
Master of Science Thesis
Stockholm, Sweden 2004

IMIT/LCN 2004-05

C A O W E I Q I U

A new Content Distribution
Network architecture - PlentyCast

A new Content Distributi on Network
architectu re - PlentyCast

by
Cao Wei Qiu

KTH/IMIT and SCINT
mike@scint.orgmike@scint.org or kthmike@kth.sekthmike@kth.se

2004-April-30
Stockholm, Sweden

A thesis presented to th e Royal Institute of Technology, Stockholm
in partial fulfillment of the requirement for the degree of

Master of Science in Internetworking

Academic Advisor and Examiner:
G. Q. Maguire Jr.
Department of Microel ectronics and
Information Technology (IMIT)
Royal Institute of Technology (KTH)

Industry Supervisor:
Lars-Erik Eriksson
Swedish Center of Internet Technology
(SCINT)

Signature:

Date:

Signature:

Date:

mailto:mike@scint.org
mailto:kthmike@kth.se

ii

Abstract in English
Content Distribution Networks have existed for some years. They involve the
following problem domains and have attracted attention both in academic research
and industry: content replica placement, content location and routing, swarm
intelligence, and overlay network self-organization for this type of distributed system.
In this project, we propose a novel Content Distribution Network architecture –
PlentyCast. This study focuses on improving access latency, network scalability, high
content availability, low bandwidth consumption, and improving infrastructure
performance for Content Distribution Networks. Outstanding problems such as: Flash
crowd, DoS, and difficulty of traffic engineering due to Peer-to-Peer are addressed.

Abstract in Swedish
Mediadistributionsnätverk har funnits några år. De har fått uppmärksamhet i både
akademisk forskning och i industrin och kännetecknas av följande frågor: placering av
innehållskopior, lokalisering av innehåll och routing, svärm intelligens, överlagrade
nätverks självorganisering för denna typ av fördelade system. I denna rapport studeras
en ny nätverksarkitektur för innehållsfördelning - PlentyCast. Denna studie fokuserar
på tillgångslatens, nätverksskalbarhet, hög innehållstillgång, låg
bandbreddskonsumtion, och förbättrad infrastrukturprestanda för
Innehållsfördelningsnätverk.

iii

Acknowledgement
Thanks to Mr. Bengt Källbäck’s for his recommendation of this job in SCINT. Thanks
to Mr. Lars-Erik Eriksson in SCINT to select me for this project. He greatly supports
my work by taking time to content distribution discuss with me. Thanks to David
Jonsson from Interactive Institute for his input of the idea of using Peer-to-Peer
techniques. Thanks to my teacher Professor Vlad Vlassov for many discussions.
Thanks to my colleagues in SCINT, Kjell Torkelsson, Eriksson B. Svante, Lennart
Helleberg, and Staffan Dahlberg gave me their warm-heart assistance during my work
at SCINT.

My parents’ encourage from China gives me great deal of confidence, enabling me to
have solve every problem regarding living and working in Sweden. Thanks for their
deep love and support in my life! My Godparents – Eva Lodén and Ragnar Lodén
have their greatly helped in my life and work during my days in Sweden. Their love
made it much easier live and work in Sweden. Thanks to Per Pedersen in Ericsson for
his strong recommendation to the Royal Institute of Technology.

My dream is to work as a teacher in either academia or as a coach in industry. This is
because Professor Gerald Q. Maguire Jr.- my academic advisor and examiner, became
my model for this dream. I like his high expectations for my examination and his very
helpful advice role. This model impressed me and awoke my enthusiasm for teaching
or coaching. Thank you, Chip!

A well-known principle has been demonstrated once again: any achievement is not
due just to one person, but due to many people.

iv

Table of Content

CHAPTER 1 INTRODUCTION TO CONTENT DISTRIBUTION NETWORK......................1
1.1 CONTENT DISTRIBUTION OVER THE INTERNET ...1
1.2 INTERNET STRUCTURE..2
1.3 INTERNET BOTTLENECKS..3

1.3.1 First-mile bottleneck...4
1.3.2 Peering bottleneck problem..4
1.3.3 Backbone bottleneck ...5
1.3.4 Last mile bottleneck ..5

1.4 CDN TECHNOLOGIES ...5
1.4.1 A system overview...5
1.4.2 A typical architecture ...6
1.4.3 Traditional CDN criteria ..8
1.4.4 Core mechanisms..10

1.4.4.1 Server placement... 10
1.4.4.1.1 Theoretical problem models and solutions... 10
1.4.4.1.2 Heuristic approaches.. 11

1.4.4.2 Replica placement ... 12
1.4.4.2.1 A typical cost model .. 12
1.4.4.2.2 Discussions of replica placement algorithms criteria ... 13

1.4.4.3 Replica management ... 14
1.4.4.3.1 Strong consistency ... 14

Client validation .. 14
Server invalidation .. 14
Adaptive Leases ... 15
Propagation and Invalidation Combination .. 15

1.4.4.3.2 Weak consistency .. 15
Adaptive TTL ... 15
Piggyback Invalidation.. 15
The Distributed Object Consistency Protocol.. 16

1.4.4.4 Server location and request routing... 16
1.4.4.4.1 Server location ... 17

1.4.4.4.1.1 Multicast vs. Agent.. 17
1.4.4.4.1.2 Routing layer vs. application layer .. 17

1.4.4.4.2 Request routing.. 17
1.4.4.4.2.1 Transport-Layer Request-Routing ... 18
1.4.4.4.2.2 Single Reply .. 19
1.4.4.4.2.3 Multiple Replies .. 19
1.4.4.4.2.4 Multi-Level Resolution.. 19
1.4.4.4.2.5 NS Redirection .. 19
1.4.4.4.2.6 CNAME Redirection ... 20
1.4.4.4.2.7 Anycast.. 20
1.4.4.4.2.8 Object Encoding .. 20
1.4.4.4.2.9 DNS Request-Routing Limitations.. 21
1.4.4.4.2.10 Application-Layer Request-Routing.. 21
1.4.4.4.2.11 Header Inspection.. 22
1.4.4.4.2.12 URL-Based Request-Routing .. 22
1.4.4.4.2.13 302 Redirection ... 22
1.4.4.4.2.14 In-Path Element ... 22
1.4.4.4.2.15 Header-Based Request-Routing... 22
1.4.4.4.2.16 Site-Specific Identifiers ... 23
1.4.4.4.2.17 Content Modification... 23
1.4.4.4.2.18 Combination of Multiple Mechanisms .. 24

1.4.4.5 Self-organization... 24
1.5 DISCUSSION..25

1.5.1 Large content for large numbers of users...25
1.5.2 Denial of service attack ..26
1.5.3 Scalability issue ..26
1.5.4 Self-organization in next generation of CDNs..26

CHAPTER 2 INTRODUCTION TO PEER-TO-PEER ..28
2.1 A DEFINITION OF P2P ...28
2.2 PROBLEM DOMAINS AND WELL-KNOWN APPROACHES..28

v

2.2.1 Decentralization ...28
2.2.2 Scalability ...29
2.2.3 Self-organization ..30
2.2.4 Anonymity ...30
2.2.5 Cost of ownership ...31
2.2.6 Ad hoc connectivity...31
2.2.7 Performance ...31

2.2.7.1 Replication .. 32
2.2.7.2 Caching ... 32
2.2.7.3 Intelligent routing and peering .. 33
2.2.7.4 Security ... 33
2.2.7.5 Digital Right Management .. 34
2.2.7.6 Reputation... 34
2.2.7.7 Accountability... 34

2.2.8 Transparency and Usability..35
2.2.9 Fault-resilience...35
2.2.10 Manageability ..36
2.2.11 Interoperability ..36

2.3 CORE TECHNIQUES ...37
2.3.1 Location and routing ..37

2.3.1.1 Centralized directory model .. 37
2.3.1.2 Flooding requests model ... 37
2.3.1.3 Distributed Hashing Table model.. 38
2.3.1.4 Plaxton location and routing ... 39
2.3.1.5 DHT algorithms benchmarking... 41

2.3.2 Overlay network mapping...43
2.3.2.1 Proximity routing .. 43
2.3.2.2 Proximity neighbor/server selection.. 45

2.4 DISCUSSION..47

CHAPTER 3 INTRODUCTION TO SWARM IN CONTENT DELIVERY48
3.1 AN OVERVIEW OF SWARM IN CONTENT DELIVERY ..48
3.2 CORE TECHNIQUES IN SWARM CONTENT DELIVERY ..49

3.2.1 Splitting large files..50
3.2.2 Initiated publishing...50
3.2.3 Mesh construction...51
3.2.4 Peer and content identification...51
3.2.5 Content/peer location ...51
3.2.6 Fault resiliency ...52
3.2.7 End User bandwidth ...52
3.2.8 ISP infrastructure ...52

3.3 AN INTRODUCTION OF FORWARD ERROR CORRECTION CODES ..55

CHAPTER 4 INTRODUCTION TO MOBILE AGENTS ..58
4.1 A DEFINITION...58
4.2 WHAT PROBLEMS CAN MOBILE AGENTS SOLVE? ..59
4.3 CORE TECHNIQUES IN MOBILE AGENTS...60
4.4 OVERVIEW OF THE REMAINING CHAPTERS ...62

CHAPTER 5 PROBLEM STATEMENT ...63
5.1 PLENTYCAST DESIGN GOALS..63

5.1.1 Improved access latency ...63
5.1.2 Improve network scalability..66
5.1.3 Improve content availability ...66
5.1.4 Lower bandwidth consumption...68
5.1.5 Improve infrastructure performance ..69

5.2 PROBLEM MODELING..70
5.3 DISCUSSION OF THE CRITERIA ..71

CHAPTER 6 A NOVEL ARCHITECTURE – PLENTYCAST ...72
6.1 SYSTEM OVERVIEW ..72

vi

6.2 HIGH LEVEL SYSTEM ARCHITECTURE ...73
6.3 PLENTYCAST CLIENT ...74

6.3.1 Active binning ...74
6.3.2 SNMP client. ...74
6.3.3 Peer lookup service...74
6.3.4 Peer Selection ...75

6.4 LANDMARK SERVER ...75
6.4.1 Placement ...75
6.4.2 Download & upload monitor..76
6.4.3 Load balancing ...76

6.5 DISTRIBUTION SYSTEM...76
6.5.1 Object splitter ...76
6.5.2 FEC encoder...76
6.5.3 Block distributor ...76

6.6 REPLICA SERVER ..77
6.6.1 Placement ...77
6.6.2 Storage and delivery ...77
6.6.3 Cone loading...77
6.6.4 Active binning ...78

6.7 LOCATION AND ROUTING SYSTEM ..78
6.7.1 Policy engine ..78
6.7.2 Server selector ..79
6.7.3 Block meter ...79
6.7.4 Content manager ..79

6.8 ACCOUNTING SYSTEM ..80
6.9 SYSTEM CHARACTERISTICS ANALYSIS AND DISCUSSION ..80

6.9.1 Case study 1: Normal access mode ..80
6.9.2 Case study 2: Flash Crowd and DDoS mode ...81
6.9.3 Case study 3: ADSL users traffic ..82
6.9.4 System characteristics ..82

CHAPTER 7 CONCLUSION AND FUTURE WORK ...87
7.1 CONCLUSION ..87
7.2 FUTURE WORK..87

APPENDIX 1: AN TYPICAL PROGRAM OF HOW TO SPLIT A LARGE FILE INTO PIECES
..97

APPENDIX 2: SNAPSHOOT OF USING A FILE SPLITTING TOOL(FREEWARE)...............99

APPENDIX 3: RECORD OF A MOVIE FILE DOWNLOADED VIA BITTORRENT.............100

vii

LIST OF FIGURES

Figure 1. An overview of how content is distributed or delivered to its users1
Figure 2 Four classes of bottlenecks on today’s Internet...3
Figure 3 Overview of an typical CDN...6
Figure 4. A typical CDN architecture ..7
Figure 5. Replica consistency overview ..14
Figure 6. HP DOCP Architecture ..16
Figure 7. Content request routing mechanisms..18
Figure 8. Centralized request model ..38
Figure 9. Flooding request model ..38
Figure 10. DHT Model ..39
Figure 11. Overlay concept..44
Figure 12. Binning Strategy concept ...45
Figure 13. benchmark between client-server and peer-to-peer swarm in content

delivery ..48
Figure 14. Swarming flow overview ...50
Figure 15. Match and mismatch in P2P overlay mapping ...53
Figure 16. Agent Taxonomy [133] ..58
Figure 17. Network layers involved in migration..60
Figure 18. Migration implemented in Java ...61
Figure 19 CDN usability decomposition ...64
Figure 20. Problem model..70
Figure 21. PlentyCast overview...72
Figure 22. PlentyCast high level architecture ..73
Figure 23. Cone loading...78
Figure 24. PlentyCast system characteristics...83

LIST OF TABLES

Table 1. DHT algorithms benchmarking ...41
Table 2. Class of Internet users..52
Table 3. Benchmark of swarm systems ...55
Table 4. Correlations between latency and its factors ...65
Table 5. Accountig Database header ..80
Table 6. System characteristics clarification ...86

Chapter 1 Introduction to Content Distribution Network
In this Chapter, I will give an introduction of Content Distribution Networks
technology. This includes examining three aspects for each of them: (1) problems to
be resolved in this realm, (2) core techniques have been used to support to this
approach, and (3) hot issues related in each realm.

The following chapters have been arranged in this way: second chapter will introduce
Peer-to-Peer technology, third chapter will have an introduction of swarming content
delivery and Forward Error Correction techniques. A compact introduction of Mobile
Agent technology will be conducted in chapter four. After all technologies which we
are interested in this project, a problem statement will be made to elaborate each goal
that we set up in chapter 5. I will explain our motivation and understanding towards
each problem which we are interested in solving, problem model, and research
criteria in this project. In chapter 6, we our proposal of a highly usable, scalable, and
reliable Content Distribution architecture. At the end of this chapter, I will conduct
case studies to evaluate if PlentyCast fulfills the project goals. Finally we will
conclude our work and highlight our future work.

1.1 Content distribution over the Internet

Figure 1. An overview of how content is distributed or delivered to its users

When the Internet bubble was breaking in 1998, many people realized that publishing
on a web site is only one step of hosting a web site, and the most important goal is to
get the web content delivered to the users over the network. Figure 1 shows an
overview of how content will be distributed or delivered to the users. Here, a client
first sends a request to a content server via an application layer protocol such as HTTP
[38]. After the request has been accepted by the content server, the server sends the
content to the client over the network links across different routers and or switches.
From a hardware perspective, both client and server are similar; and they both are
likely to be connected to the Internet via an Ethernet Network Interface Card. The

2

major difference between client and server is related to how their software1 is
structured. The Internet connects the users and the content providers.

In Figure 1, there are three actors: the user, the content provider, and the ISPs who
provide the network between the user and the content provider. They each have the
different requirements based on their own role. From a user’s perspective, the
expectation is fast access to the content they want at any time they want it. In addition,
the user expect to have good quality of the delivered content. From content provider’s
perspective, the expectation is that their content should be maximally available for all
the users who want to access, this should be only limited by the performance of their
content server. From the ISPs’ perspectives, they expect to have larger number of
users utilizing their access network, while minimizing the bandwidth consumption on
interconnections to their networks; expect high performance from their network
infrastructure.

1.2 Internet structure
By definition, Internet is a network of networks. The Internet is a well-known
example, being made up of thousands of different networks (also called Autonomous
Systems or AS’s) that communicate by using the IP protocol (see Figure 2). These
networks range from large backbone providers such as UUNet and BBN to small local
ISPs such as Swipnet in Stockholm's Solna. Each of these networks is a complex
entity in itself, physically being made up of routers, switches, fiber, microwave, ATM,
Ethernet, etc. All of these components work together to transport packets through the
network toward their destinations. In order for the Internet to function as a single
global network interconnecting everyone, all of these individual networks must
connect to each other and exchange traffic. This happens through a process called
peering. When two networks decide to connect and exchange traffic, a connection
called a peering session is established between a pair of routers, each located at the
border of one of the two networks. These two routers periodically exchange routing
information, thus informing each other of the destinations that are reachable through
their respective networks. There exist thousands of peering points on the Internet,
each falling into one of two categories: public or private. Public peering occurs at
major Internet interconnection points such as MAE-East, MAE-West, and the
Ameritech NAP, while private peering arrangements bypass these points. Peering can
either be free such as the one between Tier-1 ISPs, or one network may purchase a
connection to another such as Tier-3 and Tier-2 ISP to Tier-1 ISPs. Once the networks
are interconnected at peering points, the routing protocol running on every Internet
router moves packets in such a way as to transport each data packet to its correct
destination. For scalability purposes, there are two types of routing protocols directing
traffic on the Internet today. IGP (Interior gateway protocols) such as OSPF and RIP
create routing paths within individual networks or ASs, while the EGP (exterior
gateway protocol) BGP (Border Gateway Protocol) is used to send traffic between
different networks. Interior gateway protocols often use detailed information about
network topology, bandwidth, and link delays to compute routes through a network
for the incoming packets. Since this approach does not scale up to handle a large-scale
networks composed of separate administrative domains, BGP is used to link
individual networks together to form the Internet. BGP creates routing paths by

1 Definition of client-server http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?clienthttp://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?client-server accessed on
2004-01-19 22:45

http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi

3

simply minimizing the number of individual networks (called Autonomous Systems)
a packet must traverse. While this approach does not guarantee that the routes are
even close to optimal, it supports a global Internet by scaling to handle thousands of
ASs and allowing each of them to implement their own independent routing policies
within the AS. Peering points and routing protocols thus connect the disparate
networks of the Internet into one cooperating infrastructure. Connecting to one of
these networks automatically provides access to all Internet users and servers. This
structure of the Internet as an interconnection of individual networks is the key to its
scalability. It enables distributed administration and control of all aspects of the
Internet system: routing, addressing, and internetworking. However, inherent in this
architecture are four types of bottlenecks that, left unaddressed, can slow down
performance and decrease the ability of the Internet to handle an exponentially
growing number of users, services, and traffic. These bottlenecks are described in the
following sections.

1.3 Internet bottlenecks
Here bottleneck refers to network performance bottleneck2. This occurs when the
desired data transmission rate between two end systems exceeds available link
capacity along the path for a certain period of time for a given topology. Consequently
it degrades network performance by increasing packet loss rate, increasing end-to-end
latency, and introducing jitter3. However, as we only consider static content, thus jitter
is irrelevant. These problems can be divided into four classes: first-mile, backbone,
peering, and last –mile. The following figure depicts an overview of these problems.

Figure 2 Four classes of bottlenecks on today’s Internet

2 http://en.wikipedia.org/wiki/Performance_problemhttp://en.wikipedia.org/wiki/Performance_problem Accessed on 2004-01-11 10:25
3 http://en.wikipedia.org/wiki/Jitterhttp://en.wikipedia.org/wiki/Jitter accessed on 2004-01-11 10:53

http://en.wikipedia.org/wiki/Performance_problem
http://en.wikipedia.org/wiki/Jitter

4

1.3.1 First-mile bottleneck

The first-mile problem appears when link capacity between local ISP and the content
server limits the number of users who wants to access the content server. Intuitively,
the capacity of the link between local ISP and its customer – the content server, is a
constant for a certain typical long period of time. The number of arriving user requests
is actually a random distribution because it is a stochastic process. If there are a small
number of clients accessing a content server, the total desired access rate will be less
than the link capacity. In this case, the packet loss rate, and latency will be acceptable.
But when the content server becomes a hot spot, viz. when large numbers of clients
access the same content server, the total desired access rate will exceed the maximal
bandwidth that the link can provide. In this case, high packet loss rate will result from
the link congestion unless the ISP can replicate responses for common requests.
Second, high latency can cause very long response times for user requests. Thirdly,
the high traffic load can overwhelm the CPU or memory resources of the content
server, ultimately bring down this server. Together they are the first mile problem.
One solution is to increase the link capacity, but this is not an optimal solution
because this will lead to potential bandwidth wasting when the peak hours passed due
to the stochastic process of client requests and it is not a cost-effective solution from
the content provider’s perspective. Since CDNs replicate or cache the content in their
replica servers or cache proxies distributed across many different ASs, this link
budget of the first mile has been distributed to many limited links between the access
clients and the content replicas (replica servers or proxies). In this way, the bandwidth
between the local ISP and the hot spot content server has been saved to be a great
extent. In addition, this relieves the original content server from potential overload.
Link budgets of a content provider can be reduced to a small number because each
CDN only needs a few links between the content server and the replica servers for
content updating because the CDNs can distribute/create replicas in their own overlay
networks.

1.3.2 Peering bottleneck problem

The peering bottleneck occurs due to two major reasons. Firstly, lower tier ISPs rent
their upstream links from higher tier ISPs. But for ISPs within the same tier, they do
not constantly pay each other for the links to connect to each other. This leads to a
peering problem – these links often run at a fixed capacity for a long time. Secondly,
installation of new circuits to expand the capacity of these links occurs much slower
than the actual traffic demands increase due to many technical or non-technical
reasons. Imagine that thousands of users only need a mouse click but actually
installing new links takes at least 3-5 months. Therefore, many ISPs don’t wait until
the link is saturated before expanding capacity becomes an issue. For example, Telia4
starts to expand its peering links when traffic reaches 50% of capacity. This seems to
make the peering bottlenecks less serious than the other bottlenecks. However,
increasing with numbers of broadband Internet users, bandwidth intensive
applications, and slow upgrade of links bottlenecks in the peering groups among tier-1
ISPs can occur. This class of bottlenecks we call peering bottlenecks.

4 www.telia.sewww.telia.se accessed on 2004-01-18 19:21. Telia is one the largest ISPs in Europe and North
American.

www.telia.se

5

1.3.3 Backbone bottleneck

For the same reasons, the backbone of the Internet is under increasing pressure from
traffic demands. However, the speed of installation of new capacity is even slower
than the peer link expansion. Thus traffic engineering is used to maintain reasonable
Quality of Service for upper layer services. However, it is hard to shape the traffic in
today’s increasingly diversified services due to the complexity of trade-offs amongst
upper tier ISPs and local access users and their limited bandwidth. The difficulties of
doing traffic engineering and new capacity expansion decision may cause the
backbone bottlenecks on the Internet.

1.3.4 Last mile bottleneck

If the end user’s bandwidth intensive applications run over a low bandwidth dialup or
cable-modem link to their local ISP, this may become a bottleneck on the last-mile
link. This class of bottlenecks exists for the connection between end users and their
local ISP. Increasingly, the last-mile problem seems to be resolved by Digital
Subscriber Line access which quickly rolled out over the world [13]. However, it
actually only relaxes the bandwidth constraint between the user’s modem and the
xDSL distribution point (a DSLAM5). Unfortunately, the primary link from the ISP’s
core switches to the distribution cabinet often becomes another bottleneck.
Furthermore, this will potentially cause peering and infrastructure bottlenecks into
more serious problem. Even though this backhaul link is easier to expand than any
other bottleneck links and the number of the subscribers attached to this link is much
easier to predict than on other bottlenecks, you do not know what bandwidth intensive
applications the end users are like to run. When an ISP does traffic engineering, it
must avoid blocking certain bandwidth intensive applications or this could cause the
end users to immediately subscribe to a competitor’s network. While the xDSL rollout
resolves the last-mile problem, it challenges traffic engineering and existing peering
and first-mile solutions.

To sum up, the problems that a CDN faces are to meet the requirements of the end
user, content provider, and the ISP in the context of these four classes of Internet
bottlenecks.

1.4 CDN technologies

1.4.1 A system overview
As we described in the previous sections, a CDN’s goal is to (1) minimize the latency,
(2) maximize the content data availability, and (3) minimize the bandwidth
consumption on ISP networks. Therefore, we can define that a CDN is an overlay
network which is used to transfer a large amount of frequently requested data in a
short time to clients. More systematically definitions have been given such as:
Protocols and appliances created exclusively for the location, download, and usage
tracking of content [24]. This means that a CDN provides:

(1) A way to distribute content and applications globally through a network of
strategically placed servers;

(2) A way to track, manage, and report on the distribution and delivery of content;
and

5 Digital Subscriber Line Access Multiplexer.

6

(3) A way to provide better, faster, and more reliable delivery of content and
applications to users.

This following figure depicts an overview of a Content Distribution Network.

 Figure 3 Overview of an typical CDN

This overview shows us that content servers delegate to replica servers copies of the
content. When a user accesses certain content delegated via the CDN, they actually
access the content not from the original content server, but from a replica server even
from multiple replica servers. However, before they get access the content, their
requests are redirected by the redirection servers. These servers tell the users to access
specific replica servers which are strategically close to clients. The users can now
download the content as if the content server was situated in a short distance away (i.e.
a smaller numbers of hops compared to accessing the original content server) since it
actually download from a nearby replica severs. Thus the latency has been decreased.
From another aspects, the content server has less of a danger of being overwhelming
when large numbers of clients access the content; since CDN does replication of
content across many servers. Furthermore, load balancing causes the client access
traffic across to be evenly distributed different replica servers. Thus, the CDN
significantly reduces workload at the original content server. In addition, the first
mile6 bottleneck has been alleviated by distributing the traffic load over all the replica
servers close to the clients, thus consumption of bandwidth on last mile, peering and
even backbone bottlenecks are proportionally reduced. This relaxes the pressure on
the ISP for traffic engineering.

1.4.2 A typical architecture
In a typical CDN, the following components are mandatory: client, replica servers,
original server, billing and charging systems, request routing system, distribution

6 Please refer to 2.1.4

7

system and accounting system. The relationship amongst these components (indicated
with numbered lines in Figure 3) is described as follows:

Figure 4. A typical CDN architecture

(1) The original server delegates its Universal Resource Locator name space for
objects to be distributed and delivered by the CDN to the request routing
system.

(2) The original server publishes content that is to be distributed and delivered by
the CDN to distribution system.

(3) The distribution system sends content to the replica servers. In addition, this
system interacts with the request routing system through feedback to assist in
replica server selection for clients.

(4) The client requests documents from the original server. However, due to URL
name space delegation, the client request is redirected to the request routing
system (redirection server).

(5) The request routing system routes the request to a suitable replica server.
(6) The selected replica server then delivers the content to the client. Additionally,

the replica server sends accounting information for delivered content to the
accounting system.

(7) The accounting system collects all accounting information and then
manipulates content access records for input to the billing system and statistics
are feedback to the request routing system for better redirection of future
requests.

(8) The billing system uses the content detailed records to work out how much
shall be charged or paid each content providers[2].

Following the above flow, we can have the following description of the components
of this CDN system.

A Client is a Hyper Text Transfer Protocol user application. The requirement of user
is to be able to access the content at any time when he or she wants.

8

Replica server is the most important type of component in a CDN. Its major features
are: (1) archiving copies of content data strategically considering granularity of the
content data; (2) communicating in their peering group in order to achieve load
balancing for client traffic; (3) Push content data strategically in according to
information distribution system; (4) generating accounting and statistical data.

The location and routing system is mainly responsible for redirecting the client’s
request from the original content server to specific replica servers. It gets updates
from original content servers to determine data granularity whose location shall be
redirected, a utilized feedback from accounting system for better redirection based
upon certain access metrics, i.e. page hit rate.

The distribution system is the channel to deliver content data to different replica
servers. Nowadays, CDNs usually have large numbers of replica servers and they are
usually spread widely. How to distribute content data to each replica server and how
to manage all the replica servers are the major responsibilities of distribution system.
There are at least two popular channels to be used by CDN distribution systems. One
is the terrestrial Internet links and the other Satellite links (broadcast is used in this
case). Many CDN operators usually choose to construct an overlay network
connecting replica server into a tree in order to manage all nodes across the Internet.

The accounting system is to collect all types of statistical data for different uses in
other components such as billing and charging system, the location and routing
system, and the distribution system.

The content server is the CDN’s customer who is willing to pay for distribution
services over a Content Distribution Network.

1.4.3 Traditional CDN criteria
In general, we understand how CDN works in such a typical architecture. However,
what makes a bold CDN system? To answer this question we examine the desired
attributes of a traditional CDN system. In general, they should have the following
properties: fast access, robustness, transparency, scalability, efficiency, adaptive,
stability, load balancing, interoperability, simplicity [1] and security.

Fast access, from a user perspective, access latency7, this is the important
measurement of CDN usability. A good CDN aims to decreases content access
latency. In particular, it should provide the user with lower latency on average, than
would be the case without employing a CDN system.

Robustness, from a user perspective, means high content availability, which is another
important quality of a CDN. Users expect to receive content whenever they want.
From a system design point of view, robustness means that (1) a small number of
replica servers or redirection servers might crash, but this should not bring down the
entire CDN; and (2) the CDN should recover gracefully in the case of failures. These
two attributes actually require good self-organization of the CDN in order to achieve
fault resiliency; otherwise the users will see either failed requests of high delay.

7 Please refer to section 2.1.1 for detailed explanation of latency

9

Transparency, a CDN system should be transparent for the user, the only thing the
user should notice are faster response and higher content availability. This requires
that the CDN to be dependent of the user client.

Scalability, since the explosive growth in network size and density in the last decades
and continuing exponential growth for the near future, a key to success in such an
environment is scalability. A CDN should scale well with both increasing size and
density of the Internet. This requires all protocols employed in the caching system to
be as lightweight as possible.

Efficiency, from an ISP’s point of view, includes two aspects of efficiency. First, how
much overhead does the CDN impose on the Internet? The additional load of CDN
should be as minimal as possible. This requires that the quantity of signaling packets
should be as small as possible. Secondly, any mechanisms of a CDN should avoid
leading to critical network resource over-utilization, i.e. increasing pressure on the
DNS [47] service.

Adaptive, it’s desirable to make a CDN adapt to the dynamically changing user
demands and the changing network environment. For instance, a CDN must be able to
deal with the flash crowd[136] problem for some special content servers. Adaptation
involves several aspects of the system: replica management, request routing, replica
server placement, content placement, etc. This increases content availability for the
content provider, while load balancing increases robustness.

Stability, from an ISP’s point of view, means that a CDN shall not introduce
instability into the network. For instance, a naïve CDN routing system distributing
requests based upon network information could result in oscillation due to the
instability of the Internet. This oscillation will cause the CDN’s cost to increase due to
content replication and request routing, thus potentially leads to higher latency in
delivering content to a user.

Load balancing is desirable, thus the CDN should distribute the load evenly
throughout the entire overlay network. It can effectively avoid a single point of failure
due to failure of suboptimal replica servers and redirection servers. From the content
provider’s point of view, this feature alleviates the first mile bottleneck. From an
ISP’s point of view, this reduces demands for their network bandwidth.

Interoperability is important, since the Internet grows in scale and coverage it spans a
wider range of hardware and software architectures. For instance, on the last mile
access, xDSL lines connect a vast numbers of households. Additionally, NAT and
firewalls are becoming more and more popular. A good CDN must adapt to a wide
range of network architectures.

Simplicity is important as simple mechanisms are always easier to correctly
implement, and system maintenance is likely to be lower in cost; also simple
mechanisms are more likely to be accepted as international standards.

Security is always an important property of today’s distributed systems. CDN network
security mainly addresses the problems of Digital Right Management of licensed
content. Another aspect of security is to secure the CDN network itself. However,

10

security is often correlated to efficiency, thus optimizing one generally minimize the
other. Therefore, the appropriate balance must be found.

1.4.4 Core mechanisms
From the above description, we can see that there are some mechanisms which are
essential for CDN systems. They are: server placement, replica placement and
management, request routing, and server location. In the following sections, I will try
to explain the problems from each of these aspects and describe some state-of-the-art
approaches for solving them.

1.4.4.1 Server placement

1.4.4.1.1 Theoretical problem models and solutions
As one of major goal of a CDN, it is very important that a CDN minimize latency
between clients and the content server. The problem is where to place servers on the
Internet. Intuitively, where to place replica servers (which contains copy of content)
is directly in related to average content access latency for clients. Therefore,
optimizing server placement must succeed in minimizing access latency. In a
traditional CDN, replica server and content replica are coupled. Thus server
placement becomes the basis of replica distribution. Theoretically, there are three
models used so far to formulate the server placement problem. They are Minimum K-
Center problem, the location facility problem [25] and the Minimum K-Center
problem and location facility problem with constraints (also quite popularly) [26].

Minimum K-Center problem
Given N servers, select K (K<N) centers (facilities), and then for each location j
which is assigned to center i (i in N), we shall always have cost djcij (where dj
denotes the demand of the node j, cij denotes the distance between i and j). The goal is
to select the K centers to minimize the sum of these costs.

Location facility problem
Given a set of locations I at which facilities may be built, building a facility at
location I incurs a cost of Fi. Each client j must be assigned to one facility, incurring a
cost djcij. The objective is to find a solution of the minimum total cost. The difference
between this model and K-Center problem is the number of centers. K-Center model
place a limitation i number of the centers (which is the K), but the Location facility
model is open to varying from N.

Limited K-center and location facility problem
In [26], it is denoted as a capacity version problem. In this model, we place more
service constraints on both the location facility and the centers. For instance, a mount
of services a center can provide and maximal number of requests which a facility can
serve can be constraints. This enables the server and replica placement problem to be
formulated as either a limited or unlimited location facility problem, or a limited or
unlimited minimal K-center problem.

Based upon these problem models, there were many solutions which had been
developed. For this NP-hard minimum K center problem, if we are willing to tolerate
inaccuracies within a factor of 2, i.e. the maximum distance between a node and the
nearest center being no worse than twice the maximum in the optimal case, the

11

problem is solvable in O (N | E |) time [28] The algorithm can be described briefly as
follows:
Given a graph G = (V, E) and all its edges arranged in non-decreasing order by edge
cost. c: c(e1)≤ c(e2)≤… ≤ c(em), let Gi=(Vi, Ei), where Ei={e1, e2, …ei}. A square
graph of G, G² is the graph containing V and edge (U,V) wherever there is a path
between u and v in G of at most two hops, u ≠ v – some edges in G² are pseudo edges,
in that they do not exist in G. G = (V, E) is a subset of V’ is included in V such that ,
for all u, v belongs to V’ , the edge (u , v) is not in E. An independent set of nodes G²
thus a set of nodes in G that are at least three hops apart in G. We define a maximal
independent set M as an independent set V’ such that all nodes in V – V’ are at most
one hop apart from nodes in V’. The outline of the minimum K-center algorithm from
[28] is shown as follows:

1. Construct G1², G2², G3² …, Gm²
2. Compute Mi for each Gi²
3. Find smallest i such that | Mi | ≤K, for instance j
4. Mj is the set of K center

1.4.4.1.2 Heuristic approaches
Since the theoretical approach is computational expensive or does not consider the
network and workload, thus it is difficult to apply in realistic situations [29] and may
not be suitable for CDN. Therefore, other heuristic and suboptimal algorithms have
been proposed, which consider some practical aspects of the CDN, such as network
load, traffic pattern and network topology [26], [29], [30]. They offer (relatively)
lowing computational complexity.

After comparing different algorithms such as Tree-based algorithm, Greedy algorithm,
Random algorithm, Hot spot algorithm, super-optimal algorithm in simulation, Qiu et
al. [26] found that the Greedy algorithm is the one with the best performance, less
computational expensive, and relatively insensitive to imperfect data. The basic idea
of the greedy algorithm is as follows. Suppose it needs M servers amongst N potential
sites. It chooses one site at a time. In the first iteration, it evaluates each of the N
potential sites individually to determine its suitability for hosting a server. It computes
the cost associated with each site under the assumption that accesses from all clients
converge at that site, and picks the site that yields the lowest cost, i.e. lowest
bandwidth consumption. In the second iteration, it searches for a second site that, in
conjunction with the site which has already been selected, yields the lowest cost. In
general, in computing the cost, the algorithm assumes that clients direct their accesses
to the nearest server, i.e. one that can be reached with the lowest cost. The iteration
continues until M servers have been chosen. To support this greedy approach, one
usual method is to partition the graph into tree. K hierarchically Well-Spread Tree[27]
(K-HST) is one of the typical representations. However, greedy placement requires
knowledge of the client locations in the network and all pairwise intern-node
distances. This information in many cases may not be available, for instance, use of
NAT and Firewalls might prevent the location of clients.

In [29], a topology-informed placement strategy has been proposed. Assuming that
nodes with highest outdegree8 can reach more nodes with smaller latency, we place

8 In a directed graph, we say that a vertex has outdegree x if there are (exactly) x edges leaving that
vertex.

12

servers on candidate hosts in descending order of outdegrees. These are called Transit
Nodes due to the assumption that nodes in the core of the Internet transit points will
have the highest outdegrees. In most of cases, Autonomous System gateways will be
chosen as the transit nodes. However, due to inaccuracy of AS topology information,
the authors [29] exploited router level topology information as showed that result is
better performance than simply using AS level routing information. Going deeper into
the network, they found that each LAN associated with a router is a potential site to
place a server, rather than being each AS being a site.

To sum up, considering the most up-to-date solutions for the server placement: greedy
and topology-informed placement strategies are both well developed. The edge
computing [9] are inspirited these solutions. However, to our best knowledge, the
approaches to the real world isn’t well exploited.

1.4.4.2 Replica placement
Similar to server placement, replica placement is also a facility location problem, but
the difference from server placement is greater concern about user access patterns.
The first problem model was formulated in [32]. It considers distance, cache size, and
access frequency. As a distance metric, they choose hierarchical distance model to
calculate the distance metrics in order to get better approximation to the actual
Internetwork.

1.4.4.2.1 A typical cost model
In [33], the another have developed a cost model for object placement over the
Internet based upon object size, storage capacity in an Autonomous System, and
distance between the Autonomous Systems. Their formula is as follows:

Notation: the average number of hops that a request must traverse from all ASs is then

where dij(x) is the shortest distance to a copy of object j from ASi under the placement

x, J is the number of objects, I is the number of AS. Sij is the number of bytes of
storage in ASj for the ith object.

Given a target number of hops T, we ask if there is a placement x such that

subject to

They have proved that this is a NP-hard problem. It means that for a large number of
objects and ASs, it is not feasible to solve this problem optimally [34]. Based on this,
they have adopted a similar approach to [32] which utilized a heuristic algorithm to
solve the placement problem. The algorithms they evaluated were: Random,
Popularity, Greedy-Single, Greedy-Global. Similarly, in [32], the authors

13

investigated: Purely local algorithms including MFUPlace, LRU Replacement,
GreedyDual Replacement, and Cooperative placement algorithms including an
optimal placement algorithm, simple near-optimal placement algorithm, Greedy
placement algorithm, Amortized placement algorithm, and Hierarchical GreedyDual
algorithm. Eventually, both [33] and [32] concluded that a cooperative approach is
the best one. And [32] also identified that client access traffic pattern is a key
challenge for replica placement. In [32], with their simulations are based on a Zipf [35]
network model, they find Peer-to-Peer9 is a good way out of this NP-hard problem
and achieves optimal replica placement and replacement.

In [36], they consider this replica placement problem in different granularities. Similar
to [32] that the authors established a cost model. They also believe that the
cooperative placement and replacement strategy is a better approach. The major
contribution of their work is to introduce a cluster-based replication strategy. Their
comparison of states to maintain and computational cost amongst different
mechanisms (per web site, per cluster and per URL) shows that a cluster-based
replication schema is relatively good. In simulation of the web site MSNBC, the
cluster-based replication outperformed the other strategies. In particular, their
incremental clustering schema is very useful in improving content data availability
during flash crowds for popular web site since it adapts well to user access patterns.

1.4.4.2.2 Discussions of replica placement algorithms criteria
A replica placement strategy decides what content is to be replicated and where, such
that some objective function is optimized under a given traffic pattern and a set of
resource constraints. In the objective function, the following metrics should be taken
into consideration:
A. Reads: the rate of read accesses by a client to an object. This might also be

reflected as the probability of an access to an object within time units.
B. Writes: the rate of write access by a client to an object.
C. Distance: the distance between a client and an original content/replica server,

represented with a metric such as latency
D. Storage cost: the cost of storing an object at a replica sever. This might reflect the

size of object, the throughput of the server, or the fact if a replica in the server
E. Content size: the size of object in bytes
F. Access time: A time stamp indicating the last time object was accessed at a replica

server
G. Hit ratio: hit ratio of any replica along the path
In addition, the following constraint primitives can be added, such as: storage capacity
of a replica server, load capacity of a replica server, node bandwidth capacity of a
replica server, link capacity between a client and the replica server, number of replicas
to be disseminated, original copy location, delay to be tolerant by a CDN, availability
of certain object in a CDN. In [37], the authors have made an intensive study of many
replica placement algorithms and proposed sophisticated metrics to evaluate different
replica algorithms. Particularly, they have summarized all of their cost functions in
their paper. This provides us comprehensive understanding of what constraints were
considered in each schema of replica placement algorithm.

9 Peer-to-Peer will be explained in the following chapter (chapter 2).

14

To sum up, replica placement and replacement has been well researched for CDN.
Ultimately, a placement algorithm is about how to disseminate replicas under the
constraints amongst resources and Quality of Service.

1.4.4.3 Replica management
How to maintain data consistency between the master copy of the content in the
content server and replicas amongst replica servers is one of the most important
questions for all CDNs. If there is a change occurs, updates of this object over the
replica servers must be done. It is important that a content user not get a stale version
of request content. From CDN’s perspective, over head traffic of the updates should
be minimized on the overlay network. This is called the replica or cache coherency or
consistency problem, and is depicted in Figure 5. In the following subsections, I will
explain two types of replica management strategies– strong consistency and weak
consistency. There are many object attributes in HTTP [38], which can assist replica
servers to maintain cache coherency.

Figure 5. Replica consistency overview

1.4.4.3.1 Strong consistency
Client validation This approach is also called polling every-time. The client treats
cached resources as potentially out-of-date on each access and sends an If-Modified-
Since header with each access of the resources. This approach can lead to many 304
responses (the HTTP response code for “Not Modified”) by server if the resource does
not actually change.

Server invalidation Upon detecting a resource change, the server sends invalidation
messages to all clients that have recently accessed and potentially cached the resource
[49]. This approach requires a server to keep track of clients to use for invalidating
cached copies of changed resources and can become cumbersome for a server when
the number of clients is large, thus lead to a scalability problem. In addition, the lists
themselves can become out-of-date causing the server to send invalidation messages
to clients who are no longer caching the resource. Thus it causes unnecessary traffic.

15

Adaptive Leases The server employs a lease mechanism, which determines for how
long it should propagate invalidates to the proxies [59]. This work also presents
policies under which appropriate lease durations are computed so as to balance the
trade-offs of state space overhead and control message overhead.

Propagation and Invalidation Combination Fei [60] proposed a smart propagation
policy in a hybrid approach (propagation and invalidation).The rationale is to
distinguish when to use unicast for invalidation and when to use multicast to
propagate the updates. In this propagation policy, the author uses this notation: U is
the object/document update rate at the origin content server and the total request rate
is R. N is the number of replicas of this object. Є is the factor in the relative efficiency
of unicast and multicast [61]. CDN chooses propagation for each object if the
following inequality is true:

Otherwise, use invalidation where -0.34 < Є < 0.30. Intensive simulation results shows
that this method significantly reduced the traffic generated during replica consistency.

1.4.4.3.2 Weak consistency
Adaptive TTL Similar to Time to Live for a packet in IPv4[51], the adaptive TTL [52]
handles the problem by adjusting a document’s time-to-live based on observations of
its lifetime. Adaptive TTL takes advantage of the following facts; if a file has not
been modified for a long time, it tends to stay unchanged. Thus, the time-to-live
attribute to a document is assigned to be a percentage of the document’s current “age”,
which is the current time minus the last modified time of the document. Studies [52]
have shown that adaptive TTL can keep the probability of stale documents within
reasonable ranges (<5%). Most proxy servers (i.e. [53], [54], [55]) use this
mechanism.

However, there are several drawbacks with this expiration-based coherence [50]. First,
users must wait for expiration checks to occur even though they are tolerant the
staleness of the requested page. Second, if a user is not satisfied with the staleness of a
returned document, they have no choice but to use a tool (Progma) to send a No-
Cache request to load the entire document from its home site. Third, the mechanism
provides no strong guarantee regarding document staleness. Forth, users can not
specify the degree of staleness they are willing to tolerate. Finally, when the user
aborts a document load, caches often abort a document load as well.

Piggyback Invalidation Authors of [56], [57], [58] proposed such a mechanism to
improve the effectiveness of cache coherency. They have proposed three invalidation
mechanisms as follows:

The Piggyback Cache Validation (PCV) [56] capitalizes on requests sent from the
proxy cache to the server to improve coherency. In the simplest case, whenever a
proxy cache has a reason to communicate with a server it piggybacks a list of cached,
but potentially stale, resources from that server for validation.

16

The basic idea of the Piggyback Server Invalidation (PSI) mechanism [57]is for
servers to piggyback on a reply to a proxy, the list of resources that have changed
since the last access by this proxy. The proxy invalidates cached entries on the list and
can extend the lifetime of entries not on the list.

They also proposed a hybrid approach which combines the PSI and the PCV
techniques to achieve the best overall performance [58]. The choice of the mechanism
depends on certain time parameter. If the time is small, then the PSI mechanism is
used while the PCV mechanism is used to explicitly validate cache contents for longer
interval.

The Distributed Object Consistency Protocol Researchers at HP proposed a protocol to
enhance an HTTP cache control mechanism. This protocol focuses on two goals: to
reduce response time and server demand. The Distributed Object Consistency
Protocol [62] defines a new set of HTTP headers to provide object consistency
between content origin servers and edge proxy servers. DOCP distributes the ability to
serve objects authoritatively on behalf of a content provider throughout the network.
This middle-ware like architecture actually represents the request client by its master
and content server by its slave. The following picture depicts the overview of this
architecture.

Figure 6. HP DOCP Architecture

1.4.4.4 Server location and request routing
In the location and routing system of a CDN, the location and routing system must be
able to serve the client request and redirect the request to a replica server which is
located as near as possible to the requesting client. In fact, server location and request
routing are two aspect of the same problem of implementing a request service. From a
client’s perspective, we can formulate it as a server location problem; from CDN’s
perspective, we shall form the request routing problem for a client who requests
certain content. In the following sections, I will explain these two views one after
another.

17

1.4.4.4.1 Server location
Similar to the problem of placement of replica servers and content data replicas, how
a client can allocate the best server in terms of proximity metrics and replica server
load is another important issue in a CDN system. Since a replica of specific content is
stored in some server in most CDNs, this implies that the client will locate the replica
if it selects the right server.

1.4.4.4.1.1 Multicast vs. Agent

These two techniques can be considered as reactive and proactive approaches. In the
former solution, when a client needs to find one server the CDN can send this request
to all its replica servers in certain Multicast group. Server type will be cataloged by
service. In the case, the client chooses the server who generates the quickest response
from amongst that group. The disadvantage is high overhead on these messages sent
to all the servers in a group or multi groups. This has been studied in [43]. Unlike the
former approach, the Agent approach is more efficient. We can use an agent to probe
different servers periodically and to maintain a list of servers which knows the most
up-to-date load information for each server. And the agent can communicate with
their own protocols to co-ordinate with each other in different locations. When a
client requests a type of servers, the agent will select a right server for the client.

1.4.4.4.1.2 Routing layer vs. application layer

In [44], the authors proposed a way of using Anycasting to select the nearest server
for a client. However, it assumes all servers have the same services. Thereby selection
of different services can not be done unless policy constraints programming in the
routers. On the contrary, application layer location services can provide better service
differentiation, load information, and even bandwidth information for the clients.
Similar to previous approach, an agent can act as monitor for the routing-layer traffic
and decide to send updates to the database at rendezvous point. Updates will be on
demand by the agent, thus many traffic overheads can be reduced [45]. However, the
potentially can lead to a single point of failure when larger number of client are
sending requests to the CDN.

Most important metrics in server selection are: distance between the client and replica
server, server load, service type, and bandwidth on the link. The above techniques are
quite widely used in today’s’ CDNs.

1.4.4.4.2 Request routing
In request routing, we address the problem of deciding which replica server can best
service a given client request, in terms of the metrics. These metrics can be, for
example, replica server load (where we choose the replica server with the lowest load),
end-to-end latency (where we choose the replica server that offers the shortest
response time to the client), or distance (where we choose the replica server that is
closest to the client). In according to IETF’s classifications [46], there are four catalog
and eighteen types of request routing mechanisms. Figure 7 depicts all of them.
Since request routing has been well studied and standardized, I will just summarize
these results in the following paragraphs. For the detailed reference please see RFC
3568 [163].

18

Figure 7. Content request routing mechanisms

1.4.4.4.2.1 Transport-Layer Request-Routing

At the transport-layer finer levels of granularity can be achieved by close inspection
of the client's requests. In this approach, the Request-Routing system inspects the
information available in the first packet of the client's request to make surrogate
selection decisions. The inspection of the client's requests provides data about the
client's IP address, port information, and layer 4 protocols. The acquired data could
be used in combination with user-defined policies and other metrics to determine the
election of a surrogate that is best suited to serve the request.

In general, the forward-flow traffic (client to newly selected surrogate) will flow
through the surrogate originally chosen by DNS. The reverse-flow (surrogate to client)
traffic, which normally transfers much more data than the forward flow, would
typically take the direct path.

The overhead associated with transport-layer Request-Routing is better suited for
long-lived sessions such as FTP [161] and RTSP [162]. However, it also could be
used to direct clients away from overloaded surrogates.

In general, transport-layer Request-Routing can be combined with DNS based
techniques. As stated earlier, DNS based methods resolve clients requests based on
domains or sub domains based on the client's DNS server’s IP address. Hence, the

19

DNS based methods could be used as a first step in deciding on an appropriate
surrogate with more accurate refinement made by the transport-layer Request-Routing
system.

1.4.4.4.2.2 Single Reply

In this approach, the DNS server is authoritative for the entire DNS domain or a sub
domain. The DNS server returns the IP address of the best surrogate in an A record to
the requesting DNS server. The IP address of the surrogate could also be a virtual IP
(VIP) address of the best set of surrogates for requesting DNS server.

1.4.4.4.2.3 Multiple Replies

In this approach, the Request-Routing DNS server returns multiple replies such as
several records for various surrogates. Common implementations of client site DNS
server's cycle through the multiple replies in a Round-Robin fashion. The order in
which the records are returned can be used to direct multiple clients using a single
client site DNS server.

1.4.4.4.2.4 Multi-Level Resolution

In this approach multiple Request-Routing DNS servers can be involved in a single
DNS resolution. The rationale of utilizing multiple Request-Routing DNS servers in a
single DNS resolution is to allow one to distribute more complex decisions from a
single server to multiple, more specialized, Request-Routing DNS servers. The most
common mechanisms used to insert multiple Request-Routing DNS servers in a single
DNS resolution is the use of NS and CNAME records. An example would be the case
where a higher level DNS server operates within a region, directing the DNS lookup
to a more specific DNS server within that region to provide a more accurate resolution.

1.4.4.4.2.5 NS Redirection

A DNS server can use NS records to redirect the authority of the next level domain to
another Request-Routing DNS server. The, technique allows multiple DNS server to
be involved in the name resolution process. For example, a client site DNS server
resolving a.b.example.com would eventually request a resolution of a.b.example.com
from the name server authoritative for example.com. The name server authoritative
for this domain might be a Request-Routing NS server. In this case the Request-
Routing DNS server can either return a set of “A” records or can redirect the
resolution of the request a.b.example.com to the DNS server that is
authoritative for example.com using NS records.

One drawback of using NS records is that the number of Request-Routing DNS
servers is limited by the number of parts in the DNS name. This problem results from
the DNS policy that causes a client site DNS server to abandon a request if no
additional parts of the DNS name are resolved in an exchange with an authoritative
DNS server.

A second drawback is that the last DNS server can determine the TTL of the entire
resolution process. Basically, the last DNS server can return in the authoritative
section of its response its own NS record. The client will use this cached NS record
for further request resolutions until it expires.

20

Another drawback is that some implementations of bind voluntarily cause timeouts to
simplify their implementation in cases in which a NS level redirect points to a name
server for which no valid A record is returned or cached. This is especially a problem
if the domain of the name server does not match the domain currently resolved, since
in this case the A records, which might be passed in the DNS response, are discarded
for security reasons. Another drawback is the added delay in resolving the request
due to the use of multiple DNS servers.

1.4.4.4.2.6 CNAME10 Redirection

In this scenario, the Request-Routing DNS server returns a CNAME record to direct
resolution to an entirely new domain. In principle, the new domain might employ a
new set of Request-Routing DNS servers. One disadvantage of this approach is the
additional overhead of resolving the new domain name. The main advantage of this
approach is that the number of Request-Routing DNS servers is independent of
the format of the domain name.

1.4.4.4.2.7 Anycast

Anycast [44] is an network service that is applicable to networking situations where a
host, application, or user wishes to locate a host which supports a particular service
but, if several servers utilize the service, it does not particularly care which server is
used. In an Anycast service, a host transmits a datagram to an Anycast address and
the network is responsible for providing best effort delivery of the datagram to at least
one, and preferably only one, of the servers that accept Datagrams for the Anycast
address.

The motivation for Anycast is that it considerably simplifies the task of finding an
appropriate server. For example, users, instead of consulting a list of servers and
choosing the closest one, could simply type the name of the server and be connected
to the nearest one. By using Anycast, DNS resolvers would no longer have to be
configured with the IP addresses of their servers, but rather could send a query to a
well-known DNS Anycast address. Furthermore, to combine measurement and
redirection, the Request-Routing DNS server can advertise an Anycast address as its
IP address. The same address is used by multiple physical DNS servers. In this
scenario, the Request-Routing DNS server that is the closest to the client site DNS
server in terms of OSPF and BGP routing will receive the packet containing the DNS
resolution request. The server can use this information to make a Request-Routing
decision. Drawbacks of this approach are:

 The DNS server may not be the closest server in terms of routing to the client.
 Typically, routing protocols are not load sensitive. Hence, the closest server

may not be the one with the least network latency.
 The server load is not considered during the Request-Routing process.

1.4.4.4.2.8 Object Encoding

10 CNAME stands for canonical name. (CNAME) A host's official name as opposed to an alias. The
official name is the first hostname listed for its Internet address in the hostname database, /etc/hosts or
the Network Information Service (NIS) map hosts.byaddr ("hosts" for short). A host with multiple
network interfaces may have more than one Internet address, each with its own canonical name (and
zero or more aliases). You can find a host's canonical name using nslookup if you say
set querytype=CNAME and then type a hostname.

21

Since only DNS names are visible during the DNS Request-Routing, some solutions
encode the object type, object hash, or similar information into the DNS name. This
might vary from a simple division of objects based on object type (such as
images.a.b.example.com and streaming.a.b.example.com) to a sophisticated schema in
which the domain name contains a unique identifier (such as a hash) of the object.
The obvious advantage is that object information is available at resolution time. The
disadvantage is that the client site DNS server has to perform multiple resolutions to
retrieve a single Web page, which might increase rather than decrease the overall
latency.

1.4.4.4.2.9 DNS Request-Routing Limitations

This section lists some of the limitations of DNS based Request-Routing techniques.

 DNS only allows resolution at the domain level. However, an ideal request
resolution system should service requests on a per object level.

 In DNS based Request-Routing systems servers may be required to return
DNS entries with short time-to-live (TTL) values. This may be needed in order
to be able to react quickly in the face of outages. This in turn may increase the
volume of requests to DNS servers.

 Some DNS implementations do not always adhere to DNS standards. For
example, many DNS implementations do not honor the DNS TTL field.

 DNS Request-Routing is based only on knowledge of the client DNS server,
as client addresses are not relayed within DNS requests. This limits the ability
of the Request-Routing system to determine a client's proximity to the
surrogate.

 DNS servers can request and allow recursive resolution of DNS names. For
recursive resolution of requests, the Request-Routing DNS server will not be
exposed to the IP address of the client's DNS server. In this case, the Request-
Routing DNS server will only be exposed to the address of the DNS server
that is recursively requesting the information on behalf of the client's site DNS
server. For example, imgs.example.com might be resolved by a CN, but the
request for the resolution might come from dns1.example.com as a result of
the recursion.

 Users that share a single client site DNS server will be redirected to the same
set of IP addresses during the TTL interval. This might lead to overloading of
the surrogate during a flash crowd unless different sites got different answers.

 Some implementations of bind can cause DNS timeouts to occur while
handling exceptional situations. For example, timeouts can occur for NS
redirections to unknown domains.

DNS based request routing techniques can suffer from serious limitations. For
example, the use of such techniques can overburden third party DNS servers, which
should not be allowed. In RFC 2782 [164], provides warnings on the use of DNS for
load balancing. Readers are encouraged to read the RFC for better understanding of
these limitations.

1.4.4.4.2.10 Application-Layer Request-Routing

Application-layer Request-Routing systems perform deeper examination of client's
packets beyond the transport layer header. Deeper examination of client's packets
provides fine-grained Request-Routing control down to the level of individual objects.

22

The process could be performed in real time at the time of the object request. The
exposure to the client's IP address combined with the fine-grained knowledge of the
requested objects enable application-layer Request-Routing systems to provide better
control over the selection of the best surrogate.

1.4.4.4.2.11 Header Inspection

Some application level protocols such as HTTP, RTSP, and SSL [165] provide hints
in the initial portion of the session about how the client request must be directed.
These hints may come from the URL of the content or other parts of the MIME
request header such as Cookies.

1.4.4.4.2.12 URL-Based Request-Routing

Application level protocols such as HTTP and RTSP describe the requested content
by its URL. In many cases, this information is sufficient to disambiguate the content
and suitably direct the request. In most cases, it may be sufficient to make Request-
Routing decision just by examining the prefix or suffix of the URL.

1.4.4.4.2.13 302 Redirection

In this approach, the client's request is first resolved to a virtual surrogate.
Sequentially, the surrogate returns an application-specific code such as the 302 (in the
case of HTTP or RTSP) to redirect the client to the actual delivery node.

This technique is relatively simple to implement. However, the main drawback of this
method is the additional latency involved in sending the redirect message back to the
client and the client having to resolve a new address.

1.4.4.4.2.14 In-Path Element

In this technique, an In-Path element is present in the network in the forwarding path
of the client's request. The In-Path element provides transparent interception of the
transport connection. The In-Path element examines the client's content requests and
performs Request-Routing decisions.

The In-Path element then splices the client connection to a connection with the
appropriate delivery node and passes along the content request. In general, the return
path would go through the In-Path element. However, it is possible to arrange for a
direct return by passing the address translation information to the surrogate or
delivery node through some proprietary means.

The primary disadvantage with this method is the performance implications of URL-
parsing in the path of the network traffic. However, it is generally the case that the
return traffic is much greater than the forward traffic.

The technique allows for the possibility of partitioning the traffic among a set of
delivery nodes by content objects identified by URLs. This allows object-specific
control of server loading. For example, requests for non-cacheable object types may
be directed away from a cache.

1.4.4.4.2.15 Header-Based Request-Routing

23

This technique involves using HTTP attributes such as Cookie, Language, and User-
Agent, in order to select a surrogate.

Cookies can be used to identify a customer or session by a web site. Cookie based
Request-Routing provides content service differentiation based on the client. This
approach works provided that the cookies belong to the client. In addition, it is
possible to direct a connection from a multi-session transaction to the same server to
achieve session-level persistence.

The language header can be used to direct traffic to a language-specific delivery node.
The user-agent header helps identify the type of client device. For example, a voice-
browser, PDA, or cell phone can indicate the type of delivery node that has content
specialized to handle the content request.

1.4.4.4.2.16 Site-Specific Identifiers

Site-specific identifiers help authenticate and identify a session from a specific user.
This information may be used to direct a content request.

An example of a site-specific identifier is the SSL Session Identifier. This identifier is
generated by a web server and used by the web client in succeeding sessions to
identify itself and avoid an entire new security authentication exchange. In order to
inspect the session identifier, an In-Path element would observe the responses of
the web server and determine the session identifier which is then used to associate the
session to a specific server. The remaining sessions are directed based on the stored
session identifier.

1.4.4.4.2.17 Content Modification

This technique enables a content provider to take direct control over Request-Routing
decisions without the need for specific switching devices or directory services in the
path between the client and the origin server. Basically, a content provider can
directly communicate to the client the best surrogate that can serve the request.
Decisions about the best surrogate can be made on a per-object basis or it can depend
on a set of metrics. The overall goal is to improve scalability and the performance for
delivering the modified content, including all embedded objects.

In general, the method takes advantage of content objects that consist of a basic
structure that includes references to additional, embedded objects. For example, most
web pages consist of an HTML document that contains plain text together with some
embedded objects, such as GIF or JPEG images. The embedded objects are referenced
using embedded HTML directives. The embedded HTML directives direct the client
to retrieve the embedded objects from the origin server. A content provider could
modify references to embedded objects such that they could be fetched from the best
surrogate. This technique is also known as URL rewriting.

Content modification techniques must not violate the architectural concepts of the
Internet [48]. Special considerations must be made to ensure that the task of
modifying the content is performed in a manner that is consistent with RFC 3238 [48];
it specifies the architectural considerations for intermediaries that perform operations
or modifications on content.

24

The basic types of URL rewriting are discussed in the following subsections.

1.4.4.4.2.17.1 A-priori URL Rewriting
In this scheme, a content provider rewrites the embedded URLs before the content is
placed on the origin server. In this case, URL rewriting can be done either manually
or by using software tools that parse the content and replace embedded URLs.

A-priori URL rewriting alone does not allow consideration of client specifics for
Request-Routing. However, it can be used in combination with DNS Request-Routing
to direct related DNS queries into the domain name space of the service provider.
Dynamic Request-Routing based on client specifics are then done using the DNS
approach.

1.4.4.4.2.17.2 On-Demand URL Rewriting
On-Demand or dynamic URL rewriting, modifies the content when the client request
reaches the origin server. At this time, the identity of the client is known and can be
considered when rewriting the embedded URLs. In particular, an automated process
can determine, on-demand, which surrogate would serve the requesting client best.
The embedded URLs can then be rewritten to direct the client to retrieve the objects
from the best surrogate rather than from the origin server.

1.4.4.4.2.17.3 Content Modification Limitations
Content modification as a Request-Routing mechanism suffers from many limitation.
For example:

 The first request from a client to a specific site must be served from the origin
server.

 Content that has been modified to include references to nearby surrogates
rather than to the origin server should be marked as non-cacheable.
Alternatively, such pages can be marked to be cacheable only for a relatively
short period of time. Rewritten URLs on cached pages can cause problems,
because they can become outdated and point to surrogates that are no longer
available or no longer good choices.

1.4.4.4.2.18 Combination of Multiple Mechanisms

There are environments in which a combination of different mechanisms can be
beneficial and advantageous over using one of the proposed mechanisms alone. The
following example illustrates how the mechanisms can be used in combination. A
basic problem of DNS Request-Routing is the resolution granularity that allows
resolution on a per-domain level only. A per-object redirection cannot easily be
achieved. However, content modification can be used together with DNS Request-
Routing to overcome this problem. With content modification, references to different
objects on the same origin server can be rewritten to point into different domain name
spaces. Using DNS Request-Routing, requests for those objects can now dynamically
be directed to different surrogates.

1.4.4.5 Self-organization
User, content provider, and their Internet Service providers are the three major actors
in every CDN system. User wants fast access of the content, content provider wants
high availability of their content, and the ISP wants no network congestion or minimal
bandwidth consumption for the traffic over their network. Therefore a good CDN

25

system must find the best trade-offs to meet all above requirements. Example of such
systems include Cisco’s Boomerang algorithm in their patented Self-organizing
Distributed Architecture (SODA). However, this is what they say:

Cisco Content routers utilize an extremely fast site-selection algorithm (Boomerang)
to have each site respond to a Domain Name System query with the IP address of a
server at the site. The Boomerang process selects the site that has the least amount of
network delay between the site and the client's DNS server at that exact instant in time.
The first response through the network wins the race and is used by the client to
connect to a server at the requested web site. Cisco's content networking solutions for
enterprise CDNs also use SODA technology. SODA enables the system to intelligently
route requests and deliver content to the end user. The SODA algorithm learns about
the network, thus performance improves with time and usage. When a browser selects
content from a specific Web site, the content delivery network will look at the source
IP address and redirect the request to the optimal content engine.

Boomerang and SODA attempt to ensure the fastest delivery of content regardless of
location, providing the highest availability and site response. SODA provides for the
ability to redirect user requests to the best content router by allowing CDN devices to
automatically organize themselves into a single cooperating system. Because the CDN
devices collectively determine the fastest route, they also provide the fastest delivery
of high-bandwidth content.[76]

In the Location and routing system of Cisco’s CDN, The functions as I described in
section 1.2.4.4.2. In Boomerang process, the most interesting part is that the SODA
algorithm learns about the underlying network design and performance to the end user
with usage improves. Thus when new requests arrive for certain content, the content
router selects a replica server for the client in terms of metrics such as presence of
content, geographical location, originating network, current network conditions, and
current replica server health. Their content router actually integrates a redirection
server and layer three router in this one cabinet. Thus, it does congestion measurement
for the underlying network before determining the redirection of each client request
content replica server. Thus it optimizes the layer 3 performance by avoiding
congestion on the link and this certainly benefits the client access performance.
However, in their architecture, the self-organization replies on their proprietary
infrastructure i.e. Cisco CR-4450 content router [77].

1.5 Discussion
After examining the problems and approaches of Server placement, Replica
placement, Replica management, Server location and request routing in CDNs, we
find that there are some issues are very interesting for future CDNs.

1.5.1 Large content for large numbers of users
Nowadays, large content (i.e. movie, music and video-on-demand etc.) publishing
becomes more and more popular on web sites just because of high demand from
Internet users. Therefore content distribution networks face a challenge in delivering
such large content objects. On one hand, this requires lots of bandwidth, and
predictable transmission delay to achieve high data availability. On the other hand, the
number of content providers turning to CDNs to better service their customers is

26

growing rapidly. Thereby, large and highly dynamic content distribution will raise
many issues concerning the design and architecture of CDNs in the future, such as:

 How to replicate the large amount of content?
 How to use limited bandwidth to transmit this content?
 How to scale up to large numbers of users who want to access the large size of

content?
 How to distribute the load of CDN when frequent accessed the content sites

appear?...
In the case of the Spirit spaceship landing on Mars, NASA published many pictures
and videos on their web site. The high hit rate [63], [64] indicates the challenges
CDN will have when large number of users request large content objects. Content
Distribution network Interconnection [67] [74] has been studied for some time. Their
solution is to connect CDNs to interconnect CDNs or peering CDNs in terms of many
concerns such as CDN performance, security, accounting [67], and economic reasons
[68]. I dare to guess that the delivery in the case of the Spirit spaceship landing Mars,
the eTouch [69], Speedra [70] and Sprint[71] had to address this scenario to
distributed NASA’s traffic for this Mars event. But this solution is an very expensive
one as I mentioned in section 5.1.3. Is there any better way to handle this large
volume of traffic? I believe this should be a research focus in the next generation
CDNs.

1.5.2 Denial of service attack
When we are talking about normal access request for the content server, there is
another fact which should not be ignored, that is a type of abnormal access request,
i.e., as part of a Denial of Service attack (DoS). These attacks typically flood a
network or server with bogus request packets, rendering it unavailable to handle
legitimate requests. Despite increased awareness about security issues, denial of
service attacks remain a challenging problem. According to a Computer Security
Institute survey, for example, the number of respondents indicating their sites had
been the victim of a DoS attack rose from 27% in 2000 to 38% in 2001 [72] News
about DoS can be found in the section of “Selected news reports/interviews/panel
discussions” of [73]. The key problem is that Distributed Denial of Service (DDoS)
utilized legitimate access method (such as the attacker sends TCP SYN packets which can be
accepted by CDN servers) to overwhelm the content server or replica servers in CDN. Study
[72] and CDI [66] choose the server side techniques to solve this problem. As we know, all
security mechanisms incur overhead to do checking and action. Can we have some more cost-
effective solution of this problem?

1.5.3 Scalability issue
The magnitude of the Internet population is still increasing exponentially. How well
can a CDN or CDNs work when the number of access clients continuously increases
is the problem for today’s CDNs. CDI [66] connects many CDNs to increase the
scalability by peering affords. The rationale of doing so is to expand the number of
the replica servers and offer better load balancing amongst them. Management
overhead becomes inevitable when coordination happens amongst them. Can we have
a simpler solution than that?

1.5.4 Self-organization in next generation of CDNs
For large content distribution, large bandwidth consumption is inevitable. Thereby
making the best trade-off amongst decreasing access latency, maximizing content data

27

availability, and optimizing network performance becomes more difficult than small
and middle size content delivering in today’s CDNs. Together with new techniques
such as Peer-to-Peer, and swarm intelligence, what are the requirements should be
implemented in self-organization of CDNs? This should be answered in the next
generation CDN systems.

28

Chapter 2 Introduction to Peer-to-Peer

2.1 A definition of P2P

There are many definitions for Peer-to-Peer technology. In this paper, use this
definition from The Free Encyclopedia [166]

Generally, a Peer-to-Peer (or P2P) computer network refers to any network that does
not have fixed clients and servers, but a number of peer nodes that function as both
clients and servers to the other nodes on the network. This model of network
arrangement is contrasted with the client-server model. Any node is able to initiate or
complete any supported transaction. Peer nodes may differ in local configuration,
processing speed, network bandwidth, and storage quantity. Popular examples of P2P
are file sharing-networks.

According to this definition, we can understand that equivalence is the most important
property of such systems. Another important property is decentralization of such
systems. The equivalence is reflected by the decentralization in a P2P system or
application because P2P refers to a class of systems or applications that employ
distributed resources to perform a crucial function in a decentralized manner[79]. The
reason why P2P computing has becomed so famous is because that it solves the
problems of utilizing many distributed systems in a better way compared with client-
server computing. Moreover, it brings significant conveniency to its users’s for their
many different communication demands at work and at play for example, online
collaboration, music-sharing, and online gaming, instant messaging etc. This makes
Peer-to-Peer one of the hottest Internet trends!

2.2 Problem domains and well-known approaches
Differing from CDN, P2P technology is type of communication/computation pattern
[80]. It means that P2P computational mechanisms could be applied in many subareas
in the realm of distributed systems such as distributed computing of financial and
biotechnology, file-sharing, collaboration of fault tolerant and real time constraints,
communication middleware. In this paper, we will not describe all the problems
which P2P can address in these subareas and disiplines. Instead, we will focus its
properties. Following this, we select the features of P2P which can be used in our
PlentyCast design. In the following subsections, I use the P2P characteristics
described by [79] as a base, then extend their discussion.

2.2.1 Decentralization
P2P models question the wisdom of storing and processing data only on centralized
servers and accessing the content via request-response protocols. In traditional client-
server models, the information is concentrated in centrally located servers and
distributed through networks to client computers that act primarily as user interface
devices. Such centralized systems are ideal for some applications and tasks. For
example, access rights and security are traditionally more easily managed in
centralized systems. However, the topology of the centralized systems may result in
inefficiencies, bottlenecks, and wasted resources. Furthermore, although hardware
performance and cost have improved, centralized repositories are expensive to set up

29

and hard to maintain. They require human intelligence to build, and to keep the
information they contain relevant and current.

One of the powers of decentralized systems is the emphasis on the user’s ownership
and control of the data and resources. In my viewpoint, managing resources and data
in centralized systems have more overheads, take slower response, and have greater
probability of error occurring comparing with the user’s ownership of the resources
and data if there is a long distance existing between the user and the content objects.
However, in full decentralized systems, every peer is an equal participant. This makes
design difficult because there is no centralized server with a global view of all the
peers in the network or the files they provide. This is why many P2P systems are built
in hybrid approach as in Napster[92], where there is a central directory of the files but
peers will download the file from other nodes directly.

In full decentralized file systems, Freenet[42] and Gnutella[40], a big problem is
discovery of the nearest elements of network. For instance, Gnutella must learn one IP
address of a peer then the new node can send Ping packets to discovery the rest of the
peers and cache the host list of the peers it can reach. Therefore, the problem is to
make a trade-off between pure P2P and hybrid P2P in terms of the focus of systems
features such as file sharing, collaboration and computation, or platform. This
categorization has a direct effect on the self-organization and scalability11 of a system
because of the loose coupling to any infrastructure.

2.2.2 Scalability
An immediate benefit of decentralization is improved scalability[81]. Scalability is
limited by the amount of centralized operations (e.g. synchronization and coordination)
that needs to be performed, the amount of state that needs to be maintained, the
inherent parallelism in an application, and programming model which is used to
represent the computation.

There are many attempts to attack the scalability problem. Napster attacked the
scalability problem by having the peers directly download music files from the peers
that possess the requested document. As a result, Napster was able to scale to over 6
million users at the peak of its service. In contrast, the SETI@homeSETI@home [90] focuses on a
task that is almost completely parallel. It harnesses the computer power that is
available over the Internet to analyze data collected from its telescopes with the goal
of searching for extraterrestrial life forms. The SETI@home SETI@home has close to 3.5 million
users so far.

Content Addressable Network (CAN) [82], Chord [83], Oceanstore [84], and PAST
[85] dictate a consistent mapping between the object key and hosting node. Therefore,
an object is always reachable as long as the host is connected. In such an overlay
network, each node only maintains the address of a small number of other nodes. This
limits the state information to be maintained for each node, thus scalability is
increased. It is said that they can scale to billions of users, millions of servers, and
10¹³ records. The trade-off between scalability and self-organization shall be
investigated in this case.

11 Self-organization will be discussed in 2.2.3, and scalability will be discussed in 2.2.2

mailto:SETI@home
mailto:SETI@home

30

2.2.3 Self-organization
Self-organization is defined as “a process where the organization (constraints and
redundancy) of a system spontaneously increases, i.e., without this increase being
controlled by the environment or an encompassing or otherwise external system”[86]
In P2P systems, self-organization is needed because of scalability, fault resilient12,
intermittent connection of resources, and the cost of ownership13. Since unpredictable
numbers of users access the network in an ad hoc manner, adaptation should be
implemented to handle the changes caused by peers connecting and disconnecting
from system. It can also be a very important feature when a peer discovers the
network. There are additional concerns in self-organization is about how to adapt the
variance of network latency and bandwidth other than intermittent peer availability. In
this case self-organization shall be embedded in the lower level communication APIs
of the platform in a P2P system.

There are a number of academic systems and products that address self-organization,
such as OceanStore, Pastry, Tapestry, Chord, and CAN.

In OceanStore [84], self-organization is applied to location and routing infrastructure.
Because of intermittent peer availability, as well as variances in network latency and
bandwidth, the infrastructure is continuously adapting its routing and location support.

In Pastry[88], self-organization is handled through protocols for node arrivals and
departures based on a fault-tolerant overlay network. Client requests are guaranteed to
be routed in less steps on average than the worst case. Also, file replicas are
distributed and storage is randomized for load balancing.

In [87] , the authors proposed a secondary overlay to be layered on top of CAN[82],
Chord[83], Tapestry [89], Pastry [88] that exploits knowledge of the underlying
network characteristics. The secondary overlay builds a location layer between
“supernodes,” nodes that are situated near network access points, such as gateways to
administrative domains. By associating local nodes with their nearby “supernode,”
messages across the wide-area can take advantage of the highly connected network
infrastructure between these supernodes to shortcut across distant network domains,
greatly reducing point-to-point routing distance and reducing network bandwidth
usage.

2.2.4 Anonymity
An important goal of anonymity is to allow people to use the systems without concern
for legal or other ramifications. Ultimately, it will make censorship of digital content
impossible. At this point, content creator, participant, overlay operators, and content
itself are not identical. Furthermore there are 6 technical approaches so far. They are
multicast, spoofing the sender’s address, identity spoofing, covert path, intractable
aliases, and non-voluntary placement. There are more actors to be identified with
respect to anonymity. Publisher, reader, server, and document are the main actors who
can be anonymous [42]. In P2P, how anonymous the operator, the participant, and
content creators should be one of the major problem to be resolved because one of the

12 Fault resilient will be explain in section 2.2.9.
13 Cost of ownership will be explained in section 2.2.5

31

business requirements to enable the content provide to know who has accessed his or
her content.

2.2.5 Cost of ownership
One of premises of P2P computing is shared ownership. It reduces the cost of owning
the system, the content, and maintenance. It means that the management overheads of
controlling resources and data are reduced comparing with the client-server paradigm.
From Napster [92], SETI@homeSETI@home [90] till BitTorrent [91], this is always to the
advantage of P2P file sharing applications. In P2P, we will take use of this
characteristics to enable a large number of computers join the P2P overlay network.
The direct consequence of content sharing is that the operator can concentrate more
on its services instead of infrastructure maintenance and expansion. However, how the
peer and the server cost shall be shared is an important issue, because fairness is the
basic principle that should be apply. The degree of cost sharing reflects the
decentralization and self-organization.

2.2.6 Ad hoc connectivity
Their ad hoc nature strongly affects all classes of P2P systems. Basically, this means
that there are some nodes in the network that may be available all the time, but some
are only part of the time, and some of them are not available at all.

According to Mojo Nation P2P network measurements, 80%-84% of nodes fell into
the availability group of disconnected “one time, less than one hour”, and 16%-20%
fell into the remaining longer than one hour, and significant fraction stayed connected
less than 24 hours before being permanently disconnected [93]. It is considered an
exception in traditional networks for a node to be not available, but in P2P system this
will be very common. Understanding this is very important. Therefore, in content
sharing P2P systems and applications, users expect to be able to access content
intermittently, subject to the connectivity of the content providers. In systems with
higher guarantees, such as service-level agreements, the ad-hoc nature is reduced by
redundant service providers, but parts of the providers servers(and hence content) may
be unavailable. How to handle intermittent availability of certain participants is a
major problem to be resolved. Replicating the content and or reallocating the content
will be challenging in such a dynamic environment. This directly effect the system
design for fault resiliency14 and self-organization.

Furthermore, not everything will be connected to the Internet. Even under these
circumstance, ad hoc groups of people form ad hoc networks in order to collaborate.
The supporting ad-hoc networking infrastructures, such as 802.11b, Bluetooth, and
infrared, have only a limited radius of accessibility. Therefore, both P2P systems and
applications need to be designed to tolerate sudden disconnection and ad hoc
additions to groups of peers.

2.2.7 Performance
Performance is a significant concern in P2P systems. P2P systems aim to improve
performance by aggregating distributed storage capacity (e.g., Napster, Gnutella) and
computing cycles (e.g., SETI@homeSETI@home) of devices spread across a network. Because
of the decentralized nature of these models, performance is influenced by three types

14 Fault resilient will be explained in section 2.2.9

mailto:SETI@home
mailto:SETI@home

32

of resources: processing, storage, and networking. In particular, networking delays
can be significant in wide area networks. Bandwidth is a major factor when a large
number of messages are propagated in the network and large amounts of files are
being transferred among many peers. This limits the scalability of the system.
Performance in this context does not emphasize millisecond performance, but rather
tries to answer questions of how long it takes to retrieve a file or how much
bandwidth a query will consume. In centrally coordinated systems (e.g., Napster,
SETI@home, and BitTorrent) coordination between peers is controlled and mediated
by a central server, although the peers may also later contact each other directly. This
makes these systems vulnerable to the problems facing centralized servers. To
overcome the limitations of a centralized coordinator, different hybrid P2P
architectures [94] have been proposed to distribute the functionality of the coordinator
in multiple indexing servers that cooperate with each other to satisfy user requests.
DNS is another example of a hierarchical P2P system that improves performance by
defining a tree of coordinators, with each coordinator responsible for a peer group. In
BitTorrent, trackers are designed to coordinate the peers’ downloading and upload
metrics. Communication between peers in different groups is achieved through a
higher level coordinator. In decentralized coordinated systems such as Gnutella and
Freenet, there is no central coordinator; communication is handled individually by
each peer. Typically, they use message forwarding mechanisms that search for
information and data. The problem with such systems is that they end up sending a
large number of messages over many hops from one peer to another. Each hop
contributes to an increase in the bandwidth on the communication links and to the
time required to get results for the queries. The bandwidth for a search query is
proportional to the number of messages sent, which in turn is proportional to the
number of peers that must process the request before finding the data[98]. There are
three key approaches to optimize performance: replication, caching, and intelligent
routing.

2.2.7.1 Replication
Replication puts copies of objects/files closer to the requesting peers, thus minimizing
the distance between the peers requesting and providing the objects. Changes to data
objects have to be propagated to all the object replicas. Oceanstore uses an update
propagation scheme based on conflict resolution that supports a wide range of
consistency semantics. The geographic distribution of the peers helps to reduce
congestion of both the peers and the network. In combination with intelligent routing,
replication helps to minimize the delay by sending requests to closely located peers.
Replication also helps to cope with the disappearance of peers. Because peers tend to
be personal computer (PCs) rather than dedicated servers, there is no guarantee that
the peers won't be disconnected from the network arbitrary. The key is replication of
redundant data across the dynamic overlay in order to achieve maximal object data
availability.

2.2.7.2 Caching
Caching reduces the path length required to fetch a file/object and therefore the
number of messages exchanged between the peers. Reducing such transmissions is
important because the communication latency between the peers is a serious
performance bottleneck facing P2P systems. In Freenet for example, when a file is
found and propagated to the requesting node, the file is cached locally in all the nodes
in the return path. More efficient caching strategies can be used to cache large

33

amounts of data infrequently. The goal of caching is to minimize peer access latencies,
to maximize query throughput and to balance the workload in the system. The object
replicas can be used for load balancing and latency reduction.

2.2.7.3 Intelligent routing and peering
To realize the potential of P2P networks, it is important to understand and exploit the
social interactions between the peers. The most pioneering work in studying the social
connections among people is the “small-world phenomenon” initiated by Milgram
[95]. The goal of his experiment was to find short chains of acquaintances linking
pairs of people in the United States who did not know one another. Using booklets of
postcards he discovered that Americans in the 1960s were, on average, about six
acquaintances away from each other.

Adamic, et al. have explored the power-law distribution of the P2P networks, and
have introduced local search strategies that use high-degree nodes and have costs that
scale sub-linearly with the size of the network [96].

Ramanathan et al. [2001] determine “good” peers based on interest, and dynamically
manipulate the connections between peers to guarantee that peers with a high degree
of similar interests are connected closely. Establishing a good set of peers reduces the
number of messages broadcast in the network and the number of peers that process a
request before a result is found [97].

A number of academic systems, such as Oceanstore and Pastry, improve performance
by proactively moving the data in the network (see also Section 2.1.1.6). The
advantage of these approaches is that peers decide whom to contact and when to
add/drop a connection based on local information only.

2.2.7.4 Security
Extensive research on this topic in P2P network has occurred because of requirements
for anonymity15, DRM [101], AAA [99], Firewall[103], and NAT [102].

The contemporary research such as Publius [115] addresses the encryption via public
keys and multiple private keys as asymmetric manner. Recent improvements reduce
the cost of Byzantine agreement, guiding future research regarding asynchronism in
P2P network [99]. Anonymity of the receiving peer, sending peer and content creator
shall be leveraged in a P2P system because a anonymity should be design in terms of
business requirements described in chapter 2.

For DRM, we will not focus on this area because we focus open content. Open
content distribution is free for everyone to use. However, we need to mention how
P2P will be affected by the DRM.

Distributed computing P2P systems require execution of some code on peer machines.
It is crucial to protect the peer machines from potentially malicious code and protect
the code from a malicious peer machine. Protecting a peer machine typically involves
enforcing (1) safety properties such that the external code will not crash the host, or
will only access the host data in a type-safe way, and (2) enforcing security properties

15 Please also refer to 2.2.4

34

to prevent sensitive data from being leaked to malicious parties. Techniques to
enforce the include sandboxing, safe languages (e.g., java), virtual machines etc.

2.2.7.5 Digital Right Management
P2P file sharing makes file copying easy. It is necessary to protect the authors from
having their intellectual property stolen. One way to handle this problem is to add a
signature in the file that makes it recognizable (the signature remains attached to the
file contents) although the file contents do not seem affected. This technique,
referenced as watermarking or steganography[105], has been experimented with by
RIAA [104] to protect audio files such as MP3s by hiding the copyright information
in the file in inaudible ways.

2.2.7.6 Reputation
Free riders are a common problem in P2P file sharing systems. An user who only
downloads files/objects, but not share the content with others. However, some of the
users share lots of content with others. Therefore, one of the metrics is to identify
whether a participant is “good” is their reputation. Accountability mechanism should
be developed to identify peers with different reputations, for instance, one of approach
is cross-rating. But ad hoc network have the possibility of unauthenticated and
untrusted users. When multiple people are downloading the same file at the same time,
they upload pieces of the file to each other. Not only does this redistribute the cost of
downloading but it also eliminates free riding. Thus the node reputation can be
resolved both regarding security and self-organization. In BitTorrent, there is a very
neat strategy to resolve this free rider problem, via downloading while uploading. [4]

2.2.7.7 Accountability
This is another challenge in P2P, in terms of how to provide fair anonymity. Only if
the overlay operator is able to know the identity of creator and delivery sites of
specific content, can he ensure that the content creator and his or her content is
traceable. This is not a technical problem, but rather about how anonymity is
implemented and who the operator can trust to hold such information.

Firewalls and NAT are other challenges for P2P system. Since most Firewalls block
TCP inbound traffic and many applications abuse port 80, which was only designed
for HTTP, this causes communication difficulties between participants. If the
participants are hidden behind different Firewalls communication becomes even
harder. A common solution is configuring the Port used while installing the P2P
software. But we need to look into this further and find out which method is used best.
Maybe it is very rational to have more afford on the operator’s side concerning other
system features. For instance, a P2P relay/reflector server can be developed to find the
peers if they are behind firewalls. We can also apply the same method for peers
behind Network Address Translators.

As we described in section 2.1.1.2, every node can be assigned a node ID based upon
hashing function. In this way, every peer can be addressed and indexed. This will
efficiently overcome the problems caused by Firewall’s and NATs. The key issue is
how to map the key of the object and the key of the node to achieve best locality (i.e.
minimal distance).

35

2.2.8 Transparency and Usability
There are many things which should be transparent in distributed systems. They
included transparency of location, access, concurrency, replication, failure, mobility,
scaling, etc. [104]. For example, in file sharing system, P2P users’ localization
experience will directly benefit from naming/addressing transparency. Besides this
transparency, administrative transparency will deliver user-friendly configuration,
and make user client upgrades more easy. Similar to interoperability, network and
device transparent P2P systems will work on the Internet, intranets, and private
networks, using high-speed or dial-up links. They should also be device transparent,
which means they should work on a variety of devices, such as handheld personal
digital assistants (PDAs), desktops, cell phones, and tablets. As an application layer
overlay, it should be design to work on different devices such as desktops, laptops,
PDAs, cell phones, TV-Set Top Boxes, and game stations. On the operator’s side,
automatic and transparent authentication of user and user agent can significantly
reduce complexity from user perspective. Supporting mobile users to enable them to
download files/objects independently no matter whether she or he is connected to the
Internet. On the other hand, as a user, he can simply use a web interface rather than
other protocols. Thus, naming/addressing, administrative transparency, network and
device transparent, transparent authentication, mobility transparency can significantly
enhance a P2P network’s usability.

2.2.9 Fault-resilience
Decentralization eliminates a central point of failure, this has significant advantages.
However, the solution for this problem varies when the system spans multiple hosts or
networks. For example, it must consider disconnections/impeachability, partitions,
and node failures. The problem is how to attach to those peers still connected in such
presence of failures. How to connect to the remaining peers when the current neighbor
disappears because a link is broken? How to resume the computation before the
failure in order to continue the collaboration when connectivity is restarted? Perhaps,
we should look into SETI@home and Genome@homeI@home and Genome@homeGenome@home[108]; as they attack this
problem by partitioning the computations.

Another method to attack disconnection and node failure is a relay service. In the
Groove[110] P2P system, they handle these problems by using some special nodes
called replays, which store any updates or communications temporarily until the
destination peer reappears in the network. Similarly, Magi [109] queues the messages
at the source until the presence of the destination peer is detected. Yahoo[111] and
ICQ[112] also adopted a similar approach for when peer is offline or disconnected.

Another problem is non-availability of a resource. The resource might not be available
because of node failure, network link failure, because a node has gone offline etc. The
popular method to resolve this problem is to replicate the resources or content. In this
method, there are two approaches: passive and active replication. P2P systems such as
Napster and Gnutella, implement both passive and an active uncontrolled replication
mechanism based up on the file’s popularity. It will be nice to provide persistent
replication nodes to guarantee resource availability, but we need to look into the more
active replication strategy and policy in that case. As I introduced in chapter 1, this
can definitely exploit synergy from a CDN’s replication strategies. In such a
replication mechanism, we should not send replicas to those nodes which disappear or
go offline or flip frequently all the time. Before sending replicas to a specific

mailto:I@home
mailto:Genome@home

36

replication node, a policy should be established to select good replication locations.
Oceanstore has implemented such mechanism. The inspiration for such a policy can
be borrowed from BGP’s route flap dampening mechanism[113]. Thus a penalty can
be added according to the history of certain destination peers which are candidates for
the replication peer. During the time of transmission, a heartbeat message can be sent
from the resource peer. Whenever there is no heartbeat from the resource, the
receiving peer will notice the failure of the resource, then it will select a new replica.
This method was used in [114]. Anonymous publishing systems such as Freenet and
Publius ensure availability by controlled replication. Oceanstore maintains a two-
layered hierarchy of replicas and by monitoring of administrative domains avoids
sending replicas to locations with a highly correlated probability of failure. However,
because a resource in the P2P system could be more than a just a file – such as a
proxy to the Internet, shared storage space, or shared computing power – the concepts
of replicated file systems have to be extended to cover additional types of resources.
Grid computing solutions (e.g. Legion [167]) provide resilience against node failures
by restarting computations on different nodes.

2.2.10 Manageability
A challenging aspect of P2P is that the system maintenance responsibility has been
distributed completely and needs to be addressed by each peer to ensure availability.
This is quite different from client-server systems, where availability is a server-side
responsibility. The managerial issues include the following aspects:
(1) An operator of such network, must ensure that the upgrade system and maintain
their system across. Adopting either a centralized management approach or self-
managing approach will definitely effect decentralization, self-organization, fault
resilient, and many other properties of the system.
(2) In file-sharing applications, P2P systems enable easy and fast retrieval of the data
by distributing the data to caches located at the edges of the network. The location of
the data is not known by the retriever, potentially even after the data is retrieved.
Freenet, for example, stores the data in many locations in the path between the
provider and the retriever, so the whole notion of hosting a file becomes meaningless.
Files move freely among the peers and are allowed to disappear even if they are
currently being downloaded. This has some important implications. For example, the
question is who is accountable for the files (see Section 2.1.1.8.4). Also, how can we
ensure that the entire data content is being downloaded, i.e., how do we cope with the
un-reliability of the peers.
(3) P2P has the following implications for the IT industry: accountability, control,
manageability, and standards. The first three are very closely related. Accountability
is emphasized in centralized systems where access is monitored through logins,
accounts, and the logging of activities. Accountability is more difficult to achieve in
client-server systems, because of interactions with multiple clients. It is weakest in
P2P systems, because of equal rights and distributed functionality among the peers.
Similar reasoning applies for control. In centralized and client-server systems, control
is done at one or more well-defined points, whereas it is harder to achieve in P2P
systems, as control is entirely distributed. Therefore, more and more P2P systems
adopt a hybrid structure for their P2P network.

2.2.11 Interoperability
According to earlier distributed systems research, the following are requirements for
interoperability in P2P:

37

 The systems must interoperate.
 The protocols shall be used in systems communication, for instance HTTP,

XML, SOAP, etc. must be in common.
 They must exchange signaling and traffics data across systems.
 The systems must determine if they are compatible at both the lower level and

higher levels.
 Systems must advertise and maintain the same level of security , QoS, and

reliability.
 A P2P system’s protocols be ported into the other P2P system.

Interoperability means that the ability of systems, units, or forces to provide services
to and accept services from other systems, units, or forces and to use the services so
exchanged to enable them to operate effectively together [116]. There are many
attempts for P2P system interpretability. One solution is to port a P2P middleware
platform such as JXTA[117], BEEP[118], etc.; another is to build up a gateway to
translate the protocols between each other[119]. In PlentyCast implementation, we
can choose to develop our prototype based upon the JXTA platform as it is both open
source and claims to be a de facto standard and nice adaptations exist for different OS
platforms (including clear Java APIs for developers).

2.3 Core techniques
There are many core techniques, including location and routing, overlay construction,
and security mechanisms. We only explain the former two in this paper.

2.3.1 Location and routing
In the following subsections, I will explain what most well known mechanisms of
location and routing in P2P. They are: centralized directory model, flooding request
model, and Distributed Hashing Table model. Then I will focus on introducing some
outstanding Distributed Hash Table routing mechanisms.

2.3.1.1 Centralized directory model
This model was made popular by Napster and Audiogalaxy[120]. The peers of the
community connect to a central directory where they publish information about the
content they offer for sharing (see Figure 8). Upon request from a peer, the central
index will match the request with the best peer in its directory that matches the request.
The best peer could be the one that is cheapest, fastest, or the most available,
depending on the user’s needs. Then a file exchange will occur directly between the
two peers. This model requires some managed infrastructure (the directory server),
which hosts information about all participants in the community. This causes the
model to have scalability limits, because it requires bigger servers when the number
of requests increase, and larger storage when the number of users increase. However,
Napster’s experience showed that - except for legal issues – the model was relatively
strong and efficient.

2.3.1.2 Flooding requests model
The flooding model is different from the central index one. This is a pure P2P model
in which no advertisement of shared resources occurs. Instead, each request from a
peer is flooded (broadcast) to directly connected peers, which themselves flood their
neighbor peers etc., until the request is answered or a maximum number of flooding

38

steps (i.e. steps 2, 7, 6, 5) occur (see Figure 9). This model, which is used by Gnutella,
requires a lot of network bandwidth for the discovery, and hence does not prove to be
very scalable, but it is efficient in limited communities such as a company network.

Figure 8. Centralized request model

Figure 9. Flooding request model

To solve this problem, some companies have been developing “super-peer” client
software, which concentrates lots of the requests. This leads to much lower network
bandwidth consumption, at the expense of high CPU consumption. Caching of recent
search requests is also used to improve scalability.

2.3.1.3 Distributed Hashing Table model
In response to the scaling problems exposed in the above centralized directory model
and flooding request model, several research groups have (independently) proposed a
new generation of scalable P2P systems that support a distributed hash table (DHT);

39

such as: Tapestry, Pastry, Chord, Content Addressable Networks (CAN), and
Oceanstore. In these systems, utilizing Distributed Hash Tables (DHTs), files are

Figure 10. DHT Model

associated with a key (produced, for instance, by hashing the file name and its
contents, or IP address and host name). Each peer from the network is assigned a
random key and each peer also knows a given number of peers and each of them in
the system is responsible for storing a certain range of keys. Each peer will then route
the file towards the peer with the key that is most similar to the node key. This
process is repeated until the nearest peer key is the current peer’s key.

There is one basic operation in these DHT systems, lookup (key), which returns the
identity (e.g., the IP address) of the node storing the object with that key. When a
request originator issues lookup(key), the lookup is routed through the overlay
network to the node responsible for that key. Then the document is transferred back to
the request originator, while each peer participating in the routing will keep a local
copy of the file. An example is shown in Figure 10. This operation allows nodes to
put and get files based on their key, thereby supporting the hash-table-like interface.
This DHT functionality has proved to be a useful in large distributed systems.
However, it has the problem that the file keys must be known before posting a request
for a given file. Hence it is more difficult to implement a search than in the flooding
requests model. Also, network partitioning can lead to an island problem, where the
community splits into independent sub-communities, that don’t have links to each
other. Therefore, we must find the best trade-off amongst geometry, distance, and
algorithm of a specific DHT routing mechanism [121].

2.3.1.4 Plaxton location and routing
Plaxton et al.[122] developed what probably was the first routing algorithm that could
be scalably used by DHTs. Although not intended for use in P2P systems, because it
assumes a relatively static node population, it provides very efficient routing of
lookups. The routing algorithm works by “correcting" a single digit at a time, for
example: if node number 36278 receives a lookup query with key 36912, which

40

matches its first two digits, the routing algorithm forwards the query to a node that
matches the first three digits (e.g., node 36955). To do this, a node needs to have, as
neighbors, nodes that match each prefix of its own identifier, but differ in the next
digit. For a system of n nodes, each node has on the order of O(n) neighbors. As one
digit is corrected each time the query is forwarded, the routing path is at most O(n)
overlay (or application-level) hops. This algorithm has the additional property that if
the n² node-to-node latencies (or “distances" according to some metric) are known,
the routing tables can be chosen to minimize the expected path latency and, moreover,
the latency of the overlay path between two nodes is within a constant factor of the
latency of the direct underlying network path.

The Plaxton location and routing system provides several desirable properties for
both routing and location:

 Simple Fault Handling: Because routing only requires that nodes match a
certain suffix, there is potential to route around any single link or server failure
by choosing another node with a similar suffix.

 Scalable: It is inherently decentralized, and all routing is done by using locally
available data in DHT. Without a point of centralization, the only possible
bottleneck exists at the originate request node.

 Exploiting Locality: With a reasonably distributed namespace, resolving each
additional digit of a suffix reduces the number of satisfying candidates by a
factor of the ID base b (the number of nodes that satisfy a suffix with one
more digit specified decreases geometrically). The path taken to the root node
by the publisher or server S storing the object O and the path taken by client C
will likely converge quickly, because the number of nodes to route to drops
geometrically with each additional hop. Therefore, queries for local objects are
likely to quickly run into a router with a pointer to the object's location.

 Proportional Route Distance: Plaxton has proven that the total network
distance traveled by a message during both the location and the routing phase
is proportional to the underlying network distance, assuring us that routing on
the Plaxton overlay incuses a reasonable overhead.

There are, however, serious limitations to the original Plaxton scheme:

 Global Knowledge: To achieve a unique mapping between document
identifiers and root nodes, the Plaxton scheme requires global knowledge at
the time that the Plaxton mesh is constructed. This global knowledge greatly
complicates the process of adding and removing nodes from the network.

 Root Node Vulnerability: As a location mechanism, the root node for an object
is a single point of failure because it is the node that every client relies on to
provide an object's location information. Whereas intermediate nodes in the
location process are interchangeable, a corrupted or unreachable root node
would make objects invisible to distant clients who do not meet any
intermediate hops on their way to the root.

 Lack of Ability to Adapt: While the location mechanism exploits good locality,
the Plaxton scheme lacks the ability to adapt to dynamic query patterns, such
as distant hotspots. Correlated access patterns to objects are not exploited, and
potential trouble spots are not corrected before they cause overload or cause
congestion problems in a wide area. Similarly, the static nature of the Plaxton
mesh means that insertions could only be handled by using global knowledge
to re-compute the function for mapping objects to root nodes[123].

41

2.3.1.5 DHT algorithms benchmarking
In the following Table 1, we can find the difference between different DHT
algorithms.

DHT-based
P2P
systems

Parameters Hops to
locate data

Routing path length Notification
on joins and
leaves

Reliability Overlay
geometry

Chord N- number of
peers in the
network

Log N Log N (Log N)² replicate data on
multiple consecutive
peers, appropriate
retries on failure

Ring

CAN d – number of
dimensions
N- number of
peers in the
network

 1/d

d · N
2 · d 2 · d multiple peers

responsible for each
data
item, appropriate
retries on failure

Hyper-
cube

Tapestry N- number of
peers in the
network
b- base of
chosen identifier

Log b N Log b N Log N replicate data across
multiple peers,
keep track of multiple
paths to each peer

Tree +
Ring
(Hybrid)

Pastry b- base of
chosen identifier
N- number of
peers in the
network

Log b N b · Log b N + b Log N replicate data across
multiple peers,
keep track of multiple
paths to each peer

Tree +
Ring
(Hybrid)

Oceanstore

N- number of
servers in the
network
(n-numbers of
hashing
functions
i-size of the
filter)16

Log N Log N Log N Floating replica
technique, prefetching
and proactive
migration, Bayou-like
conflict resolution
update technique

Tree

Table 1. DHT algorithms benchmarking

Five main algorithms have implemented the DHT routing model: Chord, CAN,
Tapestry, Pastry, and Oceanstore[124]. The goals of each algorithm are similar. The
primary goals are to reduce the number of P2P hops that must be taken to locate a
document of interest and to reduce the amount of routing state that must be kept at
each peer. Each of the five algorithms either guarantee logarithmic bounds with
respect to the size of the peer community, or argue that logarithmic bounds can be
achieved with high probability.

The differences in each approach are minimal, however each is more suitable for
slightly different environments. In Chord, each peer keeps track of other peers (where
N is the total number of peers in the community).When peer joins and leaves occur
the highly optimized version of the algorithm will only need to notify other peers of
the change. In CAN, each peer keeps track of only a small number of other peers.
Only this set of peers is affected during insertion and deletion, making CAN more

16 This will not be needed until the false positive rate will be tuned.

42

suitable for dynamic communities. However, the tradeoff in this case lies in the fact
that the smaller the routing table of a CAN peer, the longer the length of searches.
Tapestry and Pastry are very similar. The primary benefit of these algorithms over the
other two is that they actively try to reduce the latency of each P2P hop in addition to
reducing the number of hops taken during a search. In Table 1, I have learnt their
benchmarking in according to studies [5], [123], [124].

The Chord algorithm models the identifier space as a one-dimensional, ring overlay
geometry[121]. Peers are assigned IDs based on a hash on the IP address of the peer.
When a peer joins the network, it contacts a gateway peer and routes toward its
successor. The routing table at each peer n contains entries for other peers where the i-
th peer succeeds n by at least. To route to another peer, the routing table at each hop is
consulted and the message is forwarded toward the desired peer. When the successor
of the new peer is found, the new peer takes responsibility for the set of documents
that have identifiers less than or equal to its identifier and establishes its routing table.
It then updates the routing state of all other peers in the network that are affected by
the insertion. To increase the robustness of the algorithm, each document can be
stored at some number of successive peers. Therefore, if a single peer fails, the
network can be repaired and the document can be found at another peer.

CAN models the identifier space as n-dimensional. The overlay belongs to a type of
hypercube structure. Each peer keeps track of its neighbors in each dimension. When
a new peer joins the network, it randomly chooses a point in the identifier space and
contacts the peer currently responsible for that point. The contacted peer splits the
entire space for which it is responsible into two pieces and transfers responsibility of
half to the new peer. The new peer also contacts all of the neighbors to update their
routing entries. To increase the robustness of this algorithm, the entire identifier space
can be replicated to create two or more “realities”. In each reality, each peer is
responsible for a different set of information. Therefore, if a document cannot be
found in one reality, a peer can use the routing information for a second reality to find
the desired information. Thus it achieves quite good reliability.

Tapestry and Pastry are very similar and are based on the idea of a Plaxton mesh.
Their overlay geometry is structured in ring and tree topology. Identifiers are assigned
based on a hash on the IP address of each peer. When a peer joins the network, it
contacts a gateway peer and routes toward the peer in the network with the ID that
most closely matches its own ID. Routing state for the new peer is built by copying
the routing state of the peers along the path toward the new peer's location. For a
given peer n, its routing table will contain i levels where the i-th level contains
references to b nodes (where b is the base of the identifier) that have identifiers that
match n in the last i positions. Routing is based on a longest suffix protocol that
selects the next hop to be the peer that has a suffix that matches the desired location in
the greatest number of positions. Robustness in this protocol relies on the fact that at
each hop, multiple nodes, and hence multiple paths, may be traversed.

OceanStore is based on Attenuated Bloom Filter and Plaxton mesh. Its overlay
geometry is a tree structure. First to create a consistent distributed directory of objects
and secondly to route object location requests. It uses a double routing mechanism:
(1)Attenuated Bloom filters as the primary step; this allows the queried content to be
retrieved efficiently with high probability; (2) then Plaxton routing whenever the first

43

algorithm fails. The first mechanism can fail because Bloom filters can sometimes be
misleading owing to false positives. In Oceanstore the misleading behavior happens
when attenuated Bloom filters indicate that two or more routes can lead to the object
requested. This conflict cannot be avoided entirely, but it is possible to lower the
probability of misleading behavior by choosing appropriate parameters for the Bloom
such as number of hashing functions or filter size (width/bits of object ID). To
allocate an object, if the local filter can’t find it, then contact the neighbor for the first
bit of that object key which possibly has a match. If the neighbor does not match, then
forward the query to the next possible filter to process, and so forth till it match the
key. As the inverse procedure of location, a replica can find its server in the
replication phase of the object. Different from previous systems, when used as a
network storage system, OceanStore uses floating replica strategy to replicate the
objects and uses prefetching and proactive migration to achieve high reliability of
shared data objects. To solve the problem in replica coherency across its overlay, it
exploits similar mechanism to Bayou [125]. Also, it minimizes the costs in location
and routing of logarithmic bounds with respect to the numbers of servers/peers.

2.3.2 Overlay network mapping
We argue that any solution that does not consider the underlying network structure
will produces useless results for overlay networks. Fortunately, we have found many
who people have the same thoughts as we have. The overlay network turns out to be
an abstract set of hosts that play an active role in the data location process. As shown
in Figure 11, the hosts in the overlay network are a subset of the total number of hosts
present.

Note how end-to-end paths between two hosts can be different in the two layers.
In particular a single edge in the overlay graph can include multiple edges in the
corresponding underlying one. This lack of path correspondence between the two
layers makes the routing process more difficult: a route retained as optimal in the
overlay graph might not be optimal in the underlying graph. This problem is one of
the most significant in the current implementations of DHTs. On the one hand, most
designs take forwarding decisions at each hop, based on the neighborhood
relationship in the overlay network. Depending on how the overlay network has been
built, this can lead to awful results. For example, a node in KTH has its neighbor
nodes in Europe and hence its path to a node in Stanford, California, USA may
traverse distant nodes in Europe. Ideally, one would like to improve routing
performance by avoiding such unnecessary high latency hops. Thus, a fundamental
challenge in using large-scale overlay networks is to incorporate IP level topological
information in the construction of the overlay to improve routing performance. This
problem has been attracting more and more attention from researchers [123], [126],
[127], [128], [129]. Basically, they look at this problem as a proximity problem. This
includes two important steps in a overlay network: proximity routing and proximity
neighbor selection.

2.3.2.1 Proximity routing
Proximity routing was first proposed in CAN. It involves no changes to routing
table construction and maintenance because routing tables are built without taking
network proximity into account. However, each node measures the Round Trip Time
(RTT) to each neighbor (routing table entry) and forwards messages to the neighbor
with the maximum ratio of progress in the d-dimensional space to RTT. As the

44

number of neighbors is small (2d on average) and neighbors are spread randomly over
the network topology, the distance to the nearest neighbor is likely to be significantly

Figure 11. Overlay concept

larger than the distance to the nearest node in the overlay. Additionally, this approach
trades off the number of hops in the path against the network distance traversed in
each hop: it can ever increase the number of hops. Because of these limitations the
technique is less efficient than geographical layout.

Proximity routing has also been used in a version of Chord. Here, a small number of
nodes are maintained in each finger table entry rather than only one, and as I
explained previously, a message is forwarded to the topologically closest node among
those entries whose node ID is closer to the message's key. As all entries are chosen
from a special region of the ID space, the expected topological distance to the nearest
of the entries is likely to be much larger than the distance to the nearest node in the
overlay. Furthermore, it appears that all these entries have to be maintained for this
technique to be effective because not all entries can be used for all keys. This
increases the overhead of node joins and the size of routing tables.

In [126], they proposed a binning strategy to solve this proximity problem.

Here, proximity routing offers some improvement in routing performance, but this
improvement is limited by the fact that a small number of nodes sampled from special
portions of the node ID space are not likely to be among the nodes that are closest in
the network topology. For instance in the following Figure 13.

The rationale behind this scheme is that topologically close nodes are likely to have
the same ordering and hence will belong to the same bin. They choose relative
distances to achieve their “binning” strategy, i.e. latencies from this set of landmarks.
A node measures its round-trip-time to each of these landmarks and orders the
landmarks in order of increasing RTT. Thus, based on its delay measurements to the
different landmarks, every node has an associated ordering of landmarks. This
ordering represents the “bin” the node belongs to. However we can do better than just
using the ordering to define a bin. They divide the range of possible latency values
into a number of levels. For example, we might divide the range of possible latency
values into 3 levels; level 0 for latencies in the range [0,80]ms, level 1 for latencies

45

Figure 12. Binning Strategy concept

between [80, 160]ms and level 2 for latencies greater than 160ms. We then augment
the landmark ordering of a node with a level vector; one level number corresponding
to each landmark in the ordering. To illustrate, consider node A in Figure 1. Its
distance to landmarks L1, L2 and L3 are 200ms, 60ms and 100ms respectively. Hence
its ordering of landmarks is L2L3L1. Using the 3 levels defined above, node A’s level
vector corresponding to its ordering of landmarks is “0 1 2”. Thus, node A’s bin is
“L2L3L1:012”.

They find that the landmarks can achieve good scalability on making “bins” if there
are 10 machines to be placed in the landmark farm. In according to their extensive
simulation in power-law network topologies, their binning scheme does a reasonable
job of placing nearby nodes into the same bin. This can be a good approach to achieve
topology-aware node selection. Simply, the nearest node can be selected shall exist in
the same bin or similar bins.

2.3.2.2 Proximity neighbor/server selection
The locality properties of Tapestry and Pastry derive from mechanisms to build
routing tables that take network proximity into account. They attempt to minimize the
distance according to the proximity metric, to each one of the nodes that appear in a
node's routing table, subject to the constraints on node ID prefixes. Pastry uses the
following metrics in its routing table:

1. Proximity invariant: Each entry in a node's routing table refers to a node that is
near, according to the proximity metric, among all live Pastry nodes with the
appropriate node ID prefix17. As a result of the proximity invariant, a message

17 Pastry ID is 160 bits

46

is normally forwarded in each routing step to a nearby node, according to the
proximity metric, among all nodes whose node ID shares a longer prefix with
the key. Moreover, the expected distance traveled in each consecutive routing
step increases exponentially, because the density of nodes decreases
exponentially with the length of the prefix match. From this property, one can
derive two distinct properties of Pastry with respect to network locality:
distance traveled and route convergence.

2. Total distance traveled - The expected distance of the latest routing step tends
to dominate the total distance traveled by a message. As a result, the average
total distance traveled by a message exceeds the distance between source and
destination node only by a small constant value.

3. Local route convergence - The paths of two Pastry messages sent from nearby
nodes with identical keys tend to converge in the proximity space at a node
near the source nodes. To see this, observe that in each consecutive routing
step, the messages travel exponentially larger distances towards an
exponentially shrinking set of nodes. Thus, the probability of route
convergence increases in each step, even if earlier (smaller) routing steps have
moved the messages farther apart. This result is of significance for caching
applications layered on Pastry.

The routing algorithms in Pastry and Tapestry claim that they allow effective
proximity neighbor selection because there is freedom to choose nearby routing table
entries from among a large set of nodes. CAN also proposed a limited form of
proximity neighbor selection in which several nodes are assigned to the same zone in
the d-dimensional space. Each node periodically gets a list of the nodes in a
neighboring zone and measures the RTT to each of them. The node with the lowest
RTT18 is chosen as the neighbor for that zone. This technique is less effective than
those used in Tapestry and Pastry because each routing table entry is chosen from a
small set of nodes.

In the distributed binning algorithm, sever selection process occurs as follows: (1) if
there exist one or more servers within the same bin as the client, then the client is
redirected to a random server from its own bin; (2)if no server exists within the same
bin as the client, then an existing server is selected at random from the set of servers
whose bin is most similar to the client’s bin. The degree of similarity between two
bins is defined to be the number of positions in their landmark orderings on which
they match. There are three types of selection metrics that have been used, Hotz
metric[130] (using inter-node distance calculated by node to landmark distance), and
Cartesian distance(n-dimension of landmark number). Although the performance of
Hotz distance based selection is competitive with the other two schemes, the
researchers in [126] conclude that we really do not need to work very hard to achieve
good server selection. Hence in designing such topology inference systems one might
argue that the simplicity, scalability, and practicality of the system should be as
important goals as prediction accuracy.

In practice, this server selection might be implemented by having the client include its
bin information in a DNS query. DNS name servers could maintain the bin
information for servers holding their content (for example, CNN’s name server might

18 RTT stands for Round Trip Time.

47

maintain the bin information for Web servers holding CNN content). Name servers
might then use the above scheme to select a server for the requesting client.

2.4 Discussion
Equivalence is the essence of Pee-to-Peer technology. This enables different attributes
of P2P in an P2P system such as decentralization, scalability, self-organization,
anonymity, cost of ownership, ad-hoc connectivity, performance, security, anonymity,
DRM, transparency and usability, fault-resilience, manageability, interoperability.
File-sharing applications have shown excellence of scalability, decentralization, cost
of ownership, transparency and usability. When we use this technology in our work,
we shall take advantage of these attributes in order to achieve our project goals.

48

Chapter 3 Introduction to Swarm in content delivery
A latest performance study [11] shows that swarming19 scales with offered load up to
several orders of magnitude beyond what a basic web server can manage. Most
impressively, swarming enables a web server to gracefully cope with a flash crowd,
with minimal effect on client performance.

3.1 An overview of swarm in content delivery
The main constraint to scalable content delivery is the web’s dependence on a client-
server model, which is inherently limited in its ability to scale to large numbers of
clients. As the load on a web server increases, it must either begin refusing clients or
else all clients will suffer from long download times. This makes it difficult for a
website with limited bandwidth to serve large files or a large number of requesting
clients, particularly in a flash crowd event.

Many Peer-to-Peer systems have addressed this problem by using similar swarm
techniques such as Gnutella, Swarmcast[145] and Onion Networks [144],
BitTorrent[146], CoopNet [8], Pseudoserving [137], Backslash system[138], and
PROOFS[139] and Swarming [11]. Basically, swarm intelligence[132] is one branch
of Artificial Intelligence[131]. Swarm in content delivery is a peer-to-peer content
delivery mechanism that utilizes parallel download among a mesh of cooperating
peers. Comparing with content delivery in client-server paradigm, swarm create a
mesh amongst the clients, the content data is transmitted in this mesh. Thus it
significantly speed up downloading speed for a user, reduce content server load, and
enhance content data availability. This is depicted in the following Figure. 14. In the
following subsections, I will explain what key issues must be addressed in these
swarm techniques.

Figure 13. benchmark between client-server and peer-to-peer swarm in content delivery

19 One latest proposal of swarm technique in study [11]

49

3.2 Core techniques in swarm content delivery
There are some commonalties amongst those swarm content delivery systems such as
Gnutella, BitTorrent, CoopNet, Pseudoserving, Backslash system, and PROOFS and
Swarming. First of all, they need to split the large file into small block/pieces.
Secondly, they eventually form a full mesh amongst the peers who carries different
percentage of a file or the complete file. Thirdly, in the mesh, every peer locate and
download the block/s from another peer via certain cooperation protocol with each
other. Some of them choose strategy of downloading and uploading simultaneously in
one peer such as Pareto Efficiency in BitTorrent, and asymmetric mechanism in
Swarming.

Before we go further deep into the techniques of swarm, I would like to examine the
procedure of swarm in content delivery. In general, most swarm systems choose
many-to-one and one to many transmission a model so that they can achieve many-to-
many mesh. The key is how to form such a mesh for a given content. Figure 15
depicts the flow of swarm in content delivery. There are 6 phases should be very
important in this work flow:

1. An new peer requests the content. In this phase, a new peer sends a request to
the content directory for specific content downloading. Usually the content
publishing becomes important. What information are important to the request
peer/client in terms of the overall swarm strategy.

2. The content directory sends the new requesting peer with necessary
information. These includes: list of the suitable siblings for this new peer to
connect and partial content blocks, or just the peer list to the new peer who has
the blocks of that content. In this phase, it is important for the new peer to
select the right peers to download the content in terms of metrics such as
distance, bandwidth, etc.

3. The new peer requests blocks from the peers on the list. In this phase, the new
peer contacts the peers given by the content directory.

4. The new peer downloads from others concurrently. Many-to-one transmission
has been established in this phase. The blocks of the content are sent from the
one who has downloaded before to the new peer. During the transmission,
fault resilient put important requirement for the request peer. How to deal with
counterpart’s disconnection or failure becomes very important for the
download duration.

5. The new peer sends blocks to others. A full mesh for this content is created
amongst peers. Now the one-to-many pattern has been established.. Thus a
mesh amongst all downloading peers, mean while they should also upload.
This mesh is created for a specific content. Due to the very high frequency of
join and leave behavior in the mesh, how to deal with this dynamic situation
become another important question to answer.

6. When the new peer complete downloading then leave the mesh. Another new
peer and repeat (1) Except for the sequential join events, what if the system
have multiple peers join simultaneously?

In the following sections, we will examine three typical swarm systems Swarmcast &
Onion Networks20, BitTorrent, and Swarming in terms of some key issues which
happen during their content delivery. In Table 1, we summarizes different approaches
to these key issues in the three typical P2P swarm systems.

20 The people work in Onion networks are almost the same people worked in Swarmcast project before.

http://support.leadtools.com/ltordermain.asp?ProdClass=EPRT1

50

3.2.1 Splitting large files
In general, it is done by opening the large file and then read the conditions parameters
for example block size or line numbers. The programme keeps reading the large file
from STDIN and then writes to another temp file, if the condition is met then close the
temp file and name or encrypt it using the naming policy. Then the read pointer
moves to the next character in the original large file, continuously writing in a new
file and so forth. When the end of the large file is reached the program is ended. For
the detailed information please refer to Appendix 2. I also have tried some
commercial products to split large file for example in Fast File Splitter [140]. They
can provide more features such as encryption, see snapshoot in Appendix 1 for how it
was done. There are many commercial file splitters on the market[141][142][143].

3.2.2 Initiated publishing
During replica placement before client access the content in CDN, a swarm delivery
system also faces the challenge to make the correct placement of the content. There
are two aspects that should be considered:

1. A content directory server needs to decide when to initiate (or stop) swarming
for a particular file based on current server performance and the popularity of
the file. Since it is not cost-effective to carry on swarming delivery when there
are only a few users to access this content. Especially, if these users are very
far away from each other.

Figure 14. Swarming flow overview

2. While swarming happens, the content directory server needs to decide what
portion of clients to send just a single block and how many to serve with the
entire file. When a large number of clients access the content directory, server
cost for sending replies is expensive. Depending on the strategy in 1, a careful
consideration of what to send is needed. For instance, if you send too many

51

entire file copies to the clients, it may overload your server. In addition, if you
send too few blocks to the clients, the swarm might not be formed effectively.

3. In such a dynamic hybrid P2P architecture, it is a challenge for the server to
distribute the load to the clients via swarming delivery. The content directory
server should trade-off between load-balancing of its own load and high
availability of the content data in order to provide an effective swarming
delivery. The goal of swarming delivery is to take advantage of high content
availability to achieve fast download for user requests.

3.2.3 Mesh construction
To be able to deliver the content in many-to-one and one-to-many transmission model,
it is the key to form and maintain a mesh connection in between the clients/peers who
request the same content. This is the base for a peer to execute download concurrently
of different blocks from peers, and upload what he has simultaneously. While doing
swarming delivery, the client must deal with long-term dynamics and must determine
when to add or drop a peer. In addition, because the client is using parallel download,
it must decide which blocks to download from which server peer, while coping with
the fact that each peer may potentially have a different set of blocks. Thereby, what
protocols shall be used to communicate with each other in order to maintain the mesh.
How much network status of other peers should be maintained when peers join and
leave with very high frequency?

3.2.4 Peer and content identification
A client needs to locate other peers who have desired content so that it can use them
as server peers. Whether a peer needs to be identified is a tricky question. If you
devise a peer who should know the global status of the overlay network, identification
is a must, for example in Chord, CAN, Pastry, and Tapestry. But if you don’t want a
peer have global status then you can ignore peer identification, for instance in
Swarming delivery in [11]. The advantage of the former method is not only on the
global status knowledge, but a good way of penetrate NAT or Firewalls because a
peer ID can bootstrap the IP address of that peer which is usually hard to obtain
behind NAT or Firewall.

Each content object must have a identification for many reasons. Firstly, because the
block’s identification replies on the content identification. Secondly, to avoid
synchrony of the file name for different content. Thirdly, a unique ID of this content
can avoid high costs of data coherency. Fourthly, it is of course to make content
location easy. To maintain data integrity for blocks or pieces of the content, unique
name of each block must be available.

3.2.5 Content/peer location
Once a client has located potential peers, it needs to decide which peers and how
many peers it should use for parallel download. These are difficult choices because
the client does not know ahead of time the average bandwidth available from each
server peer. In addition, the bandwidth is changing all the time. In particular, the
client does not know if the bottleneck of the connection will be local or remote. The
optimal selection process involves the following metrics: distance, bandwidth, CPU
load, memory usage, and number of processes in a peer.

52

3.2.6 Fault resiliency
The larger network is, the more frequent join and leave event will occur [93]. Due to
the high frequency of join and leave events, in the middle of swarming delivery, it is
possible that some peers leave gracefully (with notification) or ungracefully (without
notification). This can prolong the downloading time of the entire file, when a
uploading peer refuses to upload for their own reason. In this case, a re-selection
process must occur. Moreover, this relates to how to exploit redundancy of the
connections or peers to re-selection quickly. In addition, a strategy which makes
download and upload happen simultaneously on one peer is desired to increase the
probability of contributing to each node the mesh. This should ensure the peer will
upload to the other in the mesh before it gets all the blocks/pieces. However, whether
we shall choose a fairness principle should also be specified because more uploading
peers naturally leads to shorter time to get the content file for each other. Moreover,
how to adjust the downloading and upload connections for a peer can also be
important to enhance the system performance.

3.2.7 End User bandwidth
From an access speed perspective, there are three types of users attached to the last
mile of today’s Internet: dialup user, broadband users, and office users.

 Downlink Uplink
Dialup users 56Kbps 33Kbps
Broadband users 1536Kbps 128Kbps
Office users 43Mbps 43Mbps

Table 2. Class of Internet users

In the mesh, if every peer is downloading and uploading, those peers behind
broadband modems will have a bottleneck on uploading their blocks to others because
ADSL only provides asymmetric bandwidth for its users. In Table 2, a typical
broadband user only has 128Kbps upload bandwidth, which is only 1/12 of their
download bandwidth. The problem is that a single upstream pipe cannot meet demand
of the another peer. Even worse, because of the fairness attribute of TCP's rate control
[168], if the upstream path is congested, the downstream performance suffers as well.
In another words, if a computer is serving files on the slow side of a link, it cannot
easily download simultaneously on the fast side. How to detect ADSL peers and
minimize the negative effect brought by asymmetry is one of the big challenges in
swarming delivery.

Intuitively, dialup users can not upload very fast, therefore they can not offer very
much download bandwidth for others. But their download bandwidth is not so
different from their uplink. In the same mesh, we can imagine that the download
duration will be longer if the peers are behind dialup modern. In another words, the
broad band or office users will have shorter download time for a given large file.
However, what if there is mixture of broadband users and dialup users and office
users co-existing in the same mesh? Will the ADSL users be impacted by all other
users in the mesh negatively?

3.2.8 ISP infrastructure
As I described in sections 2.2.3 and 2.3.2, an ISP’s requirement and underlying
network proximity should not be ignored in swarming delivery. In Figure 16, a traffic

53

generator simulated a Gnutella mesh. In such a mesh network, if there are many
logical connections existing on one physical link, the physical link congestion will
most likely occur. Moreover, if the node are not mapped (Figure 15) on the
underlying network in an appropriate manner, the download duration for a file and
efficiency of the mesh might be negatively impacted.

Figure 15. Match and mismatch in P2P overlay mapping

In addition, The larger the mismatch between the network infrastructure and the P2P
application’s virtual topology, the bigger the “stress” on the infrastructure[148]. This
can increase the co-channel interference in physical media before the link gets
completely congested. In according to my measurements, a large movie file
downloaded via BitTorrent , from about 20 hops away from my machine. It is
unlikely that traffic is localized in the mesh21. Most of the connections came across
the peering links with Sprint.

 Swarmcast & Onion
Networks

BitTorrent Swarming

Initiated
publishing

 Breaking large file into
packets/pieces with FEC
coding, then packets to be
distributed randomly to the
requesting clients
 Only distribute a portion of

original packets
 An entire file must be

downloaded in one of the
clients before it gets
Swarmcast in a mesh

 The .torrent contains
information about the file, its
length, name, and hashing
information, and the URL of a
tracker

 Starts a downloader from a
node which already has the
complete file (the 'origin')

 only distribute partial blocks
of the file and a gossip22 to
all the requesting clients
(conservative)
 root server ensures variety of

blocks sent to the clients

Mesh
construction

 A temporary mesh network for
a specific file
 Node leaves the mesh when

file reconstruction is successful
 Ignorant of the global state

 Bencoding formatted messages
between the tracker and
metainfo (.torrent) file
 BitTorrent peer protocol:

downloaders periodically

 View this mesh as a
collaborative deliver system,
where server peers with
larger portions of the file or
higher bandwidth will tend to

21 Please see Appendix 3
22 A gossip message contains a list of peers that are willing to serve portions of the same file. For each
server peer, the message lists the peer’s IP address, a list of blocks the peer is known to have, and a
time stamp indicating the freshness of this information.

54

checking with the tracker to
keep it informed of their
progress, and are uploading to
and downloading from each
other via direct connections.

serve greater numbers of
clients. Downstream peers
will generally get pieces from
upstream peers who have
received the content earlier.
 During the mesh formation,

individual blocks are
propagated along a tree that
starts at the root server
 server-based peer list

together with gossip in the
beginning
 gossiping in peer discovering

Peer/content
identification

SHA-1 hash key for each piece A string of length 20 which this
downloader uses as its id. Each
downloader generates its own
id at random at the start of a
new download. This value will
also almost certainly have to be
changed if the same id exists.
 SHA-1 hash key for each piece

 No DHT identification for
each peer, only IP address in
case redirection overwhelm
the root server due to large
numbers of clients
 In the initiation stage, the

root server supplies an initial
set of peers

Content/peer
Location

 Packets selection
 Prefer transfers from sources

close together
 Closest distance(hops) priority

 Pieces selection
 Sub-piece priority
 Random first – when start to

download
 Rarest first – replicate rarest

pieces as soon as possible
 Endgame mode – last piece

problem

 Priority on more blocks – the
server peer who carries more
blocks which the client need
is first
 If the multiple peer provide

the same content, then
distance and bandwidth will
be concerned

Fault
resilient

 When a node receives a
packet, it rebroadcasts it to
other nodes; download and
upload rate tend to be the
same
 FEC creates additional repair

packets
 Enable file re-construction with

a subset of packets
 maximized and equal utility,

i.e., every packet is equally
important to the delivery of
content
 The system requires that no

explicit feedback be provided.
A sender should not care what
happens to a piece of data after
sending it. This allows scalable
transmission across broadcast
or high latency/high error
networks

 Tit-to-tat – downloading while
uploading
 Choking algorithm – deal with

uploading peer refusal
 Optimistic unchoking algorithm

-deal with snubbing peer
(uploading peer)
 Pipeline redundancy – deals

with delay between sending
pieces (by keeping 5 pipelines
active at once and send
subspecies on the five
pipelines)

 Parallel downloading from
multiple server peers
 Drop a server peer when it

runs out of blocks, or
disconnects
 Invoke peer selection

process immediately when
drop happens
 Select blocks from server

peer or the content server
 No limitation of parallel

connections

End User
bandwidth

 Often, the sending side of a
data transfer is the bottleneck
for broadband users (i.e. ,
ADSL). To deal with this
problem, given the current
infrastructure of the Web, try to
minimize the number of hops
between the customer and the
server. Swarmcast can do this
through its aggressive mesh-

 Sometimes, limiting your
upload rate will increase your
download rate. This is
especially true for asymmetric
connections such as cable and
ADSL, where the outbound
bandwidth is much smaller than
the inbound bandwidth. If you
are see very high upload rates
and low download rates, this is

 Results also demonstrate
that broadband users do not
see a significant
performance increase when
small numbers of office users
participate in swarming
 Low-speed users will

naturally decrease swarming
performance for broadband
users, but will not introduce

55

creation policy.
 Swarmcast's simply sends out

random packets, this allows
even modem users to
contribute to the system. So, a
user on a cable modem could
saturate his or her connection
by downloading from a few
dozen modem users in parallel.
 The only limit is an individual

downloader's maximum
bandwidth.

probably the case. The reason
this happens is due to the
nature of TCP/IP -- every
packet received must be
acknowledged with a small
outbound packet. If the
outbound link is saturated with
BitTorrent data, the latency of
these TCP/IP ACKs will rise,
causing poor efficiency.
 BT chocking algorithm

significant problems

ISP
infrastructure

 Quick scaling model localize
the traffic from ISP to LAN, thus
alleviate the bottlenecks on ISP
networks.

No concerns on ISP network
bottlenecks

No concerns on ISP network
bottlenecks

Table 3. Benchmark of swarm systems

3.3 An introduction of Forward Error Correction codes
Error correcting codes or Forward Error Correction (FEC) techniques are a classical
mechanism to protect the information against errors or losses in transmissions. The
principle of FEC is to add redundancy to the transmitted information, so that it is still
possible for receivers to recover all the whole transmitted data, even after
experiencing errors in transmissions.

The main method of FEC used in the network domain is the use of block codes. These
codes consider a group of k packets and compute n-k redundancy packets (n>k). The
fundamental property of FEC permits the receiver to reconstruct the k source packets
as soon as it correctly receives k packets amongst the n disseminated ones. This
property enables very high reliability for data transmission, especially in a highly
dynamic network.

FEC is used in several kinds of applications: wireless transmissions (e.g., satellite,
cellular phone) data storage (e.g., CD-ROM, DVD.) or computer memory (e.g.,
RDRAM). In a networking context, FEC is classically used at lower layers (physical
and link layer) in detection/correction mode. In higher layers, similar software
techniques such as CRC or checksums are used to detect corrupted packets. In recent
years, with the improvements of the performance of personal computers, it is possible
to implement encoding and decoding of the FEC in software at user level (i.e.,
transport or application layer). For example, most reliable multicast transport
protocols use FEC [150]. In data storage area, FEC is used to protect data against the
failures of storage devices. Small scratches on CD-ROM are corrected by FEC
directly implemented on the encoded information. Failures of hard disks can be
protected by FEC-based systems such as RAID technology[151], [152]. This property
holds only for maximum distance separable (MDS) codes, e.g. Reed-Solomon
codes[149].

As we know from previous sections in this chapter, large content data can be spit into
fixed length small blocks and transmitted in a mesh. There are two very important
attributes in such a mesh. One is that the join and leave behavior of each node is
stochastic and it occurs at a very high frequency as we show in section 5.1.3. Another
one is that the total volume of the data being transmitted in the mesh as relatively
large, and sometimes can reach several orders of magnitude. Thus reliability of data

56

transmission becomes a big challenge in such mesh as created by swarming delivery.
To achieve high reliability of swarming delivery, there are three fundamental ways of
doing so.
First is to use Automatic ReQuest for retransmission. With ARQ, receivers use a back
channel to the sender to send requests for retransmission of lost packets. ARQ works
well for one-to-one reliable protocols, as evidenced by the pervasive success of
TCP/IP. ARQ has also been an effective reliability tool for one-to-many reliability
protocols, and in particular for some reliable IP multicast protocols. However, for
one-to-very-many reliability protocols, ARQ has limitations, including the feedback
implosion problem because many receivers are transmitting back to the sender, there
is a need for a back channel to send these requests from the receiver. Another
limitation is that receivers may experience different loss patterns of packets, and thus
receivers may be delayed by retransmission of packets that other receivers have lost,
but they have already received. This may also cause wasteful use of bandwidth to
retransmit packets that have already been received by many of the receivers.

Second is the Data Carousel approach [153]. With Data Carousel, the sender
partitions the object into equal length pieces of data, which we hereafter call source
symbols, places them into packets, and then continually cycles through and sends
these packets. Receivers continually receive packets until they have received a copy
of each packet. Data Carousel has the advantage that it requires no back channel
because there is no data that flows from receivers to the sender. However, Data
Carousel also has limitations. For example, if a receiver loses a packet in one round of
transmission it must wait an entire round before it has a chance to receive that packet
again. This may also cause wasteful use of bandwidth, as the sender continually
cycles through and transmits packets until no receiver is missing a packet [150].

The third is the FEC encoded approach. The rationale of FEC in swarming delivery is
that the files become a set of n+m blocks. Depending on FEC encoding technique, the
first n blocks may or may not be the n source blocks. In first case, they just result
from the original file splitting. The next m blocks integrate the redundancy introduced
by the FEC encoding. In the second case, the original information contained in the n
blocks is diffused into the n+m blocks (viz. the source blocks can be in any ith
packets in [0, n+m]). When you publish them you just distribute various blocks over
the mesh for instance as they have done as in swarming initiate stage in [11] . This
distribution is ensured using a native service of the P2P architecture.

This dissemination algorithm can be based either on the natural dissemination due to
the user downloads between the peers or on a more specific dissemination algorithm
of the P2P system. Eventually, the distribution algorithm is similar to the approaches
in section 1.2.4.2 because this is the same problem of placing the n+m blocks
amongst K peers. In the latter case, we shall consider distance, and bandwidth metrics
for the dissemination because this will more accurately locate the cost for a peer in
downloading. In addition, in study [11] , they find that when the various blocks are
disseminated over the network, downloading a complete file is equivalent to
downloading any n distinct blocks among the n+m ones. As there are greater choices
between the different blocks to get, the availability and the robustness of the system is
increased. When these blocks are disseminated over the P2P network, the searching
service helps to determine the closest ones by considering a certain cost function (e.g.,
the greatest bandwidth). Then, the n closest blocks are downloaded in a classical way.
The original data file can be finally reconstructed by decoding of these n blocks.
Moreover, they found that the following interesting figures:

57

In FEC Block Dissemination, for a 10 block file and an FEC encoding rate of ½ (i.e.
50% redundancy), each block is duplicated 5 times in 100 blocks. File downloading
has an average cost per peer of 13.99

Without FEC Block Dissemination, if there are 10 blocks in a file, them without FEC
encoding, each block is duplicated 10 times in a total of 100 blocks. Thus file
downloading average cost per peer of 17.03

With entire file Replication, if there are 10 block in a file, no FEC encoding, each
block is duplicated 10 times then in a total of 100 blocks. Thus file downloading
average cost per peer is 16.85[11]

Note that the cost function is purely based on the hops between each node.

Intuitively, we can see that the approach of block distribution with FEC encoding
saves cost in a P2P overlay. Based on this, we shall choose FEC codes for the blocks.
A good cost model shall consider metrics such as user downloading speed, bandwidth,
server load, and network load. In addition, different download strategies such as
fairness in downloading (downloading and uploading at once), and concurrent
downloading.

58

Chapter 4 Introduction to Mobile Agents

4.1 A Definition
There are many definitions from academia and industry regarding Agent technology,
because it is a relatively mature technology. I think the following definition can
broadly define what an agent is:

An autonomous agent is a system situated within and a part of an environment that
senses that environment and acts on it, over time, in pursuit of its own agenda and so
as to effect what it senses in the future. It includes the following properties:
Property Other names Meaning

reactive sensing and
acting

responds in a timely fashion to changes in the
environment

autonomous exercises control over its own actions

goal-oriented pro-active
purposeful

does not simply act in response to the
environment

temporally
continuous

 a continuously running process

communicative socially able communicates with other agents, perhaps
including people

learning adaptive changes its behavior based on its previous
experience

mobile able to transport itself from one machine to
another

flexible actions are not scripted
character believable "personality" and emotional state.

It has the following taxonomy:

Figure 16. Agent Taxonomy [133]

Intuitively, the mobile agent belongs to one type of Task-specific Agents, and the
property is able to transport itself from one machine to another. Therefore, we can
accept this definition for a Mobile Agent:

59

“A mobile agent is a program that can migrate from host to host in a network of
heterogeneous computer systems and fulfill a task specified by its owner. It works
autonomously and communicates with other agents and host systems. During the self-
initiated migration, the agent carries all its code and the complete execution state
with it. Mobile agent systems build the environment in which mobile agents can exists.
Migration of agents is based on an infrastructure that has to provide the necessary
services in the network. The infrastructure is a set of agent servers that run on
platforms (nodes) within a possibly heterogeneous network. Each agent server hides
the vendor specific aspects of its host platform and offers standardized services to an
agent that is docking on to such a server concluding migration. Services include
access to local resources and applications, e.g. web-servers, the local exchange of
information between agents via message passing, basic security services, creation of
new agents, etc.” [134]

4.2 What problems can mobile agents solve?
Agents are a tool for analyzing systems, not an absolute characterization that divides
the world into agents and non-agents [135]. Agent technology has been integrated into
many areas of computer science such as: objects and distributed object architectures,
adaptive learning systems, artificial intelligence, expert systems, genetic algorithms,
distributed processing, distributed algorithms, collaborative online social
environments, security, etc. As mobile agent attributes mobility, it can be used to
solve many problems in domains where agents can be integrated.

Agent technology solves, or promises to solve, several problems in different domains.
Mobile agents solve the nagging client/server network bandwidth problem. Network
bandwidth in a distributed application is a valuable resource. A transaction or query
between a client and the server may require many round trips over the wire to
complete. Each trip creates network traffic and consumes bandwidth. In a system with
many clients and/or many transactions, the total bandwidth requirements may exceed
available bandwidth, resulting in poor performance for the application as a whole. By
creating an agent to handle the query or transaction, and sending the agent from the
client to the server, network bandwidth consumption is reduced. So instead of
intermediate results and information passing over the link, only the agent need to be
sent. Here's a related situation. CDN is one of the typical examples as we described in
chapter 1.

In the design of a traditional client/server architecture, the architect divides the roles
of the client and server pieces very precisely – from the bottom to the up, at design
time. The architect makes decisions about where a particular piece of functionality
will reside based on network bandwidth constraints (remember the previous problem),
network traffic, transaction volume, number of clients and servers, and many other
factors. If these estimates are wrong, or the architect makes bad decisions, the
performance of the application will suffer. Unfortunately, once the system has been
built and the performance measured, it's often difficult or impossible to change the
design and fix the problems. Architectures based on mobile agents are potentially
much less effected by this problem. Fewer decisions must be made at design time, and
the system is much more easily modified after it is built. Mobile agent architectures
that support adaptive network load balancing could do much of the redesign
automatically.

60

Agent architectures also solve the problems created by intermittent or unreliable
network connections. In most network applications today, the network connection
must be alive and healthy the entire time a transaction or query is taking place. If the
connection goes down, the client often must start the transaction or query from the
beginning if it can restart it at all. Agent technology allows a client to dispatch an
agent handling a transaction or query into the network when the network connection is
alive. The client can then go offline. The agent will handle the transaction or query on
its own, and present the result back to the client when it re-establishes the connection.

Agent technology also attempts to solve (via adaptation, learning, and automation) the
problem of getting a computer to do real thinking for us. It's a difficult problem. The
artificial intelligence community has been battling these issues for two decades or
more.

4.3 Core techniques in mobile agents
The key technique is how to migrate the program from the original host to its
destination. Before we figure out how to migrate the agent, let’s understand what
network layers will be involved in the migration procedure shown in Figure 18.

Figure 17. Network layers involved in migration

We assume that the physical path has been established between the client and the
server in advance. The rest is to set up as a logical connection on the TCP or IP layer.
Since the migration of the program happens on the application layer, there must be a
communication channel between the client process and the server process, viz. a
logical path must be established network connection between them on the TCP or IP
layer according to RFC 793, RFC 791, RFC 919, RFC 922, and RFC 950.
Fortunately, you don't have to do the work yourself. Sockets are an innovation of
Berkeley Unix that allow the programmer to treat a network connection as just
another stream into which bytes can be written and from which bytes can be read.
Historically, sockets are an extension of one of Unix's most important ideas: that all
I/O should look like file I/O to the programmer, whether you're working with a
keyboard, a graphics display, a regular file, or a network connection. Sockets screen
the programmer from low-level details of the network, such as media types, packet
sizes, packet retransmission, network addresses, and more. This abstraction has
proved to be immensely useful and has long since traveled from its origins in
Berkeley Unix to all breeds of Unix, plus Windows, and the Macintosh. Thereby, to
establish a network connection between the client and the server, you only need to do
following the steps as follows:

61

1. Connect to a remote machine
2. Send data
3. Receive data
4. Close a connection
5. Bind to a port
6. Listen for incoming data
7. Accept connections from remote machines on the bound port

There are many programming language specific methods to interpret the above
operations. For instance in Java, we have the following steps to establish a network
connection:

1. The program creates a new socket with a Socket() constructor.
2. The socket attempts to connect to the remote host.
3. Once the connection is established, the local and remote hosts get input and

output streams from the socket and use those streams to send data to each
other. This connection is full-duplex; both hosts can send and receive data
simultaneously. What the data means depends on the protocol; different
commands are sent to an FTP server than to an HTTP server. There will
normally be some agreed-upon hand-shaking followed by the transmission of
data from one to the other.

4. When the transmission of data is complete, one or both sides close the
connection. Some protocols, such as HTTP 1.0, require the connection to be
closed after each request is serviced. Others, such as FTP, allow multiple
requests to be processed in a single connection.

Figure 18. Migration implemented in Java

Given a network connection between the client process and server process, the next
step is to wrap the program and send via this channel. There are also some
programming language specific method to do so. We choose Java as an example again.
In Java, statically, an agent is a type of classes which are defined as “extends Thread
implements Serializable”. This means that this class is a child class of Thread class

62

(Java library default class) and it implements another default library interface class
called “Serializable”. In the runtime environment, it can be a thread activated by a
client or server process. When you instantiate a class like this, you get a serializable
object for this class, then use the above 4 steps, you could send this object to the client
or the server which un-marshal the object and get the member methods and output the
content this agent carried as depicted in the following Figure 19.

4.4 Overview of the remaining chapters
As you can see from the previous chapters, there are many problems in CDN, P2P and
Agents I have listed many solutions for these problems. However, what problems are
we interested in? Why do we want to solve them? How to solve them? In the
following chapter 4, I will explain our goals and use this list to bootstrap solutions to
all the problems we are interested in solving. In chapter 6, we will propose a novel
CDN architecture to solve the problems described in chapter 5. At the end of this
paper in chapter 7, we will summarize our contribution and highlight the future work
for further development because we believe that PlentyCast has a very good potential
as a commercial application in the future.

63

Chapter 5 Problem statement
In this chapter, I begin by decomposing the five goals we set up for PlentyCast in this
project. Secondly, I will describe the relationships amongst them and identify the high
level problems that emerge. Third, I will describe the methods I used in this project to
attack these problems and the criteria for how I select from different existing
approaches to create an integrated solution.

5.1 PlentyCast design goals
In conventional CDNs, there are many problems needing further research in the
following areas: cache placement/replacement, cache coherency, caching contents,
user access pattern prediction, load balancing, proxy placement, dynamic data caching,
etc [1]. Nowadays, new forms of content delivery such as video-on-demand,
streaming content for real-time events, scalability, built-in security mechanisms etc,
are major challenges for next generation CDN [2]. Since our aim is to deliver large
static content in PlentyCast, our goals have been narrowed down so that we won’t
address all the outstanding problems of CDN listed above. In this project, we have
selected the following goals in our PlentyCast system design; in order to achieve high
system reliability comparing with other CDN design. The five goals are: improved
access latency, improve network scalability, improve content availability, lower
bandwidth consumption, and improve infrastructure performance compared to
conventional CDNs. In the following sections, I will explain each of there goals in
more details.

5.1.1 Improved access latency
A web user can access web content via a web application such as web a browser.
Actually, it is not difficult to identify the two properties which are most important for
the user when accessing content, the first is the time delay before content is visualized,
and second is the quality of the content obtained. If we look at the access time, it is
the access latency due to protocol stacks and the network connection between the web
server and the user agent. The quality is determined by both the underlying network
quality of service(such as specified for QoS in RFC 2211, RFC2212) and/or web
application on both ends (i.e., the coding and decoding needed for specific types of
content such as streaming audio or video content). Since we focus on static content in
our paper, we assume the server has nearly infinite time in advance to encode the
content. In another word, we assume the coding and decoding are well designed for
all the content that PlentyCast will deliver, thus the issues of quality of content are
excluded in this paper. In this section, we only look at latency problems. Latency is
part of the CDN usability (as depicted in Figure 20.) because it represents one of the
main user requirements in a CDN system.

As CDN delivers content from one end to another over the Internet, quality and
latency are both important metrics to evaluate the CDN distribution/delivery quality
of service. Latency for static content is determined by the following 5 aspects: (1)
Number of requesting clients, (2) network distance between the client and the content
server, (3) size of the content, (4) link capacity between the client and the content
server, and (5) content server performance.

64

Intuitively, when more clients access the web server, more bandwidth will be
consumed along the link, but the link capacity is a constant for a certain period of time;
this could potentially lead to congestion along the link between clients and the server.
For a more detailed description please refer to section 2.1.4.

Figure 19 CDN usability decomposition

When every routing protocol is working well i.e. routing in LAN and external
network are running normally, IP layer packets will traverse optimal (shortest path)
routes. The number of network hops between the client node and server node could be
one of the metrics to measure the latency. However, today’s Border Gateway Protocol
(an external routing protocol which is popular in today’s Internet) appears to be quite
instable due to many pathological routes residing in BGP routers [20]. Furthermore,
this can hide the real numbers of hops between end systems. Some experiments also
tell us that the numbers of AS –hops is an unreliable metric for indicating network
latency [22]. Thus rather than using network hops to measure latency between the
content server and its access clients, we choose RTT as our latency metric to indicate
the latency. Thus if the system is well tuned, the file size directly determines the data
transfer latency.

As we know from section 1.1.1, there are four Internet bottlenecks. However, physical
link capacity is another aspect of the same problem and impacts the End-to-End
transmission latency. Certainly when the client access rates do not exceed the link
capacity, additional latency (i.e. beyond transmission latency) only relates to other
factors. When bandwidth demand from clients exceeds the link capacity and/or the
link capacity is reduced due to traffic shaping by ISP/s, congestion will result in “Page
not found” errors to some clients or even worse behavior for some of the clients.

65

The content server used to be a very serious bottleneck before CDN was established.
This is because content distribution directly relies on the server’s CPU speed and
memory capacity. It was quite easy to overwhelm a content server if there are more
than hundreds of client accessing it concurrently. After CDNs were introduced, the
CDN spreads the server load over its server farm (containing cache proxies and
replica servers). This greatly alleviates the bottleneck due to the CPU and memory
limitations of a content server. However, dynamic web content is increasing
exponentially, and today’s CDN have a problem, distributing the dynamic content.
The most advanced technique is to let interaction happens between the content server
and its access client as it is done in Edge Side Includes [9]. Thus, if there are a large
number of users who request dynamic content, the problem of server performance
reappears. Despite increasing hardware capacity in CPU and Memory, there are some
additional ways to solve this problem such as using agent technologies in real time
scheduling (however, we do not address this kind of problems in our project).

To sum up the access latency problems in CDNs, the following table lists the relations
between each of these factors and latency.

Distance Content
data size

Link
capacity

Content server
performance metrics

Number
of the
clients

Correlation between
latency and its factors

RTT23 Hops Bandwidth CPU
speed

Memory
size

quantity

Measurement unit Millisecond number Bytes Bit/s MHz Bytes number

longer longer more larger Decrease lower smaller larger Latency
shorter shorter less smaller Increase higher larger smaller

Table 4. Correlations between latency and its factors

Intuitively, every factor can change the latency independently. For instance, if there is
larger number of client accessing the content server, this could lead to longer latency
in the delivering the content to the user. The rest of the alternatives have the same
property. If all factors accumulate products (the distance metrics in between are
longer, content is larger, link capacity is smaller, content server performance metrics
are relatively smaller, and the number of the clients is larger), then the latency will
become very long.

However, these only reflect one aspect of this problem – how latency can occur. What
we want to find out is the best trade-offs. How we can achieve improved access
latency by altering some of these metrics is our focus.

Ultimately, latency is one of the most important metrics for web content access.
Decreasing the latency between the content server and a user agent has become one of
important mission of CDN. As I described in chapter 1, CDNs replicate the content
close to (i.e., a short network distance) the user who requests specific content. This
decreases the latency significantly by shortening the distance between clients and
content servers. For instance, Akamai placed 13,000 servers across 1,000 networks in
63 countries [3]. In PlentyCast, we adopt the same approaches to resolve the latency
problem, but we expect to reduce it more than conventional approaches have.

23 RTT: Round Trip Time, in the traceroute command, is the time length for a packet to traverse back
and forth between destination and source.

66

Most conventional CDNs decrease latency by two techniques, one is to intelligently
place the content via replication near the requesting user (shortening distance between
content and user); another is to intelligently locate and route the content data to the
requesting user. These are certainly correct solutions to reduce latency. However, we
introduce a third technique to improve access latency in PlentyCast – this is swarm
delivery. Basically the mechanism is to partition large content into small fragments;
these small pieces of content can be distributed near the requesting user. When a
user’s access is authorized, all these smaller fragments will be transmitted from
different locations to the destination (forming a multi-point-to-single-point traffic
pattern). At the destination, the user agent receives all the fragments concurrently, and
assembles them to restore a complete copy of the content at the destination. This
appears to be very effective in reducing the latency for a client to access large content
data as demonstrated by some new Peer-to-Peer software such as BitTorrent [4]. Thus
we argue that the existing CDN techniques with the addition of swarm delivery
technique can deal with large content. This enables PlentyCast to reduce access
latency better than the approaches used in current CDN networks.

5.1.2 Improve network scalability
Scalability means the ability of a network system to increase numbers of servers and
clients smoothly. In general, the more clients a CDN can serve and the better self-
organization when clients leave and join at a high rate, the better scalability a CDN
has. Nowadays, most of CDN systems are designed following the Client-Server
paradigm. As we know, this centralized system pattern exposes synchronization and
coordination problems when the network becomes very large or topology change
becomes highly dynamic. As a new type of computation paradigm, Peer-to-Peer
demonstrates excellent scalability and has great potential for content distribution in
very large scale networks. An immediate benefit of decentralization is improved
scalability [5]. File sharing applications are good examples, such as Freenet [42],
Gnutella [40], Kazza [41], and BitTorrent. There have been many attempts to discover
how to use P2P in CDN [6], [7], [8]. We can use P2P technology in a CDN is to take
advantage of clients’ CPU, storage, and memory for content distribution in certain
circumstances. Intuitively, if we choose a client as part of the CDN, content data
availability can be significantly increased because the storage space has been
extensively expanded in this case. PlentyCast can scale large numbers of clients to
access the content comparing traditional CDNs, particularly when there is some
extreme events happening in the content delivery network, such as in the case of
“Flash Crowds” and Delay of Service attacking on any content server (see section
5.1.3). In PlentyCast, content location and routing, and self-organization must be
considered when we want to achieve this goal. Moreover, content distribution,
selection, and content lookup algorithms are key issues. This is what we want to focus
on in the reminder of the report, in order to achieve better scalability than
conventional CDNs.

5.1.3 Improve content availability
Content availability means that content data is available for any requesting user at any
point in time over the network. In general, it is achieved mainly through redundancy
involving increasing the number of places where the content data is stored, hence
more nodes where it can be reached. Intuitively, replicating content data in a replica
server farm is one of the major techniques to achieve high content data availability in
a CDN. Nowadays, one of the key technologies of conventional CDN is Edge Side

67

Includes [9]. This technology enables us to cache content or replicate content as close
to the user as possible. Today’s Internet has been partitioned into thousands of
Autonomous Systems, all of them are connected via the Border Gateway Protocol
over physical links. Users are sitting at the leaf nodes included in each AS. Within an
AS, if we place the content cache or replicate the content in the CDN server at the
edge of this AS, it will significantly shorten the distance metrics between the content
and any content user (or potential user) within this AS. When a user attempts to
access the original content server, he or she doesn’t access the content from the
original content server, but instead receives the content from the replica server or
cache proxy at the edge of the same AS as the user node is located. In this way, on
one hand, latency has been significantly decreased between the content data and the
user. On the other hand, data replication/redundancy increases content availability.
However how much is data availability improved by such technology?

9/1124 gave us a comprehensive lesson about “Flash Crowds”! After the world trade
center collapsed on Sept 11 2001, thousands of Internet users accessed MSNBC (who
was a customer of one of biggest CDN operators) web servers in very short time – this
is a so called Flash Crowd. This behavior makes the web site unreachable because the
servers are overwhelmed. When this has been done maliciously, the consequence is
recognized as a Denial of Service attack. The following was documented by
Microsoft’s CoopNet project during 9/11:

We use traces collected at MSNBC during the flash crowd
of Sep 11, 2001 for our evaluation. The flash crowd started
at around 1:00 pm GMT (9:00 am EDT) and persisted for
the rest of the day. The peak request rate was three orders
of magnitudes more than the average. We report simulation
results for the beginning of the flash crowd, between 1:00 pm
to 3:00 pm GMT. There were over 300,000 requests during
the 2-hour period. However, only 6% or 18,000 requests were
successfully served at an average rate of 20 Mbps with a mean
session duration of 20 minutes. Unsuccessful requests were
not used in the analysis because of the lack of content byte
range and session duration information.[10]

We think this problem is not simply due to CDN scalability. Ultimately, this is a
problem of content data availability. The lessons to be learn from this event are not
only how to deal with “Denial of Service” attack, but more importantly, how to make
data highly availability for certain large size of instances of interesting content while
protecting the content server from being overwhelmed by a Flash crowd.

Recently, the NASA25 spacecraft Spirit landed on Mars but almost swamped NASA
Web site due to 109 Million Hits in 24 Hours [63]. “To handle the Mars traffic, NASA
is paying $1.5 million to eTouch Systems Corp., Speedera Networks Inc., and Sprint
Corp. beyond the $3.5 million it pays them each year to handle NASA's more popular
Web sites, said Jeanne Holm, NASA's Web portal manager.”[19]. This reflect a fact
that conventional CDNs can only deal with a flash crowd by either interconnecting
CDNs (solution such as CDI) and/or increasing the replica servers and/or cache

24 http://www.cnn.com/2001/US/09/11/chronology.attack/http://www.cnn.com/2001/US/09/11/chronology.attack/ accessed on 2004-01-18 16:40
25 http://www.nasa.gov/externalflash/sts107/index.html accessed on 200http://www.nasa.gov/externalflash/sts107/index.html accessed on 2004-02-07 16:14

http://www.cnn.com/2001/US/09/11/chronology.attack/
http://www.nasa.gov/externalflash/sts107/index.html

68

proxies at high expensive. As our best knowledge, there are other solution to enhance
content availability for content providers.

Despite technical difficulties, there is another important fact we should not ignore –
lack of good content. Why do very large numbers of users go to NASA, CNN,
MSNBC, and The Wall Street Journal on line, NASDAQ for reading or watching
news? This lack of quality content occurs because on Internet causes large numbers of
users to access relatively small numbers of content servers. This will likely to last for
a relatively long period in the future, especially for the large-size content. Hence
traffic hot spots are easily formed. Enhancement of data availability is the key to have
this subset of content distributed to relatively large numbers of Internet users.

Differing from Edge Side Includes [9] technology and CDI [67], we argue that P2P
content caching should not be restricted to CDN server farms, but should use the
many clients’ storage too. This can create a much larger storage space enabling higher
data availability. By introducing swarm delivery in PlentyCast, data can be more
widely distributed and more quickly located and transmitted to the destination.
Further more, a downloading while uploading strategy shall be adopted in swarm
delivery. Originally, this strategy was adopted to address the problems of free-riding
[4] in Peer-to-Peer file-sharing applications. Additionally, we use it for a third
purpose: gracefully avoiding Flash Crowd and counteracting Denial of Service attack.
As downloading comes from the other clients uploading, the more clients that request
the same content the more content data will be distributed thus relieving original
content server and CDN replica servers. A disadvantage of swarm delivery is that it
may occupy too many ports and steal too much bandwidth from other (normal) client
applications [11].

Ultimately, realizing swarm delivery and download while uploading strategy relies on
the careful design on algorithms in content distribution, location and routing systems
of PlentyCast.

5.1.4 Lower bandwidth consumption

As we described in paragraph 1.1.1, there are four bottlenecks existing in today’s
Internet. Based upon our understanding of the existing approaches to these four
classes of Internet bottlenecks26, we will describe our solutions for alleviating these
bottlenecks in our network.

Many people think Peer-to-Peer file sharing applications save lots of bandwidth due
to its equivalence property, i.e., peer A can retransmit the content to peer B thus
saving bandwidth between the peer B and the content server. My viewpoint is that this
only saves the bandwidth on the first-mile (as CDN does), but indirectly puts
increased load on peering and backbone links unless the peers are carefully chosen.
Given the pressure from broadband DSL subscribers, I don’t think peering and
backbone/infrastructure traffic engineering is an easy mission. Additionally, P2P users
usually consume more bandwidth then normal users. Imagine how much traffic 230
million Kazza users will generate on the Internet. According to an industry estimate:

“P2P now accounts for 50 to 70 percent of all Internet traffic. KaZaA alone has more
than 230 million client downloads, with about 900 million files available for sharing,
representing about 6,500 terabytes” [14].

26 Please refer to 1.1.1

69

Ultimately this expansion in bandwidth is inevitable because of layer seven services
are becoming more and more diversified and more and more bandwidth intensive
applications have been unleashed. Reducing bandwidth consumption is difficult in a
conventional CDN, but it will be possible by using PlentyCast. We use an intelligent
distribution strategy of CDN to alleviate the first-mile bottleneck, P2P solves the last-
mile bottleneck, and self-organization to solves the bottlenecks for peering and
infrastructure/backbone. Therefore, we can reduce the bandwidth consumption at each
of the bottlenecks in our CDN, this potentially leads to reducing the bandwidth
required over the entire Internet.

5.1.5 Improve infrastructure performance
As we know, traffic engineering is the key task for ISPs to avoid network
performance and quality of service problems. How to achieve reasonable network
performance is not the only question when we construct an overlay on top of the ISP’s
layer 3 network. As a matter of fact, new types of Internet traffic models have been
discovered by academic researchers and so many new types of service applications
are unleashed. This is reflected in more and more new types of traffic patterns
forming. ISP’s traffic engineering and planning becomes more and more difficult
because of highly dynamic traffic patterns appearing in relatively short periods of
time. For instance, routers/switches upgrading for adapting P2P traffic control (as
P-cube [15] does) lags the utilization of new P2P applications [18]. On one hand, find
solutions on the underlying network is interesting since this layer is supposed to
guarantee QoS on layer 3. But the news is not optimistic, skewed traffic of P2P over
large networks [17] reflects 20% of users generating 80% of Internet traffic. The
consequence is the other web application’s bandwidth has been significantly
consumed. Even though an administrator can shut down P2P systems on a campus
[158], shutting down P2P will result in fast customer churn in an ISP. These dilemmas
suggest that a new way of thinking about how to resolve this traffic engineering
bottleneck in order to maximize network performance. This is not only for P2P traffic,
but also for all the new types of layer seven traffic that will be generated. This should
be the way to handle the bandwidth intensive applications, otherwise, it will not exist
for very long. For instance. P2P systems will not exist any longer if they have both
annoy ISPs and the record industry (a class of Content Provider). Therefore, we must
find harmonized solutions for all different types applications in today and tomorrow’s
Internet. This means that the solution must consider all the requirements from
different actors in the networks

This goal will make the PlentyCast design distinct from many other CDNs. When we
attack this problem, there is a very important philosophical motivation we advocate:

The survival of the fittest
– Charles Robert Darwin

If we examine the problem of Internet infrastructure performance, I believe that
coadaptation is the key to solving this type of problem. This means that a solution
providing solutions for both infrastructure and applications make a good solution for
everyone. However, it is naïve to think that every P2P system devised will be
infrastructure-aware since they have been vastly used to do decentralized file sharing.
Thus we choose to describe our PlentyCast approach because a CDN is more
manageable than P2P file sharing systems. As one of the pillars of PlentyCast, self-
organization will be used to provide fault tolerance for the overlay network. In
addition, PlentyCast’s self-organization means that system can re-organize overlay
traffic to optimize underlying network’s performance. This will enable our CDN to

70

adapt much better to the underlying network. Ultimately, this maximizes the
underlying network performance for content distribution. To our best knowledge, this
is the first study this approach in CDN, we will refer to it as a Both Infrastructure
and Overlay Network Based Solution. (BIONBS)

5.2 Problem modeling
Our goals in designing PlentyCast was to realize our goals by exploiting the following
systems features – overlay self-organization, intelligent content location and routing,
and swarm delivery. All the goals are inter-related, and this is depicted in Figure 20.

Figure 20. Problem model

In this picture, the questions are concentrated on the layer underlying. The following
questions should be asked:

A. What functions shall we design in to use each core technology?
B. How to design these functions?

To answer these two questions, we must answer the following questions:
1. What requirements shall we consider from a user perspective?
2. What requirements shall we consider from a content provider perspective?
3. What requirements shall we consider from an ISP (multi-tier) perspective?
4. What technologies shall we choose to realize those requirements?

Following this, we can define a set of sub-problems for each of the core technologies:
Smart replica placement:

1) How to identify each content replica?
2) How to place content as close to users as possible?
3) How many replicas of the content shall be placed close to end users?
4) How to replace content in terms of self-organization?

Intelligent replica location and routing
1) How to locate a replica in the content space?

71

2) How to choose the best replica to download in terms of location, routing, and
self-organization metrics?

3) How to relocate new replica on downloading?
4) How many replicas shall be chosen to download?
5) How to organize content and its host/s efficiently in a dynamic environment?
6) How to compute the location and routing metrics?
7) How to acquire the underlying traffic engineering metrics?

Swarming delivery
1) What information shall be carried in metadata for each fragment of content?
2) How to document each metadata is host?
3) How to ensure integrity of metadata during transmission?
4) How to aware the other pieces of the same content?
5) How to split and rebuild the content locally?
6) How to avoid expensive negotiation between hosts in swarming?

Self-organization
1) How to detect faults during content transportation?
2) How to isolate the faulty nodes?
3) How to signal location and routing to relocate content following faults?
4) How to re-organize overlay traffic in terms of metrics from infrastructure?

5.3 Discussion of the criteria
According to distributed system theory, there are many aspects that should be
addressed in such a large system design. However, due to the limited time and
resources in this thesis project, I will focus only on major problems addressed in this
system architecture. We have chosen to focus on self-organization, replica placement,
swarm intelligence, and location & routing after intensive literature study. We believe
those four technologies are most outstanding candidates for solutions to the problems
to be addressed by this design. These mechanisms will form backbones of PlentyCast.
There are many contemporary researches addressing these four areas. In replica
placement, swarm intelligence, and location & routing, there is no major difference
between our approaches and others. With regard to self-organization, we consider that
infrastructure awareness is one of the important system metrics. This makes a big
difference from the other approaches.

In chapters 3, 4, 5 and 6, we first decompose the problem domain into sub-problems.
Following, a study of relevant literature from leading industrial vendor’s research
laboratories such as HP lab, IBM research, Microsoft Research, ATT Research, and
standardization bodies such as ACM, IEEE, and IETF. Third, I looked at the academic
research journals by following the citations in many papers.

As we know, end users, content providers, and ISPs are the three major customers of
CDNs. A good CDN system should not be skewed to one of these customers over
others.

In this paper, we focus on mechanisms and/or algorithms. No simulations were
conducted, but we believe this should be part of our future work. An industry team
will implement prototype of this design following my thesis project.

72

Chapter 6 A novel architecture – PlentyCast

6.1 System overview

Figure 21. PlentyCast overview

As with most of the CDN topology, PlentyCast consists of two types of servers:
replica servers and landmarks. They can be physically co-locate in one site or can be
placed in different sites. However, they function in different way, as will be explained
in later sections. Therefore, we would like to separate them in Figure 21. PlentyCast
overview in order to indicate their differences. In this PlentyCast overlay, we classify
all the elements in three different sub-layers. One is overlay X, intuitively, this sub-
layer only consists of replica servers. Layer Y consists of landmarks on the edges of
the designated ASs. The third layer is formed by PlentyCast clients and is called
overlayer Z. An obvious attribute of this layer is the number of elements is not
predictable. However, we choose them as part of our CDN strategy in certain
circumstances. All three layers are mapped on the underlying physical network. The
physical connections can be shared or linked separately. On top of the overlay X,
content servers are connected to the entire CDN.

There are six key subsystems and two assistance systems in our architecture. The six
key systems includes:
1. PlentyCast client
2. Landmark server
3. Replica server
4. Location and routing system
5. Distribution system
6. Accounting system

73

6.2 High level system architecture

Figure 22. PlentyCast high level architecture

There are another three systems that appear to be external systems of this CDN
system. They are content server, billing and charging system. Following the general
work flow, the description of this architecture is as follows.

1. Content object copies are sent to the distribution system. In Object Splitter, it is

split into fixed length block, and the blocks are coded by the FEC encoder with
redundancy information.

2. The distributor places the coded blocks over the replica servers following certain
policy.

3. After the distribution has been finished, a notification must be sent to the location
and routing system to update the replica locations.

4. When a PlentyCast client requests specific content, the local landmark will
forward this request to the location and routing system to select the most suitable
replica servers for the client.

5. If the location and routing system find the popularity of the content isn’t too high
or load of the local replica servers are not high, then a list of local servers will be
sent to the PlentyCast client for its selection via the landmark.

5’. If the location and routing system finds that the popularity of the content is not
too high or the load on local servers are very high, then it will instruct the
distributor to disseminate more blocks to more replica servers, and then a list of
replica servers will be sent to the landmark for reference. Meanwhile, the location
and routing system will send an order of swarming delivery to the landmark; the
landmark will search amongst its peering group and its local database to lookup
blocks existing in any active PlentyCast clients within certain radius of the content
space (such as on the same LAN or within the same AS). Then a list of all
candidates (servers and PlentyCast peering clients) are sent to the PlentyCast
client.

74

6. According to the selection process in the PlentyCast client, only some replica
servers will be selected . Then a many-to-one concurrent download is conducted.
The client downloads all the blocks, decodes them, and then reconstructs the
content locally.

6’. According to selection process in the PlentyCast client, some servers and
PlentyCast clients will be chosen to start/join swarming delivery. Then a mesh is
formed to download and upload the blocks of this content as described in section
3.2.2. The landmark periodically update the status of the clients in the mesh. If the
number of blocks of the content exists amongst the PlentyCast clients in the mesh,
the landmark shall send a new list of PlentyCast peers the client for re-selection of
the nearest blocks.

7. The landmark checks the downloading status periodically of the downloading
clients, and then reports to the accounting system about the popularity of this
content and the numbers of replicas actual alive in PlentyCast clients. Meanwhile,
the replica server also sends the hit rate of the content and its current load to
accounting system.

8. The accounting systems manipulate data for location & routing system, billing and
charging system, the customer – content provider.

6.3 PlentyCast client
In this user agent, most functions are the same as a web browser. It can for example
send an HTTP request for any content which the user wants to access. The difference
appears in the following aspects:

6.3.1 Active binning
Every PlentyCast client periodically pings a set of landmarks to obtain RTT between
each of the landmarks in their joining phase. This is to used to classify different
replica servers into those with the same level; as described in section 2.3.2.1. The
level vector for each client is stored and send to the landmark. This information will
assist in replica server election.

6.3.2 SNMP client.
To be able to monitor the downloading and/or uploading status in this client, an
SNMP MIB27 for throughput of IP/TCP connections shall be queried.

Mobile agent client
Since the landmark will periodically request the download and/or upload status of the
client, a report-on-demand mechanism must exist between the client and the landmark.
In study [155], they developed a very efficient way to monitor large scale and
dynamic network with small bandwidth consumption. This can be adopted in report-
on-demand mechanism between PlentyCast clients and landmarks.

6.3.3 Peer lookup service
If swarming delivery is needed, a PlentyCast client should be able to locate the blocks
being downloaded either by one of DHT systems such as Tapestry (as described in
section 2.3.1.3) or a platform such as JXTA [117]. In this case, the landmarks is the
“super peer”. It monitors the downloading and uploading status of each client who is

27 Management Information Base.

75

accessing content. It provides a list of PlentyCast clients who are downloading and
uploading content when swarming delivery is needed. Thus a PlentyCast client can
locate the blocks of that content amongst the peers given by the landmark. In a
PlentyCast client, either of these two communication mechanisms shall be
implemented.

6.3.4 Peer Selection
Since n+m blocks of content are encoded in FEC codes, these m blocks are redundant
blocks. Only n blocks are needed to reconstruct the content. Thereby, selecting n
distinct blocks amongst n+m blocks is key in this selection process. In the selection
algorithm, the following steps are mandatory in this algorithm:

1. Identify how many blocks are needed to reconstruct this content.
2. Identify the peers and/or servers who carry any blocks of the content file, and the

number of those peers in the list given by the landmark.
3. Identify the peers who has the download request for this content. Any peer whose

portion of the content is lower than 100% shall be uploaded.
4. Selecting the n’ peers and/or servers (n’≤ n) from the group in 2. The metrics are

the peers or servers with:
a. Shortest distance
b. Most blocks
c. Largest bandwidth
d. Latest download or upload time

If the total number of blocks accumulated to n or the end of list is reached, then
the selection process is ended. Naturally, the rest of the n-n’ peer/s in the list are
identified as backup peers.

5. Set up connections to those servers and peers in groups of 3 and 4
6. Reading in the blocks from all the hosts in 4 and save, then send out the blocks to

all peers in group 3. (It is possible for two peers download and upload happening
at once between each other)

7. If the any sending peer/s of the blocks in 1 is disconnected, then promote the
redundant peer/s in group 5 to group 4.

8. If the blocks can not be found in any backup peers or there is no back up peers to
be selected, then Peer lookup service is activated.

6.4 Landmark server
Redirection executor
When a request is received, it should be forwarded to the location and routing system,
while a notification is sent to the accounting system to record the object’s popularity.
If there is a routing request is received from the location and routing system for the
PlentyCast client request, the executor shall forward this decision to the client. The
decision is usually a list of replica servers who carry the blocks for the client’s request.
When swarming delivery should be performed, the executor adds the PlentyCast
client peers to the list of the replica servers, and then sends the request client/s. A
hybrid solution can be chosen amongst the techniques in section 1.4.4.4.2 for the
executor.

6.4.1 Placement
The location of the landmarks must be placed at the edges of the ASs. The hierarchy
shall be maintained in order to closely map the overlay network to Internet structure.

76

Thus they can provide good measurement results in binning techniques to locate the
nearest servers28 as explained in section 2.3.2.1.

6.4.2 Download & upload monitor
It is very important that the landmark knows the download and upload status of each
PlentyCast client in the mesh during the swarming delivery. Thereby, the monitor
keeps tracking each PlentyCast peers behavior and their performance. In addition, the
degree of content saturation in the mesh must be monitored. This will provide
information for peer selecting in the case of node joining and re-selecting on fault
happening or on self-organization in the middle of transmission. This can be
implemented by either using mobile agent [155] or a platform like JXTA.

6.4.3 Load balancing
If the landmark is overloaded, load balancing shall be devised for the landmarks. A
policy of load balancing must be established in the landmark server farm at each site.
The following key metrics should be used in such a load balancing process:
 CPU load and memory must be monitored,
 Number of processes in the node must be monitored, and
 Number of PlentyCast clients.

If any of the value of these metrics exceed thresholds which was configured, new
request must be forwarded to the neighbor peers of landmarks. It means that landmark
shall run on top of a P2P service. I recommend that the same Peer-to-Peer service
platform or approaches shall be adopted as the rest of the subsystems such as Peer
lookup service and download & upload monitor.

6.5 Distribution system

6.5.1 Object splitter
If there is a copy of a large file is obtained from the content server, it shall be split
into fixed length of blocks. Every block shall be in the size range of 32 to 64Kbyte.
The design and implementation can be see in the Appendix 1.

6.5.2 FEC encoder
This component is devised to encode the blocks generated by Object Splitter. The
rationale is described in section 3.3. The actual implementation could follow the
reference model in [156] [157] .

6.5.3 Block distributor
Every block of this content shall be assigned unique ID. Assume l is the number of
replica servers, in the first round distribution, if n+m > l then every replica servers
gets (n+m)/l copies. If n+m ≤ l then randomly choose l – (n+m) blocks from the
total n+m blocks and then distributed to the rest of replica servers and make sure
there is no duplication during the distribution from each server. This can be done by
either Tapestry or JXTA platform.

In the second round distribution, number of the blocks shall be increased in certain
replica servers. However, this time the distribution won’t be so simple. Since the
location and routing system will notice that the popularity of certain content according

28How close the severs are depends on how the level vectors have been defined, see section 2.3.2.1

77

to the report from the replica server and the landmarks in advance. The scale of the
dissemination shall be smaller than the first round concerning the replica server load
and overlay traffic load, but the portion of the content in this group should be
increased.

The location and routing systems shall input a list of the k replica servers (in terms of
its server selection process) and the portion of the content (x%). The same rule as in
the first round, variety should be maintained. Thereby the following steps are
mandatory in this match-making algorithm.

1. Identify how many blocks are included in this content.
2. Check the server list with the accounting system to find out which block IDs

already exist in the servers, and then exclude these blocks.
3. Select the rest of the blocks of the content and put them in a list.
4. Work out the number of the blocks y to be added, by the following formula:

y=x%∙(n+m).
5. Select the y blocks from the list in 3, and assign them to k buckets evenly.
6. The k buckets shall be sent to the k replica servers in the list29.

6.6 Replica server

6.6.1 Placement
Replica servers shall be placed at the edges of the AS. Preferably, they can be place in
the Internet Data Center of ISPs. Since we disseminate variety of blocks of the content
across the different servers, the replica server only appears to be a storage for different
blocks. In some cases, they even do not get any complete copy of this content. Thus
we argue not to choose the approaches in section 1.4.4.1 in order to avoid the NP-hard
problem.

6.6.2 Storage and delivery
On one hand, the replica server should store the blocks of the content which are sent
by distributor of the distribution system. On the other hand, they shall upload the
blocks to the PlentyCast clients or peers who request the content. Whenever it
downloads blocks based on the client request, it should cache blocks that have been
delivered, in other words, it will increase the numbers of blocks of content in its
storage till the entire content is cached locally. It should report the server load,
available storage, and the hit rate of specific content to the accounting system.

6.6.3 Cone loading
If there is a list of k buckets, they will be assigned to a group of k replica servers. Each
ith replica server (i=1,2,3,4,….,k) should use a Peer-to-Peer look up service to find all
the blocks in the ith bucket and download them from peers across the replica overlay.
When the ith block is downloading from the peers, meanwhile it should upload the
blocks plus the blocks stored on the request client. This procedure, it is named “cone
loading”. The following Figure depicts this behavior in the overlay.

29 Another scenario is to let distributor directly establish one-to-many connections and spread the y
blocks evenly to the servers in a round robin manner. The efficiency of these two scenarios should be
compared in future work.

78

Figure 23. Cone loading

In the above figure, A and B are the request clients for the content. They are
concurrently download from the replica servers. The servers are downloading the
blocks which they don’t have from peers other via Peer-to-Peer lookup service. When
replica servers 1-10 are uploading the content blocks, they should cache the blocks
which they are downloading from other peers or each other. The traffic generated can
be high in the PlentyCast overlay the first time when the content being downloaded.
But as more clients request the content, more blocks will be found in the overlay. The
bound on the total storage should be considered in the replica server overlay X.

6.6.4 Active binning
Every replica servers should periodically ping a set of landmarks to obtain the RTT
between each of the landmarks. This is to used to bin different replica servers who
have the same level as described in section 2.3.2.1. The level vectors can be either
stored in each replica server or in the database of location and routing systems. This
can be adjusted in the future work on simulation.

To achieve low cost and fast content location, we recommend either choosing
Tapestry or JXTA as the basic P2P service i.e. to provide peer discovery and content
location.

6.7 Location and routing system

6.7.1 Policy engine
The major feature of the location and routing system is to locate suitable replica
servers for the user and push content reactively or proactively to the right group/s of
replica servers in order to achieve high data availability for the requested content. The
following metrics shall be considered in this policy engine: content hit rate and bin.

79

The small difference between our binning strategy and the one described in section
2.3.2.1 is to add server load and bandwidth to the level vectors. Similarly, we can bin
the replica server load and its bandwidth into different levels too. A level vector will
be described in the following format:

Since more metrics have been added to the binning, the location and routing system
should be able to make a more optimal selection.

If a PlentyCast client request is received, but popularity of the content (i.e., hit rate)
exceeds the threshold of PlentyCast system or the load of replica servers appears to be
high, an order shall be issued to the landmark so that swarming delivery can be
initiated to serve this request.

6.7.2 Server selector
If a PlentyCast client request is received, the server selector will execute the same
distributed binning algorithm as described in section 2.3.2.2. There are two additional
metrics: server load and bandwidth will be checked by the binning algorithm. The
lower the load and the higher their available bandwidth level is, the better servers are
for the client. If the servers are selected, a server list will be sent to the client for block
selection as described in section 6.3.

6.7.3 Block meter
There should be 100% of the content loaded to this group after the group of servers
have been chosen for the client. As described in section 6.6, the replica servers shall
be responsible for collecting all the blocks of this content and then uploading them to
the requesting client concurrently. The client shall choose the blocks and replicas by
itself. This selection shall be applied to the following cases of client requests.
 The first is when the client appears should be a new client (on no blocks of content

are downloaded)
 The second occurs when client has already yet partially downloaded the content

(portions of blocks) and requests more blocks delivered from replica servers.

6.7.4 Content manager
Periodically, the hit rate of all the content should be checked. If the hit rate of certain
content is at a relatively low value, then the number of replica blocks disseminated in
the replica servers can be reduced. The following steps are mandatory in such process:
1. Check the hit rate for each specific content object in the accounting system.
2. Sort the content hit rate by different replica servers.
3. Use Peer-to-Peer service to locate the content replicas.
4. Delete the replica for a specific time period (this parameter can be tuned in

according to the bound on storage in each server)
5. Update the accounting database.

80

6.8 Accounting system
There are two classes of data that should be accounted for: hit rate for each element
content, and the server load of each replica server. The database header should cover
the following mandatory keys as depicted in the following Table 5.

Server ID Current
load

Current
bandwidth

Storage
capacity

Content ID

Content ID Current Hit

rate
Number of
blocks of
the content

Table 5. Accountig Database header

The primary key is the Server ID and the secondly key is content ID. In this way, a
content ID is bind to the server ID.

6.9 System characteristics analysis and discussion
In this section, we would like to conduct a set of case studies by going through our
system with different traffic demands from clients, while we will demonstrate how we
can achieve our five goals while processing these different traffic demand in our CDN
system.

6.9.1 Case study 1: Normal access mode
In this case, we assume that the content has been published on a web site. The users’
access rate does not exceed the bound of the normal access mode. A PlentyCast client
in the Internet finds the landmarks in the cache via a probe.

After selecting the three closest landmarks, it records its own bin. Then sends a
request (content URL and bin level) to nearest landmark for this content via HTTP.
The landmark forwards this request to the location and routing system.

The bin of this client will be compared with the bin of servers in the accounting
database. If a similar bin exist, then the servers should be selected for the request.
Since this is the first time a client is accessing the content, hit rate won’t be
considered.

After the servers are chosen, the distribution system must issue a list of buckets for
the selected servers. Each replica server locates the their blocks which are contained
in the bucket via the P2P lookup service, then downloads them from a replica server
peer in overlay X. All new blocks for a replica server will be cached. This list of
servers should be sent to the PlentyCast client for the blocks selection by the client.
Since this is the first time to download the content, all servers will be chosen to
upload the blocks of this content. A cone loading will be formed between replica
servers grouped with this client. Since the blocks are relative small (32-64 Kbytes per
block), downloading and uploading happen between replica server peers, and the
replica overlay is relatively stable, the latency until the client gets the complete
content should not be longer than a one-to-one download from content server.
Another important aspect is that the client will only download n blocks due to the
FEC coded blocks, even though the number of blocks prepared in the group of
designated servers is n+m. Thereby, redundancy plus concurrent download – cone

81

loading provides both high data availability for content data and reduces user access
latency.

Although, this might increase the bandwidth consumption and increase the load on the
replicas severs. However, we argue that it only happens when this content is first
being accessed. When there are additional clients access this content, more blocks will
be distributed to the client from nearby. We estimate that latency would be reduced by
several orders of magnitude, and the bandwidth consumption will be reduced due to
less and less download happening in the overlay. The only increasing cost is for
storage in replica servers as more and more replica of the entire content are created.
Fortunately, storage is cheaper than other resources in the network (i.e., rental of a 2M
link a year). In addition, our content manager will act as garbage collector which
periodically cleans out the deprecated content replicas. Thus, before any flash crowd
or DDoS happens, the system increase the number of replicas within the performance
bound of server overlay and thus improves content availability and reduces user
access latency.

Since we adopt a binning strategy for server selection, this enables clients to choose
the server(s) closest to them. This location aware techniques ensure the traffic won’t
flow over a long distance. It significantly reduces bandwidth consumption on two of
the major Internet bottlenecks, specifically, the peering bottleneck and backbone
bottleneck on the overlay network. Another advantage of binning is to localize access
traffic, thereby it potentially contribute to improve infrastructure performance.

6.9.2 Case study 2: Flash Crowd and DDoS mode
We now examine the system behavior for a high access traffic pattern. In this case, we
assume that there are large number of PlentyCast clients accessing specific content via
landmarks either in a short period of time or simultaneously (as in DDoS).

The alarm caused by such events are reported to the location and routing system by
the accounting system (this is actually reported by the landmarks since the accounting
system collected the hit rate values). The location and routing system start the server
selection process for the number of routing requests of some of the clients. Based on
the number of requests which can not be handled, it will issue orders to the landmarks
(as if the request were bounced back).

When a landmark receives this order, it will start a swarming delivery process. A
mesh for this content will be formed. The binning process in each client gradually
causes the access traffic to scale on each LAN. The upload and download policy in
each client creates more and more replicas in the mesh. Thus the P2P overlay Z
enables high access rate traffic of the clients to be counteracted by themselves (i.e.,
these clients in turn act as servers to propagate the content).

In the high access rate traffic pattern, the PlentyCast system use P2P swarming
delivery techniques to solve the problems of Flash crowds and DDoS. As in case 1,
PlentyCast can significantly decrease the user’s access latency and reduce bandwidth
consumption on the Internet by enabling client access of the content in the same LAN
to increase gradually. Given the nature of a hybrid P2P overlay, network scalability
has been significantly improved. Since the data torrent has been organized into
overlays Z to X, the bottlenecks on peering, backbone and first mile are completely

82

alleviated. In the last mile, bandwidth consumption can be very high, but the torrent of
traffic eventually exist on a LAN (where link layer multicast can be used). Thus it will
be easier for a local ISP to handle these events. In a flash crowd, ISP shall does
nothing, as the ISP can easily apply the DDoS detection tool such as [159].

6.9.3 Case study 3: ADSL users traffic
In the normal access mode described in section 6.9.1, the PlentyCast client behind an
ADSL modern will take the advantage of the broadband downlink – usually with 1-
8Mbps bandwidth on the downlink. This and FEC combine to enable very fast
download of content.

However, the asymmetry will cause problem as described in section 3.2 when
swarming delivery happens. The upstream connection cannot upload the same amount
of content as it is downloading. Even worse, because of the details of TCP's rate
control, if the upstream path is congested, the downstream performance suffers as
well. In PlentyCast, we adopted the mechanisms from both in Swarmcast and
BitTorrent.

The block selection process in a PlentyCast client uses distance metrics to choose the
number of closest peers for download and upload, this exploits ADSL peers located in
the same LAN. Thus the TCP performance has been improved and we can potentially
avoid upstream being clogged. In addition, since the block size has been limited to a
quite small size (32-64Kbytes per block), this also alleviates the last-mile bottleneck.

We exploit the chock algorithm from BitTorrent [4]. As an exception to simultaneous
upload and download, a PlentyCast can stop uploading to specific peers. If a
PlentyCast client is located behind the ADSL modern, it will execute Pause algorithm
for swarming delivery. Every 10 seconds, the ADSL peer will evaluate the upload rate
for the peers who upload to it. It will choose the of peers whose sum of upload rate
equals its uplink rate. Then it will download only from these peers, but stop others. To
save overhead during each TCP session, the ADSL peer open the connection to those
paused-download peers. Every 30 seconds, the ADSL peer will resume one of the
paused-download peer regardless that peer’s upload rate. In this way, the ADSL peer
alleviates the bottleneck brought by TCP “fairness” attribute.

In accordance with the result in study [11], when different users (dialup, broadband,
and office users) co-exist in the same data mesh, the performance of swarming
performance in each class of users won’t be effected significantly. In PlentyCast, we
actually periodically makes each ADSL peer converge just as a symmetric peer whose
download and upload rate trend to be equal mean while we will not degrade the
advantage of broadband i.e., the download link can be saturated during another period
of time. Thus our system can contribute to enhanced performance of the infrastructure.

6.9.4 System characteristics
Since PlentyCast is a new type of CDN and primarily uses techniques of P2P, Agent,
and Error correction coding, we argue that the following criteria and attributes in
CDN and P2P (described in section 1.2.3 and section 2.2) should be used to evaluate
our system. They are :
1. Fast access

83

2. Robustness
3. Transparency
4. Efficiency
5. Adaptive
6. Reliability
7. Simplicity
8. Security
9. Decentralization
10. Scalability
11. Self-organization
12. Anonymity
13. Cost of ownership
14. Ad-hoc connectivity
15. Performance
16. Digital Rights Management
17. Usability and Transparency
18. Fault-resilience
19. Manageability
20. Interoperability

Figure 24. PlentyCast system characteristics

Using the above criteria, we can define 5 grades for each of these attributes. From the
highest to the lowest: Very good, good, acceptable, not good, and worse. Table 5 will
explain our motivation to state our systems characteristics:

84

 Very good Good Acceptable Not good Worse
Fast access Cone loading

 Swarming
download
 intelligent

location&
routing

Robustness High content
availability
 Fault resilient

Transparency PlentyCast
inherited from
web browser
 Small

configuration
problems in
NAT and
firewalls

Efficiency FEC reduces overheads
 Good solution to Internet

bottlenecks

Adaptive Flash crowd
and DoS
aware
 Intelligent

location and
routing
 Extended

Binning
strategy

Reliability Very high
content
availability
 Load

balancing
design in
landmark
 Intelligent

location and
routing

Simplicity Most of
techniques are
verified by good
practices

Security Security in the
signaling
system
 Enforced data

integrity when
using secured
hashing

Decentralization This is a hybrid
architecture
design

Scalability P2P service
design

Self-
organization

 Intelligent
location and
routing system

85

 Automatic
switch
between
normal mode
and high traffic
mode
 Localize the

intensive
traffic in flash
crowd and
DoS
 Pause

algorithm for
ADSL users

Anonymity Not yet
designed

Cost of
ownership

 Intelligent
location and
routing system
 Mechanism for

cost sharing in
Flash crowd
and DoS
 Swarming

delivery
 Landmark load

sharing

Ad-hoc
connectivity

 Swarming
delivery with
download and
upload
strategy
 Aggressive

content / peer
selection
algorithm

Performance Adaptive
distribution
system
 Replica server

caching
 Intelligent

routing

DRM Not yet
designed

Usability Low access
latency
 High content

availability
 Good network

adaptive

Fault-resilience High content
availability by
using FEC
codes
 Concurrent

download
 Intelligent

location and
routing

86

Manageability Accounting
system for
whole system
 Landmarks for

self-
management
in swarming

Interoperability Pause algorithm to deal with
ADSL in swarming delivery
 Need to developed solution for

NAT and firewall

Table 6. System characteristics clarification

87

Chapter 7 Conclusion and future work
In this project, we have made an intensive literature study in the area of CDN, P2P,
Swarming, and Error Correction coding. Based on our findings, we proposed a novel
CDN architecture to achieve: improved access latency, improve network scalability,
improve content availability, lower bandwidth consumption, improve infrastructure
performance. Finally, we find that on our CDN – PlentyCast can in theory accomplish
all the goals.

7.1 Conclusion
Large content distribution has become a key issue in the Internet. P2P file-sharing
techniques have been recognized as very efficient for large content distribution.
Swarming content delivery increases user access speed by several orders of magnitude.
It is inevitable that P2P swarming techniques will be used in the next generation
CDNs. One signal is very clear, a new generation of CDN will emerge very soon. Big
companies like Intel, have already built P2P services to use all hosts to share large
content across the enterprise network [160]. In media industry, large content
streaming delivery over Internet become an inevitable trend. Meanwhile, the war
between traditional distribution & record industry and P2P companies & users
becomes a barrier to P2P distribution of content on the Internet (for instance, consider
the battle between R1AA and P2P companies in US.A.). However, P2P delivery will
soon be very significant because of its attractive features for the Internet users –
which is to deliver large content quickly.

7.2 Future work
First of all, we will build a software prototype system in the very near future. And this
prototype will be tested for a real event soon in 2005. An intensive evaluation test will
be conducted for all the features we described in the PlentyCast architecture.

There are still open questions in the area of large content distribution such as:
(i) How to deliver dynamic large content, for example real time streaming media

distribution. The biggest challenge is real time streaming content distribution
is the synchronization between voice stream and video steam over a long
distance in terrestrial networks. The longer the distance is, the harder they can
be synchronized. In addition, how to improve the user access rate for such
content becomes even harder. To our best knowledge, there is no optimal
solution in this area. The only known attempts is the MDC (Multiple
Description Coding) solution in Microsoft CoopNet [8].

(ii) How to efficiently protect these applications against malicious peers. DDoS
attack is firstly using email to propagate the virus to large number of innocent
clients, then activate the web request on certain day to a targeted web server.
In our architecture, we use landmarks to manage the overlay Z. If there is
malicious PlentyCast clients having DDoS to targeted landmarks, this will
have very serious consequences. We must investigate how to handle this kind
of situation.

(iii) What AAA mechanism shall be used in such CDN for limited distribution.
PlentyCast client shall be authenticated and authorized and accounted in an
efficient way in order to avoid problem in (ii) and provide base for
comprehensive DRM solutions for some specific content distribution

88

(iv) How to develop Digital Rights Management solution based on such CDN.
Most of content can be distributed without any copy right or license concerns
but some specific content such as licensed software and movie file with copy
righted etc. If the contents shall not be infringed and only available for
viewing then a DRM solution must be developed in our CDN.

(v) How to run a good business model for this type of CDN. What we addressed
in business model is about the value chain amongst users, Content providers,
and ISPs. Firstly, if the users use our network, they contribute their resources
(CPU, memory, and storage) for delivery. Actually they have already paid
something whenever they download. So this avoids problem that "need users
to pay" which most users dislike. Secondly, as a content provider, he or she is
still paying to the CDN operator for content distribution, but they can pay
less than today because today's CDN is considered as an expensive solution,
not all web content providers can use. Thirdly, the CDN operators shall pay
less than today either because their cost has been shared with the users and
our solution save bandwidth in their network. Fourthly, the tier 1 and 2 ISPs’
traffic engineers are happy to have relatively predictable traffic pattern appears
in their dimension tools. The Tier-3 local ISP in our solution will have more
traffic on their LANs. But this is much better than before. Today’s Tier-3 ISP
face bother User’s large traffic and expensive long haul links to their Tier-2 or
3 ISPs. Our solution actually alleviated downlink bottleneck. The LAN
network expansion shall be more fun than their long haul expansion. For
example, they may ask their subscriber to expand their access network to
higher capacity links such as FDDI, wireless LAN etc. However, a deep
investigation on this is needed.

Introduction to the author:

Cao Weiqiu (Mike) graduated with his computer application B. Eng. degree in China
National University of Defense Technology in July 1994. He used to work in Ericsson
from 1994 to 2002. During the course, he worked with switches, optical transmission
systems, and network management systems of Telecommunication as both engineer
and managerial roles. When studying in Royal Institute of Technology (KTH), he had
examined internetworking technology in man y aspects.

89

Reference
[1] Jia Wang, A survey of Web Caching Schemes for the Internet. ACM

SIGCOMM Computer Communication Review. Volume 29 , Issue 5
(October 1999) Pages: 36 - 46

[2] Gang Peng, CDN: Content Distribution Network
http://citeseer.ist.psu.edu/peng03cdn.htmlhttp://citeseer.ist.psu.edu/peng03cdn.html accessed on 2004-03-12 18:25

[3] www.akamwww.akamai.com accessed on 2004-03-12 18:22
[4] Bram Cohen, Incentives Build Robustness in BitTorrent

http://www.google.com/url?sa=U&start=1&q=http://http://www.google.com/url?sa=U&start=1&q=http://http:// bitconjurer.org/BitTorre
nt/bittorrentecon.pdf&e=1102 accessed on 2004-03-12 18:20

[5] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja1, Jim
Pruyne, Bruno Richard, Sami Rollins 2 , Zhichen Xu. Peer-to-Peer
Computing. HP Laboratories Palo Alto. HPL-2002-57 (R.1) July 3rd , 2003

[6] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. Efficient Content
Location Using Interest-Based Locality in Peer-to-Peer Systems, Infocom
2003.

[7] Elisa Turrini, Fabio Panzieri. Using P2P Techniques for Content Distribution
Internetworking: A Research Proposal
http://csdl.computer.org/comp/proceedings/p2p/2002/1810/00/18100171.pdfhttp://csdl.computer.org/comp/proceedings/p2p/2002/1810/00/18100171.pdf
accessed on 2004-03-12 18:17

[8] http://research.microsoft.com/~padmanab/projects/coopnet/http://research.microsoft.com/~padmanab/projects/coopnet/ accessed 2004-
01-05 18:01

[9] http://www.esi.org/http://www.esi.org/ accessed in 2004-01-05 19:08
[10] Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou. Distributing

Streaming Media Content Using Cooperative Networking. Accessed in
http://research.microsoft.com/projects/coopnet/http://research.microsoft.com/projects/coopnet/

[11] Daniel Stutzbach, Daniel Zappala, and Reza Rejaie, Swarming: Scalable
Content Delivery for the Masses. January, 2004 (Technical Report, UO-CIS-
TR-2004-1).

[12] Akamai white paper – Internet Bottlenecks Accessed on 2004-01-6 22:22
http://www.akamai.com/en/html/services/white_paper_library.htmlhttp://www.akamai.com/en/html/services/white_paper_library.html

[13] Broadband Access in Korea: Experience and Future Perspective by Yong-
Kyung Lee and Dongmyun Kee, IEEE Communications Magazine, December
2003, pp. 30-36.

[14] Controlling P2P Traffic, accessed on LIGHT Reading on 2004-01-07 01:05
http://www.lightreading.com/document.asp?doc_id=44435http://www.lightreading.com/document.asp?doc_id=44435

[15] www.pwww.p-cube.com. Accessed on 2004-01-07 01:16am
[16] http://www.calresco.org/sos/sosfaq.htm#1.2http://www.calresco.org/sos/sosfaq.htm#1.2 accessed on 2004-01-07

01:38am
[17] Analyzing Peer-to-Peer Traffic Across Large Networks, by Shubho Sen and

Jia Wang, to appear in ACM/IEEE Transactions on Networking, 2004.
Accessed on 2004-01-07 20:27

[18] http://www.openp2p.com/pub/q/p2p_categoryhttp://www.openp2p.com/pub/q/p2p_category Access on 2004-01-07 20:45
[19] http://www.eweek.com/article2/0,4149,1431490,00.asphttp://www.eweek.com/article2/0,4149,1431490,00.asp accessed on 2003-

01-11 11:37
[20] Craig Labovitz, G. Robert Malan, and Farnam Jahanian, Originals of

Internet Instability, http://citeseer.nj.nec.com/labovitz99origins.htmlhttp://citeseer.nj.nec.com/labovitz99origins.html ,
accessed on 2004-01-16 17:00

[21] http://www.ietf.org/rfc/rfc894.txthttp://www.ietf.org/rfc/rfc894.txt and http://www.ietf.org/rfc/rfc1042.txthttp://www.ietf.org/rfc/rfc1042.txt,
accessed on 2004-01-16 18:25

90

[22] Katia Obraczka and Fabio Silva, Network Latency Metrics for Server
Proximity http://citeseer.nj.nec.com/obraczkhttp://citeseer.nj.nec.com/obraczka00network.html, accessed on
2004-01-16 19:34

[23] Mohammed J., Kabir, Apache Server Administrator's Handbook, IDG Books,
pp.68-69,

[24] Charles D. Cranor et al., Enhanced Streaming Services in a Content
Distribution Network, IEEE Internet Computing, July 2001.

[25] M. Charikar, and S. Guha. Improved Combinatorial Algorithms for the
Facility Location and K-Median Problems. In Proc. of the 40th Annual IEEE
Conference on Foundations of Computer Science, 1999.

[26] Lili Qiu, Venkata N. Padmanabhan, and Deoffery M. Voelker. On the
placement of web server replicas. In Proceedings of IEEE INFOCOM 2001
Conference, Anchorage, Alaska USA, April 2001.

[27] Year Brutal. Probabilistic approximation of metric space and its algorithmic
applications. In 37th Annual IEEE Symposium on Foundations of Computer
Science, October 1996

[28] Vijay Varian. Approximation methods. Springer-Verlag, 1999
[29] Pavlin Radoslavov, Ramesh Govindan, and Deborah Estrin Topology-

Informed Internet Replica Placement (2001) Proceedings of WCW'01: Web
Caching and Content Distribution Workshop, Boston, MA

[30] K. Kangasharju, J. Roberts, and K. Ross. Object replication strategies in
content distribution networks. In 6th International Web Caching Workshop
and Content Delivery Workshop, Boston, MA, 2001.

[31] Gary Audin. Reality check on five-nines. Business Communications Review,
pages 22–27, May 2002.

[32] Madhukar R. Korupolu Michael Dahlin Coordinated Placement and
Replacement for Large-Scale Distributed Caches (1998)

[33] Jussi Kangasharju, James Roberts, and Keith W. Ross, Object Replication
Strategies in Content Distribution Networks (2001)

[34] http://mathworld.wolfram.com/NPhttp://mathworld.wolfram.com/NP-HardProblem.html accessed on 2004-02-
01 20:55

[35] http://www.nist.gov/dads/HTML/zipfslaw.htmlwww.nist.gov/dads/HTML/zipfslaw.html accessed on 2004-02-01
21:17

[36] Yan Chen, Lili Qiu, Weiyu Chen, Luan Nguyen, Randy H. Katz,
Efficient and Adaptive Web Replication using Content Clustering.
http://citeseer.nj.nec.com/596760.html accessed on 2004-02-02 13:03

[37] M. Kafisson, C. Karamanolis, and M. Mahalingam. A Framework for
Evaluating Replica Placement Algorithm. Technical report, HP Lab, 2002.
http://www.hpl.hp.com/personal/Magnus_Karlsson/papers/rp_framework.pdfhttp://www.hpl.hp.com/personal/Magnus_Karlsson/papers/rp_framework.pdf
accessed on 2004-02-02 14:45

[38] Hyper Text Transfer Protocol HTTP RFC 1945
http://www.ietf.ohttp://www.ietf.org/rfc/rfc1945.txt?number=1945 accessed on 2004-01-19
22:24

[39] http://en.wikipedia.org/wiki/OSI_model accessed on 2004http://en.wikipedia.org/wiki/OSI_model accessed on 2004-02-06 19:57
[40] http://www.gnutella.com/www.gnutella.com/ accessed on 2004-02-07 15:51
[41] http://www.kazaa.com/us/index.htmhttp://www.kazaa.com/us/index.htm accessed on 2004-02-07 15:51
[42] http://www.freenetproject.org/http://www.freenetproject.org/ accessed on 2004-02-07 15:51
[43] D. R. Boggs. Internet Broadcasting. PhD thesis, Electrical Engineering Dept.,

Stanford University, January 1982. Also Tech. Rep. CSL-83-3, Xerox PARC,
Palo Alto, Calif.

91

[44] C. Partridge, T. Mendez, and W. Milliken. RFC 1546: Host Anycasting
service, November 1993 http://www.ietf.org/rfc/rfc1546.txt?number=1546http://www.ietf.org/rfc/rfc1546.txt?number=1546
accessed 2004-02-07 18:53

[45] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A Novel Server
Selection Technique for Improving the Response Time of a Replicated
Service. In Proc. of IEEE Infocom, March 1998.Page 783-791

[46] http://www.ietf.org/rfc/rfc3568.txt?number=3568http://www.ietf.org/rfc/rfc3568.txt?number=3568 RFC 3568 Known
Content Network (CN) Request-Routing Mechanisms. Accessed on 2004-02-
07 21:27

[47] Domain Name Service DNS RFC 1591
http://www.ietf.org/rfc/rfc1591.txt?number=1591http://www.ietf.org/rfc/rfc1591.txt?number=1591 accessed on 2004-01-25
21:26

[48] IAB Architectural and Policy Considerations for Open Pluggable Edge
Services http://www.ietf.org/rfc/rfc3238.txt?number=3238http://www.ietf.org/rfc/rfc3238.txt?number=3238 accessed on 2004-
02-08 9:59

[49] E. Cohen, B. Krishnamurthy, and J. Rexford, Efficient algorithms for
predicting requests to Web servers, Proceedings of Infocom’99.

[50] A. Dingle and T. Partl. Web cache coherence. In Proc Fifth International
WWW Conference, May 1996.

[51] RFC 791 http://www.ietf.ohttp://www.ietf.org/rfc/rfc0791.txt?number=791 accessed on 2004-
02-07 16:04

[52] V. Cate, Alex - a global file system, Proceedings of the 1992 USENIX File
System Workshop, pp. 1-12, May 1992.

[53] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J.
Worrel, A hierarchical Internet object cache, Usenix’96, January 1996.

[54] A. Luotonen and K. Altis, World Wide Web proxies, Computer Networks
and ISDN Systems, First International Conference on WWW, April 1994.

[55] D. Wessels, Intelligent caching for World-Wide Webobjects, Proceedings of
INET’95, Honolulu, Hawaii, June 1995.

[56] B. Krishnamurthy and C. E.Wills, Study of piggyback cache validation for
proxy caches in the World Wide Web, Proceedingsof the 1997 USENIX
Symposium on Internet Technology and Systems, pp. 1-12, December 1997.

[57] B. Krishnamurthy and C. E. Wills, Piggyback server invalidation for proxy
cache coherency, Proceedings of the WWW-7 Conference, pp. 185-194, 1998.

[58] B. Krishnamurthy and C. E. Wills, Proxy cache coherency and replacement -
towards a more complete picture, ICDC99, June 1999.

[59] V. Duvvri, P. Shenoy, and R. Tewari. Adaptive leases: A strong consistency
mechanism for the world wide web. In INFOCOM, 2000.

[60] Z. Fei. A Novel Approach to Managing Consistency in Content Distribution
Networks. In Proceedings of the 6th Workshop on Web Caching and Content
Distribution, Boston, MA, June 2001.

[61] J. Chuang and M. Sirbu, “Pricing multicast communication: A cost based
approach,” in Proceedings of INET’98, July 1998. Geneva, Switzerland.

[62] John Dilley, Martin Arlitt, Stephane Perret, and Tai Jin. The Distributed
Object Consistency Protocol. Technical report, Hewlett-Packard Labs
Technical Reports, 1999.

[63] http://thewhir.com/marketwatch/nas010604.cfmhttp://thewhir.com/marketwatch/nas010604.cfm accessed on 2004-01-11
13:54

[64] http://www.eweek.com/print_article/0,3048,a=116052,00.asphttp://www.eweek.com/print_article/0,3048,a=116052,00.asp accessed on
2004-02-09 19:49

92

[65] http://www.contentalliance.org/docs/drafthttp://www.contentalliance.org/docs/draft-green-cdnp-gen-arch-02.html
accessed on 2004-02-09 20:01

[66] http://www.ietf.org/rfc/rfc3570.txt?number=3570http://www.ietf.org/rfc/rfc3570.txt?number=3570 accessed on 2004-02-09
20:04

[67] http://www1.ietf.org/mailhttp://www1.ietf.org/mail-archive/ietf-announce/Current/msg24223.html
accessed on 2004-02-09 20:07

[68] Alexandros Biliris, Chuck Cranor, Fred Douglis, Michael Rabinovich,
Sandeep Sibal, Oliver Spatscheck, Walter Sturm. CDN Brokering.
Proceedings of WCW'01

[69] http://www.etouch.net/http://www.etouch.net/ accessed on 2004-02-09 20:20
[70] http://www.speedera.com/http://www.speedera.com/ accessed on 2004-02-09 20:22
[71] http://www.sprint.com/http://www.sprint.com/ accessed on 2004-02-09 20:23
[72] K. Lee, S. Chari, A. Shaikh, S. Sahu, and P. Cheng. Protecting Content

Distribution Networks. IBM Research Report RC 22566, September
[73] http://staff.washington.edu/dittrich/misc/ddos/http://staff.washington.edu/dittrich/misc/ddos/ accessed 2004-02-09 20:50
[74] L. Amini, A. Shaikh, H. Schulzrinne. Effective Peering for Multi-provider

Content Delivery Services. to appear in Proc. of IEEE INFOCOM, June 2004.
[75] http://www.cisco.com/http://www.cisco.com/ accessed on 2004-02-10 17:04
[76] http://newsroom.cisco.com/dlls/innovators/content_netwrk/boomerang.htmlhttp://newsroom.cisco.com/dlls/innovators/content_netwrk/boomerang.html
 accessed on 2004-02-10 16:54
[77] http://www.cisco.com/univercd/cc/td/doc/pcat/cr4450.htmhttp://www.cisco.com/univercd/cc/td/doc/pcat/cr4450.htm accessed on

2004-02-10 18:21
[78] http://ehttp://en.wikipedia.org/wiki/Peer-to-Peer accessed on 2004-02-10 21:36
[79] Dejan S. Milojicic, Vana Kalogeraki, Rajan Lukose, Kiran Nagaraja1, Jim

Pruyne, Bruno Richard, Sami Rollins 2 , Zhichen Xu. Peer-to-Peer
Computing. HP Laboratories Palo Alto. HPL-2002-57 (R.1) July 3rd , 2003

[80] http://en.wikipedia.org/wiki/Patternhttp://en.wikipedia.org/wiki/Pattern accessed 2004-02-11 19:35
[81] http://en.wikipedia.org/wiki/Scalabilityhttp://en.wikipedia.org/wiki/Scalability accessed on 2004-01-11 21:46
[82] Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker.

Application-level Multicast using Content-Addressable Networks (2001).
Lecture Notes in Computer Science. Proceedings of the Third International
COST264 Workshop on Networked Group Communication table of contents.
Pages: 14 - 29

[83] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans
Kaashoek, Frank Dabek, Hari Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Protocol for Internet Applications (2001).

[84] http://oceanstore.cs.berkeley.edu/http://oceanstore.cs.berkeley.edu/ accessed on 2004-02-11 23:18
[85] P. Druschel and A. Rowstron. "Past: Persistent and anonymous storage in a

peer-to-peer networking environment," in Proc. the 8th IEEE Work. Hot
Topics in Operating Systems (HotOS), Germany, May 2001, pp. 65--70.

[86] Principia Cybernetica Web http://pespmc1.vub.ac.be/SELFORG.htmlhttp://pespmc1.vub.ac.be/SELFORG.html
accessed on 2004-02-11 23:24

[87] Ben Y. Zhao, Yitao Duan, Ling Huang Anthony D. Joseph, John D.
Kubiatowicz. Brocade: Landmark Routing on Overlay Networks (2002).

[88] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, distributed object
location and routing for large-scale Peer-to-Peer systems. In Proceedings of
IFIP/ACM Middleware 2001 (November 2001).

[89] Zhao B. Y., Kubiatowicz J. D., and Joseph A. D. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Tech. Rep.
UCB/CSD-01-1141, UC Berkeley, EECS, 2001.

93

[90] http://sethttp://setiathome.ssl.berkeley.edu/ accessed on 2004-02-12 15:37
[91] http://bitconjurer.org/BitTorrent/http://bitconjurer.org/BitTorrent/ accessed on 2004-02-12 15:39
[92] http://www.napster.com/http://www.napster.com/ accessed on 2004-02-12 15:50
[93] Bryce Wilcox-O’Hearn. Experience deploying a large-scale emergent

network First international workshop, IPTPS 2002 Cambridge, MA, USA,
March 2002, LNCS 2429

[94] Beverly Yang, Hector Garcia-Molina. Comparing Hybrid Peer-to-Peer
Systems (2001). The VLDB Journal

[95] S. Milgram, "The small world problem," Psychology Today, 61(1) (1967).
[96] The Small World Web. 2000. Adamic, L. Technical Report, Xerox Palo Alto

Research Center.
[97] M. K. Ramanathan, V. Kalogeraki, J. Pruyne, Finding Good Peers in the

Peer-to-Peer Networks. International Parallel and Distributed Computing
Symposium, 2001. Fort Lauderdale, Florida, April 2002.

[98] Stefan Saroiu, P. Krishna Gummadi, and Steven D. Gribble. A Measurement
Study of Peer-to-Peer File Sharing Systems (2002). Proceedings of
Multimedia Computing and Networking 2002 (MMCN '02)

[99] Miguel Castro and Barbara Liskov. Practical Byzantine Fault Tolerance
(1999). OSDI: Symposium on Operating Systems Design and
Implementation

[100] http://www.ietf.org/rfc/rfc2989.txt?number=2989www.ietf.org/rfc/rfc2989.txt?number=2989 accessed on 2004-
02-12 21:15

[101] http://en.wikipedia.org/wiki/Digital_rights_managementhttp://en.wikipedia.org/wiki/Digital_rights_management accessed on
2004-02-12 21:16

[102] http://www.ietf.org/rfc/rfc1631.txt?number=1631http://www.ietf.org/rfc/rfc1631.txt?number=1631 accessed on 2004-
02-12 21:21

[103] http://www.ietf.org/rfc/rfc3093.txt?number=3093http://www.ietf.org/rfc/rfc3093.txt?number=3093 accessed on 2004-
02-12 21:25

[104] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems
Concepts and Design. Addison-Wesley, third edition, 2001.

[105] S. Katzenbeisser and F.A.P. Petitcolas. Information Hiding:
Techniques for Steganography and Digital Watermarking," Artech House.

[106] http://www.riaa.com/http://www.riaa.com/ accessed on 2004-02-13 08:15
[107] Miguel Castro. Practical Byzantine Fault Tolerance (2001). OSDI:

Symposium on Operating Systems Design and Implementation
[108] http://www.stanford.edu/group/pandegroup/genome/http://www.stanford.edu/group/pandegroup/genome/ accessed on

2004-02-13 9:47
[109] http://www.endeavors.com/securecollaboration.htmlhttp://www.endeavors.com/securecollaboration.html accessed on

2004-02-13 10:31
[110] http://www.groove.net/http://www.groove.net/ accessed on 2004-02-13 10:33
[111] http://www.yahoo.com/http://www.yahoo.com/ accessed on 2004-02-13 10:50
[112] http://web.icq.com/http://web.icq.com/ accessed on 2004-02-13 10:52
[113] S. Halabi and D. McPherson. Internet Routing Architectures. Cisco

Press, 2nd edition., 2001. Chapter 6 Tuning BGP Capabilities
[114] Ludmila Cherkasova and Jangwon Lee. FastReplica: Efficient Large

File Distribution within Content Delivery Networks. HPL-2003-43 20030319
External

[115] Marc Waldman, Aviel Rubin, and Lorrie Cranor. Publius: A robust,
tamper-evident, censorship-resistant web publishing system (2000). Proc. 9th
USENIX Security Symposium

94

[116] http://en.wikipedia.org/wiki/Interoperability accessed on 2004-02-13
18:41

[117] http://www.jxta.org/http://www.jxta.org/ accessed on 2004-02-13 18:43
[118] http://www.beepcore.org/beepchttp://www.beepcore.org/beepcore/docs/wp-p2p.jsp accessed on

accessed on 2004-02-13 18:45
[119] Siu Man Lui and Sai Ho Kwok, Interoperability of Peer-To-Peer File

Sharing. ACM SIGecom Exchanges Volume 3 , Issue 3 Summer, 2002.
Pages: 25 – 33,

[120] http://www.audiogalaxy.com/http://www.audiogalaxy.com/ accessed on 2004-02-14 16:15
[121] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and

I. Stoica. The Impact of DHT Routing Geometry on Resilience and Proximity
Proceedings of the 2003 conference on Applications, technologies,
architectures, and protocols for computer communications table of contents.
Karlsruhe, Germany SESSION: Peer-to-peer table of contents Pages: 381 -
394 2003

[122] C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing nearby copies of replicated objects in a distributed environment.
ACM Symposium on Parallel Algorithms and Architectures.

[123] Roberto Rinaldi and Marcel Waldvogel. Routing and Data Location in
Overlay Peer-to-Peer Networks. IBM Research. Zurich Research Laboratory

[124] David Bindel, Yan Chen, Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, Christopher
Wells, Ben Zhao, and John Kubiatowicz. OceanStore: An Extremely Wide-
Area Storage System (2000).
http://citeseer.ist.psu.edu/bindel00oceanstore.htmlhttp://citeseer.ist.psu.edu/bindel00oceanstore.html accessed on 2004-03-12
17:46

[125] A. Demers, K. Petersen, M. Spreitzer, D. Terry, M. Theimer, and
B.Welch. The Bayou architecture: Support for data sharing among mobile
users. In Proc. of IEEE Workshop on Mobile Computing Systems &
Applications, Dec. 1994.

[126] Sylvia Ratnasamy, Mark Handley, Richard Karp, Scott Shenker.
Topologically-Aware Overlay Construction and Server Selection (2002).
Proceedings of IEEE INFOCOM'02

[127] Xin Yan Zhang, Qian Zhang, Member, Zhensheng Zhang, Gang Song
and Wenwu Zhu. A Construction of Locality-Aware Overlay Network:
mOverlay and Its Performance. IEEE IEEE Journal on Selected Areas in
Communications.

[128] Rolf Winter, Thomas Zahn, and Jochen Schiller. Institute of Computer
Science. Topology-Aware Overlay Construction in Dynamic Networks. Freie
Universität Berlin, Germany

[129] Miguel Castro, Peter Druschel, and Y. Charlie Hu. Topology-aware
routing in structured peer-to-peer overlay networks (2002). Antony Rowstron.
Microsoft Research

[130] S. Hotz, “Routing information organization to support scalable routing
with heterogeneous path requirements,” Tech. Rep. PhD thesis (draft),
University of Southern California, 1994.

[131] http://en.wikipedia.org/wiki/Artificial_intelligencehttp://en.wikipedia.org/wiki/Artificial_intelligence accessed on 2004-
02-19 11:57

[132] http://www.molbio.ku.dk/MolBioPages/abk/PersonalPages/Jesper/Swahttp://www.molbio.ku.dk/MolBioPages/abk/PersonalPages/Jesper/Swa
rm.html accessed on 2004-02-19 23:05

95

[133] http://www.msci.memphis.edu/~franklin/AgentProg.htmlhttp://www.msci.memphis.edu/~franklin/AgentProg.html accessed on
2004-02-21 12:12

[134] http://tracy.informatik.unihttp://tracy.informatik.uni-jena.de/research.html accessed on 2004-02-
21 12:12

[135] Russell, Stuart J. and Norvig, Peter, Artificial Intelligence: A Modern
Approach, Prentice Hall, 1995.

[136] http://en.wikipedia.org/wiki/Flash_crowdhttp://en.wikipedia.org/wiki/Flash_crowd accessed on 2004-02-124
20:33

[137] K. Kong, and D. Ghosal. Mitigating server-side congestion in the
Internet through Pseudoserving. IEEE/ACM Transactions on Networking 7, 4
(Aug. 1999), 530-544.

[138] Tyron Stading, Petros Maniatis, and Mary Baker. Peer-to-Peer Caching
Schemes to Address Flash Crowds. In 1st International Workshop on Peer-to-
Peer Systems (IPTPS 2002), March 2002.

[139] Angelos Stavrou, Dan Rubenstein, and Sambit Sahu. A Lightweight,
Robust P2P System to Handle Flash Crowds. In IEEE ICNP, November 2002.

[140] Fast File Splitter: http://www.maroshttp://www.maros-tools.com/products/FFS/ accessed
on 2004-02-25 10:26

[141] Turbo File Split: http://www.computerhttp://www.computer-
software.org/utilities/file_compression/turbo_file_split.asp accessed on 2004-
02-25 10:22

[142] NET energy http://www.computerhttp://www.computer-
software.org/utilities/file_compression/turbo_file_split.asp accessed on 2004-
02-25 10:27

[143] Easy File Splitter http://www.filesplitter.net/http://www.filesplitter.net/ accessed on accessed on
2004-02-25 10:27

[144] http://onionnetworks.com/http://onionnetworks.com/ accessed on 2004-02-27 9:50
[145] http://sourceforge.net/projects/swarmcast/http://sourceforge.net/projects/swarmcast/ accessed 2004-02-27 9:51
[146] http://bitconjurer.org/BitTorrent/protocol.htmlhttp://bitconjurer.org/BitTorrent/protocol.html accessed 2004-02-27

11:25
[147] http://www.cs.ucr.edu/~csyiazti/courses/cs204http://www.cs.ucr.edu/~csyiazti/courses/cs204/project/html/final.html#

foot1728 accessed on 2004-02-29 23:25
[148] Matei Ripeanu and Ian Foster, Mapping Gnutella Network, 1st

International Workshop on Peer-to-Peer Systems, Cambridge, Massachusetts,
March 2002

[149] I. S. Reed and G. Solomon, “Polynomial Codes Over Certain Finite
Field”, J. SIAM, vol. 8, pp. 300-304, 1960.

[150] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, J. Crowcroft.
RFC 3453: The Use of Forward Error Correction (FEC) in Reliable Multicast.
December 2002 http://www.ietf.org/rfc/rfc3453.txt?number=3453http://www.ietf.org/rfc/rfc3453.txt?number=3453 accessed
on 2004-03-04 18:26

[151] D. Patterson, G. Gibson, R. Katz. A case for redundant arrays of
inexpensive disks (RAID), Proceedings of ACM SIGMOD '88, 1988.

[152] Ann Chervenak. Tertiary Storage: An Evaluation of New Applications
PhD thesis in University of California at Berkeley (1994) PhD thesis

[153] M. Luby, M. Mitzenmacher, A. Shokrollahi, and D. Spielman,
"Efficient Erasure Correcting Codes", IEEE Transactions on Information
Theory, Special Issue: Codes on Graphs and Iterative Algorithms, pp. 569-
584, Vol. 47, No. 2, February 2001.

96

[154] J. Lacan, L. Lancérica, and L. Dairaine, When FEC Speed up Data
Access in P2P Networks. Proceedings of IDMS'02 Conference (Interactive
Distributed Multimedia Systems), Coimbra, Portugal, 2002

[155] Koon-Seng Lim and Rolf Stadler. Developing pattern-based
management programs. CTR Technical Report 503-01-01 August 6, 2001
http://http://www.ctr.columbia.edu/~stadler/papers/MMNS01www.ctr.columbia.edu/~stadler/papers/MMNS01-Lim-Stadler-
Long.pdf accessed on 2004-03-05 10:49

[156] http://www.fokus.gmd.de/research/cc/mobis/products/fec_old/content.http://www.fokus.gmd.de/research/cc/mobis/products/fec_old/content.
html accessed on 2004-03-07 16:15

[157] http://info.iet.unipi.it/~luigi/fec.htmlhttp://info.iet.unipi.it/~luigi/fec.html accessed on 2004-03-07 16:16
[158] Patric Hadenius. "Relieving Peer-to-Peer Pressure" Technology

Review (02/25/04) http://www.technologyreview.com/http://www.technologyreview.com/ accessed on 2004-02-
28 20:00

[159] http://www.securiteam.com/tools/5BP0G000IW.htmlhttp://www.securiteam.com/tools/5BP0G000IW.html accessed on
2004-03-10 21:48

[160] http://www.intel.com/business/newstech/peertopeer.pdfhttp://www.intel.com/business/newstech/peertopeer.pdf accessed on
2004-03-12 15:32

[161] FTP stands for File Transfer Protocol RFC
http://www.http://www.w3.org/Protocols/rfc959/Overview.html accessed on 2004-02-07
23:09

[162] RTSP stands for Real Time Streaming Protocol
http://www.ietf.org/rfc/rfc2326.txt?number=2326http://www.ietf.org/rfc/rfc2326.txt?number=2326 accessed on 2004-02-07
23:09

[163] http://www.ietf.org/rfc/rfc3568.txt?number=3568http://www.ietf.org/rfc/rfc3568.txt?number=3568 accessed 2004-02-07
22:31

[164] RFC 2782 http://www.ietf.org/rfc/rfc2782.txt?number=http://www.ietf.org/rfc/rfc2782.txt?number=2782 accessed
on 2004-02-07 23:34

[165] RFC 2246 http://www.ietf.org/rfc/rfc2246.txt?number=2246http://www.ietf.org/rfc/rfc2246.txt?number=2246 accessed
on 2004-02-07 23:40

[166] http://en.wihttp://en.wikipedia.org/wiki/Peer-to-Peer accessed on 2004-04-02
18:31

[167] http://legion.virginia.edu/http://legion.virginia.edu/ accessed on 2004-04-04 20:18
[168] http://www.ietf.org/rfc/rfc2http://www.ietf.org/rfc/rfc2914.txt?number=2914 accessed on 2004

04-05 10:40

97

Appendix 1: An typical program of how to split a large file into pieces

The split program splits large text files into smaller pieces. It is written in Awk. By
default, the output files are named `xaa', `xab', and so on. Each file has 1000
lines in it, with the likely exception of the last file. To change the number of lines in
each file, you supply a number on the command line preceded with a minus, e.g., `-
500' for files with 500 lines in them instead of 1000. To change the name of the
output files to something like `myfileaa', `myfileab', and so on, you supply
an additional argument that specifies the filename.

The program first sets its defaults, and then tests to make sure there are not too many
arguments. It then looks at each argument in turn. The first argument could be a minus
followed by a number. If it is, this happens to look like a negative number, so it is
made positive, and that is the count of lines. The data file name is skipped over, and
the final argument is used as the prefix for the output file names.
split.awk -- do split in awk
Arnold Robbins, arnold@gnu.ai.mit.edu, Public Domainarnold@gnu.ai.mit.edu, Public Domain
May 1993

usage: split [-num] [sourcefile] [destinationfile]

BEGIN {
 outfile = "x" # default
 count = 1000
 if (ARGC > 4)
 usage()

 i = 1
 if (ARGV[i] ~ /^-[0-9]+$/) {
 count = -ARGV[i]
 ARGV[i] = ""
 i++
 }
 # test argv in case reading from stdin instead of file
 if (i in ARGV)
 i++ # skip data file name
 if (i in ARGV) {
 outfile = ARGV[i]
 ARGV[i] = ""
 }

 s1 = s2 = "a"
 out = (outfile s1 s2)
}
The next rule does most of the work. tcount (temporary count) tracks how many lines have
been printed to the output file so far. If it is greater than count, it is time to close the current
file and start a new one. s1 and s2 track the current suffixes for the file name. If they are
both `z', the file is just too big. Otherwise, s1 moves to the next letter in the alphabet and
s2 starts over again at `a'.
{
 if (++tcount > count) {
 close(out)

98

 if (s2 == "z") {
 if (s1 == "z") {
 printf("split: %s is too large to split\n", \
 FILENAME) > "/dev/stderr"
 exit 1
 }
 s1 = chr(ord(s1) + 1)
 s2 = "a"
 } else
 s2 = chr(ord(s2) + 1)
 out = (outfile s1 s2)
 tcount = 1
 }
 print > out
}
The usage function simply prints an error message and exits.
function usage(e)
{
 e = "# usage: split [-num] [sourcefile] [destinationfile]"
 print e > "/dev/stderr"
 exit 1
}
The variable e is used so that the function fits nicely on the page.
This program is a bit sloppy; it relies on awk to close the last file for it automatically, instead
of doing it in an END rule.

99

Appendix 2: Snapshoot of using a file splitting tool(freeware)
In this operation, I split a file Berlin Stockholm.rar by Fast File Splitter.
Then I got 199 blocks of this file and every piece is 50Kb except for the last block
with only 28Kb. Use Join bottom, they can be restored the original file
Stockholm.rar in 2-3 seconds.

100

Appendix 3: Record of a movie file downloaded via BitTorrent

Microsoft Windows 2000 [Version 5.00.2195]
(C) Copyright 1985-2000 Microsoft Corp.

C:\Documents and Settings\Administrator>ipconfig /all

Windows 2000 IP Configuration

 Host Name : singingbridge
 Primary DNS Suffix :
 Node Type : Mixed
 IP Routing Enabled. : No
 WINS Proxy Enabled. : No
 DNS Suffix Search List. : swipnet.se

Ethernet adapter Local Area Connection:

 Connection-specific DNS Suffix . : swipnet.se
 Description : Realtek RTL8139/810X Family PCI Fast
Ethern
et NIC
 Physical Address. : 00-E0-00-99-5F-53
 DHCP Enabled. : Yes
 Autoconfiguration Enabled : Yes
 IP Address. : 213.100.32.29
 Subnet Mask : 255.255.255.192
 Default Gateway : 213.100.32.1
 DHCP Server : 130.244.196.150
 DNS Servers : 130.244.127.169
 Lease Obtained. : 2004 年 2 月 28 日 10:16:08
 Lease Expires : 2004 年 2 月 28 日 12:16:08

************************************host
information***************************************

C:\Documents and Settings\Administrator>netstat -a
Active Connections

 Proto Local Address Foreign Address State
 TCP singingbridge:echo singingbridge:0 LISTENING
 TCP singingbridge:discard singingbridge:0 LISTENING
 TCP singingbridge:daytime singingbridge:0 LISTENING
 TCP singingbridge:qotd singingbridge:0 LISTENING
 TCP singingbridge:chargen singingbridge:0 LISTENING
 TCP singingbridge:epmap singingbridge:0 LISTENING
 TCP singingbridge:1025 singingbridge:0 LISTENING
 TCP singingbridge:1026 singingbridge:0 LISTENING
 TCP singingbridge:1039 singingbridge:0 LISTENING
 TCP singingbridge:1097 singingbridge:0 LISTENING
 TCP singingbridge:1365 singingbridge:0 LISTENING
 TCP singingbridge:1370 singingbridge:0 LISTENING
 TCP singingbridge:1473 singingbridge:0 LISTENING
 TCP singingbridge:1488 singingbridge:0 LISTENING
 TCP singingbridge:1491 singingbridge:0 LISTENING
 TCP singingbridge:1497 singingbridge:0 LISTENING
 TCP singingbridge:1498 singingbridge:0 LISTENING
 TCP singingbridge:6000 singingbridge:0 LISTENING
 TCP singingbridge:6001 singingbridge:0 LISTENING
 TCP singingbridge:1028 singingbridge:0 LISTENING
 TCP singingbridge:56666 singingbridge:0 LISTENING
 TCP singingbridge:netbios-ssn singingbridge:0 LISTENING
 TCP singingbridge:1365 220.170.35.125:8882 ESTABLISHED
 TCP singingbridge:1370 210-85-158-205.cm.apol.com.tw:8883 ESTABLISHED (used
tracert to see number of hops, 20 hops till the last timeout)
 TCP singingbridge:1473 221.216.102.211:6000 ESTABLISHED
 TCP singingbridge:1488 221.205.107.136:1883 ESTABLISHED
 TCP singingbridge:1491 218.80.60.77:6881 ESTABLISHED
 TCP singingbridge:1497 61.149.22.39:6881 ESTABLISHED
 TCP singingbridge:1498 218.61.139.44:6000 ESTABLISHED
 TCP singingbridge:6000 61.191.173.136:2155 TIME_WAIT
 TCP singingbridge:6000 61.191.173.136:2578 TIME_WAIT

101

 TCP singingbridge:6000 81-223-102-114.Fuenfhaus.Xdsl-line.inode.at:33124
TIME_WAIT
 TCP singingbridge:6000 81-223-102-114.Fuenfhaus.Xdsl-line.inode.at:33231
TIME_WAIT
 TCP singingbridge:6000 dsl-210-11-209-190.syd.level10.net.au:3931 TIME_WAIT
(used tracert to see number of hops 22)
 TCP singingbridge:6000 210.51.228.209:26429 ESTABLISHED
 TCP singingbridge:6000 211.97.62.204:2369 TIME_WAIT
 TCP singingbridge:6000 218.11.2.106:13269 TIME_WAIT
 TCP singingbridge:6000 218.11.2.106:13305 TIME_WAIT
 TCP singingbridge:6000 218.69.1.10:2044 ESTABLISHED
 TCP singingbridge:6000 218.246.236.64:65181 ESTABLISHED
 TCP singingbridge:6001 61.172.29.12:25138 ESTABLISHED (used tracert to
see number of hops, 23 hops)
 TCP singingbridge:6001 61.185.210.132:44722 ESTABLISHED
 TCP singingbridge:6001 61.185.237.132:34403 ESTABLISHED
 TCP singingbridge:6001 61.187.64.210:36890 ESTABLISHED
 TCP singingbridge:6001 chenpc-216.tamu.edu:4474 ESTABLISHED (used tracert to
see number of hops, 22 hops)
 TCP singingbridge:6001 202.105.131.102:3086 ESTABLISHED
 TCP singingbridge:6001 202.105.131.102:3708 TIME_WAIT
 TCP singingbridge:6001 202.110.201.218:38689 ESTABLISHED
 TCP singingbridge:6001 dsl-210-11-209-190.syd.level10.net.au:4999
ESTABLISHED
 TCP singingbridge:6001 210.51.228.209:12572 TIME_WAIT
 TCP singingbridge:6001 210.51.228.209:21800 TIME_WAIT
 TCP singingbridge:6001 210.51.228.209:31034 TIME_WAIT
 TCP singingbridge:6001 210.51.228.209:41882 ESTABLISHED
 TCP singingbridge:6001 210.51.228.209:50026 TIME_WAIT
 TCP singingbridge:6001 210.53.6.74:46445 ESTABLISHED (used tracert to
see number of hops)
 TCP singingbridge:6001 210.211.11.42:4092 ESTABLISHED
 TCP singingbridge:6001 211.93.112.98:3221 ESTABLISHED
 TCP singingbridge:6001 211.147.255.124:4758 ESTABLISHED
 TCP singingbridge:6001 211.158.78.6:1055 ESTABLISHED
 TCP singingbridge:6001 211.160.16.2:45335 ESTABLISHED
 TCP singingbridge:6001 211.167.203.34:1499 ESTABLISHED
 TCP singingbridge:6001 211.167.203.34:3184 TIME_WAIT
 TCP singingbridge:6001 211.167.203.34:3231 TIME_WAIT
 TCP singingbridge:6001 218.0.237.158:3009 ESTABLISHED
 TCP singingbridge:6001 218.7.35.160:3678 ESTABLISHED
 TCP singingbridge:6001 218.11.2.106:10795 ESTABLISHED
 TCP singingbridge:6001 218.13.209.176:21977 ESTABLISHED
 TCP singingbridge:6001 218.66.88.249:3677 ESTABLISHED (used tracert to
see number of hops)
 TCP singingbridge:6001 218.66.88.249:3788 ESTABLISHED
 TCP singingbridge:6001 218.66.88.249:3826 ESTABLISHED
 TCP singingbridge:6001 218.66.210.154:1929 ESTABLISHED
 TCP singingbridge:6001 218.69.1.10:6781 TIME_WAIT
 TCP singingbridge:6001 218.72.151.18:3194 ESTABLISHED
 TCP singingbridge:6001 218.76.145.96:3547 ESTABLISHED
 TCP singingbridge:6001 218.79.90.178:4761 ESTABLISHED
 TCP singingbridge:6001 218.79.133.4:4564 ESTABLISHED
 TCP singingbridge:6001 218.80.60.77:3487 ESTABLISHED
 TCP singingbridge:6001 218.80.60.77:3488 ESTABLISHED
 TCP singingbridge:6001 218.80.60.77:4440 TIME_WAIT
 TCP singingbridge:6001 218.80.60.77:4448 TIME_WAIT
 TCP singingbridge:6001 218.80.60.77:4727 TIME_WAIT
 TCP singingbridge:6001 218.86.231.211:3260 ESTABLISHED
 TCP singingbridge:6001 218.109.32.9:3647 ESTABLISHED
 TCP singingbridge:6001 219.138.154.173:30083 ESTABLISHED
 TCP singingbridge:6001 220.186.180.109:4417 ESTABLISHED (used tracert to
see number of hops)
 TCP singingbridge:6001 220.196.170.3:3909 ESTABLISHED
 TCP singingbridge:6001 221.204.33.79:3473 ESTABLISHED
 TCP singingbridge:6001 221.209.150.13:4341 ESTABLISHED (used tracert to
see number of hops)
 UDP singingbridge:echo *:*
 UDP singingbridge:discard *:*
 UDP singingbridge:daytime *:*
 UDP singingbridge:qotd *:*
 UDP singingbridge:chargen *:*
 UDP singingbridge:netbios-ns *:*
 UDP singingbridge:netbios-dgm *:*
 UDP singingbridge:isakmp *:*
 UDP singingbridge:router *:*
 UDP singingbridge:4500 *:*

102

******************************BitTorrent Peers connected to the
host*******************************

C:\Documents and Settings\Administrator>tracert dsl-210-11-209-190.syd.level10.net.au

Tracing route to dsl-210-11-209-190.syd.level10.net.au [210.11.209.190]
over a maximum of 30 hops:

 1 10 ms <10 ms <10 ms c213-100-32-1.swipnet.se [213.100.32.1]
 2 <10 ms <10 ms <10 ms cty3-core.gigabiteth1-1.swip.net [130.244.189.1]
 3 <10 ms <10 ms <10 ms stb1-core.srp2-0.swip.net [130.244.194.246]
 4 <10 ms <10 ms <10 ms sl-gw10-sto-5-0.sprintlink.net [80.77.97.21]
 5 <10 ms <10 ms <10 ms sl-bb20-sto-8-0.sprintlink.net [80.77.96.37]
 6 <10 ms <10 ms <10 ms sl-bb21-sto-15-0.sprintlink.net [80.77.96.34]
 7 <10 ms <10 ms 10 ms sl-bb21-cop-12-0.sprintlink.net [213.206.129.33]
 8 10 ms <10 ms 10 ms sl-bb20-cop-15-0.sprintlink.net [80.77.64.33]
 9 80 ms 90 ms 90 ms sl-bb21-msq-10-0.sprintlink.net [144.232.19.29]
 10 90 ms 90 ms 90 ms sl-bb22-rly-15-3.sprintlink.net [144.232.19.98]
 11 150 ms 151 ms 160 ms sl-bb22-sj-10-0.sprintlink.net [144.232.20.186]
 12 150 ms 151 ms 160 ms sl-bb20-sj-15-0.sprintlink.net [144.232.3.166]
 13 150 ms 161 ms 150 ms sl-st20-pa-15-1.sprintlink.net [144.232.20.42]
 14 151 ms 150 ms 160 ms sl-newzeal-1-0.sprintlink.net [144.223.243.18]
 15 300 ms 310 ms 311 ms p5-0.sjbr1.global-gateway.net.nz [202.37.246.202]
 16 301 ms 310 ms 311 ms p1-0.sybr3.global-gateway.net.nz [202.50.116.193]
 17 301 ms 310 ms 310 ms p4-0.sybr2.global-gateway.net.nz [202.50.119.86]
 18 300 ms 311 ms 310 ms con3.sybr2.global-gateway.net.nz [202.37.246.238]
 19 460 ms 491 ms 310 ms pos2-0-0.bdr2.hay.connect.com.au [210.8.219.242]
 20 311 ms 300 ms 301 ms g0-2.cor6.hay.connect.com.au [210.8.134.92]
 21 311 ms 310 ms 311 ms DLEV140780-5.gw.connect.com.au [210.8.226.141]
 22 1322 ms 2603 ms 721 ms dsl-210-11-209-190.syd.level10.net.au [210.11.209.190]

Trace complete.

C:\Documents and Settings\Administrator>tracert chenpc-216.tamu.edu

Tracing route to chenpc-216.tamu.edu [165.91.170.208]
over a maximum of 30 hops:

 1 <10 ms <10 ms <10 ms c213-100-32-1.swipnet.se [213.100.32.1]
 2 <10 ms <10 ms <10 ms htg3-core.gigabiteth4-0.swip.net [130.244.189.2]
 3 <10 ms <10 ms <10 ms stb1-core.srp2-0.swip.net [130.244.194.246]
 4 <10 ms <10 ms <10 ms sl-gw10-sto-5-0.sprintlink.net [80.77.97.21]
 5 <10 ms <10 ms <10 ms sl-bb21-sto-8-0.sprintlink.net [80.77.96.41]
 6 <10 ms 10 ms 10 ms sl-bb21-cop-12-0.sprintlink.net [213.206.129.33]
 7 10 ms 10 ms 10 ms sl-bb20-cop-15-0.sprintlink.net [80.77.64.33]
 8 10 ms 20 ms 20 ms sl-bb20-ham-13-0.sprintlink.net [213.206.129.54]
 9 20 ms 21 ms 20 ms sl-bb21-ams-14-0.sprintlink.net [213.206.129.49]
 10 20 ms 20 ms 20 ms sl-bb20-ams-15-0.sprintlink.net [217.149.32.33]
 11 40 ms 30 ms 40 ms 213.206.131.46
 12 30 ms 40 ms 40 ms ae-0-55.mp1.Amsterdam1.Level3.net [213.244.165.97]
 13 30 ms 40 ms 30 ms so-1-0-0.mp1.London2.Level3.net [212.187.128.49]
 14 90 ms 100 ms 100 ms so-1-0-0.bbr1.Washington1.Level3.net [212.187.128.138]

 15 121 ms 130 ms 130 ms unknown.Level3.net [209.247.9.102]
 16 131 ms 130 ms 130 ms so-6-0.ipcolo1.Dallas1.Level3.net [4.68.112.178]
 17 130 ms 130 ms 140 ms p0-0.texasamu.bbnplanet.net [4.25.100.2]
 18 131 ms 130 ms 140 ms csce-7--dmzf-ci-g-10.net.tamu.edu [165.91.254.4]
 19 130 ms 130 ms 140 ms csce-1.net.tamu.edu [165.91.2.2]
 20 130 ms 130 ms 140 ms evan-oc22-1.net.tamu.edu [128.194.1.72]
 21 * * * Request timed out.
 22 130 ms 141 ms 130 ms chenpc-216.tamu.edu [165.91.170.208]

Trace complete.

C:\Documents and Settings\Administrator>tracert 61.172.29.12

Tracing route to 61.172.29.12 over a maximum of 30 hops

 1 <10 ms <10 ms <10 ms c213-100-32-1.swipnet.se [213.100.32.1]
 2 <10 ms <10 ms <10 ms htg3-core.gigabiteth4-0.swip.net [130.244.189.2]

103

 3 <10 ms <10 ms <10 ms stb1-core.srp2-0.swip.net [130.244.194.246]
 4 <10 ms <10 ms 10 ms sl-gw10-sto-5-0.sprintlink.net [80.77.97.21]
 5 <10 ms <10 ms <10 ms sl-bb21-sto-8-0.sprintlink.net [80.77.96.41]
 6 11 ms 10 ms 10 ms sl-bb21-cop-12-0.sprintlink.net [213.206.129.33]
 7 10 ms 10 ms 10 ms sl-bb20-cop-15-0.sprintlink.net [80.77.64.33]
 8 81 ms 90 ms 90 ms sl-bb21-msq-10-0.sprintlink.net [144.232.19.29]
 9 90 ms 90 ms 90 ms sl-bb22-rly-15-3.sprintlink.net [144.232.19.98]
 10 150 ms 151 ms 160 ms sl-bb22-sj-10-0.sprintlink.net [144.232.20.186]
 11 150 ms 151 ms 160 ms sl-bb24-sj-13-0.sprintlink.net [144.232.3.214]
 12 150 ms 150 ms 151 ms sl-st21-pa-15-2.sprintlink.net [144.232.9.10]
 13 170 ms 170 ms 171 ms sl-china4-1-0.sprintlink.net [144.223.243.62]
 14 641 ms 651 ms 641 ms 202.97.51.205
 15 651 ms 671 ms 661 ms 202.97.33.89
 16 651 ms 661 ms 651 ms 202.101.63.253
 17 661 ms 661 ms 661 ms 218.1.1.153
 18 691 ms 691 ms 691 ms 218.1.1.17
 19 671 ms 671 ms 671 ms 218.1.10.162
 20 691 ms 681 ms 691 ms 218.1.10.182
 21 * * * Request timed out.
 22 * * * Request timed out.
 23 681 ms 640 ms 661 ms 61.172.29.12

Trace complete.

www.kth.se

IMIT/LCN 2004-05

