Implementation and Evaluation of the
Service Peer Discovery Protocol

&

o0 T W

DIEGO URDIALES DELGADO EKTHS

VETENSKAP
>S9 OCH KONST 9%

N

KTH Microelectronics
and Information Technology

Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LCN 2004-06

Implementation and Evaluation of the
Service Peer Discovery Protocol

Diego Urdiales Delgado

Master’s thesis report

Dept. of Microelectronics and Information Technlogy (IMIT)
Kungliga Tekniska Hogskolan, Stockholm

17 May 2004

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Abstract

This document is the final report of the master’s thesis “Implementation and
Evaluation of the Service Peer Discovery Protocol”, carried out at the Center
for Wireless Systems, KTH, Stockholm. This thesis addresses the problem of
service discovery in peer-to-peer mobile networks by implementing and
evaluating a previously designed protocol (the Service Peer Discovery
Protocol).

The main feature of peer-to-peer networks is that users connected to them
can communicate directly with each other, without the necessity of
interaction via a central point. However, in order for two network users (or
peers) to communicate, they must have a means to locate and address
each other, which is in general called a discovery protocol.

There are many different solutions for discovery protocols that work
efficiently in fixed or slow-moving networks, but full mobility introduces a
set of new difficulties for the discovery of peers and their services. The
potential changes in location, which can occur very often, the changes in IP
address that these changes may cause, and roaming between networks of
different kinds are good examples of these difficulties.

To solve these problems, a new Service Peer Discovery Protocol was
designed and a test application built. The next step towards the introduction
of this protocol was creating a working implementation, setting up a
suitable test environment, performing tests, and evaluating its
performance. This evaluation could lead to improvements in the protocol.
The aim of this thesis is to implement and document the Service Peer
Discovery Protocol, to carry out measurements of it, to evaluate the
efficiency of the protocol, and to suggest ways in which it could be
improved.

The Service Peer Discovery Protocol was found to be well targeted to
wireless, peer-to-peer networks, although improvements in the protocol
could make it more time and traffic-efficient while maintaining the same
level of performance.

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Sammanfattning

Detta ar den slutliga rapporten for examensarbetet "Implementation och
utvdrdering av Service Peer Discovery Protocol", utfért pa Center for
Wireless Systems, KTH i Stockholm. Uppsatsen behandlar problemet med
sokning efter tjanster i icke-hierarkiska (peer-to-peer) mobila natverk
genom att implementera och utvardera ett redan konstruerat protokoll
(Service Peer Discovery Protocol).

Den huvudsakliga fordelen med icke-hierarkiska natverk &r att anslutna
anvandare (parter), kan kommunicera direkt med varandra, utan att
behdva interagera med en central punkt. Dock maste metoder for att
lokalisera och adressera andra parter vara tillgangliga fér att parterna skall
kunna kommunicera, metoder som kallas sékprotokoll (discovery protocol).

Det finns manga olika sdkprotokollésningar som fungerar effektivt i fasta
eller ldngsamma mobila n&tverk, men med full mobilitet introduceras ett
antal nya svarigheter vid sékande efter parter och tjanster. Den potentiella
forandringen av position (vilken kan intraffa ofta), byte av IP-address som
dessa forandringar medfor, och forflyttning mellan olika typer av natverk, ar
exempel pa sadana svarigheter.

For att I6sa dessa problem, konstruerades protokollet Service Peer
Discovery Protocol och en testapplikation byggdes. Nasta steg mot en
introducering av detta protokoll var en fungerande implementation, en
lamplig testmiljo, utférandet av tester och en utvardering av prestandan.
Utvarderingen syftade till att forbattra protokollet. Syftet med detta
examensarbete ar att implementera och dokumentera protokollet Service
Peer Discovery Protocol, att géra matningar, att utvardera effektiviteten
samt att foresld forbattringar av protokollet.

Service Peer Discovery Protocol fanns vara val anpassat till
icke-hierarkiska trddlésa natverk. Dock torde férbattringar av protokollet
innebara tidseffektivare och trafikeffektivare beteende utan att
kompromissa prestandanivan.

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Acknowledgements

I would like to thank my examiner, Prof. Gerald Maguire, and my
supervisor, Andreas Wennlund, for their priceless dedication, help and
patience with me. Thanks, Professor, for prioritizing your students even
over your sleep...

Some fellow students or researchers have also been of great help: Roberto
Cascella, who helped me understand SPDP from the beginning; Kostas
Avegeropoulos, to whom I owe so much for his assistance, fruitful
comments, and company; Asim Jarrar, who provided me with the key to
unlock the protocol.

Without my friends, who support and listen and amuse and comfort, I would
not be able to do anything in life, let alone this master’s thesis. Thank you
Miguel, Amer, Agustin, Antonio, Joserra, Sara, Maria José..... and,
fortunately, many others.

Por ultimo, quiero dar las gracias a mi familia: a mi padre, a mi hermano, y

a mi querida mama, por quererme tanto, tanto, tanto. A vosotros os dedico
especialmente este pequeno fruto de mi esfuerzo.

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Table of contents

1

2

3

1 o Yo [T o oY PP 1
1.1 MOtIVAtION e e 1
1.2 GOAIS it e 2
1.3 Outline of the document ... e 2

BaCKgroUNde e 4
2.1 Peer-to-peer wireless SCEeNArioccvviiiiiiiiiiii i i aaeas 4
2.2 Service discovery in peer-to-peer networks.........coceiiiiiiiiiinin 6

2.2.1 INtrodUCHiON ... e 6

2.2.2 Service discovery in peer-to-peer file sharing applications 7

2.2.2.1 The Kazaa protoCol......cciiiiiiiiiiiii i 7
2.2.2.2 The Gnutella protocol......c.ccoviiiiiiii e 8
2.2.2.3 The Napster protocol......c.ccoiiiiiiiiiiiiiiii e 9

2.2.3 SLP - The Service Location Protocol..........cccviviiiiiiiiiininnnnns 10

A | o Y 12

2.2.5 UPnP - Universal Plug and Playccccoiiiiiiiiiiiiiieans 12

2.2.6 The JXTA Peer Discovery Protocol (PDP)cocovviiiiiiiiiiinnnns 13

2.2.6.1 XTI A e 13
2.2.6.2 The Peer Discovery Protocol (PDP)......ccccovviiiiiiiiiiiinnnnn. 14
2.3 SIP - The Session Initiation Protocol.........ccoviiiiiiiiiiiiciiineeae 15

2.3.1 INtrodUCHION ..ot 15

2.3.2 Functionality of SIP.....cciiiiiiiiii i e 15

2.3.3 Operation of SIP....ciiiiiiiii i 16

2.3.3.1 SIP trapezoid ...vviiiiii i e 16
2.3.3.2 SIP mMessage flow ...ccovieiiiiiiiiici i 17
2.3.3.3 SIP message header fields........cccviiiiiiiiiiiiiic e 18
2.3.3.4 Proxy functionalityc.ooeiiiiiii 19
2.3.3.5 SIP MEthOdS ..viiriiiiiiec e 19
2.3.4 SIP mobility SUPPOIt ..o 20
2.3.4.1 Device MOobility ...oovvviiiiii 20
2.3.4.2 Personal mobility ..o 20
2.3.4.3 Session MODbIlity c.oveiieiiii i 21
2.3.5 SIP extension SUPPOItcceiiiiiiiiie s s rieesanesaneanns 21
2.3.6 The SIP Specific Event Notification extension 22
2.3.6.1 Operation of the extensionc.cociiiviiiiii i 22
2.4 SPDP - The Service Peer Discovery Protocol........ccccevvviiiviinnnnnnn 23

2.4.1 INtrodUCHION .. .ot 23

2.4.2 Special requirements on SPDP.......cciiiiiiiiiiiiii 23

2.4.3 Operation of the protocol.......ccooiviiiiiiiiii e 26

2.4.3.1 Compatibility with the SIP Specific Event Notification
extension 26

2.4.3.2 Protocol architecture.......ocooiiiiiii e 26
2.4.3.3 ProtoCol MeSSages......oiviiiiiiiii e 27

A Service Peer Discovery Protocol implementationccooevvenn. 28
3.1 The implementation from the outside..........c.ccviiiiiiiiiiiiinnn, 28

3.1.1 Technology requiremMeENtScciiiiiiiiiiiii i i reaaaeas 28

3.1.1.1 Java Virtual Machine ... 28
301002 JAXB it 28

Implementation and Evaluation of the Service Peer Discovery Protocol

Diego Urdiales Delgado 17/05/2004
3.1.1.3 Ericsson SIP implementation........cccovviiiiiiiiiiiieen, 29
3.1.2 Interaction with the SIP implementation..............ccceviiiinnnns 29
3.1.3 File sStructure ..o 30
3.1.4 Running the implementationccooiiiiiii 31
3.2 Data model. ..o e 31
3.2.1 The SPDP message format......c.ccoiiiiiiiiiiiiiiiiiic e 32
3.2.2 The service file format........ccoieiiiiiii e 34
3.2.3 The peerfile format.....ccoiiiiiiiiii 36
3.3 Operation of the SPDP implementation...........coooeiiiiiiiiiiinnnen. 37
3.3.1 Threads in the implementationc.cccviiiiiiiiiiiie 37
3.3.2 Main thread floW....c.ooiiiiii e 39
3.3.3 SPDP engine thread flowcoooiiiiiiiiii 43
3.3.4 Request handler thread flowcccoiiiiiiiiiiii 44
4 Evaluation of the Service Peer Discovery Protocolc.covviviiiiinnnns 46
4.1 SPDP in comparison with other discovery protocols.................... 46
4.1.1 SPDP and the Service Location Protocol (SLP)cccevvuvnnnen. 46
4.1.2 SPDP and IXT A i 47
4.1.3 SPDP and Universal Plug and Play (UPNP)cccvviviiniiinnnnnn. 47
4.1.4 SPDP @nd JiNi.eeeuieiiiiiiii e 48
4.2 SPDP and SLP: comparison for simple test casesccevvenne. 48
4.2.1 SPDP 1St CASES. .t ittt 48
4.2.1.1 Test CONAItIONS ...cviiiei i e aaeaas 49
4.2.1.2 TSES ittt e 50
4.2.2 Discovery time and traffic measurementsccoceviinennnnn 54
4.2.2.1 TeSt 1 i 54
4.2.2.2 TeSt Ib ciiii i 55
4.2.2.3 TSt 3 it 56
4.2.2.4 TeSt 4 i 58
4.2.2.5 TeSE B criiiiiiiiiii i e 59
4.2.2.6 ST 7ttt s 61
4.2.2.7 TeSE B i 62
G T @0 [l [U1=] [0 o 1= PP 64
4.2.3.1 SLP is more traffic and time efficient in general............. 64
4.2.3.2 Considerations with respect to trafficcccovviiniinnnns 64
4.2.3.3 SPDP traffic saving for known servicesc.ccevnnnnn. 64
4.2.3.4 Considerations of non-successful searches.................... 65
4.2.3.5 Considerations of the peer-to-peer wireless scenario...... 65
4.3 PDP in real NetWOIrKS ...ciiuiiiiiii i a e 66
5 Improvements and future Workcoviiiiiiiiiiiii e 71
5.1 Optimization of the implementation ..o 71
5.2 Redundancy in the protocol messages........c.coviviiiiiiiiiiiiiiinennnns 71
5.3 Taking advantage of the context serverscccoviiiiiiiiiiiiiinnnns 71
5.4 Taking advantage of XML.....ccoiiiiiiiiiiii e 72
5.5 SPDPinareal setting....c.cooiiiiiiiiii e 72
S [(=] Lo == PP 73
PN 0] 1] g o [[0l P 77
PN T o) = Tl] £ 17/ 0 1T PP 77
B Service and peer files used for the testscccoviiiiiiiiiiiii i 79

Implementation and Evaluation of the Service Peer Discovery Protocol

Diego Urdiales Delgado

17/05/2004

List of figures

Figure 1:
Figure 2:

Figure 3:
Figure 4:

Figure 5:
Figure 6:
Figure 7:
Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:

Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:

GPRS and WLAN networks for SIP communication...................... 5

Messages exchanged between an SLP User Agent and a

SEIVICE AGENT.. ..o 10
SLP Directory Agent mMeSSages.ccooveeeiiiiiiiee e 11
SLP message exchange for active (top) and passive (bottom)

(o [T oo) V7= o SRRSO PRSP 11
SIP trapezoid and message floOW.........cccooiiiiiiiiiiii e 16
Interaction of the threads in the SPDP implementation............. 38
Flow diagram of the main thread..........cccooiiiiiiiii e 40
Graphical user interface to the SPDP-enabled SIP UA created

in class SpApUSErAgeNtGUI.......cccceeiiiiiiiiie e 41
The SPDP-enabled SIP User Agent GUI showing the results of

a successful SEArCh.........cco i . 43
Flow diagram of the SPDP engine thread...........ccccccoevvviviieennennne. 44
Flow diagram of the request handler thread.............cc.ccccuveenn. 45
Network and logical connectivity of the peers in the test

(S o{<] 0 =1 Lo J TSR UURTPPRPPPIO 49
Control flow of the main thread for the ten test cases............... 51
Discovery time distribution for Test 1 for SPDP and SLP............ 54
Discovery time distribution for Test 1b for SPDP and SLP......... 56
Discovery time distribution for Test 3 for SPDP and SLP............ 57
Discovery time distribution for Test 4 for SPDP and SLP............ 58
Discovery time distribution for Test 6 for SPDP and SLP............ 60
Discovery time distribution for Test 7 for SPDP and SLP............ 61
Discovery time distribution for Test 8 for SPDP and SLP............ 63
Network knowledge topologies: line (top left, worst case), full
mesh (top right, best case), random binary tree (bottom)....... 69

Vi

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

List of tables

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Table 6:

Table 7:

Table 8:

Service and peer files and service ids and values used for the

Traffic generated for the normal discovery for Test 1b by
SPDP @Nd SLP....eieeceee et 56

Traffic generated for the normal discovery for Test 3 by SPDP
ANA SLP...o et 58

Traffic generated for the normal discovery for Test 4 by SPDP
ANA SLP..ec e 59

Traffic generated for the normal discovery for Test 6 by SPDP

Traffic generated for the normal discovery for Test 8 by SPDP
AN SLP...o e 63

vii

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

1 Introduction

1.1 Motivation

Wireless networks are becoming more and more important in our life. The
major advantage that mobility and the absence of cables provide for
network users has gradually become more and more evident as the quality
gap in terms of bandwidth, delay, and other capabilities between wired
networks and wireless technologies has decreased.

The near ubiquity of such networks, which have various underlying
technologies such as General Packet Radio Service (GPRS) [1] or Wireless
Local Area Network (WLAN) [2], has made it possible and necessary to
study a scenario of wireless and mobile users who request connectivity from
their operators, but are otherwise independent peers in the network. In this
scenario of overlay peer-to-peer networks [3], as long as a user can get
connectivity, he/she can and will become a peer and thus will be able to
request or provide services, such as file sharing, voice/text/video
conversations, etc.

One of the first issues that arise when designing wireless peer-to-peer
networks is the way in which the different peers and services in the network
are discovered, considering that they can change their location and
availability and that bandwidth and battery power are often precious
resources for mobile devices. In his master’'s thesis “Reconfigurable
application networks through peer discovery and handovers” [4], Roberto
Cascella proposes a discovery protocol suitable for these kinds of networks:
the Service Peer Discovery Protocol (SPDP).

SPDP is an extension to the Session Initiation Protocol (SIP) [5]. It provides
network peers with a means to discover other peers and request services
from them, in a way that is independent of the underlying communication
technology. Furthermore, it defines a common scheme to describe services
and it supports unique identification of all peers by giving each of them a
name (the SIP Uniform Resource Identifier, i.e. SIP URI) which does not
change as the peer changes location or as a user changes the device with
which he/she connects to the network.

Once the specification of the protocol was ready, a working implementation
needed to be written to test the protocol. This master’s thesis aims to
design and document an implementation of the Service Peer Discovery
Protocol, to set up a test environment to analyze and measure the efficiency
of the proposed protocol, as well as to make suggestions for improvements.

This thesis was carried out in close relation to the Adaptive and Context-
Aware Services project [6] at the Center for Wireless Systems, Royal
Institute of Technology (KTH).

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

1.2 Goals

This thesis has tried to accomplish the following goals:

e To analyze previous work in the fields of service discovery protocols,
SIP and the Service Peer Discovery Protocol.

e To create a working implementation of the Service Peer Discovery
Protocol (SPDP) based on the protocol specification [4] and the
sample application built by Roberto Cascella. The focus was on
creating an illustrative and re-usable working implementation.

e To evaluate the performance of the Service Peer Discovery Protocol in
comparison with other available discovery protocols.

e To suggest ways in which the Service Peer Discovery Protocol could
be improved or extended.

The first goal is realized in the background of the thesis report (chapter 2).
The implementation created is described in chapter 3. The results and
conclusions of the evaluation are contained in chapter 4. Finally, the
suggested changes and improvements are detailed in chapter 5.

1.3 Outline of the document

After this introduction, where the motivation and the goals of this thesis
are explained, comes the background section, which addresses a number
of topics that are closely related with the subject of the thesis. First, the
scenario for which the SPDP protocol was designed is described and
analyzed. Since SPDP is to be used in a wireless, peer-to-peer networking
environment, the basics of such an environment are described. Then, some
strategies for service discovery that are already in place in fixed networks
are described, as an introduction to the proposed SPDP protocol. The
functionality and operation of SIP, the session establishment protocol upon
which SPDP is built, is examined in the third section. Finally, the Service
Peer Discovery Protocol itself is explained in the last section of the
background.

In the third chapter, the proposed implementation of SPDP is thoroughly
described and documented. Both the external interface to the
implementation - the requirements of the program, its interactions with the
Session Initiation Protocol, and the practical information to actually use the
software, and its internal operation are described in detail. Internally, the
focus is on the data structures used by the protocol and the thread model
that governs its operation.

Chapter 4 contains the evaluation of the protocol. In order to evaluate the
protocol, two approaches were taken. Firstly, some simple test cases were
designed in order to perform some comparative measurements of SPDP and

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

another discovery protocol, the Service Location Protocol (SLP) [7]. Then,
the suitability of SPDP for more realistic, complex scenarios was examined
from a theoretical point of view. The outcome of the evaluation is
summarized in some conclusions included in this chapter.

Both evaluation stages led to several proposals for improvements to the
protocol that are suggested as future work. Those are detailed in the fifth
and last chapter.

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

2 Background

2.1 Peer-to-peer wireless scenario

Peer-to-peer is a communications model in which all parties are equal and
can initiate communication with each other [8]. This is what distinguishes
the peer-to-peer model from the client/server model, where it is up to
clients to begin communication sessions whereas servers simply wait for
requests. In a peer-to-peer network, each node (called a peer) can act as a
client and a server at the same time. Furthermore, in the peer-to-peer
model, peers interact directly with each other, as opposed to a centralized
model where all communication goes through a central point.

Surely the most successful and widespread peer-to-peer application so far
has been file sharing. Napster [9], Gnutella [10], and Kazaa [11] are some
of the most famous peer-to-peer networking applications, which allow users
to access each other’s files. Such has been their success that, although
peer-to-peer refers to a model where many different kinds of applications
could fit, its name is nowadays synonymous with what should be more
properly called peer-to-peer file sharing.

The peer-to-peer scenario that this thesis refers to is not restricted to file
sharing or any other particular application. The protocol under study, SPDP,
provides generally applicable peer and service discovery mechanisms.
Although one of the discovered services could be access to files, this need
not be the case.

The main features of this scenario are that it is peer-to-peer and wireless.
The implications of a wireless scenario are many. Firstly, wireless access
implies that user mobility can be fast compared to the session duration and
frequent compared to the service inter-request time; here, “fast” means
that a peer may move (roam) several times during a single communication
session, and “frequent” means that there is a high probability that a peer is
not found in the same location as it was when the previous request was
initiated. Most of the ordinary peer-to-peer discovery protocols support
infrequent (as opposed to frequent) mobility by providing a set of core
peer addresses to connect to in case all the previously learned local
addresses are unavailable or unreachable. However, this can become very
inefficient if a peer has to resort to that core very often.

Secondly, in a wireless network there are typically also fixed nodes (such as
base stations or access points) that serve a particular area or cell. This is to
say that the scenario under study consists both of highly mobile peers
which potentially change their position rapidly and completely fixed peers
that are very likely to always be found in the same location (or otherwise
not be found at all in case of temporary or permanent unavailability).

Apart from being mobile or fixed, peers can be characterized by the
services they offer. Every peer can offer many different kinds of services;

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

examples are file sharing, voice calls, printing, connectivity, context
information,...

From a networking point of view, all peers will be considered to get network
connectivity from their network providers. This means that the scenario
under study consists of peers whose operators allow them to connect to the
network, and once they are connected they can interact with the rest of the
peers. This can fit for instance in an overlay peer-to-peer network scenario
such as the one described in [3]. However, SPDP [4] is also designhed to
work in networks without such infrastructure; here we assume that the
peers act as their own network operators.

As far as the rest of the protocol stack is concerned, all peers are
considered to utilize Mobile IP [12]. This provides the peers with mobility at
the IP level while they keep the same home address. Peers can make use of
different underlying technologies to connect to the network, specifically
GPRS and WLAN in this scenario. It will be assumed that WLAN availability
is restricted to a number of “hot spots” whereas GPRS is expected to
provide total coverage. A device can have interfaces connected to both
kinds of networks (possibly at the same time, since these networks can
overlap) and thus the device can have multiple IP addresses.

Finally, devices can be behind Network Address Translation (NAT) boxes,
which implies that they will not have a globally routable IP address, i.e.
their addresses will not be reachable from outside this NAT domain. As
proposed in [4], this difficulty can be solved by using a particular proxy
configuration depicted in Figure 1, which will be assumed in the network
under study.

s ¥ 5

WLAN network

2IP Proxy NAT

SIP Proxy

V — SIP Proxy GGSN NAT
GPRE network

Figure 1: GPRS and WLAN networks for SIP communication

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

2.2 Service discovery in peer-to-peer networks

2.2.1 Introduction

Roberto Cascella presented in his thesis [4] an overview of the different
strategies for service discovery in peer-to-peer networks. In a peer-to-peer
network, users interact directly with each other to perform a service or
exchange data. In order for a peer to know about other peers in the
network, several possibilities exist:

Static configuration: Every peer needs to know the other peers in
advance. Presence information (information about the present
availability of a given peer) may also be needed.

The advantage of this strategy is security: if all peers are known,
there is no risk of communicating with unknown, untrusted peers
(although a peer can be impersonated and other security threats
remain).

The disadvantage is scalability, because the introduction of a new
peer requires that all peers update their information (manually), and
thus the peer location databases grow linearly with the total number
of potential peers. Another disadvantage with this strategy is that
there is a tradeoff between accurate presence information and
signalling network traffic.

Centralized model: A central server, possibly replicated for
robustness, knows about all existing peers. Peers register with it and
request services from it. This server then redirects them to a suitable
destination peer.

This model is more scalable, since a peer only needs to register to be
able to reach and be reached by the rest of the peers. However, this
scalability is limited by the capacity of this central server and the
network links to it.

The main drawbacks are efficiency and flexibility, since it is easy for
the central server or its replicas to become congested. It also has low
reliability, since the central server takes part in every service request.

Decentralized model: In this model, there is no central control
point and no single node knows the whole network topology. This
model can be realized as a virtual network built on top of the IP
network, where each user has an id which is temporarily mapped to
an IP-address.

The Gnutella protocol is a version of such a model (see section
2.2.2.2), where a peer connects to the network and notifies to
possible neighbours, which are the neighbours known from manual
configuration or from previous sessions. When a peer needs a

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

service, it asks its neighbours for it, and if they cannot provide the
service themselves, they will in turn forward the request to their
neighbours. When the peer finally communicates with the service
providing peer, the two peers become logical neighbours of each
other. This model has the advantage that there is no need to rely on
central servers, nor is there dependence on a single node’s load.
Additionally, a single point of failure is avoided. However, a
disadvantage is that logic neighbours need not be physical or
topological neighbours, and hence communication cost may be higher
than necessary.

Another version is the multicast model, where requests for services
and presence notifications are sent to a well-known multicast
address. This eliminates the need to know how many listeners are
currently present, and most importantly avoids other peers having to
route or forward requests that are not intended for them.
Additionally, it identifies topological neighbours. However, multicast is
often only supported in a shared link and has little widespread
support which makes this model difficult to implement. In the
scenario studied, GPRS has no multicast capability.

There are several protocols and architectures that use one of the above
models to provide service and peer discovery in peer-to-peer networks.
Some of these will be described next.

2.2.2 Service discovery in peer-to-peer file sharing applications

In file sharing peer-to-peer applications, service discovery could be
considered as assimilated into the discovery of a particular file, and every
shared file can be considered an offered service. Three of the most widely
known peer-to-peer file sharing applications are Kazaa, Gnutella, and
Napster.

2.2.2.1 The Kazaa protocol

Kazaa [11] is one of the most famous peer-to-peer file sharing applications
that exist nowadays. A user who connects to the Kazaa network today is
likely to join more than 3 million other users, sharing files that total more
than 4.5 million gigabytes. This means that the Kazaa protocol has
successfully solved the problem of scalability.

The Kazaa protocol is secret and very little is thus known about its details.
However, its architecture is better known. The Kazaa protocol contemplates
three levels in the peer hierarchy [13]:

= Normal users
= Supernodes, which are users that have all the service information of

a particular zone, that is, they know all the available files of the users
subscribed to them.

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

= Central servers, whose addresses are built into the software and are
static global supernodes to which a user can always resort.

When a user connects to the Kazaa network, it uploads the list of the files it
wants to share to its assigned supernode (which it can know for example
from previous sessions) [14]. In this way, the supernode knows about all
the available files in a particular zone (i.e. for a subset of users).

Whenever a user wishes to search for a file, it requests its supernode to
search for this file. The supernode first performs the search locally within
the subset of users that it controls and returns the results to the user. The
user can then ask the supernode to seek more sources for the file, which
results in a new search performed within another supernode’s users in a
rather transparent way for the user, since it is the local supernode that
initiates the search, either iteratively or recursively.

This scheme clearly favours locally available content, which often yields
the highest downloading speeds. Besides, since the number of supernodes
is large, because many normal users act as supernodes more or less
unawares, their load can be kept very low and hence the risk of overload is
small. If the local hit ratio can be kept high (a condition that is favoured by
users sharing a very large number of files and by the fact that most of the
searches aim at a small subset of “popular” files), the model is very
scalable because of the very local scope of the searches.

There are however some tradeoffs in this model: first, if the file that is
being searched for is not very common, many consecutive searches will
be needed in order to find a source for it. Although there is an extremely
high number of users and file instances, most users ask for the same files.
Secondly, the assumption that local connections will provide the highest
downloading speeds is not always true, and this causes some high-speed
users to be trapped in slow-speed environments. In order to solve this,
tools are available in the Internet (such as KaZuperNodes [15]) that allow a
user to specify which supernodes to connect to. A high-speed user can
then connect via his/her high-speed environment to other high-speed
environments, but of course the local-favouring scheme is lost (this has
implications because of the geographical distribution of the files: a high-
speed user can elect to download “generally popular” files from users in the
high-speed environment, but may have to perform many consecutive
searches or eventually even resort to the local low-speed environment to
find “locally popular” files).

2.2.2.2 The Gnutella protocol

Gnutella [10] is another very popular protocol for peer-to-peer search.
Unlike Kazaa, the Gnutella protocol [16] is open and its specification is
available via the Internet.

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Peer discovery in Gnutella is performed through so-called Ping and Pong
messages. A peer connected to the network will periodically send Ping
messages to probe the network for newly connected peers. In response to a
Ping, a peer will send a Pong message with its address and possibly some
additional cached information about the addresses of other known peers in
the network. However, the protocol does not specify how a peer should
learn another peer’s address in order to connect to the network.

As far as service discovery is concerned, the availability of a source for a
certain file can be probed by sending a Query message for that file. This
message contains some file search criteria as well as a minimum speed for
the peer. A Query message will only generate a response (with a QueryHit
message) if a peer offers a source matching the criteria and has a speed
greater than the specified minimum.

As can be seen, the Gnutella architecture is purely peer-to-peer since there
is no hierarchy among the peers. Every peer acts on its own behalf in the
network. This gives increased robustness and fault-tolerance to the
network. Local content is preferred to remote content, since TimeToLive
(TTL) fields are included in both Ping and Query messages to limit their
scope.

Gnutella expects every peer to be able to route messages appropriately.
The routing scheme is an important part of the protocol, since every peer
needs to forward messages in the right way in order for peer and service
discovery to work.

The Gnutella protocol works on top of TCP and in cooperation with HTTP,
which is the protocol used for file downloading once a file instance has been
found and selected.

2.2.2.3 The Napster protocol

Napster [9] was the pioneering application in peer-to-peer file sharing. It
first appeared as an MP3 music file sharing application in 1999 and was
banned by law a few months later.

A Napster protocol specification can be found in [17], and although it is
unclear, it does give important information about the protocol architecture.
The Napster protocol relies on servers to set up communication between
clients, perform searches, and keep track of client status.

A client connects to a server and asks the server for the title and author of
the requested song. The server then performs a search and presents the
results to the client. When the client selects the source he/she wants to
download from, he/she notifies the server, which will connect him to the
other client to start their direct communication. For each connected client,
the server keeps track of the current number of uploads and downloads.
This status is kept coherent as clients also notify the server when an
upload/download is finished.

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Although this architecture seems suited for a single, omniscient server to
control the whole network (since nothing is said about inter-server
communication or server hierarchy), this approach has poor scalability and
has the possibility of a single point of failure. As can be seen, the Napster
protocol is markedly centralized in terms of service discovery, and hence
needs no peer discovery mechanism since every peer has to register with a
(well-known) server. This centralized model also made it easy to shut down
Napster since the servers were well known.

2.2.3 SLP - The Service Location Protocol

The Service Location Protocol [7], developed by the IETF [18] and specified
in RFC 2608, provides a scalable framework for service discovery and
selection in a network.

The SLP architecture [7, 19] specifies three different types of entities:

= User Agents (UA), which perform service discovery on behalf of the
client (user or application).

= Service Agents (SA), which advertise the location and attributes of
services.

= Directory Agents (DA), which collect service advertisements and store
service information.

According to the protocol specification [7], DAs are optional, and their
function is to provide scalability to the protocol in larger networks. If no DA
is present, UAs wanting to discover a particular service multicast a Service
Request to a well-known SA multicast address. A SA advertising a service
which matches the requirements in the request will then unicast a Service
Reply to the UA. The message exchange is depicted in Figure 2.

Multicast Service Regquest

A 4

User Agent Service Agent
Unicast Service Reply

A

Figure 2: Messages exchanged between an SLP User Agent and Service Agent

If a DA is present, it functions as a cache. SAs send Service Registration
messages containing all the services they advertise to the DA, and UAs send
unicast Service Requests to the DA. The message exchange is depicted in
Figure 3.

10

Implementation and Evaluation of the Service Peer Discovery Protocol

Diego Urdiales Delgado 17/05/2004
Unic. Service Request Unic. Serv Registration
User | Directory | Service

Unic. Service Reply Unicast Service Ack

Agent | Agent o Agent

Figure 3: SLP Directory Agent messages

The discovery of the DA can be done in three different ways, static, active
or passive [19]:

= With static discovery, User Agents and Service Agents obtain the
address of the Directory Agent through DHCP (Dynamic Host
Configuration Protocol [20]). The DHCP options for SLP are defined in
[21].

= With active discovery, UAs and SAs issue a multicast Service Request
for the “Directory Agent” service, to which the DA replies with a DA
Advertisement.

= With passive discovery, the DA sends an unsolicited DA
Advertisement infrequently (the protocol specification suggests one
advertisement every 3 hours), which SAs and UAs listen for. The
message exchange for active and passive discovery is depicted in

Figure 4.
Multicast Service Request “DA”
Unicast DA Advertisement
Useror | Directory
Service Agent Agent
Multicast DA Advertisement

Figure 4: SLP message exchange for active (top) and passive (bottom) discovery

Services are advertised in a standard manner using a Service URL and some
attributes. For instance, a service associated with a printer may look like
this:

service:printer://1d123.burgos.com:1020/queuel
scopes = X, Yy, Z
printer—-name = 1d123

11

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

printer-model = Epson 700
printer—location = Room A21

color—-supported = true
pages—-per-minute = 18
sides—-supported = one-sided

An important feature of the Service Location Protocol is that it is intended to
work within networks under cooperative administrative control, which
permits a policy to be implemented regarding security, multicast routing
and grouping of services and clients [7]. This makes it unfeasible for SLP to
be applied to the Internet as a whole. Furthermore, due to its architecture,
SLP may not necessarily scale for wide-area service discovery or for
networks with hundreds of thousands of clients or tens of thousands of
services. In the scenario studied, this means that either the DA must be
inside the NAT subnet or the UA must know the address via static
configuration (i.e. DHCP) or do active discovery.

2.2.4 Jini

Jini [22] is the extension to the Java [23] programming language which
deals with how devices connect with each other in order to form a so-called
Jini community, and how services are provided inside this community [4,
19].

As far as the architecture is concerned, Jini utilizes the same basic principles
as SLP. Jini uses a so-called Lookup Service as a directory service that
maintains the information about the available services in a community. At
least one copy of the Lookup Service needs to be present in the network
[24]. A client can discover a community using the Discovery protocol, and
then join the community using the Join protocol. After a client has joined a
community, it can access the services contained in the community’s Lookup
Service. Communication between entities is accomplished using Java RMI
(Remote Method Invocation).

The main feature that distinguishes Jini from SLP is that the Lookup Service
can contain both pointers to services and Java-based program code for
those services, which can be drivers, an interface, or other programs that
help the user access the service. This eliminates the need to pre-install
drivers for a service in the client.

However, Jini places the requirement that every client should have memory
and computational power to run a JVM (Java Virtual Machine), in order to be
part of a community and access or advertise services.

2.2.5 UPnP - Universal Plug and Play

Universal Plug and Play [25] is the architecture for peer-to-peer network
connectivity developed by Microsoft [26]. The UPnP architecture defines
three different entities [4, 24]:

12

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

= Devices: a device must have an IP address to be located and
addressed. A device may consist of one or more services plus other
embedded devices. Those services and embedded devices are
specified in the device’s XML description.

= Services: a service is the smallest unit of control. It is specified in an
XML description. Changes in service state and invocations of a service
may trigger events.

= Control points: they are responsible for discovering new devices in a
local network, learning about device and service changes, and
controlling devices.

UPNnP introduces several protocols that are used to accomplish the different
functions in the architecture:

= The Simple Service Discovery Protocol (SSDP) [27] deals with device
and service discovery. It allows for both announcement messages
(i.e. a device indicates its presence in the network to the control
points by sending a NOTIFY message to a well-known local multicast
address) and discovery messages (i.e. a control point tries to
discover new devices or services by multicasting an M_SEARCH
message to a well-known local multicast address).

= The General Event Notification Architecture (GENA) [28] provides a
standard architecture for event subscription and notification. It uses
HTTP over TCP and multicast UDP.

= The Simple Object Access Protocol (SOAP) [29] provides a standard
architecture for control message exchange.

A device’s unique identification in an UPnP network is its IP address. UPnP
requires all devices to be capable of self-configuring their IP addresses
using AutolIP [30] in case no DHCP server is present in the device’s local
network. In case of dynamic networks, where devices may change their IP
addresses, a host name can also be associated with each device. The
current IP address of the device can be obtained from the host name using
DNS. For small networks without a DNS server, UPnP defines Multicast DNS,
which uses link-local multicast messages for the queries.

2.2.6 The JXTA Peer Discovery Protocol (PDP)

2.2.6.1 JXTA

JXTA [31] is an acronym for “juxtaposed”. It is a set of protocols whose aim
is to offer standardized blocks that can simplify the creation of overlay peer-
to-peer networks [3]. JXTA provides a generic overlay network that any
application can use to provide peer-to-peer networking.

13

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

A JXTA network is composed of three types of entities:

= Peers are the endpoints of the network; they can discover and
communicate with each other

= Relays can represent peers in the network and receive messages on
their behalf. Relays help peers that are behind NAT/NAPT boxes
connect to the JXTA network. The relay receives and buffers the
messages intended for the peer; the peer periodically polls the relay
and retrieves the messages that were intended for itself. The peer
uses HTTP to poll the relay.

* Rendezvous aggregate information about peers and services in an
area.

The JXTA architecture is thus semi-distributed: there is no central point
(unlike a centralized network like Napster) but not every peer has routing
and naming responsibilities (such as in a fully distributed architecture like
Gnutella). This approach is intended to benefit from avoiding a single point
of failure while keeping the load on the peers low (by relieving the peers of
routing and naming).

JXTA is group-oriented, meaning that services are offered and accessed in
the context of a group. Upon initiation, a JXTA platform tries to join a super-
group called the world peer group. Inside a group, a peer can communicate
in both unicast or multicast fashion with other peers in the group. The Peer
Membership Protocol (PMP) allows a user to create secure groups by adding
a digital signature or certificate to the group advertisement. The rendezvous
responsible for group membership verifies that a peer wishing to join the
secure group presents a matching signature or certificate.

2.2.6.2 The Peer Discovery Protocol (PDP)

One of the seven protocols defined in the JXTA platform is the Peer
Discovery Protocol (PDP) [32], which is used to discover any published peer
resource. As JXTA is group-oriented, PDP allows a peer to discover
resources within its group. Notably, PDP is the discovery protocol of the
world peer group.

PDP uses Discovery Query messages to search for resources and Discovery
Response messages to advertise resources. The information units
exchanged in PDP are JXTA advertisements, which are descriptions of
resources, whether these are peers, peer groups, pipes, modules, or other
kinds of resources. Both Queries and Responses are formatted in XML.

A Discovery Query contains Attribute-Value pairs that specify the resource
that is being searched for, as well as a Threshold parameter which sets the
maximum number of advertisements that each of the responding peers
should provide in the Response. It can also contain the advertisement of the
requestor (in order to favour peer information spreading in the network).

14

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

A Discovery Response contains zero to Threshold advertisements for
resources matching the conditions of the Query, as well as possibly the
advertisement for the respondent. Every advertisement has an Expiration
attribute.

A key feature of PDP is that it does not provide a reliable service: a peer
that receives a Query is not required to respond; furthermore, a reliable
transport protocol is optional in PDP, resulting in zero, one, several or
redundant Responses arriving in response to a single Query. Finally, a peer
may receive a Response without having issued a Query for it, and should
interpret this as a publication of the advertisements contained in it.

A JXTA peer is configured to attempt to join the world peer group upon
start-up. Initially, the peer will issue a multicast Query in the local network
in order to find other world group peers or rendezvous. If there is no
response, then the peer will then try to contact known rendezvous following
a predefined list.

2.3 SIP — The Session Initiation Protocol

2.3.1 Introduction

The Session Initiation Protocol SIP [5] is a widely used protocol for session
establishment. SIP is an application-layer control (signalling) protocol for
creating, modifying, and terminating sessions with one or more participants.
Such sessions can be used for any communication or data exchange, such
as voice conversations, conferencing, streaming, file sharing,...

2.3.2 Functionality of SIP
SIP provides five main functions related to session management:

= User location: finding the user that is to be contacted.

= User availability: finding out the willingness of the called party to
start communication.

= User capabilities: finding out the communication capabilities of the
called user.

= Session setup: “ringing” and establishment of the session
parameters.

= Session management: transfer, termination, and modification of the
session, as well as invoking services.

SIP places no constraints on what the established session will be used for. It
works with other protocols such as RTP (Real-Time Protocol), RTSP (Real-

15

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Time Streaming Protocol), MEGACO (Media Gateway Control Protocol, for
interaction with the public switched telephone network), or SDP (Session
Description Protocol). It controls the session but not the media that is
exchanged during the session.

SIP does not directly provide services, but rather provides primitives that
can be used to implement a variety of services. SIP provides end-to-end
security and is compatible with both IPv4 and IPv6.

2.3.3 Operation of SIP

To study the basic operation of SIP, an example of a session establishment
between Sara and Diego will be examined. Sara wants to have a voice
conversation with Diego through the Internet.

Each user is identified by a so-called SIP URI (Uniform Resource Identifier).
Sara’s SIP URI is sip:sara@burgos.com and Diego’s SIP URI is
sip:diego@stockholm.com. There is also the possibility of using SIPS URIs,
which provide secure communications of the SIP messages using TLS.

2.3.3.1 SIP trapezoid

The basic operation of SIP is represented in the so-called SIP trapezoid and
the message flow depicted in Figure 5:

burgos.com stockholm
Proxy .com proxy
Sara Diego
< >
INVITE (1) R
v INVITE (2) _
. 100 Trying (3) g INVITE (4) o
- P 100 Trying (5) "
h P 180 Ringing (6)
P 180 Ringing (7) N
< 180 Ringing (8))
< 200 OK (9)
. 200 OK (10) ~
< 200 OK (11) <
ACK (12) >
Media session
< () >
< BYE (13)
200 OK (14) >

Figure 5: SIP trapezoid and message flow

16

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Requests are usually specified by their request method (INVITE, ACK, BYE),
and responses by a three-digit code plus a string (such as “180 Ringing”).

2.3.3.2 SIP message flow
The message flow is as follows:

1.

If Sara’s terminal does not yet know the machine at which Diego is
sitting right now, she issues an INVITE for Diego’s address-of-record
(public address) towards her domain’s proxy, whose address she
knows, for example, through manual configuration.

The proxy at Sara’s domain (burgos.com) performs a DNS search in
order to find the proxy at Diego’s domain (stockholm.com), it adds its
address in a Via header of the request, and then forwards the INVITE
message.

. The burgos.com proxy then sends Sara the temporary response “100

Trying”.

The proxy at stockholm.com looks for Diego’s currently registered
location in its location service and forwards the INVITE to him, after
adding its address in another Via header.

. Then, the proxy at stockholm.com sends the corresponding

temporary 100 Trying” response to the burgos.com proxy.

Upon receiving the INVITE, Diego’s machine sends the temporary
response “180 Ringing” back to its proxy; this indicates that Diego’s
voice terminal is ringing.

The “180 Ringing” response is propagated back to the burgos.com
proxy.

And finally Sara’s terminal receives the temporary 180 response
thanks to the fact that both proxies had added their addresses to the
request.

When Diego decides to answer using his voice terminal, a final “200
OK” response is generated.

10.It too is propagated back via both proxies.

11.And finally delivered to Sara’s terminal.

12.When the “200 OK” response reaches Sara, her terminal now knows

Diego’s actual location and sends an ACK message directly to him.
The proxies no longer take part in the subsequent communication,
unless otherwise specified. Now the media session can start. Usually,
both parties would have used the message bodies of their INVITE

17

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

(respectively “200 OK”) messages to exchange the session
parameters using, for instance, the Session Description Protocol
(SDP). Furthermore, the session parameters can be changed during
the media session by any of the parties by issuing another INVITE
message with the new parameters. Should the other party agree, the
changes would be made. Should he/she not agree, the session
continues with the original set of parameters.

13.Diego decides to hang up and ends his communication. This results in
a BYE message being sent to Sara.

14.Sara replies with a "200 OK” final response.

2.3.3.3 SIP message header fields

As an example of a SIP message, the first INVITE that Sara’s terminal
issues towards the proxy at burgos.com will be analyzed. It contains the
minimum set of required header fields:

INVITE sip:diego@stockholm.com SIP/2.0

Via: sip/2.0/UDP pc33@burgos.com;branch=z9hG4bk776asdhds
Max-Forwards: 70

To: Diego <sip:diego@stockholm.com>

From: Sara <sip:sara@burgos.com>;tag=1928301774

Call-ID: a84b4c76@pc33.burgos.com

CSeq: 314159 INVITE

Contact: <sip:sara@pc33.burgos.com>

Content-Type: application/sdp

Content-Length: 142

(Content not shown)

The header mainly specifies the request method (INVITE). The header fields
can be explained as follows:

Via: The address at which Sara expects responses to THIS request. The
branch parameter identifies the transaction and is used by proxies
to avoid loops. Each proxy adds a further Via header field before
the first to ensure that they are informed of the whole session
establishment process.

To: The name and SIP URI to which the request is directed.

From: The name and SIP URI of the originator of the request. The tag
parameter is for identification purposes.

Call-ID: A globally unique identifier for this call, consisting of a random
string plus the originating terminal’s host name (or IP address).

CSeq: It is a sequence number, plus the method it refers to.

Contact: A SIP URI where the calling user can be contacted directly,
intended for future requests, not for this one.

18

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Max-Forwards: The maximum hop count to destination.

Content-Type: The description of the message body, in this case an SDP

session description.

Content-Length: The byte count of the message body.

2.3.3.4 Proxy functionality
In SIP, proxies perform some special functions, which are:

Location service look-ups to find the current mapping of URIs in its
own domain.

DNS look-ups to find the proxy of a specific domain.

Flexible routing decisions, such as routing a call to a voicemail server
if the voice terminal replied with a "486 Busy here” response.

Forking invitations, that is, trying to find a user by sending invitations
to several terminals at the same time.

Being part of the whole SIP session, which a proxy does by inserting
its address in a Record-Route header field. This can be done for
instance when the proxy needs to perform some kind of third-party
intervention in the session.

2.3.3.5 SIP methods

The example above features three of the methods in SIP (requests). There
are six methods in SIP, but there is a possibility to create more through
extensions:

INVITE: used to start a SIP session or to change parameters in the

middle of a session (it is then called a re-INVITE).

CANCEL: used to cancel a pending invitation.

ACK:

BYE:

used to acknowledge, for instance, a session establishment.

used to terminate a SIP session.

OPTIONS: used to query the capabilities of a SIP entity.

REGISTER: a user agent sends a registration message periodically to a

machine in its domain (called the registrar) in order to inform it
of its current location. The registrar then updates the location
service. This is one of the ways to populate the location service

19

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

database. Usually, the domain proxy and the registrar are
located on the same machine.

2.3.4 SIP mobility support

SIP has some features that support mobility of devices, users, and sessions.
However, there are important considerations regarding the different
implications of supporting mobility at the application layer (as SIP does) or
relying on the network layer for mobility support (using Mobile IP). Please
refer to [4] for those considerations.

2.3.4.1 Device mobility

SIP supports both so-called pre-call mobility (i.e., a user moves between
two service sessions) and mid-call mobility (i.e., a user moves during a
service session).

If a device moves between two service sessions and has the time to register
its new location with the home registrar, new sessions will be initiated
correctly and the change in address will be transparent to the calling device,
thanks to the fact that the roaming device always keeps its address-of-
record. However, if the registration had not been completed, the request
will be directed to the device’s most recent location. In order to solve this,
Schulzrinne and Wedlund [33, 34] propose a solution where the proxy of
the most recent registration sends a scoped multicast message to try to find
the device. If the device can still not be found, the proxy reports a failure to
the caller. This solution works well if the device moves to a nearby network,
and in case of failure provides the device with some time to complete the
registration while keeping the caller informed.

In case of mid-call mobility, the moving device should send the
corresponding party a reINVITE request specifying the new location (in a
Contact header). In order to accelerate this process and avoid the need to
send a reINVITE all the way back to the corresponding party, the session
could be directed from the beginning through a proxy in the moving
device’s domain, and when the movement occurs, the device will only need
to notify that proxy. The proxy will then deliver the session media to the
appropriate location. This assumes that the new location is close to the old
location.

Another solution takes advantage of the conferencing feature of SIP. A
session between two (or more) parties could be established via a Multipoint
Control Unit (MCU). This way, when one of the parties moves to a different
location, it will join the conference from the new location. No re-routing is
needed in the corresponding node, but resources are wasted in the MCU.

2.3.4.2 Personal mobility

SIP allows a user to connect to the network through several different
devices while keeping a single identifier. A request for the user will be
directed to all the devices thanks to the forking feature of SIP.

20

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

2.3.4.3 Session mobility

SIP allows a user to change terminal while maintaining an ongoing session.
A user can negotiate new session parameters, including a new terminal, by
sending a reINVITE message. This way, the session will be completely
redirected to the new terminal.

Furthermore, if the session is initiated and negotiated by a third party, the
third party control allows a user to redirect the session to different terminals
or even to split the session into different terminals according to the media
types. However, this approach makes it necessary to contact the third party
for changes or termination of the session.

2.3.5 SIP extension support

SIP was designed to be extended. SIP extensions define additional request
methods apart from INVITE, CANCEL, ACK, OPTIONS, BYE, and REGISTER.
The introduction of extensions to SIP is facilitated by the existence of the
header fields Require, Proxy-Require, and Supported, among others. All
these header fields refer to extensions defined in standards-track RFCs,
never to vendor-specific extensions. In this way, the protocol is kept
vendor-independent.

Not every intermediate node in a SIP session needs to support an extension
for the message exchange to be successful; no element may refuse to proxy
a request because it contains a method or header field it does not know.

The Require, Proxy-Require, and Supported header fields are used as
follows:

= If a user agent client (UAC) requires that the user agent server (UAS)
understand an extension that it will use in its request, it will include
this extension in a Require header field. If intermediate proxies also
need to understand the extension, the UAC will include it in a Proxy-
Require header as well.

= If a user agent client supports extensions that can be used by the
server in a response, the UAC should include a Supported header for
those extensions in the request.

= A UAS cannot apply an extension that was not in the Supported
header field of the request. In the rare case that this extension is
essential, it should reply with a "421 Extension required”, but this is
not recommended.

= All extensions used in a UAS response have to be in the Require
header field.

21

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

2.3.6 The SIP Specific Event Notification extension

One of the extensions to SIP defined in RFCs is the Specific Event
Notification extension [35], whose functionality and operation will be
summarized here due to its close relationship with the subject of this thesis.
In fact, the Service Peer Discovery Protocol functionality is based on this
SIP extension.

This extension allows the SIP nodes which implement it to request and give
notification that an (asynchronous) event has occurred. The node which is
interested in the event must subscribe at the corresponding node, which
will in turn notify the subscribed node(s) whenever one of the specified
events happens.

The Specific Event Notification extension does not specify the actual events
that should trigger notifications and subscriptions. Those events are
specified in so-called Event Packages.

2.3.6.1 Operation of the extension

When a node is interested in subscribing to a particular event or change in
the state of another node, it sends a SIP request with SUBSCRIBE as a
method to that node.

This subscription message must contain an Expires header which defines
the duration of the subscription. The duration can be shortened by the
notifying node, but never lengthened. However, if the duration is too small
and will presumably lead to congestion in the notifying node because of re-
subscriptions or for other reasons, the notifier can reply with a "423 Interval
too small” error. In any case, it is important to note that every subscription
is limited in time and will expire unless periodically renewed.

There are special semantics associated with a SUBSCRIBE request with an
Expires value of 0. This causes the subscription to be automatically
finished, i.e. it is an unsubscribe message.

The SUBSCRIBE message must contain an Event header to specify the
event or set of events that the subscriber wants to be notified about.

The SUBSCRIBE message initiates a SIP dialog, unless it starts inside a
previously initiated dialog. Not until all subscriptions inside a dialog have
expired can the dialog be closed; this also applies if the dialog was started
with INVITE and a BYE message is sent.

When the notifying node receives a SUBSCRIBE message, it issues a reply.
If there is no error and the subscription can be admitted straight away, it
will issue a “200 OK” response with the actual expiration time for the
subscription. If there is no error in the request but the subscription cannot
be started straight away because authorization has still not been granted, a
“202 Accepted” response will be issued. Whichever of the two 2xx-class

22

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

responses is sent, a dialog will be created and the notifying node will
immediately send a NOTIFY message.

Whenever a certain event happens and also every time a SUBSCRIBE
message is sent inside a dialog to renew a subscription, the notifier will
respond (with a 2xx response) and then issue a NOTIFY message to inform
the subscriber about the state of the resource or the event that has
occurred. Notably, this includes the unsubscribe messages (i.e. SUBSCRIBE
messages with an Expires header value of 0).

A subscription can be forked, and this results in several SUBSCRIBE
messages arriving at different nodes. The subscriber must therefore be
prepared to receive NOTIFY messages from nodes other than the one
he/she sent the SUBSCRIBE to.

SIP proxies need no additional behaviour to handle the Specific Event
Notification extension, although they may decide to record-route the
SUBSCRIBE and NOTIFY messages in a dialog.

The Specific Event Notification extension does not need the headers
Require, Proxy-Require, or Supported. Instead, a node may query
another node about its OPTIONS to see if the extension is supported. The
presence of an Allow-Events header in a message is also enough to
indicate that the extension is supported.

2.4 SPDP — The Service Peer Discovery Protocol

2.4.1 Introduction

Designing a service and service peer discovery protocol suitable for mobile,
heterogeneous networks is a difficult task because of the many
requirements that are imposed by the environment. In his master’s thesis
“Reconfigurable application networks through peer discovery and
handovers” [4], Roberto Cascella proposed a protocol, the Service Peer
Discovery Protocol SPDP, which builds upon SIP and the SIP Specific Event
Notification extension to provide service and peer discovery functionality in
such networks. In this section, this protocol will be summarized and
explained.

2.4.2 Special requirements on SPDP

The network in which SPDP is supposed to work places some special
requirements on the discovery protocol:

= It is a heterogeneous network. Specifically, the network under

study combines GPRS and WLAN access, the latter in some specific
places. This raises several issues:

23

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

O

The protocol should work properly regardless of the current
access network the device is using.

However, the access technology may influence the device
capabilities at the application level (for example, WLAN offers
higher bandwidth than GPRS, GPRS does not support
multicast, GPRS nodes use private IP addresses,..). The
protocol should therefore be aware of and able to adapt to
each of the access networks.

A device can be connected simultaneously to both kinds of
networks, and thus have two or more different IP addresses.
The protocol should not only be able to uniquely identify the
device, but should also be able to take advantage of the
situation by enforcing intelligent roaming policies between both
interfaces [36].

= It is a mobile network. The availability and location of peers and
services can potentially change rapidly in comparison with service
session duration, which means that:

e}

e}

e}

The protocol needs to support both device mobility (i.e. a
device may move and roam between different networks both in
the middle of a service transaction or between service
transactions), and personal mobility (i.e. a user can use
several different devices to connect to the network).

The information about peers and service locations and
availability must be kept consistent despite the mobility of the
nodes.

The protocol should take into account the battery power
consumption of the mobile devices when transmitting and
receiving messages. Thus, the protocol must try to minimize
the number of messages exchanged.

SPDP was designed with all these requirements in mind. It is structured as
an Event Package which itself extends the SIP Specific Event Notification
extension. The protocol deals with the requirements mentioned above as

follows:

= [t uses SIP to carry its messages:

@)

SIP is an application level protocol and is independent of the
transport level protocol used as well as of the underlying
network infrastructure.

SIP provides an addressing scheme of its own, according to

which every node or user has a unique identifier or SIP URI.
This makes it possible for users to register with different

24

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

devices but with the same URI (this enables personal mobility)
and to move from network to network while keeping their
identity (enabling device mobility). SIP also provides forking of
requests, which implies that a user who has registered with
more than one device can get a call at every one of the devices
he/she has registered. Furthermore, the addressing scheme
also allows for a device which is connected to different
networks and has more than one IP address to still be uniquely
identified.

o A key feature of SIP’s addressing scheme is that it allows every
user to specify an address (called an address-of-record) where
he/she can always be contacted. The user then relies on
proxies to deliver the requests to its current location. In this
way, a user can change address between two service sessions,
but can still be contacted via the same address-of-record.
Inside a communication session, a user can move and change
address without the session being interrupted by using a
reINVITE message informing the other party of the new
address.

o SIP provides a registration mechanism that allows nodes to
communicate with each other even if they do not know the
other party’s exact location, if they know the user address-of-
record. This is done through proxies and registrars.

o SIP provides built-in security. Among other features, SIP
provides authentication of the originators of requests,
authentication of the servers to which requests are sent, end-
to-end security of message bodies and/or particular message
header fields, etc.

It defines a naming convention and a common description for
services and peers through the Extensible Mark-up Language (XML)
[37], which is a widely supported technology.

It contemplates mechanisms to minimize mobile terminals’ battery
power consumption or cost, such as using an intermediary such as a
file server. File servers are useful when a user is roaming between
networks with different speeds/prices (such as GPRS and WLAN). A
user asking for a service from a slower/more expensive network may
choose to forward the content to a file server, which will act as a
temporary repository (i.e., a cache) until the user can connect to the
faster/cheaper network in order to download the content.

25

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

2.4.3 Operation of the protocol

2.4.3.1 Compatibility with the SIP Specific Event Notification extension

As said before, SPDP is an event package which extends the SIP Specific
Event Notification extension. More precisely, SPDP is an event package with
these attributes:

Event package name: Service Discovery
Corresponding Event header field value: sdpEvent
Corresponding Content-Type header field value: application/sxdp-xml

Service discovery requests are embedded in SUBSCRIBE messages with an
Expires value of 0. In this way, a NOTIFY message containing the current
state of the peer and its services is sent, but the subscription is immediately
closed. Although this functionality could have been obtained through a SIP
instant message (i.e. a MESSAGE method), the subscription and notification
extension assures that the request has been processed by the notifier
before it responds, because the notifier sends a 2XX response upon
reception of a request, but will not send a NOTIFY message until it has
processed it. The SUBSCRIBE request body contains rules for the server
formatted in XML. The NOTIFY message body contains the information
requested in the subscription, also in XML.

Note that future subscriptions to the same provider can have an Expires
value different from 0, if the requestor wishes to be notified of changes in
the state of the peer or its services. In this case, SPDP does not allow
notification frequency to exceed one notification every 5 seconds to avoid
network congestion.

2.4.3.2 Protocol architecture
The protocol defines two types of entities:

= User agents, which are the peers that can join or stay in the network
and that interact with each other. Every peer can simultaneously act
as client or server:

o User agent clients query other peers for services.

o User agent servers accept service discovery queries, deliver
services, and can also act as proxies on behalf of a client.

User agents are uniquely identified by their SIP URIs as they move in
the network. They have to support the Specific Event Notification
extension.

= Context servers, which keep context information in the network. Each
part of the network is served by zero, one, or more context servers.
Context servers know about peer presence and capabilities, since
peers register with them. A peer can locate a context server using

26

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

SIP localization for servers, which is based on DNS (see [38] for
details).

The information in context servers for centralized networks, such as those
described in [39], is collected and accessed by the operator. User privacy
could be threatened if users are allowed to access this information without
control. In a peer-to-peer network, in order to avoid privacy problems,
users should be able to decide which information they want to give to the
context server, for instance which services they want to advertise.

2.4.3.3 Protocol messages

SPDP messages formatted in XML are included in the body of SIP messages.
They have a similar structure to SIP messages, with their own method,
header fields and body.

The methods can be DISCOVERY, ACCEPT, or DENY. A DISCOVERY message
is embedded in SUBSCRIBE requests, and queries a peer for its services or
capabilities. It includes the conditions of the service in a conditionList field.
If the queried peer has a service that matches the conditions, it replies with
an ACCEPT message embedded in a NOTIFY request, which contains a list of
services or peers in its body. If ho matching service is found, it replies with
a DENY message, also embedded in a notification.

The DISCOVERY queries can either ask for a peer or for a service type, as
defined in a taxonomy tree. The service and entity taxonomy trees
constitute a standard naming convention to identify each type of service or
entity. Some taxonomy trees are proposed in the specification [4].
According to them, for instance, a web camera service is identified as
Root/Real Time/Audio-Video/Web Camera, Whereas a GPRS entity is
identified as Root /Physical Device/Access Point/GPRS.

27

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

3 A Service Peer Discovery Protocol implementation

After the specification of the Service Peer Discovery Protocol was written, a
message interpreter application [4] was created to illustrate the feasibility
and the operation of the protocol. This application was capable of
interpreting the SPDP messages that the user input, and perform some
operations accordingly. The first goal of this thesis was to adapt that SPDP
message interpreter application in order to create a sample implementation
of the protocol. A key objective was also to generate appropriate
documentation and information about the implementation to facilitate
further development and re-use. In this section, the implementation that
was created will be described in detail.

3.1 The implementation from the outside

The Service Peer Discovery Protocol implementation that has been
developed was designed as an extension that provides a SIP User Agent
with SPDP functionality. The implementation was therefore not designed to
stand alone, but to be integrated into a SIP implementation and run as part
of an SPDP-enabled SIP User Agent.

In this subsection, an overall external view of the implementation will be
given. Firstly, the requirements of the implementation in terms of
technology will be summarized. Then, the interaction with the SIP
implementation will be explained. The actual file and directory structure will
be described next. Finally, the different ways to run and/or test the
implementation will be detailed.

3.1.1 Technology requirements

The implementation created requires some technologies to be available in
the device it will run on, as detailed next.

3.1.1.1 Java Virtual Machine

The implementation was written in Java [23], and therefore a Java Virtual
Machine is needed to run the applications. The Java technology used to
develop the implementation was J2SDK 1.4.2_03.

3.1.1.2 JAXB

The Java Architecture for XML Binding (JAXB) [40] provides a convenient
way to bind an XML schema to a representation in Java code. This
technology performs the translation between the fields and attribute values
in an XML document and the corresponding Java objects. The SPDP
implementation uses JAXB to build and manipulate the protocol messages,
the peer file and the service file (see section 3.2).

28

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

The implementation is compatible with the latest currently available version
of JAXB, which is JAXB 1.0.2 as included in the Java Web Services
Developer Pack (JWSDP) 1.3. Some of the libraries present in JWSDP 1.3
are required for the implementation to work, in particular the JAXB libraries
and the JWSDP shared libraries.

3.1.1.3 Ericsson SIP implementation

The SPDP implementation was developed to interoperate with the SIP
implementation by Ericsson [41]. The exact interface between both
implementations is detailed in the next section. In order to use the current
SPDP implementation, Ericsson’s SIP implementation must be available in
the device.

3.1.2 Interaction with the SIP implementation

As said before, the SPDP implementation was not designed to work alone,
but rather as an extension to a SIP implementation. In particular, for
compatibility with Roberto Cascella’s SPDP message interpreter, the SIP
implementation developed by Ericsson [41] was used.

In order to facilitate the re-use of this SPDP implementation with other SIP
implementations, the interface between both was made as small as
possible. The points of connection between both implementations are:

e In the SIP User Agent (class UserAgent), an attribute spdpEngine was
included, to contain a reference to the SPDP engine associated with
this SIP UA.

e In the SIP User Agent (class UserAgent), a new method setSpdpEngine
was included. This method is used to attach an SPDP engine to the
User Agent, thus enabling it to discover services through SPDP.

e In the SIP User Agent (class UserAgent), a new method findService
was included. This method is the gateway to use SPDP to perform
service discoveries.

e In the User Agent thread (method UserAgent.run), a few lines were
included in order to check for SPDP messages in the body of SIP
requests and if so place them in the SPDP message queue.

e The SPDP implementation uses two specific objects from the SIP
implementation: a reference to the User Agent (instance of class
UserAgent), and a reference to a SIP transaction (instance of
CallLeg). The reference to the User Agent is needed in order for SPDP
to make use of the SIP infrastructure, since SPDP messages are
encapsulated in SIP SUBSCRIBE requests. The reference to the
transaction is needed in order for SPDP to be able to send a response
embedded in a NOTIFY SIP request belonging to the same transaction

29

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

as the SUBSCRIBE SIP request in which the SPDP request was
embedded.

Note that an important implementation decision was taken by only
providing the SIP UA with an entry point to trigger a service search, never a
peer search. The reason for this decision is that it was considered that a
user, whether human or not, will always want to access and utilize a
service, since a peer has no use to the user except for the services it
provides. Internally, of course, both service and peer discoveries are
performed in the protocol, as the specification dictates. The internal division
between services and peers is very appropriate since it provides a means of
aggregating information - a peer need not have all the services provided by
another peer in its service file, it can be enough to have an entry for the
peer in the peer file. For more details about this, see section 3.2 and section
3.3.2.

The SPDP implementation uses two objects taken from the SIP
implementation: UserAgent (which represents a SIP UA) and CallLeg (which
represents a SIP transaction). These objects are central to the operation of
SIP and are very likely to be found as such in other implementations of SIP.
Therefore, the changes that are needed in this SPDP implementation in
order to make it compatible with another SIP implementation written in
Java are likely to be minimal, and are estimated to take no longer than one
or two days of work.

3.1.3 File structure

The SPDP implementation is contained in the directory newspdp. The
structure of its subdirectories and files is as follows:

= Directory spdp: This directory contains the specific classes of the
implementation (package newspdp.spdp), such as the SPDP engine.
It also contains the executable class to test the implementation (class
SpdpUserAgentGui).

= Directories peer, service, and spdpmessage: These directories
contain the source files generated by the JAXB compiler from the XSD
schemas (packages newspdp.peer, newspdp.service, and
newspdp.spdpmessage). These classes represent the different objects
described in the schemas: a peer list, a service list, or an SPDP
message.

= Directory _spdplibs: 1t contains the necessary libraries for JAXB
functionality.

= Directory _spdpfiles: It contains some files that are relevant to the
protocol implementation and tests, such as the XSD schemas for the
peer list, the service list, and the protocol messages, and backup files
for the initial service and peer information used for the tests.

30

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

» Directory _javadoc: It contains the Javadoc documentation of the
implementation. The reader is encouraged to browse it for a complete
description of all the packages, classes, methods, and fields present
in the SPDP implementation.

* Files services.xml and peers.xml: They are the service
respectively peer information repositories, intended to be accessible
to every application wanting to be informed about known peers and
services, and accessed and modified by the SPDP implementation
when performing discoveries and/or processing external requests.

3.1.4 Running the implementation

As stated above, the SPDP implementation is not a standalone application,
since it needs to be attached to a SIP User Agent. A simple SPDP-enabled
SIP User Agent based on this SPDP implementation and on Ericsson’s SIP
implementation can be started by running class SpdpUserAgentGui with the
appropriate parameters described below. This class provides a simplified
graphical user interface to the User Agent, allowing the user to access only
the service discovery functionality. In a terminal window, type:

java newspdp.spdp.SpdpUserAgentGui <username> <host> <port>

The parameter username specifies the user name of the User Agent; it
defaults to the user’'s name for the system (i.e., the value of the system
property “user.name”). The parameter host specifies the name of the host
in which the User Agent runs; by default, the IP address of the device is
used (specifically, the address returned by the «call to
InetAddress.getLocalHost().getHostAddress()). Finally, the port parameter
specifies the port on which the User Agent will run; if not specified, the SIP
default port number (5060) is used.

3.2 Data model

There are three distinct data structures involved in the Service Peer
Discovery Protocol. Firstly, the protocol messages that SPDP peers
exchange in order to perform discoveries; secondly, the structure that
contains the peer information that a peer has; and finally, the equivalent
structure containing the service information known to a peer.

While protocol messages were dynamically generated, the peer and service
information structures were kept in files residing in each peer. This was
done to provide the easiest possible access to the information for the
different applications running in the peer, which can browse the files at any
time. The price to pay is the increase in processing power and time required
by having to update the files for every discovery.

31

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

The Service Peer Discovery protocol uses the Extensible Mark-up Language
(XML) [37] to represent all protocol messages, as well as the service and
peer information stored in local files. The next subsections explain the
formats of those XML documents.

3.2.1 The SPDP message format

The format of every SPDP message is specified in an XSD schema called
spdpMessage.xsd. Below is an example of an SPDP message’:

<?xml version="1.0" encoding="UTF-8" standalone="yes">
<spdpMessage>
<requestId>245370941080900270821</requestId>
<sender>
<entityId expire="3600">
sip:pojken@130.237.15.247
</entityId>
<entityAddress entityType="IPv4">
130.237.15.247
</entityAddress>
</sender>
<method>
<name>ACCEPT</name>
</method>
<serviceRequest>
<path>printer</path>
<value>EasyPrint</value>
</serviceRequest>
<expireTime>4000</expireTime>
<replyTo priority="1">
<entityId expire="3600">
sip:pojken@130.237.15.227
</entityId>
<entityAddress entityType="IPv4">
130.237.15.247
</entityAddress>
</replyTo>
<content>
<servicelist>
<service>
<serviceld>printer</serviceIld>
<name>EasyPrint</name>
<source>
<entityId expire="3000">
sip:gonzalo@130.237.15.248
</entityId>
<entityAddress entityType="IPv4">
130.237.15.248
</entityAddress>
</source>
<protocol>RTP</protocol>
</service>
</servicelist>
</content>
</spdpMessage>

! By default, all XML documents generated with JAXB are encoded using UTF-8. The
encoding to be used can be specified as a property of the JAXB marshaller.

32

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

An SPDP message contains the following fields:

requestlId: This is a compulsory field that contains a string that uniquely
identifies the SPDP transaction that this message belongs to. An
SPDP transaction consists of one request and one response to
that request. In this implementation, it is generated by appending
the current time in ms to the hash code of the SPDP engine that
initiated the request.

sender: The identity of the sender of this message. In an SPDP
message, identities are represented as an entityId (with an
optional expire attribute), which is the SIP URI of the entity, and
an entityAddress (with the compulsory attribute entityType)
that will usually contain the IP address of the entity.

method: The method of the message [4]. It consists of a name which
can be DISCOVERY, ACCEPT, or DENY, and an optional
responseCode attribute.

peerRequest or serviceRequest: Only one of these fields will be
present in a given message. They contain the peer or service that
is searched for, specified by a path (in this case, a printer) and a
value (in this case, EasyPrint, the type of printer).

expireTime: The protocol specification regards this value as an overall
expiration time for all the fields in the message. This
implementation, however, only takes into account each of the
individual expire times for the specific fields (such as those in the
various entityIld fields), since the meaning of an overall
expiration time can be ambiguous; the implementation will
therefore ignore this field.

replyTo: The identity of the peer to which the reply to this message
should be sent.

conditionList: This is an optional sequence of condition fields to refine
the search. Each condition consists of a path (called the nodeld)
with a taxonomy attribute, and a value for the condition. The
taxonomy attribute is present in the specification, potentially to
more easily match the conditions to some pre-defined conditions
structured in taxonomy trees. As these taxonomy trees have not
been defined, the taxonomy attribute is ignored in this
implementation, and the verification is done directly on the
nodeld.

content: The actual peer and/or service information contained in the

message. Usually, content will only be present in the ACCEPT
messages, and it will consist of either a serviceList or a

33

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

peerList, according to whether it is a service search or a peer
search. The format in which peers are represented in the
peerList object is the same as in the peer file (see section 3.2.3)
except for the expire time format, as explained below.
Analogously, the format in which services are represented in the
servicelList object is the same as in the service file, described in
section 3.2.2, except for the format of the expire time (see
below).

As explained before, all SPDP messages are embedded in SIP messages.
DISCOVERY messages are embedded in SIP subscriptions (method
SUBSCRIBE), while ACCEPT or DENY messages are embedded in SIP
notifications (method NOTIFY).

It should be noted that all expiration timers in the SPDP messages are
integers that represent the number of seconds for which the information
they refer to will be valid, from the moment the message is issued. Here,
the assumption is that the delay in receiving messages is less than one
second, and hence the time is not exact, it is £2 seconds.

3.2.2 The service file format

The service file is the cache that contains all the information about the
services that a peer knows. This file:

= js written to by applications running in the peer that want to
advertise their services via SPDP.

» s read by the SPDP engine as the first step of a service search.

= js written to by the SPDP engine when it receives a message
containing new service information.

= js read by applications that wish to access to the information about
the known services by themselves.

The service file is named services.xml. Below is an example of a service file:

<?xml version="1.0" encoding="UTEF-8" 727>
<servicelist xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-
instance" xsi:noNamespaceSchemalLocation="serviceList.xsd">
<service>
<servicelId>filemp3</serviceld>
<name>The Autumn.mp3</name>
<source>
<entityId expire="3000">
sip:pojken@130.237.15.247
</entityId>
<entityAddress entityType="IPv4">
130.237.15.247
</entityAddress>
</source>

34

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

<protocol>RTP</protocol>
<expires>2004-05-23T17:58:17+01:00</expires>
</service>
<service>
<serviceld>sipphone</serviceId>
<name>Pojken</name>
<source>
<entityId expire="3000">
sip:pojken@130.237.15.247
</entityId>
<entityAddress entityType="IPv4">
130.237.15.247
</entityAddress>
</source>
<protocol>RTP</protocol>
<expires>2004-06-07T01:00:00+01:00</expires>
</service>
<service>
<serviceld>printer</serviceld>
<name>EasyPrint</name>
<source>
<entityId expire="3000">
sip:gonzalo@130.237.15.248
</entityId>
<entityAddress entityType="IPv4">
130.237.15.248
</entityAddress>
</source>
<protocol>TCP</protocol>
<expires>2005-03-02T12:03:37+01:00</expires>
</service>
</servicelist>

The service file is a serviceList object. It contains a sequence of fields of
type service. Each service entry consists of the following fields:

serviceld: The path to the service. Examples of serviceld are printer,
filemp3, sipphone...

name: The specific service value. Examples of name can be EasyPrint
for the printer serviceld.

source: The identity of the peer that provides the service. This field
follows the same format as the sender field in the SPDP
message.

protocol: The protocol used to access the service: RTP, FTP,...
expires: The date and time until which this service is supposed to be
found in the specified peer with the specified parameters. It is
stored with a precision of a second.
Note that a peer needs to convert expiration timers from integer values in

seconds to dates and vice versa when generating or interpreting SPDP
messages.

35

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

3.2.3 The peer file format

The peer file is the cache that contains all the peer information known by
this peer. On start-up, it should contain at least one record, corresponding
to the information of the local peer (that is, every peer should have
information about itself). Although the peer file can be accessed by other
applications, it will usually be the SPDP engine which will read or write to it.
The peer file is named peers.xml. An example of a peer file is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>
<peerList>

<peer>
<identity>
<entityId expire="3780">
sip:diego@130.237.15.211
</entityId>
<entityAddress entityType="IPv4">
130.237.15.211
</entityAddress>
</identity>

<network>WLAN</network>
<cellId>3454FG</cellId>
<expires>2004-05-26T12:03:37+01:00</expires>
<services>
<service>filemp3</service>
</services>
</peer>
<peer>
<identity>
<entityId expire="3780">
sip:pojken@l130.237.15.247
</entityId>
<entityAddress entityType="IPv4">
130.237.15.247
</entityAddress>
</identity>
<network>WLAN</network>
<cellId>3454FG</cellId>
<expires>2004-05-27T09:00:37+02:00</expires>
<services>
<service>filemp3</service>
<service>sipphone</service>
</services>
</peer>
</peerList>

A peer file contains a peerList object. The peerList consists of a sequence
of peer objects, each of them with the following fields:

identity: The identity of the peer, represented in the same format as the
sender field in an SPDP message

network: The type of network that the peer is attached to, for instance
WLAN, GPRS,...

36

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

cellld: The identifier of the cell in which the peer is, if applicable.

expires: The date and time up to which the information about the peer
can be considered valid.

services: A list of elements of type service, representing the service ids
that the peer provides. Note that no service values are stored in
the peer file, but the information is aggregated by only
considering the service ids.

3.3 Operation of the SPDP implementation

This subsection describes how the SPDP implementation is structured
internally and how it discovers peers and services. It will be structured
according to the different threads that run concurrently and provide the
SPDP functionality. First, an overview of the different threads will be given,
then each of them will be described separately: the main thread, the SPDP
engine thread, and the request handler threads.

3.3.1 Threads in the implementation

The main threads that interact in the SPDP implementation (that is, when
an SPDP-enabled SIP User Agent is running) are depicted in Figure 6. The
User Agent is started by the main thread, which in this case is also the
thread that launches the graphical user interface (class SpdpUserAgentGui).
The main thread also spawns the SPDP engine thread, and passes a
reference to the SPDP engine object to the SIP User Agent to enable SPDP.
Then, the main thread waits for the user to interact with the GUI.

The SIP User Agent thread spawns a listener thread (class
ericsson.sip.protocol.ListenerThread) on start-up. The listener thread listens
for datagrams that arrive at the specified SIP port (by default, it is port
5060). Upon arrival of a datagram, the listener thread parses it and, if it is
a valid SIP message, places it in the SIP message queue. After that, the
listener thread continues listening to the SIP port.

The SIP User Agent thread (class ericsson.sip.ced.UserAgent) periodically
checks the queue to process SIP messages that arrived, according to
whether they are requests or responses and to the request methods. As a
specific feature of the SPDP-enabled User Agent, the UA checks the body of
the SUBSCRIBE and NOTIFY requests arrived to look for SPDP message

37

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

GUI (Main) Req. Handler SPDP Eng. SIP UA Listener

On startup

On startup

On startup On startup

SIP
Msg Queue

STP msg
arrived

SPDP
Msg Queue

On external request received

SIP UA Thread name
SIP Buffer name
Msg Queue
On startup Event
I.‘OTIFvI
—_ Thread spawn
Signal
€——= Object flow
{NOTIFY|—
Thread state:
- Running / Ready to run
- Waiting
E Dead / Not born
— LKL
KL 1
1 KILL I

Figure 6: Interaction of the threads in the SPDP implementation

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

If so, it places the SPDP message (the body of the SIP request) in the SPDP
message queue.

The SPDP engine thread (class SpdpEngine) periodically checks the SPDP
message queue to process the SPDP messages that arrive. The messages
can either be replies to a locally initiated search or requests coming from
another peer. If the SPDP engine receives a request from another peer (that
is, an external request), the engine will pass the request on to a request
handler thread.

The request handler threads (class RequestHandler) process the external
requests. They perform a search in the service or peer file, depending on
the type of request, and issue the corresponding SPDP response: ACCEPT (if
matching services or peers were found) or DENY (otherwise). After a
request handler finishes its task, it will wait until it is assigned another.

When the user requests a service by interacting with the GUI (this is done
for instance by typing in a service name in the corresponding text field, and
then pressing the “Search service” button), the main thread invokes a
method in the SpdpEngine object in order to search for the service. If some
SPDP messages have to be sent, the main thread waits for the reply. When
the service search is completed, the main thread shows the results in the
GUI.

Note that the external interface to the SPDP implementation does not allow
for peer searches (there is no method findPeer). The user can only search
for services provided by peers, but not for peers themselves (a peer is
assumed to be just a service providing entity, as it is services that a user
will ultimately require). However, the implementation of course performs
peer discoveries as a means to search for services. A service search can
consist of several peer and service discoveries.

In the SPDP engine thread, if the message taken from the SPDP message
queue belongs to an internal search (i.e., a search initiated by the user),
the SPDP engine will notify the main thread, which was waiting for the

reply.

When the user decides to terminate the User Agent (for instance by closing
the window), the threads are destroyed and the application ends.

In the next sections, the operations performed in each of the SPDP-specific
threads will be explained in more detail.

3.3.2 Main thread flow

The main thread is invoked by an application that launches the SPDP-
enabled SIP User Agent. The SPDP implementation provides one such
application (class SpdpUserAgentGui), which creates a graphical user
interface to the User Agent with limited access to the agent’s functionality:
it only allows the user to search for services using SPDP.

39

Implementation and Evaluation of the Service Peer Discovery Protocol

Diego Urdiales Delgado

17/05/2004

!

User presses "Search service"
(UserAgent.findService)
(SpdpAgent.findService)

!

Search in local service file
(ServiceQuery.serviceSearch)

YES

Services found?

Search in local peer file for
peers providing the service id
(PeerQuery.peerSearch)

YES

Pick next found peer Ii—

Send service discovery
message to that peer

!

Wait for reply

Peers left?

| Update service file

P

Peers found?

NO

Search for all
known peers

NO

Peers found?

Pick next found peer |ﬂ—

Send peer discovery
message to that peer

!

Wait for reply

NO

YES

Peers left?

YES
Update peer file

NO

ervice value

specified?
YES

Pick next found peer |1—

Send service discovery
message to that peer

!

Wait for reply

YES

NO

Peers left?

Update service file

Return found services

Figure 7: Flow diagram of the main thread

NO

Return empty list

40

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

The GUI is depicted in Figure 8. It consists of a simple frame, with text
fields to input the path and (optionally) the value of the service to search
for, and the optional conditions of the search (input as a comma-separated
sequence of strings of the form conditionPath=conditionValue, or selected
from a list). It also includes a “Search service” button to trigger the search,
and a console text area where the information is output to the user.
Examples of service names can be: printer, sipphone, filemp3,... For the
filemp3 service name, examples of values can be The Spring.mp3, The Best
Castilian Jotas, Happy Birthday.mp3,...

P SRR il L SRR i e =g \\ 2 =

LPath: 1T Yalue: |}

Conditions: |} protocol

Search service

ELEE

B

El

Figure 8: Graphical user interface to the SPDP-enabled SIP UA created in class SPDPUserAgentGui

When the user starts a search, the method findService in class UserAgent is
invoked by the main thread. This method directly calls the corresponding
findService method in the SpdpEngine object. As explained before, this
method is the single entry point to make use of the SPDP implementation.
Method findService implements the service discovery algorithm depicted in
Figure 7.

Services are first searched for in the service file (named services.xml). If a
matching service is found in the file, then the search ends and the results
are output to the user.

Otherwise, a search is performed in the peer file (peers.xml). Every peer in
the peer file is described by a record that includes the service names that
the peer offers (see section 3.2.3). If there are some peers in the peer file
that offer the requested service id, a DISCOVERY message will be sent to
them one by one, until one of them replies with a successful response (an
ACCEPT response), and the search will end successfully. The DISCOVERY
message will be a service request for the specified service id and value.
Peers are queried sequentially in this implementation since it was estimated
that traffic is usually a more important constraint in the scenarios where
SPDP runs than time. Note that the search will end as soon as one ACCEPT
response (i.e., a response containing at least one matching service) is
received, but the service description to match can be defined as accurately
as needed. In this implementation, peers are queried in the (sequential)

41

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

order in which they are in the peer file. A random querying order may be
more efficient in order to find a match with fewer queries; it is left as future
work to test and implement this if appropriate.

The service value is optional. If it was not specified, then the lookup in the
peer file may directly yield valid results without having to send any
DISCOVERY messages.

If none of the peers in the peer file provide the requested service id, or the
peers that provide the service id do not provide the service value, then new
peers need to be discovered.

A peer request will be sent to each of the known peers, asking them for
peers that offer the service id. If an ACCEPT response is received for this
peer request, containing information about new peers, those peers will be
queried with a service request, asking them for the requested service value.
If a matching service is found, the search will end.

The search is given up when all the known peers have been asked for their
known peers that provide the service id, and all these newly-acquired peers
have been asked for the requested service value, and no matching service
has been found.

The mechanism used to issue and identify requests and responses works as
follows:

= First, the identity of the destination peer is checked, since no
requests should be issued to oneself, nor to a peer that has
previously been queried for the same request (in the same search)
and responded with a DENY.

= Then, a request id is generated randomly. This id will differentiate
this request from any other, and will be included in the response to
this request to identify it.

» The request (a DISCOVERY message) is sent to the destination peer.

= The thread waits for a reply for the request. The maximum waiting
time is specified as a constant in the SpdpEngine class.

= The transaction is completed after a response that matches the
stored id arrives, or the timeout value is reached.

* The request id of the newly-completed request is stored in a buffer.
This allows delayed responses to requests to be discarded and not be
mistaken with new external requests (whose id is not present in the
buffer). The length of the buffer is also specified as a constant in
SpdpEngine.

42

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Whenever new information is acquired about new peers or services, namely
because an ACCEPT has been received to a request, the peer or service file
is updated.

When the search is complete, the information about the services found is
output to the user in the GUI (see Figure 9). An informational message is
also displayed if no services have been found. The main thread then waits
for the next search.

path: | filemp3 Yalue: | The Sprindmp3

Conditions: | protocol="RTHE"

Search service

Service found. Contact one of these peers:
sipidiego®@130.237.15.211 at address 130.237.15.211

e

Figure 9: The SPDP-enabled SIP User Agent GUI showing the results of a successful search.

Note that this algorithm implies that a service will only be found if it is
provided by the same peer which searches for it (at “distance 0”), by a
known peer (at “distance 1”) or by a peer known to at least one of the
known peers (at “distance 2”). This way of proceeding, although not
specified in the protocol specification, was already present in the message
interpreter application that this implementation is based on. Choosing a
maximum depth of 2 “hops” in the “knowledge graph” was considered to be
a sensible decision, since a higher value would imply longer, more traffic-
consuming searches, usually without considerably increasing the probability
of finding a service, whereas a lower value of 1 cannot ensure that the
information is properly propagated in the network. This crucial
implementation decision has some implications in the testing and evaluation
of the protocol (see chapter 4).

3.3.3 SPDP engine thread flow

The SPDP engine thread continuously checks the SPDP message queue for
new SPDP messages that arrived, and processes the messages accordingly.
Its flow is depicted in Figure 10.

If there is a message in the queue, it will be unmarshalled (converted from
a string to an object of type SpdpMessage, which represents a protocol
message according to the spdpMessage.xsd schema) and its request id will
be checked to detect if it is a message for the internal request, if it is an

43

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

external request or if it was a delayed response to a previously issued
request.

!

| Check SPDP message queue ¥

Queue is empty?

MO

Read SPDP message from queue

Message belongs
to internal request?

Add message to the Spawn a handler thread
internal message queue for the external request

:

Notify main thread

Figure 10: Flow diagram of the SPDP engine thread

If an external request is received, one request handler thread is randomly
picked from the thread pool and, if it is not already busy, the SPDP message
and the SIP transaction that it belonged to are passed to the handler. The
handler is then awakened.

If the received message was a response for the internal request, then the
message is added to the internal message queue, and the main thread is
notified.

3.3.4 Request handler thread flow

The flow of the request handler threads is shown in Figure 11. A request
handler thread will wait until an external request arrives and is assigned to
it by the SPDP engine.

The handler will then check that the method in the message equals
DISCOVERY. In order to take advantage of as much network information as
possible, the peer file will be updated with the information that the request
provides about its sender in the replyTo field.

44

Implementation and Evaluation of the Service Peer Discovery Protocol
17/05/2004

Diego Urdiales Delgado

The request will then be processed. If it is a service request, the service file
will be searched in order to find a service that matches the conditions. If it
is a peer request, the peer file will be searched. In either case, depending
on whether the search was successful, an appropriate response will be
issued (an ACCEPT or DENY message).

After the message is processed, the request handler returns to its wait

state.

!

Readrequest

ethod equals
DISCOVERY?

WO

Update peer file with sender

|

Create outgoing message

TES

(initialServiceQuery)

Search for matching services

ervices found?

|

Insert found services
in outgoing message

|

NO

Service request?

Search for matching peers
(initialPeerQuery)

Peers found?

Insert found peers
in outgoing message

]

MO

}

l Invalid request |

| Send ACCEPT | | Send DENY

| | Send ACCEPT] |

Send DENY

|

l

|

|

Figure 11: Flow diagram of the request handler thread

End request handler thread

45

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

4 Evaluation of the Service Peer Discovery Protocol

After the implementation of the Service Peer Discovery Protocol has been
described in the previous chapter, this chapter is devoted to the evaluation
of the protocol.

The evaluation process is structured in three parts. First of all, a theoretical
comparison was established between SPDP and several of the discovery
protocols described in section 2.2.

After that, the implementation was used to compare the performance of
SPDP and the Service Location Protocol (SLP) [7] in some controlled test
scenarios. This comparison shows some of the differences that are inherent
to both protocols and allows some conclusions to be drawn concerning the
way both protocols behave in their simplest forms.

To evaluate the performance of SPDP in more realistic settings, a discussion
in the second part of this chapter considers some SPDP scenarios, which are
analysed and conclusions are drawn.

4.1 SPDP in comparison with other discovery protocols

The Service Peer Discovery protocol has some characteristics that
distinguish it from other service discovery protocols: it interacts very closely
with SIP, which it uses as a carrier for the protocol messages; it uses XML
to represent the protocol information; and it relies on unicast to perform
discoveries. In this section, some of the main service discovery protocols
are compared to SPDP. Refer to section 2.2 for descriptions of the protocols
discussed in this section.

4.1.1 SPDP and the Service Location Protocol (SLP)

SLP is a widespread service discovery protocol, standardized in RFC 2608
[7], and the subject of intense research. Its architecture, consisting of UAs,
SAs, and DAs, is simple and robust, and has inspired some of the other
discovery protocols [24]. Thanks to the use of multicasting, to the direct
use of the transport layer as carrier of the protocol messages, and to a
simple text-string representation of the services, SLP is a traffic and time-
efficient protocol.

SLP was not specifically designed for rapidly-changing networks, but its
performance in such scenarios can be enhanced by the presence of a DA
colocated with the access point (or another fixed node). In fact, SLP takes
full advantage of the presence of a DA in the network, and it provides an
easy way in which peers can turn to DAs dynamically, by changing the
configuration of the SLP daemon.

46

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

In comparison to SPDP, however, SLP provides a less flexible representation
of services through service URLs. Furthermore, its extensive use of
multicast brings about some problems in the context of the peer-to-peer
wireless scenario. SLP was selected to be tested against SPDP for some
simple scenarios, and the results and conclusions of those tests can be
found in section 4.2.

4.1.2 SPDP and JXTA

Unlike SPDP or SLP, JXTA defines a framework for peer-to-peer networking
rather than a single protocol. Among the different protocols specified in
JXTA, a discovery protocol is included, the Peer Discovery Protocol (PDP). A
demo application that allows a user to connect to the JXTA network [42] is
provided at the JXTA homepage [31]. A disadvantage found when using this
demo application is that the address of at least one rendezvous agent must
be provided by the user at start-up in order to connect to the World Group.

There is a great flexibility in JXTA. The specification of PDP [32], for
instance, encourages other discovery protocols to be used in local
communities if they are considered more convenient than PDP, and provides
easy integration of those protocols with the rest of the architecture. Another
example of flexibility is that the carrier protocol for the JXTA messages is
also unspecified: TCP, UDP, and even HTTP are suggested.

An important feature of JXTA [32] is that it provides mechanisms to
guarantee connectivity for every peer even if it is behind a NAT or a firewall,
which is often the case in the scenario studied.

But all in all, it is difficult to compare JXTA and SPDP at the same level.
Indeed, SPDP could be used as the internal discovery protocol for a JXTA
group in a wireless network.

4.1.3 SPDP and Universal Plug and Play (UPnP)

UPNP shares the same architecture principles as SLP or Jini. It also relies on
central information servers to provide the service information, even if the
protocol could work without a centralised point.

An interesting feature of UPnP is that it represents services through service
URLs as SLP (although the formats are incompatible), but the URLs point to
the complete service descriptions formatted in XML (as with SPDP) [24]. In
this way, the amount of traffic exchanged is kept low, while taking
advantage of the features of XML for the representation of services. The
price is of course a detachment of the full service description from the
discovery process, since it is the URLs that are exchanged, and the
introduction of an intermediate step in service discovery: “simple
discoveries” only examine service URLs, while “full discoveries” take into
account the XML descriptions [24]. UPnP requires HTTP to perform “full
discoveries”.

47

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

4.1.4 SPDP and Jini

As stated in section 2.2.4, Jini shares the same architectural principles as
SLP, with Lookup Services playing the role of Directory Agents. The most
characteristic feature of Jini is that it is very tightly bound to Java: services
are represented as Java objects and the communication is performed via
Java’s Remote Method Invocation (RMI).

Jini requires that every peer has a Java Virtual Machine (JVM) running in
order to be part of the community. This can be a disadvantage in mobile
devices with limited memory, processing power, and battery, but there is
intense on-going research on lightweight, power-efficient JVMs that could
alleviate this problem.

However, unlike SPDP, Jini requires both a centralized point of information
(an instance of the Lookup Service) and the possibility to multicast
messages in order to discover peers (at least to discover the Lookup
Service). This can be disadvantageous in the scenario studied, where
networks will often be too small to support the cost of including a central
point of information, and where multicasting can be a problem in certain
network technologies (such as GPRS).

4.2 SPDP and SLP: comparison for simple test cases

This section presents the results of measurements of SPDP and a
comparison with the Service Location Protocol (SLP) in terms of traffic and
discovery time for several specific cases. First, the tests that have been
performed are described: which statistics have been measured and how, as
well as the test environment. After that, the results of the measurements
for SPDP and SLP are presented. Finally, the main conclusions are drawn.

Note that the conclusions have been drawn bearing in mind that the
objective was to judge and compare both protocols, not their
implementations. Notably, the implementation of SPDP used can be subject
to many improvements, as detailed in chapter 5, and a more in-depth
analysis by a skilled programmer is bound to vyield many more
improvements in the implementation. The goal of this project was not so
much to produce a competitive, efficient implementation as to illustrate and
show the capabilities of the protocol. This is why the measured values,
although accurate for the implementation, have to been taken as orders of
magnitude estimations for the protocol. This is one of the reasons why the
discovery time graphs in the results subsection have been plotted using a
logarithmic scale.

4.2.1 SPDP test cases

In order to illustrate the operation of SPDP, its message flow and the
service discovery algorithm, several test cases were designed which

48

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

consisted of one specific service search. The test conditions and the tests
themselves are described next.

4.2.1.1 Test conditions

For these tests, three computers connected to the laboratory’s LAN were
used. In each of them, a dual SPDP+SLP peer was started (these peers
were able to receive, process, and reply to both SPDP and SLP messages).
The SPDP implementation used was the one described in this document
(see chapter 3); the SLP implementation used was OpenSLP provided by
SourceForge [43]. The connectivity of the peers is depicted in Figure 12.

pojken —___» SPDP connectivity:
known peer

Network connectivity

gonzalo

L]

Figure 12: Network and logical connectivity of the peers in the test scenario

For the SPDP protocol:

Each peer had initial partial knowledge of the network at start-up.
Apart from the locally provided services, which SPDP requires every
peer to know, peer diego knew of the existence of peer pojken, which
in turn knew about the existence of both diego and gonzalo. gonzalo
did not know about the existence of any of the other peers. As for the
services, each peer had limited knowledge of all the available services
as well. Each peer’s exact start-up knowledge of peers and services is
contained in files peers-diego.xml, peers-pojken.xml, peers-
gonzalo.xml, services—diego.xml, services-pojken.xml and
services—gonzalo.xml. These files are included as Appendix B.

SPDP does not specify the strategy of the peers at start-up or how

they initially learn of peers connected to the network, although the
protocol suggests several ways, such as from a Context Server,

49

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

broadcasting peer discovery messages, or static network knowledge.
In this case, the simplest strategy was to provide every peer with
some static knowledge at start-up. However, the behaviour of this
network is equivalent to that of another network with a broadcasting
strategy and without a context server. The only difference is the time
that it takes the peers in the first network to learn what the peers in
the second network would know from the start. This means that the
measurements performed are independent of the start-up strategy,
for any network without a context server.

In order to make the comparison as fair as possible, the SLP protocol was
used as follows:

= Each SLP peer provided the same services as the SPDP peer co-
located with it. The translation between the XML-formatted SPDP
service descriptions to the SLP service URLs was performed taking
into account only the serviceld and value of the SPDP services, while
ignoring the rest of the fields. Then, the SLP service URL was built as:

servicelId:value://host:port

with no attributes. Since every SLP service running on a host requires
a different port number, random port numbers were assigned.

= Since the network runs without a Context Server, no SLP Directory
Agent (DA) was present. In this way, neither of the two protocols had
a centralised source of information.

4.2.1.2 Tests

Ten different test cases were studied in order to illustrate the operation of
SPDP and its service discovery algorithm. All of them consist of a service
discovery for a particular service. Note that no peer discovery was
performed per se, since this SPDP implementation does not support it.
However, this does not limit the validity of the tests since many of the
service discoveries involve one or more peer discoveries. Peer discovery
was used as a tool for discovering services.

The tests are related to the way SPDP discovers services. The control flow
for each test is depicted in Figure 13.

Table 1 gives the details of the services that were searched for in each test

and the service and peer files that were used as start-up knowledge. All
searches were initiated by the peer diego.

50

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

!

User presses "Search service"
(UserAgent.findService)
(SpdpAgent.findService)

!

Search in local service file
(ServiceQuery.serviceSearch)

1,1b YES _
Services found?
NO 2,3,4,5,6,7,8,9
Search in local peer file for
peers providing the service id
(PeerQuery.peerSearch)
2,3,4 vES NO 5,6,7,8,9

Peers found?

Search for all
known peers

NO 9

Peers found?

Pick next found peer Ii—
l YES | 4,5,6,7,8

Send service discovery - p
message to that peer Pick next lound peer |'
Wait for reply Send peer discovery
message to that peer

!

Wait for reply

YES 4
NO

Peers left?

YES
NO
7,8

| Update service file Peers left?

P

Update peer file

ervice value
specified?

YES 4,6,7

Pick next found peer |1—

Send service discovery
message to that peer

!

Wait for reply

YES

Peers left?

Update service file

Return found services | | Return empty list |

Figure 13: Control flow for the main thread for the ten test cases. The labels in the arrows correspond to
test numbers.

51

Implementation and Evaluation of the Service Peer Discovery Protocol

Diego Urdiales Delgado 17/05/2004

Test diego’s service file diego’s peer file Service id Service value

1 = = filemp3 The Spring.mp3
1b = = filemp3 The Autumn.mp3
2 = = sipphone (No value)

3 * = sipphone Pojken

4 * * sipphone Gonzalo

5 = * printer (No value)

6 * * printer EasyPrint

7 = * printer FrankInkStain

8 = = teletransport Stockholm-Burgos
9 = empty.xml teletransport Stockholm-Burgos

=: use default file (peers-diego.xml or services-diego.xml, see Apendix B)
*: use default file, but it will be changed after the discovery (network knowledge acquired)

Table 1: Service and peer files and service ids and values used for the tests

4.2.1.2.1 Test 1

Test 1 is the simplest query that can be made to SPDP. It is a query for a
service that is provided locally (in the same host where SPDP is running).
The first service search in the service file finds a hit, and it returns the
found service.

4.2.1.2.2 Test 1b

In Test 1b, a locally known service (that is, it is present in the service file)
that is not locally provided is searched for. For SPDP, this case is equivalent
to Test 1.

4.2.1.2.3 Test 2

In Test 2, a service id without service value is searched for. No matching
services are found in the service file. However, since there are known peers
that provide this service id, and since the service value is not specified,
those peers are returned.

4.2.1.2.4 Test 3

In Test 3, an unknown service is searched for. As no matching services
were found in the local service file, a peer search is conducted for peers
providing this service id. A service discovery message is sent to each of
these peers until one is found which provides the requested service value.

4.2.1.2.5 Test 4

Test 4 illustrates the most complex action flow that can occur after a service
search is started. In this case, as in Test 3, no matching service is found in
the service file, but some peers are known to provide the required service
id. A service discovery message is sent to each of those peers asking them

52

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

for the specific service value. However, none of them provides the desired
value. Therefore, a peer search must be performed to locate new peers that
provide the service id. A peer discovery message is issued and sent to each
of the known peers, until one of them replies with information about peers
that match the condition. In that case, the newly-acquired peers are
queried directly for the service value. One of them is found to provide the
requested service value, and the search ends successfully.

Note that this iterative search is done with only one step depth (as
explained in section 3.3.2), i.e., only peers that are known to a peer’s
already known peers are searched (i.e., only “friends of our friends”, never
“friends of our friends’ friends”). However, after a service discovery is
performed, the list of known peers grows with (some of) the peers that
were two steps away (i.e., “some friends of our friends become friends of
our own”), thus becoming one step closer.

4.2.1.2.6 Test 5

In Test 5, an unknown service id is searched for. No known peers provide
the service id, so a peer discovery message is issued to each of the known
peers looking for peers that provide that service id. Here, one of the peers
knows a peer that provides the service id, and so the search ends
successfully.

4.2.1.2.7 Test 6

Test 6 is an extension to Test 5. After some peers have been found that
provide the previously unknown service id, they are queried for the service
value. One of them is found to provide the requested service, and the
search ends successfully.

4.2.1.2.8 Test 7

Test 7 is a variant of Test 6, with the sole difference that none of the new
peers provides the service value that has been requested, and so the search
returns without result. Again, note that even if no matching services have
been found, more knowledge about the network has been acquired, which
can result in a better chance of finding services and peers in subsequent
searches or iterations of the same search.

4.2.1.2.9 Test 8

Test 8 is a search for a service id which is unknown to this peer as well as
to all the known peers, and therefore returns without any result.

4.2.1.2.10 Test9

Finally, Test 9 illustrates the extreme case in which an unknown service is
searched for, but the local peer does not know any peers. The search ends
without any result. Note that even in the case of Tests 8 and 9, where no
new network knowledge is acquired with the search is performed, a second
iteration of the search after some time may vyield services, since the
network knowledge of this peer's known peers, or of this peer itself, can
grow (for instance, due to receiving discovery requests from other peers).

53

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

4.2.2 Discovery time and traffic measurements

In order to compare SPDP and SLP, seven out of the ten tests described
above were performed for both protocols, and the discovery time and traffic
generated have been compared. Tests 2 and 5 were not performed with SLP
since the translation from SPDP service descriptions to SLP service URLs
requires the presence of a service value. Furthermore, Test 9 was not
performed because it was difficult to find a fair counterpart with SLP: since
SLP uses multicast messages, it will automatically perform as if it knew
about the existence of all peers listening to the SLP multicast group. The
results obtained in the tests for both protocols are detailed next.

4.2.2.1 Test1

Figure 14 shows the histogram of the discovery times for Test 1 for both
protocols. As can be seen, both protocols perform comparably in terms of
discovery time, although SLP has a slightly smaller average time (4.5 ms
instead of 6.5 ms for SPDP).

Discovery time distribution
Test 1

100

H

a0l]

Tl
E}; B0
2 B SFDP
§ mSLP
@ 40 :
(1

a0 A

20 A

I:I 1 T T -_| T T J_| T T T
I 2h A 1a 20 4[] a0 160
Time (ms)

Figure 14: Discovery time distribution for Test 1 for SPDP and SLP

54

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

However, the operations that each of the protocols perform to accomplish
the search are very different; while SPDP looks for the requested service in
the service file and finds it, SLP issues a multicast message for it, which is
received on the loopback interface and triggers a successful ServiceReply by
the SLP daemon.

This difference becomes apparent when looking at the traffic
measurements, which are summarized in Table 2 for a normal® Test 1
discovery. While SPDP sends no discovery message for known services, SLP
issues a multicast ServiceRequest that reaches all the nodes in the network.
As the service is locally provided, the ServiceReply message is generated
internally and therefore does not reach the network (SLP nodes that do not
provide a matching service do not respond to ServiceRequests). This is why
the total traffic generated by SPDP is 0 bytes, while for SLP it is 100
multicast bytes in 1 message.

Note that this multicast message must be processed by all hosts listening to
this multicast group despite the fact that the service was available locally.

Protocol Bytes Messages
SLP 100m 1
SPDP 0 0

Table 2: Traffic generated for the normal discovery for Test 1 by SPDP and SLP.
“m” indicates multicast.

4.2.2.2 Test1b

As stated before, Test 1b is equivalent to Test 1 for the SPDP protocol, since
no distinction is made among services that are present in the service file.
The discovery time distribution is therefore very similar to the one
obtained for Test 1, and so is the average discovery time of 6.3 ms.

SLP has to send a ServiceRequest and wait for a ServiceReply in order to
complete the search, but since the network introduces a negligible® delay,
its performance in terms of discovery time is comparable to that of Test 1.
The average discovery time measured was 3.9 ms. The service discovery
time distribution for both protocols is depicted in Figure 15.

The results in terms of traffic are shown in Table 3. The difference between
both protocols is more obvious for Test 1b than for Test 1, since SLP
generates 2 messages (ServiceRequest and ServiceReply) for each
discovery, amounting to 215 bytes (100 of which are multicast). SPDP does

2 Throughout the measurements, the traffic comparison will be established for the normal
discovery exchange, that is, a discovery where no messages have been lost or retransmitted.
3 The transmission of 215 bytes over a 10 Mbps network takes 0.172 ms plus inter-frame
spacing.

55

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

not generate any messages, since the service is contained in the service file
and hence locally known.

Discovery time distribution
Test1b
100
80
a0 +— |
70
% B0
4]
£ & E SFOF
3 ESLP
@ 40
18
30 ~
20
1D | L
0 T T ._' T T J_| T Toe] T 1
1] 245 5] 10 20 40 an 160
Time (ms)

Figure 15: Discovery time distribution for Test 1b for SPDP and SLP

Protocol Bytes Messages
SLP 100m+115 |2
SPDP 0 0

Table 3: Traffic generated for the normal discovery for Test 1b by SPDP and SLP

4.2.2.3 Test3

Figure 16 shows the discovery time distribution for SPDP and SLP for Test
3. It can be seen that SLP outperforms SPDP in terms of discovery time.
SLP follows the same strategy as in previous tests, sending a
ServiceRequest message and waiting for a ServiceReply. SPDP needs
additional message exchanges to perform a service discovery and thus
takes longer. On average, SLP takes 4.1 ms, approximately the same time
as in the previous tests, while SPDP takes 220 ms. The little peak in the
5120-10240 ms range for SPDP is due to a lost message during the

56

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

exchange; the maximum waiting time for messages was set to 9 s in the
SPDP implementation.

Discovery time distribution
Test3

100
0
B0
70
BO
50 1
40 4
a0
20

B SPDF
B 5LF

Frequency (%)

10 1

|

Q‘_::D © ,\Q;—ﬁ} bg@h@rb@@{ﬁ?rﬁb{ﬁi@@

Time {ms)

Figure 16: Discovery time distribution for Test 3 for SPDP and SLP

The traffic statistics for the normal discovery are shown in Table 4.
Whereas a normal Test 3 discovery for SLP needs as much traffic as for Test
1b, SPDP must perform a service discovery, which normally consists of four
messages:

= The SPDP DISCOVERY message for the requested service, embedded
in a SIP SUBSCRIBE message.

= The SIP “200 OK” response to the subscription.

= The SPDP ACCEPT reply to the discovery, embedded in a SIP NOTIFY
message.

= The SIP “200 OK” response to the notification.
In total, this amounts to 3378 bytes for the specific service request studied.

57

Implementation and Evaluation of the Service Peer Discovery Protocol

Diego Urdiales Delgado 17/05/2004
Protocol Bytes Messages
SPDP 3378 4
SLP 93m+108 |2

Table 4: Traffic generated for the normal discovery for Test 3 by SPDP and SLP

On the other hand, SLP traffic is similar to the case of Test 1b, with one 93
byte long multicast ServiceRequest and one 108 byte long unicast
ServiceReply. Again, it should be noted that the fact that SLP multicasts its
messages does not change the number of messages exchanged because
only one peer provides the requested service; however, it does have an
influence in terms of processing power and battery consumption, since
every peer in the network must receive and process the multicast messages

4.2.2.4 Test4

As stated before, Test 4 illustrates the most complex message exchange
that SPDP can perform in a single search iteration.

As Figure 17 shows, the average discovery time for SPDP is 920 ms, a
time that is influenced by the lost messages that occur in some of the
iterations of the experiment. The average for discoveries without any lost
message is 405 ms.

Discovery time distribution
Test 4
100
90
80
- 04
=
< 60
(%
2 510 B SPDP
5 mSLP
g 40 4+
30
20
10 4 =
0 T |_|| — T T T T |I T
i L L = L] L] Lo D i i i L] L) =
g w SR oI Y e s
T i Ly Lo}
Time {(ms)

Figure 17: Discovery time distribution for Test 4 for SPDP and SLP

58

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

These values are high compared to SLP, which has an average discovery
time of 4.0 ms, very similar to the previous cases.

With respect to traffic, SLP issues the same type of messages as in
previous tests, whereas SPDP needs to perform a 12 message long
exchange to accomplish a normal discovery. In detail, this message
exchange consists of:

= The SPDP service discovery message for the requested service,
embedded in a SIP subscription.

= The SPDP DENY response to the service discovery request, embedded
in a SIP notification.

= The SPDP peer discovery message for peers providing the service
name (SIP SUBSCRIBE).

= The SPDP ACCEPT response to the peer discovery request (SIP
NOTIFY).

= The SPDP service discovery message asking the newly-found peer for
the requested service (SIP SUBSCRIBE).

= The SPDP ACCEPT response for the final service request.
= Six SIP "200 OK” responses for each of the previous SIP messages.

This rather complex exchange results in 9868 bytes of unicast traffic
exchanged over the network among the different peers.

In SLP the situation is the same as in the previous cases: 2 messages are
sent, amounting to 203 bytes, 94 bytes of which are multicast. These
results are summarized in Table 5.

Protocol Bytes Messages
SPDP 9868 12
SLP 94m+101 |2

Table 5: Traffic generated for the normal discovery for Test 4 by SPDP and SLP

4.2.2.5 Test 6

The discovery time distribution for Test 6 for both protocols is depicted in
Figure 18. The histogram shows that, as expected, SLP performs as for the
previous cases (the average discovery time for SLP is 4.4 ms), since its
strategy is the same as in all the previous tests.

59

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

SPDP requires an average of 635 ms to perform a discovery, which is
reduced to around 265 ms for discoveries without lost messages.

Discovery time distribution
Test6

a0

60 4

50 17 B SPDP
A0 4— [

Frequency (%)

30 4

20

S D P PP DO P DD
v A e bﬂ'h\ﬁq,

Time (ms)

Figure 18: Discovery time distribution for Test 6 for SPDP and SLP

The traffic exchange for both protocols is summarized in Table 6. For SLP,
the normal discovery consists of a simple message exchange: a multicast
ServiceRequest and a unicast ServiceReply. For SPDP, an 8 message long
exchange is performed:

= An SPDP peer discovery message for peers providing the service
name.

= An SPDP ACCEPT response for the peer request.
= An SPDP service discovery message for the actual service value.
= An SPDP ACCEPT response for the service request.

= Four SIP “200 OK” responses, one for each of the SIP messages that
embed the SPDP messages.

60

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado

17/05/2004
Protocol Bytes Messages
SPDP 6877 8
SLP 95m+110 |2

Table 6: Traffic generated for the normal discovery for Test 6 by SPDP and SLP

4.2.2.6 Test7
Unlike the previous tests, Test 7 illustrates a search that ends without any

hits. This has an important influence in the “discovery” time distribution,

measured as the time that it takes for each protocol to consider a service

unavailable or inexistent. This time distribution is shown in Figure 19.

SLP has a timer (set by default to 3 seconds in the implementation under
study) to wait for ServiceReplies. The retransmission protocol implemented
retries twice until it gives up. This is why all the service discovery times are
in the range 3200 to 6400 ms for SLP. The average time was measured to

be 6020 ms.

100
g0
g0
70
50
a0
40
30
20
10

Frequency (%)

Discovery time distribution

Test7?

| =POF
@SLP

Figure 19: Discovery time distribution for Test 7 for SPDP and SLP

61

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

On the other hand, SPDP gives up searching when it has asked all the
known peers for new peers, when it has asked these new peers for the
requested service, but still got no successful response. This takes, on
average, around 360 ms (around 200 ms on average if no packets are lost)
in our study case. This time has a constant component due to the initiation
of the search, and a component that is expected to grow linearly with the
number of known peers.

The traffic exchange involved, summarized in Table 7, shows how both
protocols work. While SLP multicasts three ServiceRequests, and then
returns, SPDP sends the following messages:

= An SPDP peer request for new peers that provide the service id.

= An SPDP ACCEPT response to the peer request.

= An SPDP service request for the actual service value.

= An SPDP DENY response for the service request.

= Four SIP “200 OK” responses, one for each of the previous four SPDP

messages.
Protocol Bytes Messages
SPDP 6489 8
SLP 297m 3

Table 7: Traffic generated for the normal discovery for Test 7 by SPDP and SLP

4.2.2.7 Test 8

Test 8 looks for a service id that is unavailable in the network. Both in
terms of discovery time and traffic, this test is equivalent to Test 7 for SLP,
since a ServiceRequest message is sent that receives no reply. It can again
be seen that the discovery time distribution, depicted in Figure 20, has a
single peak in the 3200 to 6400 ms region for SLP. In fact, the average time
is 6035 ms.

The SPDP message exchange is simpler in this case than for Test 7, since
no peers were found that provide the service id, and the search ends
earlier. The average discovery time for SPDP is 179 ms (119 ms for
exchanges without lost messages).

As far as traffic is concerned, SPDP involves a message exchange
consisting of 4 messages for the normal case:

= The SPDP peer discovery message for peers providing the service
name.

62

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

= The SPDP DENY response for the peer request.

= Two SIP “200 OK” responses, one for each of the two SPDP
messages.

As in Test 7, SLP traffic consists of three multicast ServiceReplies for the
requested service. The average numbers for both protocols are shown in
Table 8.

Discovery time distribution
Test 8
100

a0
80

70
G0

B SPDF
ESLF

50

40
30

20 - -

m—] -

0 - [_
3

Frequency (%)

P & F & ’{b@ @@ Q};?‘ {ﬁg:?

Time (ms)

Figure 20: Discovery time distribution for Test 8 for SPDP and SLP

Protocol Bytes Messages
SPDP 3228 4
SLP 324m 3

Table 8: Traffic generated for the normal discovery for Test 8 by SPDP and SLP

63

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

4.2.3 Conclusions

From the results of the tests described above, some preliminary conclusions
can be made about the performance of SPDP in comparison with SLP.

4.2.3.1 SLP is more traffic and time efficient in general

The tests show that SLP is, in general, a more time and traffic efficient
protocol than SPDP. It uses shorter and in general fewer messages for
discoveries, and it takes less time to complete the searches.

SLP is a protocol that works much closer to the operating system than
SPDP. The SLP daemon runs as a background process that is in charge of
managing all SLP local service information and message exchanges.
Furthermore, SLP uses the transport layer (UDP in the case of the OpenSLP
implementation) directly, while SPDP uses SIP to transport its messages.
Last but not least, SLP uses extended URLs to describe services, while SPDP
uses XML-formatted service descriptions. All of this explains why SPDP
requires a longer time and generates more traffic for its discoveries.

4.2.3.2 Considerations with respect to traffic

When comparing both protocols in terms of traffic, it must be noted that
SLP makes extensive use of multicast messages to perform discoveries. It is
therefore not straightforward to state which protocol performs more
efficiently in terms of traffic for all cases. In network technologies where
there is a shared media, such as all the LAN variants, using multicast does
not involve sending more messages if the communicating peers are in the
same subnet, since the shared media allows for multicast and broadcast
naturally. But if that is not the case, a multicast message can result in more
traffic being generated, depending on the size of the SLP network.

Some more important considerations about multicast in the peer-to-peer
wireless scenario are made in section 4.2.3.5.

4.2.3.3 SPDP traffic saving for known services

However, SPDP does outperform SLP in terms of traffic for two relevant
cases, those tried in Tests 1 and 1b. In those cases, SPDP’s time
performance is also comparable to that of SLP.

When searching for known services (whether they are locally provided or
present in the service file), SPDP does not require any message to be sent
to the network, since the search in the local file produces a hit. This can be
a crucial advantage in some networks (such as for instance GPRS) where
traffic is very costly.

The importance of these cases greatly depends on the frequency with which
a service discovery of each type occurs. It can be assumed to be unlikely
that a user chooses to ask the service discovery protocol for a service that
is provided in the same peer, as in Test 1. But the probability that an
already known service is requested (as in Test 1b) can be high if the spread
of information around the network is efficient. While it is not trivial to design

64

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

an algorithm that would maximise the probability of having the requested
services stored in the local file while also minimising the amount of traffic
generated, a step in this direction would be to take advantage of every
SPDP message sent to spread network knowledge, including some amount
of unrequested peer and service information, thus amortising part of the
message overhead, and increasing the probability of future successful
searches.

4.2.3.4 Considerations of non-successful searches

The evaluation of the protocols when dealing with searches that do not find
any match must be different from the successful cases. The fact that a
protocol returns an empty service list very quickly does obviously not make
it better, especially if its counterpart can produce a non-empty list after a
slightly longer wait. However, it is certainly desirable that a search for an
inexistent or unavailable service takes up as little time and generates as
little traffic as possible.

A number of different factors have to be taken into account before being
able to state that a protocol performs better or worse than another in these
cases. Firstly, the scope of the searches is different in both protocols. SLP
searches inside the scope of the SLP multicast group, whereas SPDP queries
peers that are known locally and those that are known to them (that is, two
steps of “acquaintance”). There is a trade-off between a larger scope, which
could possibly yield more hits, and more discovery traffic, since more
discovery messages will have to be sent.

Another factor to take into consideration is the actual gain in terms of
spreading network knowledge that is obtained even if no hits are found. In
SPDP, for instance, new or updated information about peers may be
obtained even if the requested service cannot be found, and information
about the requesting peer is spread with every message it sends, possibly
resulting in better chances for a (local) hit in subsequent searches.

4.2.3.5 Considerations of the peer-to-peer wireless scenario

The goal of this thesis was to study the performance of SPDP in a particular
scenario, namely the peer-to-peer wireless scenario (described in section
2.1).

It has been mentioned that SPDP’s use of XML both for the representation
of peer and service information and for the format of its messages increases
the size of the protocol messages. However, this approach provides SPDP
with much greater flexibility and scalability for the representation and the
search for services than SLP. The fact that SPDP uses XML allows for
greater understandability and a standard representation of the information,
and provides a powerful means to make searches with multiple levels of
refinement, hence making it more expressive than SLP’s service URLs and
attributes. It also makes it easier to extend the protocol with new
functionality. SPDP’s designers consider that it is worth paying the extra
price in terms of traffic in order to create a more user-oriented, high-level

65

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

representation of the information, in accordance with the user-oriented
peer-to-peer wireless scenario. Furthermore, the use of XML also facilitates
distributing information along with each query.

Note that traffic can be reduced by using schemes for compression which
can exploit a preloaded dictionary [44, 45].

A key feature of the scenario studied is the role of SIP as an overall
signalling protocol for all kinds of session-oriented services. In this context,
SPDP has the advantage that it has been designed to work with SIP, and is
therefore very smoothly integrated as a new functionality for a SIP User
Agent, as shown earlier (see section 3.1.2).

Finally, consideration has to given to the type of messages used by both
protocols. SLP’s approach to service discovery heavily relies on the
possibility of using multicast in the network. The SLP specification suggests
that multicast messages should be used by User Agents to discover services
in smaller networks, where no Directory Agent is present. In larger
networks, even if the communication is unicast to and from the Directory
Agent, multicast messages are still used as DA advertisements or DA
service requests. SLP can work in networks with a Directory Agent and
without multicast, but it was not designed for that purpose. On the other
hand, SPDP only relies on unicast messages for its discoveries. Unicast is
seen as the standard type of message for the protocol, and multicast is only
contemplated as a possibility that could be taken advantage of when it is
available (for instance, for the initial acquisition of information on start-up).
This philosophy is better targeted for the peer-to-peer wireless scenario
under study, in which some network technologies, such as GPRS do not
allow for broadcast or multicast messages.

Moreover, the use of multicasting has crucial implications in the peer-to-
peer wireless scenario, where a considerable fraction of all peers are
battery-powered mobile devices. Even if a multicast message does not
trigger a response from a peer, the peer must receive and process it, which
results in some battery and processing power consumption. A protocol
based in unicast messages ensures that only the intended recipient
processes the message and issues a response.

4.3 SPDP in real networks

While the experiments described in the previous section permit us to make
a number of interesting conclusions about the performance of SPDP, they
are unrepresentative of the real settings in which SPDP is likely to be used.
A greater number of peers, greater flexibility for the peers to change or
interrupt their services, and the possibility that peers enter or exit the
network at any time are some of the usual events that the protocol will
have to deal with, and which will ultimately determine its performance and
usefulness.

66

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

It has been shown that SPDP, unlike SLP, uses an algorithm based on
unicast to search for services in the network. Considerations have been
given to the influence that this has on the amount and type of traffic
generated by both protocols. But SPDP’s algorithm also specifies that only a
limited set of peers (as explained earlier, the known peers and the peers
known to the known peers) is queried for services in every search, thus
resulting in a probabilistic search: there is a certain probability that a
service is actually available in the network, but a peer will not be able to
find it using SPDP (in the first search iteration), since the peer providing the
service is too “far” in the knowledge graph. This is not the case for SLP,
which uses multicast, and will therefore be able to find any service provided
by a peer that listens to the SLP multicast group.

It is therefore interesting to evaluate this error probability, since it will
determine the performance of SPDP. First of all, it is clear that this
probability depends on the average number of peers that each peer
knows with depth two®. If every peer knows, through its known peers,
every other peer, then the search performed by SPDP will not be
constrained; it will encompass the whole peer network. How likely is this the
case?

In a real network, there are three types of events that influence the
average “network knowledge” of the peers. If a new peer comes into the
network, and assuming it does so by learning of the existence of one other
peer, the average network diameter (and knowledge) decreases, since this
peer is logically tied to only one other peer. If a peer exits the network,
the peers that knew it now know one peer less (in fact, they will eventually
do so after the timers for the entries in the respective service and peer files
expire), thus decreasing the average network knowledge. The way to
increase network knowledge is by performing searches, by which updated
network knowledge spreads.

The rather complex nature of the SPDP algorithm makes it difficult to
quantify precisely how much knowledge is gained or lost on average when
any of those events occur. The knowledge increase/decrease in each case
depends on the particular content of the peer and service files of each of
the peers involved in the search. However, it is safe to say that, while a
peer departure or arrival adds an amount of “uncertainty” to the network
knowledge corresponding to one specific peer, a single search may create
logical bindings among several different peers.

It is not obvious how to quantify the frequency with which each of these
three events occurs. Several measurements have been carried out about
the behaviour of users of wireless networks deployed in university
campuses [46, 47], conferences [48], corporate networks [49] and
metropolitan networks [50]. Those measurements try to establish patterns

* This number is implementation specific, but as discussed earlier in section 3.3.2, there are
good reasons to choose it.

67

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

and estimate, among other things, the distribution of the time the users are
connected to the network, the arrival and departure processes of users in
the network, and the frequency distribution of the applications that are
used. However, these statistics do not have straightforward application to
the SPDP analysis: the arrival of a new user in the wireless network has a
very different effect on the peer knowledge if the user has kept some of the
knowledge it acquired during previous sessions, or if it enters the network
for the first time; the fact that a user roams to another network or
completely exits the wireless network does not necessarily mean that the
peer will not be reachable through SIP any more, and it may still take part
in searches and therefore contribute to the average knowledge of the
network; finally, the measured distribution of the popularity of the different
applications present in the wireless network needs to be extrapolated to the
particular services offered in a peer-to-peer wireless scenario.

Nevertheless, it is sensible to assume that, in a real scenario, service
searches will occur considerably more often than peer arrivals or
departures; usually, a peer will require several services during a session,
from the moment the session begins until it finally ends.

One important feature of the peer-to-peer wireless scenario is the presence
of a few fixed peers in the network, along with several highly mobile peers.
These fixed peers (context servers, access points,..., but also printer peers,
fax peers, etc. present in a room) can constitute a backbone of network
knowledge, since each of them is very likely to know all of the others which
are relatively fixed, in a full mesh, assuming that they have been running
for a long time>.

All of the previous considerations indicate that it is possible to assume that
the average network knowledge of the peers in the network is probably
high, and therefore the probability of not finding an available service can be
assumed small.

It has been mentioned that an SPDP peer learns with every discovery,
particularly with the unsuccessful ones. The way in which information is
spread ensures that a user that does not get tired of iterating the same
search will eventually find a match, if the service exists in the network. But
of course users get tired, and some do so very soon. Hence, another
interesting statistic is the number of iterations of the same search that will
be needed, on average, to find an available service.

As stated before, with respect to network knowledge, the best case
topology for SPDP is a full mesh, i.e., when every peer knows every other
peer in the network (see Figure 21). In this case, the probability of not
finding an available service is zero, and there is no need to perform a
second iteration of the search. Analogously, the worst case would be if the
network knowledge topology is a line of peers, in which it is easy to see that

> This can of course be ensured by providing each of the fixed peers with static information
about the rest of this static backbone.

68

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

the probability of not finding an available service is

, where N is the

total number of peers, and that %—1 iterations of the same search will be

needed on average to find the match.

Figure 21: Network knowledge topologies: line (top left, worst case), full mesh (top right, best case),
random binary tree (bottom)

A line is a particular case of tree topology, with a branching factor of 1. It
can be seen that just by increasing the branching factor of the tree to 2,
thus making it binary, the average number of iterations needed is
drastically reduced. In fact, [51] proves that the average depth of a random
binary tree is approximately 2:In(N), where N is the number of nodes in the
tree®. In the case where there are thousands of peers connected to the
network, which is a reasonable worst case, an upper bound for the average
depth would therefore be 2:In(1000), that is, around 14. This means that
every peer can be reached after an average of 12 iterations.

®In fact, the obtained expression [51] for the average depth is:
- N +1
d= 2(v j(lnN+ y)—4

where vy is Euler’s constant.

69

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

However, in real networks, the presence of fixed peers and the activity of
peers in terms of performing discoveries will likely make the network
knowledge topology much closer to a mesh than a tree, further decreasing
the search depth and increasing the probability of a successful search.

All in all, it can be stated that SPDP is well targeted towards the peer-to-
peer wireless scenario, where it benefits from the environment in order to
provide a battery and traffic-efficient service search mechanism without
having to pay a high price in terms of incompleteness of the search.

70

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

5 Improvements and future work

After creating an implementation and evaluating the Service Peer Discovery
Protocol, this chapter contains suggested improvements to the protocol that
can constitute a follow-up to this master’s thesis. Here they are described in
order, from the most specific and concrete, to the most abstract and
general.

5.1 Optimization of the implementation

As stated before, the first goal of this project was not to create an efficient
all-round implementation of SPDP, but rather an illustrative working
implementation that showed the main features of the protocol and allows a
fair comparison with other protocols, SLP in our case.

This is why extensive documentation has been written about the
implementation both inside this document and as Javadoc pages. Hopefully,
the documentation will aid future developers of SPDP to produce a more
targeted, efficient implementation of the protocol.

5.2 Redundancy in the protocol messages

In the comparison with SLP (section 4.2), it became evident that SPDP
messages are larger that SLP messages. However, some of the fields in the
SPDP message carry redundant information that is already present in the
headers of the embedding SIP message. For instance, the sender SPDP
field can be identified with the From SIP header field, and both messages
contain a replyTo field that is very likely the same.

The implementation described in this document chose to keep this
redundancy for simplicity: in this way, SIP is a mere carrier of SPDP
messages, which are completely self-contained. But in order to improve the
performance of the protocol, the information carried in the SIP header could
be used to remove redundant fields or to provide extra functionality.

5.3 Taking advantage of the context servers

Currently, the implementation is designed to work in networks without a
context server. The implementation will work if there is a context server
present in the network, but it will not take advantage of its presence: the
context server will be treated as a normal peer. However, a context server
is likely to aggregate a lot of service and peer information, and therefore it
should be taken advantage of when it is present in the network.

71

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

As future work, the implementation could be improved so that the presence
of a context service is checked by every peer upon entrance to the network,
and so that context servers are prioritized over the rest of the peers when
searching for peers or services (queries should be sent to the context
servers first). If the context server is provided with a smart way of
passively acquiring network knowledge with every request received, its
presence could largely improve the traffic and time performance of SPDP.

5.4 Taking advantage of XML

As explained before, SPDP uses the Extensible Mark-up Language (XML) to
represent all the data structures of the protocol. Compared to the
descriptions that other protocols make of the services (such as SLP’s service
URLs), SPDP provides an almost infinite wealth of possibilities both to
represent services in all necessary detail and to exchange important service
information in the messages, and these possibilities should be studied to
make the most of the protocol architecture.

One way in which this could be done was suggested in section 4.2.3.3. In
order to improve the spread of information through the network, and thus
increase the probability of finding services locally, unrequested service and
peer information could be included in the protocol messages. It is left as
future work to implement this improvement, as well as to determine which
information to include in order to maximise the probability of future local
matches with the smallest possible traffic increase.

Of course, other criteria could be followed to determine which information to
include in SPDP messages: peers may choose to advertise in order to
attract users to their services, or to recommend services that the user
liked,... The possibilities are numerous.

5.5 SPDP in a real setting

More conclusions and suggestions for improvements are bound to come up
when the protocol is used in a real setting. This thesis was done in the
framework of the Adaptive and Context-Aware Services (ACAS) project [6].
The prototypes developed in this project could very well be the appropriate
test bed for the protocol.

Related work inside the ACAS project was performed by Konstantinos
Avgeropoulos [52]. In his proposed architecture for policy management,
SPDP can be the means by which the different agents discover and share
information with each other, and with the service manager.

72

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

References

[1] P. Jarske. The GSM System, Principles of Digital Mobile Communication
Systems, Technical report, Technical University Tampere, Finland, 2001.

[2] IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications, 1999 Edition.

[3] G. Soderstrom. Virtual Networks in the Cellular Domain. Master’s thesis,
Royal Institute of Technology (KTH), Department of Microelectronics and
Information Technology, February 2003.

[4] R. Cascella. Reconfigurable Application Networks through Peer Discovery
and Handovers. Master’s thesis, Royal Institute of Technology (KTH),
Department of Microelectronics and Information Technology, June 2003.

[5] J. Rosenberg, et al. SIP: Session Initiation Protocol. RFC 3261, IETF,
June 2002.

[6] ACAS project, http://psi.verkstad.net/acas

[7] E. Guttman, C. Perkins, J. Veizades, and M. Day, Service Location
Protocol, Version 2. RFC 2608, IETF, June 1999.

[8] whatis.com, Peer-to-peer, a searchNetworking definition,
http://searchnetworking.techtarget.com/sDefinition/0,,sid7 gci212769,00.h
tml, accessed November 2003.

[9] Napster, Napster — About us, http://www.napster.com/about us.html,
accessed November 2003.

[10] Gnutella, http://www.gnutella.com/, accessed November 2003.

[11] Kazaa, http://www.kazaa.com/us/index.htm, accessed November
2003.

[12] C. Perkins. IP Mobility Support for IPv4. RFC 3344, IETF, August 2002.

[13] R. Appleton. The Kazaa Protocol,
http://cs.nmu.edu/~randy/Classes/CS442/The Kazaa Protocol.html,
February 2003.

[14] FasttrackHelp Forums, What are Supernodes?,
http://www.fasttrackhelp.com/forums/index.php?showtopic=3782,
accessed November 2003.

73

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

[15] FTFakes, My Kazaa tools,
http://www.fasttrackhelp.com/development/ftfakes/, accessed November
2003.

[16] Clip2, The Gnutella Protocol Specification v0.4,
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf, accessed
November 2003.

[17] drscholl@users.sourceforge.net, Napster messages,
http://opennap.sourceforge.net/napster.txt, April 2000.

[18] The Internet Engineering Task Force (IETF), http://www.ietf.org

[19] C. Bettsetter and C. Renner, A comparison of service discovery
protocols and implementation of the Service Location Protocol, Technische
Universitat Minchen (TUM), Institute of Communication Networks,
http://citeseer.nj.nec.com/cache/papers/cs/16108/http:zSzzSzwww.lkn.ei.t
um.dezSz~chriszSzpublicationszSzeunice2000-
slp.pdf/bettstetter00comparison.pdf, accessed November 2003.

[20] R. Droms, Automated configuration of TCP/IP with DHCP, 1EEE Internet
Computing 3(4):45-53, July 1999.

[21] C. E. Perkins and E. Guttman, DHCP options for Service Location
Protocol/, RFC 2610, June 1999.

[22] Sun, Technical White Paper: Jini Architectural Overview,
http://www.sun.com/jini/, 1999.

[23] Java, http://java.sun.com/ , Accessed November 2003.

[24] R. E. McGrath. Discovery and Its Discontents: Discovery Protocols for
Ubiquitous Computing. Presented at Center for Excellence in Space Data
and Information Science, NASA Goddard Space Flight Center, USA, April 5
2000.

[25] Microsoft Corporation, Universal Plug and Play Device Architecture,
http://www.upnp.org, June 2000.

[26] Microsoft, http://www.microsoft.com, accessed April 2004.

[27] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright. Simple Service
Discovery Protocol/1.0. Draft, draft-cai-ssdp-v1-03.txt, IETF, October 1999.

[28] S. Aggarwal, J. Cohen, and Y. Goland. General Event Notification
Architecture Base: Client to Arbiter. Draft,
http://www.upnp.org/download/draftcohen-genaclient-01.txt , September
2000.

74

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

[29] D. Box, et al. Simple Object Access Protocol SOAP 1.1. Draft, W3C,
http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508/ , May 2000.

[30] R. Troll. Automatically Choosing an IP Address in an Ad-Hoc IPv4
Network. Draft draft-ietf-dhc-ipv4-autoconfig-05.txt, IETF, March 2000.

[31] JXTA community, http://www.jxta.org, accessed November 2003.

[32] Peer Discovery Protocol, JXTA v2.0 Protocols Specification,
http://spec.jxta.org/nonav/v1.0/docbook/IXTAProtocols.html#proto-pdp,
accessed November 2003.

[33] H. Schulzrinne and E. Wedlund. Application-Layer Mobility using SIP.
Mobile Computing and Communications Review MC2R, vol. 4(3):47-57, July
2000.

[34] E. Wedlund and H. Schulzrinne. Mobility Support Using SIP. In
Proceeding of Second ACM/IEEE International Conference on Wireless and
Mobile Multimedia WoWMoM99, Seattle Washington, USA, August 1999.

[35] A. B. Roach. Session Initiation Protocol SIP - Specific Event
Notification. RFC 3265, IETF, June 2002.

[36] G. Mola. Interaction of Vertical Handoffs with 802.11 wireless LANs:
Handoff Policy. Master’s thesis, Royal Institute of Technology (KTH),
Department of Microelectronics and Information Technology, To appear.

[37] W3C, Extensible Markup Language (XML) 1.0 (Second Edition),
W3C Recommendation, 6 October 2000. http://www.w3.0rg/TR/REC-xml.

[38] J. Rosenberg, and H. Schulzrinne. SIP: Locating SIP Servers,
RFC 3263, June 2002.

[39] A. Jarrar. Context Server Support for Opportunistic and Adaptive
Mobile Communication. Master’s thesis, Royal Institute of Technology
(KTH), Department of Microelectronics and Information Technology, To
appear.

[40] Java Architecture for XML Binding (JAXB),
http://java.sun.com/xml/jaxb/, accessed April 2004.

[41] CSLAB's Java SIP User Agent by Ericsson, version 3.2. Experimental
SIP-implementation (written largely in Java and ported to Windows, Solaris,
Linux) provided by Ericsson Research for the ACAS pilot project
(http://psi.verkstad.net/acas).

[42] JXTA demo, http://download.jxta.org/easyinstall/install.html, accessed
April 2004.

[43] OpenSLP, http://www.openslp.org/, accessed April 2004.

75

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

[44] M. Garcia-Martin, C. Bormann, J. Ott, R. Price and A. B. Roach, The
Session Initiation Protocol (SIP) and Session Description Protocol (SDP)
Static Dictionary for Signaling Compression (SigComp), RFC 3485, February
2003.

[45] G. Camarillo, Compressing the Session Initiation Protocol (SIP), RFC
3486, February 2003.

[46] D. Kotz and K. Essien. Analysis of a campus-wide wireless network. In
ACM MobiCom, September 2002.

[47] M. McNett and G. M. Voelker. Access and Mobility of Wireless PDA
Users. Mobile Computing and Communication Review, Volume 7, Number 4,
October 2003.

[48] A. Balachandran, G. Voelker, P. Bahl, and P. Rangan. Characterizing
user behaviour and network performance in a public wireless lan. In ACM
Sigmetrics, 2002.

[49] M. Balazinska and P. Castro. Characterizing mobility and network
usage in a corporate wireless local-area network. In ACM MobiSys, 2003.

[50] D. Tang and M. Baker. Analysis of a metropolitan-area wireless
network. In Wireless Networks V. 8, pages 107-120, 2002.

[51] B. R. Preiss. Data Structures and Algorithms with Object-Oriented
Design Patterns in C++. John Wiley and sons. Available at
http://www.brpreiss.com/books/opus4/html/page307.html. 1997.

[52] K. Avgeropoulos. Service Policy Management for User Centric Services
in Heterogeneous Mobile Networks. Master’s thesis, Royal Institute of
Technology (KTH), Department of Microelectronics and Information
Technology, March 2004.

76

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

Appendices

A List of acronyms

ACAS
DA
DHCP
DNS
FTP
GENA
GPRS
GUI
HTTP
IETF
IP
IPv4
IPv6
J2SDK
JAXB
JVM
JWSDP
LAN
MCU
MEGACO
MP3
NAPT
NAT
P2P
PDP
PMP
RFC
RMI
RTP
RTSP
SA
SDP
SIP
SLP
SOAP
SPDP
SSDP
TCP
TLS
TTL
UA

Adaptive and Context-Aware Services
Directory Agent
Dynamic Host Configuration Protoco
Domain Name Service

File Transfer Protocol

General Event Notification Architecture
General Packet Radio Service
Graphical User Interface
Hypertext Transfer Protocol
Internet Engineering Task Force
Internet Protocol

Internet Protocol version 4
Internet Protocol version 6

Java 2 Software Developer Kit
Java Architecture for XML Binding
Java Virtual Machine

Java Web Services Developer Kit
Local-Area Network

Multipoint Control Unit

Media Gateway Control Protocol
MPEG audio layer 3

Network Address Port Translation
Network Address Translation
Peer-to-Peer

Peer Discovery Protocol

Peer Membership Protocol
Request For Comments

Remote Method Invocation
Real-Time Protocol

Real-Time Streaming Protocol
Service Agent

Session Description Protocol
Session Initiation Protocol
Service Location Protocol

Simple Object Access Protocol
Service Peer Discovery Protocol
Simple Service Discovery Protocol
Transmission Control Protocol
Transport Layer Security
Time To Live

User Agent

77

Implementation and Evaluation of the Service Peer Discovery Protocol

Diego Urdiales Delgado 17/05/2004

UAC User Agent Client

UAS User Agent Server

UPnP Universal Plug and Play

URI Uniform Resource Identifier
URL Uniform Resource Locator
WLAN Wireless Local-Area Network
XML Extensible Mark-up Language
XSD XML Schema Definition

78

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

B Service and peer files used for the tests

File services-diego.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<serviceList>
<service>
<serviceld>filemp3</serviceId>
<name>The Spring.mp3</name>
<source>
<entityId
explire="3780">sip:diego@130.237.15.211</entityId>
<entityAddress
entityType="IPv4">130.237.15.211</entityAddress>
</source>
<protocol>RTP</protocol>
<expires>2004-04-06T12:03:37+01:00</expires>
</service>
<service>
<serviceld>filemp3</serviceId>
<name>The Autumn.mp3</name>
<source>
<entityId
expire="3000">sip:pojken@130.237.15.247</entityId>
<entityAddress
entityType="IPv4">130.237.15.247</entityAddress>
</source>
<protocol>RTP</protocol>
<expires>2004-04-07T11:33:48+01:00</expires>
</service>
</servicelList>

File peers-diego.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<peerList>
<peer>
<identity>
<entityId
expire="3780">sip:diego@130.237.15.211</entityId>
<entityAddress
entityType="IPv4">130.237.15.211</entityAddress>
</identity>
<network>WLAN</network>
<cellId>3454FG</cellId>
<expires>2004-03-26T12:03:37+01:00</expires>
<services>
<service>filemp3</service>
</services>
</peer>
<peer>
<identity>
<entityId
expire="3780">sip:pojken@130.237.15.247</entityId>

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

<entityAddress
entityType="IPv4">130.237.15.247</entityAddress>
</identity>
<network>WLAN</network>
<cellId>fsdf</cellId>
<expires>2004-03-30T09:00:37.673+02:00</expires>
<services>
<service>filemp3</service>
<service>sipphone</service>
</services>
</peer>
</peerList>

File services-pojken.xml:

<?xml version="1.0" encoding="UTEF-8"?>
<servicelist xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="servicelList.xsd">
<service>
<serviceId>filemp3</serviceId>
<name>The Autumn.mp3</name>
<source>
<entityId
expire="3000">sip:pojken@130.237.15.247</entityId>
<entityAddress
entityType="IPv4">130.237.15.247</entityAddress>
</source>
<protocol>RTP</protocol>
<expires>2004-04-02T17:58:17+01:00</expires>
</service>
<service>
<serviceld>sipphone</serviceId>
<name>Pojken</name>
<source>
<entityId
expire="3000">sip:pojken@130.237.15.247</entityId>
<entityAddress
entityType="IPv4">130.237.15.247</entityAddress>
</source>
<protocol>RTP</protocol>
<expires>2004-03-07T01:00:00+01:00</expires>
</service>
<service>
<serviceld>printer</serviceId>
<name>EasyPrint</name>
<source>
<entityId
expire="3000">sip:pojken@130.237.15.247</entityId>
<entityAddress
entityType="IPv4">130.237.15.247</entityAddress>
</source>
<protocol>TCP</protocol>
<expires>2004-03-02T12:03:37+01:00</expires>
</service>
</servicelList>

80

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

File peers-pojken.xml:

<?xml version="1.0" encoding="UTF-8"?>
<peerList xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="peerList.xsd">

<peer>
<identity>
<entityId
expire="3780">sip:diego@130.237.15.211</entityId>
<entityAddress
entityType="IPv4">130.237.15.211</entityAddress>
</identity>

<network>WLAN</network>
<cellId>3454FG</cellId>
<expires>2005-03-09T12:03:37+01:00</expires>
<services>
<service>filemp3</service>
</services>
</peer>
<peer>
<identity>
<entityId
expire="3780">sip:pojken@130.237.15.247</entityId>
<entityAddress
entityType="IPv4">130.237.15.247</entityAddress>
</identity>
<network>WLAN</network>
<cellId>fsdf</cellId>
<expires>2005-03-13T07:20:00+01:00</expires>
<services>
<service>filemp3</service>
<service>sipphone</service>
<service>printer</service>
</services>
</peer>
<peer>
<identity>
<entityId
expire="3780">sip:gonzalo@130.237.15.248</entityId>
<entityAddress
entityType="IPv4">130.237.15.248</entityAddress>
</identity>
<network>WLAN</network>
<celllId>abcde</cellId>
<expires>2005-03-11T07:21:01+01:00</expires>
<services>
<service>filemp3</service>
<service>sipphone</service>
</services>
</peer>
</peerList>

81

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

File services-gonzalo.xml:

<?xml version="1.0" encoding="UTF-8"?>
<serviceList xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="servicelList.xsd">
<service>
<serviceld>sipphone</serviceId>
<name>Gonzalo</name>
<source>
<entityId
explire="3000">sip:gonzalo@130.237.15.248</entityId>
<entityAddress
entityType="IPv4">130.237.15.248</entityAddress>
</source>
<protocol>RTP</protocol>
<expires>2005-03-15T01:00:00+01:00</expires>
</service>
<service>
<serviceld>web</serviceId>
<name>My page</name>
<source>
<entityId
expire="3000">sip:gonzalo@130.237.15.248</entityId>
<entityAddress
entityType="IPv4">130.237.15.248</entityAddress>
</source>
<protocol>HTTP</protocol>
<expires>2005-03-17T12:55:37+01:00</expires>
</service>
<service>
<serviceId>filemp3</serviceId>
<name>The Summer.mp3</name>
<source>
<entityId
expire="3000">sip:gonzalo@130.237.15.248</entityId>
<entityAddress
entityType="IPv4">130.237.15.248</entityAddress>
</source>
<protocol>RTP</protocol>
<expires>2005-03-17T17:07:06+01:00</expires>
</service>
</serviceList>

File peers-gonzalo.xml:

<?xml version="1.0" encoding="UTF-8"?>
<peerList xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:noNamespaceSchemalocation="peerList.xsd">

<peer>
<identity>
<entityId
expire="3780">sip:gonzalo@130.237.15.248</entityId>
<entityAddress
entityType="IPv4">130.237.15.248</entityAddress>
</identity>

<network>WLAN</network>
<cellId>3454FG</cellId>

82

Implementation and Evaluation of the Service Peer Discovery Protocol
Diego Urdiales Delgado 17/05/2004

<expires>2005-03-11T07:21:01+01:00</expires>
<services>
<service>filemp3</service>
<service>sipphone</service>
<service>web</service>
</services>
</peer>
</peerList>

File empty.xml:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<peerList>
<peer>
<identity>
<entityId
expire="3780">sip:diego@130.237.15.211</entityId>
<entityAddress
entityType="IPv4">130.237.15.211</entityAddress>
</identity>
<network>WLAN</network>
<cellId>3454FG</cellId>
<expires>2004-03-26T12:03:37+01:00</expires>
<services>
<service>filemp3</service>
</services>
</peer>
</peerList>

83

IMIT/LCN 2004-06

www.kth.se

