

Master’s Thesis in Computer Science

System Design of an Intellectual Capital Management
Platform Using Enterprise Java Technology vs PL/SQL

Rickard Sandström
The Royal Institute Of Technology

Kungliga Tekniska Högskolan

Examiner and
supervisor at KTH

Vladimir Vlassov, Department of Microelectronics and
Information Technology

Supervisor at Prohunt
Susanne Lundberg,
Prohunt AB

This thesis report is the result of the course 2G1015 Master project in Teleinformatics. This course
concludes the education of academic degree

Master of Science in Computer Engineering (M.Sc.)
at the Royal Institute of Technology

(Kungliga Tekniska Högskolan) in Stockholm, Sweden.

The report and additional material is available at:
http://www.nada.kth.se/~d96-rsa/kurser/exjobb/

Mars 29th, 2003, Stockholm, Sweden.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 2

Abstract
The objective of this thesis was to evaluate the distributed architecture known as J2EE
(Java 2 Enterprise Edition) with emphasis on performance, scalability, flexibility and
reliability on behalf of the company Prohunt. J2EE was then compared with Prohunt’s
existing server platform, based on Oracle’s PL/SQL stored procedure language. Since
Prohunt had already ported the clients from Windows applications to web based
clients with Java servlets, the question was whether to also move the code on the
server side of the products (known as the Intellectual Capital Management platform),
thus completing the change of technical architecture.

To do this comparison, two prototypes were developed, one using PL/SQL procedures
and one using JavaBeans and Borland Application Server. Several performance and
scalability experiments were conducted with both prototypes and the results were then
compared. Advantages and drawbacks with both architectures are discussed and
considered before reaching a conclusion about which approach is the better one.

It is my conclusion that both architectures have their advantages and drawbacks, and
both have different preferred areas of usage. Oracle PL/SQL is faster and less
complicated when considering large database queries. Ideal applications are systems
for data mining and decision support. On the other hand, if business logic is complex
and less data is required to be moved, then J2EE should be considered. J2EE is slower
at fetching data and requires more resources and servers, but with the right application
and a great deal of thinking when creating the entity beans, it might be the right
choice.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 3

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 4

Preface
This report is the result of my thesis work at a company called Prohunt AB. The work
on this thesis was made more difficult by the fact that Prohunt was declared bankrupt
in mid June 2001, three months into my thesis work. This had several negative
consequences: firstly, I lost virtually all supervision and help from the company.
Secondly there was also a lot of confusion about the future of the company and the
employees, which took a lot of time and concentration. For about a month I was all
alone in the office. In the beginning of August it was decided that WM-Data would
buy most of Prohunt and they came and took the equipment including the server upon
which the Oracle database I was using was situated, before I had a chance to finish
my evaluations and experiments.

The fact that Prohunt wasn’t there for me anymore had some consequences on the
subject of the thesis too. Since the planned change of technical platform for Prohunt’s
software product could not be realized anymore, some of the questions of the thesis
(guidelines for how to move the code from PL/SQL packages to Enterprise JavaBeans
for example) where not interesting anymore. Therefore some additional topics where
added to the thesis by me and my supervisor Vladimir Vlassov. These more general,
theoretical topics concentrated on the Application Server and its benefits.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 5

Table Of Contents

Abstract___3

Preface ___5

Table Of Contents __6

List Of Tables __9

List Of Figures __10

List Of Figures __10

1. Introduction __12
1.0.1 Requirements on the Reader ___________________________________12

1.1 Motivation __13

1.2 Objective of Thesis ___13

1.3 Where the Thesis Was Done _____________________________________13
1.3.1 Intellectual Capital Management (ICM) __________________________14

1.4 Structure of the report __15

2. Background __16

2.1 Distributed Computing__16
2.1.1 Requirements of Distributed Systems and Applications ______________16
2.1.2 Distributed Architectures______________________________________17
2.1.3 Approaches to Distributed Systems______________________________20

2.2 Prohunt’s Existing ICM Platform_________________________________21
2.2.1 ProCompetence ___22
2.2.2 ProCareer __24
2.2.3 ProResource __26
2.2.4 Specification and Architecture__________________________________28
2.2.5 Analysis ___30

3. PL/SQL__31

3.1 Background ___31

3.2 Language ___32

3.3 Architecture___34

3.4 PL/SQL Summary ___36

4. Enterprise Java Technologies (J2EE) _________________________________37

4.1 Distributed Multi-tiered Platform_________________________________37

4.3 J2EE Components__38

4.3 Enterprise JavaBeans ___39

4.4 JDBC __41

4.5 The Application Server__42

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 6

4.6 J2EE Summary __46

5. Design and Development of Prototypes_________________________________47

5.1 General Architecture ___47
5.1.1 PL/SQL Prototype Overview___________________________________47
5.1.2 J2EE Prototype Overview _____________________________________48

5.2 The Prototypes __49
5.2.1 Server Calls – “Requests” _____________________________________49
5.2.2 PL/SQL Application ___49
5.2.3 J2EE Application __52
5.2.4 Summary __53

5.3 Tools used __53
5.3.1 Oracle___53
5.3.2 Borland Application Server ____________________________________53
5.3.3 Borland JBuilder Enterprise____________________________________53
5.3.4 SQL Navigator from Quest Software ____________________________53

6. Evaluation and Results ___54

6.1 Evaluation method ___54
6.1.1 Request Types __54
6.1.2 Experiment Suite __55
6.1.3 Client Applications Used For Experiments ________________________57
6.1.4 Java Experiments Second Run__________________________________62
6.1.5 Hardware and Software _______________________________________62
6.1.6 Performance Experiments _____________________________________63
6.1.7 Scalability Experiments _______________________________________64
6.1.8 Problems during Experiments __________________________________69

7. Summary and Conclusions __71

7.1 PL/SQL vs J2EE: Architecture ___________________________________71

7.2 PL/SQL vs J2EE: Performance___________________________________72

7.3 PL/SQL vs J2EE Scalability _____________________________________73

7.4 Usage Comparison ___73

7.5 PL/SQL vs J2EE: Summary _____________________________________74

8. Future Work__75

References ___76

Other Resources Used But Not Referenced _______________________________79

Appendix___80

A. Glossary___80

B. Proposed new architecture for the ICM platform ____________________81

C. Complete Results From The experiments ___________________________82
C.1 PL/SQL___82
C.2 J2EE 1 ___83
C.3 J2EE 2 ___84

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 7

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 8

List of Tables

3-1. PL/SQL versions and releases 31

6-1. Request and response types 55

6-5. Configuration of evaluation machines 62

6-6. PL/SQL performance experiment results 63

6-7. J2EE 1 performance experiment results 63

6-8. J2EE 2 performance experiment results 64

6-10. PL/SQL scalability experiment results 65

6-11. J2EE 1 scalability experiment results 66

6-12. J2EE 2 scalability experiment results 66

C-1. PL/SQL performance experiment complete results 82

C-2. PL/SQL Light Weight Request results 82

C-3. PL/SQL Middle Weight Request results 82

C-4. PL/SQL Heavy Weight Request results 83

C-5. PL/SQL Mixed Weights Request results 83

C-6. J2EE 1 performance experiment complete results 83

C-7. J2EE 1 Light Weight Request results 84

C-8. J2EE 1 Middle Weight Request results 84

C-9. J2EE 1 Heavy Weight Request results 84

C-10. J2EE 1 Mixed Weights Request results 84

C-11. J2EE 2 performance experiment complete results 85

C-12. J2EE 2 Light Weight Request results 85

C-13. J2EE 2 Middle Weight Request results 85

C-14. J2EE 2 Heavy Weight Request results 86

C-15. J2EE 2 Mixed Weights Request results 86

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 9

List of Figures

2-1. Host-Terminal architecture 16

2-2. Client/Server architecture 17

2-3. Multi-tier architecture 18

2-4. Peer-to-peer architecture 19

2-5. ProCompetence, basic info screenshot 21

2-6. ProCompetence, competence gap graph screenshot 22

2-7. ProCompetence, role fulfillment graph screenshot 23

2-8. ProCareer, practical skills module screenshot 24

2-9. ProCareer, alternative paths of development screenshot 25

2-10. ProTime, time report screenshot 26

2-11. ProResource, availability graph screenshot 27

2-12. General ICM architecture 28

3-2. Basic structure of a PL/SQL block 31

3-3. Example of a PL/SQL subprogram 32

3-4. Example of a PL/SQL package header 33

3-5. Example of a package body 34

3-6. PL/SQL runtime engine 35

4-1. The J2EE distributed, multi-tiered application model 36

4-2. Remote and Home interface 40

4-3. J2EE application model 42

5-1. Basic architecture of PL/SQL evaluation prototype 46

5-2. Basic architecture of J2EE evaluation prototype 47

5-3. JFP_R_MATCH package header _______________ 49

5-4. JFP_R_MATCH package code ___________________ 50

5-5. Obtaining a session bean reference code snippet ____ 52

6-2. The runTests()-method of class TestApplication ____ 57

6-3. The run()-method of the ClientThread class in PL/SQL evaluation 58

6-4. The run()-method of the ClientThread class in J2EE evaluation 61

6-9. Result comparison of the performance experiments 64

6-13. Result comparison of the middle weights requests 67

6-14. Result comparison of the heavy weights requests 68

6-15. Result comparison of the mixed weights requests 68

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 10

6-16. Result comparison of the mixed weights requests 69

B-1. Proposed new architecture for the ICM platform 81

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 11

1. Introduction
The company Prohunt has three different software products in the ICM (Intellectual
Capital Management) segment: ProCompetence, ProResource and ProCareer.

The products are currently based on an architecture where the database contains both
data, business logic and some of the form. This is not an optimal configuration, and
using a different architecture several improvements could probably be made.
Therefore, Prohunt started to investigate alternative business platforms in October
2000.

This investigation identified a number of possible improvements and resulted in a
recommendation for a new architecture based on Enterprise Java Beans (EJB) and
XML. The new architecture would separate data, function and form and introduce a
number of other improvements.

Since Prohunt's ICM products are large, complex systems, porting the whole systems
would be a very tedious task. It is believed that some parts of the products would
benefit more than others from using Java instead of the rather old language PL/SQL
that is currently used.

Prohunt also wants the three products to use the same system for authentication and
authorization. Today these products are not integrated. As a result a user has to log
into every system separately. Naturally Prohunt wants their customers to buy all three
products and this integration would greatly increase the user friendliness and
customer value of the combined systems.

Other benefits of the new architecture would be easier maintenance and development
of the products as a result of the more modularized and multi-layered architecture.

The recommendation of the investigation was to start the porting process by
constructing a new authorization system common to all three products. When
completed, the next step would be to port the parts of the products that would benefit
the most from it.

On Friday the 23rd of March 2001, a new project was started with the goal of
designing this new authorization system, based on the proposed architecture. This
project will be ongoing until the 1st of June and the thesis is supposed to work in
parallel to this thesis project, exchanging information and ideas.

1.0.1 Requirements on the Reader
A reader of this thesis will have to have an intermediate knowledge of Java
specifically and programming in general. He or she should also be familiar with the
concepts of SQL, since it is extensively used in the thesis, and a basic understanding
of distributed computing is preferred but not necessary. The thesis will not require any
prior knowledge of J2EE, application servers and such, but a basic knowledge about
computer science is preferred as there are some vocabulary and expressions that are
presumed to be known.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 12

1.1 Motivation
The server-side of Prohunt’s existing products is for the most part implemented in
Oracle PL/SQL. This is a stored procedure language that is tightly integrated into the
Oracle database server and architecture, making it impossible to use database
managers (DBMS) other than Oracle’s. Some of Prohunt’s customers use other
databases and therefore Prohunt would like to be able to make their systems
independent of the DBMS.

Also, some parts of the Oracle PL/SQL architecture are believed to be slow. It is
assumed that Java would be more efficient in raw calculations for example. If so,
maybe it would be better to port the whole systems to a Java platform instead of the
Oracle dependent platform used today?

Although there are plenty of books and documentation about the J2EE platform and
some about PL/SQL, no comparisons and no scientific performance benchmarks
between these two architectures has been performed. To conduct a comparison and
evaluation will be the biggest challenge of this thesis.

1.2 Objective of Thesis
The goal of the thesis is to evaluate the distributed architecture known as J2EE (Java
2 Enterprise Edition) with emphasis on performance, scalability, flexibility and
reliability. The evaluation will include a comparison with Prohunt’s existing
architecture, based on Oracle PL/SQL. Prohunt’s ICM platform will serve as a case
study in this sense.

The purpose of the evaluation is to provide recommendations whether J2EE would be
a suitable technical platform for Prohunt’s ICM products or not. To answers this, we
need to know if the Java Enterprise Technology is fast enough, if it scales well
enough and if moving all code from PL/SQL to Java would be worth it, considering
economy, time consumption and education of developers?

Another objective of the thesis was to provide guidelines on how to migrate the
systems if such a migration was recommended, and find out which parts of the
systems would benefit the most from this change. This objective was abandoned after
Prohunt had gone bankrupt though, changing some of the perspective of the thesis to a
more theoretical view.

1.3 Where the Thesis Was Done
This Master’s Thesis was done at a company called Prohunt AB. Prohunt AB call
themselves “the number one provider of complete solutions for development and
management of the intellectual capital of organizations” [1].

Prohunt AB was founded ten years ago as Palmér System AB. This was in Linköping
in 1992 and the company consisted of only three persons. In the first half decade it
was just another IT consultant company but somewhere along the line a new direction
was taken. The company changed name to Prohunt AB and began working in the field
of competence management. A few small companies were acquired: New Start AB
(competence managers), Unit Solution AB (java developers who had a selling product
– ProTime) and Comenius (e-learning). Competence management was first practiced
the old fashioned way with pen and paper, but since Prohunt was a firm with much

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 13

knowledge in IT, they saw the need and had the competence to bring their methods to
the computer age. Prohunt’s Intellectual Capital Management (ICM) platform started
to take form. ICM will be described below.

1.3.1 Intellectual Capital Management (ICM)
According to the Gartner Group [48] (one of USA’s leading companies in business
research, analysis and advisory) Intellectual Capital (or Knowledge Capital) is defined
as the “Intangible assets of an enterprise that are required to achieve business goals,
including knowledge of employees; data and information about processes, experts,
products, customers and competitors” [46].

ICM is in other words the management of a company’s intellectual resources.

Prohunt’s ICM platform consists of three software products: ProCompetence,
ProCareer and ProResource. These products are used by management, employees and
human resource managers in organizations to [2]:

• increase the company’s ability to attract, develop and hold on to co-workers.
• prolong the time of employment by finding individual ways of making a

career within the company.
• increase coverage (share of consultants currently assigned to work) by better

usage of the competences within the organization.
• gain access to the right competence in the right place at the right time.
• faster guarantee the right competence that achieves the business goals.
• gain overview of the organization’s resources and demands.
• help co-workers match their competence development and goals with the

company’s strategic needs and future goals.

Prohunt doesn’t just sell software products. They are working in accordance to a
unified competence process where the customer (company) is profiled by competence
consultants and the employees are trained in using the software as well as proper
human resource management. By mid 2000, Prohunt was the Nordic region’s leading
supplier of complete solutions for ICM in organizations with customers like Telia,
Swedish Match, Teracom, Cell Network, AdTranz, Posten IT and Riksskatteverket
[6].

In January 2001 Prohunt had about 120 co-workers and had offices in Stockholm,
Gothenburg, Kalmar and Olso. When the Swedish market began to decline, Prohunt
felt the change at once. In May the staff had been cut down to 60 persons and when
venture capitalists IT Provider withdrew their financial support Prohunt was declared
bankrupt on the 22nd of June 2001.

In the beginning of August WM-Data Human Resource announced that they would
buy the remains of Prohunt; their ICM platform, equipment and employ some of the
staff.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 14

1.4 Structure of the report
The first chapter has already laid a foundation to the rest of the thesis by giving an
introduction to the problem describing the problem, motivation and objective of the
thesis.

The second chapter starts with a theoretical introduction to distributed applications
and architectures in general. It also describes the applications in the Prohunt ICM
platform, both general specification and analyses the architecture.

Chapter three gives an overview of Oracle’s PL/SQL programming language and its
history, semantics and architecture.

The fourth chapter provides an overview of Sun’s Java 2 Enterprise platform. It is
more extensive since the Java Enterprise platform consists of many Java technologies.
The chapter ends with a more in-depth description of the J2EE Application Server and
the services that it provides.

In chapter five my analysis begins by describing the general architecture of the
systems and describes how the two prototypes are constructed. The chapter ends with
a short presentation of the software used in the thesis.

Chapter six describes the evaluation experiments. The chapter presents the method of
evaluation along with the evaluation prototypes. These experiments concentrate on
two properties, performance and scalability. Experiment values are presented with
both raw test numbers and different graphs and plots.

The seventh chapter called “Summary and Conclusions” contains essential
information; evaluation results and conclusions based on the experiments and the
general comparison between the two platforms.

The last chapter presents some suggestions about what additional work could be
performed in the line of this thesis. This future work falls outside of this thesis for
some reason or other.

At the end of the thesis are the references and the appendices, with a glossary,
complete evaluation results and source code.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 15

2. Background
This chapter starts with an introduction to distributed computing and distributed
architectures. After this general introduction it presents the case study, the distributed
applications of Prohunt’s ICM platform. This presentation describes both functions
and specifications of Prohunt’s existing software products.

2.1 Distributed Computing
Distributed computing is a term used for systems where the process of computing has
been distributed across more than one physical computer. The reason for this may
vary. These are the major reasons for distributed computing [30]:

• The data are distributed.
• The computation is distributed.
• The users of the application are distributed.

Distributed data
The most common reason for distributed computing is of course that the data are
distributed. The Internet is based on the fact that people all around the world want to
access information on computers other than their own.

Distributed Computing
The computation may be distributed when one computer does not have enough
computational power for the task at hand. The most famous example of this is the
SETI@home project [39] where every one connected to the Internet can download a
screen saver and donate processor time to the search for intelligent life in outer space.

Distributed users
A third reason for distributed computing is that the users of the application are
distributed. A popular example of this is messaging applications like ICQ (I seek you)
[41] and Microsoft’s MSN Messenger Service [42], which allows users around the
world to communicate with each other.

2.1.1 Requirements of Distributed Systems and Applications
Systems and applications that are distributed are exposed to a different set of
requirements and expectations compared to ordinary applications. Some of the
requirements are of a technological nature and some are due to human expectations
and conditions.

These requirements are as follows:

• Response time
• Robustness
• Scalability

Response Time
The response time of a system is the elapsed time from the moment the user makes
some sort of input until the system indicates a response. Of course the response time

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 16

should be as short as possible but the requirement of the response time differs
enormously from application to application. A car simulator has to have a response
time measured in milliseconds, while a user can accept a response tome of at least
four to five seconds before the he gets annoyed.

Robustness
A distributed application depends heavily on many factors to run well. Since the
application is divided and situated on different machines, it is highly dependent on the
computer network that connects the parts. This means that a distributed application
has to be robust, i.e. not crash if the network is down or congested, or if the
connection between client and server fails for some other reason. A distributed
application has to be prepared for those types of failures.

Scalability
Scalability is the concept of an application continuing to perform well while the
number of concurrent users or clients increases. The response time of a scalable
application should not increase unreasonable fast when the number of online users
increases.

2.1.2 Distributed Architectures
There are essentially four different architectures, or paradigms, for distributed
systems. These are:

• Host-Terminal [33]
• Client/server [33]
• Multi-tier [8]
• Peer-to-peer [33]

Host-Terminal
This architecture is mainly used in mainframe environments. Several dumb
workstations (called terminals) are connected to a single central computer (the host),
see figure 2-1. The host is responsible for all processing; the terminals are only used
for input and output and perform no processing what so ever. [32]

Figure 2-1. Several dumb terminals are connected to one host. All applications and data are stored
and processed on the host, terminals are used exclusively for input and output.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 17

Advantages

Terminals are very cheap since they mostly consist of a display and a keyboard.

Disadvantages

There are many disadvantages. In most cases nowadays you want to have some kind
of processing on the terminal side. This architecture was very common before the
breakthrough of the PC.

Client/Server
The main idea of the client/server architecture is that one or more clients request a
service and the server provides this service. Servers are shared, central computers,
which are dedicated to managing specific tasks for a number of clients. Clients are
workstations on which users run programs and applications. Normally, clients connect
to a server and request its services. The server responds to the clients according to the
requests.

The characteristic of the client/server model is that both client and server is involved
in the processing work. Clients rely on servers for resources, but process
independently of the servers. The amount of processing work performed on the client
can very, ranging from little (thin clients) to massive (fat clients). Each has of course
its advantages and areas of usage. Figure 2-2 depicts a typical client/server
configuration. [32]

Figure 2-2. The clients connect to servers to access data or information, but are capable of functioning
on their own too.

Advantages

The client has direct access to the server, which makes this a fast architecture. It is
also very flexible, the client and server can be as “thin” or as “fat” as required for the
specific task.

Disadvantages

If the server crashes, looses its connection or disappears of another reason, all services
disappear too. This architecture is thus very dependent of the server.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 18

Multi-tier
The multi-tiered architecture is a further development of the client/server model
where data presentation, data processing and data storage has been divided into
different layers or tiers. This division can be both logical (different tiers perform
different tasks) and physical (different tiers can be situated on different machines).

A multi-tiered application can consist of a varying number of tiers, but the three basic
tiers that most applications shares are the client tier, the business tier and the database
tier. Figure 2-3 shows a multi-tiered architecture where the different tiers are also
situated on different physical machines. Another quite common configuration is to put
business tier and database tier on the same computer.

Figure 2-3. An example of a multi-tiered architecture where two machines acts as servers with
different tasks. This will lead to increased network traffic but each machine will be able to process
more concurrent clients.

Advantages

One of main advantages of the multi-tiered architecture is the opportunity to use third
party application servers and middleware applications. These products provide easy-
to-use APIs and middleware services and they are designed to make development of
distributed applications easier, faster, more scalable and more fault-tolerant. The
developer can focus on the business logic of the code and do not have to waste time
and energy on the details behind transaction handling, security and message passing,
which is taken care of by the middleware.

Another advantage is scalability. Since tiers can be distributed among several
machines, computations can be divided among multiple machines or processors.

Disadvantages

Every separate tier has to communicate with the tier above and the tier below it self.
This means that inter-tier communication can become a bottleneck. This increased

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 19

overhead means that this architecture is more suited for complex applications where
the benefits overcome the costs.

Peer-to-peer
The peer-to-peer architecture, also known as P2P, has gained a lot of interest and
focus due to the success of applications such as Napster [37], Gnutella [38] and the
new FastTrack technology [39]. In P2P there is no central server, all workstations are
equal (or peers). A workstation in a peer-to-peer network is called a node, and can
function as both client and/or server according to the current state of the network. The
nodes in a peer-to-peer network are connected to several other nodes, as seen in figure
2-4.

Figure 2-4. In this P2P network, every node is connected to all other nodes in the network. In large
P2P networks, this is of course not possible. A node will be connected to a reasonable amount of
nodes, which are connected to other nodes, thereby creating a large network.

Advantages

No central stored information. Since every node can be a server, you have access to
the collected information of every node in the network. P2P is not dependent of one
server, if one node disappears, another one will soon take its place.

Disadvantage

Nodes are not as stable as in a client/server environment. A node may very well
disappear while you are accessing it. Requests travel from node to node until a node
has the requested data. This behavior can make requests slow in the peer-to-peer
architecture. P2P doesn’t offer solid performance in larger installations or under
heavy network traffic loads.

2.1.3 Approaches to Distributed Systems
There are a few different distributed communication technologies, or approaches, that
can be used to create distributed systems. The more high-level approaches use and
take advantage of the lower-level ones. These are some approaches to distributed
systems:

• Lowest level: socket communication (message passing through socket
connections). This is the foundation of all Internet communication.

• Remote Procedure Call (RPC) [36]. Allows applications to call procedures
located on a server as if they were local procedures.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 20

These are more advanced approaches using distributed objects:

• CORBA (Common Object Request Broker Architecture) [34] is an open,
vendor-independent architecture and infrastructure that applications can use to
communicate over networks. This technique can be described as a platform-
and language independent version of RPCs. CORBA is developed by the
Object Management Group, an association with hundreds of member
companies.

• Remote Method Invocation (RMI) [28] is the Java version of RPC.
• Microsoft’s Distributed Component Object Model (DCOM) [35].

Some of these distributed approaches have been used by different companies to
construct middleware infrastructures. These infrastructures are provided to third party
system developers to simplify, speed up and make the development of distributed
enterprise systems cheaper and more robust.

Below, a few examples of middleware infrastructures are presented:

• Sun’s Enterprise Java platform (J2EE).
• Microsoft COM+ together with Microsoft Transaction Server (MTS).
• Netscape Application Server

The J2EE platform is the only middleware architecture that is independent of the
founding company. It was specified by Sun Microsystems but the specification is
open. Any company can develop its own J2EE application server and sell it as long as
the application server follows the J2EE specification [49]. There is currently (August
2001) at least 37 different J2EE application servers available on the market [45]. Each
chooses to implement the specification differently, with differing support for features
and different pricing.

However, Microsoft’s MTS architecture and Netscape’s application server are closed
systems and cannot be edited. Changing application server would mean rewriting all
code. On the J2EE platform there is plenty of opportunity to choose and change
application server without to much hassle if disappointed.

2.2 Prohunt’s Existing ICM Platform
Prohunt ICM is a set of products for Intellectual Capital Management. It consists of
three different software products:

• ProCompetence – for strategic and business oriented competence support.
• ProCareer – for strategic career planning for individuals and organizations.
• ProResource – for efficient planning, manning and follow-up of projects.

The underlying server platform is fairly similar, but they differ in their client
implementation. ProCompetence for example, has a traditional web client and
ProCareer has a Shockwave client.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 21

2.2.1 ProCompetence
ProCompetence is a tool for keeping track the different competences within an
organization. In ProCompetence, Employees declare their competences, job position
(role) and register current projects they are involved in.

Figure 2-5 shows the initial view of ProCompetence were an employee enters basic
information about himself. The menu on the left shows that there are additional views
for entering CVs, adding roles and competences and managing projects.

Figure 2-5. ProCompetence helps employees to define their competences. This is the view that
employees will first meet when starting the application.

A Competence manager will have a completely different set of options in the
program. Numerous graphs and reports can show for example if the right persons are
working in the right seats or you can choose a group and see the difference between
existing competence and wanted competence. Figure 2-6 shows the knowledge levels
of a group in the chosen competences.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 22

Figure 2-6. It is simple to create reports and graphs for individuals, departments and organizations.
This is a gap analysis for a group where the existing competence of the group is compared with the
desired competence in a spider graph. This clearly displays which competences are lacking and which
are overly represented. For example, does the group include a skilled financial manager, a senior
systems developer or trained sales personnel? [6]

Being web-based, ProCompetence is easy to use for all co-workers wherever they are
in the world by means of either the company intranet or the Internet. With
ProCompetence, employees and managers can get information about competence
gaps, resource gaps, role achievement, a compilation of the organization’s total
overall competence and planned increases in competence. Figure 2-7 shows another
way of depicting how well a group fulfills different roles.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 23

Figure 2-7. This picture shows an overview of role achievement within a group [6].

2.2.2 ProCareer
ProCareer is a career-planning tool and its purpose is to help co-workers to match
their motivations, ambitions and personal goals with the company’s strategic needs
and future goals.

ProCareer consists of two parts, first ProCareer Inward where employees specify their
motivations and ambitions, and secondly ProCareer Outward, which deals with
relationships between employees and the company.

As seen in figure 2-8, ProCareer has a totally different user interface.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 24

Figure 2-8. ProCareer Inward deals with you and your personal needs. In the Practical Skills module,
you decide how motivated you are to use certain skills and evaluate your capacity to use them, in order
to pinpoint your Key Skills [6].

Figure 2-9 on the other hand shows the Outward part of ProCareer, where the
employee chooses between different career paths within the organization. The
employee ranks each path with regard to different properties.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 25

Figure 2-9. ProCareer Outward deals with the outside world and your organization. In the Alternative
Development Paths module, you identify and describe both the short and long term development paths
that you find most interesting within your organization [6].

The goal of ProCareer is to match the motivations, ambitions and goals of the
employers with the strategic needs and future goals of the organization. It also helps
employees to visualize ways of personal development that are unclear to them, as well
as identify and profile their primary competences. The use of ProCareer within an
organization is supposed to decrease the turnover of employees, increase the
efficiency of leadership and teach employees to take responsibility of their own career
development.

2.2.3 ProResource
ProResource is a web-based tool for planning, managing and following-up the
resource situation in companies and organizations. Resources might be personnel,
time, money and premises. ProResource simplifies planning and continuous follow-up
for project leaders in several ways. Projects and activities can be defined to which
personnel and time are then allocated. It is possible to search for employees with the
right skills and knowledge needed in a particular project. Employees also use
ProResource to their time reports in a module called ProTime.

ProResource allows project leaders to easily follow up the projects to make sure they
are on time and that all needed resources are available. ProTime is an advanced
application for employees to do time-reports. Figure 2-10 shows the main frame of
ProTime. The information gathered from the employees is used in ProResource and to
generate reports and graphs.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 26

Figure 2-10. Using ProTime, each employee can report the amount of time he/she has worked on a
particular project. First choose the project, then the activity and then fill in how much time has been
spent on it. You can also click on a tab and fill in more detailed information. Reports can then be
generated on, for example, the individual and project level [6].

ProResource can generate numerous reports and other tools for project administrators.
Figure 2-11 shows consultants matching a certain need and their availability.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 27

Figure 2-11. ProResource can search for consultants whose skills match a consultant profile and show
their availability in graphs or as text [6].

2.2.4 Specification and Architecture
The general architecture is largely the same for all three products. They are all web
based client/server solutions with Oracle Application Server running as web server
and Oracle8i as database. Depending on the size of the customer company the web
server and the database resides on the same machine or on separate machines. All
communication between client and server is encrypted using SSL (Secure Sockets
Layer). Figure 2-12 depicts the general architecture of Prohunt’s products.

Client-side
As mentioned earlier, the architecture is very similar between the three products.
However, there are some differences, mostly on the client-side. Both ProCompetence
and ProResource have a web interface that consists of Html-pages with some
additional JavaScripts, dynamically created by Java Servlets.

The ProTime module of ProResource differs from the other products because it is an
advanced Java Applet instead of ordinary Html-pages. ProCareer is also different due
to the Shockwave interface of the client. The differences are only in the technology of
the user interface though; behind the scenes the architecture is the same.

All clients run on the browsers Internet Explorer and Netscape, version 4 or higher.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 28

Server-side
As stated before, the server-side architecture is more uniform between the three
products. On top of the server architecture are the Java servlets that dynamically
create the user interface. These servlets handles all user interaction, receiving requests
and returning responses. Each time a user interacts with the user interface, a request is
sent to a servlet. Many servlets on many levels may be involved, but ultimately one of
them calls a stored PL/SQL subprogram, waits for a result, and then propagates it up
to a servlet which generates the appropriate response that is sent to the client.

Two very important servlets, SDispatcher and DBLayer, are used for every database
access and they function as the glue between the Java servlets and the PL/SQL stored
procedures. SDispatcher and DBLayer function as an interface between the Java
servlets and the PL/SQL stored procedures. SDispatcher is responsible for verifying
that the user has permission to call the requested procedure on the server. If
permission is granted, SDispatcher tells DBLayer to call that procedure.

Figure 2-12. Architectural overview of the ICM platform.

DBLayer handles communication between the Java servlets located on the Web
Server and the PL/SQL procedures located in the Oracle Database. DBLayer converts
procedure calls, parameter data types and return values between Java and Oracle
PL/SQL.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 29

DBLayer uses Java Database Connectivity (JDBC) to access the next logical layer,
the business logic implemented in PL/SQL as seen in figure 2-12.

All three products are also available in an ASP (Application Service Provider)
version, enabling customers to let Prohunt take care of the operation and maintenance
of the system. In the ASP solution, the product is situated on a server run by Prohunt,
but the customer accesses the application as if it was run locally by the customer
company. Technically there is no difference between the ASP product and the normal
product, except that the servers are not connected to the customer’s local network, so
network traffic has to be allowed between the customers network and Prohunt’s
servers over the Internet. Since all network traffic is already encrypted, there is no
need to alter the network protocol used.

2.2.5 Analysis
So, why did Prohunt feel the need to change technical platform? To understand this,
one has to be familiar with the origin of Prohunt’s applications.

Prohunt’s first application was ProCompetence, which was a classic client/server
application with a Windows client developed with Centura Team Developer (earlier
known as SQLWindows) [7]. Centura is a 4th generation (4GL) development tool
similar to Sybase’s PowerBuilder, Borland’s Delphi and Microsoft’s Visual Basic and
provides fast and easy development of Windows client applications with a graphical
user interface (GUI).

ProResource was also a Centura client from the start. But at the start of the
implementation of ProCareer, web-based applications were a hot topic and it was
decided that all of Prohunt’s product would be web-based.

To be able to both develop ProCareer and port ProCompetence and ProResource to
the web, it was decided to keep the old server architecture to shorten development
time and minimize the cost. The Centura clients were replaced by new web interfaces
based on Java Server Pages. Special Java Servlets were built to connect the web
interfaces to the Oracle stored procedures.

Over time, the combination of two different programming languages approaches to
application development was considered a bad compromise. Prohunt wanted to fully
convert the old-fashioned client/server architecture to more modern multi-tiered,
platform independent, with Java on both clients and server.

Prior to the start of this thesis, Prohunt decided to remodel and rewrite the entire login
and authorization sections of the applications. Today, every product is independent of
the others. A user has to log into every application one by one. Prohunt wanted a user
to be able to log in once for all systems. The products should all belong to the same
authorization module.

All of this resulted in a decision to port all products to a distributed J2EE architecture.
A figure of the proposed new architecture can be seen in appendix B.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 30

3. PL/SQL
Prohunt’s existing server platform is based on an Oracle database and the language
Oracle PL/SQL (Procedural Language extensions to SQL). This extension is basically
stored procedures that allow developers to add flow control, logic design and more
complex behaviors onto unstructured SQL command blocks. PL/SQL also
implements basic exception handling, database triggers and cursors (a data structure
similar to record sets).

3.1 Background
PL/SQL was first released with Oracle version 6.0 in 1991. In the beginning, what
would become PL/SQL was only a batch processing script language on the server side
called SQL*Plus. SQL*Plus was very limited in functionality. For example, you
could not even store procedures or functions for execution at some later time. On the
client side Oracle has a tool called Oracle Forms (formerly known as SQL*Forms).
SQL*Forms V3.0 incorporated the PL/SQL runtime engine for the first time on the
client side, allowing developers to code their procedural logic in a natural,
straightforward manner [10].

Table 3-1 shows the evolution of PL/SQL from Version 1.0 to the latest Version 9.0
and some examples of significant improvements with each release.

Version/Release Characteristics

Version 1.0 Available in Oracle 6.0 and SQL*Forms version 3,

Release 1.1 Supports client-side packages and allows client-side programs to
execute stored code transparently

Version 2.0 Major upgrade to version 1.0 available in Oracle Server Release
7.0. Adds support for stored procedures, functions, packages,
programmer-defined records, PL/SQL tables and much more.

Release 2.1 Available with Release 7.1 of Oracle Server. Supports user-
defined subtypes, enables stored functions inside SQL statements
and you can now execute SQL DDL statements from within
PL/SQL programs.

Release 2.2 Available with Release 7.2 of Oracle Server. Supports cursor
variables for embedded PL/SQL environments such as Pro*C.

Release 2.3 Available with Release 7.3 of Oracle Server. Enhances
functionality of PL/SQL tables, adds file I/O and completes the
implementation of cursor variables

Version 8.0 Available with Oracle8 Release 8.0. Oracle synchronized version
numbers across related products, thus the drastic change. Supports
many enhancements of Oracle8, including large objects (LOBs),
collections (VARRAYs and nested tables) and Oracle/AQ (the
Oracle/Advanced Queueing facility)

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 31

Version 9.0 Available with Oracle9i. Many performance improvements,
support for native compilation speeds up computations. Tighter
integration of the PL/SQL and the SQL runtime engines. Scrolling
cursors and CASE statement has been added [14].

Table 3-1. PL/SQL versions and releases [10].

PL/SQL developers are worried that Oracle will discontinue supporting PL/SQL since
Oracle nowadays has a built-in Java virtual machine and native support for Java
inside the server. However, this is not the case. Oracle is still developing and
improving PL/SQL, for example PL/SQL is significantly faster in Oracle 8i than in
8.0, due to both internal optimizations and new features [16].

3.2 Language
PL/SQL was modeled after the programming language Ada, hence it is a high-level
programming language. It incorporates many elements of procedural languages,
including:

• A full range of data types
• Explicit block structures
• Conditional and sequential control statements
• Loops of various kinds
• Exception handlers for use in event-based error handling
• Constructs for modular design – functions, procedures and packages
• User-defined data types

Since PL/SQL is a procedural block language, it is quite easy for someone who has
some experience of programming in other procedural languages like C/C++, Java or a
similar language, to understand the structure and functionality of the code. A PL/SQL
block consists of up to four different sections; the header, declarative section,
execution section and the exception-handling section (see code example below). Only
the execution section is mandatory, the other sections are not required. Figure 3-2
show the basic structure of a typical PL/SQL block:
declare
 <declarative section>
begin
 <executable commands>
 exception
 <exception handling>
end;
Figure 3-2. The basic structure of a PL/SQL block. Since the header is missing, this is called an
anonymous block; it cannot be called by itself.

Block Header
The block header contains the name of the block and invocation information. There
are three kinds of blocks; anonymous (cannot be called), procedures (doesn’t return
any value) and functions (procedures that will always return a value).

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 32

Declarative Section
Variables and constants have to be declared in the declarative section before use. All
SQL data types and PL/SQL data types are allowed and are handled without
conversions.

Execution Section
The execution section is where the actual code is placed. The PL/SQL runtime engine
will execute this code.

Exception Section
The exception section is where the code that handles exceptions to normal processing
(warnings and error conditions) is placed. [10]

A simple example of a PL/SQL block, also known as a subprogram, is described in
figure 3-3.

A few syntactic explanations: -- makes the rest of the row a comment. You can also
use the well know /* comment */ and || is the string concatenation operator.

 1 -- First comes the block header. Procedure name and argument list
 2 -- with name and types
 3 procedure update_cost (
 4 isbn_number in number
 5)
 6 is
 7 -- This is the declarative section where
 8 -- you declare local variables
 9 temp_cost number;
10 /* The execution section starts here */
11 begin
12 SELECT cost FROM db.book INTO temp_cost WHERE isbn =
13 isbn_number;
14 if temp_cost > 0 then
15 UPDATE db.book SET cost = (temp_cost*1.2) WHERE isbn =
16 isbn_number;
17 else
18 UPDATE db.book SET cost = 10 WHERE isbn = isbn_number;
19 end if;
20 COMMIT;
21 -- Exception section handles all possible exceptions
22 exception
23 when NO_DATA_FOUND then
24 INSERT INTO db.errors (CODE, MESSAGE) VALUES(99, 'ISBN ' ||
25 isbn_number || ' NOT FOUND');
26 end;
Figure 3-3. A subprogram called update_cost that retrieves the price of a specific book from a
database. The price is stored in the variable temp_cost. If the price is larger than zero, the price in
the database is updated to the old price times 1.2. If the old price of the book was zero, it is changed to
10. Last of all, the changes to the database are commited (made persistent). But in case the book
doesn’t exist in the database, a NO_DATA_FOUND-exception is raised and an error message is inserted
into the database.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 33

As seen above, PL/SQL is a typed language.

3.3 Architecture
The PL/SQL runtime environment is a client/server solution. Execution of PL/SQL
code can only be performed by the PL/SQL runtime engine which is only available
inside the Oracle Server, or on the client side, inside a tool called Oracle Forms.
PL/SQL on the client-side will not be described further, since this requires that Oracle
Forms is used for client development which is not the case at Prohunt.

PL/SQL blocks are modularized into packages inside the Oracle Server. Packages are
divided in two sections, the header and the body. The header contains declarations
and the body the executable code in much the same way as C header and source files.
Subprograms and variables that should be accessible outside of the package must be
declared in the package header. All the source code is placed in the package body.
The body is hidden from the outside, only the declarations in the package header are
visible. The package header is the interface of the package to the outside.

Subprograms placed inside a package are called stored subprograms. If the
subprogram is not declared in the header, thus not accessible from outside the
package, it is called local subprograms. There are also stand-alone subprograms that
are not placed within a package [9].

Below is an example of what a package header could look like:
package test_package
is
 -- User defined type
 type t_curRef is ref cursor;

 -- A test function with two IN arguments
 function test_function (
 param1 in number,
 param2 in number
) return number;

 -- A test procedure with three arguments, two in and one out
 procedure test_procedure (
 param1 in number,
 param2 in varchar2,
 outparam out t_curRef

);
end;
Figure 3-4. Example of a PL/SQL package header.

The functions, procedures, variables and programmer-defined types that are declared
in the package header are then available from other packages.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 34

Figure 3-5 illustrates an example the code of the package body.
package body test_package
is
 -- Variables declared here will be global
 -- inside the package
 number_of_tests number;

 function test_function (
 param1 in number,
 param2 in number
) return number
 is
 begin
 -- Function code
 ...
 end;

 procedure test_procedure (
 param1 in number,
 param2 in varchar2,
 outparam out t_curRef
)
 begin
 -- Procedure code
 ...
 end;
end;

Figure 3-5. Example of a package body.

The PL/SQL packages are compiled and stored in the Oracle database data dictionary.
Packages are schema objects, which mean that they can be referenced and invoked by
any application connected to the database. When a PL/SQL subprogram is called it is
loaded and passed to the PL/SQL runtime engine. The runtime engine interprets the
compiled PL/SQL code line by line. The Oracle Server is capable of processing both
PL/SQL blocks and SQL statements as shown in figure 3-6. [9]

Also, subprograms share memory so only one copy of the subprogram is loaded into
memory for execution by multiple users [9].

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 35

Figure 3-6. The PL/SQL Engine executes both PL/SQL blocks and SQL statements [9].

Figure 3-6 depicts the PL/SQL engine in Oracle8. The integration of the PL/SQL
runtime engine and the SQL Statement Executor has been further developed in
Oracle9i [14].

3.4 PL/SQL Summary
Since PL/SQL is executed in the Oracle environment, near the data both physically
and logically, it is optimized for handling large amounts of data at the same time. But
calculations and procedural logic are not believed to be as fast. The main drawback
though, is the inflexibility of the system. Data and code are both stored in the
database, making it harder to separate the two and the level of data abstraction is
lower than in Java. For example, there are very little support for object-oriented
concepts like encapsulation, information hiding and inheritance.

Another disadvantage with PL/SQL is that developers are bound to the Oracle
platform. This may not be a problem as long as the Oracle database is used. However,
if another database is used, the PL/SQL code cannot be used and has to be ported to,
or rewritten for that database.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 36

4. Enterprise Java Technologies (J2EE)
The Java 2 Platform Enterprise Edition [18] (also known as J2EE) is a collection of
technologies, all using Java. Every technology or API fills its function inside J2EE.
However, some are also available outside of J2EE, such as JDBC. Below are the
technologies that belong to J2EE:

• Enterprise JavaBeans (EJB) [18]
• JavaServer Pages (JSP) [20]
• Java Servlets [21]
• Java Naming and Directory Interface (JNDI) [23]
• Java Database Connectivity (JDBC) [21]
• Java Transaction API (JTA) and Java Transaction Service (JTS) [24]
• Java Message Service (JMS) [25]
• J2EE Connector Architecture [25]
• A subset of CORBA (Common Object Request Broker Architecture) known as

RMI/IDL and RMI over IIOP [27]
• The Extensible Markup Language (XML) [29]
• ECperf [30]

4.1 Distributed Multi-tiered Platform
The J2EE platform is a distributed, multi-tiered platform [1]. The fundamental set up
of the different tiers depicted in figure 4-1 and also presented below.

Figure 4-1. The J2EE distributed, multi-tiered application model [1].

Enterprise Information System Tier
Bottommost there is a database where all information is stored. The tier that contains
the data is called EIS, enterprise information system.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 37

Business Tier
On top of the EIS is the business tier, which contains most of the logic of the
application. Calculations and processing are performed in this tier. In a J2EE
application, this tier is located in an application server on the J2EE server machine.

Web Tier
The web tier is not mandatory. Its existence depends on the type of client application.
If an Applet or stand-alone application is used as the client, the web tier is not
necessary. But if the client consists of dynamic Html-pages shown in the client’s
browser, the web tier is essential. The web tier consists of Java Server Pages or Java
Servlets (called web components). Web components are Java code that is executed on
the web server and dynamically create and return static Html-pages to the client’s
browser, allowing the resulting web pages to depend on user input and server state.

Client Tier
The set up of the client tier can vary, depending on the application. The client can be a
stand-alone Java application, a Java Applet, dynamic Html-pages returned from the
Web Tier to a client browser or a Shockwave application.

The multi-tiered nature of the technology separates data (database tier), function
(business tier) and presentation (client tier for standalone applications and client tier
together with the web tier for web applications).

4.3 J2EE Components
J2EE Applications consists of components. A component is a self-contained
functional software unit that communicates with other components via well-defined
interfaces. They are written in ordinary Java and are fully reusable. The J2EE
specification defines the following components [1]:

• Client applications and applets are client components.
• Java Servlets and JavaServer Pages (JSP) are web components.
• Enterprise JavaBeans (EJB) are business components.

Client Components
A client component can either be a standalone application, a web browser or a java
applet. The clients in a J2EE application are so called thin clients; they are basically
just a user interface of the underlying business application. Most computations are
hidden in the web and business tiers on the J2EE servers. Client components belong
to the client tier.

Web Components
J2EE web components can be either Servlets or JSP pages. Servlets are Java classes
with embedded Html-code that receive HTTP-requests and produces HTTP-
responses. Java Server Pages on the other hand are Html-code with embedded Java
code. Both are complied (Servlets are compiled explicitly by the developer while JSPs
are implicitly compiled by the web server when invocated for the first time) and run
on the web server, which is part of the web tier.
Java Server Pages resembles Microsoft’s Active Server Pages (ASP) in the way they

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 38

are constructed. Java Server Pages are considered easier and faster to develop than
Servlets because of the more hands-on approach. JSP may be preferred when the
dynamic element of the Html-code is small. For complex applications though,
Servlets are the way to go.

Business Components
The business tier is the heart and soul of a J2EE application; this is where the actual
data handling and processing take place. The business components are called
Enterprise JavaBeans (EJB). There are two essentially two kinds of beans, session
beans that contain the business logic and entity beans that represent persistent data
stored in a database and hold the actual data. These components are deployed in J2EE
containers inside an application server. The containers provide many services like
naming service lookups, component life-cycle-handling, transaction-handling,
security issues and load balancing, allowing the developer to focus on the actual
business logics of the application.

4.3 Enterprise JavaBeans
As stated earlier, the business components are called Enterprise JavaBeans. An
Enterprise JavaBean is similar to a Java class in that it is a combined set of code with
methods. However, it is more than a simple class. To be an Enterprise JavaBean, a
component has to comply with a massive set of rules known as the J2EE
Specifications [49]. These specifications are quite extensive and set up rules that
make a JavaBean ready to be inserted into any J2EE Application Server,
independently of the vendor, as long as the Application Server complies to the
specification.

A JavaBean has to implement several things such as a Home and Remote Interface,
some mandatory methods, it must have a JNDI name (described in chapter

), a deployment descriptor and some
more. A JavaBean thus consists of several different files, which are then packaged
(compiled) in a JAR-file [55] (Java Archivefile) and deployed in a J2EE container.

4.5.2
Services Provided by the Application Server

Session Beans
A session bean represents a single client inside a J2EE server. An instance of the
session bean is created when a client creates it for the first time and it is removed to
garbage collection when the same client invokes the remove methods.

There are two kinds of session beans; stateful and stateless session beans. A stateful
session bean contains data about the client and holds a state between invocations. The
stateful bean can only have one single client and is associated to the same client
during its lifetime. This state is only retained for as long as the session bean is alive.
The state is lost, when the bean is removed by the client.

A stateless session bean on the other hand does not contain any state or client-specific
information between invocations of its methods. All stateless session beans are thus
equal except during method invocation, allowing the EJB container to assign any
instance to any client. This fact can be used for better performance and scalability.
Because stateless session beans can support multiple clients, they can offer better
scalability for applications that require large numbers of clients. Normally, an

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 39

application requires fewer stateless session beans than stateful session beans to
support the same number of clients. [8]

Performance may also be better generally for stateless session beans. The EJB
container may write a stateful session bean out to secondary storage at times. On the
other hand, stateless session beans are never written out to secondary storage [8].
Also, the equality of stateless session beans allows the concept of pooling. The EJB
container can keep a pool of instantiated stateless session beans which then can be
assigned to a client if needed. Both these issues increases performance for stateless
session beans, and they should be used instead of stateful session beans whenever
possible.

Entity Beans
Entity beans are different to session beans in several ways. Entity beans are persistent,
allow shared access and must have primary keys.

Entity beans represent entities (data), stored in some persistent storage mechanism,
usually a database. Persistent data is data that continues to exist even after you shut
down the database server or the applications the data belongs to.

Entity beans compose yet another logical layer between the computational logic
(session beans) and the database. Depending on usage, entity beans may slow down
an application. The extra layer means extra overhead. But when the data record has
been read from the database to the entity bean, all processing of that data record can
be performed on the application server without having to read or write the database.
Entity beans may boost performance if the data records are read and updated
frequently, but requires much primary memory for storage.

The persistence of an entity bean can either be container-managed or bean-managed.
The difference lies in how the persistence are managed, or handled. The container-
managed entity beans are easier to develop since database access is handled by the
container and no explicit database code has to be written. Container-managed
persistence can often be slower than the bean-managed persistence where the
developer writes the code for database access, with the opportunity to optimize the
code for the specific application.

The shared access means that any instance of an entity bean can be accessed by any
number of clients since there is only one instance for a specific set of data (one bank
account = one entity bean). This means that the concept of transactions is crucial for
entity beans, making it impossible for two clients to update the same entity bean at the
same time. Fortunately, the EJB container will handle the transaction management
after the developer has specified the transaction attributes in the beans deployment
descriptor.

Since there is only one entity bean for each database entity, an entity bean has to
contain a unique object identifier – a primary key. The primary key is used to find
entities, or records, in a database just like in a relational database.

Home and Remote Interfaces
The business components (enterprise beans) must follow a certain, well-defined
template (the J2EE Specification) to be deployable. The Home and Remote Interfaces

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 40

contain declarations of the invokable methods of a bean. These interfaces expose the
methods of a bean to a container, and thereby to the outside world. When a client has
obtained a reference to one of these interfaces, the client is able to call the bean’s
methods for execution.

The Home Interface of a bean defines the mandatory methods of the bean specified by
the J2EE Specification. This includes methods for creating and destroying instances
of the bean. These mandatory methods differ a little between session beans and entity
beans, but most of are involved in managing the state of the bean.

The Remote Interface on the other hand defines the business methods of the bean,
extending the set of methods that can be invoked by the container. The business
methods of the bean are methods added by the developer and these methods are the
essence of the application.

Figure 4-2 shows how the home and remote interfaces make it possible for clients to
invoke methods of the enterprise beans even though the client and the business
components aren’t located on the same physical machine.

Figure 4-2. Remote clients cannot invoke methods of a bean directly. The Home and Remote Interfaces
presents a window for the client to the bean.

4.4 JDBC
Java DataBase Connectivity (JDBC) is a technology for accessing databases from
Java applications. The JDBC API allows a developer to read, write, update and delete
data stored in relational databases from his Java methods via the SQL language.
JDBC is the Java equivalent of Microsoft’s ODBC API [50], which is used for similar
tasks on the Windows platform.

JDBC is not a J2EE specific technology, it can and is used by all Java programs to
access databases. As described above, the database access is an automated service in
container-managed entity beans. Programmers are not required to know the details of
JDBC, it is handled in the background by the J2EE containers and the bean
implementation contains no JDBC code or SQL operations. However, if the developer
decides to use bean-managed entity beans, he or she is in fact choosing to write the
JDBC code himself. In some cases it can also be advantageous to let session beans

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 41

access the database directly without any entity beans in-between, and in these cases
too, JDBC has to be explicitly used for the database operations.

The JDBC API consists of two parts [8], an application-level interface used by the
application components to access a database. This interface is what the programmer
uses in his applications. The other part is a service provider interface used to create a
JDBC driver for a specific database management system (DBMS). Each DBMS like
Oracle, Micrsoft SQLServer or MySQL implements its own JDBC driver that
programmers can invoke from their applications, using the application-level interface.

4.5 The Application Server
The main advantage of the J2EE technology is the services that it automatically
provides. Development of multi-tiered applications would be much more difficult and
time consuming without theses services. These kinds of applications involve lots of
communication between layers, transaction handling, state management,
multithreading, resource management and other complex matters. All of this is
handled automatic by the J2EE application server, which lets the developer
concentrate on the specific details of the real business problems.

4.5.1 EJB Containers
For enterprise components to take advantage of these services, they have to be
inserted, or deployed, into J2EE containers. The components themselves are platform
independent and the containers function as the interface between components and the
low-level, platform-specific functionality that supports the components.

As described earlier, the components are packaged in JAR-files, which are deployed
in the container. This JAR-file also includes a deployment-descriptor. This
deployment-descriptor is an XML-file that contains container settings, telling the
container which services the components should have access to, and customizing the
behavior of these services. However, some services are non-configurable and cannot
be customized like that. The exact appearance of the deployment-descriptor differs in-
between Application Servers.

Listed below are some of the services provided by the EJB containers:

• JNDI lookup services provide a unified interface to multiple naming
and directory services. Using this, application components can find and
access other components and naming and directory services.

• The J2EE remote connectivity model manages low-level
communications between clients and enterprise beans. After creation
of an enterprise bean in the application server, a client can invoke the
bean’s methods as if they were local.

• The J2EE transaction model lets you specify which methods make up a
single transaction so all methods in one transaction are treated as a
single unit, also called an atomic action.

• The J2EE containers are also responsible for managing the life-cycles
of components, creating, removing and idling the state of the
components.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 42

• Unless bean-managed entity beans are used, the container will also
handle data persistence, reading and writing the database for the
components.

• The J2EE security model makes it possible to configure a web
component or enterprise bean so only authorized users can access the
systems resources.

Figure 4-3 depicts the relationships between the J2EE application server, the
containers and the components. It also shows the different containers for
enterprise components, web components, client components and applet
components.

Figure 4-3. The J2EE Application Server holds EJB containers in which the EJB components are
deployed [1].

4.5.2 Services Provided by the Application Server
Below follows a presentation of the services provided by the containers inside the
J2EE application server.

Naming Services
The client cannot directly instantiate an enterprise bean or call one of its methods, it
will have to ask the EJB container within the J2EE server to do that. Java Naming and
Directory Service (JNDI) is used by the client to find the home interface of the bean.
A naming service binds a name to an object (not necessarily a Java object) and a
directory service connects attributes to that object. In this case the client asks the
JNDI service for a home interface using its JNDI name, and is given a reference to
that home interface in return. This is called a JNDI lookup.

Remote Connectivity
When the client has a reference to the home interface of the bean, it can tell the
container to invoke the bean’s methods via the reference that the client has obtained.
This J2EE remote connectivity model uses RMI over IIOP (Internet InterORB
Protocol) and is an advanced form of Remote Procedure Calls (RPCs) and very

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 43

similar to CORBA with messages passed between a RMI client and a RMI server. In
fact, IIOP is CORBA-compliant.

Transaction Model
A transaction is an atomic action and should be treated as one single unit. If the whole
transaction could not be executed without errors, none of its results should be stored.
The J2EE transaction model lets the developer choose transaction mode for methods
and then the container will manage so that transactions will be executed as atomic
units. In case of an exception, the container will handle the rollback automatically.
There are several transaction modes, or attributes, deciding whether the method
should require being part of an existing transaction, begin a new transaction or not be
part of any transaction and modifications of these.

Component life-cycles
Enterprise components inside an EJB container have different states during their
lifetime. The containers manage all components’ changes between states, called the
components life-cycle. Different components have different life-cycles; the available
states of a stateful session bean differ from those of a stateless session bean or an
entity bean.

Stateful session beans have three different states. First, it is non-existing. A client then
initiates the life-cycle by invoking the create method. The EJB container
instantiates the bean, bringing it to the ready state, waiting for its business methods to
be called. Now, two things can happen: If the container needs to free some memory
and the session bean hasn’t been used for some time, the container can decide to
passivate the bean by moving it from memory to secondary storage. When the session
bean is needed again, it is simple activated into ready state again by restoring it from
secondary storage to memory again. The other possibility from the ready state is that
the client chooses to terminate the session bean by calling its remove method, leaving
it in the does not exist-state once again.

Stateless session bean can never be passivated, therefore they have only two states:
non-existent and ready.

The life-cycle of an entity bean is different compared to those of a session bean. It
starts as non-existing and is moved by the container to the pooled state when an
instance is created. When in the pooled state, the instance is not associated with any
particular EJB object identity, all instances are identical and possible to assign to any
client. In the pooled state, an entity bean can also be written to secondary storage by
the container. A pooled entity bean can either be created by a client or activated by
the container, both actions puts it in the ready state. There are also two paths from the
ready state back to the pooled state. First, a client may invoke the remove method or
the container may passivate it. A client cannot move an entity bean to the non-existing
state at the end of its life-cycle, only the container may do that.

As described here, the container manages all the life-cycle changes of Enterprise
JavaBeans.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 44

Data persistence
As mentioned earlier, there are two kinds of data persistence management strategies
for entity beans, there is the bean-managed data persistence where the developer is
responsible for data persistence and there is container-managed data persistence.

When a container-managed entity bean is deployed in a container, the container is
responsible for all database access. SQL statements are generated automatically by the
container, and are hidden from the developer. For example, when a client creates an
entity bean, the container automatically generates a SQL insert statement. The code
of the entity bean includes no SQL calls. As a result, the entity bean is completely
database independent and portable though out all J2EE servers.

Security and Authentication
The J2EE security model handles two vital concepts, authentication and
authorization. Authentication is the mechanism that verifies a user’s identity. Mutual
authentication will clarify the identification of both parties, the client and the
component. A component can also allow connections with no authentication
(anonymous login). A client can be identified as belonging to three different J2EE
authentication concepts; user, realm and group.

A J2EE user is similar to an operating system user where one user represents one
person. A realm is a collection of users that are controlled by the same authentication
policy. A group is a category of users, classified by common traits such as job title or
customer profile.

Authorization is the mechanism that gives some users access to certain components
and some users are not allowed access. Users, realms and groups can be given roles.
The developer can declare method permission when deploying a method which
determines which roles are allowed to invoke that method.

Clustering
Clustering is a technique that provides an infrastructure with high availability and
scalability. A cluster is a group of Application Servers, usually running on different
physical machines that transparently run the J2EE application as if they were a single
application server.

Instead of having one machine with one application server, serving thousands of
concurrent clients, multiple application servers share the workload. If a server goes
down, there are others to handle incoming client calls (high availability). A group of
servers can definitely support more users than a single one (increased scalability).
And developers do not have to write specific code to do this; it is taken care of by the
application server. [31]

Resource pooling
To pool a resource is to reuse a resource. The J2EE containers support the reuse of
sockets and database connections, this is called connection pooling. Communication
sockets and database connections are kept in a pool. When a client needs a socket, the
container will assign a free socket from the pool to the client. When the client has
finished using the socket, it is returned to the pool, ready to be used by another client.
This service increases the scalability of a system. [32]

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 45

Connection pooling, just like many other container services, is taken care of the
container behind the scenes, meaning that the bean code is oblivious to it.

Other Services
The J2EE container provides yet more services not listed here as well as access to the
J2EE platform APIs (see chapter). 4. Enterprise Java Technologies (J2EE)

All of the examples above are available in EJB version 1.1. There is a new version
called 2.0 [58] on the way (autumn 2001), which handles yet more services like
relationship management in entity beans for example.

4.6 J2EE Summary
There are several advantages with the J2EE technology, but there are also drawbacks.
J2EE is becoming more and more one of the most talked about technologies for
developing robust enterprise applications. It was introduced by Sun in 1999 and now
there are many rivaling application servers. The application server contains the J2EE
containers where you put your enterprise beans, the Java business components. The
most well-known application servers are BEA WebLogic [52], IBM WebSphere [54],
Oracle Application Server [53] and Borland AppServer [51] (formerly known as
Inprise AppServer).

The main advantage of using the J2EE technology is shortened development time [1].
Many time-consuming and complicated details of developing multi-tiered applications
are hidden from the developer and others are made easier. The main drawback can be
performance. But it may not have to be. Developers can either choose to let the
container hide all database access from him with the risk of it being slow, or code the
database access calls himself, with more control over it.

The J2EE technology is extensive; ranging from database access through JDBC (Java
DataBase Connectivity), remote procedure calls with RMI (Remote Method
Invocation), naming services through JNDI (Java Naming and Directory Interface),
different deployable components like Session Beans (both stateful and stateless),
Entity Beans (container-managed and bean-managed) and dynamic web pages
generated with Java Servlets and Java Server Pages. J2EE also uses XML (eXtensible
Markup Language) quite extensively.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 46

5. Design and Development of Prototypes
This chapter describes the developed prototypes to evaluate the two architectures and
will present the design, architecture and behavior of the prototypes. The chapter ends
with a brief introduction to some of the software tools used to create these prototypes.

The intention was to implement a specific part of one of Prohunt’s products as a
prototype. This part was going to be implemented on both platforms and then
evaluation tests were going to be performed on both prototypes. But with the
bankruptcy, this plan had to be abandoned. Instead, two prototypes were developed,
performing the same actions, or server requests. These requests are designed to be
easily compared between platforms.

5.1 General Architecture
The basic architectures of the prototypes are displayed in figures 5-1 and 5-2. Figure
5-1 depicts the PL/SQL prototype and figure 5-2 depicts the J2EE prototype.

5.1.1 PL/SQL Prototype Overview

Figure 5-1. Basic architecture of the PL/SQL evaluation prototype.

The client application was developed in Java for both prototypes. The reason for this
was that the timing in the evaluation experiments described in chapter 6, is performed
on the client side, and to be sure that the response times (see chapter 6) are calculated
the same way, the clients were made as similar as possible. Unfortunately, this meant

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 47

that an extra layer, the DBLayer class described in section 2.2.4 Specification and
Architecture, was needed on the client side in the PL/SQL prototype.

The server side architecture is very simple in the PL/SQL case. Both subprograms and
data are stored in the Oracle database. The subprograms reside in package
JFP_R_MATCH and consist of only three subprograms, one function and two
procedures. The connection between client and server is handled by Oracle’s thin
JDBC driver, version 1.11. The subprograms are invoked and executed in the
database and has fast access to the data.

5.1.2 J2EE Prototype Overview

Figure 5-2. Overview of the J2EE prototype architecture.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 48

The architecture overview in figure 5-2 does not seem much more complicated than
the PL/SQL figure, but the inside of the business objects (EJBs) are in fact more
complicated and powerful. There are no differences on the client side except when it
comes to invoking the procedures on the server side. The J2EE client doesn’t need the
DBLayer; instead it has to obtain a reference to the home interface of the session bean
by using a JNDI lookup, and then create a reference to the session bean itself. When
this is done the client is ready to call methods on the server. RMI over IIOP is used as
protocol here, unlike the PL/SQL prototype which uses JDBC.

The Application Server has different containers for different applications/modules.
The container of the prototype holds four enterprise beans; one session bean and three
entity beans. The clients invoke the appropriate method on the session bean which in
turn calls methods on different entity beans. Session beans also use RMI over IIOP to
access entity beans. It is the entity beans that access the database using Oracle’s thin
JDBC driver 1.11.

5.2 The Prototypes
An important part of the thesis was to implement two software applications, one using
PL/SQL and one the Java 2 Platform, Enterprise Edition. These applications are
identical in function but different in implementation. One reason for the
implementation of these experimental prototypes was to perform several evaluation
experiments, aiming to compare the two approaches. The development of these
prototypes was also in itself a step of the evaluation since I learned differences in
complexity, usability and such features of the two architecture platforms.

5.2.1 Server Calls – “Requests”
One of the main objectives of the thesis was to compare the performance and
scalability of the platforms. The evaluation method and experiments are described
more extensively in chapter 6.1 Evaluation method, but something has to be said
about request types at this time. To measure performance and scalability, we measure
how many transactions, or requests, that can be performed under a certain time frame
and under a certain condition. In the evaluation prototypes, the same kinds of server
requests have been implemented for both platforms, to be able to compare them.
These requests are of different types depending on how much computations has to be
performed on the server and the amount of data that is returned to the requesting
client. The requests are of three types plus a hybrid; light weight requests, middle
weight requests, heavy weight requests and a mix of them all called mixed weight
requests.

5.2.2 PL/SQL Application
The PL/SQL prototype consists of the following classes and subprograms:

The client application consists of three Java classes;

• TestAppPLSQL.class is the evaluation class that initializes a specified
number of clients (ClientThread instances) and measures the time needed by
the architecture to perform the chosen requests. This class is described in
chapter 6.1.3 Client Applications Used For Experiments.

• ClientThread.class. The main class of the client application, which
connects to the server and sends requests to the server. The class uses
DBLayer to call PL/SQL subprograms and is also detailed in chapter 6.1.3
Client Applications Used For Experiments.

• Ready.class is a helper class that notifies TestAppPLSQL when a client has
received a response from the server and finished executing. It is basically just
a structure that counts how many clients has returned ok and how many has
returned with an exception. When the sum of those variables is equal to the
number of initialized clients, the evaluation run is completed.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 49

• DBLayer.class is another helper class needed by the Java client to connect
to the Oracle database and invoke PL/SQL subprograms. Described in chapter
2.2.4 Specification and Architecture.

The business logic on the server side is implemented with only one PL/SQL package
called JFP_R_MATCH which contains four subprograms, each one corresponding to
each of the four requests types:

• Light_Request
• Middle_Request
• Heavy_Request
• Mixed_Requests

The package header seen in figure 5-3 includes the user defined data type t_curref
and declarations for the three subprograms.
 1 package JFP_R_MATCH
 2 is
 3 type t_curRef is ref cursor;
 4
 5 -- Start of thesis code
 6 function light_request(
 7 input1 in number,
 8 input2 in number
 9) return number;
10
11 procedure middle_request(
12 input1 in number,
13 input2 in number,
14 output out t_curRef
15);
16
17 procedure heavy_request(
18 input1 in number,
19 input2 in number,
20 output out t_curRef
21);
22 -- End of thesis code
23 end;

Figure 5-3. The package header must include declarations of all functions and procedures that are
going to be accessible from outside of the package. Internal procedures do not have to be declared.

As seen in figure 5-3, there is no subprogram for the mixed requests, it is
implemented in the evaluation client, and uses the other three server request types.
The subprograms themselves are located in the package body (figure 5-4). The
contents of the different requests are described in detail in chapter 6.1.2 Experiment
Suite.

 1 Package Body JFP_R_MATCH
 2 is
 3 type t_tabId is table of number index by binary_integer;

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 50

 4
 5 -- first the light weight request
 6 function light_request(
 7 input1 in number,
 8 input2 in number
 9) return number
10 is
11 res number;
12 begin
13 SELECT COUNT(*) INTO res FROM ph_competence;
14
15 return res;
16 end;
17
18 -- middle weight request
19 procedure middle_request(
20 input1 in number,
21 input2 in number,
22 output out t_curRef
23)
24 is
25 begin
26 open output for
27 SELECT com_id FROM ph_competence;
28 end;
29
30 -- heavy weight request
31 procedure heavy_request(
32 input1 in number,
33 input2 in number,
34 output out t_curRef
35)
36 is
37 l_curRef t_curRef;
38 i number;
39 l_tabIndId t_tabId;
40 res number;
41 begin
42 open l_curRef for
43 SELECT ind_id FROM ph_xref_ind_com_lvl WHERE com_id < 10;
44 i := 1;
45 loop
46 fetch l_curRef into l_tabIndId(i);
47 exit when l_curRef%NOTFOUND; --exit loop when empty
48 i := i + 1;
49 end loop;
50 close l_curRef;
51
52 i := l_tabIndId.first;
53 loop
54 exit when i is null;
55 res := l_tabIndId(i) * 10 / 22;
56 i := l_tabIndId.next(i);
57 end loop;
58

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 51

59 open output for
60 SELECT ind_id FROM ph_individual WHERE ind_id < 10000 AND
61 ind_id > 10;
62 end;
63 end;

Figure 5-4. The code of the PL/SQL subprograms that contains the requests.

5.2.3 J2EE Application
The underlying architecture of the J2EE prototype is more complicated than the
architecture of the PL/SQL prototype as stated earlier. However, the Java code is not
so complicated, the complex behavior of name lookups, managing transactions and in
between layer calls is all handled automatically.

Client modules:

• TestAppJava.class. Almost identical to the corresponding class in the
PL/SQL prototype. The class initializes clients and measures the execution
time.

• ClientThread.class. Behaves similar to the PL/SQL class with the same
name. The difference is that this client obtains a reference to a session bean
(called CalculateMatch, see figure 5-5) and invokes the business method
that corresponds to the wanted request.

• Ready.class. Exactly the same class as in the PL/SQL prototype.

Server modules:

• CalculateMatch session bean.

• LightWeight entity bean.

• MiddleWeight entity bean.

• HeavyWeight entity bean.

These classes were compiled into a JAR-file called EJBPrototype, which
subsequently was deployed in the container EJBContainer on the J2EE server.

Before the client can interact with a session bean on the server, the client has to have a
reference to the session bean. Figure 5-5 shows how this is accomplished by using
JNDI (Java Naming and Directory Service) to do a JNDI lookup. This gives access to
the beans home interface, which is used to call the create() method of the bean.
Create() returns a reference to an instance of the bean on the server, ready to accept
calls.

try {
 javax.naming.Context ctx = new
 javax.naming.InitialContext();
 CalculateMatchHome home = (CalculateMatchHome)
 javax.rmi.PortableRemoteObject.narrow(ctx.lookup(

 "CalculateMatch"), CalculateMatchHome.class);

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 52

 sbean = home.create();

ror trying to get session bean");
e.printStackTrace();

Figure 5-5. This Java code snippet shows how to obtain a reference to a session bean. This code is
on section, init() method, of the client.

g

 and grows, and there are massive resources on the Internet.

eveloping the prototypes and
valuation experiments are described.

re products. As stated earlier, PL/SQL is a

AS
y

JB
 described briefly earlier.

der

 and templates for developing, packaging and deploying Enterprise

tor connects to the Oracle server and provides a
GUI to the content of the database.

} catch (Exception e) {
 System.out.println("Er

}

located in the initializati

5.2.4 Summary
Two prototypes were developed. They both perform similar requests and return the
same end result. But the prototypes reach this result in very different ways. The
PL/SQL prototype was faster and easier to develop. It is only a matter of writing an
appropriate subprogram and calling it from the client. In the J2EE prototype,
JavaBeans have to be written, assigned JNDI names and deployed into containers
together with deployment descriptors. However, Java is a more capable programming
language than PL/SQL, with more functions and capabilities. It is also a more livin
language that evolves

5.3 Tools used
Below, the most important software tools used when d
conducting the e

5.3.1 Oracle
Oracle is one of the most frequently used Database Management Systems (DBMS) in
the world. For time-critical enterprise solutions, Oracle is the DBMS to use. Prohunt
uses Oracle8 as DBMS in all their softwa
Oracle-specific programming language.

5.3.2 Borland Application Server
The Borland Application Server was formerly known as the Inprise Application
Server (IAS) before Borland decided to change back to their old name. Borland’s
Application Server is still known as IAS though. The current version 4.51 (summer
2001) is tightly integrated with Borland JBuilder Enterprise. For example, it is
possible to automatically deploy the enterprise beans in the EJB Containers of I
from JBuilder, using the J2EE Deployment Wizard. This is very fast and eas
compared to manual deployment which includes manual editing of the E
Deployment Descriptor, an XML file I have

5.3.3 Borland JBuilder Enterprise
I have been using version 4 of Borland’s development tool for Java. Borland JBuil
is a sophisticated Integrated Development Environment (IDE) that includes many
quick wizards
JavaBeans.

5.3.4 SQL Navigator from Quest Software
SQL Navigator is a nice application for manipulating the contents of an Oracle
database, both data and code. Naviga

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 53

6. Evaluation and Results
Evaluating the two architectures wasn’t an easy task. The experiments had to be re-
run several times, before it could be considered a fair evaluation. Even so, a precise
comparison is hard to achieve, due to many factors. Efforts have been made to make
this evaluation as fair as possible.

6.1 Evaluation method
The performance of an application depends on many different factors, including raw
speed of the machine/machines used (processor speed, number of processors, OS used
etc), amount of primary memory (RAM), how well the database is configured with
indexes and cache, how populated the database is, the number of concurrent requests
to the database (called workload of database) and of what type those requests are.

To be able to compare two applications, or in this case architectures, the evaluator
needs to keep most of these properties constant while varying the properties that are
being compared. A serious comparison must include several evaluation steps (called
evaluation experiments), in which critical properties are changed.

All experiments were run on the same computers. The database was also the same and
it was already very well populated with indexes for all essential tables, the database
should not be a bottleneck in the evaluation. These experiments were then performed
with both the PL/SQL evaluation prototype and the J2EE evaluation prototype. The
properties that vary throughout the experiments are the types of requests and the
number of concurrent users running the application and thus accessing the database at
the same time.

6.1.1 Request Types
In an evaluation, it is important to decide how and what to measure. One can measure
response time (the time between a request is sent until a response is received) or
throughput (requests per second) [44]. These measures depend heavily on the type of
requests. The type of a request is measured by its weight. A request can be light or
heavy weight depending on how much resource it requires from the server or the
client. A light weight request will take a short time for the server to process and the
response is small counted in bytes. A heavy weight request can contain several
queries to the database; some calculations and the response itself can be quite large.

Performance is often measured as transactions per second or response time for a
transaction (time that elapses from the beginning of a transaction until it is
completed). In this evaluation, each request makes up one transaction, so request per
second is the same as transaction per second in this evaluation. In other more
complicated systems, one single transaction often consists of several requests to the
database. Some may be light weight and some heavy weight, depending on the
transaction.

This evaluation measures the response time of the requests. The evaluation is divided
into several experiments. Each experiment except the Mixed Weights Requests was
conducted three times on each architecture and the best result (lowest response time)
was used in the graphs and tables. For the Mixed Weights Request the average
response time of the three experiment runs were calculated and used in the graphs and

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 54

tables. The reason for this is that the Mixed Weights Request depend so much on
randomness that one run can vary greatly from another. The results of the Mixed
Weights Request should not be compared between platform for this reason. It was
included into the evaluation to see how well the platforms responded to varying
requests that wouldn’t be cached by the machines, as 100 exactly alike requests would
be.

 The complete result series are available in appendix C.

6.1.2 Experiment Suite
To be able to see differences in behavior between the architectures, it is necessary to
run more tests than one. An application or architecture might be better suited to
handle server calculations than sending large amounts of data between tiers or vice
versa for example. For this reason, an experiment suite containing four different
evaluation experiments was created:

1. Light Weight Request
2. Middle Weight Request
3. Heavy Weight Request
4. Mixed Weights Request

The experiment suite was first executed on each platform using only one client, these
are the performance experiments. The performance experiments measures the
response times on the two platforms without any concurrent users. It is the following
scalability experiments that measure how the two platforms perform when the number
of users grows.

The plan was to evaluate scalability using the following series of concurrent users: 1,
10, 50, 100, 500, 1000, … until the application wouldn’t take any more. In practice,
this turned out to be impossible. The Java Virtual Machine JVM running the
evaluation prototype crashed with OutOfMemory-exceptions before reaching these
counts. These problems are described in chapter . 6.1.8 Problems during Experiments

It can often be hard to decide the weight of a request. A request can be heavy on the
server (lots of calculations and processing) but light in the response (return only a
single integer variable for example). Or it can be light on the server and heavy on the
client. I have tried to keep this experiment suite balanced, with request weights that
are compatible with the names of the request. A more technical description of the four
request types follows below.

Light Weight Request
The Light Weight Request will perform a SQL “count(*)”query on a table
consisting of 4403 rows. The result (“4403”) is returned as a number (8 bytes in
Oracle) to the middle-tier and is then sent to the client.

Middle Weight Request
This request performs a SQL “SELECT com_id FROM ph_competence”. This
table consists of 4403 rows. Com_id is of type number (8 bytes) so the size of the
returned result is 4403*8 = 35224 bytes, about 35kb. The result is first returned to
middle-tier and then to the client.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 55

Heavy Weight Request
The Heavy Weight Request is a little more complex than the first two, it performs
several operations. First, the query “SELECT ind_id FROM ph_xref_ind_com_lvl
where com_id < 10” is executed. This table contains 100.176 rows of which 2344
matches the query. The result (2344*8 = 18752 bytes) is returned to the middle-tier
where the ids are stored in an array. Next, we loop through each of these ids and
perform some simple calculations on them. Then another search is executed which
returns 14.930*8 = 119.400 bytes. This result is also returned back to the client.

Mixed Weights Request
The Mixed Weights Requests are intended to simulate real-life load more accurately.
Normally 50 users don’t send the exact same request at the same time and then
disconnect. This request uses the light, middle and heavy weight requests to create a
mixture of requests. It will execute ten requests of random weights with a random
pause between requests. Statistically the distribution between the different sorts of
requests is 60% Light Weight Requests, 30% Middle Weight Requests and 10%
Heavy Weight Requests.

The randomness should also lessen the chance that the requests are cached by the
database manager and the middle-tier. Caching of the Heavy Weight Request could
lower the response time when 100 requests are executed simultaneously. This would
hopefully not be the case with the Mixed Weights Request.

Table 6-1 illustrates the different types of requests.

Request Weight Description Request size
(PL/SQL)

Request size
(J2EE)

Response size
(kb)

Light Count(*) ≈ 60 bytes 8 bytes

Middle Select all id’s ≈ 60 bytes 35 kb

Heavy Both calculations
and a big result set

≈ 60 bytes 119kb

Mixed Random ≈ 600 bytes Differs.

Table 6-1. The size of requests and more important, the size of the responses.

The anatomy and size of the requests depends on the platform. In PL/SQL (first
values, the request to the server is really just a PL/SQL subprogram call, it is the name
of the subprogram and value of the parameters that is being sent from client to server
encapsulated in a JDBC call. The string (about 60 bytes) sent from the client looks
like this:
“? = Call JFP_R_MATCH.light_request(input = 0, input2 = 1)”

In J2EE, the client request is an invocation of a session bean method, i.e. a Java RMI
call encapsulated inside the IIOP protocol. In reality this later becomes a new request
between the J2EE server and the Oracle database, containing a SQL statement.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 56

6.1.3 Client Applications Used For Experiments
The evaluation itself was performed using an Evaluation Client Application. This
client application is written in Java for both platform evaluations (it is not the
Evaluation Client Application that is supposed to be performance evaluated, it is the
underlying server architecture. The Evaluation Client Application has two main
classes, TestApplication and ClientThread. TestApplication contains
main() and takes two application parameters, number of users to simulate
(noofusers) and what type of requests to execute (request_type). runTests()
is the method that executes the experiments itself, see figure 6-2.

First, the desired number of clients (ClientThread) are created (row 9) and put in a
vector. Then the start time is noted (row 16) before going into a loop that calls each
clients start()-method (row 20) which itself will invoke the run()-method of the
ClientThread class described below. After the loop the program is waiting for all
clients to receive a response from the server. The application has one ok_count and
one error_count. Each client will update one of these variables according to result
of the call to the server. When the ok_count plus the except_count is equal to the
number of started clients, each client will have received its response and the while-
loop at row 32 is ended. The end time is noted and the response time returned.

 1 public long runTests() {
 2 Vector clients = new Vector(noofclients);

 long endTime;

lize clients...");

 ClientThread(ready,request_type));

nts took " +

 System.out.println("Start the test...");
rentTimeMillis();

++) {
).start();

 (InterruptedException e) {

 System.out.println("Error (this.sleep): ");
 e.printStackTrace();

28

 3 long startTime;
 4
 5
 6 // Create n clients
 7 System.out.println("Create and initia

 8 for (int i=0; i < noofusers; i++) {
 9 clients.addElement(new
10

11 }
12
13 System.out.println("Initialization of clie
14 (endTime - startTime));

15
16 startTime = System.cur
17
18 // Start each client

19 for (int i=0; i < noofusers; i
20 ((ClientThread) clients.elementAt(i)

21 try{
22 this.sleep(sleepTime);
23 } catch
24
25

26 }
27 }

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 57

29 // Wait until all clients have received a response
30 // both the ones who

,
 returned OK and those with

ions

t + ready.except_count)==

this.sleep(50);
} catch (InterruptedException e) {

leep): ");
 e.printStackTrace();

 JDBC connection/retrieving a reference to the session bean) of the threads
me. Since

he
ClientThread d does, since it is responsible for setting up a

re

s

31 // except

32 while (!((ready.ok_coun
33 noofusers)){

34 try{
35
36
37 System.out.println("Error (this.s
38

39 }
40 }
41 endTime = System.currentTimeMillis();
42

43 return endTime - startTime;
44 }

Figure 6-2. The runTests()-method of class TestApplication. Initializes, starts and times all clients.

When the experiment suite was run the first times, the response times were very high,
even for one user and the light request. It was found that the creation and initialization
(setting up
that simulate concurrent clients (the ClientThread class) took a lot of ti
this has nothing to do with the response time of the request to the server, the start of
the timing was moved to after the creation and initialization of these threads as seen in
the code.

The TestApplication class does not differ for the two platforms. T
 class on the other han

connection with the server. In the PL/SQL version, the ClientThread class is whe
each client connects to the Oracle Server and calls the appropriate PL/SQL
subprogram. The run() method listed in figure 6-3 is invoked when
ClientThread.start() is called.

The instance variable request_type (initialized when the class was instantiated),
determines which PL/SQL procedure should be called starting on row 8. For light,
middle and heavy weight request, the right procedure is called using the helper clas
DbLayer (see chapter 2.2.4 Specification and Architecture) with previously
determined arguments, and when the request has been processed, the result is returned
to the client. In the mixed weights request, it is a little more complicated. Ten requests

een calls. Finally the
variable nt is increased (row 60) if the response was successfully

own, the variable ready.except_count is
ased (row 68).

ntThread.run()
d run() {

= null;

of random weight are performed, with random pause in-betw
ready.ok_cou

received, but if an exception was thr
incre
 1 // PL/SQL-version of Clie
 2 public voi

 3 String res;

 4 Vector vres
 5
 6 // Start the DB call

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 58

 7 try {
 8 switch (request_type) {

P_R_MATCH.light_request", args);

bLayer.callProcedure(
P_R_MATCH.middle_request", args);

 // Heavy weight request

rgs);

ts.

dom number between 0-9
;

 if (random_number < 6)

 = DbLayer.callProcedure(
request", args);

request", args);

// Random number between 10-110
m_number = 10 + random.nextInt(101);

0-110 ms until next request

error: ");

 9 case 1:
10 // Light weight request
11 res = DbLayer.callFunction(
12 "JF

13 break;
14 case 2:
15 // Middle weight request
16 vres = D
17 "JF

18 break;
19 case 3:
20

21 vres = DbLayer.callProcedure(
22 "JFP_R_MATCH.heavy_request", a

23 break;
24 case 4:
25 // Mixed requests

26 int random_number;
27
28 // Execute 10 random reques
29 // 60% - light weight requests
30 // 30% - middle weight requests
31 // 10% - heavy weight requests

32 for(int i=0; i < 10; i++) {
33 // Ran
34 random_number = random.nextInt(10)
35

36
37 res = DbLayer.callFunction(
38 "JFP_R_MATCH.light_request", args);

39 else if (random_number < 9)
40 vres
41 "JFP_R_MATCH.middle_

42 else
43 vres = DbLayer.callProcedure(
44 "JFP_R_MATCH.heavy_
45
46
47 rando
48
49 // Wait for 1

50 try {
51 sleep(random_number);
52 } catch (InterruptedException e) {
53 System.out.println("Sleep

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 59

54 e.printStackTrace();

 }

}

 ready.ok_count++;

61 } catch (Exception e) {

hed with exceptions

Figure 6-3. The run()-method of PL/SQL’s ClientThread class. Performs the request that has been

entThread is very similar to the
L version as seen in figure 6-4. The only difference is that instead of calling the

, the client calls the session bean containing the code of the requests.
d and initialized, the client queried the

lookup, and obtained a reference to the session bean through

ference to the session bean, it is easy to invoke the
ent request types) of the session bean (rows 9, 13, 17 and 32).

 {

 6 switch (request_type) {

 // Light weight request called
arg2);

rg1, arg2);

15 case 3:
led

55
56 }

57 break;
58
59 // Client finished OK, increase count
60

62 if (ready.except_count == 0) {
63 System.out.println("PL/SQL client generated error
64 while accesing database.");
65 e.printStackTrace();
66 }
67 // Client finis

68 ready.except_count++;
69 }
70 }

choosen.

The run()-method in the J2EE version of Cli
PL/SQ
database directly
Earlier in the code, when the client was create
container using a JNDI
the home interface of the bean.

Now that the client has a re
business methods (differ
The rest of the method works exactly as in the PL/SQL case.
 1 public void run()
 2 int res = 0;
 3 Vector vres = new Vector();
 4

 5 try {

 7 case 1:
 8
 9 res = sbean.light_request(arg1,

10 break;
11 case 2:
12 // Middle weight request called
13 vres = sbean.middle_request(a

14 break;

16 // Heavy weight request cal
17 vres = sbean.heavy_request(arg1, arg2);

18 break;

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 60

19 case 4:
20 // Mixed requests

 // 60% - light weight requests

eavy weight requests

 res = sbean.light_request(arg1, arg2);

 else if (random_number < 9)
2);

 vres = sbean.heavy_request(arg1, arg2);

 random.nextInt(101);

xt request

 try {
 sleep(random_number);

eption e) {
45 System.out.println("Error (sleep): ");

 e.printStackTrace();

e

61 }

21 int random_number;
22
23 // Execute 10 random requests.
24
25 // 30% - middle weight requests
26 // 10% - h

27 for(int i=0; i < 10; i++) {
28 // Random number between 0-9
29 random_number = random.nextInt(10);
30

31 if (random_number < 6)
32

33
34 vres = sbean.middle_request(arg1, arg

35 else
36
37
38 // Random number between 10-110
39 random_number = 10 +
40
41 // Wait for 10-110 ms until ne

42
43

44 } catch (InterruptedExc

46
47 }
48 }

49 break;
50 }
51 // Client finished OK, update finished count
52 ready.ok_count++;
53 }

54 catch (Exception e) {
55 System.out.print("J2EE client generated error whil
56 accesing database.");
57 e.printStackTrace();
58 // Client finished with exceptions
59 ready.except_count++;
60 }

Figure 6-4. The run()-method of J2EE’s ClientThread class.

The sbean variable is the reference to the session bean on the application server.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 61

6.1.4 Java Experiments Second Run
These evaluation experiments were conducted at two separate occasions. Only two

r both PL/SQL and J2EE (called J2EE from
s used as dedicated database server in all

r and

ility experiments this
eant that the ma ning aro t threads c ith the

pplication serve load. T e Environ lso
f is m the first J2EE run (J2EE 1)

unbalanced compared to the PL/SQL experiments where the server and clients ran at
ine loa o reads and

(more noticeably for the evaluation) the application server suffered.

xpe 2) w his rea
nd thu clients s. This would turn out to

improve the results of the scalability experiments on the J2EE platform, and more
lient The u

pinch of salt, but have been included for comparison reasons and to emphasize the
of uneven

5 Hardwar
These evaluation f using first two, a three
computers. The setup of the machines as well as the roles the machines had during the

perim n in le 6-5 below.

 uter 1 Computer 2 Computer 3

computers where used the first time fo
now on) experiments. Computer 1 wa
experiments. This means that Computer 2 was used as both Application Serve
for running the client application. In the performance experiments, with only one
concurrent client, this was not a problem. But in the scalab
m
a

chine was run
r, a very heavy

und 100 clien
he Java Runtim

oncurrently w
ment (JRE) a

consumes lots o memory. All of th akes the results of

different mach s. The extra heavy d affected the results, b th client th

A new J2EE e riment run (J2EE as conducted for t son, using three
machines a s separating the from the server

concurrent c s were supported. results from J2EE 1 sho ld be taken with a

impact benchmarks.

6.1. e and Software
 experiments were per ormed nd then

different ex ent run can be see

Comp

tab

PL/SQL Role atabase Server D Running clients Not used

J2EE 1 Role Database Server Clients + Application Not used
Server

J2EE 2 Role Database Server Running clients Application Server

Machine HP Vectra VL HP Kayak XA HP Kayak

Processor Pentium III-500
MH

Pentium III-550 MHz Pentium III-733 MHz
z

RAM 128 Mb 256 Mb 256 Mb

OS MS Windows NT4
Workstation Service

Microsoft Windows
2000

Microsoft Windows
2000

Pack 4

Database Oracle8 version - -
8.1.5

Application
Server

- rland App
rver 4.51

Borlan
Server

Bo
Se

lication d Application
 4.51

Table 6-5: The configu of the machi lved in the ev n experimentsration nes invo aluatio .

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 62

Computer 1 was us atabase s n all experi Computer 2 ran the
clients, except in J2EE 1 were it ran both clients and application server. Computer 3

l u e last run 2), were it functioned as application server.
m te throug Mbps LAN without any inte

the evaluation time.

In all results tables below, the best (minimum time) result is used for all experiments
stead.

o offer, see table 6-6 for the results
nts only simulates one user.

ed as d erver i ments.

was not used at al ntil th (J2EE
The machines com unica h a 10 rfering traffic at

6.1.6 Performance Experiments

except the Mixed Requests experiment, where the average time is calculated in

I started with PL/SQL to see what it had t
Remember that the performance experime

PL/SQL
Experiment Run1 Run2 Run3 Min/Average

Light Request 891 911 891 891

Middle Request 1562 1552 1573 1552

Heavy Request 2294 2323 2323 2294

Mixed Requests 7541 5007 5227 Avg: 5925

Table 6-6. The results of the performance experiments on the PL/SQL platform. Each experiment was
run three times and an average or minimum was calculated. All results are response times measured
in milliseconds.

e
machine. Table 6-7 presents the results.

J2EE 1
xperiment Run1 Run2 Run3 Min/Average

After PL/SQL, it was time for J2EE. First, the experiments were run with the
Application Server and the Evaluation Client Application residing on the sam

E

Light Request 50 50 60 50

Middle Request 3184 3175 3595 3175

Heavy Request 0 0 0 0 698 688 695 688

Mixed Requests 27760 16965 30625 Avg: 25117

Table 6-7. These are th the first ance experim the J2EE pla
d same way e PL/SQL p ll results ar in

lication
separated from the Application Server. Below are the results from that run.

e results of perform ents on tform. The
experiments were con
milliseconds.

ucted the as for th latform. A e response time

Later, the J2EE experiments were rerun with the Evaluation Client App

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 63

J2EE 2
Experiment Run1 Run2 Run3 Min/Average

Light Request 50 50 60 50

Middle Request 3125 3090 3080 3080

Heavy Request 6910 6810 6820 6810

Mixed Requests 15860 21140 24665 Avg: 20555

Table 6-8. These are the results of the second performance experiments on the J2EE platform. This
time, three machines where used, separating the application server from the clients.

Comparison
As can be see in figure 6-9, PL/SQL has a clear advantage over J2EE in all request
types except the light weight requests. With only one concurrent user, the difference
between J2EE 1 and J2EE 2 is small.

25000

20000

0

5000

10000

15000

Light request Medium
request

Heavy
request

Mixed req

Figure 6-9. Results of the performance experiments. The times used in the plot are the minimum
response time, except for the mixed request, where the averages ar

uest

PL/SQL
J2EE 1
J2EE 2

e used0.

 but
ill simulate up to 1.000 concurrent users (or as many

as the platform can handle). One thing that should be remembered is that the number
ality

 users. In reality, if a system has 50 active users, only a few of
them send requests at the same time. The evaluation prototype sends all requests

ultaneously. It is generally considered that ten concurrent users in a
ion nt in

6.1.7 Scalability Experiments
After the performance experiments were done, the scalability experiments were
conducted. The requests are exactly the same as in the performance experi

w
ments

now the evaluation prototype

of users in the experiments doesn’t really reflect the behavior of the systems in re
with that number of

(almost) sim
simulat experiment cou s as 30-40 persons real life [44].

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 64

My opinio sed on how u eract with the products in Prohunt’s ICM
platform, is that this number is even higher in Prohunt’s case. Users often have to

k abou decisions be ontinuing with the programs, which creates long
ses bet erver calls. re, it is fair to guess that 10 concurrent users in

the experiments would compare to about 50 in real life

Only the minimum/average results will be shown in the following tables and plots,
se of ntity of ex ts. Complete ent results are available in
ndix experime re not able to return a result, those results are
ed as able (N/A). The reason for this is described in chapter 6.1.8

ntains all results from all scalability experiments conducted on the
PL/SQL platform.

est Middle Request Heavy Request Mixed Requests

n, ba sers int

thin t their fore c
pau ween s Therefo

becau the qua perimen experim
Appe
mark

 C. Some
 not avail

nts we

Problems during Experiments.

Table 6-10 co

PL/SQL
Users Light Requ

1 881 1522 2304 4466

10 1643 3956 8342 15379

50 5758 15482 38856 64032

100 10815 32327 76820 204958

200 20759 69380 151708 N/A

300 112221 N/A N/A N/A

Table 6-10. The scalability experiments on the PL/SQL platform. The best results are used, except for
the Mixed Requests where the average response time is calculated. Unsuccessful experiments are
shown as N/A.

Below are the results of the scalability experiments using the J2EE prototype
for the first time (J2EE 1). Some experiments were never performed with 5 users, they
are marked with ‘-‘.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 65

J2EE 1
Users Light Request Middle Request Heavy Request Mixed Requests

1 50 3045 6970 17028

5 - 22142 - -

10 160 55179 70271 N/A

50 711 N/A N/A N/A

100 10024 N/A N/A N/A

200 20078 N/A N/A N/A

Table 6-11. The first scalability experiments on the J2EE platform. All results show response time in
milliseconds. Experiments that has not been performed are marked as ‘-‘.

The last experiment run uses three computers on the J2EE prototype.

J2EE 2
Users Light Request Middle Request Heavy Request Mixed Requests

1 50 3022 6720 15802

5 - - 25112 36874

10 155 12795 48868 86953

50 699 24685 121798 N/A

100 8221 86111 305210 N/A

200 17215 226978 N/A N/A

300 95152 N/A N/A N/A

Table 6-12. The second scalability experiments on the J2EE platform.

Comparison
All scalability experiments have been performed. We compare the results for each
request type, starting with the light weight request. Figure 6-13 shows the comparison
based on the light request. The colored bars for both J2EE experiments have been
enlarged for one and ten users; otherwise they wouldn’t be seen at all. No result is
available from J2EE 1 at 300 users. PL/SQL falls behind in all results in the light
weight request experiments.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 66

Light Weight Request

0

20000

40000

60000

80000

100000

120000

1 10 50 100 200 300

number of users

response
time
(ms)

PL/SQL
J2EE 1
J2EE 2

Figure 6-13. Comparison between platforms for the light weight request. J2EE1 is unable to deliver a
result for 300 concurrent users.

With the requests that follow the light weight request it becomes apparent that it was
untenable to have application server and evaluation prototype situated on the same
computer. J2EE cannot deliver a result with more than ten concurrent users, due to
lack of primary memory. When the application server has a dedicated machine (J2EE
2), the results improve significant as seen in figure 6-14. But already now, PL/SQL is
displaying much better results than any of the J2EE experiment runs. PL/SQL shows a
linear increase on response time, whereas the response times of J2EE increase
exponentially.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 67

0

50000

100000

150000

200000

250000

response
time
(ms)

1 10 50 100 200 250
number of users

Middle Weight Request

PL/SQL
J2EE 1
J2EE 2

Figure 6-14. Comparison between platforms for the middle weight request. J2EE1 is unable to deliver
results with more than ten concurrent users.

The results of the heavy weight request are similar to those of the middle weight
request. J2EE1 is unable to deliver a result when the number of clients exceeds ten.
Figure 6-15 shows that PL/SQL is the only platform to handle 200 clients sending

0

50000

100000

150000

200000

250000

300000

350000

response
time
(ms)

1 10 50 100 200
number of users

Heavy Weight Request

PL/SQL
J2EE 1
J2EE 2

Figure 6-15. Comparison plot for the heavy weight request.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 68

heavy weight requests.

The results of the mixed weights requests should not be taken so seriously, but the
graph is included none the less (figure 6-16). PL/SQL has a lower average response
time for 100 clients than J2EE2 has for 50 clients. J2EE1 does only have results for
one and two clients. Only one value is shown in the graph though, since only
experiments that were conducted on all three evaluation platforms are presented in the
graphs.

0

50000

100000

150000

200000

250000

response
time
(ms)

1 10 50 100
number of users

Mixed Weight Requests

PL/SQL
J2EE 1
J2EE 2

Figure 6-16. Comparison of the results from the mixed weight requests.

Clustering
Clustering (see chapter 4.4.2 Services) is a method to boost performance on the J2EE
platform when performance is declining due to heavy load on the application server
from many users. Another evaluation run on the J2EE platform had been planned, this
time using clustering. But the fact that Prohunt went bankrupt left me without the
necessary resources (more computers) so this experiment had to be canceled. It is my
belief that clustering would have made a difference when the number of users
increased beyond 50 if not sooner.

6.1.8 Problems during Experiments
Several problems were encountered during the course of the experiments. One major
problem occurred when the company WM-Data retrieved the equipment I was using,
including the Oracle Server that was used in the experiments. The experiments were
not finished yet by then. I was given the chance to rerun the Java experiments at one
occasion, but more time would have been needed for better results.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 69

The experiments had to be rerun several times. At the first occasion, everything when
fine up to 50 concurrent clients. Then the following error was thrown every time:

Java.sql.SQLException: ORA-00020: maximum number of processes
(50) exceeded

The Oracle server was configured to not accept more than 50 concurrent connections.
I didn’t have time to correct this before the server was taken away. But I was given
access to the servers for one day, when I was able to remove the connection limit and
run the whole experiment suit for both platforms. These were the PL/SQL and J2EE1
experiment runs.

The results were far from satisfying, as many of the scalability experiments for Java
crashed with OutOfMemoryExceptions, both on the clients and the server. It
was obvious that a third, dedicated application server machine was needed. And
eventually I was given a last chance to run the J2EE experiments, J2EE 2.

The solution of emulating many concurrent clients on one single machine has its
downsides. The software cannot provide enough network connections at one time.
The evaluation client application generated a network error, ”Network Adapter
Could Not Establish Connection”, at several occasions when the number of
concurrent client threads rose near 100. By adding a short random delay between
client thread instantiations, most of these errors could be avoided.

If the experiments could have been performed yet another time, the first thing to do
would be to reserve more memory for the Java Virtual Machine on both application
server but most important on the machine running the clients. This can easily be done
with command prompt switches when starting the application. The second thing
would be to use clustering as mentioned earlier.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 70

7. Summary and Conclusions
The objective was to compare two different approaches to developing distributed
applications, Sun’s Enterprise Java Technology (J2EE) and Oracle’s PL/SQL
architecture. But the objective was also to give guidelines to the company Prohunt
about which products to port from PL/SQL to J2EE, how to perform this porting and
what the gains would be. When Prohunt went bankrupt in the middle of the thesis,
these objectives had to be altered. The focus of the thesis was moved to the
comparison and a more in-depth look at the architectures itself.

To do this, it was necessary to study Prohunt’s products ProCompetence, ProCareer
and ProResource, and of course the PL/SQL architecture that was new to me.
Enterprise JavaBeans and Application Servers were also a new experience and
development of small applications for learning was slow at first. The evaluation copy
of Borland JBuilder expired and there was a delay before Prohunt supplied me with a
real licence.

Before Prohunt went bankrupt I started to implement a J2EE version of a small part of
one of Prohunt’s products. The goal was that the J2EE-version would perform this
specific task faster and better that the actual working PL/SQL-version included in the
product. But as a consequence of the bankruptcy, this prototype was abandoned and
instead the implementation of two evaluation prototypes was started. These would do
exactly the same using the two architectures, the difference was that the operations
was no longer part of a real application but rather different request of different
weights, invented by myself to evaluate performance and scalability.

The evaluation was performed, but not without problems. For example, it proved to be
difficult to do a fair comparison. The simulation of several concurrent clients used up
much of the computers memory and in the J2EE case, this together with the
application server made the computer crash. The comparison consisted of a set of
experiments for evaluating performance and scalability, but also comparisons of
flexibility, usefulness and such things.

After having implemented prototypes using both architectures, after having performed
all these evaluation experiments and after doing a general comparison of the
differences between PL/SQL and J2EE, the following conclusions and opinions was
reached.

7.1 PL/SQL vs J2EE: Architecture
PL/SQL is a two-tiered client/server architecture while J2EE is multi-tiered. This
allows J2EE to be divided onto several machines for increased scalability, but
multiple tiers also means more complexity and communication in-between tiers with
higher response times as a result. Network communication is a bottle neck compared
to CPU calculations.

PL/SQL is highly integrated with the Oracle database server, and developers are
forced to use Oracle as DBMS if they want to use PL/SQL, which means that there is
no platform independence. J2EE is built to be independent, both of platform, database
manager, application server and development tools. The integration of PL/SQL and
Oracle has an advantage though; it makes database access extremely fast.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 71

J2EE was constructed to aid developers when developing distributed multi-tiered
applications. The containers provides many services that let the developer concentrate
on the business issues of the application, and takes care of security, transactions and
such in the background. PL/SQL is not that sophisticated, but on the other hand it is
much simpler in its design, so these issues are not that complicated to implement
anyway.

Java is a fully object oriented language with all the benefits and drawbacks that comes
with that. PL/SQL is a stored procedure script-language, a subset of a procedural
language.

7.2 PL/SQL vs J2EE: Performance
Looking at the raw data from the performance experiments, it seems like J2EE is
more than 17 times faster than PL/SQL on light weight requests, while being
increasingly slower when the weight of the requests increases. These results don’t
reflect the reality; there are reasons that explain these results.

The answer for the unreasonably long response time for PL/SQL in light weight
requests lies in the extra layer in the PL/SQL evaluation client. The client is
implemented in Java and it uses an extra layer, or tier, when calling the PL/SQL
subprograms. The extra tier is a module called DBLayer. It is a Java class that
converts Java calls into PL/SQL calls, and the returned results from PL/SQL data
types to Java data types. This extra computation takes extra time of course. And this
extra time is most noticeable when the rest of the request time is small, in the light
weight requests.

If it wasn’t for this extra processing, I believe that PL/SQL would win all
performance experiments, for several reasons:

• J2EE uses more tiers with more calls in-between themselves.
• There is room for much more optimizing of the code than I have done.
• In J2EE 1, application server and client are executed on the same physical

machine, which degrades performance.
• In J2EE 2, three machines are used, which means more network traffic and

extra processing time because there are two server machines that has to
communicate in-between. The Oracle machine in the PL/SQL prototype
functions as both processing server and database server, data travels thousands
of times faster inside a machine than between machines.

• All record sets that are returned from the database has to be converted twice
for the J2EE application, and only once in the PL/SQL case (when the result is
returned to the Java evaluation client).

Considering all of this, I conclude that applications using lots of database accesses are
executed faster in PL/SQL than in J2EE. The advantages of J2EE lie in other areas.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 72

7.3 PL/SQL vs J2EE Scalability
The results of the scalability results show that the PL/SQL platform can handle lots of
users considerably better than the J2EE platform. Better response times and more
concurrent users before the system stops to function and starts to deliver error
messages.

In support of J2EE, it should be mentioned that there are some extenuating
circumstances considering scalability too. The results improved considerably when a
third machine was used to run the application server dedicated. J2EE consumes a lot
of memory. It didn’t take too long before the Java clients started to report
java.lang.OutOfMemory exceptions. Both the application server as well as the
clients would benefit from more primary memory, or at least that the available
memory should be reserved for the JVM. If each client were run from its own
machine, I believe that the scalability results would improve as the number of
concurrent clients increase.

Another way to improve scalability and boost performance as the number of
concurrent users increases on the J2EE platform would be to set up a cluster of
application servers as described earlier. Since I never got the chance to try this, it is
difficult to predict how much difference this would have done.

Despite this, the conclusion can only be that PL/SQL scales better than J2EE.

7.4 Usage Comparison
There are differences about working with the two languages and architectures.

First, it must be said that there are countless different development tools for Java.
Some are differently advanced text editors, some are Integrated Development
Environments (IDEs) with both editors, debuggers and extra programming tools, and
there are some even more advanced development tools which are integrated with an
application server and has specialized “wizards” for developing all kinds of different
beans, components and for deploying them into containers. The application I used,
Borland JBuilder 4 Enterprise Edition [56] is of the last kind with wizards for
everything and a tight integration with Borland Application Server [51].

There are also different development tools for PL/SQL if not as many as for Java. I
have been using one called SQL Navigator from Quest Software [57]. It allows
development, debugging, execution and insertion into the database.

Java as a language is more complete and powerful than PL/SQL. Since many
developers are familiar with Java, there is often a lower threshold to use Java than to
use PL/SQL. But for a developer that has already used another stored procedure
language before, it should not be a problem to get started with PL/SQL. The
architecture of J2EE is a very complex architecture though, with several APIs,
specifications to follow and technologies to learn. It is not so hard to make a working
distributed application, but to really learn J2EE and its optimizations is another
question. PL/SQL is not very complex to learn, but there are features that you miss in
the language.

J2EE has a more flexible and structured way of doing things. When working with
large, complex applications, object oriented programming can be helpful to keep

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 73

things manageable. PL/SQL has no such modulation, but it could be enough to put
similar subprograms in the same package. The PL/SQL architecture will leave you
with thousands of procedures though, so a working system for naming procedures is
essential.

Java är lättare, snabbare, mer flexibelt osv

7.5 PL/SQL vs J2EE: Summary
As a summary one can say that PL/SQL are more effective and scalable, at least until
you come to a certain point. Java though, may be the future. There are numerous
ongoing projects using J2EE, but the technology is new and it is too early to say if it
will be the technology of the future. Many experts says that that is the case, but there
are beginning to emerge some opposition, saying that the architecture is too slow and
complex for large distributed application systems.

My opinion is that you should probably choose J2EE if you already have Java
competence and you are starting the project for scratch. In Prohunt’s case, they had a
working PL/SQL environment and there was no reason to change it. The cost in both
time and money would have been great, and there are no guarantees that the end result
would have been faster than the old architecture. The time would have been better
spent in optimizing the existing code. One place to start might have been to reduce the
number of calls for authorization reasons, for example.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 74

8. Future Work
The first thing to do would be to expand the performance and scalability evaluations
with clustered J2EE containers. I am confident that the scalability of the J2EE
platform would improve significant if the J2EE containers would be clustered onto
many separate machines.

Another improvement concerning the evaluations has to do with the clients. I
developed a client software for simulating many clients concurrently accessing my
evaluation prototypes on both architectures. These concurrent clients are in fact run as
separate Java threads on the same physical machine. This is both CPU and memory
consuming, and probably had some influence on the evaluation results. In a more
accurate evaluation, clients would be spread out on several machines. Maybe not
hundreds, but a few, each one simulating about ten clients.

Since Prohunt has gone bankrupt, this future work would only be of academical
interest though.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 75

References
[1] Prohunt – Företagspresentation, Information Sheet, Prohunt AB, 2000.

[2] Prohunt – ICM Platform, Information Sheet, Prohunt AB, 2000.

[3] Prohunt – ProCompetence, Information Sheet, Prohunt AB, 2000.

[4] Prohunt – ProCareer, Information Sheet, Prohunt AB, 2000.

[5] Prohunt – ProResource, Information Sheet, Prohunt AB, 2000.

[6] Prohunt’s home page, Prohunt AB, 2001. URL: http://www.prohunt.se

[7] Gupta’s Centura Team Developer. URL:
http://www.centurasoft.com/products/ctd/Default.asp

[8] The J2EE Tutorial – A Beginner’s Guide to Developing Enterprise
Applications on the Java 2 Platform, Enterprise Edition SDK. Sun
Microsystems, 2000. URL: http://java.sun.com/j2ee/tutorial/index.html

[9] PL/SQL User’s Guide and Reference Release 8.0, Oracle TechNet
documentation, 1997. URL:
http://technet.oracle.com/doc/server.804/a58236/toc.htm

[10] Oracle PL/SQL Programming, Steven Feuerstein, O’Reilly & Associates Inc.
2nd Edition, 1997.

[11] Borland/Inprise Application Server, Inprise Corporation. Educational folder
from course about J2EE development with JBuilder & Inprise Application
Server (IAS).

[12] Borland JBuilder 4 – Enterprise Application Developer’s Guide, Inprise
Corporation, 2000.

[13] Oracle PL/SQL Release 8.0 – Feature Fact Sheet, Oracle TechNet
documentation, 1997. URL:
http://technet.oracle.com/products/oracle8/htdocs/xsqlffs3.htm

[14] Oracle9i New Features Summary – An Oracle White Paper, Mark Townsend,
Oracle Corporation, 2001. URL:
http://technet.oracle.com/products/oracle9i/pdf/9i_new_features.pdf

[15] PL/SQL Tutorial and Reference, Michael M. URL:
http://saturn.cs.unp.ac.za/~michaelm/oracledocs/www.spnc.demon.co.uk/ora_
sql/sqlmain2.htm

[16] Is Java better (or faster) than PL/SQL?, Oracle JServer FAQ, Oracle TechNet
documentation, 1999. URL:
http://technet.oracle.com/products/oracle8i/htdocs/jserver_faq/815faq0005.ht
ml

[17] EJB Development Using JBuilder 4 and Inprise Application Server 4.1, Todd
Spurling, Inprise Corporation, 2001. URL:
http://community.borland.com/article/images/26007/ejbdevelopusing.pdf

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 76

http://www.prohunt.se/
http://www.centurasoft.com/products/ctd/Default.asp
http://java.sun.com/j2ee/tutorial/index.html
http://technet.oracle.com/doc/server.804/a58236/toc.htm
http://technet.oracle.com/products/oracle8/htdocs/xsqlffs3.htm
http://technet.oracle.com/products/oracle9i/pdf/9i_new_features.pdf
http://saturn.cs.unp.ac.za/~michaelm/oracledocs/www.spnc.demon.co.uk/ora_sql/sqlmain2.htm
http://saturn.cs.unp.ac.za/~michaelm/oracledocs/www.spnc.demon.co.uk/ora_sql/sqlmain2.htm
http://technet.oracle.com/products/oracle8i/htdocs/jserver_faq/815faq0005.html
http://technet.oracle.com/products/oracle8i/htdocs/jserver_faq/815faq0005.html
http://community.borland.com/article/images/26007/ejbdevelopusing.pdf

[18] Java 2 Platform, Enterprise Edition, Sun Microsystems, 2001. URL:
http://java.sun.com/j2ee

[19] Enterprise JavaBeans Technology, Sun Microsystems, 2001. URL:
http://java.sun.com/products/ejb

[20] JavaServer Pages, Dynamically Generated Web Content, Sun Microsystems,
2001. URL: http://java.sun.com/products/jsp

[21] Java Servlet Technology, The Power Behind The Server, Sun Microsystems,
2001. URL: http://java.sun.com/products/servlets

[22] JDCB Data Access API, Sun Microsystems, 2001. URL:
http://java.sun.com/products/jdbc

[23] Java Naming and Directory Interface (JNDI), Sun Microsystems, 2001. URL:
http://java.sun.com/products/jndi

[24] Transactions and Java Technology, Sun Microsystems, 2001. URL:
http://java.sun.com/j2ee/transactions.html

[25] Java Message Service API, Sun Microsystems, 2001. URL:
http://java.sun.com/products/jms/index.html

[26] J2EE Connector Architecture, Sun Microsystems, 2001. URL:
http://java.sun.com/j2ee/connector

[27] CORBA Technology and the Java Platform, Sun Microsystems, 2001. URL:
http://java.sun.com/j2ee/corba

[28] Java Remote Method Invocation (RMI), Sun Microsystems, 2001. URL:
http://java.sun.com/products/jdk/rmi/index.html

[29]
l

 Java Technology and XML, Sun Microsystems, 2001. URL:
http://java.sun.com/products/xm

[30] ECperf Version 1.0, Sun Microsystems, 2001. http://java.sun.com/j2ee/ecperf/

[31] J2EE Clustering, part 2, Abraham Kang, JavaWorld, 2001. URL:
http://www.javaworld.com/javaworld/jw-08-2001/jw-0803-
extremescale2_p.html

[32] Mastering Enterprise JavaBeans (Second Edition), E. Roman, S. Amber and T.
Jewel. The Middleware Company, 2002. Also available online:
http://www.theserverside.com/books/masteringEJB/downloadbook.jsp

[33] Client-Server Architecture: Bringing Order To The Bramble Bush, E. Steele
and T. Scharbach, Steele Scharbach Associates L.L.C., 2000. URL:
http://www.ssa-lawtech.com/wp/wp3-5.htm

[34] CORBA Basics, Object Management Group, Inc., 2001. URL:
http://www.omg.org/gettingstarted/corbafaq.htm

[35] DCOM Technical Overview, Microsoft Corporation, 1996. URL:
http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomtec.htm

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 77

http://java.sun.com/j2ee
http://java.sun.com/products/ejb
http://java.sun.com/products/jsp
http://java.sun.com/products/servlets
http://java.sun.com/products/jdbc
http://java.sun.com/products/jndi
http://java.sun.com/j2ee/transactions.html
http://java.sun.com/j2ee/transactions.html
http://java.sun.com/products/jms/index.html
http://java.sun.com/j2ee/connector
http://java.sun.com/j2ee/corba
http://java.sun.com/products/jdk/rmi/index.html
http://java.sun.com/products/jdk/rmi/index.html
http://java.sun.com/products/xml
http://java.sun.com/products/xml
http://java.sun.com/j2ee/ecperf/
http://www.javaworld.com/javaworld/jw-08-2001/jw-0803-extremescale2_p.html
http://www.javaworld.com/javaworld/jw-08-2001/jw-0803-extremescale2_p.html
http://www.theserverside.com/books/masteringEJB/downloadbook.jsp
http://www.ssa-lawtech.com/wp/wp3-5.htm
http://www.omg.org/gettingstarted/corbafaq.htm
http://msdn.microsoft.com/library/backgrnd/html/msdn_dcomtec.htm

[36] RPC: Remote Procedure Call Protocol Specification Version 2 (RFC 1831), R.
Srinivasan, Network Working Group, 1995.
URL: http://www.freesoft.org/CIE/RFC/1831/index.htm

[37] How Napster Works, Jeff Tyson, HowStuffWorks.com, 2000. URL:
http://www.howstuffworks.com/napster.htm

[38] Gnutella homepage, Wego Systems, 2001. URL: http://gnutella.wego.com/

[39] FastTrack Technology, FastTrack, 2001. URL: http://www.fasttrack.nu

[40] SETI@Home: Search For Extraterrestrial Intelligens At Home. Seti@home,
2001. URL: http://setiathome.ssl.berkeley.edu/

[41] What is ICQ?, ICQ Inc., 2001. URL:
http://www.icq.com/products/whatisicq.html

[42] MSN Messenger Service, Microsoft Corporation, 2001. URL:
http://messenger.msn.com/default.asp?mlcid=US

[43] EJB with CORBA vs. COM+ with DCOM, Master’s Thesis in Computer
Science, Fredrik Jansson and Margareta Zetterquist, KTH, 2001. URL:
http://www.it.kth.se/~vlad/edu/exjobb/Janson/thesis.pdf

[44] Tips on Performance Testing and Optimization, Floyd Marinescu, The
Middleware Company, 2000. URL:
http://www.theserverside.com/resources/article.jsp?l=Tips-On-Performance-
Testing-And-Optimization

[45] Application Server Comparison Matrix, Flashline.com, 2001. URL:
http://www.flashline.com/Components/appservermatrix.jsp

[46] Glossary of the Gartner Group, Gartner Inc, 2001. URL:
http://www4.gartner.com/6_help/glossary/GlossaryI.jsp

[47] ProCompetence White Paper, Kenneth Hedlund, Prohunt, 2001.

[48] The Gartner Group, Gartner Inc, 2001. URL: http://www.gartner.com

[49] Java 2 Platform Enterprise Edition Specification v1.3, Bill Shannon. Sun
Microsystems, 2001. URL: http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf

[50] Microsoft ODBC home, Microsoft Corp., 2001, URL:
http://www.microsoft.com/data/odbc/

[51] Borland AppServer, Borland Software Corp., 2001. URL:
http://www.borland.com/besappserver/previous/index.html

[52] BEA WebLogic Server. BEA Systems, 2001. URL:
http://www.bea.com/products/weblogic/server/index.shtml

[53] Oracle Application Server, Oracle Corp., 2001. URL:
http://www.oracle.com/ip/deploy/ias/index.html

[54] IBM WebSphere Application Server, IBM Corp., 2001. URL: http://www-
3.ibm.com/software/webservers/appserv/

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 78

http://www.freesoft.org/CIE/RFC/1831/index.htm
http://www.howstuffworks.com/napster.htm
http://gnutella.wego.com/
http://www.fasttrack.nu/
http://setiathome.ssl.berkeley.edu/
http://www.icq.com/products/whatisicq.html
http://messenger.msn.com/default.asp?mlcid=US
http://www.it.kth.se/~vlad/edu/exjobb/Janson/thesis.pdf
http://www.theserverside.com/resources/article.jsp?l=Tips-On-Performance-Testing-And-Optimization
http://www.theserverside.com/resources/article.jsp?l=Tips-On-Performance-Testing-And-Optimization
http://www.flashline.com/Components/appservermatrix.jsp
http://www4.gartner.com/6_help/glossary/GlossaryI.jsp
http://www.gartner.com/
http://java.sun.com/j2ee/j2ee-1_3-fr-spec.pdf
http://www.microsoft.com/data/odbc/
http://www.borland.com/besappserver/previous/index.html
http://www.bea.com/products/weblogic/server/index.shtml
http://www.oracle.com/ip/deploy/ias/index.html
http://www-3.ibm.com/software/webservers/appserv/
http://www-3.ibm.com/software/webservers/appserv/

[55] Trail: JAR Files, Alan Sommerer, 2001. URL:
http://java.sun.com/docs/books/tutorial/jar/index.html/

[56] JBuilder Enterprise Edition, Borland Software Corp., 2001. URL:
http://www.borland.com/jbuilder/enterprise/index.html

[57] SQL Navigator for Oracle by Quest Software, Ashutosh Gaur, 2001. URL:
http://www.orafaq.net/tools/quest/sql_navigator.htm

[58] Enterprise JavaBeans Technology Downloads and Specification, Sun
Microsystems, 2001. URL: http://java.sun.com/products/ejb/docs.html

[59]

Other Resources Used But Not Referenced
• Fundamentals of Java Security, MageLang Insitute, 1998. URL:

http://developer.java.sun.com/developer/onlineTraining/Security/Fundamental
s/Security.html

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 79

http://java.sun.com/docs/books/tutorial/jar/index.html/
http://www.borland.com/jbuilder/index.html
http://www.orafaq.net/tools/quest/sql_navigator.htm
http://java.sun.com/products/ejb/docs.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html
http://developer.java.sun.com/developer/onlineTraining/Security/Fundamentals/Security.html

Appendix

A. Glossary
COM+ Microsoft’s Component Object Model
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
DCOM Distributed Component Object Model (Microsoft)
DBMS DataBase Management System
DDL Data Definition Language
DNA former name of the Microsoft middleware platform
EJB Enterprise JavaBeans
GUI Graphical User Interface
HTML HyperText Markup Language
ICM Intellectual Capital Management
IDL CORBA Interface Definition Language
IIOP Internet InterORB Protocol
J2EE Java 2 Platform Enterprise Edition or Enterprise Java
j2ee the actual implementation of the J2EE architecture
JAAS Java Authentication and Authorization Service
JAR Java Archive
JDBC Java Database Connectivity API
JMS Java Message Service
JNDI Java Naming and Directory Service
JRE Java Runtime Environment
JSP JavaServer Pages
JTA Java Transaction API
JTS Java Transaction Service
JVM Java Virtual Machine
MTS Microsoft Transaction Server
ODBC Open Database Connectivity
ORB Object Request Broker
PL/SQL Programming Language/Structured Query Language
RFC Request For Comments
RMI Java Remote Method Invocation
SQL Structured Query Language
SSL Secure Sockets Layer
XML Extensible Markup Language

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 80

B. Proposed new architecture for the ICM platform
This is the proposed new architecture that was the result of Prohunt’s own
investigation conducted prior to the start of this thesis.

Figure B-1: This is a figure of the new architecture proposed by the project group investigating new
architectures at Prohunt.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 81

C. Complete Results From The experiments
These are the complete results of the evaluation experiments; this time presented each
platform for itself.

C.1 PL/SQL

Results from the Performance Experiments

PL/SQL - Performance
Experiment Run1 Run2 Run3 Min/Average

Light Request 891 911 891 891

Middle Request 1562 1552 1573 1552

Heavy Request 2294 2323 2323 2294

Mixed Requests 7541 5007 5227 Avg: 5925

Table C-1. PL/SQL Performance experiment results.

Results from the Scalability Experiments

PL/SQL - Light Weight Request
Users Run1 Run2 Run3 Minimum

1 881 882 892 881

10 1693 1743 1643 1643

50 5758 5779 5769 5758

100 10855 10815 10816 10815

200 20912 20759 21191 20759

300 112221 113012 112555 112221

Table C-2. PL/SQL Light Weight Request results.

PL/SQL – Middle Weight Request
Users Run1 Run2 Run3 Minimum

1 1522 1602 1522 1522

10 3956 4005 4076 3956

50 15482 15702 15683 15482

100 32767 32327 32486 32327

200 70256 69380 70114 69380

250 85633 85721 86018 85633

Table C-3. PL/SQL Middle Weight Request results.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 82

PL/SQL – Heavy Weight Request
Users Run1 Run2 Run3 Minimum

1 2334 2333 2304 2304

10 8382 8442 8342 8342

50 39747 38946 38856 38856

100 76820 79404 78483 76820

200 153765 152982 151708 151708

Table C-4. PL/SQL Heavy Weight Request results.

PL/SQL – Mixed Weights Requests
Users Run1 Run2 Run3 Average

1 3915 4005 5478 4466

10 11657 18046 16433 15379

50 75189 74748 42160 64032

100 224393 172878 217603 204958

Table C-5. PL/SQL Mixed Weights Requests results.

C.2 J2EE 1
Below are the results of the first J2EE evaluation experiments.

Results from the Performance Experiments

J2EE 1 - Performance
Experiment Run1 Run2 Run3 Min/Average

Light Request 50 50 60 50

Middle Request 3184 3175 3595 3175

Heavy Request 6980 6880 6950 6880

Mixed Requests 27760 16965 30625 Avg: 25117

Table C-6. J2EE 1 Performance experiment results.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 83

Results from the Scalability Experiments

J2EE 1 - Light Weight Request
Users Run1 Run2 Run3 Minimum

1 50 50 60 50

10 160 190 170 160

50 851 711 812 711

100 10024 10035 10044 10024

200 20186 20298 20078 20078

Table C-7. J2EE 1 Light Weight Request results.

J2EE 1 - Middle Weight Request
Users Run1 Run2 Run3 Minimum

1 3234 3214 3045 3045

2 6245 6189 6179 6179

3 10586 10724 11087 10586

5 23112 22674 22142 22142

10 58164 59997 55179 55179

Table C-8. J2EE 1 Middle Weight Request results.

J2EE 1 - Heavy Weight Request
Users Run1 Run2 Run3 Minimum

1 6970 7661 6980 6970

2 21134 21110 22467 21110

10 78985 73345 70271 70271

Table C-9. J2EE 1 Heavy Weight Request results.

J2EE 1 - Mixed Weights Requests

Users Run1 Run2 Run3 Average

1 14120 16745 20219 17028

2 16364 40658 36327 31116

Table C-10. J2EE 1 Mixed Weights Requests results.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 84

C.3 J2EE 2
Below are the results of the second J2EE evaluation experiments.

Results from the Performance Experiments

J2EE 2 - Performance
Experiment Run1 Run2 Run3 Min/Average

Light Request 50 50 60 50

Middle Request 3125 3090 3080 3080

Heavy Request 6910 6810 6820 6810

Mixed Requests 15860 21140 24665 Avg: 20555

Table C-11. J2EE 2 Performance experiment results.

Results from the Scalability Experiments

J2EE 2 - Light Weight Request
Users Run1 Run2 Run3 Minimum

1 50 60 50 50

10 180 155 160 155

50 789 734 699 699

100 8576 8221 8350 8221

200 17568 17215 17236 17215

300 95152 96222 95478 95152

Table C-12. J2EE 2 Light Weight Request results.

J2EE 2 - Middle Weight Request
Users Run1 Run2 Run3 Minimum

1 3156 3075 3022 3022

10 13184 12862 12795 12795

50 25802 24685 24706 24685

100 86845 86312 86111 86111

200 227265 226978 227514 226978

Table C-13. J2EE 2 Middle Weight Request results.

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 85

Rickard Sandström, System Design of an ICM Platform Using Enterprise Java Technology vs PL/SQL 86

J2EE 2 - Heavy Weight Request
Users Run1 Run2 Run3 Minimum

1 6870 7224 6720 6720

5 25425 25254 25112 25112

10 49146 48868 49233 48868

50 122569 122017 121798 121798

100 305210 306963 305415 305210

Table C-14. J2EE 2 Heavy Weight Request results.

J2EE 2 - Mixed Weights Requests

Users Run1 Run2 Run3 Average

1 14896 12657 19852 15802

5 38521 29845 42258 36874

10 95252 89120 76488 86953

50 237784 198265 242311 226120

Table C-15. J2EE 2 Mixed Weights Requests results.

	Examiner and supervisor at KTH
	Supervisor at Prohunt
	Abstract
	Preface
	Table Of Contents
	List of Tables
	List of Figures
	1. Introduction
	
	1.0.1 Requirements on the Reader

	1.1 Motivation
	1.2 Objective of Thesis
	1.3 Where the Thesis Was Done
	1.3.1 Intellectual Capital Management (ICM)

	1.4 Structure of the report

	2. Background
	2.1 Distributed Computing
	
	
	Distributed data
	Distributed Computing
	Distributed users

	2.1.1 Requirements of Distributed Systems and Applications
	
	Response Time
	Robustness
	Scalability

	2.1.2 Distributed Architectures
	
	Host-Terminal
	
	
	Advantages
	Disadvantages

	Client/Server
	
	
	Advantages
	Disadvantages

	Multi-tier
	
	
	Advantages
	Disadvantages

	Peer-to-peer
	
	
	Advantages
	Disadvantage

	2.1.3 Approaches to Distributed Systems

	2.2 Prohunt’s Existing ICM Platform
	2.2.1 ProCompetence
	2.2.2 ProCareer
	2.2.3 ProResource
	
	
	
	ProResource can generate numerous reports and other tools for project administrators. Figure 2-11 shows consultants matching a certain need and their availability.

	2.2.4 Specification and Architecture
	
	Client-side
	Server-side

	2.2.5 Analysis

	3. PL/SQL
	3.1 Background
	3.2 Language
	
	
	Block Header
	Declarative Section
	Execution Section
	Exception Section

	3.3 Architecture
	3.4 PL/SQL Summary

	4. Enterprise Java Technologies (J2EE)
	4.1 Distributed Multi-tiered Platform
	
	
	Enterprise Information System Tier
	Business Tier
	Web Tier
	Client Tier

	4.3 J2EE Components
	
	
	Client Components
	Web Components
	Business Components

	4.3 Enterprise JavaBeans
	
	
	Session Beans
	Entity Beans
	Home and Remote Interfaces

	4.4 JDBC
	4.5 The Application Server
	
	4.5.1 EJB Containers
	4.5.2 Services Provided by the Application Server
	Naming Services
	Remote Connectivity
	Transaction Model
	Component life-cycles
	Data persistence
	Security and Authentication
	Clustering
	Resource pooling
	Other Services

	4.6 J2EE Summary

	5. Design and Development of Prototypes
	5.1 General Architecture
	5.1.1 PL/SQL Prototype Overview
	5.1.2 J2EE Prototype Overview

	5.2 The Prototypes
	5.2.1 Server Calls – “Requests”
	5.2.2 PL/SQL Application
	5.2.3 J2EE Application
	5.2.4 Summary

	5.3 Tools used
	5.3.1 Oracle
	5.3.2 Borland Application Server
	5.3.3 Borland JBuilder Enterprise
	5.3.4 SQL Navigator from Quest Software

	6. Evaluation and Results
	6.1 Evaluation method
	6.1.1 Request Types
	6.1.2 Experiment Suite
	
	Light Weight Request
	Middle Weight Request
	Heavy Weight Request
	Mixed Weights Request

	6.1.3 Client Applications Used For Experiments
	6.1.4 Java Experiments Second Run
	6.1.5 Hardware and Software
	Machine

	6.1.6 Performance Experiments
	
	PL/SQL

	Middle Request
	Heavy Request
	Mixed Requests
	J2EE 1

	Middle Request
	Heavy Request
	Mixed Requests
	J2EE 2

	Middle Request
	Heavy Request
	Mixed Requests
	Comparison

	6.1.7 Scalability Experiments
	
	PL/SQL

	Heavy Request
	10
	50
	100
	200
	300
	J2EE 1

	Heavy Request
	5
	10
	50
	100
	200
	J2EE 2

	Heavy Request
	5
	10
	50
	100
	200
	300
	Comparison
	Clustering

	6.1.8 Problems during Experiments

	7. Summary and Conclusions
	7.1 PL/SQL vs J2EE: Architecture
	7.2 PL/SQL vs J2EE: Performance
	7.3 PL/SQL vs J2EE Scalability
	7.4 Usage Comparison
	7.5 PL/SQL vs J2EE: Summary

	8. Future Work
	References
	Other Resources Used But Not Referenced
	Appendix
	A. Glossary
	B. Proposed new architecture for the ICM platform
	C. Complete Results From The experiments
	C.1 PL/SQL
	Results from the Performance Experiments
	PL/SQL - Performance

	Middle Request
	Heavy Request
	Mixed Requests
	Results from the Scalability Experiments
	PL/SQL - Light Weight Request

	Run3
	PL/SQL – Middle Weight Request
	PL/SQL – Heavy Weight Request
	PL/SQL – Mixed Weights Requests

	C.2 J2EE 1
	Results from the Performance Experiments
	J2EE 1 - Performance

	Middle Request
	Heavy Request
	Mixed Requests
	Results from the Scalability Experiments
	J2EE 1 - Light Weight Request

	Run3
	J2EE 1 - Middle Weight Request

	Users
	J2EE 1 - Heavy Weight Request

	Users
	J2EE 1 - Mixed Weights Requests

	C.3 J2EE 2
	Results from the Performance Experiments
	J2EE 2 - Performance

	Middle Request
	Heavy Request
	Mixed Requests
	Results from the Scalability Experiments
	J2EE 2 - Light Weight Request

	Run3
	J2EE 2 - Middle Weight Request

	Users
	J2EE 2 - Heavy Weight Request

	Users
	J2EE 2 - Mixed Weights Requests

