ROYAL INSTITUTE OF TECHNOLOGY Master Thesis SMARTTRUST

i, Report
@w{}p 2003-03-15
OCH
\ KONST)

KTH

Evaluation of Architectures for the Development of Secure

Mobile Applications

By

Paul Velenik d98-pve@d.kth.se
Peter Lindstrom d98-pel@d.kth.se

Department of Microelectronics and Information Technology

Examiner & advisor: Associate Professor Vladimir Vlassov

Department of Microelectronics and Information Technology
Royal Institute of Technology.

Industrial advisor: Jesper Séderlund, SmartTrust

Abstract

This report describes two theses, conducted by Peter Lindstrém and Paul Velenik,
which were made in close collaboration at SmartTrust, which objectives were to
evaluate different architectures for the development of secure mobile applications.
SmartTrust wants to see how their WIB is compared to other techniques such as Java
in cellular phones and Java on the SIM card with a focus on their business area in
secure mobile applications.

SmartTrust products are focused on SIM management and especially to manage SIM
cards that have a WIB. The thesis conducted by Paul Velenik is focusing on an
evaluation of the WIB compared to a Java enabled SIM card and the thesis
conducted by Peter Lindstrom is focusing on WIB with Java plug-in and Java on the
phone. The main objective is to compare their difference regarding performance,
development environments and some management aspects like learning threshold.

The conclusion when it comes to choosing strategy is that there are a lot of issues to
consider, if ease of development is the most important aspect then the WIB or Java
on the phone is ideal. One benefit from using Java Card compared to the WIB is that
much more can be done locally and thus decrease the communication needed.
Looking at security all SIM cards evaluated have inherent support to offer a totally
secure end-to-end communication, which is not the case for J2ME applets.

Development environments available for the different technologies vary a lot. The
tools available for developing WIB services and J2ME midlets are the best when it
comes to documentation and stability while the tools available for Java Card and
WIB with Java plug-ins lack a lot in those areas.

The most interesting parts to look further into in the future are the threats from
WAP2.0, the convergence between J2ME in the phone and a Java enabled SIM Card
and the fact that both mobile operators and phone manufacturers are moving the
focus more and more from the SIM to the phone, e.g. phone numbers are stored in
the phone instead of on the SIM.

Evaluation of architectures for the development of secure mobile applications

Table of contents

1 INTRODUCTION. ..ottt sttt st st sa e saessessesaessesneenennens 111
1.1 STRUCTURE OF THE REPORT ..c.cetiitististessessesseeseessessessessessessessesssssssssessessessessessenses 112
1.2 CONVENTIONSUSED ..coicuieiuiiaeeesteeateasueeaseessessseasseeassesssesasessssssasessssssnsessssesnsenns 12-2

2 BACKGROUNDoooiiieieie ettt sttt bbb sne s 124
2.1 OVERVIEW OF JAVA ..ottt sttt ettt ettt esaeeebeesaeeebeesaeaenneesneas 214
2.2 JAVA 2 PLATFORM, MICRO EDITION (J2ME)......ccoeiiceeceee e 2.2-4

221 OVENVIEW OF J2ME ...ttt ee s 2.2-5
222 Advantages of WIrel@SS Java...........ccvevvieeiieie e 2.2—7
2.2.3 Loading a Java application into a mobiledevice...........ccccooiininininennene. 2.2—7
P2 T 11V I oY L0 1 TSR 2.3-8
231 Basics about M and smart cardsin general ... 2.3-8
232 Java enabled SmMart Cards ... 2.3-11
2.33 Wireless Internet Browser WIB M cardccocoeeeveeieeinneeneeeeseen 2.3-19
234 SIM WIB With Java plug-iN.......cccceoeeiiiiie e 2.3-20
235 Over The Air (OTA) OVENVIEW.........cviiieriiieriesieeieeeee e e 2.3-21

3 DEVELOPMENT AND EVALUATION ..ot 2.3-23

N R N = = 7. 1 [0) PRSP RRRPR 3.1-23
311 BasiC REQUIFEIMENTS..........cciiiie ettt ee st ee e ne s 3.1-23
312 USE Case EXAMPIESccueeiieie ettt et ee et s aesnee e 3.1-23
3.1.3] 0] = LA o USSR 3.1-25
314 SECUTLY ettt ettt et et b b be b e neene e 3.1-25
3.15 Evaluation teChNIQUEooeiiiiieeee s 3.1-25

3.2 WIB EVALUATION ...ctiuieiieiesiesie ettt st st sbe s aesae b st ssesnesneenes 3.2-26
321 APPLICALION TESIGN ... 3.2-26
322 S o U] Y0 (=== T o SO 3.2-28
323 Implementation and liMItatioNScccooeriiiiineneeeee e 3.2-28
324 EVAIULION ... s 3.2-29
3.25 Evaluation SUMMBIYcoiiiiiiieieeeie e 3.2-42
3.2.6 Development: problems, environment & time.........ccccevveceveerecieeseenen, 3.2-45

3.3 JAVA CARD EVALUATION ..c.utiitiiaieesteeeteessessseessessasesssesssseessessasesasessssesnsessnsesnns 3.3-46
331 APPHICALTON DESIGN....cviiiiceieiteeeie ettt re e sneene s 3.3-46
332 SECUMTY DESIGN -t 3.348
333 Implementation and [IMItatioNSccccveveieere e 3.349
3.34 Y= 11 =14 o o USRS 3.349
335 Evaluation SUMIMAIYccoviieiiccece et e s ne s 3.3-63
3.3.6 Development: problems, environment & tiMeccocceeveeeiieenenceseeenns 3.3-65

34 JAVA IN THE PHONE EVALUATION ..uoiuiruieuieieiestestessessessessessesseessessessessessessessesnes 3.4-68
34.1 APPLICALION DESIGN.....eiiiiieicrieeie e e 3.4-68
34.2 S o U] Y0 (=== T o o S 3.4-69
34.3 Implementation and liMItatioNScccooerirenenieneeeee s 3.4-69
344 EVAIULION ... s 34-71

Evaluation of architectures for the development of secure mobile applications

4

5

6

7

345 Evaluation SUMMBIYcoiiiiiieieeeie et 3.4-85
3.4.6 Development: problems, environment & time........ccccceevveceveeseccieseenen, 3.4-87
3.5 WIB WITH JAVA PLUG-IN EVALUATION .couuiiiieeiereieesieeseeesseeseeesneesseessessneeenee 3.5-88
351 APPHICALTON DESIGN....cviiiiciecieerie et sreere e sneene s 3.5-88
352 SECUMTY ABSIGN .t 3.5-89
353 Implementation and [IMItatioNSccccveceveerecce e 3.5-89
354 EVAIUBLTON ... st 3591
355 Evaluation SUMIMAIYcoviieiiciecee et ne s 3.5-98
3.5.6 Development: problems, environment & timeccoceveeeieecnseenieeenne 3.5-100
DISCUSSION/ANALY SISttt st 3.5-103
4.1 PERFORMANCEeeiiitie ettt ettt e et e ettt se e s e e s ne e e sbe e e sane e e sane e e enneeenes 4.1-103
41.1 WIB VS JAVa Cardccocoiienieiieiieieeeie et 4.1-103
4.1.2 Java Phone vs WIB with Java plug-in ... 4.1-106
4.2 DEVELOPMENT ENVIRONMENT/LEARNING THRESHOLD ..ccvceueeuieieieseesieseensennes 4.2-110
FUTURE WORK ..ottt st sna e enaessestesnesnennennens 4.2-113
CONGCLUSIONS ...ttt sttt b st enes 4.2-115
REFERENGCES........c.o ottt sttt sre s nnenneas 4.2-118

Evaluation of architectures for the development of secure mobile applications

List of Figures

FIGURE 2-1. JAVA 2 PLATFORMutiiuiiiiiaiieeiee et esieesaeaaseesisessseesaesaseesasesseesasessessnsesnsenss 2.2-5
FIGURE 2-2. J2ME TREE ...ttt ittt sttt sttt sttt st ne s 2.2-6
FIGURE 2-3. DOWNLOAD PROCEDURE OF A JAVA APPLICATION ...cciuviiieeieernieesieeeieeseeeneeens 2.2-8
FIGURE 2-4, THE DIFFERENT PARTS OF A SMART CARD [JACO2].coviieieienieniene e 2.39
FIGURE 2-5 THE HIERARCHICAL FILE SYSTEM OF A SMART CARD [JACO2].......cc.ccoovruenene 2.3-10
FIGURE 2-6, SHOW THE SEPARATION OF THE JCVM INTO ON-CARD ON OFF-CARD

PARTS [CHEOQ]. ...ttt 2.3-12
FIGURE 2-7, THE LAYERS OF THE JCRE [CHEQQ]......ccceiiieiieieeieseesie et 2.3-13
FIGURE 2-8, THE USE OF THE APPLET FIREWALL AND THE DIVISION INTO DIFFERENT

CONTEXTS[CHEQD].....ctiiieiiieiteeie sttt ettt e e e e naesneesnesnnesneenne s 2.3-16
FIGURE 2-9, THE USE OF SIOS[CHEQQ].coteiieriieieieierie et 2.3-18
FIGURE 2-10, THE INTERACTION BETWEEN THE WIB ON THE SIM AND THEWIG

SERVER. ..t tuteeeauteeeatee e et e e asee e e see e e aeeeaseeeene e e e be e e e be e e e be e e eabe e e e Re e e eane e e anne e e anneeeanreeenes 2.3-19
FIGURE 2-11. IMPLEMENTATION OF THE SHAREABLE INTERFACEcoriiriieieneesieeie s 2.3-21
FIGURE 3-1 THE PROCESS WHEN A RESTRICTED PAGE ISREQUESTED AND PAID FOR. 3.2-27
FIGURE 3-2 THE TESTBED USED......ceiutetereesieesteseesseessesseesieessesssesseessesaeessessesssessessessessees 3.2-30
FIGURE 3-3 THE TOTAL EXECUTION TIME FOR A STOCK ANALY SIS SESSION DIVIDED

INTO IT S DIFFERENT PARTS. ..cuttiutisteestestesseesesseesteessessesssesssesssesseensesssessesnsesssessesnsens 3.2-30

FIGURE 3-4 ESTIMATION OF PROPORTIONS WHERE TIME IS SPENT DURING A
TRANSACTION, DASHED AREAS ARE “ZOOMED” IN I.E. THEY SHOULD BE MUCH

SMALLER COMPARED TO THE OTHER. 1.eeiiiittiieeeitteeeeeetreeeeessssesssssseessssssesssassssessssnens 3.2-31
FIGURE 3-5 TIME DISTRIBUTION DURING A SESSION USING PLAIN TEXT FOR THE

COMMUNICATION. 1.utttieeiittreeeeeitreeeeeesreeesasssseesseasseeeseasseeesassssessesasssssssasssseesassssnssssnsees 3.2-33
FIGURE 3-6 TIME DISTRIBUTION DURING A SESSION USING 3DES FOR THE

COMMUNICATION. 1.utttieeiittteeeeiitreeeesasseeesasssseesseasseeeseassseessassssessesasssssssassneesasssseesssnsees 3.2-34
FIGURE 3-7 TOTAL EXECUTION TIME IN THE STOCK ANALY SIS EXAMPLE WITH USER

INTERACTION TIME REMOVED ..eciiiutvieeeetreeeeesitreeessisseeessssseessassssessssssssssssssssessanssenens 3.2-35

FIGURE 3-8. INCREASE IN EXECUTION TIME WITH 3DES I.E. WHICH PART HAS THE

LARGEST INCREASE IN EXECUTION TIME COMPARED TO WHEN PLAIN TEXT IS

USED. VALUESHAVE BEEN TAKEN FROM TABLE 3-3...ccc oottt evrree e 3.2-36
FIGURE 3-9. THE REAL DIFFERENCE IN EXECUTION TIME BETWEEN THE 3DES AND

PLAIN TEXT CASE. SEE TABLE 3-3 FOR WHICH MEASUREMENT THE DIFFERENT

NUMBERS CORRESPONDS TO. A POSITIVE VALUE MEANS THAT THE 3DES CASE

TAKES THAT MANY MORE MSAND A NEGATIVE VALUE THE OPPOSITE.cccouvveeeeennn. 3.2-37
FIGURE 3-10 TIME TO ENCRY PT DATA ON THE SIM CARD ASA FUNCTION OF THE

NUMBER OF BY TES. ..oiiiiiiiieieieieieieieeeeeeeeeeeteeeeeeeseseeeseeeseseeeseeeseseeeseeeeeseseeereserereeererereeens 3.2-38
FIGURE 3-11 TIME TO ENCRYPT DATA WITH THE SECURITY CENTER ASA FUNCTION

OF THE NUMBER OF BY TES....uvuuutteueueussesesesssssssssesssssesssssssssssssesesssssssssssssssssssssssmssn.. 3.2-39

FIGURE 3-12 TOTAL TIME TO PUSH A WML PAGE THE WHOLE WAY TO THE PHONE
FROM A CLIENT CONNECTING TO THE WIG SERVER AS A FUNCTION OF THE

PAGE SIZE. ...tiuieuiitiiteieie sttt sttt e e 3.2-41
FIGURE 3-13 THE MOST CENTRAL METHODS AND ATTRIBUTES OF THE CLASS
DIAGRAM OF THE WIRELESSWALLET AND THE APPLET BILL ISSUER.cccoviueenninnne 3.3-46

Evaluation of architectures for the development of secure mobile applications

FIGURE 3-14 PROGRAM FLOW WHEN ISSUING A BILL TO THE WIRELESS WALLET

Y = = T = OO RTRRPPR 3.3-48
FIGURE 3-15 THE TEST BED USED FOR THE EVALUATION. ..uvutiriiieeiiiienrieeereeeeeeesssssseeeeeeens 3.3-50
FIGURE 3-16 THE TEST BED USED FOR EVALUATION. ACTIONS NUMBERED X-1 OR X-

2 MAY TAKE PLACE IN PARALLEL .eeeititttteeie e e e e eeetveee e e e e s e ssssssaseeesesssssssssbesesesssssennns 3.351

FIGURE 3-17 ESTIMATION OF PROPORTIONS WHERE TIME IS SPENT DURING A
TRANSACTION, DASHED AREAS ARE “ZOOMED” IN I.E. THEY SHOULD BE MUCH

SMALLER COMPARED TO THE OTHER. 1.eeiiiittiieeeitreeeeeetreeesessrsesssssseesssssssesssasssssssssnens 3.3-51
FIGURE 3-18 TIME DISTRIBUTION DURING A SESSION USING 3DES FOR THE

COMMUNICATION. 1.utteeeeiittreeeeiitreeeesesreeesassssessseasseeeseasseessassssesseaassessssasseessasssensssssees 3.3-54
FIGURE 3-19 TIME DISTRIBUTION DURING A SESSION USING PLAIN TEXT FOR THE

COMMUNICATION. 1.utttteeiittreeeeeitreeeeeesreeesassbseessaasseeessasseessassssesssaasssesssasseessansrenesssnsees 3.3-55

FIGURE 3-20. INCREASE IN EXECUTION TIME WITH 3DES I.E. WHICH PART HAS THE

LARGEST INCREASE IN EXECUTION TIME COMPARED TO WHEN PLAIN TEXT IS

USED. VALUESHAVE BEEN TAKEN FROM TABLE 3-3..cccc oottt eivrreeeee e 3.3-57
FIGURE 3-21 THE REAL DIFFERENCE IN EXECUTION TIME BETWEEN THE 3DES AND

PLAIN TEXT CASE. SEE TABLE 3-10 FOR WHICH MEASUREMENT THE DIFFERENT

NUMBERS CORRESPONDS TO. A POSITIVE VALUE MEANS THAT THE 3DES CASE

TAKES THAT MANY MORE MSAND A NEGATIVE VALUE THE OPPOSITE. ..cevvvueeeeeeeeeeeenns 3.3-57
FIGURE 3-22 TOTAL EXECUTION TIME IN THE STOCK ANALYSIS EXAMPLE WITH USER
INTERACTION TIME REMOVWED. ...uuiieeeeeeeeeeee e eeee e e e e e eeeeeeeaeeeeeeeaeeeeee e eeeeeaaeeeeennaeeeees 3.3-59

FIGURE 3-23 TIME TO ENCRYPT DATA ON THE SIM CARD ASA FUNCTION OF THE
NUMBER OF BYTES, USING BOTH A TRANSIENT ARRAY ASWELL ASAN

(0120 |72 23 2SR 3.3-60
FIGURE 3-24 SERVER ENCRYPTION TIME I.E. BANK AND OR CONTENT PROVIDER............... 3.3-62
FIGURE 3-25 TIME FOR THE APPLICATION NOCRYPTO IN THE GSM CASEccccvvvveeennn. 3.4-74
FIGURE 3-26 TIME FOR THE APPLICATION NOCRYPTO IN THE GPRS CASE.......ccccvvveeeee, 3.4-75
FIGURE 3-27 TIME FOR THE APPLICATION CRYPTO IN THE GSM CASE ...cvevvveeeiiiciiireeeeenn, 3.4-76
FIGURE 3-28 TIME FOR THE APPLICATION CRYPTO IN THE GPRS CASE ...coooeeiiiivieeee, 3.4-77
FIGURE 3-29 TIME FOR THE APPLICATION CRYPTOSHORT IN THE GSM CASE.......ccvvveeee... 3.4-78
FIGURE 3-30 TIME FOR THE APPLICATION CRYPTOSHORT IN THE GPRS CASEvvveeee.... 3.4-79
FIGURE 3-31 TIME FOR THE APPLICATION CRYPTOLONG IN THE GSM CASE.......cccvvvveeeneen. 3.4-80
FIGURE 3-32 TIME FOR THE APPLICATION CRYPTOLONG IN THE GPRS CASE........vvvveene. 3.4-81
FIGURE 3-33 TIME FOR THE APPLICATION CRYPTOEXTRALONG IN THE GPRS CASE......... 3.4-82
FIGURE 3-34 THE TOTAL TIME FOR THE DIFFERENT APPLICATIONS. 1 = NOCRYPTO,

2= CRYPTO, 3=CRYPTOSHORT, 4=CRYPTOLONG.....cetttteeiiiiiirireeereeeesiiinrreeeeeeeeesennns 3.4-83
FIGURE 3-35 THE TOTAL TIME FOR THE DIFFERENT APPLICATIONS. 1 = NOCRYPTO,

2= CRYPTO, 3=CRYPTOSHORT, 4=CRYPTOLONG, 5=CRYPTOEXTRALONG.............. 3.4-84

FIGURE 3-36 THE TIME FOR ENCRYPTION AND DECRYPTION FOR THE DIFFERENT
AMOUNT OF DATA WITH RESPECT TO THE TWO SCENARIOS SIEMENS S| 45

PHONE (GSM) AND SIEMENS M50 PHONE (GPRS).coiiiiirieieeesee e 3.4-84
FIGURE 3-37 THE PROCESS OF MAKING A PURCHASE.cveiiuirieieiestesseesiesseneese e seesesnennas 3590
FIGURE 3-38 DISPLAYS THE TIME OF PUSHING A WML PAGE FROM THE BANK SERVER

TO THE USER’ SPHONE AS A FUNCTION OF THE BY TE CODE TO SEND.coveviteeeneniennens 3593
FIGURE 3-39 DISPLAYS THE TIME OF SENDING THE RESPONSE TO THE BANK SERVER

FROM THE USER’ S PHONE AS A FUNCTION OF THE BY TE CODE TO SEND. ...ccvvrveeeueenne 3595
FIGURE 3-40 DISPLAYS THE TIME AS A FUNCTION OF THE NUMBER OF BY TES TO

ENCRY PT. ottateuietestee ettt ssese st se ettt e et bt b s e a e b e e e e bt b e e e s e e bt b e e bt b e ne e e e bt et nenn s 3.5-96
FIGURE 3-41 DISPLAYS THE CONTRIBUTION FROM THE DIFFERENT PHASES TO THE

TOTAL TIME. c1ttutetteteeeuteteste ettt se et b e s st e e e st b e e e st b e e e st e bt ne et eb e nr e e e st et e s e e en e nens 3597

Evaluation of architectures for the development of secure mobile applications

FIGURE 4-1 COMPARISON OF THE TOTAL EXECUTION TIME BETWEEN THE WIB AND

JAVA CARD CASES. ...uviiiiiiiiitiieesiteesiteesiee s stee s sstee s ssbeesnsaesssaessbaessnbeeesaseessnseesnsneas

FIGURE 4-2 COMPARISON OF TIME SPENT SENDING SMSBETWEEN THE WIB AND
JavA CARD CASE. MUCH MORE TIME IS SPENT SENDING SMSIN THE WIB CASE
SINCE MORE SM'S ARE REQUIRED DUE TO THAT THE WIB IS STATELESS, WHILE

THE JAVA CARD HAS THE POSSIBILITY TO MAINTAIN A STATE. .cvveiiiieerveessireeenneens

FIGURE 4-3 THE TIME TO ENCRYPT A NUMBER OF DIFFERENT BYTES USING EITHER A

JAVA CARD ORWIB SIM CARD.cutiiiiiiiiiiiesiee sttt

FIGURE 4-4 TOTAL EXECUTION TIME USING GSM NOTE THE HIGH STANDARD

DEV IATION. ttttuuteeeeeeteeessssassssessessssssnssesssesessssarsseessessssnrersessessssnnnrereeeseesssnnnns
FIGURE 4-5 TOTAL EXECUTION TIME USING GPRS.ot

FIGURE 4-6 COMPARISON OF THE TOTAL EXECUTION TIME BETWEEN USING SIEMENS
SL 451 AND A DIALED UP GSM CONNECTION COMPARED TO A SIEMENS M50

WHICH USED GPRS FOR THE COMMUNICATION. ..uvtiiiieeiieeesreeesieessneessssesssssessnens

FIGURE 4-7 COMPARISON OF THE ENCRY PTION TYPE WHEN USING DIFFERENT
PHONES A NEWER SIMENS M50 (GPRS PHONE) AND AN OLDER SIEMENS SL45i

(GSM PHONE). ...ttt se e nne e

FIGURE 4-8 TRANSMISSION TIME AND HOW IT DEPENDS ON THE AMOUNT OF DATA

TO SEND. e

Evaluation of architectures for the development of secure mobile applications

.. 4.1-104

.. 4.1-107
..4.1-108

.. 4.1-108

..4.1-109

.. 4.1-110

List of Tables

TABLE 2-1 SUPPORTED AND UNSUPPORTED JAVA FEATURES......ccootteiieieeeeesssnrreeeee e e e e e 2.3-12
TABLE 2-2 SECURITY MECHANISMS IN OTA [GH02] ...ccveeoieeieceesieee st 2.3-21
TABLE 3-1 MEASUREMENT OF TIMES IN STOCK ANALY SIS PROGRAM USING

ENCRYPTED COMMUNICATION BETWEEN WIB AND WIG. ... 3.2-32
TABLE 3-2 MEASUREMENT OF TIMES IN STOCK ANALY SIS PROGRAM USING PLAIN

TEXT COMMUNICATION BETWEEN WIB ANDWIG. ...t 3.2-32

TABLE 3-3 COMPARISON BETWEEN 3DES AND PLAIN TEXT EXECUTION TIME WHERE
3DES ISNORMALIZED TO PLAIN TEXT ALSO THE REAL DIFFERENCE IN MSIS

TAKEN BETWEEN THEM. ..uuuuuuuuuuuurusnsnssses 3.2-35
TABLE 3-4 MEASUREMENT OF ENCRY PTION/DECRY PTION TIME IN A SIM CARD,

THERE WERE 5 MEASUREMENTS MADE EACH SIZE. ...uvvvvvuvururiesenessssssssssssssssessesenessssnees 3.2-38
TABLE 3-5 MEASUREMENT OF ENCRY PTION/DECRY PTION TIME AT THE SECURITY

CENTER SETUP TIME MEASURED SEPARATELY . ..euvuvtvueuetereirrsrerereresrsesssesessssssssssnsssssnee 3.2-39

TABLE 3-6 TOTAL TIMES FOR PUSH COMMUNICATION I.E. THE COMMUNICATION

BETWEEN THE WIG AND EITHER OF CONTENT PROVIDER OR THE WALLET

SERVERS. NUMBER INSIDE PARENTHESIS INDICATES NUMBER OF

MEASUREMENTS. ..cciiiiieieie it e e e e ee e ee ettt e e ee e et et et e e e ee e e e e e e eeeeeeeeeeeeeerereeeeeresererererereeereeereeens 3.2-40
TABLE 3-7 TIME TO PUSH A PAGE THE WHOLE WAY TO THE WIB PHONE. TEN

MEASUREMENTS WERE MADE FOR EACH PAGE SIZE. NUMBER OF BY TES SENT

WERE LESS THAN PAGE SIZE DUE TO TRANSFORMATION TO BYTE CODE AT THE

WIG SERVER. . .uttiiiiiitteiieceitteee e e ettee e s s ettae e e s aabee e e esaaeeeesabseeesaaabseeesansbaeesaassseeessssneeenans 3.2-40
TABLE 3-8 MEASUREMENT OF TIMES IN STOCK ANALY SIS PROGRAM USING

ENCRY PTION BETWEEN WALLET APPLET AND THE BANK SERVER. ITALIC

VALUESARE TAKEN FROM THEWIB CASE. ..ot 3.3 52
TABLE 3-9 MEASUREMENT OF TIMES IN STOCK ANALY SIS PROGRAM USING PLAIN

TEXT WALLET APPLET AND THE BANK SERVER. ITALIC VALUES ARE TAKEN

FROM THE WIB CASE. ...uveiiiicttiee ettt ettt et s et e e e e et e e e s entreeesannreee s 3.3-54
TABLE 3-10 COMPARISON BETWEEN 3DES AND PLAIN TEXT EXECUTION TIME

WHERE 100 ISTHE 3DES A POSITIVE VALUE MEANS THAT THE 3DES IS

FASTER THAN THE PLAIN TEXT VERSION AND A NEGATIVE VALUE THE

OPPOSITE. ITALIC VALUES ARE USED FROM THE WIB CASE AND SINCE NO JAVA

CARD WITH A SUBSCRIPTION WAS AVAILABLE. .cectteeeieiee e e eeirtreeee e e s e s sesssreseee s s e s s 3.3-56
TABLE 3-11. ENCRYPTION TIME ON JAVA ENABLED SIM CARD.c.vvoviiiivieeeectieee e 3.3-60
TABLE 3-12 TIME TAKEN FOR ENCRY PTION/DECRY PTION ON THE SERVER SIDE I.E.

THE BANK AND CONTENTPROVIDER. ... uutiieiiiureeeeiitreeesaisreeeesaissseessassseessasssesssssssssessans 3.3-61
TABLE 3-13 DATA SENT FROM AND TO APPLICATION (INBYTES) ...coueiuieeeienienie e 3.4-73
TABLE 3-14 TIME FOR THE APPLICATION NOCRYPTO IN THE GSM CASEcccvveeeecrvreeens 3.4-74
TABLE 3-15 TIME FOR THE APPLICATION NOCRYPTO IN THE GPRS CASEovvvieieeeeeees 3.4-74
TABLE 3-16 TIME FOR THE APPLICATION CRYPTO IN THE GSM CASE.....cocoviicvvieeeciveeeeenns 3.4-75
TABLE 3-17 TIME FOR THE APPLICATION CRYPTO IN THE GPRS CASEco ottt 3.4-76
TABLE 3-18 TIME FOR THE APPLICATION CRYPTOSHORT IN THE GSM CASE........ccccvveennne 3.4-77
TABLE 3-19 TIME FOR THE APPLICATION CRYPTOSHORT IN THE GPRS CASEcceeeeeeneee 3.4-78
TABLE 3-20 TIME FOR THE APPLICATION CRYPTOLONG IN THE GSM CASEveeeevcvvveenns 3.4-79
TABLE 3-21 TIME FOR THE APPLICATION CRYPTOLONG IN THE GPRS CASE.....oveveveeeene 3.4-80

Evaluation of architectures for the development of secure mobile applications

TABLE 3-22 TIME FOR THE APPLICATION CRYPTOEXTRALONG IN THE GPRS CASE.......... 3.4-81
TABLE 3-23 DISPLAYS THE TOTAL TIME IN THE GSM TEST ASAVERAGE AND

MEDIAN AND THE PERCENTAGE IN BOTH CASES OF HOW MUCH SERVER

COMMUNICATION AND ENCRY PTION/DECRY PTION CONTRIBUTES TO THE TOTAL

B LY =TT 3.4-82
TABLE 3-24 DISPLAYS THE TOTAL TIME IN THE GPRS TEST ASAVERAGE AND

MEDIAN AND THE PERCENTAGE IN BOTH CASES OF HOW MUCH SERVER

COMMUNICATION AND ENCRY PTION/DECRY PTION CONTRIBUTES TO THE TOTAL

B LY =TT 3.4-83
TABLE 3-25 DISPLAYS THE TIME FOR PHASE 1, WHICH REPRESENT CONTENT

PROVIDER COMMUNICATION WITH BANK SERVER AND BANK SERVER

EXECUTION BEFORE PUSH.......uutiiiiiirieeeeitteeeeestreesssssseeessssseessasssssssssssssssssssssseesansssnens 3.5-93
TABLE 3-26 DISPLAYS THE TIME TO PUSH A WML PAGE FROM THE BANK SERVER TO

THE USERS PHONE. ...uvvviiiiiireeeeiitteeesaisteessssssseesssasseessassssssssasssssessassssessasssesesssssssessans 3.5-93
TABLE 3-27 USER INTERACTION (INCLUDING ENCRYPTION) ...veuvitirieeueeeeeeseesieseesneseesneens 3.5-94
TABLE 3-28 SENDING RESPONSE TO BANK SERVER.uvviieiiittreeeeiitreeeeeessseeeeessssesssssssseessns 3.5-94
TABLE 3-29 NUMBER OF ITERATIONS OF ENCRY PTION DEPENDING ON THE SIZE OF

THE BYTES TO ENCRY PT. uuttiieiiitteeeeeitteeeessiuseeesssssseessassssssssasssssessasssseesassssesssssssssessans 3.5-95
TABLE 3-30 ENCRYPTION OF DIFFERENT SIZES. .cceiiiieutrveeeiieeeessssssseseeesssssssssssssssessssssssnns 3.5-95
TABLE 3-31 DISPLAYS THE TOTAL TIME OF THE APPLICATION’ SEXECUTION TIME,

INCLUDING THE TIME FOR USER INTERACTION.ccittiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeens 3.5-96
TABLE 3-32 DISPLAYS THE TOTAL TIME OF THE APPLICATION’ SEXECUTION TIME,

WHEN ADDED THE TIME FOR ALL PHASES TOGETHER.uvvtieiiieeeieiesrreeeeeeeseessssseeens 3.5-97
TABLE 3-33 SHOWS THE CONTRIBUTION PERCENTAGE OF THE DIFFERENT PHASES. 3.5-97
TABLE 3-34 DISPLAYS THE TOTAL TIME OF THE APPLICATION’ SEXECUTION TIME,

WHEN ADDED THE TIME FOR ALL PHASES TOGETHER.uvvteiiiireeeeeitreeeeessnreeessissnesesns 3.5-98

TABLE 4-1 COMPARISON BETWEEN WIB AND JAVA CARD EXECUTION TIME WHERE

THE WIB ISNORMALIZED TO JAVA CARD ALSO THE REAL DIFFERENCE IN MS IS

SHOWVN. ceettveeererererseesesssssesssssesssssssssssessnsnsnnns 4.1-103
TABLE 4-2 DISPLAYS THE TOTAL TIME IN THE GSM TEST AS AVERAGE AND MEDIAN

AND THE PERCENTAGE IN BOTH CASES OF HOW MUCH SERVER COMMUNICATION

AND ENCRY PTION/DECRY PTION CONTRIBUTES TO THE TOTAL TIME. .vvvvvveeecrveeenen. 4.1-107
TABLE 4-3 DISPLAYS THE TOTAL TIME IN THE GPRS TEST ASAVERAGE AND

MEDIAN AND THE PERCENTAGE IN BOTH CASES OF HOW MUCH SERVER

COMMUNICATION AND ENCRY PTION/DECRY PTION CONTRIBUTES TO THE TOTAL

LY T =P 4.1-107
TABLE 4-4 TIME TAKEN BOTH TO ENCRYPT A NUMBER OF BY TES EITHER USING A

SIMENS SLA451 ORA SIMENSIMUB0.......cc oottt re e 4.1-109
TABLE 4-5 ENCRYPTION OF DIFFERENT SIZES FOR THE WIB WITH JAVA PLUG-IN............ 4.1-109
TABLE 4-6 TIME TAKEN BOTH TO SET UP A CONNECTION AND SEND THE ACTUAL

BYTES, USING GSM OR GPRS FOR THE COMMUNICATION. ...uvvurriieeereiessrreeeeessseseans 4.1-110

Evaluation of architectures for the development of secure mobile applications

Acknowledgements

First of all we would like to thank SmartTrust for giving us the opportunity to do the
thesis work at their localities. They have also been very supportive at times when
problems have occurred. Special thanks also goes out to the supervisor Vladimir
Vlassov who given us with very good and interesting opinions regarding the work
that has been conducted. Finally a special thanks goes to our families and friends
who have been very supportive throughout our years at KTH.

Evaluation of architectures for the development of secure mobile applications

-1.1-1-

1 Introduction

These two theses have been done at Sonera SmartTrust during the year 2002. Both
these theses were done in tight collaboration and supervised by Vladimir Vlassov at
the Department of Microelectronics and Information Technology at the Royal
Institute of Technology, Stockholm, Sweden.

SmartTrust is a wholly owned subsidiary of the Finnish mobile operator Sonera.
During 2000 SmartTrust acquired both Acrosswireless and ID2, which had spawned
from the consulting company AU Systems. SmartTrust has kept the software
development at Liljeholmen where ID2 and Acrosswireless previously resided. The
number of employees today is around 300.

SmartTrust is today a leading provider of infrastructure software, enabling secure e-
services to wireless and Internet users and more than 80 operators are using their
Delivery Platform to launch enhanced SMS services and to manage mobile end-user
applications.

To be able to give as many cell phone users as possible the ability to use mobile e-
services SmartTrust developed the WIB (Wireless Internet Browser), which
specification is public so that the SIM card manufacturers can incorporate the WIB
into their products. The WIB was launched in 1999 and has now been integrated into
more than 25 million SIM cards. In that time it has become an essential tool for
operators looking to broaden their mobile e-service capabilities.

For an operator to be able to supply their customers with a WIB the only
requirement is that the cell phone is able to handle SIM toolkit, which almost all
phones do since the past two and half years. This means that the operator can reach
the majority of his subscribers and not just the percentage of those with WAP-
enabled handsets

But today with GPRS and 3G around the corner one question that SmartTrust poses
is how secure mobile transactions will be developed in the future. Even though 25
million SIM cards are enabled with the WIB it is far from a majority of the SIM cards
out there. The question is whether to keep focus on the WIB/WIG solution in the
future or start moving to some other platform like Java enabled phones. If a change
of platform were to be done then the question is what benefits/drawbacks that can
come of moving to such a platform.

SmartTrust products are focused on SIM management and especially to manage SIM
cards that have a WIB. The first part of the thesis report, conducted by Paul Velenik,
is focusing on an evaluation of the WIB compared to a Java enabled SIM card. This
is especially interesting for SmartTrust since there are many Java Cards coming into
market today and how it might change the position that the WIB holds today. The
main objective is to compare their differences regarding performance, development
environments and some management aspects such as learning threshold.

In the second part of the thesis report, conducted by Peter Lindstrom, WIB with
Java plug-ins has been compared with the use of Java on the cell phone. The
motivation to include Java in the thesis project and not WAP is that Java on the cell

Evaluation of architectures for the development of secure mobile applications

-1.2-2-

phone resembles applications stored on the SIM i.e. applications are stored on the
phone and not as in WAP dependent on a content provider. Java on the phone also
lies closer to SmartTrust business areas, which concern SIM management and soon
also device management.

1.1 Structure of the Report

A part of this report was written by Peter Lindstrém and incorporated to give the
reader a better background of the different technologies evaluated on the behalf of
SmartTrust. Parts written by Peter Lindstrom are sections 2.2 Java 2 Platform, Micro
Edition (]2ME), 2.3.4 SIM W1IB with Java Plug-In, 3.4 Java in the Phone evaluation, 3.5 WIB
with Java Plug-In evaluation and 4.1.2 Java Phone vs. WIB with Java Plug-In. Section 3.1
Application was written in collaboration by both Lindstrom and Velenik. The rest of
the thesis has been written by Paul Velenik.

This report is structured as follows. First there is a background part essential for
those who fully want to be able to understand the report. Then comes the evaluation
and comparison of the different technologies. At the end there is a part with
discussion, analysis and conclusions.

Chapter 2 Background contains primarily two sections one about Java and especially
J2ME since that is what is used in cell phones and thereafter comes a section about
SIM cards. The section 2.3 SIM cards is about Java enabled smart cards, WIB
(Wireless Internet Browser) enabled cards as well as WIB enabled cards that can have
Java plug-ins. Finally this chapter also contains a short introduction to the security
features available on the GSM layer.

Chapter 3 Development and evaluation contains the results from the evaluation of the
architectures. Section 3.7 Application describes the example application that was
developed to use as a framework for the comparison of the different architectures.
The comparison looked into areas such as design changes that had to be made due to
the architecture used and development environments available. Sections 3.2 WIB
evaluation, 3.3 Java Card evaluation, 3.4 Java in the Phone evaluation and 3.5 WIB with Java
Pilug-In evaluation contains the results of the evaluation.

Chapter 4.2 Development environment/ Learning threshold compares in detail the
performance and the development environments that are available for the WIB and
Java Card and for WIB with Java plug-in and Java in the phone.

Chapter 5 Future Work introduces areas in which more work should be done both
directly related to this thesis as well in areas closely related. E.g. it is suggested that
more work should be done on the server side of the application evaluated and also to
look into new areas such as “smart phones”.

Chapter 6 Conclusions presents the conclusions that can be drawn from the thesis
work conducted such as when and why to choose a specific architecture

1.2 Conventions used

When something is referred to as SMs in the thesis it is meant to be SIM Toolkit
messages packed in Short Messages.

Evaluation of architectures for the development of secure mobile applications

-1.2-3-

There are a lot of different GSM standards e.g. GSM 11.11, which specifies the SIM
card and GSM 11.14 that specifies the SIM Toolkit commands. These and other
GSM standards like GSM 03.48, which specifies the Over The Air interface may
sometimes just be referred to as GSM. This also applies to GPRS which is a packet
service used in GSM networks and is just referred to as GPRS while an “ordinary”
dialled up connection is referred to as GSM in the text.

Evaluation of architectures for the development of secure mobile applications

224

2 Background

2.1 Overview of Java

Java is an object-oriented programming language. An object is a software bundle of
related variables and methods. Software objects are often used to model real-world
objects you find in everyday life [CONO2]. Java is syntactically similar to C++, but
differs in some fundamental ways. One of the biggest differences lies in its
management of objects and object references. The Java language allocates and de-
allocates memory automatically as the program creates and destroys objects, without
Java programmers having to think about it. In opposite, C++ programmers must
allocate and free memory on their own in the source code, which can lead to memory
leaks and unpredictable behavior as programs attempt to use objects that no longer
exist. In the area object references there is also an advantage for Java programmers
since they use well-behaved, type-safe direct references to objects. C++
programmers use instead pointers, which can be modified directly, making them
point to memory the application does not own. Because Java handles the memory
allocation Java becomes slower in execution than C++, but is easier to use, since Java
does some of your job.

The Java source code is run on a virtual machine (VM). This means that instead of
being run on top of the operating system (like an .exe file), the code is being executed
in a program, the virtual machine that is run on the operating system. One advantage
with this architecture is that you do not have to adapt the code to the different
operating systems, you let the virtual machine adapt instead, so that the compiled
code can execute independent of the operating system. Another advantage is the
tight control of the executed binaries, which protects you from untrusted code.

The big strength in the Java platform is that it includes an extensive set of standard
class libraries called application programming interfaces or APIs. These have a wide
user area, from graphical user interface (GUI) to cryptography and CORBA.

2.2 Java 2 Platform, Micro Edition (J2ME)

The Java platform, consisting of the Java language, Java Virtual Machine (JVM) and
Java APIs, is used over a wide range of computer hardware, everything from
smartcards to enterprise servers. Since the range is so wide Java comes in three
editions, see Figure 2-1. Java 2 Platform[JAVO02]:

* Java 2, Standard Edition (J2SE) is designed for desktop computers.

* Java 2, Enterprise Edition (J2EE) is a comprehensive platform for multi-user,
enterprise-wide applications.

* Java 2, Micro Edition (J2ME) is a set of technologies and specifications
developed for small devices like smart cards and mobile phones. J2ME uses

subsets of J2SE components, such as smaller virtual machines and leaner
APIs.

Evaluation of architectures for the development of secure mobile applications

-2.2-5-

Java 2
Enterprise =3
Edition 513??3}15 :
SN [T ava 2 Micro Edttion
i _ —SvaPlatorm _ o

Memonm 10ME 4 » IME SO0LE .4 s 10KE
Operating System: G4 bit 37 bt 16 hit B hil

Figure 2-1. Java 2 Platform

2.2.1 Overview of J2ME

J2ME spans over a great variety of devices which differ a lot from each other.
Therefore it would not be efficient to have software that supported all devices. J2ME
needs to be flexible to cope with the problems of different devices and hardware
configurations, the development of the technology for these devices and the range of
different applications. This leads to that J2ME was created as a collection of
technologies and specifications that are designed for different parts of the small
device market. It is designed to be modular and scalable and is therefore divided into

configurations and profiles. There is also an underlying layer consisting of a Java Virtual
Machine (JVM) [JAVO02][CMDO0].

The Java Virtual Machine supports a particular J2ME configuration and is
customized to fit a particular device [CMDOO)].

A configuration is a specification that defines the minimum Java libraries and JVM
features that a developer can expect to find on all the mobile devices implementing
the current configuration. A configuration, for example, might be designed for
devices that have less than 512 KB of memory and an intermittent network
connection. The set of APIs is customarily a subset of the J2SE APIs. To ensure
portability across the device range, configurations cannot contain any optional
features.

A profile is built on a configuration but adds more specific APIs to make a complete
environment for building applications for specific devices. While a configuration
describes a JVM and a basic set of APIs, it does not by itself specify enough details
to enable you to build complete applications. Profiles usually include APIs for
application life cycle, user interface, and persistent storage. Applications written for a
specific profile can be ported to any device that supports that profile [JAVO2].

The different configurations and profiles are produced by the Java Community
Process (JCP) by discussing and accepting different Java Specification Requests

Evaluation of architectures for the development of secure mobile applications

-2.2-6 -

(JSRs). The JSRs handle, among other things, new features to the configurations and
profiles.

There are many different configurations and profiles as shown in Figure 2-2. J2ME
tree. In the diagram, the finished specifications are shown with solid backgrounds,
while specifications that are still under development are shown with dashed
backgrounds. The corresponding JSR numbers are also shown.

62
&

2y -
0@549{‘ &
\ o
o 7 %,
%, &
KPS
9
______________________________________ B %o
~ JavaCard @ J2ME Personaljava

Figure 2-2. J2ME tree

The J2ME tree has two main branches Connected, Limited Device Configuration
and Connected Device Configuration as shown in Figure 2-2:

Connected, Limited Device Configuration (CLDC). This configuration is for
small wireless devices with intermittent network connections, like pagers, mobile
phones, and Personal Digital Assistants (PDAs). These devices have a memory
budget in the range of 160 kilobytes (KB) to 512 KB. Since this configuration is the
one that was used in the master thesis at SmartTrust, the focus will be on this one.
The CLDC includes a specification for a JVM that has been implemented by the K
Virtual Machine (KVM), developed by SUN. The requirements for the CLDC were
to find the lowest common denominator of Java technology so that it could be
applicable to many different mobile devices, and to guarantee the portability of
application code between different mobile devices. The size of the complete
implementation of CLDC (Java libraries and virtual machine) had to be smaller than
128 KB. The CLDC also specified that applications assumed to be able to run in as
little as 32 KB of Java heap space. The CLDC has focused on security in several
ways: Low-level-virtual machine security is achieved by requiring the downloaded
Java classes to pass a class file verification step, applications are protected from each
other by being run in a closed “sandbox” environment and classes in protected
system packages cannot be overridden by applications [CMDO00].

Evaluation of architectures for the development of secure mobile applications

-2.2-7 -

Connected Device Configuration (CDC). This configuration is for larger devices
(in terms of memory and processing power) with robust network connections. Set-
top boxes and internet appliances are good examples of CDC devices, although high-
end PDAs like the Sharp Zaurus also fit this configuration well. The Foundation
Profile extends CDC and serves as the basis for several other profiles. It provides
fundamental APIs gleaned from J2SE, including classes and interfaces from
java.lang, java.io, java.security, java.util, and more [JAVO02].

The first finished profile was the Mobile Information Device Profile (MIDP), which
is based on CLDC and thus is the first finished J2ME application environment.
MIDP-compliant devices are already available.

The world of the Java platform and small devices also includes Java Card, for smart
cards, and Personalfava. PersonalJava, an application environment based on JDK 1.1,
had an independent existence before J2ME was formulated. The Personal Profile will
bring Personaljava into the J2ME fold by making the next version of Personalfava a
CDC-based J2ME profile specification.

The software for a device usually consists of a configuration, a profile, and optional
APIs. For the J2ME mobile phones of today this is made up by the configuration
CLDC 1.0 and the profile MIDP 1.0 [JAVO02].

2.2.2 Advantages of Wireless Java

There are several reasons why the Java Platform works well with wireless
development. Here are the main qualities [JAVO02].

* The Java platform is safe. Since the Java binaries are executed in the JVM, it
can be controlled so that it does not do unauthorized actions.

* The Java language encourages robust programming; it handles allocation of
memory which decreases development time.

* The Java code has great portability. A single executable binary can run on
multiple devices. A MIDlet (a MIDP application) can run on any device that
implements the MIDP specification. Another advantage of the portability is
the ease of downloading applications to a device.

2.2.3 Loading a Java application into a Mobile device

To be able to download a Java application to the mobile phone, the phone needs to
have a Java application manager (JAM) that physically loads the midlet into the
phone. The MIDP profile loosely specifies that a manager that handles download
over a wireless connection, knows where to store the code and how to run it, is
required. A scenario of a download from a Web page (or WAP page) of an
application is the following:

The user selects the application from the Web page. A descriptor file, with
information about the application, is sent to the user. The application manager (in
the phone) checks if there is enough space left on the phone and that the version of
the application is not already stored. If the check is positive then the application
manager downloads the application and stores it in the phone. It is then ready to be
run by the user, see Figure 2-3[DAY01].

Evaluation of architectures for the development of secure mobile applications

-23-8-

Advertise User JAM
. Appon . Selects . Downloads
Web Page l App i App
Pum = Tom m Tom =
Choose a garme: Confirm:
Asteroids
b &
Backgammon Str‘:a.k aut
Battleship qame for: L
Black Jack i =1]
Breakout $2.95 Installing...
Missile
Web Page
(Name, Deschptor
Version, F"e” Network Transfer
Size,

)

Jar File

Figure 2-3. Download procedure of a Java application

2.3 SIM cards
2.3.1 Basics about SIM and Smart Cards in general

The type of smart card used by mobile operators in their customers cell phones is
called a SIM (Subscriber Identification Module) card. Smart cards are generally
divided into two groups’ memory cards and microprocessor cards [EFF99]. Since the
master thesis is only involved with SIM cards and those falls into the category of
microprocessor cards thus memory cards will not be considered in detail. They are
used to store data that can be read and written, typical usage areas are pre paid
telephone cards and health insurance cards.

A smart card is like a small “computer” with the possibilities to store and do 10
operations on data. So the basic building blocks are a microprocessor used for
processing and the memory that consists of EEPROM, ROM, RAM and FLASH
[JACO2Z]. Each card needs a power source either the card itself or usually a card
reader. If it is the card itself that supply the power there must be some form of
battery on the card. In Figure 2-4 there is an ordinary smart card configuration while
on a SIM card the plastic support usually is much smaller.

Evaluation of architectures for the development of secure mobile applications

-23-9-

@ ——— Mrinted Circwit
o Microconfroller

5 (L

Y Plostic Suchort

et Sty

Figure 2-4, the different parts of a smart card [JACO02].

Since the card needs an OS (Operating System) it is burnt into the ROM when the
card is manufactured. The EEPROM is the chip’s non-volatile storage i.e. it is left
there between uses of the card. Non-volatile storage can be used both for data and
code and it is read and written under the control of the OS [JACO02]. As mentioned
previously it is also possible to do 1O through a single register through which data
are transferred bit by bit. The RAM memory is used during a session and is not
available at the next session as EEPROM is.

Microprocessor cards are very flexible since they may either contain a program for a
highly tailored or predefined task and, on the other hand, they may have an OS
allowing several different programs and at the same time allow several different
application areas. The card OS may also allow updates and/or the installation of
additional programs after the card has been personalized i.e. handed out to the end
user.

The clock that the microprocessor on the card uses is not an internal generated clock
instead it is the card reader that provides a clock to the smart card. Most smart card
controllers allows the clock signal to be turned off when the CPU is in sleep mode to
save powet.

Security in ordinary smart cards

The main purpose of security regarding smart cards is to prevent unauthorized users
to gain access to read or write data on the card. One big advantage that smart cards
have compared to ordinary magnetic strip cards is that the PIN code is contained on
the card and is not sent on any communication channel that could be tapped
[JACO2].

To not allow unauthorized access, a hierarchical file system is used. At the top of the
file system is the master file MF. Below the master file there are elementary files
and/or dedicated files, see Figure 2-5. To get access to a file it is necessaty to pass
through the hierarchy since it is the parent file that knows the access rules of the
lower layer files. An elementary file can have no children instead it consists of a
header and the data stored while a dedicated file can be viewed upon as a directory.

Evaluation of architectures for the development of secure mobile applications

-2.3-10 -

Waster file
{WF)
Elamantary
file |IEF)
EF
Dedicated EF
file iDF)
EF
EF
OF
EF
EF

Figure 2-5 The hierarchical file system of a smart card [JACO02].

The way data are managed inside a file depends on the OS of the card e.g. it may just
use offset and length or use a fixed or variable length of records as GSM do. To be
able to use a file it must be opened or as it is called selected. When the power is
turned on the master file is automatically selected there from it is possible to descend
and later ascend in the file structure [JACO2].

The header of the elementary file specifies both status of the file as well as the
particular access conditions or requirements of the file in question. The fundamental
idea is to use PIN codes to verify access to a particular file. Depending on operating
systems different levels of access control can be used. More fine grained solutions
exists but these are the basic levels:

* Always file can always be accessed.

* Card holder verification 1 (CHVT1), access only if valid CHV1 value is
presented.

* Card holder verification 2 (CHV2), access only if valid CHV2 value is
presented.

* Administrative these files are under the control by the one who has the
administrative authority over the card.

* Never, access to the file is forbidden.

The PIN codes are usually stored in separate elementary files and if to many tries
with the wrong PIN code are done the card will be blocked and can only be
unblocked with the special unblock code. If the wrong unblock code is presented to
many times the whole card will be blocked and thus useless.

Similar to ordinary computers the main flaw is the programs constructed to run on
the smart card, since those can lead to weakened security, deadlocks etc. [JACO2]

Evaluation of architectures for the development of secure mobile applications

-2.3-11 -

GSM traffic is encrypted but there are still many ways to tap GSM traffic due to this
some secure method is needed if a high degree of security is wanted. There are
different methods e.g. some military officials as well as government officials uses
GSM phones that scrambles the conversation when they talk about sensitive matters
[UST02] or it could be done in a way so that only the most sensitive information is
encrypted such as VISA numbers used for authentication etc.

There are a lot of different attacks available when trying to hack smart cards. Most of
them will not be considered in the thesis since they are on a hardware level e.g.
expose the smart card to abnormal voltage, since it has been shown that the random
generator for cryptographic keys get almost all 1s [JACO02].

2.3.2 Java enabled Smart Cards

One of the greatest benefits with Java enabled Cards is that the OO design and
JCVM let the applets to be encapsulated much easier than it was when smart cards
were programmed in C or assembly. Because when cards were programmed in C or
Assembly security consideration was needed to take the whole application into
account, while Java Card can encapsulate data so only those that should have access
can have it. Java Card applications cannot interfere with each other unless they
explicitly want to and thus leading to code that is easier to understand and maintain

[JCSO1].

Java enabled smart cards are used to run J2ME (Java Micro Edition) applets. Since
the capacity of a smart card is much less than that of a workstation the smart card
only supports a subset of the usual features. In the Table 2-1 some differences are
noted. Programs that are run at a smart card are called applets since they can be
downloaded and run after the card has reached the end user with similarities to an
applet on a website while for example many embedded J2ME systems does not have
this feature of dynamic loading of programs [CHEOO].

Evaluation of architectures for the development of secure mobile applications

-23-12 -

Table 2-1 Supported and unsupported Java features

Supported Java features

Unsupported Java features

* Small primitive data

boolean, byte, short

* One dimensional arrays

types:

* Java packages, classes, interfaces

e Large primitive data types:

long, double, float
* Characters and strings

* Multidimensional arrays

and exceptions
* Dynamic class loading
* Java object-oriented features:
inheritance, virtual methods,
overloading and dynamic object

* Security manager

creation, access scope and binding * Garbage collection and
rules. finalization
* The int keyword and 32 bit * Threads

integer data type support are

optional. * Object serialization

* Object cloning

The “ordinary” JVM has in JCVM (Java Card Virtual Machine) been split into two
parts one that runs off card and one that run on the card. Tasks that are not required
to execute at runtime will be run at the workstation before deployment of the applet
at the smart card [CHEOO] e.g. optimisation, resolution and linkage are not required
to run during execution. Off the card the converter is also run, which loads and
preprocessces the class files that make up a Java package and then outputs a CAP
Converted Applet File. The CAP file is then loaded on to the smart card and
executed by the interpreter that resides on the card. How the CAP file is used see
both the Figure 2-6 and the following paragraph.

off-card VM on-card VM

-

class
files

converter interpreter

CAP
file

L7

Figure 2-6, show the separation of the JCVM into on-card on off-card parts [CHEO00].

The Java Card Runtime Environment (JCRE) consists of framework classes (APIs),
industry extensions e.g. required for financial purposes, an installer used to install
CAP files on the card (even after the card has reached the end user), system classes
responsible for resource management, network communications etc, on the bottom

Evaluation of architectures for the development of secure mobile applications

-23-13 -

closest to the hardware and the native system is where the JCVM resides together
with native methods [CHEOQ] for a closer layout of the layers see Figure 2-7. Tasks
for the JCVM are to execute bytecode, control memory allocation, manage objects
and enforce the runtime security i.e. on-card system and applet security.

Applets loyalty wallet Authentication
applet applet applet

JCRE
framework industry-specific it
classes (APls) extensions
system classes
applet transaction IO network other
management management communication services

Java Card virtual machine

(bytecode interpreter) native mathods

smart card hardware and native system

Figure 2-7, the layers of the JCRE [CHEO00].

On a workstation the JVM is started as an ordinary process and ends when the
process is killed, while on the smart card the JCVM is initialised when the card is
created and does not “stop” until the card is discarded. To preserve information
when the card does not have any power supply non-volatile memory (EEPROM) is
used. It is also there that objects are created, which should be persistent between
sessions. When the power supply is removed the JCVM simply suspends and when
the power later comes back on the JCVM continues, but not where it last stopped
instead it starts over with the main loop. If there are some transactions that have not
been completed the JCVM performs some clean up to come into a consistent state.
The difference between being started again and initialisation is that objects have been
created and stored on persistent memory.

When a smart card is inserted into a CAD (Card Accepting Device) it accepts APDU
(Application protocol data units) commands, which are data packets exchanged
between an applet and the host application (program at the card reader). At the time
when the JCRE starts up it waits for an APDU command (e.g. withdraw money if
there is a wallet applet on the card) that either states in the command which applet to
run otherwise the APDU command is forwarded to the currently selected applet.
The applet that receives the APDU processes the command and may send back an
APDU to the host application and then gives back control to JCRE. This process
continues when the next APDU command arrives. APDUs are sent between the card
and the CAD using the serial communication interface on the card.

Besides the usual JRE the JCRE has support for three additional features:

Evaluation of architectures for the development of secure mobile applications

-2.3-14 -

* DPersistent and transient objects. The default is that objects are created in
persistent memory and are available between sessions. For security reasons
transient objects can instead be created in RAM memory i.e. objects are only
available during and not between sessions [CHEOQO].

* Atomic operations and transactions. JCVM ensures that all write
operations are performed atomically i.e. either the value gets written or the
old value remains. The API also has support for transactions where either all
values get written or none of them.

* Applet firewall and the sharing mechanism. The firewall isolates applets
so that each applet runs inside a designated space. Since the applet is running
in a designated space the existence and execution does not have any effect on
other applets. When applets need to share information or use JCRE
resources it is the JCVM that permits such functions through secure sharing
mechanism see the section Applet Firewall and Object Sharing for more
information.

The Java API used on smart cards has also been largely reduced, but has instead
gotten some special card extensions e.g. has the API for IO, communication and
GUI been removed [JACO02Z]. The extensions added instead are:

* javacard.framework, the core package which defines classes such as Applet,
PIN, APDU, System and Util that are fundamental building blocks as well
providing runtime and system service.

* javacardx.framework, the package provides an object-oriented design for an
ISO 7816-4 compatible file system. It supports elementary files (EF),
dedicated files (DF) and file-oriented APDUs as specified in ISO7816, see
previous section about security in smart cards for more information.

* javacardx.crypto and javacardx.security, these support cryptography that
is required in smart cards, but they only define API interfaces and not class
implementations. Instead it is up to the provider of the JCRE to subclass
them and provide a suitable implementation, due to US export regulations
regarding cryptography [CHE0O].

In regular Java programs packages and programs are uniquely identified using a string
and a naming scheme like the one on the Internet, while applets on smart cards are
identified using an application identifier (AID) consisting of two parts: a resource 1D
RID and a proprietary identifier extension PIX. The RID which is the same both for
the package and the Applet should be 5-byte large and the PIX can vary in size from
0 to 11 bytes, but no two AIDs can be the same since it should uniquely identify a
resource [CHEOQ].

There is some difference between applets that can be downloaded to the
card and applets that are burned into the ROM during manufacture, this since ROM
applets are allowed to define/call native methods while non ROM applets are not
allowed this. Native methods are not controlled by the JCVM and thus could they be
a security hazard. There is also something called preissuance applets i.e. applets that
are downloaded to EEPROM before the card reaches the end user and these applets

Evaluation of architectures for the development of secure mobile applications

-2.3-15-

are treated the same way as ROM applets. Applets that later are downloaded by the
cardholder are not allowed to declare native methods since the JCVM can’t control
native code [CHEOO].

To load an applet after the card has reached an end user a sequence of APDU
(Application Protocol Data Unit) commands are sent to the card, the commands
were previously created by the off card installer from the CAP file. At the time when
the on card installer receives the APDU commands it writes the contents i.e. the
CAP file to EEPROM and links the classes in the CAP file with classes on the card if
necessary. If several packages are required the same procedure is repeated. As a last
step an instance of the applet is created by a call to the i nstal | method:

public static void install(byte[] bArray, short offset, byte
| engt h)

The install method is mandatory in the applet and has some similarities with the main
method in an ordinary Java program inside the install method the constructor should
be called to instantiate the applet. Both the installation parameters and their format
are decided by the developer of the applet and sent together with the CAP file.
Installation must be certain to only reference packages already installed at the card i.e.
circular reference are not possible e.g. if package A reference package B then package
B must be installed first and are not allowed to reference package A.

After the applet has been both initialised and registered together with it is AID at the
JCRE (Java Card Runtime Environment) then it is possible to select the applet and
run it.

If the installation fails due to some reason e.g. out of memory, card is removed from
card reader etc. the installation is aborted and then it performs a clean up by
reclaiming memory, remove any instances created i.e. it gets back to a consistent state
before the installation [CHEOO].

Applet Firewall and Object Sharing

Because it is common with sensitive information on smart cards such as electronic
money, private cryptographic keys etc. it is essential that applets that should not
share data with each other cannot do so. To accomplish this with separation of data
something called an Applet Firewall is used i.e. each applet is assigned a designated
space and it cannot do anything outside that space. But if applets really need to share
data or to use something like e.g. a phone book then it can be done through a secure
interface.

The applet firewall protects against the most common security hazards such as lack
in design and programming as well as hacking, since if an other applet gets a
reference to data owned by an other package the applet can not read the data unless
the other package explicitly has granted access to the data item [CHEOO].

To achieve the above named security the applet firewall divides up the space into
different contexts. Access is only allowed within a context and not between contexts.
When an applet is instantiated it becomes a member of a context, see Figure 2-8 for
an example of division into contexts. All instances within the same package share
context and thus can read each other’s data and interact directly with each other, but

Evaluation of architectures for the development of secure mobile applications

-2.3-16 -

not with anyone outside the context (package). The JCRE is also assigned a context
and from the JCRE context all other contexts can be reached but the controversy is
not true i.e. an applet cannot access the JCRE context.

system space

JCRE context

applet space

group context

applet

context
applet

context

group context

applet
context

package B

package A

applet firewall

Figure 2-8, the use of the applet firewall and the division into different contexts [CHEO00].

At any time there is only one active context i.e. the one executing either the JCRE or
the context of an applet. When a new object is created it is assigned an owning
context which is the currently active context. Primitive type static arrays are created
and initialised by the converter before they are downloaded to the card and as such
they are accessible by everyone in the package i.e. the owning context is the package.

When an object is accessed an access control is performed to see e.g. that not a
private method is called from a public context and it is also here that is controlled
that the applet accessing the object is allowed to access the object from the context it
is executing in, otherwise a Secur i t yExcepti on is thrown [CHEOO].

Since only instances are owned by a context and not classes, static fields are
accessible by everyone, but the objects (including arrays) referenced belongs to a
context and in addition to that ordinary rules applies such as if it is a private field
only instances of the class may access the field. When a static method is called it
keeps executing in the caller’s context and thus all objects created become members
of that context and all access controls are made with respect to the callers context.

To be able to share between contexts in a secure manner the basic idea is to use a
context switch i.e. a applet calls the JCRE and the context switches to JCRE, since
JCRE has special privileges it is possible to access any data item. A couple of
different methods are used to achieve this context switch: JCRE privileges, JCRE
entry point objects, global arrays and shareable interfaces and they are described in
more details in the following paragraphs.

JCRE privileges, e.g. when JCRE receives an APDU command it calls the currently
selected applet’s sel ect, desel ct or process method and the context changes to
the applets context and all objects created belongs to the same context as the applet.

Evaluation of architectures for the development of secure mobile applications

-2.3-17 -

Then the applet returns from the method and context is switched back to JCRE,
sometimes several context switches are made since they can be nested.

JCRE entry point objects, to able to offer services that are accessible for everyone
JCRE entry points are used, they are objects with public methods belonging to the
JCRE context and that are possible to call from another context besides the JCRE
context. When an entry point method is called there is a context change to the JCRE
context, which performs the service before switching back to the callers context.
Fields of the objects are still protected by the applet firewall i.e. only the public
methods are accessible outside the JCRE context not any data. There are two types
of JCRE entry point objects temporary and permanent objects. Temporary objects
are not possible to store a reference to since they have special protection to prevent
unauthorized reuse. Typical objects are the APDU and all JCRE-owned exceptions
objects. On the other hand permanent objects are possible to store e.g. AID
instances that are created at the same time as the applet.

Global arrays must be of a primitive type and can be viewed upon as a global
memory buffer and they must also be a temporary JCRE entry point object and thus
their references cannot be saved. There are a couple of global arrays that must exist
e.g. the APDU buffer, which is cleared before a new APDU command is received or
when an applet is selected to avoid leaking of sensitive information [CHEOO]. Since
there are no threads no consideration to synchronization to access of the buffer is
needed.

Shareable interface is an interface that is somewhat similar to the RMI (Remote
Method Invocation) in the case that both their implementations are empty and they
need to be extended. The shareable interface defines a couple of methods that are
accessible from a different context. A class that implements a subclass of the
shareable interface is called a SIO (Shareable Interface Object). When executing in
the context of the SIO it behaves like every other object, but when executing in an
other context the SIO’s methods declared in the shareable interface are accessible but
not any other fields. Thus a shareable interface is a secure way to give access to some
public methods defined in the shareable interface everything else is protected by the
applet firewall. As described in the picture below: first the client applet request a SIO
from the JCRE by providing a AID (unique identifier) number 1, then the JCRE
invokes the servers method to retrieve the SIO number 2. When the servers get
method is called the server is given the client’s AID as a parameter and can based on
that decide whether to grant service or not. After JCRE receives the SIO from the
server number 3, then the JCRE sends the SIO to the calling client number 4. If
cither the server does not grant the SIO or if JCRE cannot find the AID null is
returned to the calling applet. Since the client applet could give the SIO away to an
other applet, a challenge may be needed in each public method at the server to verify
that the applet’s method call is allowed. A challenge could be that server sends a
phrase to the client to encrypt and then check that it was encrypted correctly

Evaluation of architectures for the development of secure mobile applications

-2.3-18 -

1

@ JCRE
JCSystem. Applet.
getAppletShareablel n'[erfacet}b\je/(getShareableInterfaceObject
Rl
< ®
\

LY ”
return an SIO (or null) : return an SI10 (or null) @
© | O,

1
invoke a shareable interface method
L

=
I .’
return from the method
|
1

applet firewall

client applet server applet

Figure 2-9, the use of SIOs [CHEO00].

In the JCRE return values cannot be used in the same manner as in ordinary JREs,
since the applet firewall may throw a Securi tyExcepti on e.g. if a SIO has returned
a reference to an object in its context to the calling client and the object returned is
not a SIO and used then the applet firewall will throw an exception. Thus the
ordinary firewall rules apply to return values and only primitive values, static fields,
JCRE entry point objects, global arrays and SIOs can safely be used as return
parameters between contexts.

To avoid performance loss excessive contexts switches should be avoided and to
reduce the amount of stack space used also a deep nesting of context switches should

be avoided.
SIM Toolkit Applets

A mobile phone using a Java enabled SIM card does not need to know anything
about Java. The interface seen by the phone is that of just an ordinary SIM card. All
communication between the phone and the Java enabled SIM card is done using the
exchange of APDUs as all SIM cards do. There are two types of applets that can be
installed on Java enabled SIM cards, “ordinary” applets and SIM Toolkit applets. The
difference between a SIM Toolkit Applet (STK Applet) is that a STK applet has the
possibility to issue proactive commands e.g. display text on the ME device screen or
ask the user to input something. A STK applet also has the possibility to construct
it’s own menu item that will appear on the ME device and the possibility to register
for toolkit events e.g. listen to SMs.

To be able to handle proactive commands a small extension to the Java Card API has
been made by ETSI and thus providing some special classes used in Java enabled

SIM cards. On Java enabled SIM cards there is a GSM applet that manages all STK
applets and also the communication with the actual phone using APDUs.

All STK applets must be installed with an AID of 16 bytes where the bytes 13, 14, 15
is the TAR value for the installed applet. The TAR value can be used to listen for
SMs that are sent specifically to a certain applet on the phone, e.g. in a wireless wallet
applet a SM could be sent to the phone that a deposit has been made then the applet
has the possibility to deposit that amount to the balance stored on the SIM card. The

Evaluation of architectures for the development of secure mobile applications

-2.3-19 -

TAR (Target Application Value) value indicates to which application the data is sent
its similar to a port in the IP world.

2.3.3 Wireless Internet Browser WIB SIM card

The WIB (Wireless Internet Browser), stored locally on the handset’s SIM card, allow
users to navigate simple menu-driven services and interact with mobile e-services
delivered by the mobile operator via a Delivery Platform using simple SMS as the

communication channel.

The WIB is an open specification done by SmartTrust. Over 20 different SIM card
manufacturers have implemented the WIB and there are over 25 million SIM cards at
end users [STWO2]. To use the WIB there is no need for a WIG too see Figure 2-10,
but without a WIG (Wireless Internet Gateway) only simple text based services could
be offered e.g. retrieve the balance on a pre paid card. The job of the WIG is either
to support requests form the user or to push data to the user.

Wireless Internet Gateway (WIG)

N

| Reguest
lill

Messaging WIG Server
Platform

Mobile
E¢quipment
phase 2+

SIM Toolkit | .
GSM 11,14 :
SIM Security Client

Application Web
Server Server

Sl
Application
Toolkit

E

Byte code WAL

®Sanera SmartTmst Lid.

Figure 2-10, the interaction between the WIB on the SIM and the WIG server.

To develop a service, a subset of WML is used, when the WML page arrives at the
WIG server it is encoded into a compressed bytecode that is understood by the WIB
and is sent to the WIB through the SMS channel. As the bytecode arrives at the WIB
it transforms it into SIM toolkit commands that almost all mobile phones understand
since the last 2.5 years (2002). SIM toolkit is an ETSI/SMGE standard for GSM
phones and it enables the SIM card to drive the handset e.g. a bill service like the one
that was offered by Telia and Postgirot in Sweden [CELO2]:

1. A PIN code is needed to start the application.

Evaluation of architectures for the development of secure mobile applications

-2.3-20 -
2. Enter the postgirot account number, date and amount.
3. The SIM card packages this information into a SMS.

4. If the user wishes he/she might add a comment to recognize the payment in
the future.

5. The card calculates an electronic signature.

6. The SMS is sent to Telias SMSC (Short Messsage Service Central) and is later
processed by Postgirot’s SmartSec system.

7. Once the bill has been processed, an acknowledgement is sent to the user.

Since SMS is used as a transport channel there can be quite large delays for the end
user. The amount of data available in an SMS is around 120 bytes depending on the
security level. If there is a large WML page that should be sent to the WIB several
SMs can be used, but there is an upper limit usually around 5. When several SMs are
used to send a single WML page the user experiences larger delays e.g. when around
5 SMs are used it can take as much as 25 seconds before the user’s request has been
answered [WAGO2]. There is also a restriction in the WIB (depends on SIM vendor)
that it is only able to send around two consecutive SMs with a payload of about 120
bytes.

The application at the handset can either be residing on the SIM card or fetched
from the Internet and it is also possible for the operator to add, update and remove
different services from the SIM over the ait.

The WIB also specifies a plug-in interface, which can be used to call a plug-in from a
WML page or provide additional features such as cryptography and file and data
management. Plug-ins are useful for operators to add functionality that are not
available in the WIB.

2.3.4 SIM WIB with Java Plug-In

WIB with Java plug-ins is a combination of two techniques i.e. Java Cards and the
ordinary WIB, since in this implementation the WIB is implemented as an applet
residing on the Java enabled SIM card.

Applets on Java Cards can access functionality from each other through the shareable
mechanism, which allow access through the firewall that normally exists between the
card applets. Figure 2-11 shows an example of an implementation of the Shareable
interface, with WIBPluginInterface as the interface extending the Shareable interface.
WIBPluginInterface contains the method doAction() that is accessible by other
applets. The class WirelessWallet extends the JavaCard Applet and implements the
interface WIBPluginInterface. By doing this it becomes an applet that can be
accessed by the method doAction(). 1f another applet wants to access the
WirelessWallet applet it calls the static method getAppletSharablelnterface(AID, byte) with
the AID value corresponding to WirelessWallet, on the
javacard.framework.]JCSystem. This method returns an object defined by the
Shareable interface. Since it is known what interface to expect it is just to cast it to
WIBPluginInterface and then use the method doAction().

Evaluation of architectures for the development of secure mobile applications

-23-21-

<< Interface==

Shareahle Applet
extends exterds
<< Imterface>> | . implements | yFirelessWallet
WIEPluginInterface
dodction() dodction()

Figure 2-11. Implementation of the Shareable interface

2.3.5 Over The Air (OTA) overview

OTA is the procedure to do something on a SIM card that has been handed to the
end user e.g. to add functionality through the download of an application to the SIM
card or maybe to start an application that already is residing on the SIM card. OTA
means that data messages are sent from the network to the mobile device to access
data or start an application on the SIM card i.e. it is performed “over the air”. ESMS
(Enhance Short Messages Service) can be used for GSM file administration
commands, application management, resident application triggering [G+02].

Since the things that you can do with OTA and ESMS requires some form of
security the requirements that has to be fulfilled could be summarized as in Table
2-2.

Table 2-2 Security mechanisms in OTA [G+02]

Requirement GSM 03.48 Mechanisms
Authentication Cryptographic checksum
Message integtity Redundancy checksum

Replay detection and sequence integrity Counter

Proof of receipt and execution Acknowledgement

Message confidentially Encryption

Checksums are used to count the number of bits in a transmission so that the
recipient can make sure that the correct number of bits have been received and are
intact. All these “features” are not necessarily used instead there are some bits in the
SM header that indicates whether cryptographic checksum and so forth are used. The

Evaluation of architectures for the development of secure mobile applications

-23-22 -

type of redundancy checksum used is XOR, while the crypto checksum is DES-
3DES but digital signature is not implemented.

When an ESMS is sent to the SIM there is a TAR (Target Application Value) value
that indicates to which application the data is destined for its similar to a port in the
IP world. The process of sending data to or alter the existing data on the SIM card is
controlled by the mobile operator owning the SIM.

Evaluation of architectures for the development of secure mobile applications

-3.1-23 -

3 Development and evaluation

The main idea with the evaluation was to have a typical application and to develop
this example application in all of the different technologies and to use it as a
“framework” for the evaluation and benchmarking.

The example application is described in section 3.7 Application and the evaluation it-
self is in sections 3.2 WIB evaluation, 3.3 Java Card evalnation, 3.4 Java in the Phone and
3.5 WIB with Java Plug-In evaluation.

3.1 Application

Throughout the evaluation of the different architectures the idea is to develop and
use the same type of application. One suitable application for this is an application
that requires some security and at the same time a bit of processing to be able to see
how the architectures are compared to each other.

The application chosen is a pay service (wireless wallet) for micro payments (a small
amount per transaction), since it is concerning micro payments e.g. a scheme with a
VISA card could not be used due to the fact that it costs too much for each
transaction. Instead a scheme similar to cash cards were decided to be used. With the
cash card scheme there is a rather low cost for each payment so it is suitable to use
even for small payments.

3.1.1 Basic Requirements

The functionality that is desired from the application should be that of a wireless
wallet. The functionality selected is:

* One should be able to withdraw money from an account connected to the
cell phone.

* There should be an identification of the user so money is withdrawn from
the correct wallet.

* The wallet should inform the requesting party somehow that money has been
withdrawn.

* The information sent by the application may be encrypted or in some way
secured.

3.1.2 Use Case examples

The idea is to have a wallet that “applications” can take money from and that the
transaction are cleared/signed by the owner of the wallet. These use cases desctibed
below are some ideas of how the wallet could work.

Evaluation of architectures for the development of secure mobile applications

-3.1-24 -
Get a stock analysis

The user has a stock analysis application stored on the SIM and wishes to view a
certain analysis. A request for the analysis is sent to the content provider, which
pushes the analysis to the user as soon as payment has been verified.

In the WIB case the following happens when the user requests the stock analysis: a
signing request, containing information about the amount to pay and its purpose, is
sent from the bank server to the user. If the user wants to pay, he/she signs the
request so that information about the signing is sent back to the server that verifies
the signature. Once the “bill” has been paid the user will receive a SM containing the
analysis.

If a Java enabled SIM card is used and the user requests a stock analysis the stock
analysis applet will activate the wireless wallet applet, which verifies that the user has
a sufficient balance. If there is enough money in the wallet the applet request a PIN
from the user before it executes the transaction. When the transaction is completed
information is sent from the wireless wallet applet to a bank server so that money
could be transferred to the content provider. The wireless wallet applet also informs
the stock analysis applet that money has been withdrawn and then it is up to the
stock analysis applet to request the analysis from the content provider.

In the WIB Java plug-in case the user will, after trying to access the restricted page,
receive a page that activates the Java plug-in at the Java Card. The plug-in will check
in some money file, or similar, to see that the user has sufficient balance and will then
request a PIN from the user before it executes the transaction. If the transaction is
completed, information is sent back to the server. The user can then view the
restricted page.

Open up a level in a game

The user has a game that he/she has previously downloaded to the phone and now
wishes to open up a new level.

In the case of Java Card the user selects the option in the game that says upgrade or
something similar. This will activate the wireless wallet applet at the Java Card that
begins to see that the user has sufficient balance and will then request a PIN from
the user before it executes the transaction. If the transaction is completed
information is sent to a bank server so that money could be transferred to the
content provider. The wireless wallet also communicates with the game so that the
user will get access to the new level.

In case of Java in cell phone the user will select the upgrade option in the game
applet and will then be asked to enter username and signing PIN. The username and
signing PIN will then be sent to some server (game or bank) for verification. The
server checks to see that username and signing PIN are valid and the uset’s
credibility is sufficient. Information about the result is sent back to the applet. If the
verification was successful the new level will be opened for the user.

Evaluation of architectures for the development of secure mobile applications

-3.1-25-

3.1.3 Limitations

To avoid the problem that the implementation of the application becomes too large,
from a development perspective, the focus will be on the mobile device and the
connection between it and a server. On the server side a “black box™ technique will
be used in some cases, i.e. an application on the server side may not be fully
implemented, e.g. money transactions between the wallet and the requesting party
will not really take place. Instead some kind of notification will be implemented so
the requesting party is notified that money has been withdrawn.

3.1.4 Security

To protect the data sent between the server and the client some kind of encryption
of the data should be used. One of the most common algorithms is DES (data
encryption standards) that is a symmetric crypto algorithm i.e. the same secret keys is
used both to encrypt and decrypt. DES is also a block cipher algorithm i.e. output
has the same size as the input. An evolvement of single DES is triple DES.

To encrypt a message with triple DES the following is performed C=E,;/D,,/E,,/P]]]
where E,, is the key used for encryption and D,, means that the decryption scheme is
used and P being the plain text. The idea by using the decryption scheme is that it
allows users to decrypt data that was encrypted with single DES. The methods used
when trying to break crypto algorithms are brute force and statistical analysis and in
1998 a DES cracker was showed, which could crack single DES in less than three
days. To day it would probably be even faster and cheaper [STAO00]. [STAO0] is also a
good starting point for an introduction into the areas message authentication,
message integrity and encryption.

When it comes to security in the GSM world there is always a basic security since
03.48, the GSM standard, encrypts traffic. It is not especially safe but at the same
time not any ordinary person could decrypt it, but it would be possible if someone
enough educated wanted to. For further details regarding the security features on the
GSM layer see 2.3.5 Over The Air (OT.A) overview or look into the specifications
available from ETSI (European Telecommunications Standards Institute).

3.1.5 Evaluation technique

The idea is to have the wireless wallet as a framework for the evaluation, i.e. all
technologies will be evaluated with this common denominator and thus evaluating
the difference in communication, security features, performance, development
environment and learning threshold.

Communication. Here the following aspects will be considered: the architecture’s
need for communication, set-up time for the communication channel and how the
communication medium responds to different amounts of data.

Security features. Some of the architectures support encryption, message integtity

and message authentication directly “inside” the architecture, while with others it has
to be implemented itself, thus these factors will be considered.

Evaluation of architectures for the development of secure mobile applications

-3.2-26 -

Performance. Since there is a rather big difference between the different
architectures the performance regarding encryption as well as communication will be
looked upon.

Development environment. There will probably be a significant difference between
the architectures, since some offer little choice to the developer while others offer a
lot of different tools. This is also one of the most important factors, it is what the
developer will experience every day.

Learning threshold is also a very important aspect, since training might cost a lot
and thus it takes time until the developer is productive.

3.2 WIB evaluation
3.2.1 Application design

The main idea with the design is to have some form of pay service (wireless wallet)
available from the cellular phone. The actual account that resides at a web server is
here after commonly called wallet server, wallet or bank. Responsibilities of the bank
are to first accept incoming bills from different sources e.g. a content provider on the
Internet. Secondly once the bill arrives from the issuer (e.g. the content provider) to
send a payment request to the one that should pay it accordingly to the issuer. Finally
once a bill comes back to the bank from the one that should pay it. The bill is
verified and the issuer of the bill is informed so that he/she can take an appropriate
action.

The process described in Figure 3-1 is where a user requests some restricted
information needed to pay for from a content provider and steps taken to perform
the whole transaction. If a user chooses not to pay for a bill request sent to his/her
phone she simply discards the requests and the processing is stopped at number 3 in
Figure 3-1 ie. nothing is sent back to the wallet server. Either some form of
mechanism should be used to flush bills that have been pending too long or to let the
user choose among issued bills to pay.

Evaluation of architectures for the development of secure mobile applications

-3.2-27 -

‘ 2. Content provider sends >
Content a bill to the "bank". Wallet
Provider Server 5. When the bill has been signed ‘ Server

<t

the issuer is notified.

A

6. Requested information is
pushed as a WML page .)
once the content provider is 4. Signed bill

notified of payment. \ sent.back
WIB 3. Once bill arrives it 's pushed
1. User requests some Phone to the user to be signed.
information needed to pay for. J

Figure 3-1 The process when a restricted page is requested and paid for.

The solution chosen is not just limited for initiation by a phone you could easily
think of other scenarios where the initiation is done through some other means e.g. a
browser on a desktop computer or a candy machine where they connect to the wallet
server over the Internet. Then the wallet server sends a bill request to the phone.
Once the bill has been paid then the issuer e.g. the candy machine is informed of the
payment and it releases the candy.

A bill is identified through a unique identifier created by the content provider
according to a scheme like time@contentprovider the same identifier is then used
throughout the lifetime of the bill. Each user has an account at the wallet server that
is identified through the user’s MSISDN (Mobile Subscriber International ISDN
number, i.e. phone number) in addition to the account number (MSISDN) there is a
balance and a PIN code, which must be given by the user when he/she wants to pay
a bill.

How do the content provider know which bank to send the bill to? Here a couple of
different schemes are possible. Easiest to implement is to let the user inform the
content provider either as he/she register for the service which bank to use or just
send the bank to use as a parameter to the content provider in the first step in Figure
3-1.

As the bill is sent to the wallet server it is sent together with a MSISDN of the one to
pay the bill and a unique identifier for the bill. As the wallet server has received the
payment, it notifies the content provider about which unique bill that has been paid
so the content provider can take the appropriate action.

So the information to be sent to the user is the unique identifier of the bill along with
a description so that he/she knows what to pay for. Then if the user chooses to pay
the bill he/she types in their PIN that is sent back to the wallet server together with a

Evaluation of architectures for the development of secure mobile applications

-3.2-28 -

unique identifier of the bill. A user might have a couple of different bills to pay the
unique identifier is used so the server knows which bill that is to be paid, Figure 3-1.

For each transaction the balance and password are checked before money are
withdrawn and information about bill payment are sent to the issuer of the bill.

3.2.2 Security design

There is both a plain text version of the stock analysis application and one version,
which use encryption for the essential data parts, password and the unique identifier
of the bill, with the communication between the phone and the wallet server.

Encryption used between the WIB and the Wallet server is 3DES see 3.7.4 Security or
[STAO0] for further details.

When the bill arrives at the WIB phone it sends it’s password encrypted to the
server, which decrypts it and checks whether the password and the user ID matches.
If the password and the user ID were matched money are withdrawn and the issuer
of the bill is informed of the payment.

The encryption and decryption on the server side is done by using a SmartTrust
product known as the security center. To encrypt or decrypt something a TCP
connection to the security center is set up and the type of request (enctypt/dectypt),
MSISDN and data to be encrypted/decrypted are sent over the connection once the
request has been performed the data is sent back. Since the encryption/decryption is
done in both ends of the connection it is possible to have a secure end-to-end
connection without plain text in any intermediate place.

In addition to the security offered by the GSM layer see 2.3.5 Over The Air (OTA)
overvie, the WIB offers extra security by giving the possibility to sign or encrypt the
information using P7, 3DES, etc, and thus providing a very good security as long as
the handling of the keys is done securely.

One commonly used method to find a specific key is that the SIM card manufacturer
uses a special scheme when manufacturing a batch of SIM cards. For each batch the
specific key can be derived from the MSISDN using a master key ie. to find the
specific key for a SIM card an algorithm is used that uses the MSISDN and the
master key to calculate that SIM card’s key.

3.2.3 Implementation and limitations

In a real world implementation, money really has to flow to the content provider e.g.
that the wallet server constantly transfers money for each transaction to the content
provider’s account or once in a while a bigger amount. This has not been
implemented in any way. But all bills that have been paid are stored in a database so
it could later be possible to do an extension that actually transfers money between
different accounts.

The implementation has been done in a way so that both the content provider server
and the wallet server are run on the same web server and the communication
between them is done through direct references, but it would be rather easy to

Evaluation of architectures for the development of secure mobile applications

-3.2-29 -

implement some form of Inter Process Communication between them. This
communication between the content provider’s server and the wallet server have
been done simple and without any form of encryption, since the focus of the thesis
rather lies on the communication from the phone to the bank. Communication
between the wallet server and the content provider could be done in a number of
more or less secure ways e.g. SSI, IPSec and other systems that are commonly used
for secure communication over the Internet. Here a consideration must be done of
what level of security that is needed and then do an investigation of the available
techniques and choose a suitable one.

3.2.4 Evaluation

Stock analysis program used for the case study and evaluation.

For the evaluation of the wireless wallet an example program in the form of a stock
analysis program was developed. The stock analysis program could also work for the
analogy of paying for information and in this case paying for the analysis of a stock
or a restricted page.

In the prototype application a WML page containing the stock analysis program is
stored on the SIM card in byte code format according to the WIB specification.
Since the WML page is stored on the WIB SIM card it appears on the phone as a
menu item. Once the user selects the stock application on the phone he/she can
choose to either request an analysis of Ericsson, Nokia or search for any other stock
that the content provider offers an analysis of. After a stock has been chosen the user
selects whether to use plain text or 3DES in the communication with the bank.

If the user chooses the stock analysis item on the phones menu and then e.g. an
analysis of Ericsson the WML page stored on the SIM sends a request together with
a parameter of which stock analysis he/she requested to a JSP page located at the
content provider. The location of the JSP page was given at install time of the
application on the SIM card.

As can be seen from Figure 3-2 all communication with the WIB phone goes
through the WIG server before connecting to either the content provider or the
wallet at the web server.

It could be said that both the content provider and web server essentially is built up
of a couple of JSP pages, Java Classes and a database for the paid and unpaid bills.

At the time the content provider has issued the bill and informed the wallet server of
the new bill. The wallet server knows which MSISDN to push the payment request
to. A push is accomplished by connecting to a WIG server, which listens for push
requests on a certain port. See Figure 3-2 for how the communication between the
different parts is made.

As the pushed bill arrives at the user, he/she sends it back together with his/hers
encrypted password and unique identifier. When the bill arrives at the wallet server a
connection to the security center is set up, but the communication with the security
center is done using plain text communication over the socket even though it is
possible to use SSL. It would be a rather simple matter to use an SSLSocket instead.

Evaluation of architectures for the development of secure mobile applications

-3.2-30 -

As the bill has been verified the content provider is informed and the analysis is
pushed to the WIB phone.

Test bed

The test bed used both for the performance and security evaluation (i.e. evaluation of
the security features available/used for the WIB) were made with the stock analysis
program as a base. The most important parts are described in Figure 3-2 in some
places of the test bed it was hard to do measurements since e.g. there was no
possibility to make timestamps from the “inside” of the WIB phone. With the wallet
it is rather easy to do it from inside the code. All measurements involving the sending
of SMs had to be measured manually while others like encryption at the web server
could be measured from inside the code.

Communication between servers are Security center used by wallet/
done through a direct reference since bank for encruption/decryption.
they reside on the same web server. Communication done over TCP.
Cont_ent Wallet Content
Provider - (Web server) - > provider
(Web server)

A A
Communication over TCP between Comunication over TCP between
the Content provider and the WIG the Wallet and the WIG consists of
server consists of stock analysis bills that are pushed to the WIB
requests sent by the WIB phone phone and replies to those bills i.e.
and the analysis that are pushed those bills that have been paid.
back to the WIB phone once the »! WIG server |
issued bill has been paid. =

A
SM communication over GSM
bill, password, analysis etc

/

WIB
Phone

Figure 3-2 The Test bed used.

The total time was measured and divided into different parts. Figure 3-3 shows the
parts that were measured individually.

User interaction Execution at Wallet ~ SM from WIG server SM from WIB to Decryption SM from WIG server
start application and Content server to WIB phone WEB server (Wallet) of SM to WIB phone

| | | | | | | | | | | | -
| 1 1 1 1 1 1 1 1 1 1 1 |

SM from WIB to WEB Push bill to User interaction Execution at Wallet Push content to Transaction finished
server (Conent Provider) WIG server type password and Content server WIG server content at user

Figure 3-3 the total execution time for a stock analysis session divided into it’s different parts.

First the total time were measured and divided into its different parts using both
3DES and plain text for the communication between the WIG and WIB.

Then a detail study of the different parts were made to see how size would effect

encryption/dectyption time both at the SIM card and server side, also the time taken
to push different sizes of WML pages to the WIB were investigated.

Evaluation of architectures for the development of secure mobile applications

-3.2-31 -

In the following paragraphs the evaluation results are handled in detail and a
summary is available in the section called Evaluation Summary.

Estimation of time distribution in the wireless wallet case study

Before the evaluation and measurements were done an estimation of the time spent
in the different parts during the execution of the stock analysis program were done as
showed in Figure 3-4. Dashed areas should be much smaller and it can clearly be
seen that the most time is assumed to be spent by sending SMs and engaging in user
interaction together with the encryption/dectyption of data. Since the time spent in
doing encryption/decryption is rather short there should not be such a large
difference between using plain text and 3DES in the communication between the
wallet and the WIB phone.

User interaction Execution at Wallet SM from WIG server SM from WIB to Decryption SM from WIG server
start application and Com.e_qt_s_e_ryge[. to WIB phone WERB server (Wallet) - ofSM.__.. . to WIB phone
| | S [| | - | b »
f T R AU T T U T T "
SM from WIB to WEB Push bill to User interaction Execution at Wallef ~ Push content to Transaction finished
server (Conent Provider) ~ WIG server type password and Content server WIG server content at user

Figure 3-4 Estimation of proportions where time is spent during a transaction, dashed areas
are “zoomed” in i.e. they should be much smaller compared to the other.

3DES/Plain text execution time

Measurements both for the 3DES and the plain text case were done using both
logging of times that were of interest from inside the code and timing done manually
by a human since there is no way to measure execution time on the phone. To
measure the time period when a SM was in the air the measurement was started as
the user pressed the final button in the user interaction and the time was stopped as
the request arrived at the web server. In the same way the time from the web server
to the phone was measured i.e. timing started when the web server pushed the
message to the WIG server and the timing was stopped when the message was
displayed on the phone.

For both the 3DES and plain text case there were 11 measurements done i.e. in total
22 measurements. More measurements could be made to further ensure that the
values lies around the values presented in the tables, but it is hard to automate the
testing since there is no easy way to automate the measurement of the time it takes to
send a SM. Instead 2 manual measurement must be made each time an SM is sent.

Evaluation of architectures for the development of secure mobile applications

-3.2-32 -

Table 3-1 Measurement of times in stock analysis program using encrypted communication
between WIB and WIG.

3DES (all times in ms)

Action Average Max Min Median | Std. Deviation
User interaction start app. 8149 15653 6149 7261 2954
WIB send SM to Content provider 7955 11918 6350 7551 1689
Whole processing (Content & Bank) 42 80 30 40 14
Push Bill (Wallet server) 27 40 20 30 6
SM from Wallet to WIB 15437 17966 12047 15352 1833
User interaction type in password 4730 6810 3655 4446 983
WIB send SM to Wallet server 12792 15493 11276 12238 1562
Whole processing (Bank & Content) 406 481 311 411 56
Decrypt SM from User 366 441 271 371 53
Push Content (Content server) 24 30 20 20 5
SM from Content provider to WIB 8513 9984 6460 8562 1074
Total time for transaction 57575 65505 52415 55420 3962
Total time for transaction minus user interaction 44696 48159 42500 43894 2034

Table 3-2 Measurement of times in stock analysis program using plain text communication
between WIB and WIG.

PLAIN TEXT (all times in ms)

Action Average Max Min Median | Std. Deviation
User interaction start app. 7803 9964 6559 7872 981
WIB send SM to Content provider 6728 8151 5668 6679 599
Whole processing (Content & Bank) 36 50 20 40 8
Push Bill (Wallet server) 26 40 10 30 9
SM from Wallet to WIB 16874 22552 13880 15733 2909
User interaction type in password 4673 5849 3545 4927 862
WIB send SM to Wallet server 6597 7971 5678 6349 783
Whole processing (Bank & Content) 45 90 30 40 16
Push Content (Content setver) 35 80 10 31 18
SM from Content provider to WIB 8337 12748 6719 7681 1751
Total time for transaction 50952 57322 44063 51053 4132
Total time for transaction minus user interaction 38476] 44083 33899 37747 3389

A high standard deviation for the user interaction and sending of the SMs can be
seen for both the plain text and 3DES cases in Table 3-1 and Table 3-2. That the
user interaction has a high standard deviation is not especially surprising since the
time it takes for a user to press the buttons needed may vary rather much. The
sending of the SM having a high standard deviation may have many reasons e.g. the
workload of the SMS-C (the server responsible for the handling of the SM), traffic in
the network, reception quality (retransmissions), the one thing that have the largest
impact is the traffic level in the network closest to the phone.

The times that are the most interesting in aspect of the user is the total time for the
transaction with the user interaction time removed since the pressing of buttons is
not experienced as a large waiting time. It is also good to remove it since it has a high
standard deviation. When removing the user interaction time during the comparison
between the plain and 3DES case only the technical aspects that inflicts time are
compared and not the time a user spends on typing e.g. his/hers password.

Evaluation of architectures for the development of secure mobile applications

-3.2-33 -

Time Distribution Plain Text (Avg.)

2

@ User interaction start
app.

mWIB send SM to
Content provider

O Whole processing
(Content & Bank)

O Push Bill (Wallet server)

B SM from Wallet to WIB

O User interaction type in
password

mWIB send SM to Wallet
sener

O Whole processing (Bank
& Content)

m Push Content (Content
senver)

@ SM from Content
provider to WIB

Figure 3-5 Time Distribution during a session using plain text for the communication.

From both Figure 3-5 and Figure 3-6 it can easily be seen that the largest contributor
to the total execution times is the communications part i.e. the sending of SMs. The
user interaction time also contributes fairly much to the total time, but that time is
not experienced that much as waiting time since the user is doing something.

Evaluation of architectures for the development of secure mobile applications

-3.2-34 -

Time Distribution 3DES (Avg.)

<
E

Figure 3-6 Time Distribution during a session using 3DES for the communication.

@ User interaction start
app.

mWIB send SM to
Content provider

O Whole processing
(Content & Bank)

O Push Bill (Wallet server)

m SM from Wallet to WIB

@ User interaction type in
password

mWIB send SM to Wallet
senver

e

O Whole processing (Bank
& Content)

m Decrypt SM from User

m Push Content (Content
senver)

0O SM from Content
provider to WIB

In Table 3-3 there is a comparison between the plain text and 3DES case, it was
petformed by normalizing 3DES to plain text i.e. taking the quotient 3DES/(plain
text) for the median and average values. In the normalized case the plain text is faster
if it is a value above 100 otherwise it gets a value below 100. Because not just the
relative difference between them are important the same thing was done by taking
the following subtraction 3DES-(plain text) for the average and median values, i.e. a
positive value means that the 3DES case takes that much more time and a negative
value the opposite that the 3DES case is that many ms faster.

Evaluation of architectures for the development of secure mobile applications

-3.2-35-

Table 3-3 Comparison between 3DES and plain text execution time where 3DES is
normalized to plain text also the real difference in ms is taken between them.

Comparison of times in 3DES &PLAIN TEXT cases
Normalised Real difference (ms)
Action 3DES/plain text

Average | Median | Average | Median
1. User interaction start app. 104 92 346 -611
2. WIB send SM to Content provider 118 113 1227 872
3. Whole processing (Content & Bank) 115 100 5 0
4. Push Bill (Wallet server) 103 100 1 0
5. SM from Wallet to WIB 91 98 -1437 -381
6. Usert interaction type in password 101 90 57 -481
7. WIB send SM to Wallet server 194 193 6196 5889
8. Whole processing (Bank & Content) 906 1028 361 371
9. Push Content (Content server) 68 65 -11 -11
10. SM from Content provider to WIB 102 111 176 881
11. Total time for transaction 113 109 6623 4367
12.Total time for transaction minus user interaction 116 116 6220 6147

Total time without user interaction
60000
50000 -
* * L4

~a0000 | = ° ® * m * * o L
g | m | [| a [=
£ ¢ 3DES
o 30000 - ,
IS B Plain Text
= 20000

10000 -

0 T T T T T
0 2 4 6 8 10 12
Measurement number x

Figure 3-7 Total execution time in the stock analysis example with user interaction time
removed

From Figure 3-7 it can be seen that 3DES usually takes longer time but the times are
rather stochastic.

If just looking at the proportion in Figure 3-8 it first looks like the biggest
contributor in the 3DES case is the decryption of the encrypted message from the
WIB, since the execution time at the bank and content provider is almost 10 times
longer than in the plain text case. Looking at real time contributors in Figure 3-9 it
looks like the biggest contributors are the sending of the first SM from the WIB
(initiation of the application), the last SM sent to the WIB (sending of the content to
the WIB) and the sending of the encrypted SM from the WIB to the wallet server.
There is no difference between the last SM sent in the two cases and when it comes

Evaluation of architectures for the development of secure mobile applications

-3.2-36 -

to the initiation SM the only difference is that the initiation SM uses a different URL,
which is 4 bytes longer. At first it seems a bit strange to have this difference, but it is
explained due to a couple of extreme values that inflicts this difference for both the
cases. But the difference of the sending of the encrypted SM from the WIB to the
web server could not be explained in this way since this sending always takes around
6 seconds longer than the non encrypted version. In this case it is because of that 2
SMs are sent, due to the padding performed by the 3DES plug-in.

Increase in execution time with 3DES (Avg.)

@ User interaction start
app.

mWIB send SM to
Content provider

O Whole processing
(Content & Bank)

O Push Bill (Wallet server)

V

B SM from Wallet to WIB

@ User interaction type in
password

mWIB send SM to Wallet
senver

O Whole processing (Bank
& Content)

m Push Content (Content
server)

m SM from Content
provider to WIB

Figure 3-8. Increase in execution time with 3DES i.e. which part has the largest increase in
execution time compared to when plain text is used. Values have been taken from Table 3-3.

Evaluation of architectures for the development of secure mobile applications

-3.2-37 -

Real time difference between 3DES and Plain Text

8000
7000 -
6000 [}
5000 -
4000
3000
2000 -
1000 +

O u
-1000 4 1 3 7 9 11
-2000

O Average
m Median

Time (ms)

Measurement

Figure 3-9. The real difference in execution time between the 3DES and plain text case. See
Table 3-3 for which measurement the different numbers corresponds to. A positive value
means that the 3DES case takes that many more ms and a negative value the opposite.

As expected there was not a large difference between the plain text and the 3DES
case when looking at the mean and median values for the total execution time with
the user interaction time removed, since it then took around 16% longer time to use
encryption or in real time approx. 6 seconds longer.

The assumption made before the evaluation was started that the biggest contributor
in the 3DES case was going to be the communication with the security center was
correct in the sense it was the largest relative contributor, but when it came to the
largest contributor measured in real time the sending of the encrypted message from
the WIB surprisingly turned up.

SIM card encryption/dectyption time

The first measurement performed was to try to find out the encryption time when
doing encryption on the SIM card. It was done by first encrypting some data and
then measuring the time until the encrypted data could be displayed on the device.

It was discovered that the encryption/dectyption was really fast so to be able to
measure the time 8 consecutive encryptions were done and then the total time minus
the reaction time was divided by 8 to calculate the time for a single encryption.

Because of that there is a typical restriction in two SMs that could be sent from the
WIB and each can contain around 120 bytes. The idea was to measure the encryption
time from around 10 bytes up to around 200 bytes, the upper limit on the amount of
data that can be sent. But the attempt to measure the encryption/decryption time for
a message using the size 200 failed. It was not able to handle that large amount of
data at least if you tried to do 8 consecutive encryptions. So a decision was made to
just measure the time for encryption up to 150 bytes since at least there was never
going to be more than that to encrypt in the case study.

Evaluation of architectures for the development of secure mobile applications

-3.2-38 -

Table 3-4 Measurement of enctyption/decryption time in a SIM card, there wete 5
measurements made each size.

SIM Card Encryption (all times in ms)
Amount data to enc. Average Max Min Median Std. Deviation
10 bytes 118 128 109 119 7
64 bytes 164 179 153 163 10
150 bytes 232 237 228 233 4

SIM Card Encryption
250
n
200
. [
2 150 - * # Average
o | B Max
E 100 A Min
50
0 T T T
0 50 100 150 200
Bytes to encrypt

Figure 3-10 Time to encrypt data on the SIM card as a function of the number of bytes.

When looking at the times for encryption on the SIM card it looks rather clear that
the encryption will not effect the final execution time that much regardless of the size
to encrypt. As can be seen both in Figure 3-10 and Table 3-4 the time seems to
increase rather linearly with more data to encrypt, but the encryption time will still be
very small compared to time spent with communication. Due to the upper limit on
how much data the SIM card is able to encrypt the real time will still be small even
though something at the upper limit is encrypted.

Wallet server encryption/decryption time

Encryption/dectyption on the server side was done using a SmartTrust product
called the Security Center, which communicates with the wallet server over a TCP
connection. The connection setup time was measured as well as the time it took for
the sending of an encryption/dectyption request until the result was sent back. The
data that was encrypted was a random set of bytes.

The measurement were done using 1-256 bytes with random values even though 256
bytes is a bit more than the WIB ever could send to the wallet server see 2.3.3

Wireless Internet Browser WIB SIM card or [WAGO2] for further details regarding this
limitation.

Evaluation of architectures for the development of secure mobile applications

-3.2-39 -

Table 3-5 Measurement of encryption/decryption time at the secutity center setup time
measured separately.

Security Center (all times in ms)

Action Average Max Min Median Std. Deviation
encryption 1 byte 881 901 851 891 20
decryption 1 byte 785 861 721 761 62
encryption 2 byte 647 701 571 671 58
decryption 2 byte 655 661 651 651 5
encryption 64 byte 873 902 831 871 30
decryption 64 byte 871 1261 741 761 222
encryption 128 byte 853 901 801 841 42
decryption 128 byte 801 801 801 801 0
encryption 256 byte 1027 1332 791 911 2064
decryption 256 byte 1112 1693 801 901 375
Set up connection 432 1953 310 311 335

Encryption Security Center
1400 =
1200
_. 1000 5 *
2]
£ 800 s & Average
o 600 B Max
-E Min
400
200
O T T T T T
0 50 100 150 200 250 300
Bytes to encrypt

Figure 3-11 Time to encrypt data with the Security Center as a function of the number of
bytes.

As can be seen from Table 3-7 an encryption/dectyption time of around 1.1s
(including connection set up) could be expected regardless of the amount of data to

encrypt decrypt.

From the Figure 3-11 it can be seen that the encryption time stays rather constant
with the amount of data to encrypt at least when it concerns the small amounts of
data that the SIM card is able to handle. Worth noting is that the standard deviation
seems to increase with larger amounts of data to encrypt/dectypt.

In the Table 3-5 it can be seen that the connection set up time contributes to the
total time for encryption/decryption with almost one third. So it looks like the total
effect on using encryption/dectyption on the server side should increase the
execution time with a bit more than one second regardless of the size to encrypt,
since the difference between encrypting/decrypting 1 byte compared to 256 is
neglect able

Evaluation of architectures for the development of secure mobile applications

-3.2-40 -
Push measurements

To investigate the effect on the size of a push message to both the WIG and the
whole way to the WIB phone a couple of measurements were done. As an upper
limit for the message size 600 bytes were used, since the limit that most WIB SIM
cards have is that they are able to reassemble 5 SMs each carrying around 120 bytes
see 2.3.4 SIM WIB with Java Plug-In or [WAGO02].

The largest page pushed in the stock analysis is a WML page of 495 bytes but which
during transformation to byte code was reduced to around 185 bytes.
Table 3-6 Total times for push communication i.e. the communication between the WIG and

either of content provider or the wallet servers. Number inside parenthesis indicates number
of measurements.

Time for communication with WIG during push (times in ms)
Bytes pushed Average Max Min Median Std. Deviation
100 bytes 1:st time (5) 133 141 121 131 8
100 bytes after 1:st time (8) 34 50 20 31 9
200 bytes 1:st time (5) 138 190 100 130 33
200 bytes after 1:st time (8) 29 40 20 30 6
600 bytes 1:st time (5) 116 120 110 120 5
600 bytes after 1:st time (8) 36 71 20 30 15

The amount of bytes mentioned in Table 3-6 is the size of the WML page pushed,
since the page is transformed into byte code at the WIG server the actual number of
bytes sent to the WIB is reduced. Push times to the WIG and WIB were measured at
different occasions therefore the difference in number of measurements.

During measurements it was discovered that the SIM card used could not handle the
reassembly of more than 3 SMs, or if it was the handset that was not able to display
so much text at once, since the page pushed only consisted of letters to be displayed.

Measurement of the time to push a WML page the whole way to the WIB phone
began at beginning of the push to the WIG server and ended when the page was
displayed at the phone.

Table 3-7 Time to push a page the whole way to the WIB phone. Ten measurements were

made for each page size. Number of bytes sent were less than page size due to
transformation to byte code at the WIG server.

Time to push a WML page the whole way to the phone (times in ms)

WML size/bytes sent Average Max Min Median Std. Deviation
62/18 bytes 7250 8222 6008 7225 773
162/118 bytes 17350 23193 15021 16739 2409
292/250 bytes 24077 26297 20970 24179 1340

Evaluation of architectures for the development of secure mobile applications

-3.2-41 -

Time to push a WML page to the WIB phone
30000
(]
25000 -
- .
& 20000
£ . & Average
o 15000 B Max
e .
£ 10000 Min
e
5000 -
O T T T
0 100 200 300 400
WML page size (bytes)

Figure 3-12 Total time to push a WML page the whole way to the phone from a client
connecting to the WIG server as a function of the page size.

When sending a push at the web server it was discovered that the first time it took
almost four times longer than the following pushes see Table 3-6. A closer inspection
of the times showed that the creation of objects at the jsp page went much faster the
second time due to some optimizations done either at web server or in the JRE.
Since a HttpURLConnection is used it is not necessarily true that the underlying
socket is closed when a disconnect() is performed and thus it may reduce the
connection time the second time.

It seems like the actual push of a message to the WIG server never can become a
bottleneck in the system, since the push of a message that lies at the upper limit takes
about the same time as the others. But as can be seen from Table 3-7 there is a very
large increase in waiting time for the end user when increasing the page size form 92
to 292 bytes then it takes approx. 24 seconds for the page to reach the WIB phone
instead of 7 seconds.

One thing that is interesting to note is the need to know what kind of WIB SIM that
the end users have, since they differ in the number of SMs that they can reassemble.

From Figure 3-12 it can be seen that there seems to be a linear increase in time to
push a page the whole way to the phone, but it should be noted that the linearity
really is not linear its only linear in the increase when an other SM is required. If for
example two WML pages fitting in one SM but of very different size they still take
about the same time but a WML page just slightly bigger requiring 2 SMs nearly
doubles the execution time. So the time increase is discrete rather than linear since it
goes up “one level” for each new SM required.

The somewhat higher time per SM that arises during the push of a larger page could
be explained from that the reassembly takes some time and the preparation taking
time to display such a large message on the device’s screen.

When comparing the setup time for encryption in Table 3-5 and Table 3-6 it looks to
be a rather large difference. It takes 0.3 seconds to setup the connection to the

Evaluation of architectures for the development of secure mobile applications

-3.2-42 -

security center compared to 0.1 seconds for the push of a WML page to the WIG
including the setup time. The large difference in time could be from poor server
coding at the security center compared to the WIG server as well as the possibility of
reusing the socket that is used in the HttpURLConnection, it might also has
something to do with that the servers reside on different networks or that they use
different operating systems leading to TCP/IP stacks with different performance.

Security evaluation

One part that is interesting for this thesis is the communication between the wallet
server and the WIB. During the evaluation a SIM card was used that utilized both
encryption on the GSM layer as well as the 3DES plug-in available on the SIM card.
But one thing to remember is that the 3DES plug-in does not provide any message
integrity or authentication i.e. there is no mechanism to ensure that the data has not
been altered and to be sure of who has sent it. Even though the GSM layer might
offer some message integrity, authentication and protection against reply attack see
Table 2-2, it is not necessarily true that they always are used since they are optional.

With the WIB there is the possibility to achieve end-to-end security that was not
possible with WAP until the release of WAP 2.0. It was with WAP 2.0 and the
transition from WTLS (Wireless Transport Layer Security) to TLS (Transport Layer
Security) that made end-to-end security possible in the WAP protocol [IBMO2].
Before WAP 2.0 the data were in plain text for a short while in the WAP gateway
during the translation between the protocols used in the fixed and wireless “worlds”.
Having plain text in the WAP gateway made it an ideal target for “hackers” or those
who wanted to express the insecurity with WAP.

As so many times the hardest part is to distribute the keys in a secure manner, if that
has been done it is possible achieve a very high degree of security with the WIB. Not
just encryption, but also message integrity and authentication.

3.2.5 Evaluation Summary

When it comes to the comparison between using 3DES and plain text it is quite clear
that there is an increase in time experienced by the end user when using 3DES. The
increase is around 16 % or 6 seconds for the 3DES case and that could be justified
by the higher degree of security. The increase comes mainly from that the reply with
the encrypted password seems to take almost 6 seconds longer than sending the
password in plain text. This increase in time comes from the sending of an additional
SM.

The individual measurements of some individual factors such as size showed that:

Encryption time at the SIM card increased almost linearly with the amount of data to
encrypt, but that increase in time is neglectable compared to the total execution time,
at least since there is an upper limit on how much data the SIM card is possible to

handle.

When it came to encryption/dectyption on the server side the total time stayed
almost constant with just a very small increase in time when data size was increased

Evaluation of architectures for the development of secure mobile applications

-3.2-43 -

numerous of times. As much as one third of the total encryption/decryption time
came from setting up the connection to the security center.

Push measurements showed as easily could be expected that the time to push a
WML page to the WIG was almost constant regards less of size this since a fast
Internet connection was used. On the other hand when it came to the time it took to
push a WML page the whole way to the WIB phone it was a large increase in time
for each additional SM that was needed. For example if first a page where pushed
that only required one SM and then a page that required two SMs the time was
almost doubled. If an even larger page were to be pushed so three SMs were needed
there would be an other 50% increase in time and so forth, i.e. the time taken to
push a message the whole way to phone could be approximated to about 7-8 seconds
times the number of SMs required.

The assumption made before the evaluation was started that the biggest contributor
in the 3DES case was going to be the communication with the security center was
correct in the sense it was the largest relative contributor, but when it came to the
largest contributor measured in real time the sending of the encrypted message from
the WIB surprisingly turned up, due to the padding performed by the 3DES plug-in.

Possible Improvements

As can be seen the part that effects execution time the most is the communication
done with SMs, even though the communication with the WIG server and security
center takes some time it is very small compared to the time taken to get a SM
delivered. So it is very important to try to reduce the amount of data since using
several SMs for the delivery dramatically increases execution time. It would be
desirable to see if it is possible to use some form of compression on the data sent.

One improvement that could be done would be to keep connections to the WIG
server, security center and between the content provider and wallet server always
open. One drawback is that this would increase load on those servers. On the other
hand it would decrease the setup time with only a slight impact on the complexity.
Reducing the connection set up time could be neglected compared to the delivery
time of a SM and thus it might not be justified to keep the connections open.

Execution time at the web server could be improved since today each update of the
database involves the writing of a file.

Since there is no message integrity except the one offered by the OTA layer, see
Table 2-2, this solution is only suitable for the payment of “small” amounts. An
extension using message integrity and authentication so all parts are sure whom they
are communicating with would have impact on the amount of data sent and may
thus increase the total execution time. Increasing the execution time even further
would be very frustrating for the user since he/she would experience an even larger
waiting time. The most frustrating part is that there is no sort of progress bar so the
user has no idea how much longer time it will take.

Future Work

No measurements with a high number of clients were made due to a couple of
reasons it would require a real large number of clients to effect the WEB server at

Evaluation of architectures for the development of secure mobile applications

3.2-44

which the service is running. Not possible by using a number of WIB phones since
they would not generate enough traffic to affect the web server. One possibility
would be to generate a number of requests from a desktop computer that emulates a
number of WIB phones, but the focus on the thesis does not lie in writing a high
performance server even though the performance of the server is important in a real
life application. The performance that could be gained by optimizing the servers is
very small compared to the total execution time.

One thing to investigate further is if there is any performance to gain in trying to do
compression of the data sent with SMs, since it is in the communication with SMs
that takes the most time. A possibility to reduce that time by a couple of percent
would have a much larger impact than improving the server performance or the
communication between the different servers.

First impressions

The WIB solution tends to feel “locked in” since the operator, the end user and the
content provider needs to use this special technology with a WIB, WIG and a subset
of WML together with the extension for plug-in calls. If instead the content provider
could use an “open” technology like WAP it would reach all end users equipped with
WAP phones, which is a lot more than those with WIB phones. One additional
drawback with the WIB is that the content provider must have a contract with a
mobile operator, which in turn offers the setvices to his/hers users. This due to the
high degree of security required when it comes to changing files on the SIM card and
this is only possible for an operator that “administrates” the SIM to do.

To develop WIB applications feels easy and rather fast even though the developer
does not have any previous knowledge of web programming. Despite that fact it
might be a lot harder to write a real world server cable of handling a couple of
thousands simultaneous users, but the basics needed are easy to acquire at least for a
user with any previous knowledge of say HTML/Java/jsp/Asp. One thing that can
raise some problems are the SIM cards since they sometimes are a bit hard to please.

Only small applications that are not interactive are suitable e.g. the payment of a bill.
One possible scenario is a user who is afraid of giving away his/hers credit card
number on the Internet instead the e-commerce site has a contract with a mobile
operator providing a pay service to which the e-commerce site issues a bill. The pay
service then pushes the bill to the mobile phone user and the user signs the bill.
Once money has been withdrawn from the bank it informs the e-commerce site that
it can send the goods to the user without having him/her giving away their credit
card number on the Internet.

For interactive services e.g. games there is too much latency involved at least for
users who are custom with low latency e.g. a Counter Strike gamer (one of the largest
first person shooter games) that is custom to play his/hers favorite game over a fast
Internet connection. Much more suitable for small services as e.g. weather,
horoscope and other services that are not interactive and at the same time only
requires small amounts of data to be sent.

Only suitable where small amount of data are sent/received due to response times
e.g. if amounts like 0.6 kilo bytes (5 SMs at each approx. 120 bytes) were to be
transferred the expected waiting time could be as much as 25s [WAGO02].

Evaluation of architectures for the development of secure mobile applications

-3.2-45 -

Finally there seemed to be quite a lot of errors in the internal documentation
regarding the WIB, which probably would not be the case if a large open standard
like WAP was used instead.

3.2.6 Development: problems, environment & time

Problems

During the implementation a couple of annoying errors came mostly due to the lack
of documentation revision e.g. it was said in the WIG/WML specification how an
encryption plug-in was to be called. But the format given there was incorrect one
parameter was given as ‘enct’ but it was supposed to be ‘ENCR’. This was found by
the old trial and error method. An other miss was in the guidelines for updating SIM
cards where it in the guideline was given that the hex value of 8F was used to identify
the beginning of a new menu item, but by inspecting the old menu file it was
discovered that the supposed hex value was OF. One other annoying thing was that
their WAC (WIG Application Creator), which is a WIB phone emulator that
SmartTrust have developed was a lot easier to please than a real world phone. Code
that worked on the emulator did not always work on a real WIB SIM.

For the first SIM card that was used the 3DES keys were not known and at the time
another SIM card was found it did not work as expected it received the SMs but did
not show anything. Got some help and after a couple of hours work on the behalf of
Gunilla she got it to work with one WIG server but not the one previously used. If
was probably due to some security issues on 03.48 GSM layer.

If it were not to factors out of my control e.g. getting hold of SIM card, phone,
specifications and guidelines being incorrect and finally the need of help from others
to set up some servers, the work probably would have been done in a much sorter
amount of time than it now was done.

Development time and environment

The development environment used consisted of the WAC (WIB phone emulator),
tomcat web server and Emacs for the coding while ant (Another Neat Tool) was
used for the make support. Emacs was used since Jbuilder felt a bit slow on the
computer on which the development was done. An IDE is nicest to use if the
development consists of some GUI programming otherwise an editor like Emacs is
just as good at least if there is a decent .emacs and make support available. It must be
mentioned that ant really is a neat tool. It has all the common features as the ordinary
make in the Unix world but not the limitations and peculiarities e.g. an XML file is
describing the build so there is no issues with spaces and tabs as in a Unix Makefile.
Worth mentioning is that the latest versions of Jbuilder has integrated Ant for their
build support.

To develop services and applications for the WIB goes fast even though security is
needed since there is not much more job that has to be done to get end-to-end
security including message authentication and integrity. The time to develop a simple
service can take from a couple of days up to a couple of weeks depending on the
prerequisites and the complexity on the server side.

Evaluation of architectures for the development of secure mobile applications

- 3.3-46 -
3.3 Java Card evaluation

3.3.1 Application Design

The main idea with the design is to have some form of pay service (wireless wallet)
available from the cellular phone and in contrary to the WIB case trying to do as
much as possible locally on the phone. Doing as much as possible locally reduces
communication with the bank and thus reducing the total execution time.

The actual account resides in the phone itself as a STK (SIM Toolkit) applet that has
been installed to a Java enabled SIM card. The responsibilities of the wireless wallet
applet is to listen for incoming bill requests and then ask the user to present his/her
PIN code if he/she wishes to pay that bill. Once a bill request has been handled the
bill issuer is informed whether the bill was paid or not.

As can be seen in Figure 3-13 the wireless wallet implements a shareable interface
containing a public method bill. Applets wishing to send a bill to the wireless wallet
call the bill method of the WalletSIO. For more information regarding SIOs see 2.3.2
Java enabled Smart Cards or [CHEQO].

Wallet

-balance : short
«interface» -des3KeyBuffer : byte(]

_________ WalletSIO | 1+hill() : boolean
+play/browse() +bill() : boolean +balance() : short
+payForinfo/Level() -encrypt() : byte
-decrypt() : byte
-sendSM() : void

Game/Browser «uses»

Figure 3-13 The most central methods and attributes of the Class diagram of the wireless
wallet and the applet bill issuer.

The solution chosen is not just limited for initiation by another applet you could
easily think of other scenarios where the initiation is done through some other means
e.g. a browser on a desktop computer or a candy machine where a SM is sent to the
wallet. A bill sent as a SM need to be correct formatted and sent to the TAR value of
the wireless wallet applet otherwise no payment will be possible and the bill will be
rejected, for more details regarding TAR values see 2.3.2 Java enabled Smart Cards.

Once a bill has been paid regardless of initiation way an SM containing the amount
withdrawn and the ID of the bill issuer is sent back to the “bank”. This information
is sent to the bank so the money actually can be transferred from the user to the bill
issuet.

The process described in Figure 3-14 is where an applet e.g. a browser or a game
issues a bill by calling the bill method, which is available through the shareable
interface. Then the wallet applet prompts information about the bill to pay i.e.
amount and a short description what to pay for. It is then up to the user to decide
whether to sign the bill or not by typing his/her PIN code.

If the user has presented the correct PIN an encrypted SM using 3DES is sent to the
bank to inform it of the transaction so the actual money transfer can take place. Then

Evaluation of architectures for the development of secure mobile applications

-3.3-47 -

the method returns true to the bill issuer if payment was done and else it returns
false. Both the triple DES key and user PIN is decided at install time of the applet,
but the user may change the user PIN if desired.

Once the method call has returned to the bill issuer it takes the appropriate action
e.g. granting/denying access to the next level once the bill payment has been verified.

Evaluation of architectures for the development of secure mobile applications

-3.3-48 -

Game/Browser Applet Wallet Applet

Recv. signal from user that
he/she wishes to access a
new level or a restricteed
page

[o <

Send a bill to tipe wallet applet

Grompt user for pin to pay big

Verify PIN &
Balance

Payment aborted

Gorrect Pin withdraw monea

Notify bill issuer if
the bill was paid

Send encrypted SM
To bank

Go back to intial
state and wait for
a new bill

No money Money withdrawn
Withrawn, abort allow access

Figure 3-14 Program flow when issuing a bill to the wireless wallet applet.

3.3.2 Security Design

There are both a plain text version and one version, which encrypt all the
communication between the wallet and the bank.

Encryption used between the WIB and the Wallet server is 3DES that is a symmetric
crypto algorithm i.e. the same secret keys is used both to encrypt and decrypt. For
more details regarding 3DES look at e.g. 3.7.4 Security or [STAO0].

Evaluation of architectures for the development of secure mobile applications

-3.3-49 -

The 3DES key used for the communication between the wallet and the bank is
decided at installaton time as a parameter to the install method.

Once a bill has been paid an encrypted SM containing the amount withdrawn and the
ID of the bill issuer is sent back to the “bank” from the wireless wallet applet. A
copy of the users account should be hold at the bank to verify that the user does not
tamper his/her card i.e. make sure that the balance never goes below zero.

Encryption and decryption on the server side is done by using a freeware
implementation of the Java crypto API from www.bouncycastle.org. At the server
side a database is used which matches a MSISDN to a 3DES key so all messages can
be decrypted regardless of sender. Since the encryption/dectyption is done in both
ends of the connection it is possible to have a secure end-to-end connection without
plain text in any intermediate place.

3.3.3 Implementation and limitations

In a real world implementation, money really has to flow to the content provider e.g.
the wallet server constantly transfers money for each transaction to the content
provider’s account or once in a while a bigger amount. This has not been
implemented in any way. But all bills that have been paid are stored in a database so
it could later be possible to do an extension where the money really flows to the right
account.

Due to the fact that a Java enabled SIM card without subscription was used, both the
“content server” and “bank” were run at the same machine in a simulated
environment. That the servers were run in a simulated environment means that they
must be edited to some degree to be able to function in a live environment.

3.3.4 Evaluation

A Java enabled SIM card without a subscription was used so the SIM was connected
to the simulation environment using a card reader inside the simulation environment
there was a simulated phone using the real Java Card as well as a SMS-C and the
other servers needed. Due to the fact that the Java enabled SIM card would use GSM
to send the SMs if there was a subscription the SMs should take about the same time
as in the WIB case. The only difference that might arise between the Java enabled
SIM card and the case with the WIB are the number of SMs sent, server side
execution and the encryption time at the SIM card.

Browser/Game example used for the case study and evaluation

For the evaluation of the wireless wallet an example program in the form of a stock
analysis program was developed. The stock analysis program could also work for the
analogy of paying for information e.g. gaining access to a new level in a game or
paying to view a restricted page.

In the prototype application the wallet is stored as an applet and then other applets
can send bills by calling a method available as a SIO see Figure 3-13. Since both the
wallet and stock analysis applications were installed as SIM Toolkit applets they
appeared as menu items on the phone.

Evaluation of architectures for the development of secure mobile applications

-3.3-50 -

Once a user chooses the stock analysis program a menu appears asking what the user
wishes to do. If the user e.g. wishes an analysis of Ericsson a bill request is sent to
the wallet applet from the stock analysis applet. For the process how a bill request is
handled see Figure 3-14. As control is returned to the bill issuer i.e. the stock analysis
program an SM is sent to the content provider with the request of the analysis and
the content provider sends back the requested analysis.

The communication between the bank and the wallet applet is done using 3DES for
the data part of the SMs. Both the content provider and bank essentially are built up
of a couple of Java Classes and a database for the paid and unpaid bills.

To insert money on the wallet a SM with the TAR value of the wallet applet is sent to
the phone, then the wallet applet checks the SM to see that it is valid i.e. contains
specific information such as whether to insert or withdraw money and the amount.
This meassage is also sent using 3DES. But these features are not evaluated in
performance issues, since they can not be compared to the WIB case in a good
manner.

Test bed

The test bed used both for the performance and security evaluation were made with
the stock analysis program as a base. The most important parts of the test bed are
described in Figure 3-15 in some places it was hard to do measurements e.g. there
was no possibility to take timestamps “inside” the code that was executed on the Java
Card in contrary to the part of the application that was run on the server side. Since a
Java Card without subscription were the same measurements for sending SMs as
those from the WIB case were used, for a more detailed motivation see 3DES/ Plain
texct excecution time.

5. Stock analysis applet
requests analysis from the 6.7
content provider by sending a 7. Stock analysis displays the 6. Bill issuer sends back the
SM. requested analysis. requested analysis.
Stock
analysis Bank server | 3. Transfers money to the Content
applet content providers account. provider
1. Stock analysis applet calls
the bill method at the Wallet
applet once the user wishes
to get a stock analysis.
9 v 4 2. SM containing amount and

2 waatinatinnn
4, Wallet appelt informs the | destination” sent to Bank
PP ! I server (if bill was paid).

stock analysis applet that the i |
bill has been paid. |—> Wallet applet

Figure 3-15 The test bed used for the evaluation.

The total time was measured and divided into different parts see Figure 3-16 for the
parts that were measured individually. Times measured individually were: user
interaction time to start the application, user interaction time to type password and
execution time at the content provider as well as the bank. The time to send SMs
were taken from the WIB case due to the use of a Java Card without a subscription.

Evaluation of architectures for the development of secure mobile applications

-3.3-51 -

User interaction User interaction SM to bank Execution at Transaction finished
start application type pasword from wallet. content provider content at user

| | | | | | | | | |
| | | | 1 1 1 1 1 —»
Method call to bill() Encryption of SMat SM from browser/game SM from content provider
in the WalletSI1O Wallet Applet to content provider. to browser/game

Figure 3-16 The test bed used for evaluation. Actions numbered x-1 or x-2 may take place in
parallel

First the total time were measured and divided into its different parts using both
3DES and plain text for the communication between the wallet applet and the bank.

Then a detail study of how the different parts would effect execution time were
done, e.g. to see how size would effect encryption/dectyption time both at the SIM
card and server side. There is also a small investigation in the difference in using
transient arrays (array stored in RAM) compared to using non transient arrays arrays
stored in EEPROM this since read writes in RAM are much faster than the
counterpart in EEPROM.

In the following paragraphs the evaluation results are handled in detail and a
summary is available in the section called Evaluation Summary

Estimation of time distribution in wireless wallet case study

Before the evaluation and measurements were done an estimation of the time spent
in the different parts during the execution of the stock analysis program were done as
showed in Figure 3-17. Dashed areas should be much smaller and it can clearly be
seen that the most time will be spent by sending SMs and engaging in user
interaction as well as in the encryption/decryption of data. Since the time spent in
doing encryption/dectyption is rather small there should not be such large difference
between using plain text and 3DES in the communication between the wallet and the
Java Card.

User interaction User interaction SM to bank Execution at Transaction finished
start application type pasword from wallet. content provider content at user

| . [| | |] [| »
I L | I | o .- I d

Method call to bill() Encryption of SM at SM from browser/game SM from content provider
in the WalletSIO Wallet Applet to content provider. to browser/game

Figure 3-17 Estimation of proportions where time is spent during a transaction, dashed areas
are “zoomed” in i.e. they should be much smaller compared to the other.

3DES/Plain text execution time

Measurements both for the 3DES and the plain text case were done using both
logging of times that were of interest from inside the code and timing done manually
by a human, since there is no way to use timestamps on the phone.

For both the 3DES and plain text case there were 11 measurements done i.e. a total
of 22 measurements. More measurements could be made to further ensure that the
values lies around the values presented in the tables, but it is hard to automate the
testing, since there is no easy way to automate the testing due to the fact that some
measurements need to be done manually.

Evaluation of architectures for the development of secure mobile applications

-3.3-52 -

Due to that a SIM card without a subscription were used the time to send a single
SM as well as the time taken to push a SM to the SMS-C from the server side were
taken from WIB case. These values are in italic in Table 3-8, Table 3-9 and Table
3-10. It is OK to use the same values since the parameter having the most impact on
the push of a SM to SMS-C is the traffic in the network and the latencies involved, so
they should be around the same since the same network is used and the size to push
is about the same. Even though there might be a couple of bytes (around 10 more to
push) the impact is neglible since a network with the speed of 100 Mbs was used.
The same thing applies to the sending of a single SM since if a SIM card with a
subscription were used the same SMS-C as in the WIB case would be used and the
parameters impacting time is primarily the workload of the SMS-C and the traffic in
the network closest to the subscribet.

It could be argued that it is even more correct to do as described above i.e. to use the
same values for the sending of the SM and the push of the SM to the SMS-C, since
then the network will not have impact on the final time measured. Otherwise it
would be imperative to do the measurements simultaneously or such things as
behavioral pattern would effect the measurements e.g. if the WIB case measurements
were done at peak time and the others not.

So the difference should not come from the network instead it should come from
the number of SMs sent as well as the execution at the client (SIM card) and server
side.

The time to send a SM in both the 3DES and plain text versions should lie around
the same time, since the same number of SMs are sent the Java Card and the bank
and content provider.

Table 3-8 Measurement of times in stock analysis program using encryption between wallet
applet and the bank server. Italic values are taken from the WIB case.

3DES (All times in ms)

Action Average Max Min Median | Std. Deviation
User interaction start app. 5407 6519 4276 5287 883
User interaction type in password 2368 3595 1662 2413 530
Preprocessing and Wallet encrypt SM 1629 2393 1371 1512 320
SM from Wallet to bank 7955 11918 6350 7551 1689
Whole processing at the Bank 511 842 320 401 162
SM from wallet to content provider 6728 8151 5668 6679, 599
Processing at the content provider 1.42 2.60 1.00 1.20 0.56
Push SM 1o SMS-C 35 80 10 31 18
SM from content provider to browser/ game 8513 9984 6460 8562 1074
Total time for transaction 33146 35973 29895 33221 1853
Total time for transaction minus user interaction 25372 27311 23957 25106 996

As can be seen from Table 3-8 and Table 3-9 is that both the plain text and 3DES
case have a high standard deviation for the user interaction and the sending of the
SMs. That the user interaction has a high standard deviation is not especially
surprising since the time it takes for a user to press the buttons needed may vary
rather much. The sending of the SM having a high standard deviation may have
many reasons e.g. the workload of the SMS-C (the server responsible for the
handling of the SM), traffic in the network, reception quality (retransmissions), the

Evaluation of architectures for the development of secure mobile applications

-3.3-53 -

one thing that have the largest impact is the traffic level in the network closest to the
phone.

Evaluation of architectures for the development of secure mobile applications

-3.3-54 -

Table 3-9 Measurement of times in stock analysis program using plain text wallet applet and
the bank server. Italic values are taken from the WIB case.

Plain text (all times in ms)

Action Average Max Min Median | Std. Deviation
User interaction start app. 5062 6108 3425 4987 744
User interaction type in password 2213 2784 1653 2353 406
Preprocessing SM 1233 1472 1132 1232 91
SM from Wallet to bank 7955 11918 6350 7551 1689
Whole processing at the Bank 414 731 231 331 170
SM from wallet to content provider 6728 8151 5668 6679, 599
Processing at the content provider 1.22 2.51 0.80 1.10 0.46
Push SM 1o SMS-C 35 80 10 31 18
SM from content provider to browser/ game 8513 9984 6460 8562 1074
Total time for transaction 32155 35712 29945 31965 1628
Total time for transaction minus user interaction 24880 27239 23807 24415 1057

From both Figure 3-18 and Figure 3-19 it can clearly be seen that largest contributors
to the total time are user interaction and the time spent in sending SMs i.e. the

communication.

Time Distribution 3DES (Avg.)

‘ m Whole processing at the
<) Bank

m User interaction start
app.

m User interaction type in
password

O Preprocessing and
Wallet encrypt SM

O SM from Wallet to bank

@ SM from wallet to
content provider

W Processing at the
content provider

O Push SM to SMS-C

B SM from content provider
to browser/game

Figure 3-18 Time Distribution during a session using 3DES for the communication.

Evaluation of architectures for the development of secure mobile applications

-3.3-55-

Time Distribution Plain Text (Avg.)

@ User interaction start
app.

m User interaction type in
password

O Preprocessing SM

>‘ 0SM from Wallet to bank
<) m Whole processing at the

Bank

@ SM from wallet to
content provider

_

m Processing at the
content provider

O Push SM to SMS-C

W SM from content provider
to browser/game

Figure 3-19 Time Distribution during a session using plain text for the communication.

In Table 3-10 there is a comparison between the plain text and 3DES case, it was
petformed by normalizing plain text to 3DES i.e. taking the quotient 3DES/(plain
text) for the median and average values. In the normalized case the plain text is faster
if it is a value above 100 otherwise it gets a value below 100. Because not just the
relative difference between them are important the same thing was done by taking
the following subtraction 3DES-(plain text) for the average and median values, i.e. a
positive value means that the 3DES case takes that much more time and a negative
value the opposite that the 3DES case is that many ms faster.

Evaluation of architectures for the development of secure mobile applications

-3.3-56 -

Table 3-10 Comparison between 3DES and plain text execution time where 100 is the 3DES A
positive value means that the 3DES is faster than the plain text version and a negative value
the opposite. Italic values are used from the WIB case and since no Java Card with a
subscription was available.

Comparison of times in 3DES &PLAIN TEXT cases
Normalised Real difference (ms)
Action 3DES/plain text
Average Median Average Median
User interaction start app. 107 106 344 300
User interaction type in password 107 103 155 60
Preprocessing SM (inc encrypt 3DES) at SIM 132 123 395 280
SM from Wallet to bank 100 100 0 0
Processing at the Bank (inc. decryption 3DES) 123 139 97 130
SM from wallet to content provider 100 100 0 0
Processing at the content provider 116 109 0.20 0.10
Push SM 1o SMS-C 100 100 0 0
SM from content provider to browser/ game 100 100 0 0
Total time for transaction 103 104 991 1256
Total time for transaction minus user interaction 102 103 492 691

The time that is the most interesting for the user is the total time for the transaction
with the user interaction time removed, since the pressing of buttons is not
experienced as a waiting time. It is also good to remove it since it has a high standard
deviation. When removing the user interaction time only the technical aspects that
effects the execution time are compared and not the time a user spends on typing e.g.
his/hers password.

Evaluation of architectures for the development of secure mobile applications

-3.3-57 -

Increase in execution time with 3DES (Avg.)

@ User interaction start
app.

| User interaction type in
password

O Preprocessing SM (inc
encrypt 3DES) at SIM

0O SM from Wallet to bank

i m Processing at the Bank

(inc. decryption 3DES)

@ SM from wallet to
content provider

m Processing at the
content provider

O Push SM to SMS-C

W SM from content provider
to browser/game

Figure 3-20. Increase in execution time with 3DES i.e. which part has the largest increase in
execution time compared to when plain text is used. Values have been taken from Table 3-3.

Real difference in execution time 3DES-Plain Text

1400
1200 -
1000 -

800 - O Average
600 - m Median

200 -]
oﬂﬂu S
3 4 5 6

1 2 7 8 9 10 11

Time (ms)

Measurement

Figure 3-21 The real difference in execution time between the 3DES and plain text case. See
Table 3-10 for which measurement the different numbers corresponds to. A positive value
means that the 3DES case takes that many more ms and a negative value the opposite.

The largest relative difference which can be seen both in Table 3-10 and in Figure
3-20 comes from the encryption/dectyption both at the SIM card as well as at the
bank. This increase is very natural due to the extra worked required for the
encryption/decryption even though the increase in time is small with an increase

Evaluation of architectures for the development of secure mobile applications

-3.3-58 -

around 100 ms for the bank and around 400 ms for the SIM card encryption The
largest contibutor i.e. the SIM card encryption is expected due to the lack of
processing power there.

According to Table 3-10 there is a difference in computation time at the content
provider at around 10-16% or 0.1 ms in real time between the 3DES and plain text
case, but this difference is neglible in size. It probably comes from context switches,
since a context switch might have a rather high impact on the measurement of such
small values. There should not be a difference since the same code is executed at the
content provider regardless whether 3DES is used or not. The only secure
communication used in the case study is between the wallet applet and the bank.

But an addition in time might occur if there is a need to also use a secure
communication between the content provider and the applet issuing the bill. In this
case there would be a small increase in computation at both at the content provider
and SIM card

As expected the only difference in execution time comes from the parts involved in
encryption and decryption see Figure 3-21 and Table 3-10 for the increase in real
execution time as 3DES is used instead of plain text.

The difference in user interaction time between the 3DES and plain text versions in
Table 3-10 is pure random since the same interaction by the user is required in both
cases.

An increase of approx 2-3 % (0.5 s) of the total execution time should be expected if
3DES is used in the communication between the wallet and the bank, this a very
small increase, but at the same time providing a much higher degree of security.

From Figure 3-22 it can be seen that execution time differs rather much, this due to
the high standard deviation for the sending of SMs.

Evaluation of architectures for the development of secure mobile applications

-3.3-59 -

Total time without user interaction
30000
- N

25000 —a—a St e L. —
2 20000 -
£ « 3DES
o 15000 _
IS m Plain Text
= 10000

5000 |
O T T T T T
0 2 4 6 8 10 12
Measurement

Figure 3-22 Total execution time in the stock analysis example with user interaction time
removed.

SIM card encryption/decryption time

The first measurement that was performed was to try to find out the encryption time
when doing encryption on the Java enabled SIM card. It was done by first encrypt
some data and then measure the time until the encrypted data could be displayed on
the device.

To be able to compare the measurements with the WIB SIM card the measurements
were done in the same manner, both the number of encryptions as well as the
amount to encrypt, i.e. 8 consecutive encryptions were done and then the total time
minus the reaction time were divided by 8 to calculate the time for a single
encryption.

The amount used as an upper limit was 150 bytes since a SM can have a payload of
around 120 bytes depending on the features used at the GSM layer.

There is one small distinction between the measurements in the Java Card case and
the WIB case since in the Java Card case encryption time was measured both for
encrypting an ordinary byte array and the time to encrypt a transient byte array. The
difference between a transient and “ordinary” byte array is that the transient is stored
in RAM (fast) while the “ordinary” is stored in EEPROM (slow) memory.

Evaluation of architectures for the development of secure mobile applications

-3.3-60 -

Table 3-11. Encryption time on Java enabled SIM card.

SIM Card Encryption
Amount data to enc Average Max Min Median Std. Deviation
10 bytes (Tranisent Atray) 249 257 239 250 9
64 bytes (Tranisent Array) 453 456 451 453 2
128 bytes (Tranisent Array) 864 870 860 863 4
10 bytes 307 309 306 307 2
64 bytes 675 676 671 676 3
128 bytes 1343 1356 1326 1346 13

As can be seen both in Figure 3-23 and Table 3-11 the time seems to increase rather
linearly with more data to encrypt. Notable is that the non-transient array encryption
got a steeper curve. Encryption time will still be very small compared to time spent in
communication. Due to the upper limit on how much data a SM can have as payload
the upper limit for encryption time will also be small, around 1 s depending on if a
transient array is used or not. Clear is that the encryption will effect the final
execution more than in the WIB case when the same amount of bytes are encrypted.

Encryption Transient vs Non Tranisent

1600
1400
1200 -
1000
800
600 -
400
200 -

0 T T T
0 50 100 150 200

K/

¢ Max Transient

~ m Max

= Min Transient
~ Min

Time (ms)

>

Bytes

Figure 3-23 Time to encrypt data on the SIM card as a function of the number of bytes, using
both a transient array as well as an ordinary.

The difference in speed between the EEPROM and RAM memory is around 1,000
times, so it would be possible to save around tens maybe hundreds of milliseconds to
use a transient array [JGUO2], but it is only possible to use a transient array in the
case if it does not matter if data are lost or not in the case of a card reset. So in the
wallet case it may not be the best idea to use a transient array for the data in the SM
that should be sent, since it must be transactioned/logged i.e. if money has been
withdrawn you are sure that the one issuing the bill is informed of the payment and if
a SM is sent it needs to be logged so it is not sent twice.

Evaluation of architectures for the development of secure mobile applications

-3.3-61 -
Server side encryption/dectyption

Encryption and decryption on the server side was done by using a freeware
implementation of the Java crypto API from www.bouncycastle.org. The data that
was encrypted was a random set up bytes.

The measurement were done using 1-256 bytes even though 256 bytes is a bit more
than the wallet applet ever could send to the bank server, due to the restrictions that
one SM usually can have a payload of about 120 bytes. To increase the amount of
data sent one possibility would be to send a couple of consecutive SMs.

To be able to measure the times shown in Table 3-12 for a single
encryption/decryption a 1000 encryptions/decryption were made of the same size,
then the resulting time was divided by 1000. This measurement was also done eight
times to see if there would be any big changes. No measurements regarding the
standard deviation are shown since they would not show the standard deviation
between a single encryption/decryption but instead between the different
measurements of a 1000 encryption/dectryption that were made.

Table 3-12 Time taken for encryption/decryption on the server side i.e. the bank and
contentprovider.

Server side encryption/decryption i.e. the bank (times in ms)

Bytes enc/enc Average Max Min Median
encryption 1 byte 0.336 0.340 0.331 0.340
decryption 1 byte 0.327 0.331 0.321 0.330
encryption 2 bytes 0.308 0.311 0.300 0.310
decryption 2 bytes 0.305 0.311 0.300 0.301
encryption 64 bytes 0.375 0.381 0.361 0.380
decryption 64 bytes 0.381 0.391 0.371 0.380
encryption 128 bytes 0.455 0.461 0.450 0.451
decryption 128 bytes 0.467 0.471 0.461 0.470
encryption 256 bytes 0.625 0.651 0.611 0.621
decryption 256 bytes 0.627 0.641 0.601 0.631

From Table 3-12 an encryption/decryption time of around 0.3-0.6 ms could be
expected depending on the amount of data to encrypt/dectypt.

Evaluation of architectures for the development of secure mobile applications

-3.3-62 -

Server encryption time

0.700
0.600 _
0.500 -
0.400 - . ¢ Average
0.300 | m Median
0.200
0.100

O- OOO T T T T T
0 50 100 150 200 250 300

Time ms

Number of bytes

Figure 3-24 Server encryption time i.e. bank and or content provider.

From Figure 3-24 it can be seen that the encryption time stays rather linear with the
amount of data to encrypt at least when it concerns the small amounts of data that
the SIM card is able to handle. Worth noting is that with the sizes that are concerned
there will be no problem to handle a lot of encryption/dectyptions simultaneously
since the time to petform one single encryption/dectyption is rather negliable.

So the total effect on using encryption/dectyption on the server side looks like it
should not increase the execution time notable since the time taken for a single
encryption lies way below one ms regardless of the size.

Security evaluation

The most important part concerning security is how the applet is installed since it is
then it gets the 3DES key, which it uses for the communication with the bank.
Installing an STK applet can be done in primarily 3 ways, OTA, during
manufacturing and using a card reader. When using OTA it is very important to use
encryption on the GSM layer to reduce the risk of anyone decrypting the SMs used
to download the applet and getting hold of the 3DES key. The applet could also be
installed during manufacturing then it is imperative that the manufacturer can be
trusted. An applet could also be installed using a card reader in this case it is
imperative where the card reader is and how to distribute the key to that place e.g. a
bank office or point of sales.

One other possible solution is to not decide the 3DES key at install time since it is
just a byte array and not decided in hardware it is possible to change it and decide the
key after installing the applet. Here a couple of different scenarios could be thought
of e.g. letting the user choose a key. One drawback with choosing the 3DES key after
installing the applet is that it is error prone, since the user has to type in a 24 bytes
long key.

One thing to remember is that the 3DES encryption does not provide any message
integrity or authentication i.e. there is no mechanism to ensure that the data has not

Evaluation of architectures for the development of secure mobile applications

-3.3-63 -

been altered and to be sure of who has sent it. Even though the GSM layer might
offer some message integrity, authentication and protection against reply attack see
Table 2-2, it is not necessarily true that they always are used since they are optional.

As so many times the hardest part is to distribute the keys in a secure manner, if that
has been done it is possible to achieve a very high degree of security with the Java
Card. Not just encryption, but also message integrity and authentication of the data
could be accomplished, even though that has not been used.

No access control is made in the wallet to see if the billing party has the right to issue
a bill the easiest would be to check the AID of the callee, but since thete is no full
control of the installation and removal of applets it would be possible to impersonate
an AID. So the most secure thing would be to use a handshaking mechanism based
on the exchange of cryptographic keys [CHEOQ]. e.g. issue a challenge send data to
be encrypted and then check that it was correctly encrypted.

Since the bank is double checking all transactions to make sure no one tampers with
the Java Card a couple of different schemes could be used if such an event occurred:
one idea is to send a SM to the wallet and terminate the applet so it stops
functioning. Other possibilities is to change the design so a special SM from the
stock analysis program to the content provider is not sent and instead send the
request for the stock analysis as a part in the SM sent to the bank. Then it is up to the
bank to inform the content provider of the bill information i.e. what analysis that was
requested. One last solution is to keep it as it is today but requiring that the content
provider wait to send back the requested stock analysis until he has received
information from the bank that the bill has been paid.

As mentioned previously there is no message integrity control but if it could be
assumed that no one else has they cryptographic keys i.e. they have been distributed
safely all that has to be added is an error detection code and sequence number. Then
the receiver would be assured that no alterations have been made and that
sequencing is proper. If the message also include a time stamp it could be assured
that it has not been delayed more than what is expected from the network [STAOOQ]
An other scheme could be used since the information from the content provider
does not require to be encrypted but only requires to be authenticated. Thus a
scheme with a common key used by the sender to calculate a checksum, which is
added to the message and then once the message is received the receiver calculates
the checksum for the message and sees if it is the same that is attached to the
message. See e.g. [STAO00] for further details of different authentication schemes.

3.3.5 Evaluation Summary

As can be seen from Table 3-10 there is very small increase in execution time
between the 3DES and plain text versions thus it lies around 3 % or 0.7s for the
median values i.e. it is neglible to the user whether encryption is used or not. The
increase in execution time mainly comes from the encryption on the Java Card even
though the decryption also takes some time to perform.

For performance issues it worth noting that a considerable performance increase can

be accomplished in those cases where it is possible to use a transient array instead of
a non transient array. In the measurements done there was a difference of 56% when

Evaluation of architectures for the development of secure mobile applications

-3.3-64 -

encrypting a 128 byte array. The use of transient arrays are not just for encryption,
but should be used for all temp data that is read/written a lot and does not need to
be persistent between sessions. This since the transient array is cleared either at
“deselect” of the applet or “card reset” depending on how it was created.

The individual measurements showed that: encryption time both at the SIM card as
well as at the server increased almost linearly with the amount of data to encrypt.
This increase in time is neglectable compared to the total execution time, at least
since there is an upper limit on how much data the SIM card is possible to handle.

Worth noting is that it is impossible to transaction the sending of a SM since there is
no way to reclaim a SM that has been sent, but it might be possible and desirable to
log such an event so that the wallet always is in a consistent state.

With the design used there should be a bit better performance than what is shown
since the second SM from the phone to the content provider might be sent right
after that the first SM and thus they are sent somewhat in parallel.

The assumption made before that there should not be much difference between the
3DES and plain text versions were to true even though there was a small increase in
execution time. When looking at execution time the majority of the time lies in the
communication done using SMs between the phone and the servers.

Possible Improvements

As can be seen the part that effects the execution time the most is the
communication done using SM. Even though the communication between the SMS-
C and the content provider and bank servers takes some time it is very small
compared to the time it takes to get a SM delivered. It is very important to try to
reduce the amount of data, since using several SMs for the communication
dramatically increases execution time.

If a closer integration between the applets issuing bill requests as well as the wallet
were done no separate SM to the content provider would be necessary. Instead the
bank would inform the content provider once a bill has been paid and supply the
additional information about the wanted request from the content provider. By doing
this one less SM would be needed and a significant decrease in the total execution
time would be accomplished.

To ensure that if money has been withdrawn the billing party is informed,
transactions and logging should be used. Transaction works as in databases i.e. either
all operations are committed or none. This to ensure that money has not been
withdrawn without an SM being sent.

Execution time at the server side could be done much faster since today each update
of the database involves the writing of a file.

Since there is no message integrity except the one offered by the OTA layer, see
Table 2-2, this solution is only suitable for the payment of “small” amounts. An
extension using message integrity and authentication so all parts are sure whom they
are communicating with would have a impact on the amount of data sent and thus
increasing the total execution time. The most frustrating part is that there is a silent

Evaluation of architectures for the development of secure mobile applications

-3.3-65 -

interface i.e. no sort of progress bar so the user has no idea how much more time it
will take.

Future Work

No measurements with a high number of clients were made due to a couple of
reasons since a SIM card without subscription were used and the simulation
environment were run at the same machine it would not be possible to test the
performance in a good manner. If tests are to be run later one important aspect to
consider is to have the clients running on different machines since otherwise the
requests would be made in serial order and not in parallel.

One thing to investigate further is if there is any performance to gain in trying to do
compression of the data sent with SMs, since it is in the communication with SMs
that takes the most time. A possibility to reduce that time by a couple of percent
would have a much larger impact than improving the server performance or the
communication between the different servers.

First Impressions

It was fun to code Java Card applets since the programming were done on a much
lower level than you are custom to when you code ordinary Java applications, but at
the same time more burden must be carried by the programmer to write high
performing code. This since Java Card have very limited processing power and thus
it is imperative that the programmer really understands the hardware and what is
going on. It is also true for ordinary Java applications, but there it is much easier to
buy a little more memory or CPU power, which can’t be done for a Java Card.

In Java Card programming a much more through understanding is needed since e.g.
it is the programmer that must set the parameters used in the SM header him/herself.
This part is poorly documented in the Java card API regarding SIM Toolkit instead a
look at the ETSI specification is required. Not just the SM part, but also the other
parts of the SIM Toolkit are poorly documented in the API e.g. it is hard to
understand all of the proactive commands without prior knowledge of the SIM
Toolkit.

3.3.6 Development: problems, environment & time

Problems

When choosing to develop a new SIM Toolkit applet, the development environment
suggests a AID to use, but the problem is that the AID is suggested does not
conform to the standards regarding SIM Toolkit applets. The length of the suggested
AID was eight bytes but the standard says that a SIM Toolkit applet should have a
length of 16 bytes where bytes 13-15 is the TAR value for that applet. This led to
that getting hold of the SIO was impossible and it took a lot of time and
troubleshooting to find out that it was the suggested AID that was the problem.

One interesting thing was that after installing an applet and package and then

removing them the free memory available had diminished, even though it had
diminished with just a couple of bytes, but anyhow it had diminished. So if the

Evaluation of architectures for the development of secure mobile applications

-3.3-66 -

applets were installed and then removed repeatedly the card would finally run out of
memory.

Case3 Gemplus development environment is said to support breakpoints in the code
during debugging, but it was impossible to get this feature to work. Instead a scheme
of displaying a short value on the device screen was used to be able to trace the
program almost as using print statements in an ordinary Java program. But this
possibility to use print statements is only possible if it is a SIM Toolkit applet if it
instead was an ordinary applet some other scheme would have to be used.

Other problems that occurred was when development was moved from the
simulator to the real card, then the encryption stopped to function since a security
exception was thrown, which was solved with a little assistance from the thesis
supervisor Jesper Séderlund. The problem was that when a SIM Toolkit applet is
running the JCRE sees the selected applet as the GSM application i.e. the application
managing the communication with the phone as well as all the SIM Toolkit applets.
This led to that a security exception would be thrown if the cipher instance could not
be reached through a SIO depending on the parameters it was created with.

Development time and environment

Can feel unusual for an ordinary Java programmer to code Java Card applets since
most parts are done on a much lower level e.g. there are no Strings and no possibility
to use print statements etc. Also a much more thorough understanding of the JCVM
compared to the JVM is needed to develop good products due to e.g. to know how
the SIO works and so forth. One good thing with SIM Toolkit applets compared to
ordinary applets is the possibility to display information on the device screen and
thus having a possibility to trace the program. This is a possibility that is not available
for other types of applets even in simulated environments at least those that are
available for free from e.g. SUN. On the other hand there are no free environments
or tools for the development of SIM Toolkit applets at least not today.

As mentioned in the previous section First Impressions there is a rather high burden on
the Java programmer to teally think about what he/she is doing, e.g. the
implementation of garbage collection on a Java Card is only optional, ie. it is
imperative that the programmer knows what he/she is doing and on what type of
hardware the program will run.

The development environment used, GemXplore Case 3, consists of a couple of
separate programs and an add on to either BEA Visual Café or Jbuilder. The separate
programs are used to e.g. simulate a Java Card as well as the sending of SMs to and
from a simulated GSM phone. Case 3 is also said to support breakpoints in the code
during debugging a feature that never worked.

When it comes to downloading applets to the phone from Jbuilder a tool called
JCardManger was used there are a couple of downloading methods supported e.g.
download simulating the use of SMs. Most annoying was if several applets were to be
installed each applet AID and package ID had to be typed in manually and then
installed in turns instead of having a batch or makefile feature allowing several
applets to be installed “automatically”. Deleting applets were also cumbersome since
each AID and package ID to delete had to be entered manually instead of having a
feature of selecting among applets that were present on the card. When using one

Evaluation of architectures for the development of secure mobile applications

-3.3-67 -

type of installation method the AID and package ID was not needed to be typed in
manually, since then the old values that had been used were present in a dropdown
list. It was most certainly a bug that the dropdown list was not available for all the
different download methods.

The most tedious part when developing for Java Card was the amount of delete and
installs of applets that were needed. For example if a there are two applets A and B
where B depends on A e.g. B using a SIO of A. Then if a small change is needed to
be done to A first B has to be deleted then A and after that installing A and finally B
again. Here some sort of automatic or batch like procedure would be wanted since it
takes time and is extremely boring to do this especially during debugging when it has
to be done often.

Several different programs need to be used one to develop code, Jbuilder, one
extension to Jbuilder that handles the download and then finally a totally separated
program that handles the execution of the phone and the simulation environment.
All this should instead be integrated to one program since then it would be much
casier instead of having a lot of different applications running.

The user manual lacks a lot of information about the tools e.g. what different fields
are supposed to be used for and so forth, there are some references to
documentation that is installed on the local machine but not even that
documentation got all the details necessary.

It is hard work when something works in the simulator and not on the actual card
since it is difficult and cumbersome to debug and sometimes it feels frustrating not
to be able to look inside the device to see what is going on.

Error messages from the development environment was sometimes very poor e.g.
when trying to install an applet it once resulted in a error code, which just indicated
an unknown error leading to a lot of trial and error to find out what went wrong,.

Despite all problems mentioned there was just a couple of minor issues when
moving from a simulated card to a real card, which was very surprising since it
usually leads to a lot of problems.

One feature that was useful was the program to design the program flow by using
“boxes” e.g. for the sending of SMs, displaying menus, using branches and so forth.
After it had been designed the auto-generated code could be opened in Jbuilder and
turther developed there. One problem was that it was not possible to go back to the
design and do changes without removing everything that had been done in Jbuilder
1.e. just possible to do the major design once.

The overall experience when it comes to the use of GemXplore Case 3 it is a descent
program but not much more, this probably due to it is a very new technology leading
to error prone behavior until all bugs have been removed.

Evaluation of architectures for the development of secure mobile applications

- 3.4-068 -
3.4 Java in the Phone evaluation

3.4.1 Application Design

The application design is based on simple client-server architecture. The client side
consists of an application with the purpose to give the user the possibility to upgrade
a game. To be able to upgrade the game a connection and verification of the user
must be established with a server that have the ability to withdraw money from an
account where the user has money. The server will hereafter be referred to as the
wallet server or the server. Since the focus of this application lies on the client side
and the connection between the client side and the server side, the application design
on the server side has been made very simple. It consists only of one application that
handles the verification of the user and withdraws money from the uset’s account.
The wallet server could for example represent two things: firstly the user has an
account at the gaming company and has eatlier deposited money to this account. The
gaming company will then withdraw from this account (if balance is sufficient) when
the user wants to upgrade the game. Secondly the wallet server represents a bank.
The one responsible for the wallet server, gaming company or bank, will be referred
to as content provider.

The application has been divided into two cases: one without any crypto and one
with encryption and decryption of information sent between the client and the
server.

Scenarios for downloading the application:

In the case of no crypto, the application is downloaded without any special security
aspects.

In the case with encryption and decryption a special solution for the download of the
application must be chosen. The basic facts of the application are that it has to have
a unique identification number, a private key, a username and a password. The user
logs in at a secure web page hosted by the content provider. At the content provider
the user has an account with either deposited money or an account with a connection
to an Internet bank, so that it will be possible to withdraw money from that account.
When the user selects the download of a game also containing the application, an
identification number and a secret key is generated. These will then replace
predefined variables in the Java source code for the application; the altered source
code is compiled and put in a .jar file, a .jad file is also created. The identification
number and the secret key belonging to the user are saved. The user then downloads
the .jad file so that the phone can download the .jar file. When the user first runs the
application, the identification numbers appears, and the user can enter the
identification number at the server (at the page where the downloading begun). The
server will compare the identification number saved to the one that the user enters, if
they match then the identification number and the secret key are associated with the
user. By doing this, the content provider knows that it has received the correct
application.

This is a possible scenario but it has not been implemented. It is a description of how
it should be. The only thing that has been implemented is that the server has
associated an identification number with a user and a user’s private key.

Evaluation of architectures for the development of secure mobile applications

-3.4-69 -

3.4.2 Security Design

The security design is divided into two different scenarios, one where the client sends
the information to the wallet server in plain text and one where the client, and server,
encrypts the information using single DES before sending.

The reason for only using single DES was that single DES were used in the examples
that was found, and when it appeared that only single DES was used, it did not feel
important enough to investigate the possibility to change to 3DES.

For the DES encryption and decryption, classes from the Legion of the Bouncy
Castle [BOUO2] have been used. The organization has constructed a lightweight API
designed for J2ME. An example application from SUN [ENCO02] that uses the
lightweight API has also been used. The secret key used for encryption and
decryption consists of eight characters and is written in the Java source code.

3.4.3 Implementation and limitations

The client side consists of a MIDlet (a J2ME applet) that is responsible for the
graphical user interface (GUI) towards the user, the establishment of a connection
between the client and the server, and in the crypto case also responsible for
encryption and decryption of the data sent between the client and the server.

The server side consists of a servlet that runs on Tomcat (a free servlet engine). The
server receives information from the client and decrypts if necessary, it requests user
information that is stored on the server and validates the username and signing PIN.
The server then examines whether it is possible to withdraw money from the uset’s
account, whether money is withdrawn and information about the transaction is
printed out at the server. It would be possible here to save information about the
transaction and transfer money to another account, but to keep the server simple that
has not been implemented. The result is then sent back to the client, either encrypted
or in plain text. The client receives and processes the result, updates games if
transaction was successful and displays information about the result for the user.

Different servlets are used for plain text and encryption so that the servlets know
what information to expect. Different servlets will also be used during the evaluation
when altering the amount of data sent between the client and the server
(decrease/increase data).

1. User enters

2. The user sends information containing
—usgernarme and -

username, signing PIN, name of game —

sigangEN Java and armount of money to pay Content
. Phone Provider Server
5. Display 4. The server sends the result
result of the transaction

3. The server validates the
usename and signing PIN and
withdraw amount if possible

The structure for the information sent from the client to the server is the following:
variable#result#variable#result...etc. Where ‘#’ is used as a separation character so
that the server can easily extract the information it needs from the data received from
the client.

Evaluation of architectures for the development of secure mobile applications

-3.4-70 -

Example of a message: ‘username#peterl #PIN#0123#amount# 1 #game# Arkenoid’.
What the message means is that the user “peter]” has entered his PIN “0123” and
wants to pay $§1 to the game “Arkenoid”.

Upgrading a game

* Start the upgrade application.

¢ Read the information and enter username and PIN code into the text fields

* Press the button “upgrade”

* The application enters connection mode:

0]

0]

Changes graphical appearance, shows the text “Waiting”

Checks to see that the username and the PIN code have the correct
length.

Puts together the information that is to be sent.
Encrypts the information (in case of encryption)

Establishes a connection to the server and prepares for transfer of
information via POST.

Sending information to server.
Happens at the server:
* The information is read to a byte array.

* The following is done if encryption is used:

* The identification number is separated from the byte
array.

* With the identification number one retrieves user
information from an information structure (in this
case a Hashtable that contains objects of users).

e When it has the user information it can retrieve the
key that is associated with the user and has been used

to encrypt the information.

* The information is decrypted with the user’s key and
is transformed to a string.

* The string is separated into different parts of
information (array of strings).

* The following is done if no encryption is used:

Evaluation of architectures for the development of secure mobile applications

-3.4-71 -

* The byte array is transformed into a string.

* The string is separated into different parts of
information (array of strings).

* From the array of strings, the username is retrieved. The
username is used to retrieve user information from an
information structure (in this case a Hashtable that contains
objects of users).

* The username and the PIN code retrieved from the server are
compared to the username and the PIN code from the array
of strings (that the client has sent).

® [f they match, the users account is examined to see if there is
enough money left on the account (a variable in the user
object). If there is enough money, then the amount of money
specified in the information received from the client is
withdrawn (in this case $1).

* If everything has worked accordingly then the message
“Payment successful” is sent back to the client. (In case of
encryption the message is encrypted with the uset’s secret

key).
» [If anything fails an error message is sent back to the client.

0 The client reads the message from the server and examines the result.
In case of encryption the message is first checked to see that there is
nothing wrong and then decrypted with the user’s secret key. In case
of an error the error message will be in plain text.

e The result is shown on screen.

3.4.4 Evaluation

The most important aspects of the evaluation are the response time and security.
Time is important because the user does not want to wait long for the application to
finish its execution. If it takes too long the user will be bored and will not use it
again. The security issues are important since you want the payments to be
performed correctly and in a secure way.

Time estimation of the most contributing parts

The parts that were assumed to contribute the most to the total time were the
encryption and decryption of data and the transfer of data over GSM or GPRS.

The encryption and decryption of data should be time consuming since the
application needs to perform complex algorithms on the data to transform it and the
processing power of a mobile phone is much lower than of a PC. This means that
the encryption and decryption on the server will probably not contribute that much.

Evaluation of architectures for the development of secure mobile applications

-3.4-72 -

The transfer of data will probably contribute the most since it takes much time to
connect and to transfer the data [ROS02]. It will probably differ much in time
between using GSM or GPRS since GPRS connects faster and has a higher
bandwidth [TEL02].

Test bed

The structure for evaluating the time has been the following. The application has
been divided into different phases, so that it would be possible to see what phase
contributes the most to the total time. As part of the application there is a timer that
starts after the user has entered a username and a signing PIN and has pressed the
upgrade button. The timer starts with the first phase and for each new phase the
application calculates the time spent in the previous phase, this information is saved
in an array and printed out when the application is finished. The time is measured in
ms, but it is probably not accurate down to 1 ms, since the time is depending on the
processing power of the phone and that might not always be the same, some
variations may occut.

The applications that involved encryption have been divided into more phases than
the application with no encryption so it is possible to measure the time to encrypt
and decrypt. First, the phases of the application with no encryption will be described:
1. Put together the data to be sent.
2. Prepare the connection for sending data.
3. Send the data.
4. Receive the data.
For the applications using encryption:
1. Creation of the encryption object, used to encrypt and decrypt.
2. Put together the data to be sent.
3. Encrypt data.
4. Add identification number to the data.
5. Prepare the connection for sending data.
6. Send the data.
7. Receive the data.
8. Decrypt data.
Altering the data sent
In the case of encryption there are measurements with respect to the byte code sent

and received. The byte code has been changed to four different sizes. The different
measurements of the different sizes are hereafter referred to as CryptoShort, Crypto,

Evaluation of architectures for the development of secure mobile applications

-3.4-73 -

CryptoLong and CryptoExtrallong where Crypto is the original. The information
sent with Crypto is of the structure variable#result#variable#result...etc. With
CryptoShort the information has been decreased to only contain the results:
result#result...etc. CryptoLong and CryptoExtrallong contain the information sent
by Crypto repeated several times. The sizes in bytes of the information sent and
received by the different applications are shown in Table 3-13.

Table 3-13 Data sent from and to application (in bytes)

Sent Received | Total
NoCrypto 47 18 65
CryptoShort 34 8 42
Crypto 58 24 82
CryptoLong 202 64 266
CryptoExtraLong 770 96 866

No similar measurements were done for the non-encrypted application since the
focus was on the encrypted application.

Altering the transportation carrier

Before the application can send and receive information to and from the server it
needs to set up a connection with either GSM or GPRS. The difference between
them is that with GPRS you could always be connected and it is faster than GSM.

The first phone that was used in the testing was Siemens SL.451. It was one of the
first phones to have J2ME and therefore it does not have GPRS. An old phone also
often implies a lower processing power, which would probably lead to slower
execution of the Java applet. After using the SI.45i in the tests a first reaction was the
long response time of the application, too long to be acceptable. It was important to
evaluate some other alternative and therefore tests began on Siemens M50, which is a
more recent phone and with GPRS. By doing test with M50 it is possible to see the
impact on response time for using GPRS instead of GSM and using a newer phone.

GSM has a bit rate of 9.6 Kbps and GPRS has a bit rate depending on how many
timeslots the phone has. Siemens M50 has 4 timeslots when receiving (downloading),
which can give a bit rate of 32-40Kbps, and 1 timeslot when sending which give a bit
rate of 8-12Kbps. [GSMO03][GSWO03]

Results

Tests were done by running the applications five times or more, though most often
only five times. The tests are also done with the change of using GSM (Siemens
SL451) or GPRS (Siemens M50). Several statistical values were then calculated from
the results: maximum value, minimum value, average value, median value and
standard deviation.

Some tests were made to see the contribution from the server, decrypting and
processing information, but the results were so small, when processing it once, that
the contribution could be neglected and a more thorough investigation were
therefore not made.

Evaluation of architectures for the development of secure mobile applications

S3.4-74 -

Table 3-14 Time for the application NoCrypto in the GSM case

NoCrypto — GSM (time in ms)
Phase | Average Max Min Median | Std. Deviation
1 341 374 341 346 14
2 356 452 356 425 37
3 17777 18363 17777 18257 252
4 1033 1204 1033 1145 72
NoCrypto - GSM
20000
18000 5
16000
14000
g 12000 ¢ Average
o 10000 = Max
£ 8000 Min
6000
4000
2000 -
0 A n ; ;
0 1 2 3 4 5

Figure 3-25 Time for the application NoCrypto in the GSM case

Table 3-15 Time for the application NoCrypto in the GPRS case

NoCrypto - GPRS (time in ms)

Phase | Average Max Min Median | Std. Deviation
1 33 60 23 28 14
2 91 116 78 83 16
3 6175 9327 5303 5541 1488
4 76 96 69 74 8

Evaluation of architectures for the development of secure mobile applications

-3.4-75 -

10000

NoCrypto - GPRS

9000

8000

7000

6000
5000

*

Time (ms)

4000

3000

¢ Average
= Max
Min

2000

1000

Figure 3-26 Time for the application NoCrypto in the GPRS case

Table 3-16 Time for the application Crypto in the GSM case

Crypto - GSM (time in ms)

Phase | Average Max Min Median | Std. Deviation
1 5529 5588 5469 5551 55
2 129 130 129 129 1
3 2533 2561 2510 2534 19
4 186 189 180 185 4
5 626 669 591 618 32
6 34260 87635 18829 21538 29863
7 1821 2838 1136 1204 891
8 3326 3359 3276 3346 35

Evaluation of architectures for the development of secure mobile applications

-3.4-76 -

Crypto - GSM

100000

90000

80000

70000

60000

50000

Time (ms)

40000

30000

20000

10000

0 [At n "\

0 1 2 3 4 5 6 7

¢ Average
= Max
Min

Figure 3-27 Time for the application Crypto in the GSM case

Table 3-17 Time for the application Crypto in the GPRS case

Crypto - GPRS (time in ms)

Phase | Average Max Min Median | Std. Deviation
1 2966 2995 2908 2968 35
2 12 14 9 13 3
3 950 965 940 947 9
4 76 79 73 74 3
5 78 83 74 78 4
6 5465 5676 5363 5450 125
7 73 78 69 69 5
8 911 960 890 900 28

Evaluation of architectures for the development of secure mobile applications

S3.4-77 -

6000

5000

4000

Time (ms)
w
o
o
o

2000

1000

Crypto - GPRS

»n

¢ Average
= Max
Min

Figure 3-28 Time for the application Crypto in the GPRS case

Table 3-18 Time for the application CryptoShort in the GSM case

CryptoShort - GSM (time in ms)

Phase | Average Max Min Median | Std. Deviation
1 5735 5750 5708 5746 18
2 66 69 64 65 2
3 2166 2211 2137 2146 32
4 449 660 162 618 257
5 630 660 610 632 19
6 24230 36486 19125 21750 6958
7 1830 3064 1107 1136 978
8 2852 2861 2833 2857 11

Evaluation of architectures for the development of secure mobile applications

-3.4-78 -

40000

35000

30000

—~ 25000

20000

Time (ms

15000

10000

5000

CryptoShort - GSM

A

~ | em

¢ Average

= Max
Min

Figure 3-29 Time for the application CryptoShort in the GSM case

Table 3-19 Time for the application CryptoShort in the GPRS case

CryptoShort - GPRS (time in ms)

Phase | Average Max Min Median | Std. Deviation
1 2976 3000 2940 2981 22
2 9 10 9 9 0
3 836 845 830 831 8
4 73 74 69 73 2
5 82 93 78 79 6
6 5546 5976 5344 5427 269
7 67 79 47 70 13
8 788 803 775 789 10

Evaluation of architectures for the development of secure mobile applications

-3.4-79 -

7000

6000

5000

4000

Time (ms)

3000

2000

1000

CryptoShort - GPRS

* u

o Average
= Max
Min

I\

Figure 3-30 Time for the application CryptoShort in the GPRS case

Table 3-20 Time for the application CryptoLong in the GSM case

CryptoLong - GSM (time in ms)

Phase | Average Max Min Median | Std. Deviation
1 5747 5801 5688 5755 45
2 169 185 161 166 8
3 4932 4980 4860 4947 43
4 266 277 258 264 6
5 659 678 646 655 10
6 33782 54965 18142 24709 15411
7 1398 1440 1352 1384 38
8 4517 4546 4476 4518 22

Evaluation of architectures for the development of secure mobile applications

-3.4-80 -

60000

CryptoLong - GSM

50000

40000

30000

Time (ms)

20000 +

10000 -

A

¢ Average
= Max
Min

Figure 3-31 Time for the application CryptoLong in the GSM case

Table 3-21 Time for the application CryptoLong in the GPRS case

CryptoLong — GPRS (time in ms)
Std.

Phase | Average Max Min Median | Deviation
1 3015 3074 2976 2995 42
2 15 18 13 14 2
3 1698 1763 1670 1685 37
4 108 111 106 107 3
5 78 79 78 78 0
6 5737 5834 5653 5741 79
7 83 88 74 87 7
8 1182 1200 1167 1177 13

Evaluation of architectures for the development of secure mobile applications

-3.4-81 -

7000

6000

5000

4000

Time (ms)

3000

2000

1000

CryptoLong - GPRS

¢ Average
= Max
Min

Figure 3-32 Time for the application CryptoLong in the GPRS case

Table 3-22 Time for the application CryptoExtraLong in the GPRS case

CryptoExtraLong - GPRS (time in ms)

Phase | Average Max Min Median | Std. Deviation
1 2959 3009 2907 2956 36
2 74 74 73 74 0
3 4504 4513 | 4500 4502 5
4 224 235 221 222 5
5 75 79 74 74 2
6 7808 11482 6516 7070 1894
7 68 83 19 78 24
8 1374 1435 1320 1387 44
8 1374 1435 1320 1387 44

Evaluation of architectures for the development of secure mobile applications

-3.4-82 -

CryptoExtraLong - GPRS

14000

12000

10000

8000 'S ¢ Average
= Max
6000 Min

Time (ms)

4000

2000

Figure 3-33 Time for the application CryptoExtralong in the GPRS case

The largest contributor to the response time is, as predicted, the phase of
communication with the server. This can be seen in all diagrams since phase 3 (in the
no encryption results) and phase 6 (in the encryption results) represent the phase of
communication with the server. Another thing that can be noticed in general is that
the values for the communication with the server sometimes varies quite much, it is a
wide span between the max and the min values, especially in the GSM tests. Though
the span between the max value and the average value is often much bigger than
between the average value and the min value. The wide span leads to that the
standard deviation is high for these results and probably indicates that setting up a
connection and transferring data is not always so stable. A problem with the high
standard deviation is that it makes it more difficult to see connections between the
time and different parameters, since it is hard to say how much the time was at
random. It was of interest to produce mathematical values that were not so
dependent of the highest and lowest values as “average” was, and therefore median
value was produced.

The second assumption, that the encryption would also be a big contributor to the
total time turned out to be true. In the test with GSM, the connection with the server
is so time consuming that the encryption, at first glance, becomes only a minor part
of the total time. But in the test with GPRS, the encryption contributed quite much.
This was the first reaction of the results. To be able to view the relationship between
the time for the server communication and the time for encryption/decryption, the
total time for server communication and encryption/dectyption were calculated and
compared with the total time for the application, to be able to get a percentage how
they contribute. These results are shown in Table 3-23 and Table 3-24.

Table 3-23 Displays the total time in the GSM test as average and median and the percentage

in both cases of how much server communication and encryption/decryption contributes to
the total time.

Total time - GSM (time in ms)
Test Average | Server com | Crypto Median | Server com Crypto
NoCrypto 20191 95% - 20181 96% -

Evaluation of architectures for the development of secure mobile applications

-3.4-83 -

CryptoShort | 37938 69% 28% | 35961 64% 30%
Crypto 48581 74% 23% | 36537 62% 31%
CryptoLong | 51666 68% 29% | 42536 61% 36%

Table 3-24 Displays the total time in the GPRS test as average and median and the percentage
in both cases of how much server communication and encryption/decryption contributes to

the total time.

Total time - GPRS (time in ms)

Test Average | Server com | Crypto Median | Server com Crypto
NoCrypto 6496 96% - 5861 96% -
CryptoShort 10380 54% 44% 10610 52% 43%
Crypto 10644 52% 44% 10384 53% 46%
CryptoLong 12057 48% 50% 12008 49% 49%
CryptoExtral.ong 17239 46% 43% 16502 43% 54%
Total time - GSM
120000
100000 | [|
80000
a - @ Average
% 60000 ® Max
£ S [] * Min
40000 &
20000 Al
0 ‘ ‘ ‘ ‘
0 1 2 3 4 5
Figure 3-34 The total time for the different applications. 1 = NoCrypto, 2= Crypto,

3=CryptoShort, 4=CryptoLong.

Evaluation of architectures for the development of secure mobile applications

3.4-84 -

Total time - GPRS
25000
20000 .
&
’g 15000 & Average
2 A n A v
i 10000 . Min
o
5000
0 T
0 1 2 3 4 5 6

Figure 3-35 The total time for the different applications. 1 = NoCrypto, 2= Crypto,
3=CryptoShort, 4=CryptoLong, 5=CryptoExtraLong.

A problem arose when trying to perform the GSM test with CryptoExtral.ong, the
application tried for a long time to connect but the result ended in an exception. The
test was made several times but only once it worked, and it then took over 100s.

Interesting is also to see the difference between an older and a newer phone when it
comes to encryption.

Encryption and Decryption

16000
14000 -
12000

10000 - : :
@ Simens SL45i
8000 -

N m Siemens M50
6000 -
4000 |
2000 -
0

Crypto Crypto Crypto Crypto
Short Long Extra Long

Time (ms)

Figure 3-36 The time for encryption and decryption for the different amount of data with
respect to the two scenarios Siemens SL45i phone (GSM) and Siemens M50 phone (GPRS).

As can be seen in Figure 3-30, the result by using the newer phone, Siemens M50, is
a decrease in time by around 50 %. The change in time between CryptoShort and
Crypto is very small (and for Siemens M50 the Crypto case is faster, probably due to
low number of measurements), even though Crypto case contains almost twice the
amount of data. The time from encryption and decryption consists of the three
phases 1,3 and 8, and from Table 3-16 to Table 3-22 it is possible to see what phase
that is the most time consuming. For every case except CryptoExtral.ong, the phase
1 (creation of encryption/dectryption object) is the most time consuming and is also

Evaluation of architectures for the development of secure mobile applications

-3.4-85 -

not very dependent on the size of data. In case of optimization this is where one
should make the first effort.

Security evaluation

The application has been evaluated with respect to security, and the following issues
have been thought about:

* There is no solid defense mechanism against someone changing the
information that is sent on its way to the server since no sign of the
information is done. Though it is possible to visualize the cryptographic
solution that is used as some sort of sign, since the key is unique for the user,
but at the same time someone could figure out the key and then be able to
read encrypted information and send the information modified. In the
application only single DES with a 56-bit key is used, which is not so difficult
to crack if you have powerful processor resources [STAOO]. It would be
preferred to use triple DES with a larger key (128, 162, etc) to make it more
difficult to crack (find the secret key). Another approach of encryption
algorithms was to use RSA [RSA03] instead of DES, but the lightweight
crypto API [BOUO2] did not seem to support this; there were some support
but not the whole chain of encryption.

* There is no checking at the server that the same request is not performed
twice, i.e. the user was too fast to press the button so two requests have been
sent to the server and the server will then take care of and debits both. At the
same time this might not be important for this application. This could be
solved by giving the upgrade an ID that is being saved with the transaction at
the server. If the server would receive two payment requests with the same
ID, the last one would be ignored. If you still want to do the same upgrade
several times, you could also send the current time to compare at the server
and ignore requests that contains a timestamp that has already been used.
This will reduce the risk for a replay attack (if someone gets hold of one of
your messages and sends it over and over again).

* The application does not use any MAC to see that the message has not been
altered. (MAC, Message Authentication Code, is a symmetric cryptographic
transformation of data that provides data origin authentication and data
integrity). It would be good to have a MAC sum, but hard to implement since
the messages sent look different. To be able to use MAC one could only have
one game with one amount of money, which would be very narrow.

* The messages that are sent are quite similar, which could make it easier to
crack the key. This might be improved if some random text is inserted into
the message to make it vary more.

3.4.5 Evaluation Summary

The two most contributing phases are the communication with the server and the
encryption of data. In the case of using GSM for transport carrier the time for
communication with the server was the double of the time for encryption of data,
since GSM is a slow carrier, but for GPRS the time communication with the server

Evaluation of architectures for the development of secure mobile applications

-3.4-86 -

and the time for encryption of data were almost the same. For lower size of data the
communication with the server took longer time, but when the size of data was

increased substantially, the time to encrypt data was even longer (in the case of using
GPRS).

In case of encryption and decryption there is a big difference in time depending on
what phone that is used. Tests have been made with Siemens SI.45i and Siemens
M50 and the M50 turned out to be twice as fast as the SL45i. This indicates that
encryption/dectyption probably will be even faster with later phones since the
processing power is increasing, and the KVM will probably be more efficient.

Possible improvements

The two phases that contribute the most during the application execution period are
the communication with the server and the encryption/dectyption, so these phases
are to focus on when trying to decrease the execution time of the application. Both
phases are dependent on the data sent and received though there is not that big
different between Crypto and CryptoShort in execution time even though Crypto is
100% larger than CryptoShort (measured in data sent and received). The size is
probably acceptable to hold at the original (Crypto).

Looking at the phases separately, starting with the communication with the server, it
is quite clear that a good carrier is important, so the fastest connection should be
selected. In present time that carrier is GPRS, but in the future it could be interesting
to use 3G to speed up the connection. One problem with communication is that the
quality of the speed to transfer data and the time to get online is very stochastic and
varies quite a lot. This is not a problem that is in the hand of the developer, but
instead it is in the hand of the operators.

The other big time consuming phase is the encryption/dectyption and a possible
improvement could be to change the implementation of the algorithm. However the
implementation is probably already quite optimized.

Possible improvements regarding security are already discussed in Security
evaluation.

First Impressions

The main advantage with J2ME is that it is Java, so if one have experience of the
J2SE it is quite easy to understand the structure of this new technology. The
terminology is similar and some of the classes are the same as used in J2SE, though
many classes has been shrunken to a size more suitable for the smaller platform,
which leads to that the functionality is not as powerful as in J2SE. The basic
structure with an applet as an executing instance is good since applet is a well-known
concept, even for those who do not know Java programming.

J2ME is an established technology and there are therefore many development tools
and example applications. This is a great help, and makes it easier to get started,
when trying to learn how to write ones own applet. Since the documentation is so
extensive is should be quite easy even for someone who only has some or no
experience from Java.

Evaluation of architectures for the development of secure mobile applications

-3.4-87 -

3.4.6 Development: problems, environment & time

The basic set of development tools consists of a text editor, a J2ME compiler and an
emulator for MIDlets. All these things can also be included in an IDE. The software
that has been used in this project is a combination of different tools. An IDE named
Sun One Studio Mobile Edition has sometimes been used and some other times a
text editor TextPad together with the j2me complier and emulator Sun’s J2ME
Wireless Toolkit. In addition, other emulators have been used, both from Nokia and
from Siemens. SonyEricsson had different skins that could be imported into the
Wireless Toolkit.

Overall the development tools have been working satisfactorily, but as always with
emulators, they newer show a correct image of the real device. They always seem to
handle a lot more and a lot faster that the actual device. One advantage with the
Wireless Toolkit was that it was possible to adjust the capacity of the emulator (i.e.
set the amount of byte code that the emulator should be able to handle), by lowering
the amount of byte code one could get the emulator to emulate closer to the actual
device. Even if one would succeed in matching the level byte code, it is most likely
that the emulator still will not give a perfect image, but it will send you in the right
direction. Other advantages with the Wireless Toolkit are that it is possible to view
the memory use and network traffic. Emulators from Nokia and Siemens were also
used in the project and those emulators could give a more precise image of the actual
devices.

Since the emulators are not as good as one could expect, there is a need for testing
the application (in its different forms) on actual devices. The first device to test on
was SL45i Siemens, which was one of the first mobile phones with Java, which gave
the results that it is slower than later phones. Another disadvantage is that it does not
have GPRS, so the connection must be made over GSM instead, which makes it
slower to perform the transfer of information to the server. Later on there was
testing on M50 Siemens that has both Java and GPRS and is a quite new phone,
released in 2002. There was a big difference in execution time (including the
connection and transfer) between the M50 and SI.45i. The M50 was around three to
four times faster than the SI.45.

Problems

Some manufactures of mobile phones states that they support the MIDP 1.0, but it
turned out Siemens did not support a function called del et e(i nt itenNum
that belongs to the Form object that is part of MIDP 1.0. The other emulators did
not complain about the function, but the Siemens emulator turned itself off. When
the code was deployed at the Siemens SL45i, it caused the phone to sometimes turn
itself off, the other times it reported a memory error. This is a bit strange since the
idea of Java is that it is supposed to be encapsulated in a way that it protects the
phone from strange commands. Since neither the emulator nor the actual phone
could give any error messages containing interesting debug information, the method
trial-and-error had to be used.

It is often a problem with development tools for new technology that it is a long way

to perfection. They do not work as well as you would want them to and the
debugging is very limited.

Evaluation of architectures for the development of secure mobile applications

-3.5-88 -

Another error that occurred was a mistake in the writing of the code. To transfer
information, the method POST (instead of GET) is used. When you prepare the
connection for writing you must set the content length with the amount of data that
is to be transferred. The data that is to be transferred consist, in the case of
encryption, of the encrypted message, as a byte array, and the identification number,
also as a byte array. These arrays are merged together. The problem was that the
content length was set to the length of the encrypted message (in bytes) not the
length of the merged array. This might have been quite easy to find if it was not for
the fact that the Wireless Toolkit did not complain about this, it seemed to ignore the
size of content length and just transferred the data, and the same thing was with
some of the Nokia emulators. But one Nokia emulator and the Siemens emulatots
did not work propetly, since the transfer was cut off, leading to that the encrypted
message was cut off, since the identification number came first. When the encrypted
message was not complete it could not be decrypted. This is a good example of how
some of the emulators handle mote than the actual devices.

Time

It is quite easy to develop for J2ME and therefore the development time is rather
short, given prior experience of Java. Even if there where some problems with
development environment, they were mostly minor. One drawback however were
that the J2ME phones had to be borrowed from colleagues which slowed down the
evaluation.

3.5 WIB with Java Plug-In evaluation
3.5.1 Application Design

The main idea with this Wireless Wallet is that it should be able to be used without
one knowing directly who the user is. The advantage of having an anonymous user is
that the user can make a purchase, that may in some way be delicate, and therefore
the user doesn’t want the bank to know that the user has made that purchase. The
user has instead only some identification number, which could be the users MSISDN
number, and uses “anonymous” money, i.e. the user has in advance paid money to an
account and the only connection is the users MSISDN number. The user does not
have a specific account with money in the bank, only as a Wireless Wallet, the money
at the bank is shared by many users. The bank uses this money if a correct response
is sent back from the Wireless Wallet corresponding to a registered user. By doing so
it should be possible to do a purchase without the bank knowing the identification of
the user, just knowing that a user with approved MSISDN number or an
identification number wants to transfer money or pay a bill that has been checked
locally by the Wireless Wallet.

Use case: A purchase

A user enters a store and wishes to make a purchase. Instead of using cash or credit
card, the user enters his/hers MSISDN number or anonymous ID at a suitable
terminal (computer) that has received information of the purchase and the amount of
money. The terminal in the store, Content Provider, establishes contact with the
bank server and sends information that a certain ID (user) wished to pay a bill. The
bank checks that the user, of which it only knows the MSISDN number, is an

Evaluation of architectures for the development of secure mobile applications

-3.5-89 -

approved user, so that the purchase has the possibility to be accepted. If this is
fulfilled a request is sent to the user, with information about the purchase, that
activates the Wireless Wallet which checks if the user has a sufficient amount of
money left in the Wireless Wallet. If the user has enough money it asks the user if
he/she wishes to sign the purchase by entering the correct PIN code. If the user has
entered the correct PIN the amount is withdrawn from the Wireless Wallet and a
message is sent to the bank that the transaction was approved. The bank will then
transfer the amount from the “anonymous” money account to the Content Provider,
who will receive information of the success of the transaction.

3.5.2 Security Design

The security design is divided into two different scenarios, one where the client sends
the information to the wallet server in plain text and one where the client, and server,
encrypts the information using single DES before sending.

At the client side, classes from the packages javacardx.crypto and javacard.security
have been used to encrypt the data and a 24 bytes secret key, written in the Java
source code, has been used during the encryption.

The reason for using only single DES instead of 3DES is that it seemed that the Java
Cards from Oberthur did not support 3DES. The Java Cards development
environment did not accept source code that used 3DES.

For the DES decryption at the server, classes from the Legion of the Bouncy Castle
[BOUO2Z] have been used. When the bank server receives an encrypted response
from the client, it is looking up the secret key by using the users MSISDN number.

3.5.3 Implementation and limitations

The client side consists of a WIB implementation and a WIB plug-in that has been
downloaded onto a Java Card from Oberthur. The WIB plug-in is representing the
Wireless Wallet and consists of a SIM Toolkit applet that implements some interfaces
from Oberthur that are specific for a WIB plug-in. The client side is responsible to
receive an incoming request to sign a payment, as a wml page, call the Wireless
Wallet which checks that the balance is sufficient to be able to withdraw the money
requested.

The server side consists of html and jsp pages that run on a Tomcat server (a free
servlet engine). The server side is responsible to receive information from the user of
a purchase and send a request to the users phone. When the user has given a
response, that response will be decrypted (in case of encryption) and processed. If
successful, money will be transferred to the Content Provider.

Evaluation of architectures for the development of secure mobile applications

-3.5-90 -

2. Send information of purchase

to bank server
9 Display RMERERCar 8. The server sends the result | Bank Server
resylt of the transaction

7. Send back result g

- 1. Entering
purchase info

3. Send request

r[WB—]l‘_ 10 VWIB

8. Returns result
4 Call plug-in

Plug-in

5. The plug-in request a
signing PIN from the
user and if successful,
the amout is withdrawn

Figure 3-37 The process of making a purchase.

Use case: A purchase (more detailed)

* User enters and submits information about the purchase into a form (html

page).

* The information is received by the bank server (jsp page), that temporary
saves the information about the transaction (in a hashtable), this is to know
that when the response is received the bank will know it has sent it. The bank
then sends a wml page, containing information of the purchase and calling
the plug-in, to the user.

0 The user’s phone receives the wml page and displays information of
the purchase for the user (example: “Buy shoes for $157).

0 The WIB then calls the plug-in (Wireless Wallet) with information
about the transaction (amount, transaction ID, MSISDN number and
content provider). The plug-in checks that the balance is sufficient
and if so it asks the user if he/she wants to sign the deal or not
(example “Enter your PIN to sign”). If the user enters the correct
PIN then the amount is withdrawn from the plug-ins money and the
information about the transaction is encrypted and stored in a
variable in the WIB environment. The WIB copies the correct length
of that variable to a new variable so that it will only contain the
encrypted information. The WIB then makes a request to the same
jsp page as before with the encrypted information as a parameter (and
also with a second parameter telling the jsp page that this is a
returning request).

* The jsp page at the bank server receives the encrypted information. With the
help of the wuser’s MSISDN number the secret key wused for
encryption/decryption is found and the information is decrypted and the
different information parts (transaction ID, amount etc) are extracted. The

Evaluation of architectures for the development of secure mobile applications

-3.5-91 -

bank server checks whether the received transaction ID is among the
transactions saved on the server (in the Hashtable) and if so compares all the
information in the saved transaction with the received information to see that
it is correct. If everything seems to be in order money will be sent from the
anonymous account to the content provider (which is illustrated with writing
the information on the bank server screen).

Due to the problems with development (see 3.5.6), the information about the
transaction is not sent from the WIB to the plug-in, instead the information is
written in the source code for the plug-in.

3.5.4 Evaluation

The most important aspects of the evaluation are the response time and security.
Time is important because the user does not want to wait long for the application to
finish its execution. If it takes too long the user will be bored and will not use it
again. The security issues are important since you want the payments to be
performed correctly and in a secure way.

Time estimation of the most contributing parts

The parts that were assumed to contribute the most to the total time were the
encryption and decryption of data, the transfer of data by sending SMs and the user
interaction. The reason for using SMs as a carrier for the data is that this is the only
possible way to transport data with the WIB.

The encryption and decryption of data should be time consuming since the
application needs to perform complex algorithms on the data to transform it and the
processing power of a Java Card is much lower than of a PC. This means that the
encryption and decryption on the server will probably not contribute that much.

The transfer of data will probably contribute the most since it takes much time to
transfer the data via SMs. That is why newer technologies like GPRS were developed.

Even if the user interaction will probably be a large contributor, since the user has to
read information, interpreter it, enter PIN etc. the user is activated during the
process, and it will not feel time consuming for the user, but may be so for the
Content Provider.

Test bed

The use case “A purchase” has been divided into different phases, so that it will be
possible to see the time contributing factors. The phases are:

1. Content Provider communication with bank server: Time from
submitting information from Content Provider (pressing submit button),
including the processing at the bank server, to the point where the bank
server is going to push the wml page to the client.

2. Push wml page: Time from the bank server pushes the wml page, to when
the information is displayed on the users phone.

Evaluation of architectures for the development of secure mobile applications

-3.5-92 -

3. User interaction: Time from the information is displayed on the users
phone, including entering signing PIN and encryption of the data to send
back, to when the new balance is display on the users phone.

4. Sending response to bank server: Time from the balance is displayed on
the users phone to when the Content Provider receives the money (result is
displayed on the bank servers screen)

In addition to the different phases tests were made on encryption, but these tests
were made on a different Java Card from Oberthur (a test card without plug-in)
because of the problems with the plug-in cards. No tests were made on dectryption
on the card since this was not part of the application.

The application has been measured with a stopwatch from a SonyEricsson t68i
phone, which have an accuracy of one decimal (in seconds). The reason for using
t68i was that the phone was available. The phases have been measured individually
and also together to get the total time. The time starts when the current phase begins
and stops when it ends. Since the measurement of time has been made manually,
there is a lack of accuracy that lies between 0 and 300 ms. The accuracy was
calculated by trying to start and stop the stopwatch as fast as possible and that lied
around 0-300 ms.

For each test 11 measurements were done, since in the evaluation of the Java phone
it felt like a gap to only do around five measurements. An odd number were also
selected so that the median value did not have to be calculated between two
numbers.

Altering the size of data to be transferred

Size is one of the parameters that can be changed to see how it influenced the
execution time of the application. First the size of the wml page, which is sent to the
user, is tampered with. The original page, which is pushed, is 86 bytes and it was
decreased to 43 bytes and increased to 172 bytes.

In the phase of returning information about the purchase to the bank server, the
returning amount of data is increased (since the information sent as original only
contained crucial information, it could not be decreased) from 24 bytes to 56 bytes
and 127 bytes.

The size of data to be encrypted was also altered. From the original 24 bytes the size
of data was increased to 56 bytes and 120 bytes. The largest amount of data was
supposed to be 127 bytes since that was sent as a response to the bank server, but
due to some problems (the application did not want to encrypt 127 bytes), the size
was changed to 120 bytes.

Content Provider communication with bank setver

The first phase to be evaluated was from that point where the Content Provider had
entered information about the purchase and pressed the submit button to the time at
the bank server where the server is about to push. This also includes the processing
at the bank server, like saving the information about the transaction. The time before
submitting, i.e. just entering data has been neglected. The result from phase 1 can be

Evaluation of architectures for the development of secure mobile applications

-3.5-93 -
seen in Table 3-25. The measurement of phase 1 was quite difficult since the amount
of time is so small and the measurement was made manually.

Table 3-25 Displays the time for phase 1, which represent Content provider communication
with bank server and bank server execution before push.

Content provider communication with bank server and
bank server execution before push (time in ms)

Average | Max | Min Median | Std. Deviation
1100 | 1400 900 1000 150
Push wml page

The phase 2 is representing the push of the wml page from the bank server to the
display of the text on the phone. Since the push procedure involves sending SMs, it
will probably be a large part of the total time, so it is important to be evaluated.

As said before, the size of wml page was altered. First there was the original that
consisted of 86 bytes of byte code (after transformation from wml to byte code),
then a smaller page that consisted only of 43 bytes of byte code was sent. The smaller
page did not include a call to the plug-in, instead just some text that was displayed.
Finally tests were made with a larger wml page of 172 bytes of byte code that

consisted the original page plus some extra text. The result of the tests can be seen in
Table 3-26 and Figure 3-38.

Table 3-26 Displays the time to push a wml page from the bank server to the users phone.

Push wml paage (time in ms)
Bvtes | Averaae Max Min Median | Std. Deviation
43 6600 7700 5500 6700 800
86 8100 9300 6900 7900 800
172 16100 17700 | 14300 16500 1200
Push wml page
20000
15000 ,
g & Average
o 10000 ’ m Max
-E ’ Min
5000
0 T T T
0 50 100 150 200
Bytes to send

Figure 3-38 Displays the time of pushing a wml page from the bank server to the user’s phone
as a function of the byte code to send.

The connection between the time to push and the bytes to push does not seem to be
linear, instead it is a much larger change between 86 bytes and 172 bytes than

Evaluation of architectures for the development of secure mobile applications

-3.5-94 -

between 86 bytes and 43 bytes. This is probably because it only takes one SM to send
43 bytes and 86 bytes, but it takes two SMs to send 172 bytes. This information of
how many SM that are needed is taken from the program Transformer Pro [TRA02]
that was used to convert wml pages into byte code.

Sending two SMs, needed when pushing 172 bytes, takes too long (around 16 s) and
should therefore be avoided.

User interaction

The phase 3 is mainly representing the user interaction from the point when the
information is displayed on the users phone, including checking to see that the
balance is sufficient, asking the user to enter the signing PIN, validate the PIN,
withdraw money and encrypt the data to be sent back, to when the new balance is
displayed on the users phone. The result from phase 3 is showed in Table 3-27.

Table 3-27 User interaction (including encryption)

User interaction, including encryption (time in ms)
Average | Max | Min Median | Std. Deviation
6100 | 6800 | 5300 6100 500

The time for the user interaction is very dependent on how fast the user is to read
text and press buttons. It could easily be much longer if the user is slow. In these
tests the user has tried to be quite normal, maybe a little bit faster.

Sending response to bank server

In the last phase the encrypted bytes are copied, by the plug-in, to a variable in the
WIB environment and then sent to the server. The server looks up the users
MSISDN number to get the secret key belonging to the user and decrypts the
information. The information is checked against the saved transactions and if valid,
money is transferred to Content Provider (i.e. result is printed on the bank server
screen). When the result is printed, the time stops.

To be able to view the influence of size of the response time, the bytes to be sent
back with the parameter containing the encrypted text were increased from 24 bytes
to 56 and 127 bytes. However because of the problems with the plug-in, that it could
not be modified, the only change available was change in the wml page. So the
change was that the number of bytes copied from the variable that contained the
encrypted information from the plug-in was increased. This means that when
sending 56 bytes or 127 bytes (as parameter) only the first 24 bytes were encrypted.
The result of the tests can be seen in Table 3-28

Table 3-28 Sending response to bank server.

Sendina response to bank server (time in ms)

Bvtes | Averaae Max Min Median | Std. Deviation
24 7100 8000 6500 6900 500
56 7600 7900 7200 7500 200

127 13700 14400 | 12800 13700 500

Evaluation of architectures for the development of secure mobile applications

-3.5-95-

Sending response to bank server

16000
14000 - [
12000
10000 & Average
8000 - ' [, | B Max
6000 Min
4000
2000 -
0 ‘ ‘
0 50 100 150

Bytes to send

Time (ms)

Figure 3-39 Displays the time of sending the response to the bank server from the user’s
phone as a function of the byte code to send.

Encryption

The problems with the plug-in cards lead to that it was not possible to test
encryption on the application that was downloaded to the card (with plug-in). Instead
an ordinary Java Card applet was written and downloaded to a different Java Card
from Oberthur (a test card without plug-in) to test the encryption. Since the plug-in
only encrypted and not decrypted, decryption was not tested.

The tests were made by encrypting an array of bytes of different sizes, starting with
the original size of 24 bytes, increasing it to first 56 bytes then to 120 bytes. The goal
was to have 127 bytes instead of 120 bytes, but there was a problem with that, so the
size was chosen to be 120 bytes instead. Since the encryption time could be fast, the
tests had to iterate the encryption of the array several times. The number of iterations

depended on the size of the array, since it is much faster to encrypt 24 bytes than 120
bytes, and is displayed in Table 3-29.

Table 3-29 Number of iterations of encryption depending on the size of the bytes to encrypt.

Number of iterations

Bytes | Iterations
24 100
56 50
120 25

The test application first displayed “start” on the phone that was when the timing
began, and when it is finished it displayed “stop”. The results from the tests can be
seen in Table 3-30 and Figure 3-40 and are the results after the division with the
number of iteration. The total time (all iterations) was around 8 — 9 s for all tests.

Table 3-30 Encryption of different sizes.

Encryption (time in ms)
Bvtes | Averaae Max Min Median Std. Deviation
24 95 96 94 95 1

Evaluation of architectures for the development of secure mobile applications

-3.5-96 -

56 174 180 172 172 3
127 332 344 324 332 6
Encryption of data
400
350 N
. 300 -
g 250 - & Average
o 200 N m Max
e | .
= 150 Min
100 - Al
50
O T T
0 50 100 150
Bytes to encrypt

Figure 3-40 Displays the time as a function of the number of bytes to encrypt.

As seen in Figure 3-40 the time to encrypt data seems to be a linear function of the
bytes to encrypt. It is also visible that the time to encrypt data is very small, in some
cases even negligible.

Total time of execution

After the testing the different phases and the encryption, measurements were made
that covered the whole chain of processing, so that the total time of execution could
be calculated. The result is displayed in Table 3-31.

Table 3-31 Displays the total time of the application’s execution time, including the time for
user interaction.

Total execution (time in ms)
Bytes | Average Max Min Median | Std. Deviation
86/24 21700 23300 | 20700 21400 900

To be able to see how well the total time for execution matches the results from the
different phases, a table consisted of the sum of all phases was constructed, see Table
3-32. The values for the sum of the phases are somewhat higher than when
measurements were all put together, and the standard deviation is much higher than
for the sum of the phases. One of the reasons is probably that the measurements
have been done manually and for each measurement there is a possibility that the
timing was not correct. As said before the accuracy loss for making a manually
measurement were around 0-300 ms and for the sum of phases, which has three
more measurements that should be around 0-900 ms. If this value is withdrawn from
the values in Table 3-32 there is not much difference between the sum of phases and
the whole process measured at once.

Evaluation of architectures for the development of secure mobile applications

-3.5-97 -

Table 3-32 Displays the total time of the application’s execution time, when added the time
for all phases together.

Total execution, sum of all phases (time in ms)
Bytes | Average Max Min Median | Std. Deviation
86/24 22400 25400 | 20300 22500 1700

After calculating the total time, sum of all phases, it is interesting to see what phases
were the most time consuming. Each phase were divided with the total time to get
the phases’ percentage of the total time. These results are shown in Table 3-33 and
Figure 3-41.

Table 3-33 Shows the contribution percentage of the different phases.

Phases Time average (ms) | Percentage

Content Provider communication 1100 5%
Push wml 8100 36%
User interaction 6100 27%
Sending response to server 7100 32%
Total 22400 100%

Contribution to the total time

O Content Provider
communication

@ Push wml

O User interaction

O Sending response to
server

Figure 3-41 Displays the contribution from the different phases to the total time.

From Table 3-33 and Figure 3-41 it can be seen that the contribution between “Push
wml”, “User interaction” and “Sending response to server” is quite even, but the
push of wml to the phone is the largest contributor. The reason for this is that the
information sent with push is larger than when sending the response. If the push was
decreased to 43 bytes instead of the original 86 bytes, it would be faster than sending
response to server (see Table 3-20).

Server communication without uset interaction

To be able to compare some of the performance of the WIB plug-in with the Java
phone, the user interaction and the connection from the Content Provider is
removed. Remaining is the push of wml and the sending of response. Since the
encryption is part of the user interaction phase, it has to be added separately (even
though it does not contribute much).

Evaluation of architectures for the development of secure mobile applications

-3.5-98 -

Table 3-34 Displays the total time of the application’s execution time, when added the time
for all phases together.

Time for server communication (time in ms
Bytes | Average Max Min Median | Std. Deviation
86/24 15300 17300 | 14200 15500 1000

Security evaluation

There is no solid defense mechanism against someone changing the information that
is sent on its way to the server since no sign of the information is done. Though it is
possible to visualize the cryptographic solution that is used as some sort of sign,
since the key is unique for the user, but at the same time someone could figure out
the key and then be able to read encrypted information and send the information
modified.

The application uses single DES, which is much easier to crack than 3DES, however
the length of the key, 192 bits is acceptable [STA00].

There is a check at the server that an incoming response must belong to a request
sent before, and when a request has been handled, it is removed, to prevent the same
request being performed several times. In the present version there is no security
involved when adding a request, but that could be established, with RMI or some
safe connection.

The application does not use any MAC to see that the message has not been altered.
(MAC, Message Authentication Code, is a symmetric cryptographic transformation
of data that provides data origin authentication and data integrity). It would be good
to have a MAC sum, but hard to implement since the messages sent look different.
To be able to use MAC one could only have one game with one amount of money,
which would be very narrow.

The messages that are sent are quite similar, which could make it easier to crack the
key. This might be improved if some random text is inserted into the message to
make it vary more. However, if the text to encrypt is larger, it will take more time to
send, so it is a matter of security or performance.

One other security issue is the handling of the secret key. In this version, the secret
key is written in the code, but it would be better to have it initialized when the
application is downloaded onto the Java Card. It is important that the procedure for
downloading a plug-in applet is safe, so that it will not be possible for someone to
get hold of the applet and the secret key.

3.5.5 Evaluation Summary

Unfortunately there has not been the possibility to compare the plug-in using
encryption with a version of the plug-in that did not use encryption due to the
problems with the plug-in card. However it is possible to reflect on the issue based
on the information received in the tests.

The encryption test made on the Java Card (without plug-in) showed that the time to
encrypt data is linear with respect to the size of the data. The time to encrypt was

Evaluation of architectures for the development of secure mobile applications

-3.5-99 -

very small, so small that it could almost be neglected. So in respect of the encryption,
the difference is very small whether you chose encryption or not. The assumption
that the encryption would be a large contributor seemed to be wrong.

When it comes to sending the response back to the bank server the difference
between using encryption and not using encryption should not be big, since the only
difference is that the encrypted message is at the most seven bytes larger (this
because the encrypted message need to be even eight bytes). However if the
difference in sizes makes the encrypted message need an additional SM, there will be
a big difference in time, but that will not be the case here.

Therefore it is really a good reason to use encryption in the case with plug-in.

The other assumption that the user interaction and the communication with the
server would take long time, turned out to be true, where the communication with
the server is the most contributing part.

The communication with the server consists mainly of sending and receiving SMs
and the time for this is depending on how many SMs that is needed to be sent. The
time to send SMs is not linear, since it is a large step, when there is a need to send an
additional SM. However there are also changes in time within the range of a SM, so
there is an advantage of decreasing the size of message to send, even if you can’t
decrease the number of SMs. When increasing the bytes to send (in the original push
wml case) with 100%, so that it would need an additional SM, the time also increased
almost 100% (one SM in the original case, became two SMs in the increased case).
For the sending of the response to the server, the increase from 56 bytes to 127 bytes
(24 bytes was the original) lead to an almost 100% increase in time. The extra time
for sending an additional SM is around 6-8 s, but if the size would increase that much
in both directions that would mean an increase in time with 12-16 s, which is very
much.

Possible improvements

From a performance perspective the phases that could be decreased in time are the
user interaction and the communication with the bank server. The user interaction is
depending very much on the speed of the user, how fast the text is read and how fast
the buttons are pushed. However it is difficult to influence the user but it is possible
to decrease the user interaction by not showing the new balance. This is probably a
feature wanted by the user, so the user interaction will be left untouched.

With the communication with the server, there are possibilities to decrease the time
by decreasing the size of data to be sent, but not much can be done to decrease the
data to be sent as the response to the server, since it already only contains crucial
information. For the pushing of wml to the phone, optimizing can probably be done.
The original page contains wml in a structure with correct syntax, but it is possible to
achieve the same functionality with less code, even if the developer program may not
accept the code. The risk with this is that it may only work with some cards.

In the current application, the plug-in is not called with information about the
purchase; instead the information is already written in the source code. This is
something that must be implemented if the application is to be used, but could not

Evaluation of architectures for the development of secure mobile applications

- 3.5-100 -

be implemented now because of the problems with the plug-in card, but the API
from Oberthur has support for this.

With respect to security 3DES should be used instead of using single DES, since it is
harder to crack. The intention was to use 3DES, but it seemed that the Java Card
from Oberthur did not support this. However since there are other cards that
support 3DES, it will probably come in a later version. Another option would be to
use RSA instead of DES, which seemed to be possible, but that was never tried.

In the current design encryption is only used when sending the response back to the
server, but it could also be used when sending the information about the purchase to
the user.

First Impression

The first impression was that this use of Java was quite different from the platforms
one is familiar with. The development environment was different, with an unknown
IDE and a special plug-in. The documentation that came with the development
environment was not as detailed as one might have wanted, which made it harder to
get started. The documentation on the Internet with information about Java Card
and example applications is much smaller than of other Java platforms, for example
J2ME. Fortunately, for this evaluation, some example applications that were included
in the development environment made it possible to learn about the functionality I
wanted to use.

It was a challenge to program the Java Card since it feels like more low level
programming than ordinary Java, and since some functionality was missing.
Especially string operations (the class String does not exist) and advanced print out
functions (it is only possible to print an array of bytes) would have facilitated the
evaluation. The lack of functionality made the debugging of the code more
problematic.

3.5.6 Development: problems, environment & time

The development environment consists mainly of Oberthur products or products,
modules, from Oberthur integrated into other products. An IDE from WebGain
called VisualCafe is used for development of the Java Card applet. To this IDE
Oberthur has written a module so that it is possible to compile the source code of
the applets and convert them into a .cap file. The .cap file is used to download the
applet to the Java Card via a card reader and a program called ALM (Application
Loader and Manager) Server. In the IDE it is possible, to some extent, to debug the
Java Card applet via a mobile simulator that runs the applet. The mobile simulator
connects to different readers that could either contain a real card or be a simulated
card, as is the case when debugging the applet in the IDE. The advantages with the
simulated card are that it is easier to get an error message than running the applet on
a real card, and the procedure from compiling the code and running the applet is
faster than the procedure with downloading the applet onto the Java Card before
being able to run it.

The card used for the WIB plug-in is a special card from Oberthur. To be able to call
the plug-in from the WIB, classes from Oberthur are being used. For the plug-in

Evaluation of architectures for the development of secure mobile applications

-3.5-101 -

there is a converter environment, also from Oberthur, that is used to produce the
.cap file.

Problems

Even though Java Card has been around for a while, it is not as widely spread as
J2ME. The first impression after working with the development environment for
Java Card is that it has a long way to run until it can compare itself with the
development tools for J2SE or J2ME in functionality and ease of use.

The license for the development environment has been a test license which means
that no advanced support has been given, though for really difficult problems
support has been requested in this evaluation. The documentation for the tools has
not been as thorough as one might have whished. After the installation of the IDE,
example code was altered and was tried to be compiled and converted by the IDE.
This however did not work and instead the IDE reported that there was a
conversion problem and printed the error message “error=3". The documentation
had no information about what caused the error, which made it very difficult to
figure out what the problem was about. The answer to the solution was that the path
(for execution) to the program used for conversion was wrong, since the program
had been installed on another hard drive.

The Java Cards that came with the card reader had no note with the correct PIN to
the cards. So one could not know what the correct PIN was and there is a limitation
of only three attempts for entering the PIN for each card. Fortunately there was an
example application that had a simple PIN request and that PIN was 1111, that was

tested and was correct.

The IDE with the Oberthur plug-in is not always so stable, it is stuck quite often,
when run in debugging mode, and has to be restarted. When the IDE is stuck it may
be due to a corrupt file, but as the file had not been edited externally it probably
means that the IDE had made the file corrupt in some way (or at least allowed
changes in the file which lead to corruption).

There has also been a problem with trying to use cryptographic classes in the
simulator, but that works when downloaded to the card. More specifically there is
generated an exception when trying to call the static method getlnstance() belonging
to the class Cipher, that should return an object of the class Cipher that is later used
for encryption/decryption. The exception is probably generated because the
algorithm used, DES, might not be implemented in the simulating environment
[CIPO2].

To be able to get the shareable interface object to work, the applet that is going to be
shared needs to have an AID so that it can be identified and found by the other
applet. Even if an applet is not using the shareable interface it will still be assigned an
AID when downloaded to the card but in the case of shareable interface object the
AID and the length of the AID is very important. Unfortunately no example code
was supplied in the development environment, and almost no explanation of the
structure of the AID, so it was not obvious how it should be. The default length of
the AID was 12 characters which implies 6 bytes, but that had to be figured out.
Even if the length of the AID in the configuration file was correct there could be
wrong number of bytes in the source code, when trying to search for the applet with

Evaluation of architectures for the development of secure mobile applications

-3.5-102 -

the AID, since one did not know from the start the relationship between the
characters and the correct bytes. It finally worked when the relationship was
understood and the AID that was to be used in the example plug-in was with the
shareable interface application. The correct length that was used there was 32
characters, which implies 16 bytes. This development with the shareable interface
object was done with Java Cards from Oberthur that did not have WIB and therefore
could not be used for the plug-in development.

After the development with the ordinary Java Cards, the development with the plug-
in cards begun. At first a simple plug-in, that came with the development
environment from Oberthur, was downloaded to the card with the ALM server.
Then a wml page that calls the plug-in was downloaded to the card. The wml page is
later called by the WIB. This application worked fine. When calling the WIB and the
wml page, the plug-in is then called by the WIB. The plug-in was deleted from the
card with the ALM server. A minor change was made in the plug-in, change in what
it typed on screen, and thereafter the plug-in was tried to be downloaded again.
However this time it did not work. The ALM server generated the following error:
“Referenced package missing or AID of package different from the AID specified in
the CAP file”. What probably went wrong was that the DAP key that should be
entered in the ALM server application was forgotten (the DAP key was entered
when the first plug-in was downloaded). The ALM server does not warn one about
this DAP key, probably because the test Java Cards without plug-in functionality did
not need it. Different approaches were tried to be able to download the application
(neither the new nor the old application were able to be downloaded) like changing
the AID and the plug-in name (used to register within the WIB), but nothing
worked. Instead a new a new card had to be used. But since it could be possible that
one only had one chance of downloading the application onto the card, tests were
made with the normal Java Cards so that the application should work once
downloaded onto the plug-in card. When the development had reached a point
where the new application seemed to work, the application was downloaded onto the
plug-in card. This worked fine and the next step were to put a subscription onto the
card so that it would be possible to use the WIB and send SM. However, this did not
work. It neither worked on the card with the new application nor the old card where
the application had been removed. Though it worked on a plug-in card that had not
been tampered with, i.e. no plug-in had been downloaded.

Time

The time to develop for WIB with Java plug-in was quite long, probably at least 50 %
more than for the Java phone evaluation. But it could have been much shorter if
there had been some education from Oberthur (like a training course or something)
so that it would have been easier to get started, help with the development
environment would had been appreciated. Another big problem that slowed down
the development were the malfunction Java Cards.

Evaluation of architectures for the development of secure mobile applications

-4.1-103 -

4 Discussion/Analysis

4.1 Performance

4.11 WIB vs. Java Card

In the following paragraphs there is a comparison between the WIB and Java Card
regarding performance. First comes an overview of the total execution time then
comes a more detailed comparison of the different parts concerning performance.
Also the different environments used and experiences from the development are
analyzed in section 4.2 Development environment/ I earning threshold.

In Table 4-1 there is a comparison between the measurements made for the WIB and
Java Card see sections 3.2 WIB evaluation and 3.3 Java Card evaluation for the individual
measurements. WIB measurements have been normalized to the Java Card i.e. the
quotient WIB/(Java Catrd) have been taken for the median and average values. In the
normalized case the Java Card is faster if it is a value above 100 and vice versa if
slower. Because not just the relative difference between the two are important the
following subtraction WIB-(Java Card) was also made both for the average and
median values, i.e. a positive value means that the 3DES case takes that much more
time but a negative value means that the actions are performed faster.

Table 4-1 Comparison between WIB and Java Card execution time where the WIB is
normalized to Java Card also the real difference in ms is shown.

Comparison of execution time between the WIB and a Java Card for the stock analysis application

Normalised Real difference (ms)
Action WIB/Java Catd

Average Median Average Median
User interaction start app. 151 137 2742 1974
User interaction type in password 200 184 2363 2033
Time spent sending SM 3DES 193 192 21501 20911
Time spent sending SM plain text 166 160 15340 13650
Tot. time for transaction 3DES 173.70 166.82 24429 22199
Tot. time for transaction minus user interaction 3DES 176.17 174.83 19325 18788
Tot. time for transaction plain text 158.46 159.71 18797 19088
Tot. time for transaction minus user interaction plain text 154.65 154.60 13596 13332

From Table 4-1 and Figure 4-1 it can be seen that the Java Card is significantly faster
than the WIB when it concerns the total execution time. Looking at Table 4-1 it is
obvious that most of that difference in time comes from the sending of SMs see
Figure 4-2 for an illustration of that difference between the WIB and Java Card.

Evaluation of architectures for the development of secure mobile applications

- 4.1-104 -

Execution time

70000
60000
50000 +—
40000 +— oWIB

30000 - m Java card
20000 -
10000 +

Time ms

Tot. time Tot. Time Tot Time Tot. Time
3DES plain text 3DES minus plain text
Ul minus Ul

Figure 4-1 Comparison of the total execution time between the WIB and Java Card cases.

A closer look of the program flow is made e.g. from Figure 3-4 and Figure 3-17 it
can clearly be seen that more SMs are used in the communication between the phone
and the servers when the WIB is used. This comes from the fact that in the WIB case
all of the wallet logic is located at the bank server while in the Java Card case the
wallet logic is located on the SIM card. Java Card has the possibility to maintain a
state while the WIB is “stateless” and due to this much more can be performed
locally, which reduces the communication with the servers. For example in the WIB
version of the stock analysis program it must first request an analysis from the
content provider then the bank pushes a bill to the user to sign and then the user
sends the signed bill back to the bank, which in turn informs the content provider
that finally pushes the analysis to the user, see Figure 3-1. In the Java Card version
only three SMs are needed first the SM from the wallet to the bank informing it of
the transaction then the SM from the stock analysis program to the content provider
and finally the SM containing the analysis sent to the user, see Figure 3-15.

Evaluation of architectures for the development of secure mobile applications

-4.1-105 -

Time spent sending SM

50000
45000
40000
35000
30000
25000
20000
15000
10000 -

5000 -

mWIB
m Java card

Time ms

Send SM 3DES Send SM plain text

Figure 4-2 Comparison of time spent sending SMs between the WIB and Java Card case.
Much more time is spent sending SMs in the WIB case since more SMs are required due to
that the WIB is stateless, while the Java Card has the possibility to maintain a state.

As a more detailed comparison of the different encryption times are made it is quite
clear that when it comes to encryption on the SIM card the WIB is much faster than
the Java Card, see Figure 4-3. This is at least true for the cards used, since
performance vary among different WIB and Java Cards due to different SIM card
vendors and their implementations of both the WIB and JCRE as well as different
processors might be used on the SIM card. The huge difference probably comes
from the fact that Java Card encryption is implemented as code that is run on a
processor while the WIB card uses hardware optimised algorithms.

Evaluation of architectures for the development of secure mobile applications

- 4.1-106 -

Encryption Time

1600
1400
1200 -
1000
800
600 -
400
200 - .
0

10 60 150

owiB
m Java Card

Time ms

Number of bytes to encrypt

Figure 4-3 The time to encrypt a number of different bytes using either a Java Card or WIB
SIM Card.

When it comes to encryption on the server side looking at Figure 3-11 and Figure
3-24 it is quite clear that to do the encryption using security center takes almost 1 s
longer than using the Java crypto APL. Most of this time does not have to do with
the implementation of 3DES but rather with the fact that when using the security
center most of the time comes from network communication and the latencies
involved there. If a similar scheme with running the security center on the same
machine as the server wanting to use the service this difference would be removed.

4.1.2 Java Phone vs. WIB with Java Plug-In

Results

Tests were done by running the applications five times or more, though most often
only five times. The tests are also made with the change of using GSM (Siemens
SLL451) or GPRS (Siemens M50). Several statistical values were then calculated from
the results: maximum value, minimum value, average value, median value and
standard deviation.

The largest contributor to the response time is, as predicted, the phase of
communication with the server. This can be seen in tables Table 4-2 and Table 4-3
where the encryption has a proportion around 30% for the GSM phone and between
43-54% tor the GPRS phone. Even though the GPRS phone has a larger fraction of
the time spent in doing encryption the real time is even shorter than for the GSM
phone see Figure 4-7 for a comparison of the encryption time.

Evaluation of architectures for the development of secure mobile applications

-4.1-107 -

Table 4-2 Displays the total time in the GSM test as average and median and the percentage
in both cases of how much setver communication and encryption/decryption conttibutes to

the total time.

Total time - GSM (time in ms)

Test Average Server com Crypto Median Server com Crypto
NoCrypto 20191 95% - 20181 96% -
CryptoShort 37938 69% 28% 35961 64% 30%
Crypto 48581 74% 23% 36537 62% 31%
CryptoLong 51666 68% 29% 42536 61% 36%

Table 4-3 Displays the total time in the GPRS test as average and median and the percentage
in both cases of how much server communication and encryption/decryption contributes to

the total time.

Total time — GPRS (time in ms)

Test Average Server com Crypto Median Server com Crypto
NoCrypto 6496 96% - 5861 96% -
CryptoShort 10380 54% 44% 10610 52% 43%
Crypto 10644 52% 44% 10384 53% 46%
CryptoLong 12057 48% 50% 12008 49% 49%
CryptoExtralong 17239 46% 43% 16502 43% 54%

Another thing that can be noticed in general is that the standard deviation is much
higher for the GSM case than the GPRS case. The high standard deviation shown in
Figure 4-4 and Figure 4-5 probably indicates that setting up a connection and
transferring data is much slower and randomized as a dialed up connection is used
compared to a GPRS connection. A problem with the high standard deviation is that
it makes it more difficult to see the connections between the time and different

parameter S.
Total time - GSM
120000
100000 1 [|
80000
a - @ Average
£
= 60000 ® Max
'E ‘ - ‘ Min
40000 e
20000 A
0 , , , ,
0 1 2 3 4 5

Figure 4-4 Total execution time using GSM note the high standard deviation.

Evaluation of architectures for the development of secure mobile applications

-4.1-108 -

Total time - GPRS
25000
20000 |
*»
@ 15000 & Average
% Al ® Max
E 10000 o n n Min
»
5000
0 '
0 1 2 3 4 5 6
Figure 4-5 Total execution time using GPRS.
Total execution time
60000
50000
% 40000
£ mGPRS Phone
o 30000
c B GSM Phone
i= 20000 -
o !—I H
0 ‘
Plain 34 58 202 770
Text 47
Bytes to send

Figure 4-6 Comparison of the total execution time between using Siemens SL45i and a dialed
up GSM connection compared to a Siemens M50 which used GPRS for the communication.

The assumption made that the encryption would be a big contributor to the total
time turned out to be true. The time to which the encryption contributes varies
between 30-50% depending on whether a dialed up GSM- or GPRS-connection were
used for the communication. In the test with GSM, the connection with the server is
so time consuming that the encryption contributes with about 1/3 of the total time.
But in the test with GPRS, the encryption contributed much more around 45-50% of
the total time to be precise. Even though the encryption contributes much more to
the total time as GPRS is used, the time taken to encrypt actually is less, see Figure
4-7.

The large difference in encryption time that can be noted in Figure 4-7 is probably

due to the fact that the GPRS phone is much newer and thus has a better processor
as well as optimization that might have been implemented in the J2ME.

Evaluation of architectures for the development of secure mobile applications

-4.1-109 -

Table 4-4 Time taken both to encrypt a number of bytes either using a Siemens SL45i or a

Siemens M50.
Ordinary GSM phone Siemens SL45i used for encryption
Bytes Average Max Min Median Std. Deviation
34 2166 2211 2137 2146 32
58 2533 2561 2510 2534 19
202 4932 4980 4860 4947 43
GPRS enabled phone Siemens M50 used for encryption
Bytes Average Max Min Median Std. Deviation
34 836 845 830 831 8
58 950 965 940 947 9
202 1698 1763 1670 1685 37
770 4504 4513 4500 4502 5
Encryption Time (Avg.)
6000
5000
o 4000 -
E @ GPRS Phone
o 3000
£ B GSM Phone
= 2000
1000 -
0
34 58 202 770
Bytes to encrypt

Figure 4-7 Comparison of the encryption type when using different phones a newer Siemens
M50 (GPRS Phone) and an older Siemens SL45i (GSM Phone).

The encryption time for the WIB with Java plug-in is must faster than for the Java
phone.

Table 4-5 Encryption of different sizes for the WIB with Java plug-in.

Encryption (time in ms)

Bvtes | Averaae Max Min Median | Std. Deviation
24 95 96 94 95 1

56 174 180 172 172 3
127 332 344 324 332 6

As can be seen both from Table 4-6 and Figure 4-8 the time stays rather constant
instead of increasing linearly, due to this the conclusions could be drawn that
probably most of the transmission time comes from the setup of the connection at
least when it concerns sending such small number of bytes as has been done.

Evaluation of architectures for the development of secure mobile applications

-4.2-110 -
Also worth noting is that there is a much higher standard deviation for the dialed up
connection compared to the packet service used by GPRS see Table 4-6

Table 4-6 Time taken both to set up a connection and send the actual bytes, using GSM or
GPRS for the communication.

Ordinary GSM phone Siemens SL45i
Bytes Average Max Min Median Std. Deviation
34 24230 36486 19125 21750 6958
58 34260 87635 18829 21538 29863
202 33782 54965 18142 24709 15411
GPRS enabled phone Siemens M50
Bytes Average Max Min Median Std. Deviation
34 5546 5976 5344 5427 269
58 5465 5676 5363 5450 125
202 5737 5834 5653 5741 79
770 7808 11482 6516 7070 1894
Transmission time depending on the number of
bytes
30000
25000 +
» 20000 -
E @ GPRS Phone
o 15000 -
E m GSM Phone
i= 10000 -
5000 - ’_‘
0 T T T
34 58 202 770
Bytes to send

Figure 4-8 Transmission time and how it depends on the amount of data to send.

4.2 Development environment/Learning threshold

First there will be a comparison of the different development environments available
and then a part in general concerning the differences in developing for the two
architectures.

When developing the WIB there is a lot of freedom in using almost any freeware
tools such as Emacs, Ant (Another Neat Tool) and a web server like Tomcat running
on Linux. Some things are needed though that are not free: a simulator to simulate a
WIB phone, the software used to convert WML to byte code, software to download
the byte code to the SIM and finally the possibility to use a WIG server. The greatest
benefit is that the development can be made in an environment that the developer is
used to e.g. Jbuilder and JSP, Microsoft Visual and ASP, Emacs and php or any other
tool the developer might wishes to use.

Evaluation of architectures for the development of secure mobile applications

-4.2-111 -

Developing Java Card and WIB with Java plug-ins is not as free as developing for the
WIG when it comes to choosing the tools to use. There are freeware tools to
develop applets but those tools do not offer a good simulated environment that can
be used for debugging and are not focused on SIM Toolkit applets. Instead some
development kit must be bought from a card manufacturer, which many times
promotes proprietary APIs leading to non portable code i.e. applets only working on
the cards from the manufacturers. One thing that the development environments
had in common was that they were buggy, had a tendency to crash and were pootly
documented.

A developer could be arguing that it is more “fun” to code a Java Card applet than to
write a WIB application, but this is very individual and may vary between different
developers. If you are doing something that you feel like fun you do a much better
work.

When it comes to development for Java on the phone (J2ME) it is obvious that it is a
much more established technology than Java Card. Development environments are
very well adopted and are available for free both in the sense that the developer can
choose an environment that suits him/her is free of cost. The only thing that costs
money is to download the midlet OTA, but it is also possible to download the midlet
through a cable when it is connected to a computer. There are also a lot of emulators
available for free both from SUN as well as the different phone manufacturers.

But as always with emulators, they never show a correct image of the real device.
They always seem to handle a lot more and a lot faster than the actual device. One
advantage with the Wireless Toolkit was that it was possible to adjust the
capacity/petformance of emulated device (i.e. it was possible to set the amount of
byte code that the emulator should be able to handle). One other nice feature with
the Wireless Toolkit is the possibility to view both memory use and network traffic.

When it comes to learning threshold it goes much quicker to get started with the
WIB compared to WIB with Java plug-in and Java Card, even though the developer
does not have any previous knowledge of web server programming. On the contrary
the learning threshold feels a lot higher for the Java Card environment, since
everything is done at a much lower level than in the WIB case e.g. setting the bits in
the SM header, instead of just writing a go href as would be the case for the WIB. To
fully utilize the Java Card the programmer needs to learn SIM Toolkit commands on
a much more detailed level than is the case for the WIB where almost a basic
knowledge of web programming is all that is needed. This problem with low level
programming also occurred when WIB with Java plug-ins was used at least the part
that concerned the Java plug-ins.

The obstacles regarding the WIB mostly had to do with documents not being up to
date and settings on the WIG server or something similar e.g. whether the SIM card
used encryption. While developing for Java Card the problems had much more to do
with the development itself like problems of getting hold of SIO references and so
forth even though some problems arose from the development environment.

Problems that occurred during the development for Java on the phone primarily had
to do with the hardware since it said that it supported MIDP 1.0, which it apparently
did not do totally. Sometimes a bit more could be wanted from the tools when it
came to debugging, but still the tools available for debugging J2ME applets are much

Evaluation of architectures for the development of secure mobile applications

-4.2-112 -

better than those available for Java Card. If the developer has any previous
knowledge of Java programming it goes very quickly to get started do develop
applications for J2ME even though the developer may miss some of the features
available in J2SE, due to the reduction that has been made to J2ME. At the same
time the programming is made at a much higher level than is the case for Java Card,
very much due to the fact that the greater processor power allows a larger API that
simplifies the development compared to the microprocessor on the SIM card.

When a developer is stuck with a problem he/she can easily find relevant
information on the Internet e.g. examples of source code. J2ME comes way ahead of
the other technologies regarding both source code available as well as other forms of
written material, discussion forums and mailing lists. Then comes the WIB
information with the part that concerns web server programming, which is very well
documented or even better than J2ME. But when it comes to writing wml pages that
are accepted by the WIB/WIG SmartTrust documents are required and usually holds
are as good as could be required. Ordinary Java Card applets are not that well
documented due to a couple of reasons. It is both a new technology and rather few
developers are using it compared to other techniques. Especially there is not much
information available regarding STK (SIM Toolkit) applets that are used on SIM
cards. WIB with Java plug-ins is worse concerning available information, since it is a
very new and small technology hardly used anywhere at least yet, but the example
code that came with the development environment was satisfactory.

The documentation lacked a lot of details when it came to the development
environments used for Java Card and WIB with Java Plug-ins. On the other hand so
were the other development environments used were very much self-explanatory or
thorough documentation was easily available.

Evaluation of architectures for the development of secure mobile applications

-4.2-113 -

5 Future Work

There are numerous of things that could be looked upon e.g. in a real world service
there must be performance evaluations of the servers made in order to see how they
behave under a heavy load. This is important since mobile services are many times
offered to millions of subscribers. Changes are also needed if the Java Card service
was to be moved to a live environment, since now it only runs in a simulated
environment.

In the future there is a lot of interesting things coming such as the JSR that will allow
the midlet to communicate with the Java Card. This will allow an easier way for
midlets to authenticate themselves as well as adding extra security and “safe” storage.
This would be very interesting to investigate further and see what the possibilities
are.

Another interesting thing is that Microsoft has now started to ship software to run in
“smart phones”. Looking at history Microsoft has been neglecting security and
instead focused on customer appealing applications and ease of use. The telecom
market has on the other hand focused on reliability and security why it would be
interesting to compare their Symbian based phones with phones running the
Microsoft OS. This is especially interesting since it is likely that in the future most of
the services will be “smart phone” based instead of SIM card based.

Nowadays both mobile operators and phone manufacturers are moving the focus
more and more from the SIM card to the phone. Phone manufacturers are storing
more and more information in the phone such as phone numbers instead of storing
them on the SIM. Large mobile operators like Vodafone and Orange have started to
require customised phones from the manufacturers with special menus that are not
SIM based but reside in the phone [NYTO02]. It would be interesting to see how the
mobile operators look upon the SIM card in the future since today it is one of the
most strategic points where they have “total control” over the customer.

On the Internet there have been a real hype regarding web services why it could be
interesting to see if it would be possible to deploy the stock analysis service as a web
service. It would also be interesting to look upon how it is possible to offer web
services for mobile Internet users.

Many Java enabled smart cards are coming out especially in the form of credit cards
due to the increased security level that a smart card offers compared to just having a
magnetic strip on the card, also identification cards are coming as smart cards. One
interesting aspect in this area is whether SmartTrust’s in depth knowledge of SIM
cards also could be applied to other types of smart cards. At the same time it would
be interesting to see whether there will be a merge of different types of smart cards,
e.g. today each store has their own club card. An alternative solution to this approach
would be that the store installed an applet on a Java enabled ID or SIM card.

As more and more phones comes out that support WAP 2.0 the largest benefit with
the WIB is lost i.e. the possibility to achieve end-to-end security that was not possible
in WAP until the release of WAP 2.0 [IBM02]. Before WAP 2.0 the data were in
plain text for a short while in the WAP gateway during the translation between the

Evaluation of architectures for the development of secure mobile applications

S42-114 -

protocols used in the fixed and wireless “worlds”. This is probably the largest threat
to SIM based services since then it will be possible to get a secure and fast
communication using GPRS and 3G and thus eliminating most of the
communication time. This would have a large impact since in the case study approx.
1-3 s is spent in execution at the client and server side and the rest is made up of
communication of sending SMs. Worth mentioning though is that in the future other
transport mechanisms such as GPRS will be possible to use for the communication
with the SIM, but there is still a limitation for the use of pictures embedded in the
page to be shown [GSMO2].

This increased security in WAP 2.0 and the JSR allowing communication between
the SIM and the midlet looks as the most interesting issues to investigate further.

Evaluation of architectures for the development of secure mobile applications

-4.2-115 -

6 Conclusions

The idea was to have a Wireless Wallet as a framework for the evaluation, i.e. all
technologies were evaluated with this common denominator when the following
parameters were evaluated: communication, security features, performance,
development environment and learning threshold. For each of the architectures a
breakdown of the total execution time was made to be able to see how much the
different parts contributed to the total time. In addition to this breakdown of time
other aspects like encryption and communication performance were investigated in
detail.

When it comes to communication, the need and amount depend on both the
communication medium available for the architecture as well as the design choice.
All of the SIM card architectures uses SMS as the communication medium, but in the
future other transport mechanism such as GPRS could be used [GSMO02] and thus
increasing performance dramatically. But as it looks today Java with a GPRS enabled
phone stands out regarding communication. In section 3.2.4 Ewvaluation the
experiments showed that the sending of a SM took around 7-8 seconds per SM i.e. it
would take approx 40-50 seconds to transfer 770 bytes through the SM channel. To
do the same transmission using GPRS for the communication it only took around
one sixth of that time or around 7 seconds see 4.7.2 Java Phone.

All of the SIM cards offer the same security features as message authentication,
message integrity and encryption but when it comes to Java on the phone that has to
be implemented, since there is no support from the runtime environment. There are
free third party products like bouncy castle but that leads to an increase in code size.
One advantage with the Java Card is that information easily can be stored on the
client side, but this may at the same time by a disadvantage from a security point of
view. With the WIB you can be more certain that the user has not hacked the server,
since it is much easier to control than if someone has tampered his or her card. The
largest advantage with to the possibility to store information on the client side is to
reduce the communication with server side and this is very important at least when
such a slow communication medium as SM is used.

The performance between the different architectures Java on the phone is
outstanding regarding GUI capabilities since it easily can be programmed as desired,
while the SIM cards only can utilize the possibility with SIM toolkit to set up menus
and submenus used by the phone. One interesting fact is that the SIM cards
outperform Java on the phone when it comes to encryption even though the SIM
cards use 3DES and Java on the phone only single DES. For the WIB it takes
around 164 ms to encrypt 64 bytes while it takes 950 ms for Siemens M50 and 2533
ms for the Siemens SL45i to encrypt 58 bytes i.e. it almost takes 6 and 15 times
longer to do the encryption on the phone instead of doing it on the SIM card.

Looking at the different development environments available Java on the phone
could be considered a “winner” closely followed by the WIB since both these
technologies offer the most flexible and stable environments for the developer. It is
also possible to use just freeware tools compared to the development kits required
for both Java enabled SIM card and WIB with Java plug-ins. Most important
probably is the fact that the tools available are very well documented and there are a

Evaluation of architectures for the development of secure mobile applications

- 4.2-116 -

lot of them to choose among. The main drawback with Java enabled SIM cards and
WIB with Java plug-ins is that the tools have a tendency to crash and are poorly
documented. Card manufacturers also tend to promote their proprietary APIs
leading to non-portable applets.

The learning threshold depends very much on the background of the developer. One
thing that can be said for sure is that Learning threshold for Java Card and WIB with
Java plug-in is higher than for the other technologies primarily since the
programming is made on a much lower level than the other technologies. For Java
Card knowledge of GSM standards is desirable since e.g. the developer must know
the SM header. If some previous knowledge of Java is known then it goes very
quickly to get started to develop J2ME applets for a Java enabled phone. When it
comes to the WIB there is also a very low learning threshold and thus it goes quickly
to get started, since practically all that is required is some web server programming.

When it comes to choosing strategy there are a lot of issues to consider. If ease of
development is the most important aspect then the WIB is ideal. There is also short
development time and learning threshold for the WIB. The largest benefit from
using the Java Card compared to the WIB is that much more can be made locally and
thus limiting the communication needed. If looking at security both the WIB and
Java Card can offer a totally secure end-to-end communication including
authentication and message integrity. The main threats that can be seen are WAP2.0
and the convergence between J2ME in the phone and the Java Card since then it will
be possible to authenticate a user in quite an easy way using the SIM card. This
possibility with communication between a midlet and Java Card could be used in
many ways e.g. a game that only is allowed to be played for a number of times before
more money must be paid, where Java Card comes in as suitable place to store such a
counter.

It feels like there is no future for SIM based applications at least if the
communication is based on sending SMs since they are too slow and non interactive.
One important aspect not to forget is that the mobile operator does not just want to
give away such a strategic point where he/she is in “full control” of the customer.
Most beneficial from an operators perspective is to set up services as menu items in
the phone that “lead” the user in the “right” direction. Nowadays as mentioned in
section 5 Future Work, large operators are moving some material from the SIM to
customized menus that reside on the phone, together with preinstalled configurations
for GPRS. This has been made to increase the customers’ usage of different services.

It seems as the overall winner could be the WIB at least since it goes very easy and
quick to develop a service. One of the largest benefits of the WIB is that there is
practically no complexity on the client side so large changes can be made without
having to modify the client. On the other hand if Java on the phone is used there is a
large complexity also on the client side, which might make it difficult to do large
changes.

To summarize, if the service requires interactivity or more than just text then Java on
the phone has to be used today since the SIM cards evaluated does not support
GPRS as transmission medium yet. On the other hand if it is enough with SM
communication or if it is enough with a text based service also in future then it
would be enough looking at different versions of SIM based applications. A WIB

Evaluation of architectures for the development of secure mobile applications

-4.2-117 -

with Java plug-in sounds very attractive since then it would be possible to benefit
from both cases i.e. the possibilities to store data locally and the ease of development
that is associated with the WIB. One other drawback with Java Card is that an
application protocol must be made i.e. how to parse the information sent back and
forth in the SMs. With the WIB that is taken care of by the WIG server that
transforms the SM request to an ordinary http request which relieves the
programmer of a lot of extra work. If just the Java Card and WIB are compared a
decision must be made whether the extra work needed to develop for the Java Card
is acceptable compared to the less communication that might be needed. When it
comes to security all solutions using SIM cards offer the same advantages with
encryption and message authentication and the matter of choice does not really
matter.

Evaluation of architectures for the development of secure mobile applications

-4.2-118 -

7 Glossary

AID

APDU

CAD

CAP
details.

CHV

CDC

CLDC

DES

DF
EEPROM
EF

ESMS
ETSI
GPRS
GSM

J2ME

Applet Identifier, see 2.3.2 Java enabled Smart Cards for more details.

Application Protocol Data Unit, data/commands sent between a smartt
card and a card reader.

Card Accepting Device i.e. a card reader e.g. a phone.

Converted Applet File. see 2.3.2 Java enabled Smart Cards for more

Cardholder Verification numbet, i.e. 2 PIN code on the SIM card.

Connected Device Configuration, see Error! Reference source not
found. Error! Reference source not found. for more details.

Connected, Limited Device Configuration, see FError! Reference
source not found. Error! Reference source not found. for more
details.

Data Encryption Standard.

Dedicated File, a “directory” in a smart card files system.
Electrically Erasable Programmable Read-Only Memory.
Elementary file, a file in a smart card files system.
Enhanced Short Message Service.

European Telecommunications Standards Institute.
General Packet Radio Service.

Global System for Mobile Communication.

Java 2 Micro Edition, see Error! Reference source not found. Error!

Reference source not found. for more details.

JAM

Java application manager, see Error! Reference source not found.

Error! Reference source not found. for more details.

jcp
JCRE
JCVM
JSP

JSR

Java Community Process

Java Card Runtime Environment
Java Card Virtual Machine

Java Server Pages

Java Specification Requests

Evaluation of architectures for the development of secure mobile applications

JVM
ME
MF

MIDP

MIDlet
MSISDN

OTA

PIN

PIX

RID
RMI
ROM

RSA

SIM

SIO

SM
SMS
SMS-C
SSL
STM
STK
TAR
VM

WAP

-4.2-119 -
Java Virtual Machine
Mobile Equipment e.g. a phone.
Master File, the “root” file in a smart card files system.

Mobile Information Device Profile, see Error! Reference source not
found. Error! Reference source not found. for more details.

A MIDP application.
Mobile Subscriber International ISDN number, i.e. a phone number.

Over The Air, enabling administration of SIM cards over the air, see
2.3.5 Ower The Air (OTA) overview for further details.

Personal Identification Number.

Proprietary Identifier extension, see 2.3.2 Java enabled Smart Cards for
more details

Random Access Memory

Resource Identifier, see 2.3.2 Java enabled Smart Cards for more details
Remote Method Invocation

Read Only Memory

A public-key cryptosystem that offers both encryption and digital
signatures (authentication).

Subscriber Identity Module, smart card used in cellular phones.

Shareable Interface Object, used to share data in a secure way between
different executing contexts on a Java enabled smart card.

Short Message

Short Message Service

Short Message Service Center
Secure Socket Layer.

SIM Toolkit Message

SIM Toolkit

Toolkit Application Reference
Virtual Machine.

Wireless Application Protocol

Evaluation of architectures for the development of secure mobile applications

WIB

WIG

WML

-4.2-120 -

Wireless Internet Browser, Smarttrust developed SIM Browser. See
2.3.3 Wireless Internet Browser WIB SIM card for further details.

Wireless Internet Gateway, Smarttrust software used as an intermediate
between the WIB and a web server. See 2.3.3 Wireless Internet Browser
WIB SIM card for further details.

Wireless Mark-up Language

Evaluation of architectures for the development of secure mobile applications

-4.2-121 -

8 References

[CELO02]

[CHEO0]

[CON02]

[CMDO0]

[DAY01]

[EFF99)

[ENCO02]
[G+02]

[GSMO2]
[GSMO03]
[GSW03]

[GUT02]

[IBMO02]

[JACO02]

[JAV02]

[JCSO01]

JGU02|

[NYTO2]

http:/ /www.cellular.co.za/sim_toolkit.htm, June 2002

Zhiqun Chen, Java Card™ Technology for Smart Cards: Architecture and
Programmer's Guide Addison Wesley, June 2000. Chapter 3 and 9
available online at. http://developet.java.sun.com/developetr/Books/ -
consumerproducts/javacard/

http://java.sun.com/docs/books/tutorial /java/concepts/index.html

Java 2 Platform Micro Edition (]2ME) Technology for Creating Mobile Devices —
White Paper; 2000 SUN; http://wireless.java.sun.com/getstart/
articles/intro/

Developing Wireless Applications wusing the Java 2 Platform, Micro Edition,
Bill Day; http://witeless.java.sun.com/gestart/articles/wirelessdev/
wirelessdev.pdf; 2001 SUN

Efting Rankl, Swmart Card Handbook, Second edition Wiley 1999. ISBN:
0-471-98875-8

http:/ /witeless.java.sun.com/midp/ttips/dataencryp/

A training manual for the programming of Java Cards from GemPlus.
http:/ /www.gsmmobile.co.nz/Sim_Toolkit.htm
http://www.hiwap.it/hiwap/gprs/gprs2.htm

http:/ /www.gsmworld.com/technology/gprs/class.shtml

Guther, Scott & Cronin, Mary |, Mobile Applications programming with
SMS and SIM Toolkit. McGraw-Hill Telecom, 2002 ISBN: 0-07-
1337540-6

WAP 2.0 Securing the Internet without wires. Deborah Durham-Vichr &
Kimbertly Getgen available at: http://www-106.ibm.com/developet-
works/library/wi-sectrends/?dwzone=wireless

Site: http://www.javacard.org/ June 2002
http:/ /witeless.java.sun.com/getstart/

Java Card Platform Security. Sun Microsystem Technical White Paper
available at: http://java.sun.com/products/javacard/JavaCardSecurity-
WhitePaper.pdf

http:/ /www.jguru.com/faq/ Java Card FAQ

Ny Teknik 30 Okt

Evaluation of architectures for the development of secure mobile applications

[RSA03]

[STAOO]

[STI02]
[STW02]

[TELO02]

[TRA02]

[USTO2]

[WAG02]

-4.2-122 -
http:/ /www.tsasecurity.com/rsalabs/faq/3-1.html

Data & Computer Communications, 6ed, William Stallings; 2000 ISBN 0-
13-084370-9

SmartTrust material for education regarding WIG/WIB
http:/ /www.smarttrust.com/

http://privatbutiken.telia.se /butiken/main/main.jsprname=GPRS
&type=Sida

Transformer Pro is software from SmartTrust, that is used to check
that a wml page is correct and convert it into byte code.

http:/ /www.usatoday.com/life/cyber/tech/review/2001-06-05-
crypto-phone. htm

WIG Application Guidelines, SmartTrust document available for WIG
developers

Evaluation of architectures for the development of secure mobile applications

