
Preserving Integrity in

Telecommunication Networks Opened by

the Parlay Service Interface

Magnus Almkvist and Marcus Wahren

The Royal Institute of Technology, Stockholm, Sweden
Department of Microelectronics and Information Technology

2002.09.30

Preserving Integrity in

Telecommunication Networks Opened by

the Parlay Service Interface

Magnus Almkvist and Marcus Wahren
magnus@almkvist.net marcus@wahren.org

A thesis
presented at the Royal Institute of Technology

in fulfilment of the thesis requirements for

the degree of Master of Science in Electrical Engineering

Examiner Supervisor
Prof. G. Q. Maguire Jr. Karl-Gunnar Eklund
KTH/IMIT Skanova
Isafjordsgatan 39 Vitsandsgatan 9
SE-164 40 Kista SE-123 86 Farsta
maguire@it.kth.se karl-gunnar.b.eklund@skanova.com

This thesis is publicly available at:
ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS/

020930-Magnus-Almkvist-and-Marcus-Wahren.pdf

c© 2002 Magnus Almkvist and Marcus Wahren

Abstract

This Master’s Thesis in Electrical Engineering concerns the introduction of a
Parlay gateway in Skanova’s public circuit switched telephone network, what
network integrity problems this brings, and how to preserve the integrity of the
network.

There is a rising demand from the market on Skanova to be able to offer inte-
grated and useful services via their network. Examples of such services are Web
Controlled Call Forwarding and Virtual Call Centres. Until now, these services
have been implemented with the Intelligent Network concept which is a tech-
nology for concentrating the service logic in the telephone network to centralised
service platforms within the network operator’s domain. Developing new services
in this environment is expensive and therefore, Skanova wants to open the net-
work for third party service providers. The opening of the network is enabled by
the introduction of a gateway implementing the open service interface Parlay.

The crucial point when opening the network for third party service providers is
to maintain the integrity of the network. Parlay is an object oriented Application
Programming Interface that enables a third party service access to core network
resources in a controlled manner.

The authors’ definition of network integrity is: “the ability of a network to
steadily remain in a safe state, while performing according to the expectations
and specifications of its owner, i.e. delivering the expected functionality and
providing means to charge for utilised network resources”.

The thesis describes a few services implemented via the Parlay interface and
points out examples of activities in these services that may jeopardise the integrity
of the network. The described activities belong to one of the two categories: Call
Control Functionality or Lack of Charging Instruments.

The thesis also describes two important methods for addressing encountered
integrity problems. The methods are: Parlay Service Level Agreement and Policy
Management.

Finally, the solutions are compared and the conclusion is that Policy Man-
agement is a conformable and flexible method for addressing lots of integrity
problems and that these are important qualities, since new integrity problems
will arise all the time.

Keywords: Parlay API, network integrity, policy management, Parlay SLA,
PSTN, charging, telephony, telecommunication network, Parlay gateway, intelli-
gent network

v

Acknowledgements

We would like to thank our employer Kerstin Erlandsson and our supervisor
Karl-Gunnar Eklund for giving us the opportunity to do this thesis at Skanova
and for their kind help in all situations. We have gained a lot of knowledge about
telecommunication and service development. At Skanova we also would like to
thank Oscar Bravo for his valuable technical contribution, and Åke Hedevärn for
his good hints when writing this report.

Many thanks to Thomas Svensson at Incomit for his heavy commitment in
making us acquainted with the concept of Policy Management. We would also
like to thank Petter von Dolwitz at Appium for his willingness to answer our
questions.

Finally, we would like to show our sincere gratitude to our examiner Professor
G. Q. Maguire Jr., at the Royal Institute of Technology, for his valuable and
momentous comments on this report, as well as his exceptionally fast e-mail
replies.

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Problem Definition . 1
1.3 Method . 2
1.4 Limitations . 2

2 The Skanova Telephone Network 3
2.1 Telephone Network . 3

2.1.1 Fundamental Telephone Network Structure 3
2.1.2 Transmission Network . 4
2.1.3 Signalling Network . 5
2.1.4 Signalling in SS7 . 6

2.2 Intelligent Network . 8
2.3 Network Address Translator . 9
2.4 Charging . 11

3 Detaching Service Execution from Network 13
3.1 Service Execution Structure . 13

3.1.1 Distributed Service Execution 14
3.1.2 Multi Access Services . 16

3.2 Driving Forces . 16
3.2.1 Simplified Service Creation 16
3.2.2 Increased Network Value . 17
3.2.3 Convergence . 17

3.3 Endangered Network Integrity . 18

4 Parlay API 19
4.1 The Progress of Parlay API . 19
4.2 Distinctive Features . 19
4.3 The Parlay API Architecture . 20

4.3.1 Overview . 20
4.3.2 The Framework API . 21
4.3.3 The Call Control API . 24
4.3.4 The Niche APIs . 25

ix

5 Parlay Gateway Operation 29
5.1 Tasks of a Parlay Gateway . 29

5.1.1 Protocol Translation . 29
5.1.2 Preserving Network Integrity 29

5.2 Examples of Service Application Operation 30
5.2.1 The Click-to-dial Service . 31
5.2.2 Web Configured Call Forwarding Service 33

6 Network Integrity 35
6.1 The Necessity of Network Integrity 35
6.2 Definition of Network Integrity . 36

6.2.1 Integrity Attributes . 36
6.2.2 Our Definition of Network Integrity 40

6.3 Factors Reducing Network Integrity 41
6.3.1 Call Control Related Functionality Conflicting with its Spec-

ifications . 42
6.3.2 Lack of Charging . 42

6.4 Enforcing Network Integrity . 42

7 Identifying Integrity Issues 43
7.1 Examples of Service Applications 43

7.1.1 Common Entry Services . 44
7.1.2 Individual Entry Services 45
7.1.3 Application Initiated Services 46

7.2 Integrity Risks Related to Functionality 47
7.2.1 Call Control . 47
7.2.2 Charging . 50

7.3 Summary . 53

8 Managing Integrity Issues 55
8.1 Integrity Enforcement Model . 55
8.2 Tools in Parlay . 56

8.2.1 Service Level Agreements 56
8.2.2 Important Interface Classes 57
8.2.3 Connecting new Applications 60
8.2.4 Service Properties . 61
8.2.5 Modified Service Properties 64

8.3 Policy Management . 64
8.3.1 Background . 65
8.3.2 Policies . 65
8.3.3 Architecture . 65
8.3.4 The Network Policy Engine Complex 66
8.3.5 Example of Policy Engine Driven Execution 67
8.3.6 Integrity Issues to Address 68
8.3.7 Policy Rules . 68
8.3.8 Scalability . 69

8.4 Pros and Cons . 70
8.4.1 Parlay SLA . 70
8.4.2 Policy Management . 70

8.5 Integrity Management Conclusions 71

x

9 Conclusions 73
9.1 Conclusions Concerning Network Integrity Definition 73
9.2 Conclusions on Integrity Issues . 73
9.3 Recommendations for Maintaining Integrity 74
9.4 Future Work . 74

References 77

A Acronyms 81

xi

List of Figures

2.1 The hierarchy of the network . 4
2.2 The logical connections in ATM [Stallings, 2000] 5
2.3 The SS7 protocol stack . 5
2.4 The hierarchy of SS7 . 6
2.5 Simple call set-up via ISUP [ISUP, 2002] 7
2.6 The Intelligent Network concept 8
2.7 IN call with interactive service request 9
2.8 Number portability with ACQ . 10

3.1 The centralised service architecture 14
3.2 Distributed service execution . 15
3.3 Multi access service . 15
3.4 Service Logic Execution Environment, SLEE 16
3.5 Convergence of services . 17

4.1 The Parlay API Architecture . 21

5.1 The Parlay gateway and interacting components 30
5.2 Click-to-dial sequence diagram . 31
5.3 Web configured call forwarding sequence diagram 34

7.1 Web configurable call forwarding service 45
7.2 Call forwarding restrictions in the Directory Enquiries Service . . . 52

8.1 A policy rule . 65
8.2 Policy management architecture . 66
8.3 Policy engine driven execution . 67

xiii

List of Tables

7.1 Integrity issues per application . 53

8.1 Connecting new applications to the gateway 60

A.1 Acronyms . 82

xv

Chapter 1

Introduction

This report is the result of a thesis project forming the last part of the Master
of Science degree in Electrical Engineering at the Royal Institute of Technology
in Stockholm, Sweden. Our employer for the project is Skanova1.

1.1 Background

Skanova is the dominant telecommunication network provider in Sweden. They
offer telephone services with different degrees of refinement to telephone oper-
ators. The market continuously demands that new services are added to the
network. Implementing those new services in Skanova’s network is often time
consuming and complicated because new services need unique adaptations of the
network infrastructure. Therefore, Skanova has decided to add a new compo-
nent to their network, a Parlay gateway2 that is using the Parlay interface (see
section 4). The Parlay interface is a standardised and open application program-
ming interface. By separating the service logic from the switching logic, this
gateway will enable third party Application Service Providers (ASP) to develop
and add their own services to Skanova’s network (see section 3).

1.2 Problem Definition

The objective of this master’s thesis is to focus on the integrity problems that arise
when a public switched telephone network is opened up for third party service
access via a gateway implementing the Parlay interface. This is an important
issue that a telephone network operator should inquire into before implementing
a Parlay gateway in his network. To fulfil the objective the following issues must
be addressed:

• Determine different types of undesirable network states, requests or actions.

• Determine methods for preventing undesirable network states, requests or
actions.

• Determine how to handle charging in different situations.
1Skanova is a secondary name for Telia AB.
2Internally this gateway is named Systemaccess Parlay.

1

2 CHAPTER 1. INTRODUCTION

1.3 Method

To be able to solve the problem stated above the following programme was
adopted:

1. Define network integrity

2. Find different categories of integrity problems

3. Propose possible solutions to the problems in each category

4. Compare the solutions

These points will be accompanied by a number of descriptions of different
techniques (e.g. Parlay API, SS7, IN, policy management, etc.) that are neces-
sary to understand.

1.4 Limitations

Finding all integrity problems is a complex task since there is a considerable
number of areas where the network integrity could be harmed. We do not intend
to be complete with respect to integrity problems, or their solutions. Therefore
we state the following limitations:

• We will only analyse functional integrity problems related to the areas Call
Control and Charging.

• We will only give examples of categories of integrity problems. These ex-
amples will be based upon example services.

• Hardware related integrity problems are out of scope of this report.

• We will only study Parlay API version 3.0. There are newer versions3 which
possibly lead to other solutions.

• We will focus on the Parlay Generic Call Control API because this is the
only API currently supported by the Skanova network and it is used by
most service applications.

• We will only propose solutions based upon existing technologies.

• When recommending solutions, we will not take economic consideration.

3Parlay API version 4.0 is under development.

Chapter 2

The Skanova Telephone
Network

This chapter describes the systems that enable telephony and gives the reader
the technical prerequisites for understanding the Skanova telephone network in-
frastructure. If needed, we would like to call the readers attention to the list of
acronyms in appendix A.

2.1 Telephone Network

The telephone network consists of two main parts: the transmission and the
signalling network. The two networks are logically separate, but interconnected in
several nodes. The transmission network carries the voice data and the signalling
network is used for control communication between different network entities such
as exchanges and service entities. Throughout this report we will mean both the
signalling and the transmission network (the composition), when we are talking
about the telephone or telecommunication network.

2.1.1 Fundamental Telephone Network Structure

The telephone network is organised in a hierarchical structure. Please refer to
figure 2.1 on page 4. In Skanova’s network Sweden is divided into thirteen transit
areas, which constitutes the highest level of the structure. The transit areas are
interconnected via transit exchanges [Jarsjö, 1992].

The transit exchanges are Ericsson AXE stations [Rydqvist, 1987]. No sub-
scriber line accesses are connected to these exchanges. Instead, the transit
exchanges interconnect the transmission circuits coming from other transit ex-
changes and local exchanges (described below). The transit exchanges are able
to use the Intelligent Network Application Protocol (INAP), see section 2.1.4 on
page 7. Thus, the transit exchanges are Service Switching Points (SSP), because
they are able to communicate with service platforms in the network, so-called
Service Control Points (SCP). This is described more in detail in section 2.2.

To make the network reliable and redundant, all transit exchanges are organ-
ised in pairs and if one transit exchange fails, the other takes over. One transit
exchange serves one transit area which is divided into one or more numbering

3

4 CHAPTER 2. THE SKANOVA TELEPHONE NETWORK

Transit
area

SSP SSP
SSPSSP

To other
networks

NAT SCP

Service platforms

SCP

Transit
level

Local
level

Subscriber
accesses

Service
platforms

IN
A

P

IN
AP

Numbering
area

Local Exchange

Transit
Exchange

Figure 2.1: The hierarchy of the network

areas. However, there are exceptions from this in big cities where several transit
exchanges may serve one numbering area.

Below the transit level is the local level, which consists of local exchanges.
These are Ericsson AXE stations as well. All local exchanges in a transit area are
connected to same transit exchange serving that area. A numbering area is served
by one or more local exchanges. Closest to the subscribers, in the hierarchical
structure are, the subscriber access lines that are connected to the local exchange
[Hansson and Teglöf, 1985].

The local exchanges handle the logic for each subscriber access line. This
includes information about which telephone operator a subscriber access line
has, settings for supplementary services, etc. Charging information, Toll Tickets
(TT) [Valas, 1999], for outgoing calls are also generated here. These toll tickets
are utilised by post processing systems [Henström et al., 1992] and later used for
billing.

To connect Skanovas network with other networks such as fixed and mobile
networks and networks of other operators there exist special exchanges. Attention
has to be paid to ensure that these exchanges handle charging and signalling with
these other networks in a correct manner.

2.1.2 Transmission Network

The network carrying the voice data is called the transmission network. The
transmission network is currently based on circuit switching technology, which
implies that a dedicated path is set-up between communicating entities such as

2.1. TELEPHONE NETWORK 5

exchanges. The path set-up is transparent, as if the endpoints where directly
connected to each other.

The carrier medium is fibre and the transmission protocol is Asynchronous
Transfer Mode (ATM) [Stallings, 2000], which conveys the data in fixed-size pack-
ets called cells. Logical circuits in ATM are called Virtual Circuits (VC). The
VCs are organised as shown in figure 2.2. For each voice data connection, one
VC with a transmission capacity of 64 kbps is reserved. This ensures sufficiently
high quality for the call, but the path is rarely fully utilised.

Figure 2.2: The logical connections in ATM [Stallings, 2000]

2.1.3 Signalling Network

The signalling system, named Signalling System No 7 (SS7), in the telephone
network is logically separated from the transmission network. This implies that
the signalling traffic can be sent over any medium, e.g. the transmission net-
work in so-called Permanent Virtual Circuits (PVC). The communication in the
signalling system is packet switched and similar to the Internet, but with a com-
pletely different protocol stack (see figure 2.3) [Boman et al., 1992].

MTP

TCAP

ISUP

INAP
Application

Network

Data Link
Physical

Transport
Session

Presentation

SCCP

OSI Model SS7 Protocol Model

Figure 2.3: The SS7 protocol stack

The signalling system interconnects network entities such as exchanges, SSPs,
SCPs, etc. The signalling network is used for call-establishment, service control
functions, charging, routing, and information exchange functions in the network.

6 CHAPTER 2. THE SKANOVA TELEPHONE NETWORK

The signalling links are interconnected through Signalling Transfer Points (STP).
The STPs are packet switches for the SS7 network. They receive and route incom-
ing signalling messages to their destination. They also have routing functionality
such as load balancing, ability to determine new routes, etc.

The STPs are organised similar to the transmission network in a hierarchical
structure. On the transit level there are transit STPs and on the local level there
are local STPs. Below this level are the end points of the signalling network; they
are called Signal End Point (SP). Each SP is connected to two local STPs. All
local STPs are connected to two transit STPs. The transit STPs are organised
in two halves, right and left. All the STPs in one half are interconnected to each
other. Corresponding STPs in each half are interconnected via double links. The
links between the halves are only used as a last resort in case of fault or overload.
Figure 2.4 illustrates the structure of the signalling network.

Transit STPs

Local STPs

Signal end points

Right halfLeft half

Figure 2.4: The hierarchy of SS7

2.1.4 Signalling in SS7

The protocol stack used in the Signalling System No 7 is illustrated in figure 2.3
on page 5. It consists of several protocol levels that correspond to different levels
in the OSI model. It is designed to both facilitate functions for call set-up,
network management, and maintenance.

The Message Transfer Part (MTP) [Modarressi and Skoog, 1990] is the link-
layer protocol of SS7. It ensures that two signalling points can exchange messages
reliably. It has functions for error correction and flow control. MTP also imple-
ments some network-layer functionality such as node addressing, routing, and
congestion control (reconfiguration of the signalling network in case of conges-
tion or blockage).

The Signalling Connection Control Part (SCCP) [Boman et al., 1992] pro-
vides two major functions that MTP does not: the ability to address applications
within a signalling point and the ability to send other forms of messages than

2.1. TELEPHONE NETWORK 7

call set-up, i.e. messages for IN-services (IN stands for Intelligent Network, see
section 2.2). The SCCP protocol has mostly network-layer functionality.

The ISDN User Part (ISUP) [Modarressi and Skoog, 1990] provides the abil-
ity to set-up, manage, and release trunk circuits that carry voice and data. De-
spite its name ISUP is used both for ISDN and non-ISDN calls. The flow-chart
in figure 2.5 illustrates how ISUP is used to set-up a call.

1. The Initial Address Message (IAM) contains the dialled number and call
set-up information. It is sent to the called party.

2. The Address Complete Message (ACM) indicates that the called party
is available and that the voice circuit is reserved.

3. The Answer Message (ANM) is sent when the called party answers. It
initiates the generation of charging information.

4. The Release Message (REL) indicates that the circuit is released by
any party.

5. The Release Complete Message (RLC) confirms the Release Message
and terminates the charging process.

Figure 2.5: Simple call set-up via ISUP [ISUP, 2002]

The Transaction Capabilities Application Part (TCAP) corresponds to the
lower part of the application-layer [Modarressi and Skoog, 1990]. TCAP enables
applications to invoke procedures in another part of the network and exchange
the results. TCAP directly uses the functionalities that SCCP offers.

The Intelligent Network Application Protocol (INAP)[ETSI, 1994] provides
the means to perform high-level service related communication. It uses the SCCP
connectionless service as a transport protocol. For example, applications on an
SSP communicate via INAP with SCP applications to realise services. The mech-
anisms behind these services are described in section 2.2. The currently used ver-
sion of INAP in Skanovas network is called Capability Set 1 (CS1) [ETSI, 1994].
Within a few years, a more powerful capability set, CS2, will be implemented
in the signalling network. It will enable dynamic set-up and tear-down of multi-

8 CHAPTER 2. THE SKANOVA TELEPHONE NETWORK

party calls, telephone conferences, etc. Today such services can not be realised
with functions in the network. This results in work around that make call set-ups
that are inflexible and resource demanding, since they sometimes have to make
use of double transmission circuits, so-called tromboning.

2.2 Intelligent Network

The Intelligent Network (IN) [IN, 2002] is the current telecom approach to pro-
vide value-added services in the telecom network. The concept is to move the
service logic of the network from the switches to separate centralised platforms,
so-called SCPs (SCP), see figure 2.6.

SS7

SSPSSP

SCP

Transit
exchange

Transit
exchange

Local
exchanges

Local
exchanges

IN
AP

IN
A

P

IN-services
SCP

IN-services

Figure 2.6: The Intelligent Network concept

The IN-applications use the SS7 INAP protocol (see section 2.1.4) for com-
munication. This centralised structure, i.e. the transfer of service out of the
exchange, makes it simpler to implement and modify services. Since the intro-
duction of IN a range of new services have evolved. Examples of services are free
phone (the called party pays for the call), virtual call centres, number portability
(see section 2.3), voice mailboxes, etc. Figure 2.7 on page 9 shows an IN call
with an interactive service request.

2.3. NETWORK ADDRESS TRANSLATOR 9

User A
Local

exchange
User BSSP

Transit Exchange
SCP

Local
exchange

IAM
Setup

Setup ack IDP

CTR/P&C

ACM

Progress

Result: P&C

DFC/Connect

IAM

Setup

Setup ack

Alerting

Connect
ACM
ACM

CPG
ANMAlerting

Connect

Off-Hook &
Dialling

Connect to
Interactive
Service

Service
Connection

Service Connection Service
Lookup
Complete

Ring

Off-Hook

Ring Tone

Call
Connection

ISUP Messages
ACM: Address Complete Message
ANM: Answer Message
CPG: Call Progress Message
IAM: Initial Address Message

INAP Messages
CTR: Connect to Resource Connection:
DFC: Disconnect Forward Connection
IDP: InitialDP
P&C: Promt and Collect User Information Operation

Figure 2.7: IN call with interactive service request

2.3 Network Address Translator

Number portability gives subscribers the possibility to keep their telephone num-
bers when moving within the numbering area or changing network operator
[Albertsson, 2001]. Every subscriber number1 formally belongs to a geographical
area inside a certain numbering area. The network has a hierarchical structure
where the calls are routed to the destination via exchanges that are responsible
for different areas, and this is done by analysing the dialled subscriber number.

Some years ago number portability was not feasible because routing on the
dialled number was the only method of determining where to terminate the call.
Today number portability is enabled in Skanovas network via the Network Ad-
dress Translator (NAT) and All Call Query (ACQ) [Orava, 2001]. The NAT is
a SCP that contains a database with all ported subscriber numbers and a prefix

1By subscriber number we mean the ordinary number associated with a telephone subscrip-
tion at home or at a company without a Private Branch Exchange (PBX), i.e. a non-service
number.

10 CHAPTER 2. THE SKANOVA TELEPHONE NETWORK

pointing to the new exchange to which the ported number belongs. The NAT is
shown in figure 2.1 on page 4.

All numbers dialled have to be checked to see if they are ported to a new
exchange within the numbering area and this method is called ACQ. A query
(from a local or transit exchange) is addressed to the NAT via the INAP protocol.
Normally, only the transit exchanges and SCPs are able to communicate via
INAP. The local exchanges are, however, equipped with Light Weight INAP
(LW-INAP) [Albertsson, 2001] to be able to communicate with the NAT.

NAT

SSPSSP

Transit
exchange

Transit
exchange

Local
exchanges

Local
exchanges

Number

portation

Donating

Receiving

ACQ

Call
path

Caller

Subscription
moved within a
numbering area

Figure 2.8: Number portability with ACQ

To be able to know when a dialled number is complete and when to send
a query to the NAT the number length has to be known. The local exchange
has information about the number length for all number series in its own transit
area. For calls made between transit areas the number length is determined by
an analysis in the terminating transit exchange as illustrated in figure 2.8. This
implies that the local exchange has to do the query to the NAT for calls within
the transit area, and the terminating transit exchange for calls originating outside
the transit area.

Today it is only possible to port a subscriber number within a numbering
area because the same number (without the area code) may co-exist in several
numbering areas. Consequently, to be able to port a number outside a numbering
area, e.g. common number length has to be introduced for the whole country.
This is a complicated operation and will require a decree from The National Post
and Telecom Agency (PTS).

Using NAT it is also possible to port a subscriber number to a service number
(virtual call centres, free phone, premium rate service, etc.). In those cases,
NAT redirects the incoming and ported number to the SCP where the service is
implemented. At the SCP a decision is made where to direct the call.

2.4. CHARGING 11

2.4 Charging

One of the fundaments of operating a telephone network is to be able to charge
users for the resources used. The operator has to keep track of starting time,
duration of the call, resources utilised in the network, call origin, and destination.
The subscribers are charged in different ways by means of this information. The
following concepts are essential when handling charging.

Toll Tickets (TT) [Valas, 1999] are generated by and stored in the exchanges.
They contain call starting time, duration, number of caller, dialled number, and
also other information such as call forwarding (if any) and length indicator for
calling and called number. The TT is created when the dialled subscriber answers
and the voice path is established. When the call ends the TT is updated and
completed. If a call lasts for a period of more than five hours the current TT is
completed and a new TT is created for the same call, and so on. This guarantees
that not more than five hours of charging information is lost in case of a failure
and that very long calls are chargeable.

The stored TTs in the exchanges are regularly collected (every thirtieth
minute) by post processing systems. The post processing system analyses the TTs
and converts them into a standardised format called Call Data Record (CDR)
[Valas, 1999]. The CDRs are the basis for billing of subscribers.

Furnish Charging Information (FCI) [ETSI, 1994] is an INAP signal that can
be sent from an SCP to a SSP to make the exchange generate a TT. This is
useful for all calls that do not generate TTs in the local exchanges. Examples
are free phone and premium-rate calls. Those calls are examples of IN-services
and the TTs are generated in the transit exchanges instead.

Settlement of accounts is done between network operators to be able to charge
for network usage when one operator generates traffic in another operator’s net-
work. An example of this is when a call transits through a network, i.e. it neither
terminates nor originates in the network. How this settlement of accounts is done
is stated in bi-lateral contracts. The basic principle, though, is that the operator
generating the traffic is charged. The exchanges that interconnect the networks
of different operators keep track of transit traffic and generate charging data.

Chapter 3

Detaching Service
Execution from Network

The telephone networks originally were developed for establishing calls between
two parties. Nowadays the customers expect useful and sometimes complex ser-
vices from the network infrastructure. The emergence of Internet and mobile
phones has resulted in new types of service applications that make use of several
different media or networks, i.e., cross media services. This, in turn, will force
the telephone network operators to make use of, and offer cross media services.

3.1 Service Execution Structure

The role of the Public Switched Telephone Network (PSTN) has changed in the
last years. In the beginning the only service provided by those networks was con-
necting two calling parties. The first step in the direction of designing more useful
services was to introduce simple services like call forwarding. In the beginning
each service had to be implemented in every switch in the network. Maintaining
these services was not an easy task since it meant making simultaneous changes
in all switches in the network. Therefore the services could differ from one area
to another which was not desirable.

The solution to this problem was to centralise the execution of services in
the network at Service Control Points (SCP). This is illustrated in figure 3.1 on
page 14. Thus, the Intelligent Network (IN) was introduced and it was easier
to update services and introduce new ones. However, with the IN solution the
services are strongly connected and adapted to the IN platforms and therefore
the lead times1 are often long. Also see section 2.2 on this topic.

Lately the telephone networks have become a carrier of more complex ser-
vices and by this change the telephone networks have come nearer to the packet
switched networks. An example of a more complex service is a call forward-
ing service that is configurable via the Internet and routes a call to a certain
destination depending on the time of the day or on the number of the caller.

Today there is also a trend among companies consuming telephony services to
focus on the services offered via the network and the value they bring rather than

1The time from when a service is ordered until the service is delivered and operational.

13

14 CHAPTER 3. DETACHING SERVICE EXECUTION FROM NETWORK

SCP
IN-services

Figure 3.1: The centralised service architecture

focusing on owning the infrastructure. An example of this is that many compa-
nies subscribe to a virtual Private Branch Exchange (PBX) service instead of
buying and installing the real hardware in the company office. Also, as stated
in the example above, using the Internet in integrated services has become com-
mon. These cross media services encourage a complete separation of the service
execution from the telephone network, and doing this is indeed, the tendency of
today.

Consequently the two main service production structures of today are:

• Centralised service execution which means that the service is realised in
the network domain. This is the traditional way of realising services in
telephone networks. It provides limited flexibility since the service appli-
cation runs in an closed environment inside the network domain and is not
customisable from the outside. This structure will not be studied in more
detail in this report.

• Distributed service execution which means that the service is realised out-
side the network domain. This solution is more flexible, but on the other
hand it makes heavy demands on the integrity management of the network.
See chapter 6. This is the focus for the reminder of this report.

3.1.1 Distributed Service Execution

The functionality of the telephone network is controlled by the signalling system.
Thus services must interact with the signalling system to be able to make use of
all network resources. As long as the service logic is located inside the network
operator domain this will not introduce any problems because the interface to
the signalling system is well known and the components interacting with the
signalling system are trusted. This is the case with the IN and SCP solution.

To enable distributed service execution there has to be an interface through
which network resources can be accessed by the service applications. Network
resources could be methods for e.g. routing, authentication and billing. This
interface must have well defined methods that the service applications can use

3.1. SERVICE EXECUTION STRUCTURE 15

Gateway

Application
server

Application BApplication A

Parlay API

PSTN

Application
server

Application DApplication C

Figure 3.2: Distributed service execution

for triggering actions in the telephone network. However, the service can conse-
quently be produced in an application that executes on a platform outside the
network operator’s domain. The service applications and its platforms are not
always trusted. To have well defined methods for the communication between
the service application and the network the interface could be implemented as an
Application Programming Interface (API) on a gateway in the network (see sec-
tion 4). Such an API can provide controlled access to the network so that the ser-
vice application may use information from the network in critical decision-making
such as call routing. The API has to be open and standardised to facilitate con-
nection of service applications from different third party service providers. See
figure 3.2.

Message
service

InternetPSTN

Mobile

E-mail

Voice
message

Messages read
by voice

Figure 3.3: Multi access service

16 CHAPTER 3. DETACHING SERVICE EXECUTION FROM NETWORK

3.1.2 Multi Access Services

An important result of distributing service execution is the possibility to make
a certain service accessible via several different media. One general example,
that is illustrated in figure 3.3 on page 15, could be a message box where all
kinds of messages (voice messages from fixed and mobile phone, e-mail, fax, and
SMS) are stored. The user could access any message the way he wants. An
e-mail could be read by a synthetic voice or a voice message could be sent as
an e-mail, etc. The service, i.e. the message box, is exactly the same, but the
access form differs depending on the users choice of media. This also means that
all access networks taking part in the service must have some kind of gateway
with an open and standardised interface through which the service application
can control respective medium.

3.2 Driving Forces

This section will shed some light upon the driving forces behind the process of
distributing the service execution.

A
pp

lic
at

io
n

A

A
pp

lic
at

io
n

C

A
pp

lic
at

io
n

B

SLEE

Application
server

Gateway

Figure 3.4: Service Logic Execution Environment, SLEE

3.2.1 Simplified Service Creation

The separation of service production from the transmission network domain does
not only affect the service execution, it affects the whole life cycle of a service, i.e.,
design, construction, installation, delivery, operation, and maintenance. Moving
the service execution outside the network is therefore a step towards shorter
lead time, greater flexibility, and adaptability when developing and deploying
new services in the network. Via the standardised interface, freestanding ser-
vice providers may develop new and interesting services that easily can be dis-
tributed to the subscribers via the telephone network. Today, some companies2

are offering so-called application servers that can host several applications that

2Examples are Incomit (www.incomit.se) and Appium (www.appium.com).

3.2. DRIVING FORCES 17

execute different services. These servers often have a Service Logic Execution
Environment (SLEE)3 based architecture, that include already developed tools
and packages. This is shown in figure 3.4 on page 16. The service application
development time therefore becomes quicker with lead times of months instead
of years.

3.2.2 Increased Network Value

A network with moderately high traffic load is profitable and that is what the
network operator wants. Distributed service execution opens up the network
which leads to a simplified service creation process. Almost anyone with a good
idea of an useful service could implement it in a standard programming language.
This results in more services being added to the network. This includes both
large scale services and small niche services. By increasing the number of useful
services that are accessible via the telephone network the traffic and the value of
the network will increase.

Application
server

Application BApplication A

Parlay API

Application
server

Application DApplication C

IPPSTN WLANMobile

1 2 3

4 5 6

7 8 9

* 8 #

Figure 3.5: Convergence of services

3.2.3 Convergence

Another value driver for the service separation is convergence. Since the service
execution platform, the Application Server (AS), is completely separated from
the network it can serve more than one network as described in section 3.1.2.
This will lead to convergence between different networks. Even networks of dif-
ferent types (e.g. IP networks and PSTN networks) can converge since the same

3Please confer JAIN SLEE at http://jcp.org/aboutJava/communityprocess/first/jsr022/

18 CHAPTER 3. DETACHING SERVICE EXECUTION FROM NETWORK

services can be offered in the two networks. For example, both networks may
offer some kind of Internet configurable call forwarding. This means that the
PSTN network still can compete with e.g. IP telephony with respect to services.
Please refer to figure 3.5 on page 17. In addition, the services deployed on these
network independent platforms can offer interesting and useful services that com-
bine features from several different networks. Also the transition of subscribers
from PSTN to IP telephony becomes smoother when the same services are con-
nected to, and thus available to both networks. This is especially interesting
since IP telephony will likely replace the circuit switched telephony eventually.

3.3 Endangered Network Integrity

When the service execution is separated from the access medium the integrity of
the network may be harmed since some parts of the control of the network are
given to a possibly non-trusted service application provider via the API. This is a
“necessary evil” since some control has to be given to enable the service provider
to produce and execute services, but at the same time the network operator must
prevent the service provider from jeopardising the operation of the network. For
a complete definition and analysis of the integrity problem, please see section 6.

Chapter 4

Parlay API

This chapter contains descriptions of the Parlay framework and service APIs and
general concepts associated with them. The aim is to introduce different concepts
and techniques to help the reader understand the discussions of different topics
later in the report.

4.1 The Progress of Parlay API

The Parlay Group [Parlay Group, 2002] appeared in 1998 when the companies
British Telecom, Microsoft, Nortel Networks, Siemens, and Ulticom joined their
forces. Their aim was to define a set of Application Programming Interfaces
(APIs) that support applications outside the secure network operator domain.
The initial development was focused on call control, messaging, and security.

Until then the network operators jointly with network equipment manufactur-
ers had designed, developed, deployed, and administrated the service applications
in the network. Managing services was an inflexible and expensive process and
therefore short-lived or niche service applications were considered commercially
unfeasible by the network operators. Thus, the Parlay APIs opened up the net-
work for third party service providers outside the domain of the network operator.
By giving access to core network capabilities the development and deployment
of new service applications on the network is facilitated.

The Parlay Group has expanded and today there are 19 companies that are
full members. They regularly publish the technology independent specifications
that define the set of interfaces constituting the Parlay APIs, i.e., the methods,
events, parameters and their semantics. At the time of the writing of this report
the latest Parlay version is 3.2, but in this report we describe the Parlay version
3.0 as this is the version we have analysed.

4.2 Distinctive Features

Parlay is an open Application Programming Interface (API) to telecommunica-
tion protocols such as INAP, ISUP, and SIP [Handley et al., 1999]. It facilitates
an easy-to-learn interface that has schemes for naming, security, etc. The API is
specified with the Unified Modelling Language (UML) [UML, 2002]. This means

19

20 CHAPTER 4. PARLAY API

that the API not bound to any particular programming language or architec-
ture. The specification is also open and is available from the Parlay Group
[Parlay Group, 2002].

The Parlay API abstracts network resources. Therefore there has to be a
Parlay gateway translating Parlay API method calls into commands understood
by the network. Please see chapter 3 for more on this topic.

The most important and distinctive features of the Parlay API are illustrated
in the list below [Appium, 2002]:

• The network resources are independent. This means that resources avail-
able to a third party application via the API and the gateway do not need
be part of the same underlying network or domain. Resources may very
well derive from several different networks or any other type of suitable
infrastructure.

• Secure access of third parties guarantees that no third party application
connects to and gains access to the network (or other) resources without
authorisation.

• Distributed architecture implies that the applications and the resources
can reside in physically separated parts. The API could be used with any
common technique for distributed systems such as CORBA [Corba, 2002]
or RMI [RMI, 2002].

• The design is object oriented which makes it suitable for connecting ap-
plications based on object oriented languages such as Java [Java, 2002] or
C++ [CPP, 2002].

• The API is manageable which means that the use of network resources can
be limited by the network operator. An example of this is so called Service
Properties. Please see section 8.2.4.

• The API is extensible. The object oriented architecture makes it easy to
add and remove resources. This is facilitated via a discovery functionality.
The third party applications are informed about the network resources1

offered via the Parlay gateway.

4.3 The Parlay API Architecture

This section will describe the logical architecture of Parlay. The most important
entities and their interfaces will be illustrated.

4.3.1 Overview

An API is a set of rules for writing subroutine calls that access functions. Pro-
grams that use these rules or functions in their API calls can communicate with
each other using the API.

The applications deployed on third party Application Servers (AS), use re-
sources defined in Parlay. Those resources are offered by Service Capability

1The network resources are called services in the specification of the Parlay API.

4.3. THE PARLAY API ARCHITECTURE 21

Application service
provider domain

Network operator
domain

Framework

Application

Service

Network

1 2

3

4

1: Framework to Application interface
2: Service to Application interface
3: Framework to Service interface
4: Network interface (not in scope of Parlay)

Figure 4.1: The Parlay API Architecture

Servers (SCS)2 and provided to applications via the Parlay API on the Parlay
gateway. The SCS implements the server side and the application implements the
client side of the API. The SCSs interact with core network resources such as Ser-
vice Switching Points (SSP), exchanges, etc. The resources themselves, provided
to the applications via SCSs, are called Service Capability Features (SCF).

The Parlay API defines several categories of object-oriented interfaces on both
the network side and the client application side of the API. These interfaces are
illustrated in figure 4.1 on page 21. Each interface consists of a number of methods
and they have several parameters that can be set. On the client application,
the interfaces are call-back methods that are called from the network during a
Parlay session. The strength of the API approach (for example, over database
lookup interfaces) is that by defining a secure real-time interface there is a distinct
boundary between the network operator and the third party application provider
[Beddus et al., 2000].

Parlay is a very broad API covering a variety area of resources and services.
This could be a drawback since many of the included APIs have never been
realised in practice, i.e. there are no implementations. That is especially the
situation for the second half of the APIs in section 4.3.4. Therefore, of all inter-
faces provided in the Parlay API we have centred our attention on the two most
important categories since they are relevant to this report. That is the Parlay
framework API and the Call control API.

4.3.2 The Framework API

The Parlay framework API provides the requisite surrounding capabilities for the
Parlay service APIs to be open, resilient, secure, and manageable. The Parlay
framework provides functionality that is common to all categories of SCFs, i.e.,
independent of the service type.

2This is a term used in the specification of Parlay API.

22 CHAPTER 4. PARLAY API

Interfaces between Application and Framework

The following parts form the API between the application and the framework.

Authentication
The application must be authenticated before it is allowed to use any of the other
interfaces of the Parlay API and until this is done, any application-initiated in-
vocation of an operation will fail. The application must have a reference to the
Parlay framework it wants to access. This reference could be gained through an
object reference in form of a string, a URL, etc. The reference is used to initiate
the authentication process.

Authentication process is based on a peer-to-peer model. Cryptographic pro-
cesses and digital signatures may support the authentication that need not be
mutual. Thus, it is mandatory that the Parlay framework authenticates the ap-
plication, but it is optional for the application to authenticate the Parlay frame-
work.

At any time during the Parlay session, either side can request a re-authorisation
(that need not be mutual).

Authorisation
The authorisation determines what a previously authenticated application is al-
lowed to do, e.g., which SCFs it may access. In order to use a Service Capability
Feature the application must establish and digitally sign a Service Level Agree-
ment (SLA).

Discovery of Service Capability Features
The discovery interface may be used at any time after successful authentication.
An application that wants to discover new SCFs uses the discovery interface in
a three-step process:

1. Determine all service types that are supported by the Parlay framework

2. Determine the properties of a specified service type

3. Obtain a list of all SCFs of a specified service type and fulfilling the specified
properties

Note that after authorisation from the Parlay framework the applications ac-
cess the SCFs directly via references gained from the Parlay framework.

Establishment of Service Level Agreement
In this phase the conditions under which an application is allowed to use network
SCFs are established. A SLA is a business level transaction where the Applica-
tion Service Provider (ASP) agrees upon terms of use of a SCF with the Parlay
framework provider. SLAs can be reached using either on-line or off-line mecha-
nisms. The application has to sign the on-line part of the Service level agreement
before it can access any SCF. The off-line part may be a exchange of control
documents and input of parameters via a management system.

4.3. THE PARLAY API ARCHITECTURE 23

Access to Network Service Capability Features
The specified terms of use (security level, domain, etc) must be complied and
therefore the Parlay framework must provide access control functions to autho-
rise the access of SCFs from any application.

Event Notification
This interface is used to notify an application if a generic service event has oc-
curred, i.e. registration of a new SCF in the Parlay framework.

Integrity Management
The integrity management interfaces include mechanisms for load balancing, fault
management, and heartbeat.

• Load balancing between applications is supported according to a load man-
agement policy. It is possible to specify the load balancing rules the Parlay
framework should follow for a specific application. This is related to the
Quality of Service (QoS) level the application has subscribed to.

• Fault management is a mechanism for informing the concerned applications
that a SCF has failed and no longer is available.

• Heartbeat allows the Parlay framework to supervise applications by re-
questing them to send out heartbeats at a specified interval. If the heart-
beat is not received from the application within the interval the application
has failed. This information might be used by the Parlay framework to per-
form some recovery measure.

Interfaces between Parlay Framework and Service Capability Server

Registration of Service Capability Features
All SCFs have to register in the Parlay framework to be accessible to applications
via the discovery interface (see section 4.3.2). The SCFs are registered against a
certain service type and the Parlay framework maintains a repository with the
service types and registered SCFs.

Upon registration, the supplier of SCFs must provide some property values
and a service type describing the SCF. Via those values and service types, the
application may obtain lists with the SCFs it wants to use.

Interfaces between Parlay Framework and Enterprise Operator

This interface provides tools for realising a business model where the enterprise
operators act in the role of subscriber or customer of services and the client
applications act in the role of users or consumers of services. The framework
itself acts as a retailer of services. However, this is mostly an administrative
interface for handling business relations, and thus is not in scope of this report.

24 CHAPTER 4. PARLAY API

4.3.3 The Call Control API

The Call Control API consists of four different interfaces with different purposes.
They are described in the following four sections. To explain the API we start
by describing the Call Control model that contains four basic objects:

• the call object
The call object is a relation between a number of parties and it is used
to establish a relation between a number of parties by creating a leg for
each party within the call. From the view point of the application, the call
object relates to the whole call. Thus, when invoking a release method on
a call object all associated parties and physical calls are released.

• the call leg object
A call leg object represents the logical association between a call and an
address. A call leg can be attached to, or detached from a call. When a leg
is attached, it is connected to the other legs that are attached to the same
call. This means that the media or bearer channels are connected and the
attached legs can ”speak” to each other.

There are two ways for an application to gain control over a leg. Firstly,
the application can request that it be notified when a call meets certain
criteria and then the call can control the legs associated to it. Secondly,
the application can create a call and consequently control the call and its
legs.

A leg object can exist without being associated with an address and is then
considered idle. The leg object becomes active when it is routed to an
address.

• the address
The address is the logical representation of a party in a call.

• the terminal
A terminal is the signalling end point for a party.

Generic Call Control

Generic Call Control is the basic control facility for the Call Control API. The
facility is a bit blunt, but it contains important methods for handling simple
call scenarios. For example, it does not give explicit access to the legs and the
media channels. The number of legs in a generic call is also limited to two; one
incoming and one outgoing. Multileg-calls are handled via the Multiparty Call
Control API.

Multiparty Call Control

The Multiparty Call Control API extends Generic Call Control with the ability
to manage individual legs. This means that several legs may simultaneously be
attached to the same call. However, Multiparty Call Control requires INAP CS2
implementation in the PSTN, see section 2.1.4 on page 8.

4.3. THE PARLAY API ARCHITECTURE 25

Multimedia Call Control

The Multimedia Call Control, in turn, extends the functionality of the Multi-
party Call Control by adding multimedia capabilities. Thus the concept of a
media stream is introduced. These streams are generally negotiated between the
terminals in a call. The media streams are bi-directional media channels that are
associated with a call leg. In a multimedia call, the Multimedia Call Control can
give control over associated media streams to the applications in the following
ways:

• Multimedia calls with media streams that meet certain criteria (defined by
the application) can trigger the application.

• The application can monitor the establishment and release of media streams
associated with an ongoing call.

• The application can allow or deny establishment of media streams.

• Established media streams associated with a certain call leg can be re-
quested and explicitly closed by the application.

Conference Call Control

The Conference Call Control inherits its generic properties from the Multimedia
Call Control. It gives the application the ability to arrange conference calls with
subconferences. Subconferences define groupings of legs within the main confer-
ence call. Only parties that belong to the same subconference have connections
to each other and can talk.

When a conference call is initiated the application can create, split, or merge
subconferences. The conference call must always contain at least one subconfer-
ence. The application can move call legs between subconferences and retrieve a
list with active subconferences within a conference call.

A Conference Call Control also supports the applications with resource reser-
vation management. The resources are network dependent, but represent trans-
mission capacity. It is possible for the application to reserve conference resources
during predetermined time periods, free reserved resources, and search for avail-
able resources based upon certain criteria.

4.3.4 The Niche APIs

The following interfaces are specialised to certain areas of usage. Their detailed
characteristics are not in the scope of this report but to do the API description
complete we will give brief descriptions.

26 CHAPTER 4. PARLAY API

User Interaction

There are two interfaces defined for User Interaction:

• The Generic User Interaction is used by applications to interact with end
users, i.e. announcement messages and to collect information from a user.

• Call User Interaction is an enhancement of the Generic User Interaction
that is used to interact (collect and send information or messages) with
parties that are connected via a call leg. Call User Interaction provides
additional methods for recording and deleting voice messages.

User Interaction can be performed on a Call, Multiparty Call, or a call leg
object and can involve one or more parties.

Mobility

Mobility service API contains functionality to support applications that involve
mobility. The API is divided into four parts:

• User Location
The applications can use this interface to obtain the geographical locations
(co-ordinates) of users connected to a fixed, mobile, or IP-based telephone
system.

• User Location Camel
This interface is used by an application to retrieve the location-related
information about the network, e.g. identification of a cell in a mobile-
telephone network.

• User Location Emergency
If an application is designed for handling of emergency calls, it can auto-
matically retrieve the location of the caller via this interface.

• User Status This interface supplies an application with the status of spec-
ified users in fixed, mobile, and IP-based telephone systems. The provided
status is of type user reachable, not reachable, or busy.

Terminal Capabilities

The Terminal Capabilities interface retrieves the latest available capabilities of
a certain terminal. The provided information could be, e.g., terminal attributes
and values.

Data Session Control

A terminal may, via Data Session Control request a data session and the asso-
ciated application can reject or approve its establishment. The application can
also continue the establishment, but change the destination for the data session.
The Data Session Control consists of two parts:

• Data Session Manager contains functions for enabling or disabling data
session-related event notifications.

• A Data Session provides the means to establish, release, and supervise data
sessions.

4.3. THE PARLAY API ARCHITECTURE 27

Generic Messaging

An application can use Generic Messaging to send, receive, and store messages
such as voice and e-mail. The messaging system is assumed to contain mailboxes,
folders, and messages. Generic Messaging provides methods for handling such a
system. It is a simple API that is not suitable for accessing Internet mail servers
[Appium, 2002].

Connectivity Manager

The Connectivity Manager provides methods for an Application Service Provider
(ASP) to establish Quality of Service parameters for packets travelling through
the provider’s core network. This API has its focus on IP-networks and is not
directly applicable to PSTN.

Account Manager

The Account Management interface provides functions to applications for han-
dling end user accounts. This is useful for applications that have to query account
balances, account history, etc. and be notified about charge-related events.

Policy Management

The Policy Management interface addresses the creation, modification, and view-
ing of policy information. It also handles subscription to, and generation of events
and handling of SLAs. SLAs may be used to convey authorisation for access or
subscription to policy information or to modify or create policy information.

For an thorough exposition of the Policy Management concept, please see
section 8.3. The Policy Management interface is not included in Parlay version
3.0. It is under development by the Parlay Group and included in version 3.1,
hence it is a draft. The reason it is included here is that the policy management
concept is part of our solution in chapter 8 and it is expedient for the reader to
know that this API exists.

Charging

The Charging interface provides methods for applications to charge end users for
their use of a specific application or data. A typical service is pre-paid calls.

Chapter 5

Parlay Gateway Operation

In order to use the Parlay API the network operator has to implement a Parlay
Gateway. This gateway translates the calls of Parlay API methods into low-
level operations that are understood by the signalling system in the underlying
network. From the network point of view the gateway acts as an Service Control
Point (SCP) and the signalling system is accessed via an Service Switching Point
(SSP). This implies that the gateway is connected to the signalling system via a
SSP.

5.1 Tasks of a Parlay Gateway

The Parlay gateway has several important tasks to perform. The most important
though, is protocol translation and to supervise the network integrity.

5.1.1 Protocol Translation

The Parlay API (see chapter 4) specifies what API calls are available and the
impact they will have on the network. In most cases the API calls are translated
to INAP commands. However, the Parlay specification does not specifiy how this
translation is made or to what low-level protocol in the signalling system. Those
issues are implementation specific.

5.1.2 Preserving Network Integrity

Giving away control over the network via a gateway in a manner as described
in chapter 3 leads to the integrity being put at risk to some extent. This in-
tegrity reduction has to be compensated for in some way. The easiest way to
address an integrity problem of this kind would be to ensure that every applica-
tion implementing a service is secure and not able to violate any rule protecting
the network integrity. However, this is not a reasonable solution since accord-
ing to the model of “third party service application provision” the applications
are not under direct control of the network operator and the network operator
can’t possibly scrutinise and approve all connected applications. This would be
a commitment reaching too far.

29

30 CHAPTER 5. PARLAY GATEWAY OPERATION

Instead there has to be some functionality in the gateway supervising the ac-
tivity of the service applications and preventing them from committing integrity
violating activities.

There are two categories of activities that are of utter importance and need
be supervisioned by the gateway:

• Utilisation of network resources

• Charging for resource utilisation

5.2 Examples of Service Application Operation

This section will describe how the Parlay gateway inter-operates with service
applications and the network, and what happens in the Parlay gateway when a
service is executed. To do this, we will present two typical services below.

The information flow in the gateway is similar no matter what service applica-
tion is using it. Some service applications requires multiple interactions between
the network and the application through the gateway. Interaction may differ due
to the initiative for a call coming from the network or from an application. A
simple network initiated number translation would be a common usage of the
gateway. The interacting components in the gateway environment are illustrated
in figure 5.1.

SS7

SCP

Transit
Exchange

SSP

NAT

AS 2AS 1
Internet

IN-services

Applications

Applications

Parlay API

Gateway

Figure 5.1: The Parlay gateway and interacting components

5.2. EXAMPLES OF SERVICE APPLICATION OPERATION 31

5.2.1 The Click-to-dial Service

The first example is a Parlay application on an Application Server (AS) that
enables call set-up via an address book. To call a person the user clicks on a
name in an address book. The service application then sets up the call.

Usage Scenario

1. The user (caller) chooses a person to call in the address book

2. The application creates a call and connects it to the user’s own predefined
telephone

3. The user answers

4. The application connects the call to the chosen number

5. The callee answers

6. Call in progress

7. The call ends

Parlay
Application

Parlay
Gateway

SSP
Transit Exchange

createCall(CallObjRef)

connect(partyNr2)

routeReq(partyNr2)

initiateCallAttempt(partyNr1)

requestReportBCSMEvent(Event)

routeReq(partyNr1)

eventReportBCSM(Answer)

routeRes(Answer)

eventReportBCSM(Answer)

routeRes(Answer)

callEnded(Cause)

deassignCall(CallObjRef)

click

off-hook

eventReportBCSM(Disconnect)

Nr 2 answers

call ends

[Parlay] [INAP]

connect
next

Figure 5.2: Click-to-dial sequence diagram

32 CHAPTER 5. PARLAY GATEWAY OPERATION

Sequential Description

This section will describe how the click-to-dial service is executed chronologically
according to figure 5.2 on page 31.

The click-to-dial service application is informed when the user clicks on the
button to dial the chosen person. It receives A and B numbers1 from the computer
terminal of the user. The terminal could be connected to the AS via the Internet.
The application then calls the method createCall() on the gateway via the
Parlay API. This call is handled by a Call Control Manager that creates a call, i.e.
instantiates a call object that is responsible for this specific call in the gateway.
The application then calls the method routeReq() on the gateway call-object to
set-up a call-leg to the A number.

During the initiation phase of the click-to-dial service application it has re-
quested that it be notified of events concerning its calls (answer, disconnect, no
answer, busy, etc.). The gateway, in turn requests the network to give it infor-
mation or notification about the call by issuing the INAP requestReportBCSM-
Event() signal to the SSP. The gateway will get notifications about all specified
events until the call has ended. This is vital since the application needs to know
immediately when the caller has answered. Consequently, an SSP is instructed
(by the gateway) to notify the gateway when the caller answers and then it re-
quests the gateway to set-up a call leg to the A number by issuing the INAP
initiateCallAttempt() signal.

The call leg is set-up like any other call by ISUP signalling (see section 2.1.4
on page 7) between the transit and local exchanges in the transmission network
and will not be dealt with further here.

The SSP notifies the gateway when the caller answers via the INAP event-
ReportBCSM() signal. If the A number is busy or non-existent, then this infor-
mation would be sent to the gateway in similar way.

The gateway passes this notification on to the application by calling the Parlay
API method routeRes(), i.e. that is the result of the first routeReq(). The
application calls the Parlay API method routeReq() again on the same call
object in the gateway to set-up a call to the callee. This time with the number
of the callee as the argument.

Subsequently, the gateway issues the INAP connect() signal with the number
of the B-party as argument. This implies that the transit exchange sets up the
last outgoing leg to B and connects it with the first leg. The call is established
in the network, i.e. the two participating parties are connected.

When the B-party answers the network sends a new INAP eventReport-
BCSM() signal. This signal is passed on to the application by calling the Parlay
API method routeRes().

Finally, the call ends and the SSP is informed via an INAP eventReport-
BCSM() signal. The gateway then notifies the application via calling the Parlay
API callEnded() method. The application is then expected to call the Par-
lay API deassignCall() method. This releases the Parlay call-object in the
gateway, but leaves any associated ongoing calls in progress.

1A is designating the caller, and B is the designation of the callee. This notation is conven-
tional when describing calling scenarios.

5.2. EXAMPLES OF SERVICE APPLICATION OPERATION 33

5.2.2 Web Configured Call Forwarding Service

The second example is a service where the user may configure supplementary
services via a web page.

Usage Scenario

1. The user states the conditions for call forwarding on a web page (forwarding
numbers, time periods, etc.)

2. An incoming call triggers the application which calculates the new desti-
nation number depending on the present circumstances (calling number,
time, etc.)

3. The application connects the call to the new number

4. The called person answers

5. Call in progress

6. The call ends

Sequential Description

This section will describe how the web controlled call forwarding service is exe-
cuted chronologically. This is illustrated in figure 5.3 on page 34 and in figure 7.1
on page 45.

First the exchanges in the network are configured to handle the number, to
which the service is connected, as an Intelligent Network (IN) service. This is
done via some management system and is not in the scope of this description.
The consequence of this configuration is that when someone calls the number of
the user, the decision of where to connect the call is handed over to an SSP on
a transit exchange. In turn, the SSP know that it should ask the gateway where
to connect the call.

The application informs the gateway about what numbers the application
wants to handle by calling the Parlay API method enableCallNotification()
with arguments specifying triggering criteria and a reference to the Call Control
Manager2 in the application. The event criteria specifies what events to trigger
on. An example could be the way a certain number has been triggered3.

When the caller makes a call, an INAP initialDP() signal is issued from the
network to the gateway. This signal includes information about calling party,
called party, call forwarding, etc. This signal is transformed into a call of the
Parlay API method callEventNotify() at the application that analyses the
event and calculates a new destination for the incoming call.

The application then calls the Parlay API method setCallback() to create
a reference to the application call object that is in control of the call. Subse-
quently the application calls the method routeReq() with the number of the

2This Parlay object residing in the service application instantiates and handles call objects.
3There are several events that may trigger an application. For example a number could

be triggered in two different ways: an subscription number could be called (terminating) or it
could make a call (originating). In both cases the same subscription number is involved, but
the events are different.

34 CHAPTER 5. PARLAY GATEWAY OPERATION

Parlay
Application

Parlay
Gateway

SSP
Transit Exchange

enableCallNotification(CallObjMgr)

routeReq(PartyNr) requestReportBCSMEvent(Answer)

setCallback(CallObjRefApp)

initialDP(calling,called,fwd,...)

callEventNotify(CallObjRef)

eventReportBCSM(Answer)

routeRes(Answer)

deassignCall(CallObjRef)

Answer

eventReportBCSM(Disconnect)

[Parlay] [INAP]

Analysis

connect(PartyNr)

tim
e

Figure 5.3: Web configured call forwarding sequence diagram

callee as argument, i.e. the new destination for the incoming call that triggered
the application.

To propagate the new destination into the SSP in the network the gateway
sends two INAP signals. The first one is requestReportBCSMEvent() specifying
what events the gateway is interested in regarding the present call. Events of
interest include: if the new destination is e.g. busy, answering or not answering.
The gateway will get notifications about all specified events until the call has
ended. Subsequently, the gateway instructs the SSP to set-up the establish the
call by issuing the INAP connect() signal.

When the callee answers the gateway is notified via the INAP eventReport-
BCSM() signal from the SSP. This information is transfered to the application
via a call of the Parlay API method routeRes() in the application. Now the
application knows that the call is successful (i.e., in progress) and it therefore
calls the Parlay API method deassignCall() with a reference to the call object
in the gateway as argument. This action releases the call object in the gateway,
but leaves the ongoing call itself in progress.

Finally when any of the calling parties hang up the SSP issues the INAP
eventReportBCSM() signal. At this point this signal is of minor interest since
there is no longer any call object associated with the call in the gateway.

Chapter 6

Network Integrity

The Public Switched Telephone Network (PSTN) is a vital part of the society.
It has always been built to ensure high operational reliability. Many important
information services such as emergency calls rely on this network. The network
also provides an important improvement in the quality of life for lots of people
by facilitating communication between people. All these users expect that the
telephone network is available whenever they want to use it. To maintain the high
availability and create a robust telephone system many measures have been taken,
such as duplication of hardware, separate power supplies, creation of alternative
routing paths, etc. All those measures contribute to the integrity of the network.

This chapter deals with the definition of network integrity by giving the con-
ditions, describing the general components, and giving our adapted definition of
network integrity.

6.1 The Necessity of Network Integrity

Network integrity is about designing a network that is reliable independently of
the surrounding conditions. This issue has been accentuated because networks
are becoming more and more complex, both in hardware and software. The more
complex a system is, the more likely it is to fail because there is a large number
of components that can break or subsystems that can fail in their co-operation.

A new aspect of network integrity issues has arisen in connection with the
development of the third party network access. Regulatory initiatives and de-
mands for new services have forced network operators to open up their networks
(see section 3). The development and deployment of new services in the network
require that third party service providers gain access to the signalling part of
the network. They can issue commands to control calls and network resources
in detail. This access is provided via a gateway implementing some Application
Programming Interface (API). In the case of Skanova this is a Parlay gateway
(see section 4). However, this introduces new integrity problems that need to be
handled. For example, it is necessary to draw up contracts that regulate what
the third party service provider is entitled to do in the network. Still the network
operator has to guarantee the integrity of the network towards the customers.
Thus the operator may be required to supervise the activity of the third party
service provider and also take countermeasures if some activity is jeopardising the

35

36 CHAPTER 6. NETWORK INTEGRITY

network’s integrity. The network operator preferably implements these surveil-
lance and countermeasure functionalities in the gateway through which the third
party service provider issues their control commands.

6.2 Definition of Network Integrity

Defining network integrity unambiguously is a hard task since this term is very
broad. It ranges over several areas such as system architecture, behaviour, and
functionality. The essence of this term however, is that the network acts according
to the expectations and specifications of the owner of the network and that
this behaviour is a steady-state. If we look in literature we find some general
definitions. One example is found in Telecom Glossary 2000 [ANSI, 2001].

“[System integrity is] that condition of a system wherein its man-
dated operational and technical parameters are within the prescribed
limits.”

This definition corresponds to the intuitive conception, but it does not em-
phasise the stability criterion. There is another definition [ANSI, 2001] that does:

“[Network integrity is] the ability of a network to maintain or re-
store an acceptable level of performance during network failures by
applying various restoration techniques, and mitigation or preven-
tion of service outages from network failures by applying preventive
techniques.”

To make this definition operational it is necessary to assign the words “ac-
ceptable level”, “various restoration techniques”, and “preventive techniques”
well defined values and meanings. The assigned properties are, of course, subject
to different interpretations depending on which system or network the definition
is applied.

The problem is that it is hard to get a tangible understanding of what network
integrity is when talking in general terms. For this reason Ognjen Prnjat and
Lionel Sacks have proposed a more detailed definition [Prnjat and Sacks, 2000,
Prnjat and Sacks, 1999] including a number of attributes that are related to the
integrity concept. Their definition is based on the following definition of system
integrity by Keith Ward [Ward, 1995]:

“Integrity is the ability of the system to retain its specified attributes
in terms of performance and functionality.”

The approach of including several attributes in the definition is beneficial be-
cause it makes it easy to apply the definition and test for any integrity violations.

6.2.1 Integrity Attributes

Ognjen Prnjat and Lionel Sacks list integrity attributes [Prnjat and Sacks, 2000,
Prnjat and Sacks, 1999] below. In the following paragraphs these attributes will
be explained. However, the proposed attributes are not absolute and other at-
tributes may well supplement the definition of integrity:

6.2. DEFINITION OF NETWORK INTEGRITY 37

• Availability

• Complexity

• Data coherence

• Feature interaction

• Liveness

• Performance

• Reliability

• Resilience

• Robustness

• Safety

• Scalability

• Security

Availability

Availability is the degree to which a system (e.g. network) or equipment is
operational and conforms to its specifications at the start of a mission, when the
mission is called for at an unknown time. The conditions determining operability
must be specified so that it is decidable when the availability criterion is not
fulfilled. If we express it mathematically, availability is the ratio of the total time
a functional unit is capable of being used during a given interval, to the length
of the interval. Availability is often given in percentage (e.g. 99.9997%).

The integrity of a system is of course jeopardised if the system has an avail-
ability that falls below some expectation or specification of the owner of the
system.

Complexity

Complexity describes how demanding a certain task is to solve depending on the
presented problem. The complexity of a system can be analysed on many levels.
For simplicity we will focus on the following four areas:

• Computational complexity is the magnitude of time needed (proportional
to the number of CPU cycles) to execute a task. This is related to how
well a given procedure or algorithm can solve the problem.

• Data complexity is the magnitude of internal data (proportional to memory
usage) needed to execute a task and this is related to what and how data
structures are used and their interdependencies.

• Communication complexity is the magnitude of the number of messages
that have to be issued to perform a certain action.

• Coupling is a kind of semi-complexity. It describes to what extent the
system is connected and dependent on other systems. A high level of cou-
pling indicates a high level of interdependence. Via coupling paths integrity
violations can propagate between different systems.

If the system possesses a high level of complexity this might endanger the
integrity of the system since high complexity makes heavy demands on the system
operation. However, the complexity may also be used to increase robustness,
security, etc. and therefore this is a question which needs careful weighing of the
included attributes.

38 CHAPTER 6. NETWORK INTEGRITY

Complexity also influences the scalability of the system which is related to
integrity. A high level of data complexity might result in an excessive memory
usage leading to failure when expanding the system.

Data Coherence

Data coherence is an important aspect of control strategies in distributed systems
where information is distributed over several locations and need remain consistent
through time and change of circumstances.

Thus data is coherent if the value returned by a read operation to a shared
memory location is the value of the last write operation to that location. If this is
not the case and differences in information arise, then the integrity of the system
is jeopardised. The incoherent information could then be interpreted in a way
that it was not meant to and thus make the system fail.

Feature Interaction

In software development a feature is a component of additional functionality –
additional to the core body of software. Typically, features are added incre-
mentally, at various stages in the life cycle, usually by different developers. In a
traditional telecommunications service, examples of features are a call forwarding
capability, or ring back when free; a user is said to subscribe to a feature.

Features are usually developed and tested in isolation, or with a particular
service. But when several features are added to a service, there may be interac-
tions (i.e. behavioural modifications) between both the features offered within
that service, as well as with features offered in another service. While particular
interactions may be benign, in general, interactions can be severely damaging to
system development and to user expectations [Calder et al., 2002].

As an example of feature interaction, the following can be considered. If a
user who subscribes to call waiting and call forward when busy is engaged in a
call, then what will happen when there is a further incoming call? If the call is
forwarded, then the call waiting feature is clearly compromised, and vice versa.
In either case, the users will not have their expectations met.

Operating different features or systems (with well defined and understood
behaviour) together can consequently give rise to unexpected behaviour and this
is incompatible with a high level of system integrity.

Liveness

A system may be described by its states. The system may have several states
with different properties and the system always is in one (and only one) of these
states. Each possible state describes the properties of the system and to which
other states the system may change. State transitions occur as consequences of
events within or outside the system.

The liveness property means that something “good” (or useful) eventually
will happen in the system [Alpern and Schneider, 1984]. For the system to work
properly it is required that the system may freely change states according to the
specifications. If this is not the case the system will not work as predicted and
neither is the system live. One of the two following conditions then apply:

6.2. DEFINITION OF NETWORK INTEGRITY 39

• The system is in the state of deadlock. This means that the system is
blocked in a state expecting a message or an event which cannot occur.

• The system is in the state of livelock. This means that the system oscillates
between a closed set of states which it cannot leave. Despite ongoing state
transitions no purposeful progress will be made.

Both these conditions are disadvantageous and they vastly reduce the possi-
bilities of the system to provide its functionality. A system that has a high level
of integrity accordingly has to preserve liveness.

Performance

Performance is related to the throughput of the system and is measured in num-
ber of successful transactions (e.g. sorting of data base records) per time unit.
Performance could also be related to the response time, i.e. how long time it
takes to execute a job.

A system that has a poor performance (few transactions per time unit or
long job execution time) will also put its integrity at stake since there could be
problems meeting system deadlines.

Reliability

The reliability of a system is the probability that the system, including all hard-
ware, firmware, and software, will satisfactorily perform the task for which it
was designed or intended, for a specified time and in a specified environment
[ANSI, 2001].

A system that is expected to have a high level of integrity must be reliable.
Reliability can be improved by redundancy i.e. the system has surplus capability
and therefore it is unlikely to fail in its operation.

Resilience

Resilience is the ability of a system to recover from faults without outside help.
This is an important property for networks if an link or a node goes down. In IP
networks this behaviour is supported by routing protocols such as Open Shortest
Path First (OSPF) [Stallings, 2000]. Every node in the network keep track of
the state of the links connected to it. Resilience is infused into the network by
every node transmitting its link state record to all nodes in vicinity. If a link
goes down the traffic is spread over the remaining links.

The ability to recover from faults is an important property for integrity be-
cause it makes a system likely to continue its operation despite encountering
failure.

Robustness

The term robustness indicates the degree to which a system or component can
function correctly in the presence of invalid inputs or stressful environment condi-
tions [SEI, 2000]. Robustness and integrity walk hand in hand. The more robust
a system is, the more likely it is to retain its integrity.

40 CHAPTER 6. NETWORK INTEGRITY

Safety

The safety property states that some “bad” (or unfavourable) thing does not
happen during a procedure in the system [Alpern and Schneider, 1984]. This
means that the system must not end up in a state in which it does not belong.
An example of the safety property is keeping to the first-come-first-serve (FCFS)
principle. It states that requests are served in the order they are made. A
violation (a “bad” thing) of this safety property would then be serving a request
that was made after one not yet served.

Violating the safety property implies that the system does not operate nor-
mally and this may jeopardise the integrity of the system.

Scalability

Scalability is defined as the ability of a system (hardware or software) to continue
to function well (retain its performance, see page 39) as it, or its context, is
changed in size or volume in order to meet user needs. In the main, the degree
to which a system is scalable is determined by the architecture and the system
complexity (see page 37).

A system that scales poorly puts integrity at stake when expanding as the
operation of the system deteriorates.

Security

Security is a condition that results from the establishment and maintenance of
protective measures that ensure a state of inviolability from hostile acts or in-
fluences [ANSI, 2001]. A system that is in a state of inviolability will also keep
a high level of integrity since it is more likely to stay in its correct operational
state and not able to be brought down by any unauthorised users.

Finally, the reader is kindly asked to observe that all of the mentioned attributes
are interrelated and must be studied in the light of each other. An obvious ex-
ample of this is a system with poor scalability that will decrease in performance
as more entities are added to it. Loss of performance implies reduced availability
and this may end up in having an negative effect on the data coherence and
liveness due to timing problems between dependent systems.

6.2.2 Our Definition of Network Integrity

As the reader may have noticed network integrity is not an unambiguous con-
ception. In this section we will summarise and give our definition. We will then
look at the problem from the point of view of the network operator Skanova and
not primarily from the point of view of the end users.

Again, Keith Ward states [Ward, 1995]:

“Integrity is the ability of the system to retain its specified attributes
in terms of performance and functionality.”

It is in the interest of the network operator to have a well performing network
with the all necessary functionality1. Consequently, our interpretation of the

1It is reasonable to presume that the network operator also has the customer’s best interest
in mind, otherwise he will start losing them to other operators.

6.3. FACTORS REDUCING NETWORK INTEGRITY 41

quote above is that the “attributes in terms of performance and functionality”
will be specified by the operator of the network. It follows that we, in addition to
the attributes in section 6.2.1, will add the charging aspect to the requirements of
network integrity. Being able to charge users for their use of network resources is
an absolutely essential functionality in addition to the core network functionality
used to create the services offered to the users. If you cannot charge then there
is often no point in offering services.

So, this is our definition of network integrity:

Network integrity is the ability of a network to steadily remain in a
safe state, while performing according to the expectations and speci-
fications of its operator, i.e. delivering the expected functionality and
providing means to charge for utilised network resources.

Most integrity issues arise from the users of the network. Consequently, a
network without users would be unlikely to end up in a state of poor integrity
because there would be very little activity able to violate the integrity attributes.
Integrity violations arise in consequence of the user’s unintentional misuse or
intentional abuse of the network resources or functions2. The network must
stand these categories of trials.

To facilitate the interpretation of the attributes in section 6.2.1 we have trans-
lated them into two potentially dangerous cases. To avoid jeopardising the net-
work’s integrity, the network must be prevented from reaching a state where:

• call control related functionality conflicts with its specifications or

• the means for charging for resource utilisation is missing or erroneous

6.3 Factors Reducing Network Integrity

Different factors may have a negative effect on the integrity of the network.
Faulty hardware could be one cause of reduced integrity. However, in this report
we will not consider such integrity violations originating from defective hardware.
Instead we will deal with integrity issues related to the functionality of the soft-
ware that untrusted third party service providers connect to the network via the
Parlay gateway.

In the following two sections we give representative examples of events and
factors that may indicate that network integrity is at risk. For an exhaustive
exposition of this topic, see chapter 7.

2There could be integrity violations even though the users make use of the network in a
“correct” manner. However, this problem must be attributed to some apparent erroneous
operation of the network. We assume the network operates according to its specification.

42 CHAPTER 6. NETWORK INTEGRITY

6.3.1 Call Control Related Functionality Conflicting with
its Specifications

If network resources are utilised in a way not foreseen by the network operator
there will be great integrity problems since the operator is not in control of the
network and the behaviour of the network may be undefined. The following events
may indicate integrity problems deriving from “bad” call control functionality:

• execution of illegitimate procedures

• repeated calls of demanding procedures

• misdirected calls

• pointless or nested call forwarding

• repeatedly unsuccessful call attempts

• excessive call set up

6.3.2 Lack of Charging

It is unprofitable for the network operator if the network were to end up in a state
where no charging for resources was possible. In this case, the network operator
would not get paid. The following events may indicate that there will be a lack
of charging:

• insufficient information about a call or

• inability to transfer call information between systems

6.4 Enforcing Network Integrity

It is impossible to know how the third party service provider is going to make
use of the network’s resources. To be able to enforce a high level of integrity it
is necessary for the Parlay gateway to be able to detect harmful behaviour of a
third party service provider and take preventive measures when needed.

The Parlay gateway may also be involved in other measures that are not
directly associated with the resource utilisation of the third party service provider.
The Parlay gateway may need to assist the network with tasks that otherwise
would not be done, but are essential for the integrity. An example is generating
charging information when this is not done by any of the standard procedures.

Please note that it is not always possible to foresee or detect all kinds of threats
against the integrity of the network. These issues are treated more exhaustively
in chapters 7 and 8.

Chapter 7

Identifying Integrity Issues

The identification of integrity issues is a challenging task. Before launching an
open service access system like the Parlay gateway, the network operator has to
predict as many integrity risks as possible, and have a readiness and a strategy
for new risks that will arise in the future. The introduction of new service appli-
cations will also introduce new problems. It is important for a network operator
to take into account that the network might be used for different purposes, and
users might start acting according to new patterns in the future. Thus, it must
be possible to take action in a flexible way when new integrity risks arise.

In this chapter we will give some examples of typical integrity issues. These
issues will give an idea of what to think of, and what different kinds of integrity
risks one can expect to encounter. These aspects should be considered when
designing a gateway. In chapter 6 we have defined what are to be considered as
integrity risks. The definition of integrity can be divided into subsections, and
according to the delimitations in section 1.4 we will give examples of problems
regarding the areas Call Control (section 7.2.1), and Charging (section 7.2.2). In
chapter 8 we are suggesting some methods for solving integrity problems.

7.1 Examples of Service Applications

To find some concrete integrity risks we have considered a number of existing
and projected services. These include services implemented on existing AXE-
exchanges and IN-platforms that possibly could be moved to application servers
and executed via the Parlay gateway. We have also analysed the application
server market, and services that are planned to be incorporated in the Skanova
Parlay gateway project. This gives us a picture of what Parlay services are being
deployed. During this study we have categorised the application services into
three categories, which we will describe below. By looking at services in the
different service categories, different problems and issues that need consideration
will be illustrated. For each service category we will describe the characteristics.

In section 7.2 we will analyse what areas that are problematical and need be
scrutinised. To have the reader better understand the integrity problems we will
also give technical explanations.

43

44 CHAPTER 7. IDENTIFYING INTEGRITY ISSUES

7.1.1 Common Entry Services

Common entry services are open to several (all) users and are accessible via
only one telephone number, i.e. the “entrance” to the service is common for all
users. This type of service is probably one of the most widely used today in
the PSTN network. Examples of such services are free phone services (access
number beginning with 020 or 0800) and directory enquiries services (access
number beginning with 118). Below we will describe a Virtual Call Centre, and
a Directory Enquiries Service.

Virtual Call Centre

A Virtual Call Centre (VCC) service is a service that enables companies to
allocate their call centre telephone operators at several different places. This
means that some telephone operators could work at home and others could work
in the office or wherever they happen to be as long as they have a telephone.
Because they do not have to be in the same physical premises the call centre is
virtual.

When a call is placed to a VCC service the service on the application server
connects the caller to a feasible telephone operator. An example of a feasible
telephone operator is an unoccupied operator in the same numbering area, since
connecting to a far-off operator when someone nearer is unoccupied would imply
a non-optimal utilisation of the network. A possible usage scenario:

1. Someone calls the virtual call centre

2. The application on the application server connects the call to a feasible
telephone operator (this is a simple number translation)

3. The operator answers

4. Call in progress

5. Call ends

Directory Enquiries Service

A Parlay application listens for calls to a specific number, e.g. 1181181. When
someone calls the service number, the application directs the calling party to
an available telephone operator (a simple number translation). The telephone
operator can give the calling party the enquired number orally, or connect the
call to the enquired number. The caller should be charged for the follow-on-call,
just as if the call where made as a separate call. A conceivable usage scenario:

1. A call is placed to a directory enquiries service, e.g. 118118

2. The application connects the call to a feasible telephone operator

3. Telephone operator answers

1This is the number to the Swedish directory enquiries service operated by Respons AB.

7.1. EXAMPLES OF SERVICE APPLICATIONS 45

4. Call in progress

5. The call is connected to the enquired number (optional)

6. Call in progress

7. Call ends

7.1.2 Individual Entry Services

Individual Entry Services are services assigned for individual usage. The service
is tied to a personal subscription or attached to a certain access number. One
example of such a services is voice dialling2, a service that is reachable via a
subscriber specific number and used as a voice controlled address book for dialling
orally. Other services are voice mail, cash card, supplementary services, blacklist
and whitelist3, etc. Voice mail is a widely used individual service in particular
mobile network. We will here describe a Web Controlled Call Forwarding Service,
and a Blacklist Service.

Web Controlled Call Forwarding Service

Services such as call forwarding, completion of calls to busy subscribers, and three
party calls are examples of supplementary services. Today they are controlled via
the * and # buttons on the telephone. If these services were possible to manage
via the web instead a lot would be gained in the area of user-friendliness. For
example, one could have a profile that changes during the day. This service is
illustrated in figure 7.1.

Home
number

Mobile

Caller

Gateway

Network 2

Network 1

Application
server

ApplicationApplication

Call path

Internet

Figure 7.1: Web configurable call forwarding service

2An example is the service “Telia röstrigning”.
3A blacklist defines numbers that should be rejected, and a whitelist defines (the only)

numbers that should be accepted.

46 CHAPTER 7. IDENTIFYING INTEGRITY ISSUES

The supplementary service can also easily be combined with a so-called per-
sonal number4. A personal number is not tied to a physical subscriber line access,
instead the user has to decide where calls to a personal number is to be forwarded.

From the view of the network, this kind of service is a simple number transla-
tion. Since the applications on an application server, easily could be connected to
the Internet, the service could be web controlled. This gives the user the oppor-
tunity to pre-program call forwarding that is dependent on several circumstances.
A possible usage scenario:

1. A call is directed to someone’s home number, e.g. 08-234 234, or to a
personal number, e.g. 075-123 123

2. The application on the application server computes where to forward the
call and subsequently connects the call, e.g. to a mobile phone

3. The callee answers on his mobile

4. Call in progress

5. Call ends

Blacklist

A blacklist service prohibits calls to be received from some predefined numbers,
or ranges of numbers. It can be implemented in different ways, e.g. the caller
can get no answer, or a busy tone when calling to the subscriber from whom he
is blacklisted, and the telephone at the callee does not ring. A feature could be
a list of call attempts from blacklisted numbers on the configuration web page of
the service.

7.1.3 Application Initiated Services

Application Initiated Services is a category where all services have in common
that the initiative to set-up a call comes from an application service. This means
that there is no trigger in the network initiating the service and the service is not
accessible by any access number. Examples of such services are wake up calls,
advertisement calls, etc. A Click-to-Dial service is described below.

Click-to-Dial

This is the umbrella term for applications that set up calls after being initiated
via e.g. a web page. Thus one can make a call by clicking on the web page
instead of dialling the telephone. One example of such a service is if the user’s
address book in a computer is equipped with the function “call” in addition to

4In Sweden such a personal number has prefix 075.

7.2. INTEGRITY RISKS RELATED TO FUNCTIONALITY 47

“send mail”. Another example could be if advertisements on the web have a
field where it is possible to enter your own number and then click “dial” to call
the advertising company. In the first case the caller pays, in the second case the
called advertising company pays for the call.

7.2 Integrity Risks Related to Functionality

The services described above can, if no action is taken, give rise to a number
of integrity problems. Some issues are common to all services, and some are
specific to a particular service and event. All issues can more or less be classi-
fied into different categories according to which aspect of integrity they violate.
We will give some examples of integrity issues that illustrate different types of
integrity problems. The integrity issues are, as said in the introduction, related
to functional aspects of the services and the network.

7.2.1 Call Control

The integrity issues in this section are all related to call control. When new
services, that are able to control calls, are introduced in the network, caution
must be taken to protect the network from faulty behaviour. The following
items will illustrate this.

Access Control

The first problem to look into is the access to the telephone network and signalling
system, which goes through the gateway. Only authorised application servers and
applications, should be allowed to access the gateway. Applications should only
be allowed to access predefined features or resources in the network.

• The integrity is jeopardised if there is no control over which applications
connect to the gateway.

Destination Number

For some services the gateway need have control over which subscriber numbers
calls are connected to, since there may exist numbers to which it is forbidden to
forward calls. For supplementary services there are some numbers that should
be impossible to forward calls to, e.g. emergency numbers.

• The integrity may be harmed if there is no control over where calls are
connected.

48 CHAPTER 7. IDENTIFYING INTEGRITY ISSUES

Feature Interaction

Some services in combination with each other can give rise to integrity issues.
One such case is the combination of the services blacklist and call forwarding.
The network integrity may be jeopardised if the following take place:

1. A has B on his blacklist, i.e. B cannot call A.

2. C has forwarded his telephone to A.

3. B calls C and the call is forwarded to A.

4. Since C is not on A’s blacklist, the call gets through to A.

This erroneous behaviour could be prevented if the blacklist based its decisions
on numbers the call has been redirected via, as well.

• The integrity may be harmed when services interact in an unexpected way
resulting in undesired events.

Number of Origin

Many applications might like to receive the calling party number, some appli-
cations are even based on that information. A problem might then arise when
someone with an unlisted5 telephone number uses this service. The callers un-
listed number must not, under any circumstance, be shown to the callee. If so,
the integrity is harmed. A third party service application is regarded as un-
trusted, since the network operator cannot be sure of what the service provider
does with the information. The number could be presented, on e.g. a web page
or an invoice.

If a caller with an unlisted number calls a call centre, the closest telephone
operator cannot be found based on the callers number. This restriction can be
problematical for services that depend on the location of the caller, e.g. traffic
information or assistance services. One solution is to regard some applications as
trusted, and allow unlisted numbers to be shown to trusted applications. In the
gateway one would then like to have the opportunity to decide if unlisted numbers
should be passed to an application or not, depending on it’s trustworthiness.

• When restricted information is illicitly spread to unauthorised part, the
integrity is harmed.

Notifications

Applications cannot be allowed to request and receive just any kind of information
from the network. In theory an application could subscribe to “off-hook” events
for every telephone in the network. The gateway would then be overloaded with
event notifications from the network. It is necessary to be able to restrict what
kind of information an application should be able to receive, trigger on, etc.
This restriction should be possible to apply to all applications connected to the
gateway.

• There is a threat to the integrity if the gateway runs a risk of becoming
overloaded.

5Unlisted number implies that the subscriber number is not listed in the telephone directory
book or equivalent, and consequently must not be distributed to a third party.

7.2. INTEGRITY RISKS RELATED TO FUNCTIONALITY 49

Loops and Livelock

Loops can appear both in the signal and the transmission part of a telecom-
munications network. Loops in the transmission network are handled by the
switches in the network itself and need no special attention in the gateway. The
SCCP protocol in SS7 has functionality for counting the circuits reserved by a
call [Modarressi and Skoog, 1990]. In the Skanova network one call is allowed to
occupy five circuits. This could happen if subscribers are doing several successive
call forwardings.

By loops in the signalling system we mean for example two SCPs continuously
referring a call to each other. I.e. an SSP asks the SCP about where to connect
a certain call. The answer is that the SSP must ask another SCP, which redi-
rects the call to the first SCP6. This will lead to a lot of traffic in the signalling
network but no real loops. However, the call will not reach any destination. This
scenario can for example appear if two users with the supplementary service call
forwarding redirects their phones to each other. If the fields in the INAP oper-
ation Connect() (such as originalCalledPartyID and redirectingPartyID)
are filled in correctly, the exchanges in the network should be able to detect these
loops and prohibit them.

Loops including the NAT7, see section 2.3, could appear to customers with
supplementary service and personal numbers (numbers with prefix 075). Setting
the Nature of Address (NoA) to an appropriate value can prohibit these loops.
The NoA is an indicator sent along with the INAP connect() operation from
the gateway. The NoA can be set to indicate that the number is already checked
against the NAT. This prevents the network from issuing new requests to the
NAT regarding the same subscriber number. Though, the network operator has
to be sure that the number sent from the gateway is not ported, otherwise the call
will terminate in the wrong local exchange (or transit exchange for long distance
calls). The gateway must be able to handle these issues.

• The integrity is harmed if the network runs the risk of ending up in a state
of livelock or deadlock leading to that calls or requests are halted.

Type of Subscriber Access

There are some integrity issues associated with different forms of subscriber access
line to the telephone network. One such difference affecting application services
on a Parlay gateway in the Skanova network is the configuration of Delayed
Release of Called Party (DRCP). The DRCP means that the call is not torn
down directly when a callee hangs up if the caller still is off hook. The callee has
the possibility to lift the hook off again during one minute if he wishes to continue
the call. This is useful if the callee answers in one telephone at home and e.g.
wants to change to a telephone in another room. PSTN subscriber access lines
have DRCP but ISDN access lines do not.

The DRCP in conjunction with INAP Capability Set 1 (CS1) affects the
possibilities to do application service controlled call forwarding, since CS1 cannot
tear down call legs in an established call. So if a call from a caller to a original

6From a network point of view the gateway appears as a SCP, see chapter 5.
7The NAT is considered as an SCP.

50 CHAPTER 7. IDENTIFYING INTEGRITY ISSUES

callee is to be redirected to a second callee8, the call leg to the original callee has
to be released by the original callee hooking up. If the original callee then has a
PSTN access line the call leg will not be released until after about one minute
and first after that it is possible to create a new call leg to the second callee.
Consequently, the call would be forwarded but with this unacceptable delay.

This could be an integrity problem, since this somewhat unexpected behaviour
might not be foreseen by a service application, and therefore cause some other
undefined attendant phenomena. The problem is also stressed by the fact that it
is not determinable in advance which access type (PSTN or ISDN) a subscriber
number has and hence its characteristics are unknown.

A solution to the problem would be to require ISDN accesses since they do
not have DRCP, as stated above. Another way to work it out is to set the pa-
rameter tSuspendTimer [ETSI, 1994] in the connect() operation in INAP. The
tSuspendTimer determines the delay time until the local exchange terminates
the call after the callee hangs up. In the Skanova network this is 100 seconds
as default. To enable call forwarding it must be set to maximum a few seconds.
The tSuspendTimer parameter is not included in the Parlay standard and thus,
cannot be set from an application on an application server.

A third solution would also be to upgrade the network to CS2 since it includes
tools for so-called follow-on-calls. Then it would be possible to tear down a call
leg even if the callee (or caller) has not hooked up.

• The integrity is harmed if service applications do not get the expected
functionality from the network, and tries to issue instructions that cannot
take effekt and thus lead to undefined behaviour.

Restrictions in Underlying Protocol

The gateway receives calls of methods via the Parlay API and translates these
calls to appropriate signals, e.g. to SS7 protocols such as INAP. Depending on
which signalling protocol and which version is used, not all Parlay functions map
to the underlying signalling protocol. This is the case for the CS1 version of
INAP that Skanova uses in its network. Thus multiparty calls are not possible
to set up with CS1. The gateway must make sure that Parlay functions, that
do not map to the currently used signalling protocol, cannot be issued by the
service applications. As we saw in the Type of Access description on page 49,
follow-on-call functionality is restricted by the underlying protocol INAP CS1.

• If application services do not know the limitations in the network and tries
to issue impossible instructions to the gateway, the integrity is harmed since
the instructions will not take effekt.

7.2.2 Charging

If the network ends up in a state where no means for charging are available, the
network owner will get no payment and the integrity harmed. This issue is a
very complex one. Skanova, in capacity of a network wholesaler, must always be
able to charge other operators for their traffic generated in the Skanova network.

8An example of service that would use this kind of forwarding could be a directory enquiries
service with call forwarding.

7.2. INTEGRITY RISKS RELATED TO FUNCTIONALITY 51

Therefore it is not possible to hand over the charging to third party applications
connected via the Parlay gateway. Data for all call leg set-up must be generated
by Skanova. Thus, all mechanisms for charging supplied by Parlay for appli-
cations can not be used. However, it would be useful if fees not related to call
set-up, i.e. fees for services could be put on the ordinary telephone bill, especially
for micro payments. This will probably be possible in the future, but Skanova is
not there yet.

Charging is not an easy task, since there is a considerable number of sys-
tems that has to co-operate. The Universal Mobile Telecommunications System
(UMTS) operator Hi3G is building a complex system with supercomputers to
be able to charge for all the different services planned [Alpman, 2002]. If the
Parlay gateway concept is successful, Skanova must probably do the same, then
the billing system of today must be replaced or modified to be able to handle
payments for services in an easy and uniform way.

An alternative to the micro payment model is if the service providers them-
selves were charged for calls they generate, i.e. by Skanova. Then the service
providers could charge the subscribers of their services directly. This would solve
a lot of problems for the network operators, but the customers would get several
bills from different operators and service providers.

Lack of Traceability and Surveillance

One important aspect of charging is the ability to detect and trace faulty calls.
When such a call is detected it should be possible to change the configuration of
the gateway to prohibit further abuse. To be able to track and trace events, all
events should be logged. One way to store all call events could be to make Toll
Tickets (TT) for all call legs, no matter if someone has to pay for them or not.
Another advantage of this is that it is possible to decide what call legs to charge
for, afterwards.

• It is important to be able to keep track of events in the network, otherwise
there will be impossible to know if illegitimate events take place in the
network.

Restrictions for Foreign Numbers

In the gateway it might often be necessary to be able to see from which network
a call is originating. For example the Directory Enquiries Service calls cannot
originate from an arbitrary network if the call is to be forwarded to an enquired
number. This is illustrated in figure 7.2 on page 52. The calling party must
reside in the Skanova network since it will be hard to charge correctly if the call
is originating from another network9, see section 2.4.

The problem is that due to number portation between operators it is not
possible to determine the network of origin by analysing the number of the caller.
Unfortunately, there is no other information easily available either to determine
the network of origin. This information must be provided in some other way, e.g.
from a number database that contains information of which numbers that belong
to which network operator.

9Note that calls not originating in the Skanova network can still enquire numbers via the
service, but the call cannot be forwarded since it is not possible to charge the call.

52 CHAPTER 7. IDENTIFYING INTEGRITY ISSUES

Application

X

Enquired
number

Directory
enquiries
operator

Caller

Gateway

Network 2Network 1

Charging data
cannot propagate

this way

Figure 7.2: Call forwarding restrictions in the Directory Enquiries Service

However, the best solution would be if all other networks had a Parlay gateway
as well. Then the directory enquiries service application could connect to those
networks and issue charging data directly in the network of the caller.

• The integrity is jeopardised if charging data cannot be transferred between
different network operators and thus calls cannot be charged.

Charging Records

In many cases the gateway must make sure that call data records, TT, or other
forms of charging data are generated. Otherwise many calls would not be charged
properly, or worse, not charged at all.

Another reason for generating charging data is that Skanova, or any network
operator, must have basic charging data to be able to charge other operators
with whom they are exchanging traffic.

An example is the Virtual Call Centre (VCC) service. The basic principle for
this kind of service is that the caller should be charged for the call based upon the
number dialled and his location. The call is then forwarded to an VCC operator
in some network. If the call ends up in a network with higher rate (e.g. VCC
telephone operator is overseas or resides in a mobile network) the VCC service
provider should be charged for this. It is not defensible to charge the caller for
this additional cost, since he has no influence over where the VCC service provider
places their telephone operators. The problem is that, by default, no TTs are
generated by the network for this excess part of the call. Thus, the basic charging
data must generated by the gateway. To avoid possible integrity problems, the
gateway operator might want to be able to prohibit the VCC telephone operators
from using certain access numbers or networks.

For application initiated calls, charging has to be taken with extra care. As
mentioned in chapter 2, TTs are only generated for calls originating in the net-

7.3. SUMMARY 53

work, and on the outgoing call legs in the local exchange. Since application
initiated calls do not originate in the network the traditional way, no charging
records are generated for this kind of call.

• The integrity is harmed if no charging data is generated, and thus calls
cannot be charged.

Restrictions for Application Initiated Calls

Restrictions regarding “originating” or “terminating” network might apply to
application initiated calls. Depending on the charging model for the “click-to-
dial” service (see section 7.1.3) the call might not be allowed to originate or
terminate in an arbitrary network. The crucial point is that the party to charge
must reside in the Skanova network to facilitate charging. Depending on the
charging model this can be the caller or callee. If the Application Service Provider
is charged for all application-initiated calls instead, the call can of course originate
or terminate anywhere since no subscriber charging has to be done in the network.

• The integrity is jeopardised if it is not defined who to charge.

7.3 Summary

The examples of issues above, that could possible jeopardise the integrity of the
telephone network, are of various kinds. Different considerations must be done
for the different cases and different technical solutions are required. In chapter
8 we will give our recommendations of which techniques to use, to be able to
handle a wide range of issues in a flexible manner.

In table 7.1 below, we can see which integrity issues we have found our example
services to have. Some issues must, as seen, be solved per service application,
other are general for all possible service applications. One conclusion we can
make, based on the integrity issues we have found, is that services in one service
category do not have more in common than they do with services in other service
categories. Thus it is important to investigate each service by itself.

G
at

ew
ay

ac
ce

ss
Fe

at
ur

e
in

te
ra

ct
io

n

N
um

be
r
an

al
ys

is
N
ot

ifi
ca

tio
ns

Li
ve

lo
ck

C
ha

rg
in

g
da

ta
Ty

pe
of

ac
ce

ss
U
nd

er
ly

in
g

pr
ot

oc
ol

N
et

wo
rk

of
or

ig
in

Virtual call centre X X X X X
Directory enquiries X X X X X X X
Supplementary service X X X X X X X X
Blacklist X X X X X
Click-to-dial X X X X X

Table 7.1: Integrity issues per application

Chapter 8

Managing Integrity Issues

The gateway is to be placed in the Skanova network environment, which by tradi-
tion has very high integrity. One explanation to the high integrity is its isolation
from other systems and the fact that it has been operated by one monopoly au-
thority with total control of all its components1. The gateway opens up access to
the signalling network to third parties. This makes the matter of integrity sen-
sitive and the demand to be able to maintain and manage integrity even higher
than for traditional network components.

In this chapter we will analyse what it means to have integrity, and what
techniques are available to preserve it. We will look closer into techniques that
we have found relevant, and then give some examples of how they can be realised
in a gateway.

8.1 Integrity Enforcement Model

This section will describe the method to solve the integrity issues. The mainte-
nance of integrity is really about having a set of adequate rules to follow. If these
rules were complete2 and followed, all integrity problems would be solved. One
problem is to find all rules before a system is launched, thus new rules might be
necessary when problems are discovered. A rule is often of the kind: “if condition,
then action”. The enforcement of these rules can be divided into two parts:

• Preconditions: To know when a rule is to be applied one must know when
the preconditions are fulfilled, i.e. one must see that sufficient information
about the preconditions must be obtainable, both for known rules and for
future ones. For example, since it is sometimes necessary to base decisions
on the dialled number, the dialled number must be available.

• Actions: One must also be able to execute and enforce a desired action,
e.g., prohibit a certain application to connect calls to numbers outside a
predefined range. The more actions that are available, the more powerful
and flexible rules are possible to build.

1Skanova is the successor to Televerket and Telia regarding the responsibility for the main
part of the Swedish fixed telecommunication network.

2The word complete refers to that all rules possibly needed are found.

55

56 CHAPTER 8. MANAGING INTEGRITY ISSUES

This theory can be transformed into practice. There are some different tech-
niques and approaches on how to realise the rules and actions. Different vendors3

of Parlay gateways have chosen different approaches, and combinations of tech-
niques. In the sections 8.2 and 8.3 below, we examine these techniques more
closely. Some companies seem to use the Parlay Service Level Agreement (SLA)
tools and then add some necessary logic to handle issues not solvable with Par-
lay. Another approach is to use a technique called Policy Management. We will
examine both these techniques since they are available and most common on the
market. Other solutions exist, but since they are proprietary to one manufacturer
and not a common technology they are of less importance to study.

8.2 Tools in Parlay

The designers of Parlay have thought of the integrity problems that can arise in
connection with the opening of the signalling network. Therefore Parlay has a
number of built in mechanisms that contribute to maintaining integrity. Parlay
has mechanisms to authenticate applications that connect to the gateway. This
ensures that no unauthorised applications can access the signalling network via
the gateway. The signalling network itself has no access control since it is de-
signed to be a proprietary network. For example, if applications were directly
connected to the Signalling System No 7 (SS7), it would be harder to control
their access. The Parlay API specifies how to restrict the applications access
to certain Service Capability Features (SCF) in the network, see chapter 4. Ac-
cording to the specification it is possible to decide which SCFs the applications
are allowed to access. Within each SCF, there is a number of so called Service
Properties that can be set to restrict certain possibilities or functionalities, per
application. For example, one application might have access to only two of five
available SCFs, and in the SCF for Multiparty Call Control the application only
has the possibility to set up calls with a maximum of five legs (for example, of
sixteen possible). These various tools in Parlay are described in detail below.

8.2.1 Service Level Agreements

A Service Level Agreement (SLA) is a contractual agreement between a gateway
operator and an application provider. Some of the terms in the agreement are of
a technical nature and may restrict the application’s rights to the gateway or its
resources. Examples of SLA parameters are:

• Not more than one hour planned lack of service per year

• Available SCFs

• Set of methods available for each SCF

3Examples of companies retailing Parlay gateways are: Incomit, Ericsson, and Alcatel.

8.2. TOOLS IN PARLAY 57

• Format of data and information

• Restrictions on calls or requests, etc.

• Overall capacity and throughput

• Authentication method and key length

These terms have to be enforced in the gateway somehow. Some of the pos-
sibilities, to set restrictions, are defined in the Parlay specification and some are
not. Some restrictions are just implied, and left to the developer of the gateway
to implement. Some of the terms in a SLA can also be there to avoid integrity
problems. Fore example, if some calls are not possible to charge for, the SLA will
state that these types of calls are prohibited.

The SLA is also a legal document, which can be used to punish the Application
Service Provider (ASP) if the terms of the SLA are broken. I.e. even if it is not
possible for the network operator to look after that all the SLA parameters are
followed, the SLA can be used to punish ASPs violating the terms of the SLA.
It could be satisfactory to regulate less harmful integrity problems this way, i.e.
not implement the possibility to prevent the unwanted behaviour in the gateway.
However, if the terms of the SLA are broken they may issue a fine, terminate the
contract, or take the ASP to court.

Online SLA refers to the concept of an enterprise operator [Parlay API, 2001]
who is allowed to arrange SLAs for the applications in its domain. This concept
seems not to be used by any network operators, since it gives control of the
access to the services (SCFs) of the network operator to a third party enterprise
operator4. We will therefore only look into the so-called off-line SLAs. From this
point and on we will mean off-line SLAs, whenever referring to SLAs.

8.2.2 Important Interface Classes

To understand how the SLA is enforced in the gateway it is necessary to look at
the different classes within Parlay. This will also enlighten us as to the possibil-
ities that Parlay offers, for example, to handle integrity issues. In the following
sections we will look at these classes. In section 8.2.3 we will then see how
these classes can be used to set up a connection and establish the SLA. These
classes, and all other Parlay classes, can be found in the Parlay specification
[Parlay API, 2001], as well as all the methods, data types, exceptions, etc. Fig-
ure 4.1 illustrates how the different interfaces are related.

4A third party enterprise operator can manage SLAs for applications in its domain.

58 CHAPTER 8. MANAGING INTEGRITY ISSUES

Framework to Application Interface Classes

These classes are selected because they are provided by the framework, and they
are used by applications and services, e.g. for authentication and service discov-
ery.

IpServiceDiscovery class
The service discovery interface consists of four methods. Before a service can
be discovered, the application must know what services the framework supports.
The listServiceType() method returns all service types currently supported.
The describeServiceType() returns a description of each service type. An ap-
plication can discover a specific set of registered services, that both belong to
a given type, and possess the desired property values, by using the discover-
Service() method. The framework must only return services that the applica-
tion is allowed to use. Some applications might not be allowed to use the full
functionality (i.e., limitations in property values can exist) and if the application
has requested a value above it’s limit, the service should not be returned in this
case either. The gateway must support this functionality and the limitations
must be possible to enter via the gateway’s management system. If applications
try to use an SCF it is not allowed to, then the P ACCESS DENIED exception
should be raised.

IpAppServiceAgreementManagement class
The following methods are invoked by the Parlay framework, and when the
initiateSignServiceAgreement()method is received from the application, the
framework uses signServiceAgreement() to request the application to sign the
agreement for the service (SCF). The framework provides the agreement text to
be signed by the application. The agreementText can be set, e.g. to the SLA text
itself. The Ericsson Jambala [Jambala, 2002] Parlay gateway and Ericsson Par-
lay simulator [Parlay Simulator, 2002] uses the string “IagreeToUseTheService”,
which is a string without meaning and used only because the Parlay standard
says so. The Incomit Movade network service platform5 sends the actual SLA.

When signed, the application can get a reference to the service. If an ASP
subscribes to services, the SLAs are handled in other ways, i.e. on-line SLAs,
which are not considered in this report. RSA6 encryption is used, i.e., with one
public, and one private key. Several possible key-lengths are possible. In practice
the gateway will be protected by firewalls and placed in a secure environment.
The applications will connect to the gateway, through the firewalls, via Virtual
Private Networks (VPN). By using RSA encryption, the Parlay framework can
be sure which application is accessing the service. The authentication proce-
dure’s main goal is the signServiceAgreement(). The agreement text itself is
usually not important, it is just a part of the authentication process. The whole
process of signing a SLA is of a legal nature. Since the application provider has
digitally signed the agreement he is held responsible for the way the application
uses the service. A digital signature can be as valid as a signature on plain paper.

5A Parlay gateway, see http://www.incomit.se/
6RSA is a public-key encryption system based on the factoring problem. Please see

http://www.rsasecurity.com/rsalabs/

8.2. TOOLS IN PARLAY 59

IpServiceAgreementManagement class
The following methods are invoked by the application. To select a service the
application can send the selectService() method to the framework. It returns
a service token identifying the service. Then, in order to access the service, a
SLA must be signed. To initiate this process the application can invoke the
initiateSignServiceAgreement() in the framework (see IpAppServiceAgree-
mentManager below, on page 58).

Framework to Service Interface Classes

These classes are provided by the framework and are to be used by services e.g.
for registration of interfaces.

IpFwServiceRegistration class
Before a service can be brokered (discovered, accessed, etc.) by an application, it
has to be registered with the framework. The process of making a SCF available
consists of two steps. First registerService() and then announceService-
Availability(). The first step is for registering the service, i.e. to informing
the Parlay framework of its name and its specific property values. The frame-
work uses this information when an application calls the method IpService-
Discovery() to find a service with specific property values. The register-
Service() method described above, does not make the service discoverable.
The announceServiceAvailability() method is invoked after the service is
authenticated and its Service Instance Lifecycle Manager is instantiated at a
particular interface. This method informs the framework of the availability of
the Service Instance Lifecycle Manager of the previously registered service. Af-
ter the receipt of this method, the framework makes the corresponding service
discoverable. Per service instance, there also exists a Service Manager. Each
service implements the IpServiceInstanceLifecycleManager interface. This
interface supports a method called createServiceManager(). When the SLA is
signed by signServiceAgreement(), the framework calls the createService-
Manager() to create a Service Manager and returns this to the application.

IpServiceInstanceLifecycleManager class
The IpServiceLifecycleManger7 is used to allow the Parlay framework to get
access to a Service Manager interface of a service. During the signService-
Agreement it is used to return a Service Manager interface (e.g.IpCallControl-
Manager for the call control SCS) to the application. Each service has a Service
Manager interface that is the initial point of contact for the service. The frame-
work invokes the createServiceManger() method to return a Service Manager
for the specified application. The service instance will be configured for the spe-
cific application using property values agreed upon, in the SLA. These properties
and the identity of the application are sent as arguments in the createService-
Manager() method.

7The IpServiceLifecycleManger is also called service factory in for example the Ericsson
report [Moerdijk and Klostermann, 2001].

60 CHAPTER 8. MANAGING INTEGRITY ISSUES

IpFwServiceDiscovery class
This class is not relevant to the SLA establishment, since all services (SCF) are
returned, even the ones that the application, requesting them, is not allowed to
use. The Parlay specification seems to be a bit unclear about this, and different
papers on the subject have come to different conclusions. The Incomit Movade
Parlay gateway works this way, i.e. it returns all services.

8.2.3 Connecting new Applications

In table 8.1 we can see step by step how a connection between an application and
the Parlay framework in the gateway is established. Then how the restrictions
in the SLA are established. This description will illustrate how new service
capabilities (SCF) are added, how new applications can get access to the gateway,
how applications are granted permission to the service cabability features (SCF)
of the gateway, and how the usage of the SCFs may be restricted.

Register the SCS

1. Authentication of SCS

2. Request registration interface from framework

3. Register Lifecycle Manager

Finding services (find SCFs on an SCS via framework)

4. Authentication of application

5. Request discovery interface from framework

6. Discover services in framework

Selecting and accessing a chosen service (SCF)

7. Select service in framework and sign SLA with framework

8. Create Service Manager in the Life Cycle Manager

9. Return Service Manager to framework

10. Return Service Manager to application

Using the service

11. Use service (use SCF)

Table 8.1: Connecting new applications to the gateway

We will now examine the steps in table 8.1 in detail. First the SCS will contact
the framework and request the registration interface (1, 2). It will then use this
interface to publish its capabilities (Service Property Values) and a reference to
its Service Instance Lifecycle Manager Interface, or shorter, Lifecycle Manager
(3). The Lifecycle Manager allows the framework to request the SCS to create
an SCF instance. The framework and the SCS know each other from here on.

8.2. TOOLS IN PARLAY 61

When an application wants to use a service, the application contacts the
framework, gets authenticated (4), and requests the discovery interface (5). The
framework returns a reference to the discovery interface and then the application
uses this interface to request the services it is interested in (6). This can be a
three-step process, see section 4.3.2 on page 22. The framework returns references
to all the SCFs that fulfil the request of the application.

The application selects one service (SCF) and signs the SLA (signService-
Agreement()) (7). The framework then contacts the Lifecycle Manager in the
SCS and forwards the conditions (stated in the SLA) under which the applica-
tion is allowed to use the SCF (8). The Lifecycle Manager then creates a SCF
instance that will be used by this specific application. This specific SCF has the
properties as they are defined in the SLA. The reference to this SCF instance is
returned to the framework (9). The framework then returns the reference to the
application (10).

From this moment the application can use the service and all its features. If
the service is Generic Call Control, the application for example can create a call
with the createCall() method.

8.2.4 Service Properties

Each SCF is of a certain service type, which has a number of pre-specified service
properties. These properties, can be used to preserve the integrity, and prohibit
different events. The properties can be given specific values at the time of the
registration of the SCF. Before an SCF can register with the framework, the
framework must implement (i.e. support) the type of service that the SCF is, i.e.
it must know what service properties to expect. At the time for establishment
of a SLA in the gateway, the registered properties can be restricted and set
to the values specified in the SLA. The restriction could also apply to only a
specific application or a group of applications and allow them to use only a sub-
set of the property values. These application specific restrictions are set during
the creation of the Service Manager mentioned in the Service Instance Lifecycle
Manager Interface on page 59.

General Service Properties

The following table lists properties that are used in the context of the Service
Level Agreement, e.g. to restrict the applications access of the capabilities in the
SCS.

Each service instance (SCF) has the following general properties, no matter
what its service type:

• Service Name
This is the name of the service, e.g. UserStatus

• Service Version
The version of the API, e.g. 3.0 Service

• Instance ID
This property uniquely identifies a specific instance of the service. Gener-
ated by the framework

62 CHAPTER 8. MANAGING INTEGRITY ISSUES

• Service Instance Description
Textual description of the service

• Product Name
Name of the product, e.g. “Userstatus.com”

• Product Version
Version of the product that provides the service

• Supported Interfaces
List of strings with interfaces names supported by the services,
e.g. “IpUserStatus”

Specific Service Properties for the Generic Call Control API

The following service properties are specific to the Generic Call Control API. Per
application, they can be set to different values to restrict applications’ access to
the Generic Call Control functions, e.g. to restrict which numbers the application
is allowed to trigger. These properties can be used to enforce integrity regarding
call set-up, other APIs have other properties that can be useful to solve other
issues. This report will be limited to only investigating issues related to call set-
up, see section 1.4. Each property has a name and a type. The type can often
have a set of possible values. In the descriptions below we will see what set of
values different properties have:

• Triggering addresses
P TRIGGERING ADDRESSES indicates for which numbers notifications8 may
be set. For termination notifications it applies to the terminating number,
for outgoing notifications it applies to originating number.

This property sets an address range (or ranges) on which the application
can trigger. A SLA can restrict this range. By invoking a trigger, the
application can gain control of calls to or from a certain subscriber number
via enableCallNotification().

P TRIGGERING ADDRESSES is of the type ADDRESS RANGE SET. For the Skanova
PSTN network it always concists of E.1649 numbers, e.g. for a per-
sonal number series the address range could be all addresses matching
“4675600????”, i.e., 10000 numbers, where “?” stands for one digit. “*”
can also be used as a joker sign and stands for an arbitrary number of
digits.

8A notification is when an application is informed about some event in the network by the
gateway, e.g. off-hook on a specific subscriber number.

9ITU-T Recommendation E.164. The international public telecommunications numbering
plan, e.g. “4687131000” is an E.164 number. The E.164 address format is an international
number without the international access code, including the country code and excluding the
leading zero of the area code.

8.2. TOOLS IN PARLAY 63

• Notification types
P NOTIFICATION TYPES indicates whether or not the application is allowed
to set originating and/or termination triggers. The set of values is:

– P ORIGINATING

– P TERMINATING

This property is used to define if it is possible to trigger on originating or
terminating numbers. In the Skanova network it is only possible to set trig-
gers on originating calls since the call terminates in a local exchange without
Service Switching Point (SSP) functionality. The terms Originating and
Terminating can be a confusing. A termination trigger can be an answer
event on a specific subscriber access number. However, it is still possible to
trigger on termination events in the Skanova network, e.g. answer, but then
the application must be in charge of the call. If a call is triggered with an
originating trigger, the call will be treated as an Intelligent Network (IN)
call.

In other networks, such as mobile networks it is possible to trigger on
terminating events, e.g. two mobile telephones with the same number (twin
SIM-card) can ring simultaneously until someone answers in one of the
telephones. Then the trigger is activated and informs some service platform,
e.g. of which telephone answered, etc.

• Monitoring mode
P MONITORING MODE indicates whether or not the application is allowed to
monitor in interrupt and/or notify mode. The set of values is:

– P INTERRUPT

– P NOTIFY

In interrupt mode, the SSP notifies the gateway and then waits for an
answer from the gateway by means of e.g. a telephone number to redirect
the call to. If in notify mode the SSP will only notify the gateway of
events in the network and will not wait for instructions from the gateway
to complete the call.

• Numbers to be changed
P NUMBERS TO BE CHANGED indicates which numbers the application is al-
lowed to change or add for legs of an incoming call. Allowed sets of values
are:

– P ORIGINAL CALLED PARTY NUMBER

– P REDIRECTING NUMBER

– P TARGET NUMBER

– P CALLING PARTY NUMBER

If an application is allowed to change the calling party number, it could for
example falsify who is calling and affect charging, etc. However, in some
cases this could be a useful feature, e.g. if an company want the switch-

64 CHAPTER 8. MANAGING INTEGRITY ISSUES

board number to be shown to the caller, and not the specific extension.
Applications doing number translation must be able to change the original
called party number to redirect the call to a new destination.

• Charge plan allowed
P CHARGEPLAN ALLOWED indicates which charging model is allowed in the
setCallChargePlan indicator. To avoid integrity issues concerning charg-
ing, the gateway must facilitate charging. Generally, the control over basic
call charging cannot be handed over to a third party, since they are not
trusted. It would also expand the integrity problem to hand out the call
charging process to a third party. However, supplementary charging fea-
tures could use this solution. The allowed value set:

– P CHARGE PER TIME

– P TRANSPARANT CHARGING

– P CHARGE PLAN

• Charge plan mapping
P CHARGEPLAN MAPPING indicates the mapping of charge plans to a logical
network charge plan indicator. The use of charge plans via Parlay enlarges
the integrity problems and is therefore, not in scope of the report.

8.2.5 Modified Service Properties

One way to make the Parlay Service Properties more powerful, is to add new
ones. With this approach it might be possible to solve some more problems, but
still the method has a number of disadvantages.

The available set of Service Properties must be pre-programmed and cannot
be modified afterwards, i.e. if new a new problem appears and a new service
property is needed, the gateway software has to be modified and recompiled.
As with the built in Service Properties it is only possible to prohibit events, no
actions can be taken. Finally, this solution extends the Parlay API and makes is
proprietary, i.e. an application made for this API is not might not be portable
to other gateways and this is somewhat against the idea of having a standard
gateway.

8.3 Policy Management

Policy management is a technique based on rules such as “if condition, then
action”. It is a flexible system, and policy rules can be added, modified, or
removed on the fly. Thus, it is not necessary to recompile the gateway software
as in the case with adding Service Properties.

This section will analyse what opportunities Policy Management provides to
protect the network integrity. As we have seen in chapter 4 on page 27, there is
something called Parlay policies. Parlay policies is an API that opens up some
policy functions via an API for applications to use. However, since this does not
strengthen the integrity, quite the contrary, we will not look into the Parlay policy
API. Open policy APIs are referred to as on-line policies. Policies for internal
management in the gateway are refereed to as off-line policies. Whenever taking
about policies from this point and on, we refer to off-line policies.

8.3. POLICY MANAGEMENT 65

8.3.1 Background

The policy information model is based on the IETF Policy Core Information
Model [Moore et al., 2001] and Requirements for a Policy Management System
[Mahon et al., 1999]. Policy management is becoming more and more commonly
used for the purpose of managing complex systems. Companies such as Ilog
with its product “ILOG Jrules” have highly developed tools to create rules, and
engines to make the policy decisions. The policy management model is used in
a variety of contexts, not only in tele and data communication. Or as Ilog puts
it [ILOG Jrules, 2002]:

“Rules for business applications can be found in any business domain
that enforces dynamic and frequently changing statements of business
policy in application code. Today, many industries are benefiting from
business rule technologies, enabling companies to quickly respond to
markets and customers.”

8.3.2 Policies

A policy is a rule that defines behaviour of a system derived from SLAs and enter-
prise policies. A policy can change the behaviour of a system without modifying
the implementation. Policies may be dynamically modified. A policy consists of
one or more conditions, and one or more actions, see figure 8.1.

Conditions Actions

Policy Rule

Figure 8.1: A policy rule

Policies are set by the network operator, and must be preformed by third
party service applications. Policies are often set-up to limit the network access for
applications or to perform some action when specified preconditions are fulfilled.
Policies can be used to solve integrity issues, e.g. generate charging data or
prohibit unwanted call set-up.

A policy can restrict who is allowed to access a service, what operations may
be performed when, and what should be done when a specified event occurs.

8.3.3 Architecture

The policy management architecture can be seen in figure 8.2 on page 66. It
consists of a number of logical entities that are described below. Where these
entities are to be placed and how they interconnect are of less importance. The
important thing is that they all reside in the network operator’s domain and are
under the network operator’s control.

66 CHAPTER 8. MANAGING INTEGRITY ISSUES

PEP

PDP

Repository

PEP

Request

Network resources

Figure 8.2: Policy management architecture

8.3.4 The Network Policy Engine Complex

The network policy engine complex resides within the network operator’s domain.
The complex has three logical elements, the Policy Repository (PR), the Policy
Decision Point (PDP), and the Policy Enforcement Point (PEP). These three
are the foundation of a policy-based network.

Policy Repository

The Policy Repository is where all policy related information is stored. The
repository is linked to the Policy Decision Point. Rules can be added or removed
from the repository on the fly. Rules can also be grouped together to provide an
overall functionality, e.g. for a certain service. The same rules can be applied to
one or more services.

Policy Decision Point

The Policy Decision Point is where policy decisions are identified based on the
policy rules supplied from the repository. State information from the network
may also be used as a basis for decisions. The more information supplied to the
PDP, the more powerful rules that are possible to create since more event criteria
are available.

Policy Enforcement Point

One Policy Enforcement Point is needed for every network resource. The PEP
enforces policies identified by the PDP. The policies are enforced in the particular
network resource the PEP is running on behalf of. The network resource could
range from a billing system or user account management systems to exchanges
and routers.

8.3. POLICY MANAGEMENT 67

Network Resources

The network resources are entities to which policies are applied by a PEP. Net-
work resources can range from high level billing systems to core network compo-
nents, such as routers and exchanges. The network components use a variety of
different protocols and communicate with the PEP. One example is if a policy
is to create a Toll Ticket (TT), then the PEP will enforce this by sending an
instruction10 to an SSP to create a TT.

8.3.5 Example of Policy Engine Driven Execution

How a policy is executed in the policy complex is illustrated in figure 8.3 in
conjunction with the enumerated list below.

Gateway
Repo-
sitory

External
system

Application Application

PDP

External
system

PEPPSTN
PEP

Figure 8.3: Policy engine driven execution

1. A service application sends a call set-up request to the gateway. The request
ends up in the PDP.

2. The PDP retrieves policy rules from the policy repository database.

3. The PDP makes a decision based on the retrieved rules and, if necessary,
information retrieved from external data systems.

4. A decision is sent to the PEP in the network. The PEP executes the
decision, in this case the application is allowed to access the telephone
network.

5. Other policies related to the call might be enforced in external system such
as billing or logging systems.

10Could be the INAP signal: FurnishChargingInformation().

68 CHAPTER 8. MANAGING INTEGRITY ISSUES

8.3.6 Integrity Issues to Address

In chapter 7 we have given examples of integrity problems that arise in conjunc-
tion with different services. One of the services described in section 7.1.1 on page
44 was the Directory Enquiries Service. We will use this service as an example
and see how some integrity issues specific for this particular service can be solved
with policy management. The integrity issues we will look at are:

• Charging data: The gateway must ensure that all calls are charged correctly.
When a call first is placed to the Directory Enquiries Service number, an
incoming call leg from the caller is set up to an exchange (SSP). The ex-
change asks the application, via the gateway, for instructions to continue
processing the call. A new destination number is given by the application,
in this case the number of a telephone operator, and the exchange sets up a
new outgoing leg to that number. A TT is automatically generated for the
incoming leg in the local exchange of the calling party. For the outgoing
leg no TT is generated. If the call is forwarded to the enquired number, a
new outgoing leg is set-up. No TTs is generated for this leg either, i.e. for
the last two cases the gateway must produce charging data.

• Originating network: The possibility to be connected to the enquired num-
ber is open for callers with Skanova subscriber access lines only, since it is
not possible to charge other callers. Attempts to forward other calls must
therefore be stopped.

This gives us three events and thus three rules to create. We conclude with
the following points:

1. Create charging data for the call leg to the telephone operator

2. Create charging data for the call leg created due to the forwarded call

3. Prohibit calls from non-Skanova subscriber accesses to be forwarded

8.3.7 Policy Rules

When creating rules for the three events above we must think of both what
preconditions are needed and what actions must be taken. When designing the
system one must see to that these preconditions are available to the PDP as a
basis for its decisions. The same line of reasoning applies to the actions. The
needed actions must be executable by the PEP.

Rule 1

For the first case the rule could be:

If
the application is “Directory Enquiries Service”
and call not previously routed
and status is pending

Then
set status to “proceed”
and issue a furnishChargingInformation for the new call leg

8.3. POLICY MANAGEMENT 69

Rule 2

For the second case the rule could be:

If
the application is “Directory Enquiries Service”
and call previously routed
and call originating in Skanova network
and status is “pending”

Then
set status to “proceed”
and issues furnishChargingInformation for the new call leg

Rule 3

For the third case the rule could be:

If
the application is “Directory Enquiries Service”
and call previously routed
and status is “pending”
and call not originating in Skanova network

Then
deny request

8.3.8 Scalability

The gateway need have a number of rules that applies to all applications. These
rules are of constant number irrespective of the number of service applications
connected. How these rules are formulated depends on how the gateway is imple-
mented, and it is therefore hard to estimate the number of rules needed. However,
less than 100 common rules seems reasonable with respect to the gateways we
have studied.

All service applications connected to the gateway must also have a set of
rules that are specific for each service. An example of this is explained in section
8.3.7 above. Thus, the number of rules will increase with the number of service
applications connected. Based on the example above, our estimation is that, in
average, a service application will need about ten active rules. Of course this is
depending on how complex the service is.

One advantage with policy rules is that they can be reused, i.e. policies for one
application can also be used for another. E.g. all Directory Enquiries Services
may use the same set of rules. This will lead to a more efficient system, and
the number of rules in the repository will not grow when new applications of an
already existing type are added. It might even be possible to have a relatively
small set of rules that can be combined in groups for a specific service type. This
way the total number of rules may be kept low.

At gateway system start-up, when new applications are added, the number
of rules will increase quite fast. This is a consequence of that almost every
added application, in the beginning, will be of a new type, and therefore will
need application specific rules that do not already exist. Later, when several

70 CHAPTER 8. MANAGING INTEGRITY ISSUES

applications are added, the rules can be reused and the increase of rules per new
application will be lower.

If many rules simultaneously are active, and the number of requests is high,
the system may become overloaded. It must be ensured that the gateway has
the computing power necessary to support the number of active rules. The
computing power needed to handle the policy complex is the biggest drawback
to Policy Management.

8.4 Pros and Cons

Both Parlay SLAs and Policy Management each have their advantages and dis-
advantages.

8.4.1 Parlay SLA

We have found the built-in Parlay SLA capabilities to be useful to solve some
of the integrity issues, but far from all. For example, as shown, access and au-
thentication problems may be solved and certain applications may be prohibited
from using SCFs and methods. The Service Property “triggering addresses” can
be used to restrict triggering criteria, and the “numbers to be changed” property
can be used to see to that applications doing call-forwarding does this in a way
they are allowed to, i.e., the only functionality provided by Parlay SLAs is to
prohibit certain events, no actions can be taken. Many of the problems in sec-
tion 7.2 require that some actions are taken, e.g., create charging data. A more
extensive and flexible approach is needed to solve the majority of the integrity
problems.

8.4.2 Policy Management

Policy rules can be a very powerful way of managing a system or network. Rules
can be designed to prevent events that could harm the network integrity, or force
actions to be taken to ensure its integrity. To realise a powerful policy based
management, the network operator has to provide the PDP with e.g. information
about as many events and states in the system as possible. The PDP could, for
example, be connected to the subscription system of the network operator’s to
base decisions upon the type of subscription the users have.

Since policy rules can be modified and added in runtime to the policy repos-
itory, it is very easy for a gateway operator to quickly add or change a rule.
This is very useful when security breaches are discovered, since they can be fixed
quickly, and without shutting down the gateway. As we could see in the examples
of policy rules in section 8.3.7 problems with charging are easily solved. As long
as sufficient preconditions are supplied, almost all integrity problems mentioned
in chapter 7 can be solved with help of Policy Management.

The risks with using Policy Management is that if rules are added without
thought, the number of rules will be large, thus requiring a lot of computing
power. This may lead to long response times and poor performance in the gate-
way. But if rules are added moderately this need not be a problem.

8.5. INTEGRITY MANAGEMENT CONCLUSIONS 71

8.5 Integrity Management Conclusions

Based on the pros and cons above we suggest that the authentication mechanisms
in Parlay should be used to ensure that only authorised applications connect to
the gateway. However, we regard the control provided by the built-in Service
Properties in Parlay, to be quite powerless.

Policy Management on the other hand has a number of possibilities to solve
the integrity issues mentioned in this report, as long as the gateway is imple-
mented to provide needed preconditions and actions. Neither should there be
problems supplying the needed computing power to ensure a smooth perfor-
mance as long as policy rules are added moderately, and existing rules are reused
as much as possible.

Chapter 9

Conclusions

The issue for this thesis has been the integrity problems that arise, and the
solutions needed, when introducing a Parlay gateway in a PSTN network. In
chapter 6 we have stated our definition of integrity which have been used when
determining possible integrity breaches in the Skanova network. In chapter 7
we have investigated and given examples of different integrity issues that can
arise, and in chapter 8 we have looked at solutions and techniques to address the
encountered integrity issues.

This chapter will conclude and sum up the most important results and rec-
ommendations. It will also conclude what further research is needed, and which
areas must be investigated closer.

9.1 Conclusions Concerning Network Integrity
Definition

We have experienced that our extensive definition of integrity in chapter 6 does
not completely match the actual integrity issues we have found. The integrity
problems we have concentrated on have been functional or software related prob-
lems. Chapter 6 describes several other aspects that have stronger connection to
hardware. However, the definition is still valid and useful, and can be used also
when evaluating other aspects of the gateway than the ones in this report.

9.2 Conclusions on Integrity Issues

In chapter 7 we studied the integrity aspects of connecting a Parlay gateway to
a telephone network. During this thesis we have described a variety of integrity
issues. It is hard to categorise, or in other ways see similarities in many of
the problems. Among the integrity issues we have found, some issues are of
greater importance than other, e.g. problems related to gateway overload. Those
problems will jeopardise all services connected via the gateway. However, since we
only have seen a small number of potential problems, by studying sample service
applications, we do not want to point out the most serious integrity problems, but
we can say that most problems arise in conjunction with charging. This is because
it is both a question of business, and an issue with a lot of technical aspects. The

73

74 CHAPTER 9. CONCLUSIONS

problem is often that charging data for a call is lacking or insufficient, if no
precaution is taken.

We have come to the conclusion that it is very hard to predict all possible
problems that might arise. When new types of services are installed, new prob-
lems will surely arise. This rises demands on the technical solution that has to
manage the integrity issues, since the solution must be flexible, i.e. able to handle
a variety of problems.

9.3 Recommendations for Maintaining Integrity

In chapter 7 we have given examples of different integrity problems. To maintain
the integrity of the network, we have to find solutions for each of these and other
integrity problems. We have looked for the best technical solution according to
our limitations stated in section 1.4 on page 2. This implies that, e.g., economical
aspects are not considered. The solutions we have investigated are Parlay SLA,
and Policy Management. We have concluded the following:

• Parlay SLA is useful for handling access and authentication issues. There
is good support for encryption, and well-defined and standardised ways to
gain access to the gateway. It is also important to remember that the SLA
itself is a legal document that can regulate what an service application is
allowed to do and not. If some clauses are broken, the Application Service
Provider may be disconnected from the gateway, punished with an extra
fine or even taken to court.

• Policy Management may be used to address integrity issues of other kinds
than Parlay SLA is able to handle. This could be, e.g., prohibiting certain
types of call set-up, creating basic charging data, etc. The advantage with
Policy Management is its general architecture and flexible management.
It is also very easy to adapt the policy complex to new integrity threats.
However, a risk with Policy Management is that the number of rules grows
without bounds and the system becomes unmanageable. If rules are added
sensitively, and reused as much as possible, this is not a problem.

9.4 Future Work

We have identified areas that need further work. This is work that origin from
areas that we have given low priority due to lack of time or because it has been
out of the scope of this thesis.

• Inconsistency between the network and the gateway could be a problem,
since the gateway and the network could have different ideas of which ap-
plication that handles a certain call. This is an example of that the call-
notification issued by the application fail in its correspondence with the
triggers in the network, since today these are not managed via the same
system and therefore not mapped. How this should be prevented need
further investigation. This includes the study of support systems, etc.

9.4. FUTURE WORK 75

• We have not studied hardware related integrity issues intensively. This is
something important, since hardware problems (computational power, com-
patibility, etc.) most likely could cause severe integrity problems making
the gateway non-operational.

• We have found charging to be problematical, since we can not rely upon
third parties generation of the basic charging data. However, if it was
possible to facilitate charging via the Parlay charge plan interface, a lot
of proprietary solutions would be avoided. Service applications might also
like to charge customers for genuine services (e.g. information services),
not related to call set-up, via the phone bill. Maybe the new Parlay API
“Content Based Charging” can be useful for this. These topics need further
investigation.

• Loops in the signalling system seem to be handled by the switches in the
network, but exactly how this is done, and if this always is the case, need
further investigation.

• There are other techniques available for handling integrity issues in the
gateway than Parlay SLA and Policy Management. More research is needed
in the area.

• Our solutions are based on a technical perspective. To get the complete
picture, market analysis and financial estimates must be done. This will
probably also reveal that more SLA parameters are needed and it will most
likely affect some policy rules. This has to be examined.

• The parlay API as a whole should be studied. There are indications on the
market that operators and service providers think the Parlay API is growing
too complex. Thus different operators might develop proprietary limited
version of the API. This may lead to that applications working perfectly
with one gateway, give rise to security breaches on another gateway. The
consequences of this evolution should be studied.

References

[Albertsson, 2001] Albertsson, E. (2001). Tjänsterealisering-Nät: Nummerporta-
bilitet fas 2 för Telias fasta nät i Sverige. Technical report, Telia AB. Internal
document.

[Alpern and Schneider, 1984] Alpern, B. and Schneider, F. B. (1984). Defin-
ing Liveness. Technical report, Department of Computer Science, Cor-
nell University, Ithaca, New York. http://www.cs.cornell.edu/Info/
People/fbs/publications/defining_liveness..eps.

[Alpman, 2002] Alpman, M. (2002). Hi3Gs superdator ska kolla teleräkningen.
Ny Teknik, (36).

[ANSI, 2001] ANSI (2001). American National Standards Institute, Telecom
Glossary 2000. Web page accessed in July 2002. http://www.atis.org/tg2k/.

[Appium, 2002] Appium (2002). Appium Technologies AB. Web page accessed
in August 2002. http://www.appium.com/.

[Beddus et al., 2000] Beddus, S., Bruce, G., and Davis, S. (2000). Opening Up
Network with JAIN Parlay. IEEE Communications Magazine, pages 136–143.

[Boman et al., 1992] Boman, R., Heidermark, A., Remmereit, A., and Ritter, C.
(1992). Signalering. Nät- och Funktionsutvecklingsplan för telefonnätet 1993-
1997, pages 23–26. Televerket Division Nättjänster.

[Calder et al., 2002] Calder, M., Kolberg, M., Maghill, E. H., and Reiff-
Marganiec, S. (2002). Feature Interaction: A Critical Review and Considered
Forecast. Technical report, Department of Computing Science, University of
Glasgow and Department of Computing Science and Mathematics, University
of Stirling, United Kingdom. http://www.dcs.gla.ac.uk/~muffy/papers/
calder-kolberg-magill-reiff.pdf.

[Corba, 2002] Corba (2002). Common Object Request Broker Architecture. Web
page accessed in August 2002. http://www.corba.org/.

[CPP, 2002] CPP (2002). C++ programming language. Web page accessed in
April 2002. http://std.dkuug.dk/jtc1/sc22/wg21/.

[ETSI, 1994] ETSI (1994). Intelligent Network (IN), Intelligent Network Capa-
bility Set 1 (CS1), Core Intelligent Network Application Protocol (INAP). ETS
300 374-1 standard.

77

78 REFERENCES

[Handley et al., 1999] Handley, M., Schulzrinne, H., Schooler, E., and Rosenberg,
J. (1999). SIP: Session Initiation Protocol. Technical report, The Internet
Engineering Task Force, IETF. RFC 2543.

[Hansson and Teglöf, 1985] Hansson, L. and Teglöf, B. (1985). Telekommunika-
tion Telefonnät 1. Studentlitteratur. Lund.

[Henström et al., 1992] Henström, P., Knutsen-Öy, L., and Valas, D. (1992).
Taxering och avräkning. Nät- och Funktionsutvecklingsplan för telefonnätet
1993-1997, pages 20–22. Televerket Division Nättjänster.

[ILOG Jrules, 2002] ILOG Jrules (2002). ILOG Business Rules: ILOG
JRules: A Rule Engine for Java. Web page accessed in July 2002.
http://www.ilog.com/.

[IN, 2002] IN (2002). Intelligent Network. Web page accessed in April 2002.
http://www.iec.org/cgi-bin/acrobat.pl?filecode=66.

[ISUP, 2002] ISUP (2002). ISUP call set-up. Web page accessed in April 2002.
http://www.sunrisetelecom.com/technotes/TEC-GEN-3B-SS7.pdf.

[Jambala, 2002] Jambala (2002). Ericsson - JAMBALA Service Ca-
pability Server (J-SCS). Web page accessed in September 2002.
http://www.ericsson.com/products/product_selector/JSCS_hpprod.shtml.

[Jarsjö, 1992] Jarsjö, U. (1992). Telefon- och ISDN-näten. Nät- och Funktion-
sutvecklingsplan för telefonnätet 1993-1997, pages 28–32. Televerket Division
Nättjänster.

[Java, 2002] Java (2002). Java programming language. Web page accessed in
April 2002. http://java.sun.com/.

[Mahon et al., 1999] Mahon, H., Bernet, Y., and Herzog, S. (1999). Require-
ments for a Policy Management System. Technical report, The Internet Engi-
neering Task Force, IETF. Internet Draft.

[Modarressi and Skoog, 1990] Modarressi, A. R. and Skoog, R. A. (1990). Sig-
nalling System No. 7: A Tutorial. IEEE Communications Magazine, 28(7):19–
35.

[Moerdijk and Klostermann, 2001] Moerdijk, A.-J. and Klostermann, L. (2001).
Open Service Architecture: concepts and standards. Technical report, Ericsson
Eurolab.

[Moore et al., 2001] Moore, B., Ellesson, E., Strassner, J., and Westerinen, A.
(2001). Policy Core Information Model – Version 1 Specification. Technical
report, The Internet Engineering Task Force, IETF. RFC 3060.

[Orava, 2001] Orava, H. (2001). Nummerportabilitet. Technical report, Telia
AB. Internal document.

[Parlay API, 2001] Parlay API (2001). Open Service Access; Application Pro-
gramming Interface. Final draft ETSI ES 201 915.

REFERENCES 79

[Parlay Group, 2002] Parlay Group (2002). The official web page. Web page
accessed in April 2002. http://www.parlay.org/.

[Parlay Simulator, 2002] Parlay Simulator (2002). Ericsson: Eric-
sson Mobility World. Web page accessed in September 2002.
http://www.ericsson.com/mobilityworld/.

[Prnjat and Sacks, 1999] Prnjat, O. and Sacks, L. (1999). Integrity Methodology
for Interoperable Environments. IEEE Communications Magazine, 37(5):126–
139. http://www.ee.ucl.ac.uk/~pants/papers/ieee.pdf.

[Prnjat and Sacks, 2000] Prnjat, O. and Sacks, L. (2000). Inter-
domain Integrity Management for Programmable Network Inter-
faces. Third IFIP/IEEE International Conference on Management
of Multimedia Networks and Services (MMNS), Fortaleza, Brazil.
http://www.ee.ucl.ac.uk/~pants/papers/Prnj00b.pdf.

[RMI, 2002] RMI (2002). Remote Method Invo-
cation. Web page accessed in August 2002.
http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmiTOC.html.

[Rydqvist, 1987] Rydqvist, P. (1987). Lär känna AXE. Telefonaktiebolaget LM
Ericsson. Stockholm.

[SEI, 2000] SEI (2000). Software Engineering Insti-
tute, Glossary. Web page accessed in July 2002.
http://www.sei.cmu.edu/str/indexes/glossary/robustness.html.

[Stallings, 2000] Stallings, W. (2000). Data & Computer Communications. Pren-
tice Hall International, sixth edition.

[UML, 2002] UML (2002). Unified Modeling Language. Web page accessed in
April 2002. http://www.uml.org/.

[Valas, 1999] Valas, D. (1999). TT-record description. Technical report, Telia
AB. Internal document.

[Ward, 1995] Ward, K. (1995). The Impact of Network Interconnection on Net-
work Integrity. British Telecommunications Engineering, 13:296–303.

Appendix A

Acronyms

81

82 APPENDIX A. ACRONYMS

Table A.1: Acronyms

ACM Address Complete Message
ACQ All Call Query
ANM Answer Message
ANSI American National Standards Institute
API Application Programming Interface
AS Application Server
ASP Application Service Provider
ATM Asynchronous Transfer Mode
BCSM Basic Call State Model
CDR Call Data Record
CORBA Common Object Request Broker Architecture
CPG Call Progress Message
CPU Central Processing Unit
CS1 Capability Set 1
CS2 Capability Set 2
CTR Connect to Resource Connection
DFC Disconnect Forward Connection
DRCP Delayed Release of Called Party
ETSI European Telecommunications Standards Institute
FCFS First Come First Serve
FCI Furnish Charging Information
IAM Initial Address Message
IDP InitialDP
IN Intelligent Network
INAP Intelligent Network Application Protocol
IP Internet Protocol
ISDN Integrated Services Digital Network
ISUP ISDN User Part
JAIN Java Advanced Intelligent Network
LW-INAP Light Weight INAP
MTP Message Transfer Part
NAT Number Address Translator
NoA Nature of Address
OSI Open System Interconnection
OSPF Open Shortest Path First
P&C Prompt and Collect User Information
PBX Private Branch Exchange
PDP Policy Decision Point
PEP Policy Enforcement Point
PR Policy Repository
PSTN Public Switched Telephone Network
PTS Post- och Telestyrelsen
PVC Private Virtual Circuit

83

QoS Quality of Service
REL Release
RLC Release Complete
RMI Remote Method Invocation
RSA Rivest, Shamir, and Adleman
SCCP Signalling Connection Control Part
SCF Service Capability Features
SCP Service Control Point
SCS Service Capability Server
SEI Software Engineering Institute
SIM Security Identification Module
SIP Session Initiation Protocol
SLA Service Level Agreement
SLEE Service Logic Execution Environment
SMS Short Message Service
SP Signal End Point
SS7 Signalling System No 7
SSP Service Switching Point
STP Signalling Transfer Point
TCAP Transaction Capabilities Application Part
TT Toll Ticket
UML Unified Modelling Language
UMTS Universal Mobile Telecommunications System
URL Uniform Resource Locator
VC Virtual Circuit
VCC Virtual Call Centre
VPN Virtual Private Network
WLAN Wireless Local Area Network

