark, we find that a high-resolution
timer is necessary for the benchmark because all the tests need a time precision within a sub-
millisecond level.

6.1.1 High Resolution Timer for the Benchmark

In RTSJ, an explicit requirement has been raised that, a class called ‘HighResolutionTime’ should be
provided in its implementations. In such a way, a nanosecond accuracy of time can help the real-time
application developer to create more powerful and serious real-time application. However, none of
the real-time Java solutions to be tested in this thesis support this feature, we have to make another
approach to this high-resolution timer utility.

In the conventional Java program, the timing behavior can be done by calling static method:
System.currentTimeMillis(). This method returns the time difference, measured in milliseconds,
between the current time and midnight, January 1, 1970 UTC. The problem of using this method is
that it cannot be used to measure some sub-millisecond time interval, furthermore the time precision
that one can get from this method depends on the tick value of the underlying platform. For example,
in the Windows 2000 operating system, the tick period is 1 millisecond and in most of the Linux OS
implementations, this parameter is 10 milliseconds in value; for the real-time operating system
VxWorks, it has a tick period of 500 microseconds, which is half a millisecond. Therefore, we cannot
rely on this method to generate time periods with high precision.

To obtain more accurate time than the underlying system, we have to turn to some platform
dependent APIs, which provide the way to retrieve CPU frequency and the CPU cycles that are used
by the test period. The target operating system QNX RTOS, supports such APIs in its native libraries.
Then, a natural idea will be: making use of these APIs through Java Native Interface and getting high-
resolution time by simple calculation. This thesis adopts this idea and develops a QNX high-
resolution timer in this way. The following sequence diagram can briefly describe the logic to retrieve
high-resolution time in this thesis (Figure 6-1).

 71

Figure 6-1 Sequence Diagram of retrieving high resolution time in benchmark application

A consequent issue is that, to measure the time of a sequence of codes, we need to invoke the high-
resolution timer two times: to start it and to stop it. The time overhead of the two JNI accesses cannot
be neglected, especially for measuring some small time costs.

From Figure 6-1, we can see that, the time we want to measure (T) and the actual value we can get
(T’) have the equation: ' JNIT T T= − . From experiments done on the target Java platforms, the one

time JNI access time costs at most tens of microseconds and normally only takes several
microseconds. Therefore, to test the time period in the millisecond level, this timer overhead can be
neglected, otherwise, the average timer cost should be measured and reduced from the test results. In
a special case, if the purpose of the test is to examine the worst execution time of some operations, the
reduction can be cancelled so that the final result won’t be under-estimated by reducing the average
cost.

Thus, the high-resolution timer is prepared, and we can continue the benchmark implementation with
the help of it.

6.1.2 Memory Allocation Time Test

The reason of including a memory allocation time test is because, a Java program has to manipulate
with memory very often as in an object-oriented language. That is also part of the reason why Java
decides to provide a garbage collector to release the programmer from complicated memory

 72

operations. But for a real-time system, the memory allocation time must be predictable so that the
worst execution time can be calculated. The following class diagram can show the structure of this
part of design.

Figure 6-2 Class Diagram for the Memory Allocation Time Test

The main idea to create various sizes of objects for allocation is to define a member variable in a class
with the type of byte array. The length of this byte array can be adjusted through the static method in
the class, and as we know, the member variable will only be initialized when the object is being
constructed. So, in such a way, we can get any specific size of object as we want.

One more thing to mention is that, any class in Java has to inherit from the class Object, and hence
every class has the 8 bytes of basis as being a Java object. In addition, each reference member takes 4
bytes and an instantiated Java array takes at least 16 bytes to store its necessary parameters like length,
start address etc. Therefore, for an exact memory allocation simulation, the design of the
MemoryAllocator class takes these issues into consideration. As Figure 6-2 shows, MemoryAllocator
has a member byte array variable mvMemAllocatingArray for the use of various sizes of memory
allocation. A static variable ALLOCATION_ARRAY_LENGTH is to adjust the initial size of this array.
Notice that an object of MemoryAllocator class has a size comprised of 8 bytes object shell; 4 bytes
for the reference of the byte array; 16 bytes for initialized array shell;
ALLOCATION_ARRAY_LENGTH of bytes for array body. Therefore, given the expected memory
size n bytes to allocate, ALLOCATION_ARRAY_LENGTH should be equal to n–4–8–16 = n–28. This
logic is handled in the static method: setObjectSize(). A consequent call to the method
createNewInstance() can then allocate the memory block with the required size.

For the convenience of the test, there are several parameters for user to adjust, such as, allocation
times, interval between two allocations, whether leaving the created objects as garbage or not and so
on.

6.1.3 Thread and Synchronization

In this part of the benchmark, there are altogether five tests. Four of them rely on the quantitative
results. They are thread startup time test, thread entering unlocked monitor time test, thread
notification context switch time test and thread yielding context switch time test. The other test is
mainly designed for revealing the characteristics of the virtual machine: priority inversion test.

 73

The purposes and design criteria of these tests will be explained one by one in the following
subsections.

6.1.3.1 Thread Startup Time Test

Thread definition in the Java language supports the developers to create more than one thread at
runtime. These threads can run concurrently in the application sharing the same memory region.
Whenever a new thread is created and started, there will be one more branch of the code being
executed independently from the existing ones. Multi-threaded programming is very useful for
designing and implementing systems with a large size and sophisticated logic. Consequently, whether
the startup time of a thread is steady and predictable is fairly important for the real-time application
developers. Therefore, the benchmark application in this thesis includes this test.

This test application mainly measures the time period from a thread object’s start() method is invoked
untill the first sentence of method run() is reached. The thread number to test and the interval between
two threads’ start are configurable to make the test more flexible.

6.1.3.2 Thread Notification Context-switch Test and Thread Yielding Context-switch Test

There are two thread context switch tests in the benchmark applications of this thesis: thread
notification context-switch test and thread yield context-switch test. They are basically classified by
the ways of causing threads’ context switch. The prior one is through the current running thread
notifying a waiting thread; the later one is through the running thread voluntarily giving up the CPU
and so awaking the other waiting threads.

The main thought of using thread notification to cause context-switch is that:

In the beginning of the test, a thread with a high priority starts to run in the system. It then suspends
itself through invoking the wait() method provided by Java Object class. The main thread in the
system which has the normal priority then takes over the CPU time, it does two things at this time,
first, it triggers the startTimer() method of the HighResolutionTimer class described earlier to start
timing, and then, it grasps the monitor of the high priority thread and notify() the thread which is
waiting. Thus, the previous high priority thread will be brought from the suspended state to the
runnable state (Figure 6-3 shows the basic thread state transfer logic). When this high priority thread
backs to execute, it immediately stops the timer and thus, a thread context-switch is accomplished and
timed. Figure 6-4 can show the execution sequence of the notification context-switch test.

 74

Figure 6-3 Java Thread life-cycle and state-transfer diagram

One more thing to mention is that the Java Language Specification does not explicitly define the
mechanism of picking one thread from several threads that are ready, which means that in a specific
Java virtual machine thread priorities may not determine the eligibility of the threads at runtime.
However, in a real-time environment a high priority thread that is ready to run should always be given
the eligibility to run first among the runnable threads because this is an important prerequisite for the
deployment of the priority-based scheduling theory. We can say that without such a guarantee the
priority-based Java thread mechanism will be meaningless and infeasible for the real-time application
development. Therefore, in this application, such a guarantee is taken for granted for the real-time
Java virtual machines to be tested. In addition, RTSJ also explicitly defines that thread’s priority
should be considered as execution eligibility in its implementations.

Figure 6-4 Sequence diagram: thread notification context-switch time test

The thread yielding context-switch test then makes the use of yield() method in the Thread class to
achieve the context-switch between threads. When doing the design of this part of test, one thing

 75

should be cared about is that, the yield() method doesn’t suspend a thread, instead, it just takes the
current thread off the CPU and puts it back into the queue of ready threads. Therefore, to make sure
that another thread could take the context after that, only two runnable threads are kept in the system
and both of them have the same priority so that they have the same eligibility when being chosen to
run. Thus, one thread’s yielding will consequently lead the context switch to the other thread. In
Figure 6-5, the sequence diagram shows the main workflow in this part of test. Notice that, to cause
the context switch, after starting two low priority threads, the main thread will suspend itself for a
sufficient time in order to leave the two threads with the same priority in the system.

Figure 6-5 Sequence diagram: thread yielding context-switch time test

Some Comments on the context-switch test:

Though the scenarios described by the two context-switch tests cannot include all the control
transferring circumstances of the system. Still, they can partially show the stability and efficiency of
the thread context-switch work in a specific Java runtime environment.

6.1.3.3 Priority Inversion Test

To test whether the priority inversion problem exists in a specific virtual machine to be tested. A
priority inversion test is design in the benchmark application in this thesis. To recur the priority
inversion scenario in this test, four kinds of threads with four different priorities are introduced: the
main thread acting as the thread dispatcher which has the highest priority; a high priority thread
which has the second highest priority in this test; a low priority thread and a specified number of
medial priority threads. The runtime interactions of these threads can be shown in Figure 6-6. As this
sequence diagram shows, the main thread will start the low priority thread first and let it enter a

 76

predefined monitor, and then the main thread is notified by the low priority thread, which is in its
critical section, and invoke the high priority thread and all medial priority threads respectively. After
that, the main thread suspends itself and waits until all the threads terminate. The completion time of
each thread (except for the main one) will be recorded to see if the priority inversion has occurred. If
the priority inversion problem is successfully avoided by the tested real-time Java virtual machine,
the completion times of all these threads can also illuminate the efficiency and extra cost of
implementing this.

Figure 6-6 Sequence Diagram: thread priority inversion test

6.1.3.4 Entering Unlocked Monitor Time Test

The logic for this ‘Entering unlocked monitor time test’ is fairly simple, a thread in the application is
defined to enter and leave an exclusive monitor for specific times, then the maximum, average and
minimum time cost will be calculated and recorded.

6.1.4 Timer Test

The timer test application in the benchmark is comprised of two tests: a one-shot timer test and a
periodic timer test. Since there is no RTSJ implementation in the chosen test virtual machines, the
timer classes used in these two tests are different from the OneShotTimer and PeriodicTimer defined
in RTSJ. In these two tests, the common timer class: java.util.Timer and the corresponding interface
java.util.TimerTask will be used and examined.

 77

6.1.4.1 One-shot Timer Test

The one-shot timer test, as its name indicates, inspects the time precision of the timer that only
releases once. This test make use of the method schedule(TimerTask task, long delay) in the class
java.util.Timer to define the task and its one-shot release time. The time period from this method
invoked to the run() method of the scheduled task is called will be measured by the high-resolution
timer, in such a way that the time difference between the expected release time and actual value can
be determined and recorded. The main workflow of this test can be shown by Figure 6-7.

Such one-time tests can be repeated for a configured number of times for the convenience of test
deployment and results collection. The average high-resolution timer overhead is removed from the
raw results.

Figure 6-7 Sequence Diagram: One-shot timer test

6.1.4.2 Periodic Timer Test

The period timer test is conceptually very similar with the one-shot timer test. It also aims to test the
precision of the java.util.Timer. Instead of examining the release of the task only once, this test
inspects the precision of a series of periodic releases of one task scheduled by the timer. Like the one-
shot timer test, the high-resolution timer is used to measure the actual release time and its overhead
will also be considered.

6.1.5 JNI Access Time Test

Java Native Interface (JNI) is a very effective technology to connect java application with the
platform dependent native codes or libraries, such as hardware driver or necessary service APIs
provided by the operating system. As for the embedded system development domain, JNI is even
more essential for the Java implementation. Therefore, the stability and predictability of JNI access is
a very important criterion to evaluate a certain real-time Java solution.

The time cost of a JNI access can be divided into two parts:

�� The time for the Java program to enter and leave the native interface.

 78

�� The time for the native code to interact with the local library

Apparently, the second part of the time cost could only be determined according to the specific library.
In case of one real-time application’s implementation, the predictability of the native library should
be examined and proved by other means rather than within the Java environment. Therefore, in the
JNI test of this thesis, only the first part of the time cost will be considered and examined.

According to the ways of interacting with native interface, the JNI test in this thesis is classified into
the following seven types:

�� Get a byte value from native interface

�� Get an int value from native interface

�� Get a double value from native interface

�� Get a byte array with predefined length from the native interface

�� Inform the native interface to make a call-back to the Java program

�� Inform the native interface to modify a member variable of Java

�� Inform the native interface to modify a parameter which is passed to it

Each of these seven ways of accessing JNI is implemented both at the Java side and at the native side.
The time costs of them are recorded with the help of high-resolution timer. The time overhead of
high-resolution timer is necessarily taken into consideration because this overhead is relatively too
large to be neglected. Furthermore, all the above tests can be iterated for a pre-configured number of
times for the convenience of large-scale tests.

Figure 6-8 Class Diagram: asynchronous event handling test

 79

6.1.6 Asynchronous Event Handling Test

As mentioned in 4.2.5, in RTSJ, the mechanism to effectively handle large amount of asynchronous
events is specified. The main idea behind this mechanism is to use less threads while at the same time
to handle the asynchronous event in a thread-like way (The run() method of an instance of
AsyncEventHandler is invoked just like a thread). However, for a non-RTSJ supportive real-time Java
virtual machine, there is no such mechanism and the developer has to manage it on the application
level. Since none of the Java virtual machines to be tested in this thesis follows RTSJ, in order to
evaluate their capabilities of handling asynchronous events, an effective and generalized method is
designed and introduced in this thesis.

As shown in Figure 6-8, there are several asynchronous event classes defined in this test, they all
inherit from java.util.EventObject, the class AsyncEventGenerator take the responsibility of
generating these events and dispatching them to the corresponding registered handlers. The interfaces
between the AsyncEventGenerator and the handlers are defined by an AsyncEventListener Java
interface. Besides implementing this interface, all asynchronous event handler classes also extend
from Java Thread class.

Figure 6-9 Sequence Diagram: asynchronous event handling test

By now, the logic still seems similar with the usual event handling mechanism. The difference lies in
the design of the eventArrived() in the asynchronous event handler class. In this method, instead of
creating a new thread for every new arriving event, it only uses one thread throughout the time. Every
time one event arrives, this method will notify the thread it owns, handle the event and then suspend it
again. Such a handler can also register more than one event so that two or more events can share the

 80

same thread in this handler. The only drawback of this approach is that, if two events, which should
be handled by the same handler, arrive one after another in too short a period of time, that handler
may delay the handling of the latter one. Such weaknesses can only be fixed if an additional
mechanism as defined in RTSJ is provided by the underlying Java runtime environment. The detailed
workflow of this asynchronous event-handling test is described by a sequence diagram shown in
Figure 6-9.

In this test, through controlling the frequency of firing different kinds of asynchronous events, the
changes of event handling time will be recorded.

6.2 Sample Application Design and Implementation

The functions of the sample application have been specified in the previous chapter. In this section,
the design and some implementation issues will be clarified.

6.2.1 CAN Bus Access Library and its Predictability Concern

As mentioned in earlier chapter, the sample application of this thesis will be built on the CAN bus.
Therefore, the way to interact with CAN bus is a very important issue. This thesis adopts an existing
Java library developed in BMW-CarIT named J2CAN, which is made to provide a set of Java API for
the applications running on top of CAN. This library manipulates the raw frames received from the
native CAN driver, composes them into messages and notifies the registered message handlers. In
addition, J2CAN also takes the responsibility of sending CAN messages onto the bus.

The existing J2CAN library is not originally developed for the real-time applications. Therefore, the
temporal behavior of it is very hard to predict. In addition, the role of this library in the sample
application is the CAN message sender, receiver and dispatcher, which is the most time-critical part
of work and cannot be given a low priority and ignored. Apparently, for a serious real-time
application development, this kind of library should provide highly predictable behavior such as the
worst-execution time of sending and receiving a CAN message and so on.

Considering the goal of developing the sample application of this thesis is to demonstrate a way to
develop real-time automotive applications in Java and reveal the applicability of the chosen real-time
Java solutions. This thesis chooses to build upon J2CAN library and deploy an experiment-based
study on the temporal behavior of the functions in this library that are used in the sample application.
The main idea of this experiment-based study is that, by deploying a large amount of black-box tests
to the specific functions in the library, the worst-case execution time of these functions are retrieved
by the statistical methods. These data will consequently be used to calculate the worst-case execution
time in the sample application so as to apply the scheduling analysis.

A potential problem of such an approach is, when analyzing some bad or even failed cases in the final
results, it could be hard to distinguish whether the fault exists in the target Java platform or it is
caused by the exceptional temporal behavior of the non-real-time library. An easy way to avoid such
a confusing situation is to examine the temporal behavior of the non-real-time library throughout the
time, then, when the failure occurs, the causes of the failure can be located by examining the log. If

 81

the temporal behavior of the non-real-time library doesn’t exceed the worst-case execution times that
are used in the scheduling analysis, the fault should then belong to the target real-time Java platform.

6.2.2 Data Structures of the Sample Application

Figure 6-10 Class Diagram of the sample application

The data structure of the sample application can be shown by the class diagram in Figure 6-10. First,
a CANBusGatewayController is defined to group and manage all the handlers, it takes the
responsibility to register, remove message listeners and to start, stop all handlers. In addition, it also
provides some necessary services for the handlers to use, such as sending messages on the CAN bus
and so on. In order to handle the four kinds of messages as defined in 5.2, four handler classes were
defined. They are, SpeedMsgHandler, SteeringWheelAngleMsgHandler, TirePressureMsgHandler
and ObstacleDistanceMsgHandler. To make the design of this sample application more extensible, a
CANMessageHandler class is abstracted from the four concrete handler classes so that the
CANBusGatewayController class can treat all the handlers in the same way. Thus, to extend the
handler set, one can simply define a handler class that inherits CANMessageHandler and add it to the
controller class, then the controller will group it with the existing handlers and manage them together.
Of course, to make sure the schedulability issue of the new task set, the necessary scheduling analysis
work should be taken in advance.

 82

6.2.3 Workflow of the Sample Application

The implementation of the sample application uses the event handling mechanism in the
asynchronous event-handling test for a reference. This is because the periodic arrival of the CAN
messages can be taken as the asynchronous events, and also they all satisfy that their release
frequency won’t exceed the capability of their handlers since none of them has a deadline larger than
its period.

Figure 6-11 Sequence Diagram for Sample Application: start all handlers

The startup time workflow of the sample application can be shown by the sequence diagram in Figure
6-11. First, the main thread creates all the necessary handlers and add them to the instance of
CANBusGatewayController class; in the second step, the gateway controller invokes all the
registerListener() methods of the handlers; and then, it starts all the handlers by invoking their
startHandling() methods. This method, for each handler, will get prepared to handle the specific CAN
message by starting and suspending its thread.

After the handlers are started, they can begin to handle the CAN messages periodically. The sequence
diagram in Figure 6-12 describes a typical scenario of the message handling workflow inside a
handler. When the handleNewMessage() method in a handler is invoked by the event dispatcher (in
this case, the function provided by the existing CAN access library), the handler will notify the thread

 83

it holds and put it into the runnable state. Then the thread will contest for the CPU time according to
its priority. Once the thread gets the chance to execute, it will possibly collect the necessary data for
message checking, check the message content and send out the control message if necessary. After all
these tasks completed, it will suspend itself again and be ready for the next period of release.

Figure 6-12 Sequence Diagram for Sample Application: handle new message

The end stage of the sample application is very similar with the startup time. The main thread
awakens itself and consequently calls the stopAllHandlers() and unregisterListeners() methods in the
gateway controller object, then the controller will stop the handlers one by one and unregister them
from their corresponding messages.

6.3 Remote Graphic Controller for the Benchmark Application

In this thesis, to ease the test configuration and deployment work as well as the result collection and
analysis work, a remote graphic controller application is designed and implemented. The main idea
behind this remote graphic controller application is that, setting up a connection between the target
devices (the gateway ECU) and the tester’s PC and using it for transferring the test parameters to the
target device at the startup time of the test and gathering the test results after the test completes. The
remote graphic controller application makes use of the existing LAN connection between the target
device and the tester’s PC in the physical and data-link layer and sets up a TCP connection in the
transport layer. In addition, the graphic package javax.swing are used to build the graphic user
interface on the PC side and Java socket technology is used to make up the communication between
two ends. One screen-shot of the remote graphic controller application on the PC side can be shown
in Figure 6-13

 84

Figure 6-13 Screen-shot of the Remote Graphic Controller for the benchmark application

6.3.1 Runtime Overhead and Temporal Influence Issues

Apparently, the remote control architecture requires addition of more logic on the target device side
and will consequently increase the workload of the benchmark application running on the target
device. Therefore, how much these overheads influence the runtime performance and even
predictability must be considered.

Let us first examine the workflow of the remote controlling test as shown in Figure 6-14. All the
communication actions on the side of target device only happen either before the initialization of the
test or after the results gathered. Therefore, except for the memory footprint occupied by the
necessary communication objects, there is no other overhead to the runtime performance or temporal
behavior of the benchmark test, and the memory footprint of the Java socket can be taken as the
memory space occupied by the non-real-time tasks coexisting in the Java environment or a
prerequisite utility object to load at the initial stage of the benchmark application. Thus the overhead
brought by the remote control function into the benchmark application can be accepted.

 85

Figure 6-14 Sequence diagram: deploy benchmark test through remote control

6.3.2 Automatic Graphic Chart Generating Function

To better analyze the results of the benchmark tests, the remote graphic controller application in this
thesis provides an automatic graphic chart generating function, which can generate the graphic chart
immediately after the test results returned from the target device. One sample output is shown in
Figure 6-15.

Figure 6-15 A sample chart generated by the remote graphic controller application

 86

This function can greatly reduce the time used for the test results visualization. Furthermore, the
impression directly gotten from the graphic chart can also help the tester to adjust the test parameters
quickly so that a more effective and convincing test can be deployed in a short period of time.

6.4 Estimation of Implementation Workload in this Thesis

After the all the modules and applications designed and implemented in this thesis, altogether, there
are more than fifty Java classes, four native C files generated. By a rough estimation, the program
workload of this thesis is about eight thousand code lines.

The package structure of the Java classes implemented in this thesis can be shown in Figure 6-16.

Figure 6-16 Package structure of the implementation work in this thesis

 87

Chapter 7 Test Deployment and Result Analysis

In this chapter, the benchmark and sample application implemented in this thesis will be deployed on
different real-time and non-real-time Java virtual machines on the target to compare and evaluate the
real-time Java solutions. First, the test-bed environment will be described; and then the test
deployment strategy follows; then in the third section of this chapter, the test cases and result analysis
are brought out for both benchmark application test and sample real-time application test.

7.1 Test-bed Environment

In order to get more realistic data from the tests and make the evaluation more convincing, in this
thesis, a test bed environment, which is set up with several in-car real components, will be put into
use for the test. The real ECUs (Electrical Control Units), which are already adopted in the real cars,
will generate the real traffic in the bus and make the most realistic environment for the tests.

In this thesis, the CAN (Controller Access Network) bus system will be chosen as the underlying
communication bus for the evaluation work. The reason is because the CAN bus has the many
eligible features to serve for the real-time communication as mentioned in Chapter 3. The topology of
the ECUs in this environment will be set up into a centralized-gateway style as shown in Figure 7-1.

Figure 7-1 Test bed hardware environment

The central gateway ECU will be the target device used in this thesis. All the candidate Java virtual
machines will be tried running on it with the benchmark applications and the automotive sample
application. The hardware and software environment in the target device are listed below:

��Target Hardware Device

Processor: Intel Transmeta 200MHz

RAM: 128 MB

Flash ROM: 512MB

 88

Network Interfaces:

Fast speed CAN Bus Adapter, Low speed CAN Bus Adapter, MOST Bus Adapter, Ethernet Adapter

��Target OS

QNX Neutrino RTOS v 6.2.1

�� Java Environments to be installed and tested on

IBM J9 virtual machine version 2.0

PERC Virtual Machine version 4.1

��Evaluation Applications

Real-time Java benchmark applications

One sample automotive real-time application

��Third-party Java Library

A Non-real-time CAN Access Module (used in the sample application)

Test-bed Hardware Performance Consideration

The hardware platform used in this thesis has a reasonably higher performance than the typical ones
adopted in the real cars in the market. The reason can be explained by the following two points: First,
a better hardware platform can allow more real-time java solutions to take part into the evaluation
work and consequently provide more convincing evaluation, since some solutions ask for more
memory space and more powerful CPU than the existing real devices; Secondly, Moore’s law
indicates that the hardware performance doubles every couple of years. The exponential growth will
result in increased performance and decreased cost in every domain of the computer world including
the embedded systems, therefore with a higher performance hardware platform, the evaluation work
will reveal the future of real-time java more prospectively, and at the same time constructively point
out a way of doing further prototypes later on.

7.2 Test Deployment Strategy

There are many variations when deploying one Java application. These variations include choosing
different execution modes, tuning compiler behaviors and adjusting execution options etc. This
section describes the tradeoffs made on these options and the final decisions made for the tests in this
thesis.

7.2.1 Alternatives of Execution Mode

Basically, there are three ways for the Java application running on the embedded devices.

�� Pure Interpreting

 89

The Java byte-code instructions of the class files are interpreted by the interpreter one by one without
any performance optimization. Such way of running will cost the smallest memory footprint but
cause a very low performance.

�� Interpreting with Just-In-Time (JIT) compiling

The Java byte-code will be compiled into platform dependant machine code at runtime by the JIT
compiler. In such a way, the execution performance can be well improved. But the compiling work at
runtime also poses the impacts on the predictability of the Java application and makes its temporal
behaviors difficult to predict.

��Ahead-Of-Time compiling and executing natively

All the Java byte-codes are compiled by the AOT compiler before the runtime. The output of the
compilation will be a binary image file that can directly run on the target platform. In such a way, the
running performance of the application can be greatly improved, and the temporal behaviors of the
Java application are also more deterministic. The only drawback of this method is that, the AOT
compiled binary file costs larger spaces both on the hard disk and in the memory than the previous
two methods.

In practice, these three ways of execution are not exclusive to one another and can be combined
together to run a single Java application. For example, you can AOT compile only some frequently
used classes in the application and leave other classes to be dynamically loaded and interpreted (with
or without JIT compiling) at runtime.

For the two chosen Java virtual machines in this thesis, their support for the above three execution
options can be summarized in the following table:

Execution Option

JVM Interpreting JIT compilation AOT compilation

IBM J9 Yes Configurable Yes

PERC VM Yes Configurable Yes

Table 7-1 Execution Options of the chosen JVMs

Considering the runtime performance, predictability and evaluation fairness issues, in this thesis, we
will use the AOT compilation in all the tests, including the benchmark test and the sample application
test.

7.2.2 AOT Compilation Settings and Execution Options

There are many options to do the AOT compilation to a target Java package. The most accurate AOT
compilation allows the user to decide whether every single method in the java classes needs to be
AOT compiled or not. Both J9 and PERC virtual machines provide such options. However, to make
the decision on which class or methods to be AOT compiled is an elaborate work and tends to be very
time-consuming. Relatively, an easier approach will be pre-compiling all the classes needed by the

 90

target application. This approach also excludes the possibilities that loading un-compiled classes may
induce unpredictable temporal behavior to the application at runtime.

Another important issue when doing the compilation is that, how to treat the native JNI libraries used
by the target application. There are two ways to do this. One is to statically link the native libraries
into the image file; the other one is to dynamically load the libraries at runtime. PERC virtual
machine supports both of the two options, but J9 only supports the second option, which is the
dynamic loading approach.

Considering the predictability of the application at runtime, the first approach seems to excel the
second one. But, on the other hand, these JNI libraries normally only take the responsibility of linking
Java application to the other native libraries such as device driver or system libraries. Apparently,
those libraries cannot be statically compiled into the final image anyway. Therefore, the overhead of
dynamic loading native libraries cannot be avoided. Additionally, such loading overhead normally
takes place when the first time virtual machine loads the class that declares to use JNI. To avoid the
influence of such overhead, one application can just explicitly load these classes in the startup stage
for a warming up, thus for the whole running period, the system doesn’t need to concern it any more.
So, in this thesis, in order to unify the settings for the two test virtual machines, the dynamic loading
approach is adopted.

Since all the classes that may be used at runtime are AOT compiled, the execution options for both of
the Java platforms are highly simplified. Neither classpath nor jit needs to be specified. In both cases,
the tester only needs to provide the JNI library path and then load the single compiled image file.

7.3 Test Results and Analysis

In this section, both the prepared benchmark applications and sample real-time application will be
deployed. All the test results will be recorded and analyzed, especially, the output of the benchmark
application will be visualized by the remote graphic controller application developed in this thesis.

7.3.1 Benchmark Application Test

7.3.1.1 Memory Allocation Time Test:

There are altogether four different test cases picked into this thesis. The detailed test cases and results
can be found in Appendix B 1, Appendix B 2, Appendix B 3 and Appendix B 4.

Result analysis:

The first test (Appendix B 1) shows that, when the benchmark application starts the memory
allocation test for the first time, the memory allocation time will suffer a long delay up to several
milliseconds. This may be caused by the following reason: since the AOT compiled image files are
several megabytes in size, the operating system may refuse to load it all into the RAM at one time
when it starts. Instead, the operating system may only load a part of the binary file and for the rest of
the file, the system will postpone the loading until that part of the code is explicitly called.

 91

Such unpredictability caused by memory and process manager of the operating system can be
minimized by taking some warming-up operations at the initialization time of the application. In such
a way, the compiled code that is needed in the application will be preloaded into the memory before
the actual work starts.

The second test (Appendix B 2) shows the situation after the startup stage of the memory allocation
test. The result got from PERC shows that the average allocation time is about 0.09 ms. During the
whole period of test, there is one peak value of allocation time going up to one millisecond. From the
memory status graphic, we can see that the garbage created during the test is successfully collected so
that the free memories in the heap are steadily kept at a high level. Whereas the result got from J9
shows that the average allocation time is about 0.03 ms, which is more satisfactory than PERC, but
the memory status indicates that the garbage is not collected in time and the free memories in the
heap decline rapidly. Such circumstance will consequently oblige the virtual machine to invoke one
garbage collection operation, where in J9 it could be very slow. In the third test, we will show the
impact in such a situation.

In the third test (Appendix B 3), a more intensive memory allocation test is deployed. This time, the
result got from PERC shows that, the memory allocation time isn’t affected by the heavy allocation
workload; the worst execution time is still lower than one millisecond. As for J9, the weakness of the
unpredictable garbage collector is exposed, though the average allocation time is still far below one
millisecond, but being influenced by the garbage collection work, there are several peak values
appearing which are close to or even above ten milliseconds. The difference of garbage collection
between PERC virtual machine and J9 can also be shown by the memory status charts of them. The
compact saw-toothed shape in the PERC chart explicitly shows the contribution of its incremental
garbage collector, whereas the severe free memory changes in J9 chart are clearly caused the
unpredictable garbage collector of it.

In the last memory allocation test (Appendix B 4), we tried to simulate the memory allocation
situation in the sample real-time application. Though the simulation is fairly rough, it can still help us
find out what the memory allocation situation in the sample application would look like. Through the
results got from PERC and J9, we can once again see the difference between the two kinds of garbage
collection mechanisms, the non-real-time one of J9 and the real-time one of PERC. In this test, the
worst-case allocation time in PERC is about 0.2 ms and this value in J9 is more than one ms.

Summary:

To summarize the results got from this memory allocation time test, we can say that, though IBM J9
wins the average allocation time in most of the tests, the incremental real-time garbage collector in
PERC virtual machine helps it achieve a much better worst-case allocation time than J9, which is
more important to the real-time application development.

7.3.1.2 Thread and Synchronization Test

��Thread Startup Time Test

The test parameters, test description and test results of this test can be found at Appendix B 5.

 92

Result Analysis:

First of all, the unsteady startup stage problem happening in the memory allocation time test is
recurring in this test. This once again proves that such kind of problems are caused by executable file
loading strategy of the operating system because by the time this test was deployed the whole
benchmark application had started for some time and several memory allocation time tests had been
deployed, but the startup stage of this test still cause the instability.

In the second test after the startup stage both of the test results got from PERC and J9 tend to be more
stable then. The PERC result shows that, the average thread startup time is about 1.1 ms and the
worst-case value is about 1.6 ms, which is possibly caused by the incremental garbage collection
work. As for J9, the result shows that, the average thread startup time is about 1.2 ms, and there is no
evident peak value appeared in this test. But when we prolong the test period and deploy it again, the
long period garbage collection work of J9 begins to show up (shown in the last chart of Appendix B
5). It causes the worst-case execution time run up to more than seventy milliseconds. Therefore, we
can say that, in this test, the impact of garbage collection still dominates the worst-case startup time.

��Thread Yielding Context-switch Time Test

The test parameters, test description and test results of this test can be found at Appendix B 6.

Result Analysis:

From the results of this test, we can see that, such yielding context-switch in PERC virtual machine is
very instable and may be interfered by the garbage collector and induce a long delay even up to
twenty milliseconds. As for J9, the result is quite satisfactory and stable.

��Thread Notification Context-switch Time Test

The test parameters, test description and test results of this test can be found at Appendix B 7.

Result Analysis:

In this test, the result of PERC shows that, such context-switch caused by one thread notifying
another is efficiently supported. The worst-case result in 100, 000 times of switching is kept below
2.3 ms. While, the result from J9 looks a little confusing because it shows that, very few context-
switch happened during the test, which makes the final result data meaningless. After further survey
on the thread scheduling strategy of J9, we find that in the J9 virtual machine, the thread dispatcher
does not strictly take the thread priority as the meaning of execution eligibility, instead it may choose
any thread from the queue of runnable threads to optimize the overall runtime performance no matter
what that thread’s priority is. With such mechanism, we can say that J9 does not provide the strict
priority-based environment which the real-time system demands. This fact will be reminded and
proved again in the later priority-inversion test.

Thread Entering Unlocked Monitor Time Test

The test parameters, test description and test results of this test can be found at Appendix B 8.

Result Analysis:

 93

This test shows that J9 beats PERC on both average time and worst-case execution time. But
reminding that, the garbage collection operation of PERC runs more frequently than J9, the default
GC period is about 250 ms as for J9 this period is highly dependent on the left free memories in the
heap. Apparently, the result we got from J9 doesn’t experience the garbage collection work for the
low memory cost and short period of runtime. Therefore, the worst-case result of PERC is more close
to the real value.

��Thread Priority Inversion Test

The test parameters, test description and test results of this test can be found at Appendix B 9.

Result Analysis:

In this test, we set the medial priority thread number to 5 so that the execution time difference
between the low priority thread and high priority thread can be distinguished better. One thing to
mention is that, all the medium priority threads have the same priority. Therefore, their sequence of
completion can be neglected.

The test result from PERC virtual machine shows that the priority inversion problem is effectively
solved. The high priority thread finishes first and the low priority thread is kept in the end. Such tests
have been repeated many times in practice and all the results show the same effect as this one.

The test results from J9 tend to be various. Three kinds of situations are attached in the appendix, the
first one shows that the low priority thread ends first and the high priority thread is delayed to finish
after four of the medial priority threads, which means priority inversion occurs; the second one shows,
the low priority thread still finishes first and then followed the high priority thread, all the medial
threads finish after them; the last result chart shows that priority inversion is avoided this time that
high priority thread finishes first and low priority thread is left in the end. The variations of the results
again prove that the thread scheduling mechanism in the J9 virtual machine does not strictly follow
the priority-based scheduling. That is to say, a thread with a highest priority does not always get the
first execution eligibility. This violates the policy of priority-based real-time system so that none of
the priority-based scheduling theory can be applied here.

��Summary

The thread and synchronization related tests in this thesis show that the difference of garbage
collection mechanisms between PERC and J9 also makes the conclusive effects to some of the tests
here, such as thread startup time test, thread yielding context switch time test and thread entering
unlocked monitor test. The situation in PERC shows that, the frequent incremental garbage collection
work makes the average results slower, but helps to achieve a better worst-case execution time. As for
J9, although the average results are quite satisfactory, the worst-case results of each of these tests are
all made much higher than PERC by the unpredictable garbage collector.

In the thread notification context-switch time test and priority inversion test, we find that PERC
strictly follows the priority-based scheduling policy and provides priority inheritance mechanism,
which successfully avoids the priority inversion problem. As for J9, it does not completely obey the
priority-based scheduling and makes other approaches to pursue a better average-case performance.

 94

This is why the notification context-switch test failed in J9 and in the priority inversion test J9 gets
different results from time to time.

7.3.1.3 Timer Test

The test parameters, test description and test results of this test can be found at Appendix B 10 and
Appendix B 11, respectively presenting the one-shot timer test and the periodic timer test.

Result Analysis:

As we can see from the results in the appendix, for both the one-shot timer test and periodic timer test,
the PERC virtual machine shows an instable performance caused by its garbage collector. The peak
timer release offset can be four to six milliseconds and happens frequently corresponding to the GC
period value. On the contrary, J9 shows much better results in these two tests. The release offsets of
the timer are controlled within one millisecond (without interference of the garbage collector).

One thing to mention is that the timer tests in the benchmark make use of the timer class in Java
standard library, which is java.util.Timer. The special timer provided by PERC in its extra library is
not applied because its specialties contradict with the generality pursued by this benchmark
application. A particular application, which is fixed to run in the PERC virtual machine, can consider
adopting such an approach.

7.3.1.4 Asynchronous Event Handling Test

There are two asynchronous event-handling test cases adopted and attached in this thesis. Their
parameters, test descriptions and test results can be found at Appendix B 12 and Appendix B 13.

Result Analysis:

Two asynchronous event-handling tests respectively represent the situation of one handler and the
situation of multiple handlers. The memory allocation task and calculation task of one handler is kept
the same in two tests. In addition, one low priority thread is inserted into the second test to add more
workload, and in each test, a symbolic deadline is set as a reference line in order to show the different
results got from two virtual machines more clearly.

The results of PERC in two tests show that, the response times of the asynchronous event are quite
steady and kept much lower than the predefined deadline. As for the results got from J9, the response
times seem to be surprisingly long and in both of the two tests, there exists missed deadlines, which
never happens in PERC.

As mentioned in the previous chapter, the asynchronous event-handling test intends to show an
overall performance of how the runtime environment handles the asynchronous events. The great
disparity shown in the results can be explained by the following two reasons:

�� The thread notification context-switch technique used in the asynchronous event-handling test is
not well supported by the J9 virtual machine for the reason we analyzed before.

�� The intensive memory allocating operations make the garbage collection work in J9 frequently
invoked and therefore cause many peak values that exceed the predefined deadline.

 95

7.3.1.5 JNI Access Time Test

There are two JNI access time test cases attached in this thesis. Their parameters, test descriptions and
test results of this test can be found at Appendix B 14 and Appendix B 15.

Result Analysis:

The first test mainly intends to show the performances of retrieving primitive data from JNI for both
virtual machines. From the results chart, we can see that the average access times of getting Java byte,
Java int and Java double are all faster than the values in PERC. In addition, the last two charts
attached in this test show that, the JNI access time of PERC can be delayed by the garbage collection
work and get a worst-case value up to more than twenty milliseconds. Although, theoretically, J9 may
have such problem too, after a large amount of tests with different kinds of parameters, no such
situation appears eventually.

The second test aims to show the performances of two virtual machines on retrieving data arrays from
JNI by several means. The test results shows that, J9 has slight advantages over PERC on the average
access time in all cases, including the ways of directly getting array as return value, JNI call back and
sending member array to JNI and bringing the values back. As for the worst-case values, PERC still
has unstable peak values for each way of retrieving the arrays. The worst-case JNI access time in
these cases is about 23 ms.

Summary:

In the JNI access time tests, we find that J9 has a satisfactory and stable performance in this field. For
most of the tests, J9 wins on both average access time and worst-case access time. As for PERC, it is
found to have trouble with preventing garbage collection interfering JNI access. Therefore, the JNI
access in PERC is more unpredictable than J9 for such reasons. Furthermore, PERC real-time Java
solution also provides an individual native interface solution for Java called PNI. It is not included in
the benchmark application for the compatibility issue.

7.3.2 Sample Application Test

For the sample application test, we will first deploy a scheduling analysis work to examine the
possible runtime behavior of all the tasks and verify their schedulability. After that, we will refer to
some of the results we got after running the sample application to analyze the contribution and
limitation of the scheduling work.

Before applying the scheduling analysis to the sample application, we should first check the
suitability of our target Java platforms: J9 and PERC virtual machine.

For IBM J9, a fatal problem, which makes the real-time scheduling work impossible to deploy, is that,
it does not strictly follow the priority-based scheduling policy, which is one of the prerequisites for
the fixed priority preemptive scheduling theory. Apparently, such violation will make all the
theorems and formulas we introduced in the previous chapter become inapplicable. Therefore, we
cannot apply these theories to the sample application when it is running on the J9 virtual machine.

 96

As for PERC virtual machine, both the theoretical study and the result of the benchmark tests have
proved that, it is a strictly priority-based preemptive system and it supports the priority inheritance
protocol to avoid unbound priority inversion problem. Therefore, the PERC virtual machine has the
basic attributes to apply the fixed priority preemptive scheduling theory.

Now we will try to do the scheduling analysis work step by step based on the benchmark results of
PERC virtual machine.

7.3.2.1 Scheduling Analysis on Sample Real-time Application

Scheduling theory:

Fixed-priority preemptive scheduling

Scheduling algorithm:

Deadline Monotonic Scheduling

Applicable formula:

The response time of each task n
i i iR J W= + , where n

iW is the converging value of a series of

number conducted by the following formula:

1

()

()
n

n i i
i i i sw j sw

j hp i j

W J
W B C C C C

T
+

∈

� �+= + + + +� �
� �� �

�

and iJ is the release jitter time for that task.

(For more information, one can refer to section 5.3 in this thesis)

Necessary parameters and their values:

The necessary parameters for applying the above formula can be shown in Table 7-2:

All Tasks Running in the System

Parameters CAN Message
Dispatcher

(0Task)

Obstacle
distance msg

handler
(1Task)

Speed msg
handler
(2Task)

Steering angle
msg handler

(3Task)

Tire pressure
msg handler

(4Task)

T 100 ms 100 ms 100 ms 200 ms 500 ms

D No 70 ms 100 ms 150 ms 200 ms

J No 4.0 ms 4.0 ms 4.0 ms 4.0 ms

B 0 6.0 ms 0 ms 0 ms 0 ms

swC 0.5 ms 0.5 ms 0.5 ms 0.5 ms 0.5 ms

 97

C 16.0 ms 37.0 ms 2.0 ms 36.0 ms 36.0 ms

P maxP max 1P − max 2P − max 3P − max 4P −

Table 7-2 Necessary parameters and their values for sample application scheduling analysis

Explanation for some of the values in Table 7-2:

1) CAN message dispatcher with its period T , execution time C and priority P:

The CAN message dispatcher thread resides in the CAN access library used by the sample
application. Its responsibility is to receive the CAN messages from the bus and notify their
handlers. The reason why it becomes a task is because the time from one message arriving to its
handler being notified cannot be neglected. Through a large amount of tests, we experimentally
get the worst-case execution time of this period of time, which is 4.0 ms in value. Therefore, this
message dispatcher should be taken as another real-time task and get involved into the
scheduling analysis. For the special and important role it plays, its priority is set to the highest
value among all the tasks. Its period can be determined by the shortest period of all the handlers,
which is 100 ms. As for the worst-case execution time, it is easy to prove that, in any specific
100 ms period at runtime, there are at most four messages arriving and being dispatched by the
dispatcher. Therefore, the execution of this message dispatcher could not exceed four time of
worst-case dispatching time: 4.0 ms, 16.0 ms is then got.

2) Release jitter time of the message handlers:

Since the message dispatcher has 4.0 ms of worst-case dispatching time and from the
experiments it also shows that the best-case dispatching time is only 0.1 ms long. Therefore, in a
handler’s view, the biggest release jitter is less than 4.0 ms.

3) Maximum blocking time:

From the priority inversion test on PERC, we have seen that the priority inversion problem is
avoided by the priority inheritance protocol. Therefore, according to Theorem 2-6 introduced in
chapter two, the obstacle distance message handler can at most be blocked twice by the lower
priority handlers. Furthermore, from the results of priority inversion test, we roughly take the
maximum execution time of the high priority thread in all the tests as the worst-case blocking
time in the sample application. In such a way, the maximum blocking time of obstacle distance
message handler is calculated out, which is 6.0ms in value.

4) Context-switch factor swC :

Though the thread yielding context-switch time test shows that, PERC has a very large worst-
case switching time for this type of context-switch, considering that such context-switch is never
used in the sample application, we just take the notification context-switch time as a reference.
Through picking the maximum notification context-switch time from all the tests, we set swC
0.5ms as its value.

5) Worst-case execution time C of all the handlers:

 98

Since in the sample application, the workflow in each handler is kept rather simple, the only
time-consuming part of the handling task is sending the control message to the bus. In each
handler, this part of work is accomplished by calling an API in the CAN access library.
Therefore, a set of black box tests is deployed to measure the worst-case execution time of
sending message to CAN. After many tests are deployed, the maximum value is recorded, which
is 35.0 ms (the peak value caused by the system loading delay is excluded here).

CPU utilization check:
5 5

1 1

16 37 2 36 36
0.16 0.37 0.02 0.18 0.072 0.802 1

100 100 100 200 500
i

i
i i i

C
U U

T= =

= = = + + + + = + + + + = <� �

Since 0.802 > 0.69, we must do an exact completion time analysis on this task set.

Exact completion time analysis:

CAN Message Dispatcher:

For the CAN message dispatcher: 0Task , it is a virtual task that we make to reflect the necessary

CPU cost by the CAN message dispatching work, and there is no explicit deadline for it. But
apparently, its response time should not exceed its period, which is 100ms:

0
0

1
0 0 0

2 1
0 0 0 0

1
0 0 0 0

0;

16.5;

16.5 ;

16.5 100

sw

sw

W

W B C C

W B C C W

R J W D

=

= + + =

= + + = =

= + = < =

So, the message dispatcher task is schedulable;

Obstacle Distance Message Handler (1Task):

0
1

0
1 1 1

1 1 1
(1)

1
2 11 1

1 1 1 1
(1)

2
1 1 1 1

0;

() 6 37 0.5 1 (16 0.5) 60;

() 6 37 0.5 1 (16 0.5) 60 ;

64 70

sw j sw
j hp j

sw j sw
j hp j

W

W J
W B C C C C

T

W J
W B C C C C W

T

R J W D

∈

∈

=

� �+= + + + + = + + + × + =� �
� �� �

� �+= + + + + = + + + × + = =� �
� �� �

= + = < =

�

�

Therefore, the obstacle distance message handler is also schedulable.

Speed Message Handler (2Task):

 99

0
2

0
1 2 2

2 2 2
(2)

1
2 2 2

2 2 2
(2)

1
2

2
2 2 2 2

0;

() 0 2 0.5 1 (16 0.5) 1 (37 0.5)

56.5;

() 0 2 0.5 1 (16 0.5) 1 (37 0.5)

56.5 ;

4 56.5 60.5

sw j sw
j hp j

sw j sw
j hp j

W

W J
W B C C C C

T

W J
W B C C C C

T

W

R J W D

∈

∈

=

� �+= + + + + = + + + × + + × +� �
� �� �

=

� �+= + + + + = + + + × + + × +� �
� �� �

= =

= + = + = < =

�

�

100

Therefore, the speed message handler is also schedulable.

Steering Angle Message Handler (3Task):

0
3

0
1 3 3

3 3 3
(3)

1
2 3 3

3 3 3
(3) (3)

0;

()

0 36 0.5 1 (16 0.5) 1 (37 0.5) 1 (2 0.5) 93;

93 4
() 0 36 0.5 ()

0 36 0.5 1 (16

sw j sw
j hp j

sw j sw j sw
j hp j hpj j

W

W J
W B C C C C

T

W J
W B C C C C C C

T T

∈

∈ ∈

=

� �+= + + + +� �
� �� �

= + + + × + + × + + × + =

� � � �+ += + + + + = + + + +� � � �
� � � �� � � �

= + + + × +

�

� �

1
3

2
3 3 3 3

0.5) 1 (37 0.5) 1 (2 0.5) 93 ;

4 93 97 150

W

R J W D

+ × + + × + = =

= + = + = < =

Therefore, the steering angle message handler is also schedulable.

Tire Pressure Message Handler(4Task):

0
4

0
1 4 4

4 4 4
(4)

1
2 4 4

4 4 4
(4) (4)

0;

()

0 36 0.5 1 (16 0.5) 1 (37 0.5) 1 (2 0.5) 1 (36 0.5) 129.5;

129.5 4
() 0 36 0.5 ()

sw j sw
j hp j

sw j sw j sw
j hp j hpj j

W

W J
W B C C C C

T

W J
W B C C C C C C

T T

∈

∈ ∈

=

� �+= + + + +� �
� �� �

= + + + × + + × + + × + + × + =

� � � �+ += + + + + = + + + +� � � �
� � � �� � � �

�

�

0 36 0.5 2 (16 0.5) 2 (37 0.5) 2 (2 0.5) 1 (36 0.5) 186;= + + + × + + × + + × + + × + =

�

 100

2
3 4 4

4 4 4
(4) (4)

2
4

3
4 4 4 4

186 4
() 0 36 0.5 ()

0 36 0.5 2 (16 0.5) 2 (37 0.5) 2 (2 0.5) 1 (36 0.5) 186 ;

4 186 190 200

sw j sw j sw
j hp j hpj j

W J
W B C C C C C C

T T

W

R J W D

∈ ∈

� � � �+ += + + + + = + + + +� � � �
� � � �� � � �

= + + + × + + × + + × + + × + = =

= + = + = < =

� �

Therefore, the tire pressure message handler is also schedulable.

Since all the tasks in the task set of sample application are schedulable, the whole application is
proved schedulable too. The scheduling analysis here also shows that the most critical task, whose
worst-case response time is closest to its deadline, is the obstacle distance message handler.

7.3.2.2 Test Results and their Analysis

Here are some results got from the sample application tests on the target (the system startup loading
overhead has been avoided by running some warm-up operations first):

After running the task for hours, the results can be shown in Figure 7-2:

Figure 7-2 Test results for the sample application

 101

Both of the result sets show that, the sample application keeps running without missing any task’s
deadline during the test period. However, the result we got from J9 cannot be verified by the
scheduling analysis. All we can do to verify this result is to deploy large amount of tests and examine
the results using statistical methods, so that from a probability point of view the real-time
performance of such approach can be reflected.

From the result we got from PERC, we can see that, the worst-case response times of all tasks are
much shorter than the value we got from the scheduling analysis, this may be caused by the following
reason:

For all handlers except speed message handler, the worst-case execution time of a task only happens
when they meet some critical situations. Though, through the program, we set the probabilities of
such situations relatively much higher than they are in reality. Still, such frequent variation of the task
execution time makes the probabilities of those worst cases very small.

The CAN access library adopted by the sample application shows great unpredictability. The best-
case sending and receiving message time is much shorter than the worst case. Therefore, using the
worst-case sending and receiving time in the scheduling analysis makes the final results too
pessimistic comparing the real data.

7.3.2.3 Contribution and Limitation of the Scheduling Analysis Work

The most important contribution of the scheduling analysis work is that it points out a way of
examining and verifying the schedulability of a real-time application. In addition, the feedback of the
scheduling analysis can also help the developer realize the most critical part of the application and
conduct some constructive improvements to the program.

The limitation of the scheduling analysis work on the sample application can be summarized as
follows:

�� The values of the necessary parameters are given by the results got from the benchmark
application tests and other black box tests on the CAN access library. Due to the lack of
theoretical support of such approach and the limited testing period in this thesis, the final data
used in the scheduling analysis may be not exact enough, which can make the result of
scheduling analysis deviates in some degree.

�� The incremental garbage collection work in PERC virtual machine is not included in the
scheduling analysis. Though the PERC virtual machine allows the developer to change the
priority of the garbage collector thread into the lowest value in the system, the garbage collection
work may still interfere the schedulability of the whole task set for its uninterrupted memory
copying operation issue. This is also one of the reasons why the PERC virtual machine is not
suitable for building the hard real-time system.

 102

Chapter 8 Conclusion and Future Prospects

In this final chapter, we will summarize the theoretical and experimental results we got in this thesis
and draw a conclusion. Then, some limitations of this thesis and the future prospects in this area are
discussed.

8.1 Summary of Results

From the survey on the theories in the real-time system design domain, we know that, to build a
predictable and steady real-time application with theoretical guarantee, a scheduling analysis work
must be accomplished to guide the development work. The most appropriate scheduling technique to
be applied in the Java language is the fixed priority preemptive scheduling theories. When doing the
fixed-priority preemptive scheduling analysis, some necessary attributes of the underlying real-time
platform, such as thread context switch overhead, priority inversion avoidance mechanism etc, should
be known in advance. Normally, such knowledge can be obtained in the following three ways:
product specification, specific vender-provided analysis tools, and individual test applications.
Among the three ways, results got from the first two are more efficient and more reliable; as for the
results got by means of individual test applications, they mainly rely on the large amount of
experiments and probability study and may not be as accurate and exact as the results got by the first
two methods. However, from the theoretical analysis on the available real-time Java solutions, we can
see that, none of them provides the first two kinds of supports. Their approaches are mainly
applicable to build the soft real-time applications based on empirical and experimental knowledge.

Although it is difficult to apply the scheduling analysis work on the available real-time Java products,
this thesis still makes a lot of effort to try this method out in order to illustrate a correct way of doing
hard real-time automotive applications in Java.

In the implementation part of this thesis a set of benchmark applications are designed to test and get
the necessary parameters. These parameters are summarized by the preliminary scheduling analysis
on the functions of a sample real-time automotive application. The functions of this sample
application are abstracted from the common behaviors of the real-time automotive applications
running on the gateway ECUs. The design of the sample application also uses an extensible pattern so
that it can be reused by the further evaluation work. Some additional tests are also added to the
benchmark applications to reveal the overall real-time capability of a specific Java platform.

The evaluation work of this thesis puts two embedded Java environment into test. One is IBM J9,
representing the most mature and steady non-real-time Java virtual machine in the embedded system
domain; the other one is the PERC virtual machine, which is one of the most influential real-time
Java solutions today. The test results got from the benchmark application show that, IBM J9 wins in
the average performance of memory allocation and some of the overall real-time capability test,
including timer precision test and JNI access time test. While on the other hand, the PERC virtual
machine shows the advantages in worst-case memory allocation time (especially under an intensive

 103

memory allocation scenario), asynchronous event handling test, thread context switch test and the
priority inversion avoidance test.

Particularly, the two-space copying real-time garbage collection mechanism provided by PERC
virtual machine seems still to cause some unpredictability during the tests. This may be since that for
a particular frequency of one periodic task, the PERC virtual machine allows developers to adjust the
virtual machine parameters, such as the GC period, to avoid the conflicts between garbage collection
work and memory allocation operations in the task. However, for the benchmark test of this thesis,
this approach is difficult to apply because the frequency of each test is frequently adjusted to try more
situations and it will bring much complexity to adjust the virtual machine parameters for every single
test. Therefore, considering the above issue, for a specific real-time application, the real-time
performance of the PERC virtual machine may be better than it shows in the benchmark test in some
degree.

For the sample real-time application, we deployed a scheduling analysis for its schedulability running
on PERC virtual machine based on the benchmark test results. The result of this scheduling analysis
work proves that, the sample application is schedulable on the PERC virtual machine. Since some of
J9’s attributes violate the priority-based scheduling policy, we cannot do the same work on J9 to
verify its results. Finally, the sample application test results shows that, all the chosen CAN messages
are handled successfully before the predefined deadlines in both of the Java platforms. The
contribution and limitation of such approaches are then analyzed respectively.

In summary, this thesis successfully accomplishes building a sample real-time application with the
guidance of deadline monotonic scheduling theory (only for PERC solution). The parameters used in
the scheduling analysis come from the experimental results which are got from the benchmark
application tests. Such an approach can guarantee that the deadlines of the real-time tasks are met in a
soft way.

During the test and evaluation, some existing difficulties for the real-time Java solutions today to be
applied in automotive systems are found and listed as follows:

�� Some solutions have too limited platforms support constraints to suit the automotive system’s
requirements, such as RTSJ implementations.

�� Some solutions are still immature to build large and complex real-time Java applications required
in the automotive systems.

�� For some solutions, there are lack of ways and tools to cater for the existing mature real-time
scheduling theories to build hard real-time systems

Nevertheless, there are also some remarkable progresses shown in the real-time Java domain, which
makes the future of real-time Java applied in automotive systems still bright and expectable:

�� Real Time Specification of Java has addressed most of the problems facing real-time Java and
raised a set of considerable methods to solve them.

�� Some approaches for developing soft real-time Java applications has emerged, these approaches
can be used to build non-safety-critical soft real-time applications based on empirical and
experimental knowledge.

 104

�� More and more companies and entities have devoted into the real-time Java domain so that more
mature research and products will emerge quickly.

8.2 Limitations and Future Prospects

The limitations of this thesis lie in the following two aspects:

�� Fixed target device and operating system limit the use of available real-time Java solutions.
Especially, none of the RTSJ implementations can fit in this environment, which makes the
implementation and testing part of this thesis lack variation.

�� To build the sample automotive application, the necessary CAN access library is not originally
designed for the real-time application. This causes the overall temporal behavior of the sample
application more unpredictable and also causes some problems and difficulties when applying
the scheduling analysis work for the sample application.

For the future prospects of this area, first, there is some expectancy for the real-time Java solution
providers:

�� There are still very few solutions for the hard real-time application development and hence we
expect to see more of them in the future. Such real-time Java solution should lean upon one
specific scheduling theory and provide the necessary parameters for the convenience of
deploying this scheduling analysis by either explicitly listing them in the product specification or
giving platform dependant low level tools to make it easy to obtain.

�� A specific real-time Java product is expected to provide the support of a wide range of embedded
platforms, so that the real-time application developers don’t need to switch to new platforms to
cater for changing a new product. This is also one of the benefits conventional Java provides.

�� As the theoretical analysis of this thesis shows, the additional semantics specified by RTSJ are
appropriate and convenient for helping the real-time application development in Java. After its
reference implementation releases, its applicability will be verified and improved. As more real-
time applications are developed following RTSJ, their experiences and practical knowledge can
be referred and introduced to the automotive system development.

Some future work for real-time Java approach in the automotive system domain:

�� Existing Java code reuse issues:

The existing Java applications that are not time critical can be reused directly by setting a low
priority in the system. However, the necessary attributes of these applications such as CPU
utilization, still need to be examined to prove that they have sufficient time to run and will not
starve.

The existing non-real-time applications, which are time critical or can directly determine the
upper-layer application’s predictability such as the CAN access library used in this thesis, cannot
gain the real-time capability by simply migrating them to a real-time Java environment for the
reasons we discussed in Chapter 4.Therefore, they should be redesigned following the real-time

 105

system design criteria in order to be used by the real-time system development. Additionally, the
scheduling analysis work is necessary to lead and verify the entire design work.

�� Building in-vehicle real-time function prototype using real-time Java technologies

Given the theoretical fundaments and practical experiences achieved in this thesis, future work in
this domain can be building in-vehicle realistic real-time function prototypes in real-time Java so
that the time for real-time Java being applied in automotive system won’t be too far away.

 106

Appendix A

Use-case Diagrams for the Benchmark Application

Appendix A Benchmark Application Use-case Diagram

 107

Appendix B

Benchmark Test Cases and Results

Memory Allocation Test 1
Test parameters:

Test description:

It is the first test after the benchmark application started on the target device.

Test results:

PERC virtual machine:

 108

IBM J9:

Appendix B 1 Memory Allocation Test 1

Memory Allocation Test 2
Test parameters:

The same as used in test case 1

Test description:

Following the first memory test.

Test results:

PERC virtual machine:

 109

IBM J9:

Appendix B 2 Memory Allocation Test 2

Memory Allocation Test 3
Test parameters:

Test description:

Allocating large size of memories in a high frequency after the startup stage of the benchmark
application

 110

Test results:

PERC virtual machine:

IBM J9:

Appendix B 3 Memory Allocation Test 3

 111

Memory Allocation Test 4
Test parameters:

Test description:

Sample application memory allocation circumstance simulation

Test results:

PERC virtual machine:

IBM J9:

Appendix B 4 Memory Allocation Test 4

 112

Thread Startup Time Test 1
Test parameters:

Test description:

Deploy the same test twice, one is on the startup stage of the application, the other one is after that

Test results:

PERC virtual machine: (the one on the left is the startup stage test)

IBM J9: (the one on the left is the startup stage test)

 113

When prolonging the test period, the result from J9 begins to suffer long time GC operation:

Appendix B 5 Thread Startup Time Test 1

Thread Yielding Context-switch Time Test
Test parameters:

Test number: 100

Test description:

Deploy twice, one on the startup stage, the other after the startup stage

Test results:

PERC virtual machine (the one on the left is the startup stage test)

IBM J9 (the one on the left is the startup stage test):

 114

Appendix B 6 Thread Yielding Context-switch Time Test

 115

Thread Notification Context-switch Time Test
Test parameter:

Test number: 100,000

Test description:

After the startup stage of the test application

Test results:

PERC virtual machine (without generating graphic charts due to the large test number)

IBM J9 (failed results)

Appendix B 7 Thread Notification Context-switch Time Test

 116

Thread Entering Unlocked Monitor Time Test
Test parameter:

Test number: 100,000

Test description:

After the startup stage of the test application

Test results:

PERC virtual machine (without generating graphic charts due to the large test number)

IBM J9

Appendix B 8 Thread Entering Unlocked Monitor Time Test

 117

Thread Priority Inversion Test
Test parameter:

Medial priority thread number: 5 (the five threads having the same priority)

Test description:

No further constraints

Test results:

PERC virtual machine (priority inversion avoided):

IBM J9 (three kinds of results, priority inversion often occurs)

 118

Appendix B 9 Thread Priority Inversion Test

One-shot Timer Test
Test parameter:

Timer release delay: 20 ms; test number: 50

Test description:

First testing on the startup stage, and then testing on the later steady stage

Test results:

PERC virtual machine (first one shows the startup scenario, second one shows the common behavior,
the third one is a special case happening sometimes):

 119

IBM J9 (first one shows the startup scenario, second one shows the common behavior, the third one is
a special case happening sometimes):

Appendix B 10 One-shot Timer Test

 120

Periodic Timer Test

Test parameter:

First release delay: 10 ms; period: 10 ms; test number: 500

Test description:

Testing on the steady stage after the application startup

Test results:

PERC virtual machine:

IBM J9:

Appendix B 11 Periodic Timer Test

 121

Asynchronous Event Handling Test 1
Test parameter:

Test description:

Testing on the steady stage after the application startup

Test results:

 PERC virtual machine:

 122

IBM J9:

Appendix B 12 Asynchronous Event Handling Test 1

 123

Asynchronous Event Handling Test 2
Test parameter:

Test description:

Testing on the steady stage after the application startup

Test results:

PERC virtual machine:

 124

IBM J9:

Appendix B 13 Asynchronous Event Handling Test 2

 125

JNI Access Time Test 1
Test parameter:

Test number: 10,000 (The last test use 100,000 to show the long period situation)

Test description:

After the benchmark application first loaded the JNI native library used in this test

Test results:

Get byte through JNI (PERC virtual machine VS IBM J9):

Get int through JNI (PERC virtual machine VS IBM J9):

 126

Get double through JNI (PERC virtual machine VS IBM J9):

After running 100000 times PERC virtual machine starts to show the peak value while J9 still
remains steady (left is PERC virtual machine)

Appendix B 14 JNI Access Time Test 1

 127

JNI Access Time Test 2
Test parameter:

Byte-array length: 100; Test number: 10,000

Test description:

After the benchmark application first loaded the JNI native library used in this test

Test results:

Get byte-array through JNI (PERC virtual machine VS IBM J9):

Some unstable peak value appears sometimes in PERC virtual machine, which never occurs to J9

Get byte-array through JNI call back (PERC virtual machine VS IBM J9):

 128

Get byte-array through passing member variable to JNI (PERC virtual machine VS IBM J9):

PERC virtual machine still shows instability[38]

Appendix B 15 JNI Access Time Test 2

 129

References

[1] Burns, A. & Wellings, A. Real-Time Systems and Programming Languages, 3rd edition,
Addison-Wesley, 2001

[2] Tokuda, H.; Mercer, C.W.; Ishikawa, Y.; Marchok, T.E.; Priority inversions in real-time
communication, Real Time Systems Symposium, 1989, Proceedings. , 5-7 Dec. 1989
Pages: 348 - 359

[3] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin and Turnbull. The Real-Time
Specification for Java, Addison-Wesley, 2000

[4] Real-Time Core Extensions. J Consortium. September 2000 [http://www.j-

consortium.org/rtjwg/rtce.1.0.14.pdf, June, 2004]

[5] Jamaica Real-time Java virtual machine [http://www.aicas.com, June, 2004]

[6] PERC Real-time Java virtual machine [http://www.newmonics.com, June, 2004]

[7] aJile Real-Time Java solution [http://www.ajile.com/ajevb100.htm, June, 2004]

[8] A. Burns, Scheduling Hard Real-Time Systems: A Review, Software Engineering Journal
6(3), pp. 116-128 (1991).

[9] Colnaric, M.; State of the art review paper: advances in embedded hard real-time systems
design, Industrial Electronics, 1999. ISIE '99. Proceedings of the IEEE International
Symposium on, Volume: 1, 12-16 July 1999, Pages:37 - 42 vol.1

[10] N. C. Audsley, A. Burns, M. Richardson, and A. Wellings. Hard Real-Time Scheduling:
The Deadline-Monotonic Approach. In Proceedings of the 8th IEEE Workshop on Real-
Time Operating Systems and Software, pages 133-137, May 1991

[11] Liu, C. L., J. W. Layland, Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment, Journal of the ACM 20(1) (1973) pp.46-61.

[12] Joseph, M., P. Pandya, Finding Response Times in a Real-Time System, BCS Computer
Journal (Vol. 29, No.5, Oct 86) pp.390-395

[13] Sha, L., Rajkumar, R. and Sathaye, S. S., Generalized rate-monotonic scheduling theory:
A framework for developing real-time systems, Proceedings of the IEEE, Vol. 82, No. 1,
January, 1994.

[14] Sha, L.; Rajkumar, R.; Lehoczky, J.P.; Priority inheritance protocols: an approach to
real-time synchronization Computers, IEEE Transactions on Volume: 39, Issue: 9, Sept.
1990, Pages: 1175 – 1185

 130

[15] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard real-time
systems. The Journal of Real-Time Systems, 1:27–60, 1989.

[16] B. Sprunt. Aperiodic task scheduling for real-time systems, Ph.D. thesis, Carnegie
Mellon University, 1990.

[17] Leung, J.Y.T., and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of
Periodic Real-Time Tasks, Perf. Eval. (Netherlands), 2, pp. 237-250, 1982

[18] A. Burns. Preemptive Priority-Based Scheduling: An Appropriate Engineering
Approach. In S. H. Son, editor, Advances in Real-Time Systems, pages 225-248. Prentice
Hall International, Inc., Englewood Cliffs, NJ, 1994.

[19] Leen, G.; Heffernan, D.; Expanding automotive electronic systems, IEEE Computer,
Volume: 35, Issue: 1 , Jan. 2002, Pages:88 - 93

[20] Deicke, A.: The Electronics Concepts of the new 7 Series. BMW intern, EE-1, 2003.

[21] OSEK/VDX Operating System 2.2.1 Specification [http://www.osek-vdx.org, June, 2004]

[22] OSGi Service Platform Release 3, [http://www.osgi.org/resources/spec_download.asp,
June, 2004]

[23] CAN Specification 2.0B, [http://www.can.bosch.com/docu/can2spec.pdf, June, 2004]

[24] A. Albert, W. Gerth, Evaluation and Comparison of Real-Time Performance of CAN
and TTCAN, Robert Bosch GmbH Proceedings 9th International CAN Conference; iCC
2003; Munich

[25] G. Leen and D. Heffernan; TTCAN: A new time-triggered controller area network.
Microprocessors and Microsystems, 26(2): 77–94, 2002

[26] R. Belschner, J. Berwanger, C. Ebner, H. Eisele, S. Fluhrer, T. Forest, T. F¨uhrer, F.
Hartwich, B. Hedenetz, R. Hugel, A. Knapp, J. Krammer, A. Millsap, B. M¨uller, M.
Peller, and A. Schedl. FlexRay – Requirements Specification, FlexRay Consortium,
Internet: http://www.flexray.com, Version 2.0.2, April 2002

[27] QNX Neutrino RTOS (v6.2.1) Book set, [http://www.qnx.com/developers/docs/
qnx_6.1_docs/qnxrtp/index.html, June, 2004]

[28] OSGi Expert Group Structure, [http://www.osgi.org/about/eg_overview.asp, June, 2004]

[29] Fridtjof Siebert, Bringing the full Power of Java Technology to Embedded Real-time
Applications, MSy'02 Embedded Systems in Mechatronics, 3-4. Oct 2002, Winterthur,
Switzerland [http://www.aicas.com/papers/msy02.pdf, June, 2004]

[30] L. Carnahan and M. Ruark, etc; Requirements for Real-Time Extensions for the Java
Platform, Sep, 1999 [http://www.nist.gov/rt-java, June, 2004]

[31] Bollella, G.; Gosling, J.; The real-time specification for Java, IEEE Computer, Volume:
33, Issue: 6, June 2000, Pages:47 - 54

 131

[32] L. Sha, R. Rajkumar, and J. Lehoczky, Real-Time Computing using Futurebus+, IEEE
Micro, June 1991, pp. 30-33; 95-99.

[33] PERC Whitepaper: Differentiating Features of the PERC Virtual Machine,
[http://www.newmonics.com/perceval/perc_whitepaper.shtml, June, 2004]

[34] Kelvin D. Nilsen: Doing Firm-Real-Time with J2SE APIs. OTM Workshops 2003: 371-
384

[35] Kelvin D. Nilsen: Using Java for Reusable Embedded Real-Time, Component Libraries,
Aonix, 2004

[36] Fridtjof Siebert, Hard Real-time Garbage Collection in Modern Object Oriented
Programming Languages, Invited talk for the Java User Group Switzerland WIP Session
Zürich, 7 February 2000, [http://www.aicas.com/papers/jugs_7-Feb-2000_slides.pdf, June,
2004]

[37] Jakob Axelsson: Holistic Object-Oriented Modelling of Distributed Automotive Real-
Time Control Applications. ISORC 1999: 85-92

[38] Corsaro, A.; Schmidt, D.C.; Evaluating real-time Java features and performance for
real-time embedded system; Real-Time and Embedded Technology and Applications
Symposium, 2002. Proceedings. Eighth IEEE, 24-27 Sept. 2002

