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Abstract 

This master thesis project is a part of the preparations for the production of Micronic 
Laser Systems AB’s next generation laser pattern generator, Sigma 8100, and it is also in-
cluded in the feasibility study for a maskless system that writes directly on silicon. 

Clustering Linux/x86 computer nodes is today considered a low cost yet high perform-
ing solution for high performance computing. The goal of the project is to give suggestions 
on how to build a scalable low cost Linux/x86 cluster for photomask pattern data preproc-
essing. A survey of available common off the shelf products such as interconnects and 
disks are included as a part of this thesis. A workload simulator written in C that models the 
workload of the preprocessing software complements the thesis and allows for more accu-
rate benchmarking. This workload simulator is designed to be easily portable and could be 
used to evaluate different types of hardware.  

One of the recommended solutions presented in this thesis is based on standard rack 
mounted servers with Intel Xeon processors and Gigabit Ethernet as interconnect. Another 
recommendation is the MPI standard for communication between the computer nodes. 

The only hardware tested and verified in this thesis is a disk solution presented by the 
company VMETRO. It proved to be reasonably low cost and it delivers more than the 360 
Mbyte/s output and 90 Mbyte/s input that are required, however it has a few drawbacks re-
lated to a very low-level programming interface. It also contradicts the general goal of the 
project to use common off the shelf products. 

The lack of hardware during the course of the project meant that this thesis has been 
shaped to be a collection of knowledge, techniques and a benchmarking tool for further 
evaluations. 
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1 Introduction 

This master thesis project is my final step towards a Master of Science degree at the 
Royal Institute of Technology (KTH) in Stockholm Sweden. It was done at Micronic Laser 
Systems AB under supervision of the Department of Microelectronics and Information 
Technology at KTH. 

With an appealing price-performance ratio it is not surprising that Intel based Linux 
clusters are continuously gaining ground. The increasing performance of standard PC com-
ponents and Gigabit Ethernet networking makes the idea of common-off-the-shelf products 
into an attractive alternative. The increasing popularity of the operating system Linux gives 
it a number of positive characteristics such as a high level of compatibility with different 
hardware and it is becoming a stable well-tested platform. Perhaps one of the most underes-
timated benefits is the increasing number of skilled people with first hand experience of 
parallel computing with Linux. It is easier to find a programmer with good knowledge in 
MPI and Linux than a programmer specialized in low-level DMA communications for a 
specific embedded system. 

New on the market are the 64-bit CPU architectures (IA-64) and interconnects like Gi-
gabit Ethernet [30], Quadrics [25] and InfiniBand [21]. These new types of interconnect 
makes the clusters scalable beyond thousands of nodes. Thereby letting the clusters com-
pete with high-end embedded industrial systems with RapidIO [31] or RACE++ [32] in 
terms of performance. However there will almost always be a tradeoff in terms of space and 
in some cases power consumption. 

1.1 Problem description 
This master thesis project is a part of the preparations for Micronic Laser Systems AB’s 

next generation laser pattern generator, Sigma 8100, and it will also be included in the fea-
sibility study for a maskless system that writes directly on silicon. The current solutions for 
pattern preprocessing with systems from SUN Microsystems is considered both expensive 
and not easily scalable. Porting this complete software structure to Linux/x86 is one of the 
proposed solutions and will be evaluated in this thesis project. The system must be easily 
scalable in order to adapt to future demands on performance. The preprocessing stage sets 
very high demands on disk performance; this is so vital that it is included in this thesis pro-
ject. In order to limit the size of this master thesis project the throughput has been prede-
fined and a suggested layout in principle has been suggested in form of a block diagram, as 
seen in Figure 1.1. 

Figure 1.1 A block diagram of the preprocessing system in principle 

In the long term perspective thoughts are of replacing the real time processing system 
with some form of clustered standard Linux/x86 solution. The thesis could be used as a 
base of knowledge for this type of project as well. 

The main goal of this thesis is to evaluate if a Linux cluster is a good choice in terms of 
performance and scalability. To give suggestions on hardware configurations for the next 
generation preprocessing system, using standard off the shelf components and considering 
reliability as an important factor. Give general recommendations on how to port Micronics 
current software, not in detail but rather in terms of possible C-libraries for threading, 
communication, etc. 

A secondary goal of the project is to suggest and evaluate different proposed solutions 
for the output disk. This is included in the project since it is the most probable bottleneck of 
the system. It is also considered to be the most critical part since it has to deliver in near 
real-time conditions. 
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To achieve this goal I start by studying the given requirements of the preprocessing sys-
tem. The second stage is to survey the relevant available common off the shelf products. 
The most natural is then to test and analyze the most interesting of these products. Due to 
the complex nature of the preprocessing system I design a workload simulator that models 
the workload of the real program. This simulator works as a kind of specialized benchmark-
ing tool. This allows for a more accurate way of comparing the performance of different 
systems. In order to design this workload simulator I analyze the current preprocessing pro-
gram and relevant pattern data, this also requires some estimations of the future since the 
workload simulator has to evaluate according to future demands. 

1.2 Thesis overview 
Section 1 gives an introduction to the master thesis project and to the thesis itself. Due 

to the complexity of the system Section 2 starts with an introduction to Micronic Laser Sys-
tems AB and the laser pattern writers. Section 2.3 is absolutely fundamental for the under-
standing of this thesis, it describes the principals behind the preprocessing and processing 
of pattern data. The goal of the project and the requirements of the system are further de-
scribed in Section 3. 

The path to achieving the goals for this project really starts with a survey of existing 
x86 CPU boards, interconnects and disk solutions in Section 4. This Section is not meant to 
be a complete market survey but rather selective in terms of how well the products fit into 
the estimated system. After the survey and making some selections the next logical step is 
to test these systems. This however is always a matter of availability and time. A disk solu-
tion proposed by VMETRO [36] is briefly tested during two sessions in Section 5. The cur-
rent preprocessing program is analyzed in Section 6. This section also tries to predict future 
changes in the preprocessing program. The knowledge obtained in the previous section is 
used to design a workload simulator in Section 7. This workload simulator can later be used 
as a benchmarking tool. A small test of the workload simulator is done in Section 8. 

A summary of my results and conclusions are presented in Section 9. Since most hard-
ware was not available during the course of the project the remaining work had to be post-
poned for the future. Other considerations for future work are also discussed in Section 10. 
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2 Background 

The main goal of this section is to give some form of motivation to the system require-
ments and to why the system is designed the way it is. Section 2.3 is particularly important 
for this thesis. 

2.1 Micronic Laser Systems AB 
Micronic Laser Systems AB produces laser pattern generators used in the production of 

photomasks. These photomasks are in turn used in the production of displays and semicon-
ductors. This technology is called microlithography. The typical buyer of a laser pattern 
generator is a manufacturer, also called a maskshop, who deliver photomasks to producers 
of electronic products. Some of the biggest producers of electronic products might buy their 
own laser pattern generator. 

Micronic Laser Systems AB has regional offices in Japan, USA, Korea and Taiwan. At 
the end of 2002 the company had a total number of 338 employees of which 269 of them 
reside in Sweden [5]. 

There are three main markets for laser pattern generators: The smallest one is Multi 
Purpose, where laser pattern generators are mainly used for electronic packaging. Micronic 
Laser Systems AB does have a significant part of the high-end part of this market. The dis-
play market is the collective name for a market that is producing shadow masks for CRTs 
and TVs. Other parts of the display market uses photomasks for PDP, LCD, TFT and color 
filters for TFT. Micronic Laser Systems AB has had a near 100% share of this market for a 
number of years now. The largest market for pattern generators is the semiconductor mar-
ket. This market used to be dominated by the electron-beam technology. But since this 
technology is very expensive, slow and the gap in writing quality is shrinking, these ma-
chines are often replaced by laser pattern generators today. However electron-beams will 
still be around for some time for the really delicate patterns. It is likely that just a few layers 
in a modern processor have been made by an electron-beam machine while all other layers 
has been made by a laser pattern generator. 

2.1.1 The history behind Micronic Laser Systems AB 
It all started some time in the 1970s [6], when Dr Gerhard Westerberg and his group 

began researching into microlithography at the Royal Institute of Technology (KTH) in 
Stockholm. The primary goal was the semiconductor industry and in 1977 the first machine 
was sold to a company in France called SGS Thomson. Photomasks from this particular 
machine was used to produce the first Motorola 68000 processor. The same company 
bought a second similar machine just two years later. 

Micronic did not become commercialized until 1984 when Dr Gerhard Westerberg and 
seven employees founded the company called Micronic Laser Systems. Until then the com-
pany was just called Micronic and produced hand held terminals for logistics, in some 
sense this company or rather some parts of it still remains in the company now called 
Minec Systems [7]. Micronic Laser Systems was not able to sell any laser pattern genera-
tors until Svenska Grindmatriser AB (SGA) in Linköping bought one in 1989. Dr Gerhard 
Westerberg died in 1989. Micronic Lasers Systems AB was then restarted and founded by 
the employees and Småföretagsfonden. A friend of Dr Gerhard Westerberg, Lic Nils Björk, 
was assigned as the new CEO (1989-1996). 

Terapixel Ltd in Finland bought their first 180 mm semiconductor laser pattern genera-
tor from Micronic in 1990. They used it for a wide variety of purposes and soon requested a 
larger writing area; hence the first 600 mm writer was born. This started a trend for large 
area laser pattern generators. From that point on Micronic Laser Systems has had a near 
100% share of the display market, but to the expense of leaving the semiconductor market. 
Micronic Laser Systems made the first step back into the semiconductor market in 1998 
with the LRS 200 system. 



 A low cost parallel computing system for photomask pattern data preprocessing 

 4

2.2 The laser pattern generator 
The technology is based on two acousto-optic devices: an acousto-optic modulator 

(AOM) for controlling the intensity of the laser beam and an acousto-optic deflector (AOD) 
for generating a sweep [1]. This type of acousto-optic device is basically a crystal with an 
applied acoustic drive signal. The acoustic drive signal changes the density of the crystal 
making it behave like a grating diffracting the passing laser beam, see Figure 2.1. The angle 
of the diffracting light is dependent of the frequency of the light as well as the density of 
the grating. Hence the diffracting angle is possible to change by changing the frequency of 
the acoustic drive signal to the AOD. The intensity of the diffracting light is dependent of 
how much the acoustic drive signal is changing the density of the crystal. Hence by chang-
ing the amplitude of the drive signal to the AOM it is possible to change the intensity of the 
laser beam. 

 

 

Figure 2.1 Acousto-optic device (from [1]) 

This technique is combined with a movable stage with a laser interferometer positioning 
system. The stage is moved with a constant speed in the X-direction while the AOD makes 
the beam sweep over a limited width in the Y-direction creating a scan-strip. Then the stage 
is moved a certain distance in Y and the next scan-strip can be started. The pattern data is 
converted into amplitude variations to the AOM. This is shown in Figure 2.2 picturing the 
principal layout of the 5-beam Omega semiconductor laser pattern generator. 

 

 

Figure 2.2 The writing principle using acousto-optic devises (from [1]) 
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The latest technology does however not include the acousto-optic devices. The new 
technology uses a Spatial Light Modulator (SLM) [2] and is developed in cooperation with 
the Fraunhofer Institute IMS [4]. The SLM is a chip consisting of one million mirrors; each 
mirror is 16µm x 16µm in size and has the ability to individually tilt one quarter of a wave-
length or 62 nm. A laser beam is flashed at the mirrors reflecting as a stamp on the plate 
creating the pattern. The idea with a moving stage is the same as earlier. 64 different scales 
of gray can be achieved by letting a mirror make a very small movement causing phase 
modulations. These phase modulations will diffract the beam as it passes through a Fourier 
lens and can thereby be partly or completely filtered away in the Fourier plane by an aper-
ture leaving only the desired image on the plate, see Figure 2.3. One of the biggest benefits 
with this technology is the possibility to use a shorter wavelength and thereby being able to 
draw smaller features. Today the 16µm x 16µm mirrors are projected on the plate as 100nm 
x 100nm pixels using a 248 nm wavelength. Since each pixel has 64 gray scales, the result 
is a 1.56 nm address grid. 

 

Figure 2.3 The writing principal using a SLM chip (from [3]) 

2.3 Pattern data processing 
The pattern data going in to a laser pattern generator is generated by a CAD system and 

is described in a hierarchical vector format with repetitions and layers. Layers within a file 
are combined to produce the final pattern using Boolean operations such as and, or, xor etc. 
The final result is a rasterized (bitmap) format that in turn can be translated into control 
signals for an AOM or SLM. The first basic step is to fracture the pattern data into the indi-
vidual scan-strips. Still in a vector format, but the independent scan-strips can now be 
rasterized in parallel using a number of computer nodes, each processing one scan-strip at a 
time. This method is used in the large area laser pattern generators for the display market, 
but it does not process data fast enough for the latest laser pattern generators aimed at the 
semiconductor market. 

Since the semiconductor technologies seems to be evolving as predicted in Moore’s 
law, the number of features on a photomask is increasing exponentially as a function of 
time. However each feature has to be described by more and more extra assisting features 
in order to compensate for optical and etching phenomena, see Figure 2.4. Hence the data 
volume is increasing faster than Moore’s law. 
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Figure 2.4 Data volume increase (from [3]) 

In order to cope with the amount of data requested by the SLM chip the area covered by 
the SLM is divided into several rendering windows and rasterized individually. Each ren-
dering window has its own data channel with a dedicated FPGA rasterizer. In order to feed 
these rendering window modules, each scan-strip must be divided into individual sub-
strips. Since the data volume increases every time the pattern is divided into individual 
parts, each sub-strip is not fractured in the x-direction to fit the SLM chip. Instead each 
rendering module has an extra amount of memory enabling it to hold more data. In this way 
a sub-strip only has to be fractured into a few numbers of dependent fracturing windows in 
the x-direction. Since the rendering module can keep data that will be used later each frac-
turing window does not need to be independent, thus reducing the duplication of data. 

The trend of adding assisting features and increased fracturing of pattern data, to enable 
parallel processing, sets higher demands on preprocessing. The data volumes increase ever 
more in the preprocessing stages making it necessary to move some of the preprocessing 
work to a pipelined data channel to process the data in real time. It is no longer possible to 
fracture the pattern data into scan-strips or sub-strips at an off-line stage. Instead the off-
line stage is limited to fracturing the data into larger dependent sub-areas, called buckets, as 
well as doing a workload distribution by simply splitting the pattern data into a number of 
non-geometrical independent groups called File Memory Buffers (FMB). Since these 
FMBs are independent they can be fractured into scan-strips, sub-strips and fracturing win-
dows concurrently in real time during writing. Of course a certain fracturing window has to 
be created by merging the respective fracturing window from each FMB before sending it 
to the rendering module. 

A simplified version of the pattern data fracturing can be seen in Figure 2.5. The origi-
nal pattern data is shown in a). In step b) the data has been partitioned into two independent 
FMBs and has been sorted into two buckets in y (symbolized by the dotted line). This step 
is done in a preprocessing stage. The following stages c) and d) are done in real-time during 
writing. The data is now fractured into 5 independent sub-strips. Note that the figure has 
been simplified and there is no fracturing into fracturing windows. The fracturing into scan-
strips cannot be seen since a scan-strip is merely a collection of sub-strips. The final step d) 
is the merging of each sub-strip. These sub-strips, or rather the fracturing windows, are then 
passed on to be rasterized (not shown in the figure). 

 

Figure 2.5 A simplified view of pattern data Fracturing 
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In a real case the input file in step a) would reach 200-1000 Gbyte in size. The number 
of FMBs in step b) would be 10-30 and the number of buckets approximately 1000 per 
FMB. At this stage the pattern data is stored to disk and should not have increased in size 
and would still be 200-1000 Gbyte. The total number of sub-strips in step c) would be 
10000-30000 per FMB. In step d) these sub-strips would be merged into a total of 10000-
30000. At this stage the data has doubled to 400-2000 Gbyte. See Section 6.3 for more in-
formation and an analysis of pattern data. 

2.3.1 The pattern data processing hardware 
The hardware currently used for pattern data processing is based on three different sys-

tems. First is the preprocessing computer; a Sun Fire V880 with four UltraSPARC III proc-
essors. It both reads and writes to the same Sun StorEdge T3 in a RAID-0 configuration. 
The output from this computation is read from the T3 by a separate process on the V880 
pushing the data through an optical fiber. The receiving end is a 9u VME system with 26 
PowerPC processors from Mercury Computer Systems Inc. The output from these nodes is 
merged in bulk memory nodes, compare to step d) in Figure 2.5. The data is then passed on 
from the bulk memory to be rasterized in the FPGAs. 
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3 System requirements 

The goal for this project is to try to give suggestions on how to configure a low cost pat-
tern preprocessing system based on some form of Linux cluster or NUMA architecture. The 
best way to achieve low costs is usually to use common off the shelf products. This has a 
second very important benefit; it is easier to find people with previous experience of the 
components. Commonly used hardware also means a rich selection of software such as op-
timization and debugging tools which otherwise might be unavailable. 

Due to the rather long, 10-year, lifetime of a laser pattern generator it is very important 
that all spare parts are available. It is not acceptable that a component is made unavailable 
without an early warning or a compatible replacement. 

Other parameters of the systems are however not that critical. There are for instance no 
extreme demands on the physical size. Hence 19-inch standard rack components are pre-
ferred but not a must. Power consumption, noise, vibrations and such are described in [8] 
and [9]. These standardized documents do not normally affect the selection of normal stan-
dard computer equipment, but rather more the way they are mounted in racks. For instance 
ergonomics, safety markings, remaining a low center of gravity and adding a safety switch 
if the power consumption exceeds a specified level. However this level of detail is not fur-
ther considered in this thesis. 

3.1 Performance and functionality 
In terms of functionality the system must first and foremost be able to process all pat-

tern data that is presented. It is always possible to design a test pattern that could bring any 
preprocessing system to its knees. Real customer pattern data is a different thing. A worst-
case badly designed pattern should still be processed in the correct way. It is however not 
necessary to do it quickly. Only the expected normal cases needs to be highly optimized. 
The system must be scalable in order to cope with ever increasing demands. 

The single most important requirement presented to this project is the performance of 
the preprocessing system. The performance is defined as the throughput capacity achieved 
by the preprocessing program. This is presented in Figure 3.1 as the average and in one 
case the sustained bandwidths to and from the disks in the system. An average bandwidth is 
defined as the average throughput capacity achieved during the complete writing time of 
the laser pattern generator or approximately 5 hours. The sustained bandwidth is defined as 
a link with a guaranteed capacity. A loss of bandwidth in this link could be tolerated for up 
to a couple of seconds but not longer; the total average capacity of the link still has to be 
sustained. 

Figure 3.1 only shows a basic functional scheme of the proposed solution. Hence the 
input disk and the output disk are not necessarily two separate disks for instance. The speci-
fied bandwidths of 90 Mbyte/s in and out of the computing cluster is the average over total 
writing time of the laser pattern generator. The same 90 Mbyte/s bandwidth required for 
downloading the pattern data to the input disk has also got to be accounted for. The most 
critical part is the 360 Mbyte/s output from the output disk. It is absolutely critical that this 
bandwidth can be sustained during the entire write time. Note that all these links must be 
able to deliver these bandwidth requirements at the same time and not just one at the time. 

Figure 3.1 A block diagram of the preprocessing system in principle 

Figure 3.1 does actually describe more than the preprocessing stage. The preprocessing 
is just one part of the pattern data processing that the preprocessing system has to handle. 
The system could be seen as a queue. The preprocessing stage by it self can be seen in 
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Figure 3.2. In this stage the pattern data is read from the input disk, processed and written 
to the output disk. We could give the pattern data at this stage queue number Q. 

Figure 3.2 A block diagram of the preprocessing stage 

The previous step before preprocessing is the loading of the pattern data. This is done 
from a server not provided by Micronic Laser Systems AB. The data is downloaded to the 
input disk as seen in Figure 3.3. The corresponding queue number for the pattern data in 
this stage would be Q+1. 

Figure 3.3 A block diagram of the pattern data loading stage 

The final stage as seen in Figure 3.4 is done while the laser pattern generator is actually 
writing the pattern to a plate. This means that this processing stage must have the highest 
priority.  In this stage the pattern data is read four consecutive times from the output disk, 
hence four times higher bandwidth requirements. This stage could be described as done in 
real time. However it is not real time as in the correct meaning of the word. There is no 
need for any real time operating systems. It is actually an on average operation with a slim 
margin for error. The processes extracting the data from the output disk are buffered and 
the stage after that is also buffered. All subsystems have a waiting state. The high data rate 
means that even with large buffers the output disk cannot be unresponsive for more than a 
number of seconds. With a queue number of Q-1 this adds up to a total queue of three si-
multaneously operating independent processing stages on the same system. 

Figure 3.4 A block diagram of the pattern data extraction during write-time 

In order to evaluate the requirements on interconnects and CPU boards the cluster/ 
NUMA box in Figure 3.1 has to be examined more carefully. Figure 3.5 shows the idea of 
how the preprocessing would work. Some details are not yet specified, for instance if there 
must be a node collecting pattern data from the processing nodes and handling the output 
disk. One thing that is clear is that a single node reads the pattern data from the input disk 
and distributes the data to the processing nodes, compare to Figure 2.5. 

It could seem possible to use several processes reading on different locations in the 
same file. However different hierarchical structures in the file might expand differently and 
can cause severe unbalance in the distribution. It is not unusual that a single hierarchical 
structure can cover almost a complete pattern data file. This would mean that all processes 
would have to read the complete file in order to achieve a proper distribution. 

Since there is a clear risk for the input node to become a bottleneck the work done in 
this node has to be reduced to a minimum. The most likely type of interconnect network 
used between the nodes would be switched. This means that the interconnect between the 
input node and the switch has to be able to handle 90 Mbyte/s plus overhead. Assumed that 
the disk access is not handled by the same interconnect. If a special node is needed to ac-
cess the output disk then the switch is going to have to handle twice the amount of data. 
The required amount of interconnection between processing nodes are small or even non-
existing. 
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Figure 3.5 The preprocessing cluster/NUMA in detail 

Translating the required bandwidth to how much hardware is actually needed demands 
some considerations. Especially since the program has never been tested on an IA-32 or IA-
64 CPU. The fact that the program is very dependent of the pattern data also makes matters 
more complex. It is however known that the program in its current state is limited by disk-
I/O. The proposed solution to this problem is to design a reasonable and scalable cluster or 
NUMA system and then use an easily portable workload model of the program to verify the 
design. This method is acceptable since it is expected to result in just a handful of CPUs. 
Switched interconnects should scale well with the size of the system. Due to the formula-
tion of the requirements, it is possible to verify at an early stage that the disks can deliver 
the bandwidth during the given circumstances. 

The requirements on storage space are quite loosely specified compared to the band-
width. This requirement is however not to be considered lightly. The input disk must be 
able to store 2 Tbyte. The output disk is more loosely specified and should preferably be 
able to store 5-10 Tbyte. 

3.2 Software 
Due to the general requirements of availability and compatibility it is advisable to use 

standardized software. Well-known and tested software is preferred compared to special-
ized low-level solutions, but only if it can be done without any greater loss in performance. 
It is a great advantage if a software or API is available on more than one platform. APIs for 
interconnects should preferably be standardized and independent of the underlying hard-
ware. In short, software should be as high level as possible without sacrificing too much 
performance. 

3.3 Summary 
• The system should preferably consist of common off the shelf products. 

• The type of processor should be x86, set as a preset requirement to this project. 
Either IA-32 or IA-64. 

• The preferred format is standard 19 inch rack mounted equipment. 

• The system must be scalable in order to adapt to future demands. 

• The input disk has to be able to receive on average 90 Mbyte/s from loading 
the next pattern and simultaneously deliver 90 Mbyte/s on average to the clus-
ter/NUMA. The storage capacity needed is at least 2 Tbyte. 

• The cluster/NUMA must have an interconnect that can sustain the required 
bandwidth to forward the data read from the input disk plus overhead, see 
Figure 3.5 

• The output disk has to be able to receive 90 Mbyte/s on average from the clus-
ter/NUMA and simultaneously deliver 360 Mbyte/s sustained to the real time 
processing unit.  The storage capacity needed is approximately 5-10 Tbyte. 
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4 Survey of common off the shelf products 

The survey done in this section is not intended to be a complete summary of all avail-
able products. It is merely a brief analysis of products that were thought to be relevant or 
were recommended by other people. This means that not all products in this section proved 
to be suitable for a preprocessing application, neither does this thesis claim to include all 
products available that might be of interest for this project. The analysis of each product is 
in no way complete and is predominantly considered exclusively from a preprocessing 
point of view. 

4.1 OS and software 
The operating system Linux is a preset requirement to this project. However no particu-

lar flavor is specified. The distribution actually does not have a tremendous affect for the 
task of pattern data preprocessing. Things that come into question are the availability of 
updates and support. Some distributions have license fees based on the number of servers. 
These types of recommendations are not part of this project. However it seems to be a good 
choice to choose one of the larger distributions such as Red Hat [10], S.u.S.E. [11] or Man-
drake [12]. Most of these distributors normally offer an enterprise edition that guarantees 
continuous updates and support during a number of years. This type of license is often deb-
ited per year and not a one time cost. 

The only thing that would make a real difference in terms of performance is the kernel. 
Some of the new features in the Linux 2.6 kernel [13] might give considerable improve-
ments. Some improvements are more important than others such as: Support for the new 64 
bit CPUs from AMD. Being able to address disks larger than 2 Tbyte. Address 64 Gbyte of 
RAM through the support of Intel’s Physical Address Extension (PAE) in 32 bit CPUs. 
Greatly improved the support for NUMA systems. Plus many more other improvements 
aimed directly for use in large computer systems with many concurrent threads and proc-
esses. The drawback of the new kernel is that it is new and it will take some time before all 
bugs are sorted out. 

Message Passing Interface (MPI) is my choice for the communication between the clus-
tered computer nodes. MPI is not a product in itself but rather a library specification. The 
MPI specification was developed as a joint effort between a number of companies, labora-
tories and universities. It has a reasonably high level API with possibilities for asynchro-
nous transfers. It is simple to use and is becoming increasingly popular for high perform-
ance computing (HPC). As an effect of this, there are appearing more and more profiling 
tools such as for instance Vampir [14] and other useful development tools. A hardware 
manufacturer of a specific type of interconnect typically supplies its own set of MPI func-
tions that are highly tuned for that specific type of interconnect. I have in my tests used a 
free and general distribution of MPI called MPICH. MPICH is a reference implementation 
of MPI developed by Argonne National Laboratory and Mississippi State University [27]. 
Since it is possible to execute several processes communicating through MPICH on a single 
machine it makes it possible to develop programs on small cheap machines. The same code 
can then later be compiled and executed on a large machine with several clustered com-
puter nodes. 

The choice of compiler is not obvious and is not primarily covered by this project. I 
have used the freely available GNU Compiler Collection (GCC) [15] C-compiler in my 
tests. A few other examples are Borland C++ Builder X [16] and Intel C++ builder for 
Linux [17]. My own subjective belief is that the difference between compilers today is not 
as much the performance, but rather the available support and included development tools. 
Some of the most appreciated professional compilers/development environments tradition-
ally come from Borland and GNU. In other words much the same questions as when decid-
ing for a Linux distribution. 



 A low cost parallel computing system for photomask pattern data preprocessing 

 12

4.2 Motherboard and processor 
The requirements presented in Section 3.3 only give one specific hard demand in this 

area and that is that it should be some form of x86 based hardware. A general goal of this 
project is however to use common off the shelf products. The preferred format is standard 
19 inch racks. Higher density is not an issue neither is power consumption. Hot swap abil-
ity is not required. 

The requirements presented to in Section 3.3 gave two alternatives: a clustered system 
or a NUMA system. I have however discarded the NUMA suggestion at a very early stage. 
The reason is that a NUMA system with the required performance is more expensive and is 
more dynamic than what is needed for this application. The preprocessing program does not 
need to be fine grained and the data is processed in a pipelined fashion. The system can be 
fitted to suit this particular use case without compromises since no other applications will 
run on it. A cluster scales more easily than most NUMA systems. 

Some specific requirements are not specified in Section 3.3 but are nonetheless impor-
tant. The number of PCI slots should be sufficient in order to allow for interconnect and 
disk I/O adapters. The minimum should be at least two high-speed slots. It will most likely 
be sufficient with two 66 MHz/64 bit slots. This assumption is based on the experience with 
the Fibre Channel adapter in Section 5. However the most common choice for high per-
formance PCI today is PCI-X, which will give more than enough throughput capacity. It 
might be a benefit to have more than one PCI-X bus to ensure scalability, but it is not con-
sidered a necessity for the system requirements mentioned in Section 3.3. Many blade serv-
ers today have integrated Gigabit Ethernet adapters. In the case that Gigabit Ethernet would 
be used as interconnect it would loosen the requirements to only one PCI/PCI-X slot. 

The number of CPUs per motherboard is not critical. Two CPUs could be useful for 
multithreading each writing process in the preprocessing program, see Section 6.2. More 
CPUs than two would not be useful other than in an attempt to build a NUMA system. It 
could however be advisable to use a dual CPU node for the reading process even if the 
writing processes are running on single CPU nodes, it depends on how much work has to 
be done in the reading process in terms of load balancing and other pattern data specific 
compensations. 

Perhaps one of the most important requirements is the amount of memory per node, see 
Section 6.1.1 for further explanation. Each CPU card has to be heavily equipped with 
memory. However since each node only executes one critical process all memory has to be 
accessible from that process. This means in the 32 bit case that only 4 Gbyte can be effec-
tively used. This problem does not exist in the case of a 64 bit CPU running a 64 bit pro-
gram. The minimum requirement should be at least 4 Gbyte per node. Memory bandwidth 
should be as high as possible due to the I/O intensive nature of preprocessing. 

There are other benefits of 64 bit processors than just memory addressing. In general 64 
bit calculations are becoming more popular in pattern data file formats at Micronic Laser 
Systems AB. These calculations can be executed quicker leading to a higher throughput ca-
pacity. The drawback is the higher price, however the price difference will most likely de-
crease with time as the number of 64 bit applications increase. 

4.2.1 Suggested products 
All these requirements still leave some reasonably cost efficient alternatives. Almost all 

major computer manufacturers have some suitable 1u or 2u sized servers. Table 4.1 shows 
a selection of alternatives: 
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Table 4.1 A selection of motherboards and processors 

Model: Dell [18] 
PowerEdge 
1750  

Dell [18] 
PowerEdge 
3250  

NEXCOM [19] 
HDB 44722R3  

HP [20] 
Integrity  
rx1600  

HP [20] 
Integrity rx2600  

Format: 1u 2u 5 vertical 
blades in 4u 

1u 2u 

CPUs: 1-2x Xeon 
2.4 – 3.2 GHz 

1-2x Itanium 2 
1.0 – 1.5 GHz 

2x Xeon 
2.4 –2.8 GHz 

1-2x Itanium 2 
low voltage  
1.0 GHz 

1-2x Itanium 2 
1.0 – 1.5 GHz 

Memory: Up to 8 Gbyte 
266MHz ECC 
DDR SDRAM 

Up to 16 Gbyte 
266MHz ECC 
DDR SDRAM 

Up to 4 Gbyte 
266MHz ECC 
DDR SDRAM 

Up to 16 Gbyte 
266MHz ECC 
DDR SDRAM 

Up to 24 Gbyte 
266MHz ECC 
DDR SDRAM 

PCI-X 
slots: 

2x 
133 MHz/64 bit 

1x  
133 MHz/64 bit 
2x 
100 MHz/64 bit 

3x 
133 MHz/64 bit 

2x 
133 MHz/64 bit 

4x 
133 MHz/64 bit 

The Dell PowerEdge 1750 is comparably a low cost server but equipped with two 133 
MHz/64 bit PCI-X slots on two separate busses. It is not the fastest server mentioned in this 
table but it might be cheaper even if clustered with more nodes. 

The DELL PowerEdge 3250 is the more expensive alternative from Dell. Dell recom-
mends it specifically for use in HPC applications.  

NEXCOM HDB 44722R3 is a double sized version of the normal blade servers suited 
for NEXCOM´s 4u sized HS 420 chassis. They have been expanded to give room for up to 
three PCI-X 133 MHz/64 bit slots on a single bus. In total 5 of these blades can be fitted 
within a 4u sized HS 420. 

Due to the limited airflow in a 1u sized server, the HP Integrity rx1600 is equipped with 
two low voltage 64 bit Itanium 2 CPUs. The limited space also affects the I/O connectivity, 
only one of the PCI-X slots is full-length the other one is only half-length. 

HP Integrity rx2600 is slightly more equipped than the rx1600, with faster CPUs and 
higher I/O bandwidth to supply all four PCI-X slots. 

4.3 Interconnect 
The most successful way of building a scalable interconnect fabric is to design it as a 

switched network. A bus can never scale as well since all nodes have to share the same 
physical wires. There are problems with switched networks as well. Hot spots can occur 
especially in switches high up in a tree topology. Using parallel switches in higher levels is 
a costly but effective way of solving this. The most powerful solution, in theory and when 
money is no object, is something called a fat-tree topology and is described in section 4.3.4. 

The interconnect fabric necessary for this project does not need to be a fat tree topology. 
Since all pattern data is delivered from one single computer node it is likely that the node or 
the capacity of the connection between the node and the switch is the bottleneck, rather 
than the switch itself. The system can therefore never be scaled beyond the capacity of a 
connection in the interconnect. The amount of feedback data transferred back from the writ-
ing computer nodes can be neglected in comparison. This means that there is no real risk of 
overloading the switch. 

4.3.1 Gigabit Ethernet 
Gigabit Ethernet (1000BASE-T) [30] is the standard bound to replace Fast Ethernet 

(100BASE-TX) for computer networks. 100BASE-TX sends three-level binary encoded 
symbols across a link at 125 Mbaud; thereby achieving 100 Mbit/s. 125 Mbaud is needed 
since 100BASE-TX uses 4B/5B coding (4 bits of data is sent as a 5 bit code). 100BASE-
TX uses one pair for sending and another one for receiving. 1000BASE-T uses the same 
category 5 cables and the same symbol rate of 125 Mbaud. But 1000BASE-T uses all four 
pairs for sending and receiving simultaneously and a more sophisticated five-level binary 
coding. This sums up to 4pairs x 125Mbaud x 2bit/symbol = 1Gbit/s. This is the theory but 
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in reality 1000BASE-T must compensate for problems caused by echo and crosstalk. Giga-
bit Ethernet is also available over optical fiber. 

Gigabit Ethernet is a very attractive solution for low-end solutions since it is compara-
bly cheap and easy to implement. Most motherboards already have at least one Gigabit 
Ethernet connection, therefore leaving free PCI slots and keeping the form factor small. 
The fact that it is possible to connect Gigabit Ethernet to a Fast Ethernet network makes it 
easy to manage. This allows Gigabit Ethernet to be used as a cluster-interconnect in those 
cases when the bandwidth requirements are not to extreme and the long latency caused by 
the IP protocol could be tolerated.  

The combination of the IP protocol and Gigabit Ethernet gives a possibility to use sev-
eral host adapters to access different subnets. Accessing the different subnets is completely 
transparent from the user level since the routing is done at a lower level. 

10 Gigabit Ethernet [30] is the latest standard in line and provides 10 times the band-
width of normal Gigabit Ethernet. It is currently only available using optical fibers. The 
higher bandwidth should make this the optimum choice in applications where high 
throughput is needed and a longer latency is acceptable. Typically running coarse-grained 
programs with just a few or no synchronizations. 

4.3.2 Myrinet 
Myrinet is a packet switched fabric and low latency protocol designed by Myricom Inc 

[24]. The network interface cards use an on board processor to relieve the main processor 
from work of protocol handling. Historically Myrinet has appeared in bandwidths from 
512Mbit/s to 1.28Gbit/s and the latest version supports 2Gbit/s in each direction at full du-
plex. Dual optical multimode fibers are used for the communication links. Myrinet is an 
ANSI/VITA standard (26-1998). The link and routing specifications are open and can be 
downloaded from Myricom Inc’s web page. 

Myrinet network interfaces are available both in PCI and PCI-X format; the later one is 
equipped with a slightly faster onboard processor. Boxed switches are available in sizes 
ranging from 8 to 128 ports. Myrinet is however scalable up to tens of thousands of nodes 
by combining these switches in tree structures. Each switch is self-installing in the sense 
that there is no need for routing tables and they are capable of handling multiple paths be-
tween hosts. The switches are also available with monitor capabilities through an Ethernet 
connection. 

Myrinet software supports Linux, Windows, Solaris, AIX, MAC OS X, True64, 
FreeBSD and VxWorks. A number of programming APIs are available for Myrinet but they 
are all based on an API called GM. GM is built to “bypass” the operating system making it 
insensitive to what operating system is used. GM only supports a low-level message-
passing communication. MPI is also available as a more standardized message-passing in-
terface; supposedly without any major performance drawbacks compared to pure GM. 
Socket communication is available directly over GM without the TCP/IP stack. However 
both TCP/IP and UDP/IP is possible to use on top of GM but it is not recommended since it 
uses a large amount of host processor time. Other types of middleware like VI and PVM 
are also available over GM; they are however not of interest for this thesis. 

4.3.3 SCI 
Scalable Coherent Interface (SCI) [28] was based on the 1988 IEEE project Futurebus+. 

SCI was finished in 1991 and became an open public ANSI/IEEE standard in 1992. It was 
first thought to replace the traditional processor-memory-I/O bus as well as being a stan-
dard for local area network communication. This never became reality. SCI is a switched 
network with 36 signaling pins per link. The bandwidth has increased over the years and is 
now hundreds of Mbyte/s. Serial optical fibers are available as an alternative to copper. 

It is mentioned in [28] that a lot of people consider SCI to be dead; the author of the 
web page of course rejects this. It is very difficult to find any information on SCI that is not 
older than 3-4 years. This fact makes at least me a bit unwilling to explore it further. One 
way to explore SCI further is to take contact with a provider of SCI solutions such as Dol-
phin Interconnect Solutions Inc. [29]. 
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4.3.4 Quadrics 
QsNet [25] could be considered to be the luxury line of interconnects. Not only due to 

its performance but most of all due to the high level of service provided by the hardware 
and thereby offloading the main CPU. QsNet is a 400 Mbaud 10 bit wide packet switched 
network. A peak bandwidth of 340 Mbyte/s after protocol in each direction is achieved us-
ing parallel copper interconnect. QsNet is designed for SMP systems with the standard PCI 
2.1 I/O bus. 

QsNetII is the next generation using the same 10 bit wide copper connection, now fea-
turing the PCI-X I/O bus and 1.333 Gbaud delivering a peak bandwidth of 900 Mbyte/s af-
ter protocol. QsNetII also offers the possibility of optical connections and thereby extending 
the maximum distance to over 100 m. 

QsNet has the ability to perform I/O to and from paged virtual memory. This allows for 
communication without the need to lock down or copy pages. The data transfer is handled 
by a DMA engine for the output and a hardware handler for input. A dedicated I/O proces-
sor helps to offload the main CPU from protocol handling. The first version of QsNet uses 
a 32 bit virtual address; this limits the amount of directly accessible memory to 4 GB per 
process. QsNetII uses 64 bits for virtual addressing and therefore it does not have this limi-
tation. 

Each switched QsNet network is built from two basic blocks: the programmable net-
work interface Elan and the communication switch Elite. 

Since the network interface Elan is very closely bounded to the hardware the supported 
hosts are quite limited. IA-32 and the latest IA-64 processor architectures from Intel are 
supported as well as True64TM for Alpha processors. The Shmem programming library en-
ables get and put operations to be mapped directly to remote read and write hardware 
primitives. Quadrics MPI is a complement to the NUMA environment provided by Shmem. 
Quadrics MPI is an optimized version of MPI 1.2 and is based on MPICH from Argonne 
National Laboratory. One-sided communications, as defined in MPI-2 [26], is also sup-
ported but not the complete MPI-2 standard as a whole. In the case that optimum perform-
ance is desired despite the loss of portability, it is possible to use Quadrics native commu-
nication library – libelan. 

A QsNet network is built up from a number of 8 port switches. The heart of each switch 
is the Elite chip. These switches can be combined into a fat-tree topology that scales the 
number of nodes in powers of 4, reaching at most 4096 nodes for QsNetII and 1024 for 
QsNet. In each stage there are 4 different routes up the tree and 4 nodes/switches down. 
This gives a network with a bandwidth that scales linearly with the number of nodes. Each 
packet is routed in the least loaded path. This gives good performance as well as reliable 
redundancy since disabled links will be circumvented. In the case of a broadcast the packet 
is routed up to the point that the complete broadcast range is reachable. Then the packet is 
automatically copied and sent down the branches. The acknowledgements from the recipi-
ents will be recombined as they go back the same way, so that a broadcast will only suc-
ceed when all destination have been reached. This type of hardware broadcast allows for an 
easy implementation of barrier synchronizations that are properly scalable. 

In [26] it is shown in benchmarks that the latency can be as low as 2 µs and the band-
width as high as 335 Mbyte/s. These are however very brief benchmarks and only concerns 
QsNet and not QsNetII. 

4.3.5 InfiniBand 
InfiniBand is a serial I/O, channel based, packet switched fabric developed by the In-

finiBand Trade Association [21]. The InfiniBand Trade Association was formed in August 
1999 by a group of 7 companies. Currently it consists of more than 190 companies includ-
ing some really well known ones such as: Hewlett-Packard, IBM, Dell Computer Com-
pany, Hitachi, Intel Corporation, Motorola Computer Group, Sun Microsystems and many 
more. The first specification was finished in October 2000. IDC has estimated that 50% of 
all servers will be using InfiniBand by 2005. 

InfiniBand is offered in three different bandwidths 2.5 Gbit/s and 10 Gbit/s today and a 
road map up to 30Gbit/s. It is also possible to use it not only on boards but both copper 
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(<17m) and optical fiber (<10km) as well [21]. InfiniBand uses its own protocol, covering 
the physical, link, network and transport layers. The protocol also features 128 bit ad-
dresses, with 16 bits for each subnet. This protocol also enables a very low latency as well 
as features like remote direct memory access (RDMA). Other projects like SVP, which 
aims to map SCSI over InfiniBand, are also forming [23]. 

In the initial state, InfiniBand is being deployed on PCI-X adapter cards. However the 
members of InfiniBand Trade Association expect to start producing native InfiniBand im-
plementations as the technology evolves. All the members will then produce a wide variety 
of compatible products [21]. 

Mellanox Technologies [22] is a company specialized on delivering InfiniBand hard-
ware solutions. Their current InfiniHost device is supported by several MPI software 
sources: MPI/Pro from MPI Software Technology, OSU MPI from Ohio State University, 
NCSA MPI from NCSA and Scali MPI Connect from Scali. Scali also deliver software for 
cluster management. 

4.3.6 Summary 
A short summarizing table of comparison is presented in Table 4.2. The table shows the 

bandwidth with the protocol overhead included, with an exception for Quadrics QsNet. The 
latency is also shown in those cases the latency is presented by the manufacturer. The me-
dium of the interconnect is shown in the table, whether it is copper wires or optical fibers. 
The row labeled network specifies what type of network structure it supports, whether the 
network is switched or not and if the network supports multiple paths. The table also shows 
if specialized MPI libraries are available. In some cases the manufacturers themselves pro-
vide a specially designed MPI library that is highly tuned specifically for their type of in-
terconnect. 

There are in some cases several generations of the same basic interconnect. The differ-
ent generations are presented on individual lines in those cases, except for the network and 
specialized MPI rows. 

Table 4.2 A comparison of the available interconnects 

 Gigabit 
Ethernet  

Myrinet  SCI Quadrics 
QsNet 

InfiniBand  

Bandwidth: 1 Gbit/s 

10 Gbit/s 

512 Mbit/s 

1.28 Gbit/s 

2 Gbit/s 

1.6 Gbit/s 2.7 Gbit/s 

7.2 Gbit/s 

(After protocol) 

2.5 Gbit/s 

10 Gbit/s 

30 Gbit/s 

Latency: ~50 µs 

? 

10 µs 

10 µs 

? 

5 µs 2 µs ? 

4.5 µs 

? 

Medium: Copper/Fiber 

Fiber 

Fiber 

Fiber 

Fiber 

Copper/fiber Copper 

Copper/Fiber 

Copper/Fiber 

Copper/Fiber 

Copper/Fiber 

Network: Switched 

Multiple paths 

Switched 

Multiple paths 

Switched 

? 

Switched 

Multiple paths 

Switched 

Multiple paths 

Specialized 
MPI: 

No Yes ? Yes Yes 

The different latency values presented in this table are measured, under what must be 
presumed to be slightly different conditions, by the individual manufacturers. The latency 
values should therefore only be considered to be approximate. The latency is commonly 
measured when transferring a small message of just a few bytes. 

It is possible to argue about whether Gigabit Ethernet supports multiple paths or not. A 
Gigabit Ethernet switch in a LAN can support aggregated links, according to the IEEE 
802.3ad standard, while a large Internet router may support multiple paths in general. 

4.4 Disk 
The disks in a preprocessing system are traditionally the given bottleneck. It is also by 

far the most expensive part of the whole system. The disk products discussed in this section 
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will be primarily the output disk, described in Section 3.1. Even though some of the infor-
mation gather in this section might be of use for the input disk it is not directly addressed. 

The basic idea is to use some form of host adapter in each of the computer nodes. Fibre 
Channel is a not too unlikely type of adapter that could be used. This means that all writing 
nodes are connected to the output disk individually. 

It is not a necessity that the output disk is a single disk system. The disks do not have to 
work as a switch, which means that each disk system can be treated as a closed channel. A 
channel with a writing node in one end and an extraction node in the other. Splitting the 
output disk into several smaller disk systems might also save money since the price for disk 
arrays often increase almost exponentially relative the performance. 

4.4.1 RAID in general 
Redundant Array of Independent Disks (RAID) is the most common way of achieving 

high redundancy and bandwidth with disks. Just a Bunch Of Disks (JBOD) is the base of 
any RAID. The point of interest is not the disks but rather the storage processor. The stor-
age processor is often the bottleneck in larger high performance RAIDs, depending on how 
the different RAID levels are implemented in the storage processor. Below follows a short 
reminder of the different RAID levels [33]: 

RAID level 0: This is not really a true RAID since there is no redundancy. The data is 
striped over the available disks, resulting in a very high throughput. Since no redun-
dant information is stored the available disk volume is used with maximum effi-
ciency. The storage processor only has to push data without doing any calculations 
and can therefore be quite simple and cheap. 

RAID level 1: The opposite of RAID level 0, all data is duplicated over all available 
disks. The throughput is not increased compare to a single disk but with good redun-
dancy. Since the data is just duplicated as it is, there is no need for a fast storage 
processor and there is no reconstruction necessary if a disk would fail. The disk vol-
ume is used very inefficiently since the storage capacity never will be greater than 
one single disk. 

RAID level 2: This method could be used when the disk lacks a built in error correc-
tion. Each word that is written to a disk generates a Hamming error correction code 
(ECC) that is saved on separate disks. Each time a word is read the respective ECC 
is read, compared and if necessary the word is corrected. This is hardly ever used 
since any modern SCSI disk has built in error correction. 

RAID level 3: Similar to RAID level 4, but working on a byte level rather than blocks. 
Each byte has its own parity saved on a separate disk. This demands for specialized 
hardware in order to get a high throughput. But with a specialized hardware it is 
faster than RAID level 4 for small random writes since the parity does not need to be 
calculated on complete blocks. Otherwise the pros and cons are about the same as for 
RAID level 4. 

RAID level 4: The data is striped on a block level over several disks and the parity is 
saved on one specific disk. This allows for data to be rebuilt in case one disk fails, it 
is however both difficult and inefficient. Writing requires a fast storage processor in 
order to get a high throughput, especially with small random writes. Reading is much 
faster and is comparable with RAID level 0. The disk volume is used quite effi-
ciently due to the low number of parity disks. 

RAID level 5: Striped on a block level, similar to RAID level 4 but without a specific 
disk for parity. The parity is distributed over all disks instead of on just one. The disk 
volume efficiency is the same as for RAID level 4. The time for rebuilding lost data 
might be faster since parities could be read from different disks in parallel. 

RAID level 6: Very similar to RAID level 5 but with a two-dimensional parity dis-
tributed over all disks. This allows for continuous operation even in case of multiple 
disk failures. These parity calculations sets very high demands on the storage proces-
sor and results in a lower write performance and lower disk volume efficiency com-
pare to RAID level 5. 
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RAID level 7: Unlike the other RAID levels this one is not an industry standard. It is a 
one vendor proprietary solution. It could be described a combination of RAID level 
3 and 4 but enhanced in order to counter the downsides of these RAID levels. A 
great deal of cache is added and a real time processor handling the parity asynchro-
nously. This is a fast and efficient solution but also expensive and only supported by 
one vendor. 

Dual levels: RAID levels can be combined in more than one level. For example two 
RAID level 1 arrays can be combined as a RAID level 0. In this way combining the 
strengths of both types, this combination is often called RAID level 0+1 or 10. Other 
used combinations are 50 and 30, the later one is often mistakenly called 53. 

4.4.2 Fibre Channel in general 
Fibre Channel [34] is designed to allow constructions of Storage Area Networks 

(SANs). The underlying fabric can either be single or multimode optical fiber, but also sup-
ports twisted pair and coaxial cable. The structure of the fabric can either be directly point-
to-point, switched or an arbitrated loop. A Fibre Channel loop can at most include 127 
nodes. 

The Fibre Channel Protocol (FCP) uses serialized SCSI commands inside Fibre Channel 
frames. IP is also used to allow for SNMP network management. Fibre Channel uses the 
same physical layer as Gigabit Ethernet and an 8B/10B encoding. In general, FCP is opti-
mized for large block transfers as opposed to IP, which is optimized for small blocks. 

The most common transmission rate is 2.125; which gives a total throughput of 400 
Mbyte/s for a duplex connection. There are also specified versions of up to 2400 Mbyte/s 
mentioned on [34]. 

4.4.3 Dell|EMC CLARiiON CX-series 
The Dell|EMC CLARiiON CX-series [18] [35] is a disk array capable of operating as 

direct attach storage (DAS) or in a storage area network (SAN) or to Dell PowerVault net-
work attach storage (NAS) (only the CX600). All disk arrays in the CX-series support hot 
swap, hot sparing and RAID 0, 1, 10, 3 and 5. A standby power supply is available in order 
to protect the data in the cache in case of a power failure. The CX200 and CX400 are both 
upgradeable without disruption. For instance a CX200 can be upgraded to a CX400 or a 
CX600 without loosing any data or turning of the system or stopping host access to data. 

The Dell|EMC CLARiiON CX200 can hold a maximum of 30 Fibre Channel disks in 
two separate 3u sized units. Two separate Fibre Channel interfaces can be accessed through 
two switches giving a maximum of four directly connected servers. It is however possible 
to attach up to 15 hosts to a single disk array in a SAN. The two storage processors can 
handle at most 15000 I/O operations/s and a bandwidth of 200 Mbyte/s. Each storage proc-
essor is equipped with an 800 MHz Intel Pentium III and 512 Mbyte of cache, i.e. a total of 
1 Gbyte of cache in a storage system. A smaller version of the CX200 is also available. It 
has only one storage processor and is able to handle at most 15 disks. 

The Dell|EMC CLARiiON CX400 is a larger version with up to 60 disks in a total of 
four 3u sized units. Four separate Fibre Channel interfaces are available on the front. Con-
nectivity between the 3u sized disk units is done through 4 separate Fibre Channels along 
the back. The two storage processors can handle up to 60000 I/O operations/s and a band-
width of 680 Mbyte/s. Each storage processor is equipped with an 800 MHz Intel Pentium 
III and 1 Gbyte of cache, a total of 2 Gbyte in a storage system. 

The Dell|EMC CLARiiON CX600 is the largest version with up to 240 disks in a total 
of sixteen 3u sized units. Four separate Fibre Channel interfaces per storage processor 
available, i.e. a total of eight separate Fibre Channel interfaces on the front. Connectivity 
between the 3u sized disk units is done through 4 separate Fibre Channels along the back. 
The two storage processors can handle up to 150000 I/O operations/s and a bandwidth of 
1300 Mbyte/s. Each storage processor is equipped with dual 2 GHz Intel Pentium IV Xeon 
processors and a maximum of 4 Gbyte of cache, a total of 8 Gbyte in a storage system. 
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Right at the end of this thesis project a new improved series of disk arrays replaced the 
old one. The CX200, CX400 and CX600 were replaced by the CX300, CX500 and CX700 
respectively. 

4.4.4 Just a Bunch Of Disks (JBOD) 
VMETRO [36] is a provider of board-level solutions for high-performance embedded 

real-time systems. Their solutions are based on industry standards like VMEbus, RACE++/ 
RACEway, PCI-X/PCI and Fibre Channel. They offer, among other things, a series of real-
time data recorders based on a Fibre Channel JBOD and an interface adapter. These record-
ers are normally used to record raw data from radars, sonars etc. This type of recorder could 
be adapted to fit the needs for pattern preprocessing. 

Each JBOD consists of 7+7 Fibre Channel disks on a split backplane. The data is striped 
over all disks in a RAID level 0 configuration for maximum performance. It is possible to 
connect up to 4 separate 2Gbit/s Fibre Channels to a JBOD. The disks could be accessed 
through a common Fibre Channel adapter or via VMETRO’s own designed Custom Pro-
grammable – MIDAS Data Recorder (CP-MDR). The CP-MDR is based on the VME form 
factor and can be fitted with a variety of connections like RACE++ and Serial-FPDP. 

The disk solution offered by VMETRO [36] is based on the idea of three separate 
JBODs. At the input side are all JBODs accessed through the same 2Gbit/s Fibre Channel 
loop via a PCI Fibre Channel adapter on the SUN/PC hardware. The output from each 
JBOD would consist of dual 2Gbit/s Fibre Channels per JBOD, one per half of each back-
plane. These would be leading to three parallel CP-MDR cards as an interface with one 
2.5Gbit/s Serial-FPDP per card as the output. 

Figure 4.1 A specialized JBOD solution by VMETRO 

The reasons for the CP-MDR cards are not only due to performance but also that the ex-
traction nodes on the Mercury system lack the option of Fibre Channel connectivity. 
VMETRO offers a specially designed API designed for the Mercury platform. This will al-
low for the extraction nodes to request data directly from the CP-MDRs. 

From a Solaris/Linux point of view the disks appear as unformatted individual Fibre 
Channel disks. The disks are accessed through a software API that stripes the data over the 
raw disks. A separate lightweight file system per JBOD, only accessible through the API, is 
used. Files cannot be fragmented and must therefore be pre-allocated before starting to 
write. A file can however either be truncated or extended depending on the needs. When 
extending a file there must not be another file directly following the current file or it will be 
overwritten. Each file is described in the file allocation table by a start position, an end po-
sition and a number of attributes. The benefit of this lightweight file system is the possibil-
ity of high and predictable performance. 

There are a few other values that could be used in order to tune the performance of the 
system. The size of the stripe blocks could be reduced in order to distribute the workload 
among the disks. On the other hand smaller stripe blocks could be expected to give a re-
duced performance per disk. Enlarging the read and write blocks from the application 
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would also lead to better possibilities for load distribution and performance. A quite unique 
feature available in this API is the possibility to do disk operations asynchronously. Each 
disk operation is set up similarly to a DMA transfer. Hence by using a method of multiple 
buffers it would be possible to set up a number of concurrent asynchronous disk operations. 
Queuing a larger amount of the asynchronous read and write requests would lead to a better 
load balance, since they could be executed concurrently over the disks. This method for 
load distribution combined with larger read and write blocks would reduce the need for 
smaller stripe blocks, hence increasing the performance of each individual disk. 

VMETRO [36] has made a preliminary benchmark based on the demands for a pattern 
preprocessing system. The test was conducted on a single JBOD with 7+7 disk, one Fibre 
Channel input and dual Fibre Channels converted to a single Serial-FPDP output, i.e. one 
third of the complete system described above. The benchmark was done with simultaneous 
reads and writes of 1Mbyte blocks. The result was 90Mbyte/s sustained writing and 
225Mbyte/s sustained reading. However VMETRO warns that the writings could be limited 
on a PCI card and they mention figures around 85Mbyte/s on SUN hardware. These figures 
for an individual channel are highly relevant since the system scales linearly with size. If 
the performance is too low another JBOD could be added without any major overhead. 
These benchmark figures show that the performance needed for pattern preprocessing could 
be achieved with just two JBODs, however VMETRO recommends one extra JBOD as a 
safety margin. 

In order to use the performance offered by this system the preprocessing software has to 
be adapted, both in terms of the API but also to balance the load between the JBODs. The 
load balance could be satisfied by adjusting the number of FMBs (described in Section 2.3) 
to be evenly divided by the number of JBODs. 

4.4.5 Distributed local disk 
An interesting idea to solve the scalability issue of the storage problem is to distribute 

the disks among the computer nodes [37]. This can either be done with all disks connected 
in a dedicated storage area network, called a shared-disk architecture or it can be done with 
a general purpose network, called partitioned-disk architecture. 

The most interesting version in this case is the partitioned-disk architecture, since there 
is already a need for a high capacity interconnect. The usual way of doing this is select a 
number of nodes to be disk servers. All data written to the disks are then load balanced 
among these disk servers. This includes metadata as well. It is possible to distribute the data 
using some RAID level in order to gain redundancy. 

It is also feasible to make all nodes active disk servers. This will increase the storage 
capacity but also increase the workload for the processors. Software controlling this type of 
distributed disk system is quickly getting very complex. How to reach and view such a file 
system from outside the clustered computer nodes is not obvious. 

There are however a few practical problems. A normal 1-2u sized server only has room 
for 2-3 SCSI disks. An estimated preprocessing system only needs a handful of computer 
nodes. This means that the number of computer nodes needs to be increased just in order to 
get enough storage space. Assuming that the input disk and the output disk specified in Sec-
tion 3 are implemented as a distributed disk solution. This would mean that the distributed 
disks would have to deliver 90 Mbyte/s + 360 Mbyte/s = 450 Mbyte/s while receiving 90 
Mbyte/s + 90 Mbyte/s = 180 Mbyte/s, in total a combined capacity of 630 Mbyte/s. Hence 
it is likely that the system has to be scaled up considerably in order to deliver enough 
throughput capacity to and from disk. 

I have decided not to investigate more into this matter due to extreme difficulties in pre-
dicting a possible throughput capacity and to the unnecessarily complex nature of the solu-
tion. Distributed disks are not specifically aimed for applications where data is read only 
once in one end and written in the other. Applications suited for distributed disks are more 
like for instance large databases. 
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4.5 Conclusions 
A general advice when building the computer cluster would be not to build it symmetri-

cally but to use a computer node that is as fast as possible for the reading process and com-
puter nodes with a lot of memory for the writing processes. 

It should give enough performance to build a cluster using a handful of servers 
equipped with dual Xeon processors and standard Gigabit Ethernet as the interconnect. In 
order to guarantee the performance it might be necessary to use more than one Gigabit 
Ethernet adapters from the input node and divide the processing nodes into subnets, illus-
trated in Figure 4.2 (left). This would mean that the available bandwidth between the sub-
nets is quite limited, but this is acceptable since there is no obvious reason for the process-
ing nodes to interact with each other. The scalability of this solution largely depends on 
how many Gigabit Ethernet adapters can be added to the input node and how much per-
formance the input node can deliver. For a reasonably small number of processing nodes it 
might be enough with one subnet, one switch and an IEEE 802.3ad compatible adapter card 
with two or four load balancing ports, illustrated in Figure 4.2 (right). A general assumption 
for all these cases is that one Gigabit Ethernet adapter per processing node gives more than 
enough bandwidth to provide the processing nodes with pattern data. 

Figure 4.2 A computer cluster using two separate subnets (left) and a computer cluster with 
a single net but with a load balancing Gigabit Ethernet adapter (right) 

If it becomes necessary to build an even more scalable system my choice would be to 
use a combination of Itanium 2 processors and InfiniBand. For instance a HP rx2600 for the 
reading process and a few HP rx1600 for the writing processes. 

When 10 gigabit Ethernet becomes widely available it might be the optimum choice as 
interconnect for preprocessing. Common for all these configurations is that the same prop-
erly written code with MPI can be compiled and executed on any of these systems. 

The hardest challenge is however not the choice of computer nodes or interconnect but 
the disks. DELL|EMC, see Section 4.4.2, proposed a disk solution for the preprocessing 
system based on a CX200 with 15 disks as the input disk and a CX600 with 105-120 disks 
as the output disk. Since the solution was based on slightly misunderstood grounds, I will 
not go deeper into it. Even though the misunderstanding has been cleared out they have not 
delivered a new proposition before the end of this project. The new solution for the output 
disk would at least not be smaller and the already proposed solution costs about three times 
as much as the VMETRO solution, presented in Section 4.4.4. 

Since the cost of disk arrays, like most other computer hardware, increase almost expo-
nentially with performance; it might be a good idea to distribute the workload over several 
smaller disk arrays. One example of doing this would be to connect one CX200 to each 
computer node running a writing process. DELL|EMC mentioned, in their presentation of 
the previously mention solution, that a CX200 with 15 disks can handle at least 90 Mbyte/s 
in and out simultaneously. This means that four moderately equipped CX200s would be 
enough in terms of performance and storage capacity and it would be a completely scalable 
solution. The same idea could also be realized with one or two CX400 disk arrays. The 
immediate drawbacks are the increased maintenance for the larger number of independently 
configured subparts and the increased demands of proper load balance between the writing 
processes. The last problem is however already unavoidable in the case of the VMETRO 
solution. 
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The most cost effective solution is the one from VMETRO. Perhaps one of the most 
important benefits of this solution is that the pattern data is read and forwarded by CP-
MDR cards instead of by one or several computer nodes. This means that it is more pre-
dictable and easier to guarantee the throughput capacity of the system. The system is origi-
nally designed for a very similar task and does not include unnecessary and costly features. 
The solution is however not without drawbacks, the lack of a fragmenting file system is 
most noticeable and increases the development time and costs for the preprocessing pro-
gram. The solution lacks the possibility for any other RAID level other than RAID 0. 
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5 A preview of the JBOD 

VMETRO [36] agreed to give a demonstration of their custom designed JBOD solution. 
A closer description of the solution and the included parts are presented in Section 4.4.4. 
Note that this is only to be considered to be a preview of the specialized JBOD. Due to 
some limitations in the software used the disks could not be loaded with enough writing 
operations, thereby limiting the relevance of these tests. New software are however under 
development at VMETRO. 

This preview aims to verify the possibility of using this JBOD solution as the output 
disk, as described in Section 3.1. Thus meeting the requirements of 360 Mbyte/s reading 
and 90 Mbyte/s writing concurrently. Each test setup represents one third of the complete 
system, hence the required goal is 120 Mbyte/s reading and 30 Mbyte/s writing concur-
rently. 

Kjartan Mikkelsen, Bengt-Olof Larsson and I did the tests during December 2003 and 
January 2004 at Micronic Laser Systems AB in Täby, Sweden. Kjartan Mikkelsen is a de-
veloper from VMETRO and Bengt-Olof Larsson is from VSYSTEMS, which is an affiliate 
of VMETRO. 

5.1 Test setup 1 
This test setup, as seen in Figure 5.1, was provided entirely by VMETRO. 

Figure 5.1 Test setup 1 of the JBOD preview 

5.1.1 Hardware 
Due to the linear nature of the solution during scaling it was considered enough to test 

the performance of one JBOD and one CP-MDR. 

The JBOD (EL-SB2G) was fitted with 12 Seagate Cheetah 10000 rpm disks. Ten disks 
were 73 Gbyte in size (ST373405FC, firmware rev 38) while two where 36 Gbyte 
(ST336605FC, firmware rev 0002). The disks were set up as a single disk group, without 
splitting the backplane. 

A VMFC 2300p (QLogic) Fibre Channel host adapter was installed in a desktop PC on 
a 33 MHz 32 bit PCI slot. The PC was equipped with a 500 MHz Pentium III processor and 
100 MHz sdram. The desktop PC was installed with Windows 2000 professional. 

A CP-MDR equipped with a Fibre Channel PMC was controlled by the desktop PC 
through a RS-232 connection. A VME rack was used in order to power the CP-MDR. 

5.1.2 Software 
Since there were no extraction computer to acquire any data, all data requests by the 

CP-MDR was generated on the CP-MDR itself. These requests were generated by a pro-
gram loop on the CP-MDR. The program was controlled through the RS-232 connection. 
This program is part of VMETRO’s standard set of test tools. In order to load the disks 
properly read positions were varying between the start and the end of a 20 Gbyte file. 
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The available variables for the tests were the read block size, the number of concurrent 
asynchronous read operations and the number of read iterations. The stripe block size was 
fixed to 512 kbyte. 

A C++ program with the CP-MDR API running on the desktop PC was used to write to 
the JBOD. The reason for using Windows instead of Linux is that the CP-MDR API has not 
yet been adapted for Linux. Since VMETRO had expressed that the PCI bus on the desktop 
PC was expected to be the limiting factor, no great efforts were made to achieve high per-
formance but rather just to load the disks as much as possible. Each write operation was 
done synchronously with a 1 Mbyte block varying the position between the end and the 
start of the 20 Gbyte target file. Just the number of write iterations was altered during the 
tests in order to match the time of the read sequence. 

5.2 Tests 
In Table 5.1 and Figure 5.2 follows the measured results of the tests, as the CP-MDR 

and the program running on the desktop PC presented them. The two main parameters for 
the test were the read block size and the number of concurrent read operations. The third 
parameter, the number of read iterations, was increased as much as possible within reason-
able execution time. The resulting values from the tests were the read bandwidth and the 
standard deviation of the read bandwidth. The write bandwidth was also measured, how-
ever the values are not that relevant due to the adverse conditions under which the write op-
erations were conducted. 

Table 5.1 Test results from the preview of the specialized JBOD. 

Block size Concurrent Iterations Read Std Write

/(Kbyte) reads /(Mbyte/s) /(Mbyte/s) /(Mbyte/s)

1024 8 500 242 3,9 24,9

1024 16 500 316 10,2 26,7

1024 32 500 377 8,1 28,1

1024 64 500 377 13,2 27,9

512 8 1200 186 1,4 34,0

512 16 1200 248 6,3 30,5

512 32 1200 330 6,0 29,5

512 64 1200 373 14,4 24,8

256 8 1800 134 21,0 38,0

256 16 1800 194 36,2 31,3

256 32 1800 229 3,6 26,2

256 64 1800 315 8,4 29,3

128 8 2500 90 12,7 41,3

128 16 2500 108 5,1 36,4

128 32 2500 138 4,3 38,3

128 64 2500 185 3,6 38,4

64 8 3000 73 19,0 43,2

64 16 3000 89 28,3 43,0

64 32 3000 128 41,0 50,0

64 64 3000 117 12,4 40,7

32 8 5000 56 17,0 47,2

32 16 5000 64 20,9 44,0

32 32 5000 80 27,6 43,6

32 64 5000 85 28,7 40,7  
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Figure 5.2 The read bandwidth (left) and the write bandwidth (right) as a function of 
read block size and read operations. 

5.3 Analysis 
The high standard deviation values and variations of the same could be explained by the 

method in which the test programs were executed. Both the test loop on the CP-MDR and 
the desktop PC were started manually. Hence they were not always started at the exact 
same time. The execution times, for the two programs, were matched manually by adjusting 
the number of read and write iterations. If this is not done perfectly one of the programs has 
a short period of time with unrestricted disk access. 

VMETRO mentioned during the tests that they in the best conditions experience a com-
bined, read plus write, bandwidth of 420 Mbyte/s. This is roughly what these tests show as 
well. A read bandwidth of over 350 Mbyte/s, as seen in these tests, should not be confused 
with how much real bandwidth the CP-MDR can deliver on the output. The 2.5 Gbit/s S-
FPDP first of all limits the output. But there is also an internal limit; the internal PCI bus on 
the CP-MDR does not handle more than 220 Mbyte/s. This leaves a theoretical 200 
Mbyte/s of the combined bandwidth in the JBOD for writing. 

There was, at the time for this test, no API that could generate several concurrent write 
operations. This in combination with the supposedly slow PCI bus limits the bandwidth. 
Sequential write operations are affected more easily by read operations than the average of 
several concurrent write operations. 

5.4 Test setup 2 
VMETRO and Micronic Laser Systems AB combined equipment to provide the second 

test setup. The most noticeable differences between this setup and the previous one is that 
this time Micronic Laser Systems AB provided a Sun Fire V880 with a considerably faster 
PCI bus. The disks were also replaced, since VMETRO was unable to bring the same disk 
as used in the previous session. The number of disks was also slightly reduced from 12 in 
the previous test to 10; this should be compared to a fully equipped JBOD that has 14. 

The reason for this second test was to lay more effort into writing to the disks. To verify 
that it really would be possible to push 90 Mbyte/s of data to the JBODs in the final system. 
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Figure 5.3 Test setup 2 of the JBOD preview 

5.4.1 Hardware 
Like in the previous test the performance was tested with just one JBOD and one CP-

MDR. 

The JBOD (EL-SB2G) was fitted with 10 Seagate Cheetah 10000 rpm disks, 36 Gbyte 
in size (ST336607FC, firmware rev 0004). The disks were set up as a single disk group, 
without splitting the backplane. 

A VMFC 2300p (QLogic) Fibre Channel host adapter was installed in a Sun Fire V880 
on a 66 MHz 64 bit PCI slot. The Sun Fire V880 was equipped with two UltraSPARC III 
processors at 1050 MHz and 4 Gbyte (150 MHz and 8-way interleaved) of DIMMs. Sun 
Solaris 9 was installed. 

A CP-MDR equipped with a Fibre Channel PMC was controlled by a laptop PC through 
a RS-232 connection. A VME rack was used in order to power the CP-MDR. 

5.4.2 Software 
Since there was still no extraction computer to acquire any data, all data requests by the 

CP-MDR was generated on the CP-MDR itself. This program is part of VMETRO’s stan-
dard set of test tools. In order to load the disks properly read positions were varied between 
the start and the end of a 20 Gbyte source file. The possible parameters for the tests were 
the read block size, the number of concurrent asynchronous read operations and the number 
of read iterations. The stripe block size was fixed to 512 kbyte. 

A C++ program, using an old version of the CP-MDR API running on the Sun Fire 
V880, was used to write to the JBOD. The old API did not support asynchronous disk op-
erations. This off course limits the practical writing performance. A second problem was 
that VMETRO did not have a suitable test program for Solaris that could generate data 
from RAM and write directly to the JBOD. The only program available copied a file from 
the local disk on the Sun Fire V880 and wrote it to the JBOD. When this was clarified at 
the day of the test a programmer at VMETRO in Norway started to make a “quick and 
dirty” fix. Unfortunately the fixed program that could write directly from RAM arrived too 
late to enable any extensive test series but we were able to do at least a few. This program 
still used the old API and was therefore not able to do asynchronous disk operations. 

5.5 Tests 
The first tests presented in Table 5.2 and Figure 5.4 was done with the first program that 

read from the local disks on the Sun Fire V880. A temporary file of 1 Gbyte was created on 
the Sun Fire V880 and transferred repeatedly to the JBOD. There were no reasonable way 
of starting and stopping both the reading and writing programs at exactly the same time 
since they were executed from different machines. The solution was to do each measure-
ment twice. First with unlimited writing time and limited reading time and then vice versa. 
This means that the number of iterations listed in Table 5.2 only represents the limited read 
operations. The write measurements are the results of transferring the 1 Gbyte file once. 

Preprocessing 

Sun Fire V880 
 
 
 
 

Solaris 

VMFC-
2300p, 
FC i/f 

CP-MDR 

2 Gbit/s 
FC loop 

Dual 2 Gbit/s FC 

5+5 

RS-232 Laptop PC 



 A low cost parallel computing system for photomask pattern data preprocessing 

 27

Table 5.2 Test results from the second test of the JBOD 

Block size Concurrent Iterations Read Std Write

/(kbyte) reads /(Mbyte/s) /(Mbyte/s) /(Mbyte/s)

1024 8 1000 288 3,4 25,5

1024 16 1000 360 4,9 12,0

1024 32 1000 409 1,9 4,5

1024 64 1000 399 3,4 4,2

512 8 2500 203 2,2 34,3

512 16 2500 290 2,8 28,9

512 32 2500 360 2,2 16,3

512 64 2500 403 1,7 8,5

256 8 3000 140 3,1 37,9

256 16 3000 218 3,4 37,9

256 32 3000 308 0,8 26,8

256 64 3000 361 3,1 18,4

128 8 4000 120 2,3 61,1

128 16 4000 156 6,1 52,4

128 32 4000 242 6,7 37,9

128 64 4000 316 6,6 28,9

64 8 4000 91 6,4 68,7

64 16 4000 64 2,4 57,9

64 32 4000 91 1,7 55,0

64 64 4000 133 3,8 52,4

32 8 5000 62 1,2 47,2

32 16 5000 64 2,3 44,0

32 32 5000 53 0,9 43,6

32 64 5000 68 3,4 40,7  
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Figure 5.4 The read bandwidth (left) and the write bandwidth (right) as a function of 
read block size and read operations. 

Table 5.3 shows the few measurements we had time for with the fixed program. This 
program can be considered to be equal to the program used on the desktop PC in Section 
5.1. One of the tests done was to write to the JBOD without reading at the same time. This 
was done in order to get an idea of the maximum capacity of the Fibre Channel host adapter 
and the Sun Fire V880. It is however likely that the disks could still be the limiting factor. 
The reason is that with 1 Mbyte write blocks and 512 kbyte stripe size only two disks were 
accessed at each disk operation. 
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Table 5.3 Test results when writing directly from RAM 

Block size Concurrent Iterations Read Std Write

/(kbyte) reads /(Mbyte/s) /(Mbyte/s) /(Mbyte/s)

512 8 2000 209 7,5 42,9

256 8 3000 194 4,1 56,5

0 0 0 0 0 107,4  

5.6 Analysis 
This method of doing each measurement twice drastically reduced the high levels of 

standard deviation seen in the first test; compare Table 5.2 with Table 5.1. 

Studying Table 5.3 makes it clear how much the synchronous write operations suffer 
from the asynchronous read operations. The right-hand graph in Figure 5.4 shows the same 
thing with a write bandwidth of 4 Mbyte/s during the highest read loads. 

It should be emphasized again that a read bandwidth of 350-400 Mbyte/s is not possible 
to get out from the CP-MDR. The local PCI bus on the CP-MDR is the narrowest bottle-
neck with a bandwidth of 220 Mbyte/s. This means that it should be plenty of disk band-
width left for writing. 

A write bandwidth of over 100 Mbyte/s when not loading the disks with read opera-
tions, proves that neither the Fibre Channel host adapter nor the Sun Fire V880 is the limit-
ing factor. This means that the system could be scaled beyond one JBOD in order to 
achieve higher performance. This also indicates that it is likely that the write performance 
would increase considerably if asynchronous write operations could be used. 

5.7 Conclusions 
The specified demands of 120 Mbyte/s reading and 30 Mbyte/s writing bandwidth per 

JBOD are clearly within reach. This refers to the in Section 3.1 defined requirements of 360 
Mbyte/s read and 90 Mbyte/s write bandwidth divided by three. 

It is possible to improve performance by adjusting the different parameters, as predicted 
in Section 4.4.4. It is however apparently not a matter of fine-tuning but rather a necessity 
in order for the whole concept to work. 

The limited capacity of the CP-MDR and the S-FPDP interface guarantees that the write 
operations cannot be starved. Neither the single 2 Gbit/s Fibre Channel loop on the input of 
the JBODs can by it self starve the read operations. These limitations should in theory limit 
the need for any supervised load balancing between read and write operations. 

There are a few things in theory that could be done in order to improve the read and 
write performance. The stripe size could be reduced to 256 kbyte or even 128 kbyte. This 
should help if it is difficult to achieve a high number of concurrent disk operations, since it 
will distribute each operation over a larger number of disks. This could also be useful if it is 
difficult to achieve large read and write blocks. A smaller stripe size could however also 
limit the maximum capacity of a JBOD. Another improvement that could be done is to ad-
just the alignment of the data. This is actually done in the tests above. This means that a 1 
Mbyte block would be written to just two disks, given a stripe size of 512 kbyte, instead of 
to three disks, which would be the most likely case. 

The performance could, on a more global scale, be improved by simply scaling the sys-
tem with more JBODs. An inevitable point would be reached when additional Fibre Chan-
nel host adapters would have to be added. 
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6 The preprocessing program 

Micronic Laser Systems AB is currently developing a preprocessing program called 
CFRAC. This program is being designed for a shared memory Ultrasparc/Solaris system. It 
is not practical at this point to rewrite the program only to be able to analyze and verify a 
clustered x86/Linux system. So instead I have decided to design a benchmarking program 
that will simulate the approximate workload of CFRAC. In order to do so the current pro-
gram has to be analyzed in terms of memory usage and time complexity. The current pro-
gram can however not be used to model all features, first of all because all features are not 
yet implemented and secondly because of the completely different target platform. 

The behavior of a preprocessing program is most of all dependent of the characteristics 
of the pattern data file being processed. This makes it just as important to analyze pattern 
data as analyzing the program itself. Since pattern data can have very different characteris-
tics it is necessary to narrow the number of cases down. The most relevant case for this pro-
ject is an estimated worst-case scenario. 

6.1 Analyzing the preprocessing program 
The preprocessing program (CFRAC) is used to convert laser pattern data from one vec-

tor format into the next, see Section 2.3 for more information. The process includes geo-
metric transformations, merging several input files, fracturing figures into several figures of 
limited size and translating the data format. 

The current structure of CFRAC, illustrated in Figure 6.1, is based on Pthreads and 
shared memory. One thread reads the input file and pushes the pattern data into a FIFO. In 
the mean time a second thread reads the pattern data from the FIFO, processes it and writes 
it to the output file. Even though the current system is limited by disk-I/O this method actu-
ally reduces execution time. The reason is that the whole program does not have to wait 
while reading from disk. The distribution in the structure is prepared for adding additional 
output threads while only having one input thread. 

Figure 6.1 The current structure of the preprocessing program (CFRAC) 

6.1.1 Memory usage 
The amount of memory used by CFRAC is adjustable from command line. The amount 

of memory used does not have a tremendous impact on the performance of CFRAC, it does 
however play a major roll in the performance in the application reading the output file from 
CFRAC. The explanation for the high demands for memory is that most of the memory is 
used as buffers for the output file. The output file is divided into a number of independent 
FMBs and each FMB contains a number of buckets, see Section 2.3 for more information. 
A normal setup would be about 24 FMBs and 1500 buckets. Each bucket in each FMB has 
to have its own buffer memory. Hence the amount of memory for each bucket is often quite 
scarce. This affects the fragmentation within the output file. This only poses a problem 
while reading the file since disk caches and other later software caches are not properly 
utilized. This demands for large memory requirements, preferably in the area of several 
Gbyte. A preferred buffer memory size per bucket would be one of the larger read blocks 
mentioned in Section 5.7. 
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6.1.2 Time complexity 
The time complexity of CFRAC is generally very low. Most of the processing is O(N) 

with a few exceptions. One of those exceptions is the conversion from general polygons to 
trapezoids and rectangles. Each polygon can have at most 254 sides. The corner coordinates 
for a polygon are sorted only ones using a standard O(N*log(N)) algorithm. The following 
fracturing is done in an O(N) fashion. 

There is however a few circumstances that make CFRAC read the complete input file a 
multiple number of times instead of just once. The first and most common reason is the 
presence of more than one pattern layer in one input file. This will cause CFRAC to read 
the whole input file once for each layer. The reason is that all layers in the output file have 
to be in the correct order. This restriction is however not fulfilled in the input file. It should 
be noted that the combination of a large input file and many layers is rare. A large input file 
often consists of only one layer. The second reason is that the dependences between buck-
ets are too space consuming. That is, if the following program, for a given bucket, has to 
keep too much data from previous buckets. This limitation is always checked during the 
whole execution time of CFRAC. If CFRAC recognizes that the dependences consume too 
much space it will restart itself and adjust the preset distribution parameters. This should 
however be very unlikely during real production and the preset distribution parameters are 
subject for adjustments during the development of the program. 

6.1.3 Planned improvements 
There are a number of planned improvements pending. The number of output threads is 

planed to be adjustable from command line. This means that there will be a single thread 
reading and distributing pattern data and an adjustable number of threads processing and 
writing the pattern data. Since there will be more than one thread writing to the output disk, 
it will no longer be efficient to use a single output file. At least one file per output thread is 
needed. 

A software optimization called healing is also planned. The meaning of healing is basi-
cally to merge a subset of small connecting figures whenever it is possible. The most de-
sired result from healing is however not to reduce the number of figures but change their 
shape. Long and thin figures, called slivers, are not desired and a way of reducing them 
without just dividing them is to do healing. One general way of doing this is to merge all 
connecting figures into a polygon and later split the polygon in a different direction using 
the already existing code. This would increase the time complexity of the program. Merge 
the figures by simply comparing them with each other would be at least O(N2) and splitting 
would be the usual O(N*log(N)) sorting and O(N) fracturing. This means that healing can-
not be done with a large number of figures. A reasonable number of figures would probably 
be 10-50. The amount of memory used for this feature would therefore be insignificant. 

The ability to handle several pattern layers simultaneously would drastically reduce the 
execution time by only having to read the input file once. Redefining the output so that a 
file does not contain more than one layer would allow the following program to open the 
files in the correct order. This would however also mean that the number of memory buffer 
has to be multiplied by the number of layers.  

A better memory management could increase the size of the memory buffers and de-
crease the fragmentation in the output file. Hence increasing the performance of the follow-
ing program. One way of improving the memory management could be to use a pool of 
large memory buffers and in that way exploits the geometric locality of the pattern data. 
This in combination with asynchronous disk operations would increase disk-I/O perform-
ance. 

Another way of decreasing the fragmentation of the output file is it to have several out-
put files. One file per bucket and FMB would result in no fragmentation at all, this assumes 
a non-fragmenting file system such as the one described in Section 4.4.4. The drawback 
would be the logistic problems of handling tens of thousands of simultaneously growing 
files in a non-fragmenting file system. Using a fragmenting file system and one file per 
bucket and FMB might still be a good idea since software caches are utilized more effi-
ciently compared to a single fragmented file. 
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6.2 Redesigning the preprocessing program 
Since the preprocessing program (CFRAC) is currently only available for shared mem-

ory systems a new design has to be created, at least on paper. This newly designed preproc-
essing program is going to be modeled and used in the workload simulator. Some of the 
ideas presented in this section are my own and some are from other developers at Micronic 
Laser Systems AB. 

The basic idea is to keep most of the current design. The input process will distribute 
the pattern data to the output processes. Swing buffers will allow for asynchronous message 
passing. This is illustrated in Figure 6.2. The data should be distributed using a combination 
of round robin and bag of tasks. The reason for not using a pure round robin is that the pat-
tern data can expand differently in the different output processes. Adding a bag of tasks 
functionality will give an even distribution of the output, assuming that the execution time 
of each output process largely depends on how much data it writes to the output disk. 

Figure 6.2 A possible structure of the preprocessing program for a computing cluster 

The distribution to different FMBs is currently done in the output thread using round 
robin; this would have to be moved to the input process. Each output process would process 
a suitable number of FMBs; for example 6 FMBs per output processes in the case of 4 out-
put processes and 24 FMBs in total. This would increase the amount of memory available 
per FMB compared to a design where all output processes handles a portion of all FMBs. A 
fundamental assumption for the design discussions is that the number of output processes is 
less or equal to the number of FMBs. 

6.2.1 The input process 
The new distribution of FMBs could be done using round robin. However it would have 

to be done on blocks of pattern data instead of on single pattern data records. This is neces-
sary in order for the healing to work. Such a block would typically be the same number of 
records as number of records used in the healing process, i.e. 10-50 records. To increase the 
efficiency of message passing, several of these blocks would have to be added together in 
each swing buffer to a total of 1000 records or more. Some form of workload distribution 
could be achieved by filling only available swing buffers using round robin. The output 
processes would request pattern data seeing the input process as a bag of tasks, even though 
it is one bag per output process. If an output process is heavily loaded, the corresponding 
swing buffer will be skipped by the round robin once it has been filled. 

Using the method bag of tasks brings some demands; all distribution blocks have to be 
independent or the input process has to remember the state of each output process. An in-
dependent distribution block means that it has to have complete hierarchical structures de-
scribing layers and all levels of repetitions. This means unnecessary overhead and an in-
crease in size. A slightly more complex way is to keep track of which hierarchical level 
each process is in. This has no real disadvantages besides slightly more complex program-
ming. 
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It might be necessary to use an extra thread in the input process: A dedicated thread for 
reading from the disk, if asynchronous disk operations are not available. In that case a 
shared memory FIFO would typically be used between the threads. 

It might also be necessary to use a slightly more intelligent way of distributing pattern 
data. An extreme case is when a pattern data file is only 10 records long and all pattern data 
is in a geometrically large repetition block. The result would be that just one output process 
gets all the pattern data. The repetition would later be divided and the amount of data is 
dramatically increased. A possible way of solving this is to use a special case for very large 
repetitions. If the number of iterations in a repetition reaches a predetermined limit the re-
cords within the repetition block is distributed over the output processes using true round 
robin, see Figure 6.3. This method is excessive if there is a large enough amount of repeti-
tion blocks. It consumes both memory and time. Another drawback is, as mentioned earlier, 
that the healing process is crippled by round robin on individual records. 

Figure 6.3 Splitting a repetition block using round robin 

6.2.2 The output processes 
Receiving pattern data from the input process is straightforward, using a swing buffer 

and asynchronous receive operations. If the CPU boards are equipped with two CPUs with 
shared memory it might be a good idea to split the process into two threads. The first thread 
receives data and does healing, the second thread does the rest of the processing and writes 
the pattern data to the disk. If the CPU boards are equipped with only one CPU per board it 
would be more efficient to scale the system by simply increasing the number of CPU 
boards and output processes. 

The most important part is to get enough memory for each bucket. One possible way is 
to exploit the geometrical locality in the input pattern data file. Instead of allocating one 
memory buffer for each bucket in each FMB a pool of buffers could be used instead. This 
pool could consist of fewer buffers than the total number of buckets. If a buffer becomes 
full it will be disconnected from the bucket and an asynchronous write operation writes the 
data to disk. If all buffers are being used and a new one is needed a buffer could be flushed 
based on chronological order with the least recently used first. It might be necessary to 
flush buffers at an earlier stage in order to prevent a state when the process is waiting for 
free buffers. If asynchronous disk operations are unavailable, such operations could be con-
structed using threads. 

An alternative to using fewer memory buffers than buckets is to use more buffers. For 
example twice as many buffers as buckets. Half of the buffers would be in a buffer pool. 
The rest of the buffers would be fixed to its corresponding bucket. When a buffer gets full a 
new buffer is taken from the pool and linked to the fixed one. When the new buffer gets full 
a second buffer would be linked on to the first one and so on. If no free buffers are avail-
able in the pool a fixed buffer with corresponding linked buffers would be flushed and the 
linked buffers returned to the pool. This method might give better results in the case of poor 
geometrical locality. However the available memory is used more statically and might in 
the normal cases lead to smaller blocks in the final output file. 

As mentioned in Section 6.1.3 it will no longer be possible to use a single output file. A 
suitable solution could be to have one file per FMB and layer. This would in a normal case 
result in no more than 100 files in total. 

6.3 Analyzing pattern data 
Analyzing typical pattern data is just as important as analyzing CFRAC itself in order to 

model the workload. The interesting parameters are the distribution between different re-
cord types, hierarchical structures and number of bytes per record. 
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A major semiconductor manufacturer has provided a number of typical pattern data 
files. Each of these pattern data files describes a circuit layer within an integrated circuit. 
Table 6.1 and Table 6.2 shows two circuit layers form the same integrated circuit. These 
files are, except for the size, quite typical as input to CFRAC. A worst-case scenario is pre-
dicted to be 1200 times as dense according to studies done by Anders Thurén at Micronic 
Laser Systems AB for the 65nm node. 

The parameters shown are the number of figure records. This is the number of records 
in the file and is not the same as the number of features on the finished plate. The number 
of bytes per feature is taken from the file format specification [38]. The total summary of 
all bytes for all records is calculated without any file headers or such. 

Table 6.1 Profile of file: 1_input 

Record type Records Bytes/record Bytes

/(byte) /(byte)

Rectangles 44 392 193 14 621 490 702

Trapezoids 832 20 16 640

XY-Repeated Rectangles 2 693 863 26 70 040 438

X-Repeated Rectangles 15 724 795 20 314 495 900

Total 62 811 683 1 006 043 680  

Table 6.2 Profile of file: 2_input 

Record type Records Bytes/record Bytes

/(byte) /(byte)

Rectangles 40 450 364 14 566 305 096

Trapezoids 754 20 15 080

XY-Repeated Rectangles 2 800 516 26 72 813 416

X-Repeated Rectangles 13 920 397 20 278 407 940

Total 57 172 031 917 541 532  

Worth noticing is that there are only single repeated objects and no large repeated struc-
tures. The lack of large repeated structures makes this type of pattern files larger in size but 
also more predictable. A highly hierarchical pattern file, though harder to predict, would be 
much smaller and is therefore considered an easier case to handle. These highly hierarchical 
cases are for that reason not further analyzed in this thesis. 

I have rewritten an existing test program in order to extract comparable information 
from the output files. Table 6.3 and Table 6.4 present the output files from the correspond-
ing files in Table 6.1 and Table 6.2. The parameters in these tables have been altered in or-
der to be more easily comparable with the input files. For instance the output format does 
not include a specific record for repeated rectangles; instead a repeat record is appended to 
a rectangle record. The number of bytes per record is dynamic in the format and the average 
number is therefore presented instead. 

Table 6.3 Profile of file: 1_output 

Record type Records Bytes/record Bytes

/(byte) /(byte)

Rectangles 19 445 145 11,60 225 544 334

Trapezoids 1 404 15,87 22 283

XY-Repeated Rectangles 43 368 928 23,89 1 036 030 503

Total 62 815 477 1 261 597 120  
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Table 6.4 Profile of file: 2_output 

Record type Records Bytes/record Bytes

/(byte) /(byte)

Rectangles 26 744 184 11,71 313 220 207

Trapezoids 1 376 15,87 21 835

XY-Repeated Rectangles 30 430 302 23,70 721 243 704

Total 57 175 862 1 034 485 747  

A noticeable effect is that the number of repeated records increase and the number of 
single records decrease. This can be explained by the fact that one of CFRAC´s main tasks 
is to limit the maximum geometrical size of a feature. This is for instance done by cutting 
up a large rectangle into an array of smaller rectangles. An already repeated rectangle 
would in the same way result in an array of an array of a rectangle. This is not shown spe-
cifically in the simplified presentations in Table 6.3 and Table 6.4, but included in the 
number of repeated rectangles. 

The number of rectangle records in the file is however not changed noticeably. Thus not 
changing the file size in any drastic ways. This also verifies the equal bandwidths in and 
out of CFRAC specified in Section 3.1. It should in fact, according to studies done by An-
ders Thurén at Micronic Laser Systems AB, be possible to decrease the output file size with 
approximately 20 % relative the input file size. This is done by aggregating groups of rec-
tangles/trapezoids and thereby being able to describe them with fewer bytes.  

A number of assumptions were done when analyzing these files: 

• All figure types are evenly distributed over the file both in geometry and address 
space. 

• It is considered that some noticeable locality occurs in an input file. Some relation 
between geometrical position and address is inherited from the CAD program, or 
other preprocessing stages. 

• The only difference from larger files is the density. A more dense design would 
probably mean smaller features, thus reducing the need to split large features. This 
effect is however omitted in this study. 

6.3.1 Conclusions 
The purpose is to design a model to simulate a near worst-case scenario, meaning the 

scenario that takes the longest time to process. Based on previous knowledge this assumes 
that the largest input and output files correspond to the longest processing time. Large files 
means typically files without high levels of hierarchical repetitions. 

6.4 Summary 
The current preprocessing program (CFRAC) is exclusively designed for a specific type 

of SMP machine. A new structure designed for clustered computation has been presented. 
The new design distributes the pattern data to the processing nodes using a combination of 
round robin and bag of tasks. A new feature called healing has also been introduced. 

After having analyzed two pattern data files provided by a major semiconductor manu-
facturer some conclusions could be made. First of all, a typical file does not include general 
polygons, but rather a collection of repeated and unrepeated rectangles and trapezoids. No 
major hierarchical repeated structures occur. A likely worst-case scenario would typically 
be a very large file with only a large number of unrepeated rectangles and a small number 
of trapezoids. 



 A low cost parallel computing system for photomask pattern data preprocessing 

 35

7 The workload simulator 

There are two main reasons for making this workload simulator. The first reason is that 
it can be used to benchmark and compare different types of clustered computer systems. 
The second reason is that it can be used to try out new techniques. There are also a number 
of other benefits of having an easily ported workload simulator of a program. First it buys 
time if the real program was not thought to be portable. Secondly the code does not need to 
be protected in the same sense as the real program. It might be possible to mail the source 
code to other companies that are offering new hardware solutions and in this way speed up 
the evaluation process. 

The amount of work invested in such a workload simulator depends largely on what the 
goal is. If the simulator is made too complex the benefits of using it disappears, an exces-
sively complex simulator takes much too long to write and the time is better spent rewriting 
the real program. On the other hand an over simplified simulator is not more useful than 
any other already existing benchmarking program. In this case the goal is to reproduce ap-
proximately the same load on the CPUs, memory and disks. Since it only needs to present 
the relative difference between different platforms it does not need to be a perfect match. 

The plan is to implement the simulator by using MPI since the primary task is to verify 
a clustered system. At a later stage the simulator could also be used to try out different pro-
gram architectures.  

7.1 Modeling the real preprocessing program 
The model of the program used in the workload simulator could roughly be illustrated 

as everything that is shown in Figure 6.2. The distribution of pattern data from the reading 
process and to the writing processes is done with a combination of round robin and bag of 
tasks using MPI. 

The writing process initiates the transmission of a pattern data block by sending a pat-
tern data request and then setting up an asynchronous receive operation. The pattern data 
request is an empty message but with a predefined request tag. If necessary this message 
could in the real program include some status information; allowing the reading process to 
do some adjustments in load balancing. When the reading process has the corresponding 
swing buffer ready and receives a request message it will initiate an asynchronous trans-
mission marked with a predefined pattern data tag. If all data in the input file has been read 
the reading process will answer each pattern data request message with an empty message 
marked with a predefined finished tag. 

A slightly purified version of the implemented code in the reading process can be seen 
in Figure 7.1. Error handling and other special cases are removed to enhance clarity.  

1 while (finishedProcesses < numberOfWritingProcesses) { 

2  process = (process + 1) % numberOfWritingProcesses; 

3  if (buffCount[process] == mpiSendBlockSizeInBytes ||  ftell (fd) == inputFileLength) { 

4   MPI_Iprobe (process+1, REQUEST_TAG, MPI_COMM_WORLD, &flag, &status); 

5   if (flag == TRUE) { 

6    MPI_Recv (NULL, 0, MPI_CHAR, process+1, REQUEST_TAG, 

     MPI_COMM_WORLD, &status); 

7    if (buffCount[process] > 0) { 

8     SWING_BUFFERS (&readBuffer[process], &sendBuffer[process]); 

9     MPI_Isend (sendBuffer[process], buffCount[process], MPI_CHAR,  

      process+1, DATA_TAG, MPI_COMM_WORLD,  

      &request[process]); 
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10     buffCount[process] = 0; 

11    } 

12    else { 

13     finishedProcesses++; 

14     MPI_Isend (NULL, 0, MPI_CHAR, process+1, FINISHED_TAG, 

      MPI_COMM_WORLD, &request[process]); 

15    } 

16   } 

17  } 

18  else { 

19   fread (&readBuffer[process][buffCount[process]], 

   averageRecordSize, healingRecords, fd); 

20  } 

21 } 

Figure 7.1 The distribution using a combination of round robin and bag of tasks. 

Line 2 cycles which buffer/process to currently access, hence leading to a round robin 
distribution. Line 19 is only executed if the current buffer is not full, hence limiting the 
round robin to only distribute the data to available buffers. Lines 4 and 5 checks if a request 
has been posted from the current writing process. If so, the request is received. If the end of 
the input file is reached and there is no data in the swing buffer the reading process sends 
an empty message with a finished tag, see line 14. If data is available the swing buffer is 
swung and an asynchronous send command is started. If no request has been posted, the 
algorithm skips to the next buffer/process, hence behaving from the outside as a bag of 
tasks where each writing process can request pattern data in its own pace. 

Figure 7.2 shows an equally purified version of the requesting code from a writing 
process. This code is executed every time the writing process runs out of pattern data. Simi-
larly to Figure 7.1 error handling and other special cases are removed to enhance clarity. 
The result after having executed this code is that bytes number of bytes of pattern data is 
available in the processBuffer buffer and a new asynchronous receive command is set up. 

22 If (firstTime == TRUE) { 

23  firstTime = FALSE; 

24  MPI_Isend (NULL, 0, MPI_CHAR, 0, REQUEST_TAG, MPI_COMM_WORLD, 

   &sendRequest); 

25  MPI_Irecv (receiveBuffer, mpiSendBlockSizeInBytes, MPI_CHAR, 0, 

   MPI_ANY_TAG, MPI_COMM_WORLD, &receiveRequest); 

26 } 

27 MPI_Wait (&receiveRequest, &status); 

28 switch (status.MPI_TAG) { 

29  case DATA_TAG: 

30   SWING_BUFFERS (&receiveBuffer, &processBuffer);  

31   MPI_Get_count (&status, MPI_CHAR,  &bytes); 

32   MPI_Isend (NULL, 0, MPI_CHAR, 0, REQUEST_TAG, MPI_COMM_WORLD, 

    &sendRequest); 

33   MPI_Irecv (receiveBuffer, a_param->mpiSendBlockSizeInBytes, MPI_CHAR, 0, 

    MPI_ANY_TAG, MPI_COMM_WORLD, &receiveRequest);  
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34   break; 

35  case FINISHED_TAG: 

36   bytes = 0; 

37   break; 

38 } 

Figure 7.2 Requesting data in the writing process. 

The first time the code is executed a request is sent and an asynchronous receive com-
mand is set up, see lines 22-26. Line 27 waits for the previous receive command to finish. 
Line 28 determines the tag of the received message. This allows for separate handling and 
is currently used only to distinguish between data and when the processing is finished. Line 
30 swings the swing buffer and lines 32 and 33 sets up a new asynchronous request. Line 
31 is needed in order to determine how much data is actually received. 

The model of the pattern data used is designed to be a near worst-case scenario in terms 
of execution time. This has been simplified to be a single input file that is read only one 
time. The file is considered to be completely flat, meaning no repetitions of any kind. The 
pattern data only consists of rectangles and trapezoids. More complex features like poly-
gons are not included. 

The reading process creates the temporary source file needed to read from in an initial-
izing stage. The writing processes are at this stage waiting at a synchronization barrier. All 
performance measuring is reset at the time that the reading processes arrive at the barrier 
and the processes can continue. 

Modeling the CPU workload should be considered experimental. Even if the number of 
lines of C-code is the same and the type of instructions is the same, it is still difficult to 
guarantee that the compiler would not produce different results due to variable dependen-
cies etc. In some cases, such as healing, the real code does not even exist. The main reason 
for simulating the CPU workload is to get some results other than just I/O. There is for ex-
ample no need for asynchronous disk operations unless the CPU could work with some-
thing else in the mean time. Modeling the CPU workload in the workload simulator is low-
tech, simply counting lines of relevant C-code in the current preprocessing program 
(CFRAC). This code is then replicated with dummy operations in the workload simulator.  

One of the most difficult parts to model is the healing algorithm. Since the algorithm is 
not yet finalized and far from being written in code there is practically nothing to analyze. 
The only information to build the model from is that which is presented in Section 6.1.3. 
The model is implemented using a more artistic approach. The basic structure in the design 
is as a sequence of a double loop, an O(N*log(N)) sorting algorithm followed by a single 
loop. 

The bucket buffers are slightly simplified compared to what the real preprocessing pro-
gram would look like. The number of bucket buffers is freely adjustable and so is the size 
of the bucket buffers. The pattern data is distributed over the bucket buffers at random on a 
single record level. This means that the geometrical locality in the input files is considered 
to be absolute. This assumption should be acceptable if the number of bucket buffers is not 
too low. 

Asynchronous disk operations are due to lack of time currently not implemented in the 
workload simulator. This should be considered high priority if the intention is to use the 
CPU workload simulations. However for testing I/O performance with the CPU workload 
simulation disabled the benefits of asynchronous disk operations are limited. 

7.1.1 Parameters 
An example of a parameter file for the workload simulator is shown in Figure 7.3. Note 

that the parameters in this example are not to be considered to have relevant values. 
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#Parameters for PrepSim 

inputFilename /wap/bjolun/prepsim/prepsim_src.tmp 

outputFilename /wapbig/tmp/prepsim_tgt.tmp 

enableReading TRUE 

enableWriting TRUE 

enableProcessing TRUE 

numberOfRectangles 8192000 

numberOfTrapezoids 1024 

rectangleSizeInBytes 14 

trapezoidSizeInBytes 20 

byteExpansionFactor 1.1 

readBlockSizeInBytes 40960 

writeBlockSizeInBytes 1024000 

healingRecords 20 

bucketBuffers 100 

bucketBufferSize 1024000 

mpiSendBlockSizeInBytes 40960 

end 

Figure 7.3 A parameter file for the workload simulator. 

The first parameters inputFilename and outputFilename enables the user to specify 
where the temporary files are stored and how they should be named. The output files will 
be named according to the outputFilename parameter and an appended number correspond-
ing to the process number. 

The second set of parameters enableReading, enableWriting and enableProcessing al-
low the user to analyze the impact of different parts of the program. If enableReading is set 
to FALSE all other operations except reading from disk will occur. The parameter en-

ableProcessing enables or disables the simulated CPU workload. This means that if the pa-
rameter is set to FALSE the data will still be read and written to disk as well as sent via 
message passing and buffered in bucket buffers. 

The parameters numberOfRectangles, numberOfTrapezoids, rectangleSizeInBytes and 
trapezoidSizeInBytes are used to calculate the size of the input file. The size of the output 
file is calculated using the size of the average input record multiplied by the parameter 
byteExpansionFactor and the total number of input records. 

Disk access is regulated independently from other parameters. The parameters read-

BlockSizeInBytes and writeBlockSizeInBytes are used when creating and reading the input 
file and writing the output files. Note that there is no relation between bucket buffer mem-
ory usage and the writeBlockSizeInBytes parameter. 

The parameter healingRecords specifies how many records the healing algorithm 
should work on. This also affects the size of each pattern data block that the input process 
handles as it does the round robin distribution among the output processes. 

BucketBuffers specifies how many bucket buffers should be used. This is defined as the 
number of bucket buffers per output process and not the total number. The related parame-
ter bucketBufferSize adjusts the amount of memory that is allocated for each bucket buffer 
in each output process. This means that the total amount of memory consumed by bucket 
buffers is the number of output processes times bucketBuffers times bucketBufferSize 

MpiSendBlockSizeInBytes specifies the size of the pattern data messages sent from the 
reading process to each of the writing processes. This is not dependent on the number of 
healing records. However the number of healing records could be limited by mpiSend-

BlockSizeInBytes. 
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7.2 System and programming notes 
The workload program is written in C and developed on an Ultrasparc/Solaris 5.7 sys-

tem using GCC 2.95.2 and MPICH 1.2.5.2. This might not be the fastest combination and 
GCC is actually not the compiler currently used to compile CFRAC. The most important 
reason for using the combination of GCC and MPICH is availability, both in terms of com-
patibility and licenses. 

In order to control the read and write block size a disk I/O package called FIO is used 
from CFRAC. This is a thin abstraction layer that gives an adjustable disk cache. The cache 
has only one cell, meaning that it can only cache a single area of the file at a time. 

7.3 Summary 
The preprocessing workload simulator includes: 

• Adjustable reading and writing blocks for disk access. 

• Moving pattern data using asynchronous message passing. 

• Requesting pattern data using bag of tasks. 

• Round robin distribution on available swing buffers. 

• Dummy loops as a model to simulate healing. (Experimental)  

• Dummy loops as a model to simulate fracturing, transformations and transla-
tions. (Experimental) 

• Adjustable pattern data expansion. 

The preprocessing workload simulator does not include: 

• Modeling of individual pattern data records.  

• Splitting of polygons. 

• Variations in pattern density. 

• Hierarchical repetition structures. 
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8 Testing the workload simulator 

No real tests have been possible due to the unfortunate lack of a closely clustered sys-
tem. The only system available at the time was an Ultrasparc/Solaris SMP machine. Thanks 
to the versatility of MPICH it is still possible to test the workload simulator. However the 
tests should be considered more to be functionality tests and a guide for future tests rather 
than a performance evaluation. 

8.1 Test setup 
The Ultrasparc/Solaris system used for the tests is a Sun Fire V880 which is a SMP ma-

chine with four Ultrasparc III 750 MHz CPUs and 8 Gbyte of shared memory (150 MHz 
and 8-way interleaved). This means that the use of message passing is far from ideal. The 
benefits and implementation of asynchronous message passing in MPICH on a SMP ma-
chine without any supporting hardware could be questioned. The data is read from and 
written to the same internal RAID-0 device with just two physical disks. This is not the 
ideal way to do it; it would be more beneficial to use more disk devices in order to spread 
the workload. The fact that the RAID-0 device is 95% full (8 Gbyte free) and most likely 
heavily fragmented will not improve the performance either. 

The test batch consists of three tests. The first test is done without any disk access or 
simulated processing, see column (a) in Table 8.1. This is done in order to evaluate the 
maximum capacity of the message passing. The second test is done with disk access but 
without simulated processing, see column (b) in Table 8.1. This will give a reference to 
how much capacity the disks can deliver, provided that the message passing is not the limit-
ing factor. The final test is the complete full test with disk access and simulated processing, 
see column (c) in Table 8.1. 

Table 8.1 The three parameter files used in the workload simulator test 

Parameters (a) (b) (c)

inputFilename prepsim_src.tmp prepsim_src.tmp prepsim_src.tmp

outputFilename prepsim_tgt.tmp prepsim_tgt.tmp prepsim_tgt.tmp

enableReading FALSE TRUE TRUE

enableWriting FALSE TRUE TRUE

enableProcessing FALSE FALSE TRUE

numberOfRectangles 81920000 81920000 81920000

numberOfTrapezoids 1024 1024 1024

rectangleSizeInBytes 14 14 14

trapezoidSizeInBytes 20 20 20

byteExpansionFactor 1.1 1.1 1.1

readBlockSizeInBytes 40960 40960 40960

writeBlockSizeInBytes 1000000 1000000 1000000

healingRecords 20 20 20

bucketBuffers 100 100 100

bucketBufferSize 1024000 1024000 1024000

mpiSendBlockSizeInBytes 524288 524288 524288  

All four CPUs are utilized by using one reading process and three writing processes. 
This gives a total memory consumption of approximately 300 Mbyte for all writing proc-
esses combined. The parameters in Table 8.1 give an input file size of 1093.77 Mbyte and a 
total output of 1171,9 Mbyte distributed over the writing processes. 

The parameters that are possible to measure with the workload simulator are the 
throughput of each process measured at the point where it is read from/written to disk. The 
size of each output file is presented and shows in some sense the result of the workload dis-
tribution. The execution time is presented for the complete program since the program does 
not quit until all processes are done. The creation of the temporary source file is however 
not included in the presented execution time. This stage is measured separately and pre-
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sented as a throughput. This result can be useful as a reference of a single uninterrupted se-
ries of disk operations. 

8.2 Tests 
All of the subtests are done twice to increase the chance of detecting non-typical results. 

The first run within a test is presented without parentheses in the tables below and the sec-
ond run is presented within parentheses. At the time for the tests there were no other major 
programs running on the system. So the results achieved should be considered to be without 
interference. 

Table 8.2 shows the results from the first subtest. No temporary source file is created 
since it is not used. This test is mainly aimed to test the capacity of the message passing be-
tween the processes. 

Table 8.2 The results from the first subtest, testing mainly message passing 

Process Throughput Execution time File size

/(Mbyte/s) /(s) /(Mbyte)

Creating file - - -

Reading process 68.61 (68.58) 15.94 (15.95) 1093.77 (1093.77)

Writing process 1 24.66 (24.63) - 392.98 (392.84)

Writing process 2 24.60 (24.49) - 392.18 (390.68)

Writing process 3 24.27 (24.34) - 386.74 (388.38)  

Table 8.3 shows the results from the second subtest. A temporary source file is created 
and the writing processes actually write data to the disk. The only thing missing in this test 
is the simulated CPU workload. 

Table 8.3 The results from the second subtest, testing mainly disk capacity 

Process Throughput Execution time File size

/(Mbyte/s) /(s) /(Mbyte)

Creating file 40.96 (41.73) - 1093.77 (1093.77)

Reading process 15.82 (17.15) 69.13 (63.77) 1093.77 (1093.77)

Writing process 1 5.35 (6.17) - 390.53 (395.19)

Writing process 2 5.32 (5.61) - 390.83 (388.04)

Writing process 3 5.30 (5.60) - 390.53 (388.67)  

Table 8.4 shows the results from the final subtest. Everything in the workload simulator 
is enabled in this test.  

Table 8.4 The results from the final subtest, testing the complete workload simulator 

Process Throughput Execution time File size

/(Mbyte/s) /(s) /(Mbyte)

Creating file 41.68 (41.16) - 1093.77 (1093.77)

Reading process 10.89 (10.77) 100.41 (101.59) 1093.77 (1093.77)

Writing process 1 3.95 (3.76) - 392.14 (391.07)

Writing process 2 3.79 (3.70) - 390.53 (390.53)

Writing process 3 3.81 (3.72) - 389.22 (390.29)  

8.3 Analysis 
The absolute performance achieved in these tests is not that important but the relative 

difference between the tests is more interesting. It is apparent from Table 8.2 that message 
passing on a SMP machine is not the best solution. A comparison with the results in Table 
8.3 shows that the program is, on this system, more limited by disk than message passing. 

As could be seen in Table 8.4 the time has increased by approximately 50% compared 
to the case in Table 8.3. This might be due to the fact that there are no asynchronous disk 
operations used in the workload simulator. Hence all processing time is being added di-
rectly to the total execution time. My guess is that much of the processing time is spent in 
the healing function. For each 20 figures the pattern data is processed in a loop 20 x 20 = 
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400 times. This can, if needed, later be verified by using a profiling tool or by simply de-
creasing the parameter healingRecords to 1. 

The distribution among the output files is pleasantly even. However nothing else would 
be expected since there is nothing uneven in the distribution process. 

8.4 Conclusions 
The test results are not that important for this project. The most important conclusion is 

that the workload simulator worked and behaved as expected. These tests are more impor-
tant as a demonstration on how a possible test scenario would be conducted. Other combi-
nations could be interesting to study. For instance a series of tests with different sized MPI 
messages. 

The program does not really test the ability of the distribution algorithm since the pat-
tern data is treated evenly. One way of testing its functionality is to use different byte ex-
pansion factors in each writing process. This would mean that some processes would re-
quest data more often than others. The size of all output files should however be somewhat 
similar or at least more equally distributed than if a pure round robin distribution had been 
used. 
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9 Conclusions 

Due to the unfortunate lack of hardware this thesis has been reshaped as more of a tool-
box for future evaluations. It describes different types of common off the shelf products and 
techniques, as well as providing a benchmarking tool useful for evaluating a clustered pre-
processing system. 

A performance test using the workload simulator is documented in Section 8. The spe-
cific test results are not that relevant for this project however it is more relevant as an ex-
ample of how a performance evaluation of a preprocessing system could be done. 

The main focus of this thesis is the proposed idea of a Linux/x86 cluster or NUMA. The 
reason that I have dismissed the idea of a NUMA architecture is that it is a more expensive 
and an overkill in the sense that it is more dynamic than necessary. The preprocessing pro-
gram does not need to be fine grained and the pattern data can be processed in a pipelined 
style. The idea of building a Linux/x86 cluster gives better possibilities to specifically adapt 
the hardware for the exact needs. It is my recommendation that all the nodes in the cluster 
should be specialized and not identical. It has not been possible to verify how much hard-
ware is needed for the idea to work. The general conclusion is however that the idea seems 
feasible. 

A real low cost solution for a computer cluster would be to use reasonably low cost 
servers with IA-32 Xeon CPUs and Gigabit Ethernet as interconnect. I suspect that it will 
be difficult to sustain an average of 90 Mbyte/s from the input node with a single Gigabit 
Ethernet connection so my recommendation is to use a host adapter with two or four load 
balanced ports and an effective switch. The processing nodes will be equipped with single 
port host adapters. This is my main recommendation for this application. This solution is 
yet to be verified, it is only based on the requirements presented in Section 3 and the infor-
mation that the current preprocessing program is mainly limited by disk-I/O and not CPU. 
The required number of processing nodes has not been decided yet and is subject for 
evaluation, preferably using the workload simulator as a benchmarking tool. My estimation 
is that it is only a matter of a handful of nodes. A more scalable system can if necessary be 
achieved by using IA-64 Itanium 2 CPUs and InfiniBand or 10 Gigabit Ethernet as inter-
connect. This solution would be more expensive but would also be able to handle more 
RAM. If even more performance is needed the whole preprocessing concept has to be re-
designed in some way to allow for more than one input node. 

The only hardware that has been tested and verified is the JBOD disk solution presented 
by VMETRO, see Section 4.4.4. It is perhaps the most inexpensive solution and it has 
proved to deliver more performance than foreseen. In the tests in Section 5 we showed that 
a single JBOD could deliver 220 Mbyte/s to the real-time processing unit and that it is pos-
sible to write 50 Mbyte/s to the JBOD. This concludes that the requirements of 90 Mbyte/s 
writing and 360 Mbyte/s reading can easily be satisfied with three JBODs or perhaps even 
with two. This solution also solves a problem that is not mentioned in this project and that 
is how to extract the pattern data from the output disk and into the following real-time 
processing unit. However the solution is very low level and does not even support a frag-
menting file system. The JBOD is also very sensitive to the size of the disk access blocks 
and how many disk operations that are executed asynchronously in parallel. This is so vital 
that it is an absolute necessity in order for the whole concept to work. 

Another interesting alternative is to use at most 3-4 DELL|EMC CX200 disk arrays in a 
similar fashion as the JBODs in solution presented by VMETRO. There are two main rea-
sons for choosing a number of smaller disk arrays instead of a single large one. The first is 
that it is easier and more predictable to scale. The second reason is that it might in fact be 
cheaper to buy a number of small disk arrays. This is however not based on any real price 
information but rather the common notion that price for computer hardware often increase 
almost exponentially relative performance. This solution has not been verified and is only 
based on the information given by DELL|EMC that a CX200 can deliver 90 Mbyte/s while 
simultaneously receive 90 Mbyte/s. 
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The choice of Linux distribution is mostly dependent on the needed level of support and 
not as much an issue of performance. The new Linux 2.6 kernel might however have a sig-
nificant effect on the performance. The new kernel includes some important improvements 
concerning HPC applications. The choice of compiler can be based on the same type of 
questions as when choosing the Linux distribution. For instance, a compiler and develop-
ment environment from Borland gives better possibilities for support than the GNU Com-
piler Collection. 

My suggestion for communication between the processes is the MPI standard. It is a 
reasonably high level API that allows for code to be developed on a SMP or single CPU 
machine and later be compiled and executed on a clustered machine. MPI also support 
asynchronous message passing which is important to hide I/O time. Using larger messages 
might reduce the inevitable effect of the overhead introduced by MPI. 
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10 Future work 

The remaining work is mainly to continue to test and evaluate parts of the preprocessing 
system. Building one of the suggested systems as complete as possible and evaluate it using 
the workload simulator as a benchmarking tool. 

A decision has to be made of which Linux distribution should be used and more impor-
tantly which kernel. A more thorough evaluation of the available compilers and develop-
ment environments should be done. This also includes development tools for profiling MPI 
applications.  

An important factor for the price of the preprocessing system is the type of CPU used. A 
more thorough evaluation of the IA-32 and IA-64 CPUs would tell if the performance 
reached with IA-32 is enough. 

Some representative performance tests have to be done on the other proposed disk solu-
tions. Preferably the performance achievable by a single DELL|EMC CX600 and verifying 
how many CX200s would be needed to ensure enough throughput capacity. 

The exact prices for the different common off the shelf products are still missing. For 
instance the total cost of an InfiniBand switch, fibers and host adapters. A closer calculation 
of increased development costs that the VMETRO disk solution would bring and compare 
it to the price of a solution based on standard disk arrays from DELL|EMC. 

Some useful improvements concerning the workload simulator could also be done. My 
general recommendation is to keep the workload simulator as simple as possible and per-
haps primarily use it to test I/O performance. Some new functionality related to I/O 
performance can preferably be implemented and tested using the workload simulator: 

• It would be useful to be able to split each writing process into two threads. 
Note that the current implementation using MPICH is not thread safe. 

• It should be investigated as well if the reading process could benefit from be-
ing divided into two threads. 

• The whole program would perhaps benefit from asynchronous disk operations. 
Either if the JBOD from VMETRO is used or using functions such as aiow-
rite(), aioread() and aiowait() in Solaris or corresponding functions in Linux. If 
such functions are not natively available they should be written using threads. 

• If the decision is made to go for a NUMA the workload simulator should be 
converted into using Pthreads and communicate through shared memory in-
stead. It might in fact be useful to be able to choose between MPI and 
Pthreads. It is not necessary to be able to do this choice at execution time but 
rather as an option while compiling. The swing buffers would in that case be 
replaced by shared memory FIFOs. 
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12 Abbreviations 

API Application Programming Interface. 

CFRAC The name of the current preprocessing program. Generally described in Sec-
tion 2.3 and more thoroughly analyzed in Section 6.1. 

CP-MDR Custom Programmable – MIDAS Data Recorder. A product from VMETRO 
described in Section 4.4.4. 

FC Fibre Channel. A high-speed link primarily used for building SANs. Uses a 
serialized version of the SCSI protocol. 

FIFO First In First Out. 

FMB File Memory Buffer. Used for making parallel processing possible, further 
defined in Section 2.3. 

HPC High performance computer. 

IA-32 Intel Architecture-32 (used in the Pentium CPUs). 

IA-64 Intel Architecture-64 (used in Intel’s latest 64 bit CPUs). 

JBOD Just a Bunch Of Disks. A collection of disks connected together, typically in 
a Fibre Channel loop or a SCSI chain. 

MPI Message Passing Interface. A library specification for message passing be-
tween computer nodes. 

MPICH An implemented version of MPI by Argonne National Laboratory and Mis-
sissippi University. 

MPP Massively Parallel Processing (each CPU uses its own individual memory). 

NUMA Non-Uniform Memory Access (easily described as a MPP behaving like a 
SMP, except that it is often much more closely connected). 

PCI Peripheral Component Interconnect. An I/O bus standard. 

PCI-X PCI – eXtended. An enhanced version of the PCI bus. 

PMC PCI Mezzanine Card. 

RAID Redundant Array of Independent Disks. Described in Section 4.4.1. 

SAN Storage Area Network. 

S-FPDP Serial – Front Panel Data Port. 

SMP Symmetric Multiprocessing (with shared resources like memory). 

SNMP Simple Network Management Protocol. 

u Unit. A unit specified for measuring the height of a rack-mounted compo-
nent. (1u = 1.75”) 

VME VersaModule Eurocard bus. An I/O bus standard. 

x86 Refers to Intel’s series of 16 bit and 32 bit CPUs, from 8086 to Pentium 4. In 
this report it is used as a collective name for all the x86 binary compatible 
CPUs including the new 64 bit versions. 

 


