

Managing AXE via the Internet

Jörgen Lundberg

Department of Teleinformatics
School of Electrical Engineering and Information Technology
KTH, Royal Institute of Technology

Element Management, UAB/I/MP
Ericsson AXE Research and Development

March 2002

Managing AXE via the Internet ii

Abstract
The department I/M at Ericsson AXE Research and Development
develop software for operation and maintenance of the AXE
switching system. I/M have under the project name Formalised
MML1 (FORM) developed a software platform that deals with
problems regarding machine-machine interface and man-machine
interface.

Until recently, a plain command window in which the AXE op-
erator types commands has been used to operate the AXE switch-
ing system. The commands are five letter abbreviations that can
have several parameters. The response from the switch (a printout)
comes as plain text in ASCII-format and is supposed to be inter-
preted by a human. Since there are different versions of AXE-
switches, there are different versions of printouts for the same
command, depending on AXE version. This makes it difficult to
make a machine-machine interface that deals with AXE-responses.
These two problems were the main reason for the FORM project.
The software has been developed in C++ using MOTIF as graphi-
cal user interface.

The purpose of this thesis was to investigate different technolo-
gies that could make the FORM platform accessible via the World
Wide Web and then make a prototype based on one or a combina-
tion of these technologies.

One way of making an interactive GUI that is available to a web
browser is to develop a Java applet. One of Java’s benefits is that it
is (in most cases) platform independent.

As mentioned the FORM platform is implemented in C++ and
one way of making it possible for programs written in Java to
communicate with programmes written in C++ is using CORBA.
One of CORBA’s benefits is the possibility to distribute different
parts of the implementation over a number of machines. In addi-
tion, the fact that once the IDL interface is defined you can change
the implementation, the implementation language or platform as
long as the interface is kept intact.

The prototype that was the second part of this thesis work was
developed using Java, OrbixWeb, Orbix and C++ on Solaris 2.5.
During testing, the Java applet and CORBA classes for the client
were moved to a PC running Windows NT, and with no adjust-
ments, the applet performed exactly as on the Solaris platform.

1 Man-Machine Language, a set of instructions for communicating with an
AXE-switch.

Managing AXE via the Internet iii

Table of contents
ABSTRACT .. II

TABLE OF CONTENTS ... III

1 THESIS BACKGROUND AND INTRODUCTION .. 1
1.1 Managing AXE via the Internet, a master thesis ... 1
1.2 Problem definition ... 1
1.3 The literature study.. 1
1.4 The prototype... 1
1.5 Limits to the study ... 2

2 INTRODUCTION TO THE FORM PLATFORM .. 3
2.1 Ericsson AXE Research and Development.. 3
2.2 The I/O system .. 3
2.3 The FORM platform.. 3
2.4 Using the FORM platform... 4
2.5 The objects of the FORM platform.. 5

3 WWW, HTML, CGI, … ... 7
3.1 Introduction ... 7
3.2 HTML and HTTP .. 7
3.3 CGI .. 8

3.3.1 Introduction ... 8
3.3.2 Benefits .. 8
3.3.3 Drawbacks ... 8

3.4 JavaScript .. 9
3.5 ASP.. 9

3.5.1 Benefits .. 10
3.5.2 Drawbacks ... 10

4 JAVA .. 11
4.1 Introduction ... 11
4.2 How does it work?... 11
4.3 Advantages .. 12

4.3.1 Architecture independent... 12
4.3.2 Simple and robust .. 12
4.3.3 Advanced features are built-in... 13

4.4 Disadvantages.. 14
4.4.1 Performance .. 14

5 DISTRIBUTED OBJECT COMPUTING... 15
5.1 Introduction ... 15
5.2 Object Orientation ... 15
5.3 Distributed Computing .. 16
5.4 Distributed object-orientation.. 17

6 THE OMG AND CORBA... 18
6.1 Introduction ... 18
6.2 How CORBA works.. 18

6.2.1 The Interface Definition Language, IDL ... 19
6.2.2 CORBA services .. 19
6.2.3 BOA ... 20
6.2.4 Calling a distributed object ... 20

Managing AXE via the Internet iv

6.3 Creating CORBA Objects.. 21
6.4 3-tier integration of legacy systems ... 21
6.5 Competitive technologies .. 22
6.6 Benefits.. 23
6.7 Drawbacks ... 23

7 ACCESSING THE FORM PLATFORM VIA THE INTERNET 24
7.1 Introduction ... 24
7.2 Identify the existing interface .. 24
7.3 Write an IDL-specification of the interface ... 25
7.4 Compile the IDL-specification .. 25
7.5 Write implementation code for the server object... 26
7.6 Compile the server skeletons together with the server implementation code to get the
“corbyfied” server. .. 27
7.7 Write implementation code for the client .. 27

8 CONCLUSIONS.. 28

9 REFERENCES .. 29
9.1 Books... 29

9.1.1 C++ ... 29
9.1.2 Perl .. 29
9.1.3 Java.. 29
9.1.4 CORBA .. 29

9.2 Papers and articles ... 29
9.2.1 Ericsson Documents .. 29
9.2.2 WWW ... 29
9.2.3 Java.. 29
9.2.4 C++ ... 30
9.2.5 CORBA .. 30

APPENDICES ... 31

APPENDIX A. ITER.IDL ... 1

APPENDIX B. ITER_I.H.. 1

APPENDIX C. ITER_I.CC ... 1

APPENDIX D. SRV_MAIN.CC ... 1

APPENDIX E. ITERCLIENT.JAVA... 1

Managing AXE via the Internet 1(31)

1 Thesis background and introduction

1.1 Managing AXE via the Internet, a master thesis
A Master Thesis marks the end of the Master of Science pro-
gramme at the Royal Institute of Technology (KTH). A master the-
sis is a project that spans over 20 weeks and is performed either at a
KTH-department or out in the industry. This thesis has had three
phases, a literature study, the development of a prototype and fi-
nally writing the report.

This thesis is a co-operation between the Department of Telein-
formatics at KTH and Ericsson AXE Research and Development
(Ericsson Utvecklings AB).

1.2 Problem definition
The initial problem definition was to investigate possible solutions
for accessing the FORM platform using Internet technology and
designing and implementing a prototype, which uses a web browser
as a GUI.

As it turned out there was another thesis project going on at the
I/M department with the purpose of designing a Java GUI for a
product that uses the FORM platform. That thesis work was done
by Lars Dahllöf at the department of Numerical Analysis and
Computer Science at KTH.

I decided that there was no use in making another GUI since I
had my hands full just trying to understand CORBA. The prototype
was therefore developed as a Java application that takes input from
a command line.

1.3 The literature study
I started to search for material about HTTP/CGI and Java and it
was when reading about Java that I stumbled upon CORBA. Since
I have had some experience with HTTP/CGI and Java and basically
no experience with CORBA, I dedicated somewhat more time to
reading about CORBA.

The literature used was found on the Internet and in the Ericsson
(UAB) library. When searching for material on the Internet I started
at Sun’s Java site2, at OMG’s3 CORBA site and of course, Digital
Equipment’s search engine AltaVista4.

1.4 The prototype
At first, the goal was to make the whole FORM platform available
to the Internet. During the prototype development, this turned out

2 http://www.java.com
3 http://www.omg.org
4 http://www.altavista.com

Managing AXE via the Internet 2(31)

to be a too optimistic goal for a twenty-week thesis. Instead, I
chose to concentrate on the FORM platform’s parser.

The reason for choosing the parser was because it is (in my
opinion) probably the part of the platform that will be used the
most. The other parts are mainly help features for the non-expert
user. The advanced users will probably use the command line input
when sending frequently used commands.

The fact that I did not make the whole FORM platform available
to the Internet was no setback for the thesis, since the development
procedures for the other parts would have been quite similar to that
of the parser. The prototype is described in more detail in chapter 7.

1.5 Limits to the study
The reader of this report is supposed to have knowledge level of a
person graduated from the Electrical Engineering programme, hav-
ing completed an introduction to computer science but not neces-
sarily studied object-oriented programming.

Due to the nature of the World Wide Web, it would have been
impossible to investigate all the technologies available. I have tried
to keep the chapters on the different technologies rather short and
concise in order to keep the report from becoming to wordy. If the
reader wants to make deeper studies into a subject, there are a
number of books and papers in the references.

Some of the sources come from companies that have a commer-
cial interest in the subject of the article/paper they have written.
Example of sources are the papers on Java [10], [11] from Sun Mi-
crosystems and [16] from Visigenic. However, these papers do not
differ from what seems commonly accepted and consequently it’s
probably safe to say that the quality of these papers is “high
enough”.

Managing AXE via the Internet 3(31)

2 Introduction to the FORM platform

2.1 Ericsson AXE Research and Development
Ericsson AXE Research and Development (UAB) is responsible for
the switching system, AXE 10, which has more than 100 million
fixed lines in place in some 120 countries.
The AXE system includes:
• telephony switching hardware (APT)
• central processors (CP)
• interfacing regional processors (RP)
• a Support Processor (SP) with the Input/output subsystem (I/O)

used in managing and controlling the systems

2.2 The I/O system
The I/O system is the interface between the central processor and
whatever systems are used to control and setup the switch. Any
changes to the setup, as well as data that needs to be taken out of
the central processors, must pass via the I/O system. This includes
billing data, statistical data on usage and other parameters, and data
used for maintenance, planning and execution. The I/O system is
currently developed and maintained at the ‘I’ department at Erics-
son AXE Research and Development.

2.3 The FORM platform
It is possible to send commands to an AXE-switch using MML.
Sending a command generates an ASCII printout that informs the
user about the command sent.

The original MML management interface is in by today’s stan-
dards quite primitive5. Five letter codes with different parameters
must be remembered for a few thousand commands and they are
typed directly into a terminal program. The printout is supposed to
be interpreted by a human and comes in plain ASCII format.

Formalising MML means introducing formal syntax descriptions
of MML-commands and printouts. The syntax descriptions are used
by the management tools for operation and maintenance of the
AXE10 exchange. This enables generic GUI products to give en-
hanced support to the operation and maintenance staff. It also sup-
ports development of OSS6 systems with low level parsing thus in-
creasing productivity in OSS development.

5 The FORM Concepts[7]
6 Operations Support System

Managing AXE via the Internet 4(31)

 Figure2.1

XMGR is a form-based tool that supports entering of com-
mands. XMGR uses the command syntax information available
over an API and produces a form based on that syntax. The form
supports the user with information on what parameters there are,
which are mandatory/optional and what data types and value ranges
the parameters have. XMGR improves the usability of the whole
AXE10 user interface and is generic, that is it will not be necessary
to upgrade when new commands and new syntaxes are introduced.

The FORM platform consists of different building blocks that
communicate with each other and with external components, such
as an AXE-switch or a user interface. In below, the user
interface is the XMGR.

Figure 2.2

2.4 Using the FORM platform
When sending a command to the switch, it is received by the

FORM platform, which in turn passes it on to the switch. When the
printout is returned it is passed to the parser by the form platform.
Using a POD (Printout Description) the parser parses the printout
and sends it back to the FORM platform, which finally sends it
back to the application.

The parsing of printouts makes it possible to make machine-
machine systems, where the application program isn’t a GUI. These
applications can respond to alarms and other printouts without any
human interaction, and are suitable for routine maintenance type of
interaction with the switch.

Managing AXE via the Internet 5(31)

 Figure 2.2

Figure 2.2

Since there was no time to include the whole FORM platform in
the prototype, I simulated the switch printouts with text files. This
is not too far from reality since the switch printouts come in plain
ASCII-format

2.5 The objects of the FORM platform
An application using the FPI (FORM Platform Interface) will have
one or more classes that are implementations of the Form Applica-
tion object, which is a receiver part of the FPI.

The FORM Platform object is the primary object of the plat-
form, and it supplies the station objects and handles registration of
an application error handler.

The station object handles connection and disconnection. It sup-
plies the command list and command objects, and the subscription
object for spontaneous printouts.

The command object handles the command model, from getting
the description from FFI7, using the Form CMI8 to build the model,
to letting the application access it. It also handles creation/deletion
of printout objects.

A printout object receives and contains the printout and handles
all tricky bits about printout parsing, using the printout description

7 Form File Interface XXX
8 Command Model Interface, see

Managing AXE via the Internet 6(31)

interface PDI9. It manages immediate, delayed and spontaneous
printouts, both parseable and non-parseable.

The subscription object handles the subscription operation. It
also supplies printout objects for the spontaneous printouts.

9 Printout Description Interface

Managing AXE via the Internet 7(31)

3 WWW, HTML, CGI, …

3.1 Introduction
To a great deal of people, the Internet is synonymous to the

WWW; in fact, the WWW is a subset of the Internet. To make it
simple, the Internet is a great number of computer networks con-
nected to each other and the WWW is a huge number of files linked
to each other on the Internet. These files can contain text, graphics,
sound, code snippets and much more. Since the introduction of
WWW in the beginning of the nineties, the Internet has grown con-
siderably as shown in Figure 3.1 below

 Figure 3.1

3.2 HTML and HTTP
The WWW was invented by Tim Berners-Lee who at the time was
working at CERN10. He realised that the researchers in high-energy
physics were having difficulties in sharing information due to the
use of a range of different protocols. On top of that they used a
number of different workstation platforms with varying capabilities
for displaying graphics and formatted text.

In 1989, Berners-Lee wrote a proposal11 on how to solve these
problems and in 1990, he got the support to start the project.

The basic building blocks of WWW are:
• HTML, Hypertext Markup Language. A layout language for

formatting text and graphics.
• HTTP, Hypertext Transfer Protocol. HTTP is based on TCP/IP

and makes communication between web browsers and web
servers simple.

10 The European Laboratory for Particle Physics
11 WorldWideWeb: Proposal for a HyperText Project. [9]

Managing AXE via the Internet 8(31)

• URL, Universal Resource Locator. A URL is simply a WWW-
address pointing out a web resource such as an HTML-file, bit-
map or Java applet.

One problem with web resources using only HTML is its limitation
in handling user interaction. HTML-pages are static, that is, once
they are written they don’t change. In order to create an interactive
service that can handle user input, an additional technology has to
be added. At the moment, there are several such technologies and I
will describe a few of them below.

3.3 CGI
3.3.1 Introduction

The abbreviation CGI stands for Common Gateway Interface and is
part of HTTP. CGI allow web servers to invoke programs that gen-
erate HTML-code “on-the-fly”. These programs are often called
CGI-bins or CGI-scripts and are accessible via ordinary sURLs.
The browser displays the HTML-code produced by a CGI-script as
if it was a static HTML-page. CGI-scripts make it possible to han-
dle input from the user, connections to databases and so on.

3.3.2 Benefits
• Making a CGI-script is simple, even for the not so experienced

programmer.
• CGI-scripts can be implemented in a number of programming

languages. One of the more commonly used is Perl12.
3.3.3 Drawbacks

• Performance. HTTP is quite slow to begin with and on top of
that when invoking a CGI-script the web server must start a new
process, execute the code and when the script has finished, re-
turn the output to the web browser. The performance is depend-
ent of the workload of the server and the performance of any
other application invoked by the CGI-script. In addition, while
the script is executing, the performance of the web server to
other users is lowered.

• CGI-scripts are stateless, meaning that they don’t maintain in-
formation from one form to the next. The server loses all infor-
mation as soon as the reply is sent back to the client. One solu-
tion to this problem is to write the information to some kind of
database, but that will also impair the performance.

• Overhead. Since there is no way of reloading parts of a page, the
response from the server comes as a whole HTML-page, al-
though the page might just have changed slightly.

• CGI-scripts can only be used to make basic GUIs. The available
GUI-components are the ones provided by HTML-forms, like:
buttons, radio buttons, check boxes and selection lists. If a more

12 Practical and Extendable Report Language

Managing AXE via the Internet 9(31)

sophisticated GUI is needed, some other technology must be
used.

3.4 JavaScript
JavaScript was developed by Netscape and helps in dealing with
some of the shortcomings of plain HTML.

JavaScript is an interpreted language that is included in the
HTML-code that executes in the web browser (assuming that the
browser can interpret JavaScript).

The features provided by JavaScript are similar to that of
HTML-forms: buttons, selection lists and the like. In addition,
JavaScript can change the appearance of a web page without com-
municating with a web server. Here are some of the features:
• read browser information
• control browser windows and frames
• image control
• browser cookies
• date and time
• math operations
• detect mouse events
• page history

Below is a small JavaScript example that displays the day of the
week. Note that the first five and the last three lines are HTML.
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT LANGUAGE = "JavaScript">
var now=new Date();
var dayNames=new array("Sunday", "Monday", "Tuesday",
"Wednesday", "Thursday", "Friday", "Saturday");
document.write("Today is "+dayNames[now.getDay()]+.");
</SCRIPT>
</BODY>
</HTML>

As shown in the example above, JavaScript is not a substitute for
HTML, it’s more of a complement.

JavaScripts execute in the browser, which is an advantage since
it doesn’t strain the server. On the other hand, there are different
implementations of JavaScript in different browsers, which mean
that a JavaScript that works fine in one browser may not wok in
another.

3.5 ASP
Active Server Pages was developed by Microsoft and is like CGI a
way to produce dynamic HTML-pages. An ASP-page can contain
scripts in a number of different languages like VBScript (Visual
Basic Script) or JavaScript, and there are third party products that
make it possible to use languages like Perl, and REXX.

Managing AXE via the Internet 10(31)

3.5.1 Benefits
Each ASP-page does not have to run as a separate process on the
server, which makes ASP faster than CGI.

3.5.2 Drawbacks
Currently ASP-scripts only run on Microsoft’s Windows NT plat-
form.

Managing AXE via the Internet 11(31)

4 Java

4.1 Introduction
It started in 1990 when Patrick Naughton at SUN Microsystems
was leaving SUN for NeXT, SUN gave him an offer he couldn’t re-
fuse. He got free hands to create a small group of software design-
ers with one purpose: “To make something cool”13.

The group was codenamed Green and among other things, they
tried to figure out a way for different types of consumer electronics
to communicate with each other. Different VCR’s, TV’s, stereos all
had different CPU’s, and if a manufacturer wanted to add some fea-
ture, they would be limited to what the hardware allows them to do.
Furthermore, they have to recompile the source code each time a
new processor is introduced. The Green team’s thoughts finally
lead to a new object-oriented programming language. One of the
team members, James Gosling, named it Oak after the tree outside
his window.

One of the first applications made with Oak was an interactive
remote control with a graphical interface. The remote was called
“*7” (star seven). Eventually SUN formed a new company called
First Person, based on the Green team. First Person began to de-
velop set-top boxes for video-on-demand. Due to various reasons,
the deals with the set-top boxes never came through.

At this time, the WWW was coming to life and the First Person
team recommended that they would make Oak available on the
Internet. SUN backed the decision to give it away for free. The
team wrote an Oak compiler and a web browser with support for
running Oak programmes in it called WebRunner. Since Oak was
already a registered trademark, Oak was renamed to Java, and
WebRunner got the name HotJava. In May 1995 SUN formally an-
nounced Java and HotJava at SunWorld ’95.

4.2 How does it work?
When compiling a program written in C++ or Pascal the compiler
translates the source code directly into machine code.

When compiling a Java program the compiler translates the
source code into byte code. The byte code is similar to machine in-
structions but it is platform independent and can be transmitted
over networks to different platforms. In order to run the program
the byte code must be fed to a Java Virtual Machine (JVM), which
interprets the byte code and transforms it into machine instructions
for the specific platform running the program. The Java compiler
and the Java Virtual Machine are platform dependent and are avail-
able for a number of operating systems.

13 What

[10]
is Java? Intro FAQ.

www.javasoft.com

http://www.javasoft.com/

Managing AXE via the Internet 12(31)

There are two ways of writing Java programs. One way is to
write it as a standard stand alone application, the other way is to
write it as a program that is meant to be a part of a HTML-page -
an applet.

Today a number of web browsers have incorporated a JVM.
This makes it possible to download and run Java applets without
installing a separate JVM, which is one of the reasons why Java
have become so popular in such a short time.

4.3 Advantages
4.3.1 Architecture independent

The JavaSoft’s slogan “Write once, run everywhere” is true in most
cases and is probably the main reason why Java has become so
popular. The Java Developers Kit (JDK) from JavaSoft is available
for Solaris and Windows NT/98/95. In addition there is a large
number of third party ports available for platforms like MacOs,
Linux, Open VMS, Digital UNIX, HP-UX and so on.

On the WWW, there is of course a large number of architectures
and the ability of writing code that anyone can download and run
on their computer regardless of platform is appealing to most pro-
grammers.

The software industry realises that there is money to save if they
don’t have to make different versions of their software to run on
different platforms. There have also been discussions in papers and
on the Internet on whether Java will become the technology that
breaks Microsoft's dominance on the PC-market. I will leave it to
the reader to decide if this is an advantage or not.

4.3.2 Simple and robust
Java has a C++-like syntax and was designed that way since there
are many people already familiar with C/C++. However, there are
quite a few areas where Java differs from C++. When developing
Java the Green team deliberately removed some of the C++ fea-
tures that in their opinion were unnecessary or error-prone.

“Most programmers working these days use C, and most pro-
grammers doing object-oriented programming use C++. So
even though we found that C++ was unsuitable, we designed
Java as closely to C++ as possible to make the system more
comprehensible.

Java omits many of the rarely used, poorly understood,
confusing features of C++ that in our experience bring more
grief than benefit”14

Below is a list of some features where Java differs from C++:
• Automatic garbage collection. Programmers don’t have to free

memory. Instead, unreferenced memory is automatically freed.
• No pointers

14 The Java Language: An Overview [11]

Managing AXE via the Internet 13(31)

• Strict object-orientation, i.e. no individual functions or subrou-
tines are allowed.

• No operator overloading.
• No multiple inheritance.
• No structs or unions.

Naturally, there are people who don’t agree that removing these
features is an advantage. C++ inventor Bjarne Strostrup for in-
stance:

“Compared to C++, Java sacrifices efficiency, ability to deal-
with low-level facilities, and flexibility of programming for al-
ternatives. …

…I don’t think Java is interesting as a programming lan-
guage. It is an interesting example of mass hysteria and a
unique example of a large corporation throwing its marketing
clout behind a programming language and marketing it pri-
marily to non-programmers.”15

When trying to make things simpler you sometimes have to sacri-
fice some flexibility. C++ is probably more flexible than Java but,
on the other hand, many of the errors made by C++-programmers
are related to memory management or misuse of pointers.

The discussions for or against different programming languages
often turn in to religious arguments, and with no doubt will the dis-
cussions continue.

Java code is checked twice, once during compilation and a sec-
ond time during runtime. The runtime checking is possible since
the Java Virtual Machine interprets the byte code. This feature
makes Java robust and it also makes it easier to detect bugs.

4.3.3 Advanced features are built-in.
The Java Developers Kit includes a large number of class libraries.
These class libraries, called packages, have a high abstraction level,
which means that programmers don’t have to deal with low-level
programming. Examples of packages are:
• java.lang – supplies basic classes like ‘String’ and ‘Boolean’,

but also ‘Threads’ that makes multi-threading easy to use.
• java.net – supplies classes for easy usage of TCP/IP-sockets,

and Internet protocols like HTTP and FTP.
• java.security – supplies classes for dealing with security issues.
• java.rmi – supplies classes for Java Remote Method Invocation,

which is makes it possible to create distributed object-oriented
software.

15 EXE – March 98 [13]

Managing AXE via the Internet 14(31)

4.4 Disadvantages
4.4.1 Performance

Java byte code is interpreted and translated into machine instruc-
tions. This makes it slower than for example C++, which is com-
piled directly into machine instructions.

In applications where performance is critical, the interpreter is a
large disadvantage. Interpreted Java is on the average 20 times
slower than compiled C++. However, when running interactive
GUI and network applications, where the application is often idle,
waiting for user input, the performance is sufficient.

Lately, different software vendors have developed just-in-time
(JIT) compilers. A JIT translates performance critical program sec-
tions into machine instructions at run-time. Netscape Navigator is
one example of an application that incorporates a JIT.

Furthermore, there are traditional source code to machine code
compilers available. These compilers make Java programs run al-
most as fast as C/C++-programs. This however makes the Java
programs’ architecture dependent and maybe the most important
Java feature is lost.

Managing AXE via the Internet 15(31)

5 Distributed object computing

5.1 Introduction
In order to explain how CORBA works, it is necessary to give an
introduction to the main components, namely: object-orientation
and distributed computing.

5.2 Object Orientation
Object Orientation (OO) has become one of the leading program-
ming paradigms. An object is a software building block that has an
interface for communicating with other objects. The object can
contain data and procedures for dealing with the data. These proce-
dures are called methods. There are two main types of methods,
public and private. The public methods can be called by other ob-
jects to retrieve or manipulate an object’s data. The private methods
are used inside the object and are hidden to other objects.

This is quite abstract and a bit hard to visualise, but consider the
following example:

A bank account with a balance of 500. At a typical ATM, it is
possible to retrieve the balance and withdraw some cash. I.e. two
methods: “getBalance” and withdraw”. There is no way of altering
the balance except by using the public methods available.

 Figure5.1

Int myWallet=100;
BankAccount myAccount = new BankAccount(500);
myWallet=+myAccount.withdraw(200);

In the code above, we have a wallet that contains 100. In line two,
an object of type “BankAccount” is created, with 500 as an initial
balance. In line three, 200 is withdrawn and put in the wallet. Note
that there is a private method, not visible to the user, which alters
the balance to 300. However, like in a real ATM this is nothing the
user has to deal with.

One important feature in object-oriented design is called inheri-
tance. A bank usually provides a range of different accounts, for

Managing AXE via the Internet 16(31)

example: salary-, savings- and checking accounts. Consider a sav-
ings account where you are only allowed to make a certain number
of withdrawals each year. If this is the only difference from the
bank account used in the example above, we can let the savings ac-
count inherit all data items and methods from the bank account.
The only thing we need to do is to add the new attribute “max
withdrawals”. Inheritance makes it easy to customise existing ob-
jects without having to rewrite all of the code.

 Figure5.2

5.3 Distributed Computing
The word distributed tells us that the data itself and the processing
of data is spread out over more than one computer, usually over a
network.

In the early days of computing, users were connected to the
main computer via “dumb” terminals. As technology moved for-
ward, personal computers, local networks and relational databases
became widely used. This led to the birth of the client-server sys-
tems.

A client is a program that makes a service request to another
program called the server. The client typically contains the presen-
tation logic and some of the business logic. The server is a larger
computer that often handles requests from multiple clients. The
server often serves as data storage using a database of some sort.
As technology evolved further, more complex structures were de-
veloped, like multi-layer client-server architectures and systems

Managing AXE via the Internet 17(31)

with multiple nodes, where a node can serve as both a client and a
server.

The WWW is the most obvious example of distributed comput-
ing. When using a service on the Internet, that service may in its
turn access other computers on the WWW to retrieve the requested
information.

5.4 Distributed object-orientation
Using distributed object-orientation we get the ability to use fea-
tures like encapsulation and polymorphism in a distributed envi-
ronment.

Absolute inter-compatibility between software is the ultimate
goal of distributed object-oriented computing. When building a dis-
tributed system, developers should ideally be able to add or subtract
components without redesigning the system or changing anything
else. This component-based system requires further evolution of
computing environments and is only possible through sophisticated
collaboration mechanisms, including common object services such
as global naming, object lifecycle, event filtering, transactional
messaging, trade or security services.

Of course, everyone easily understands that standardization of
such architecture and services are crucial, and this is where OMG
and CORBA steps in.

Managing AXE via the Internet 18(31)

6 The OMG and CORBA.

6.1 Introduction
CORBA (Common Object Request Broker Architecture) was de-
veloped by OMG, the Object Management Group, which is a con-
sortium of software vendors. OMG has over 700 members with gi-
ants like SUN Microsystems, Microsoft, IBM and smaller compa-
nies like IONA.

The basic idea of CORBA is to provide a platform for distrib-
uted object oriented software development.

A CORBA Object Request Broker (ORB) connects a client ap-
plication with the objects it wants to use. The ORB is like a soft-
ware bus which connects clients and servers regardless of place-
ment in the network, operation system or implementation language.
The client application only needs to keep track of two things: the
object’s name and how to use the object’s interface. The ORB takes
care of locating the object, routing the request, and returning the re-
sult.

6.2 How CORBA works
A CORBA Object Request Broker (ORB) is the middleware that
establishes the client-server relationship between objects. Using an
ORB, a client object can invoke a method on a server object that
can be on the same machine or across a network. The ORB inter-
cepts the call and finds an object that can implement the request,
pass it the parameters, invoke the method, and return the results.

CORBA provides both static and dynamic interfaces to its ser-
vices. The client does not have to know the object's location, its
programming language, its operating system, or any other system
aspects that are not part of an object's interface. In addition, the cli-
ent and server roles are dynamic: an object on the ORB can act as
either client or server, depending on the occasion.

Together, ORBs and the CORBA architecture provide the
mechanism for CORBA objects to communicate. The objects are
small software components that provide some kind of a service,
such as access to a database, account management, or inventory
tracking.

Fundamental to the architecture are the ORBs. For any client or
server to be a part of the CORBA scheme, it must include an ORB
to help it find and communicate with other CORBA objects. Once
outfitted with an ORB, a client or server can use the services of any
CORBA object on any server or host on the network.

CORBA also defines the Internet Inter-ORB Protocol (IIOP)
which specifies how ORBs from different vendors interoperate.
IIOP is an open protocol that runs on top of TCP/IP. Unlike HTTP,

Managing AXE via the Internet 19(31)

IIOP allows state data to be preserved across multiple invocations
of objects and across multiple connections.

6.2.1 The Interface Definition Language, IDL
CORBA defines an interface definition language (IDL) that pro-
vides a language-neutral way to describe a CORBA object and the
services it provides. IDL lets components written in different lan-
guages communicate with each other using IIOP and the rest of the
CORBA architecture.

Distributed systems require a number of low-level and repeti-
tious programming efforts, for example:
• Opening, controlling and closing of network connections
• Marshalling and unmarshalling of data (conversion of structured

data into programming language independent format and back
again)

• Setting up servers to listen for incoming requests on socket ports
and forward them to object implementations

IDL compilers and ORB run-time systems free application pro-
grammers from these tasks. IDL compilers create representations of
IDL-defined constructs such as constants, data types, and interfaces
in particular language binding, for example, C++ or Java. They also
create the code to marshal and unmarshal the user-defined data
types. Libraries are provided to support predefined CORBA types.

The generated code for the client side, that is, the code invoking
an operation on an object, is known as stub code. The server side
generated code, which invokes the method on the implementation
of that operation, is called skeleton code. The skeleton code in con-
junction with the ORB provides a transparent run-time mechanism
for handling incoming invocations and managing associated net-
work connections.

CORBA objects can reside on different types of systems, includ-
ing for example Windows, UNIX and DEC VAX mainframes.
They can be written in different languages. As long as interfaces to
their services are written in IDL, the objects can communicate and
use each others' services through ORBs on clients, servers, data-
base systems, mainframes, and other systems on the network.

The IDL-specification for the thesis prototype can be found in
Appendix A, and a part of it together with a few explanations in
7.3.

6.2.2 CORBA services
The CORBA architecture provides a set of services that help ob-
jects interact with each other. In the CORBA world, services means
both the services provided by the CORBA architecture to help ob-
jects communicate and the functionality provided by the objects
themselves.

The services are among the efficiencies provided by CORBA:
You write your object's code, and CORBA takes care of how your

Managing AXE via the Internet 20(31)

object identifies itself, finds other objects, learns of network events,
handles object-to-object transactions, and maintains security. The
services include the following:
• A Naming service, which makes it easy for objects to find an-

other object by name. Each object has a unique name.
• An Event service, objects can subscribe to an event channel and

be notified of specific events.
• A Transaction service, which defines transactional disciplines,

co-ordinating two-phase commits among objects.
• A Security service, that provides authentication, authorisation,

encryption and auditing functions to protect sensitive data and to
control user access to applications and services.

6.2.3 BOA

BOA is short for the "Basic Object Adapter". An object adapter
is something that supports various styles of object implementations.
The BOA was specified first and it supports a multitude of styles in
the manner of a Swiss army knife, meaning few implementations
ever use all of the services it offers. There are four styles of activa-
tion:
• Per Method
• Shared
• Unshared
• Persistent

Per method activation – a new server is started every time an
object method is invoked. Each method call runs in its own server.

Shared activation style servers – support multiple objects active
at a time. A single server may handle multiple objects all active si-
multaneously.

Unshared activation servers – only support one single active ob-
ject. The single server may handle multiple method invocations as
long as they are all on the same object.

Persistent servers – are always active and do not require activa-
tion. Rather these are presumed to be available as long as the sys-
tem (or machine) is operating.

6.2.4 Calling a distributed object
An object invocation follows the following call-path through the

ORB:
1. The client calls a method through an IDLstub.
2. The ORB hands the request to the BOA, which activates the im-

plementation.
3. The implementation invokes the BOA to inform the BOA that it

is active and available.
4. The BOA passes the method request into the implementation via

the IDL skeleton.

Managing AXE via the Internet 21(31)

5. The implementation returns the result (or exception) back to the
client through the ORB.

 Figure 6.1

6.3 Creating CORBA Objects
These are the basic steps when creating a CORBA object:
1. Write a specification over the objects interface using IDL.
2. Run the specification through an IDL-to-language-compiler.

This will result in stubs and skeletons. The stubs are used by the
client, and the server skeletons provide the framework that you
fill in with the code for the service your object is to provide.

3. Write the code to implement the service.
4. Compile the implementation.

When using Java you don’t have to write the specification in the
IDL-language. There are Java-IIOP compilers that interpret Java-
bytecode and automatically generate the needed stubs and skele-
tons, which makes it is possible to skip the first two steps in the list
above.

6.4 3-tier integration of legacy systems
CORBA enables incorporation of legacy systems into modern cli-
ent-server systems. A legacy application, module, or entry point
can be encapsulated in a C++ or Java "wrapper" that defines an in-
terface to the legacy code. Creating such an object wrapper gives
the legacy code a CORBA-compliant interface, making it interop-
erable with other objects in a distributed computing environment.

On the first tier, there is a client that communicates with a server
at the second tier, using IIOP. The server then accesses the legacy
system at tier three, also with IIOP. Since CORBA is transparent as
far as implementation language and computer architecture is con-
cerned, old systems written in for example Cobol or a database on a
mainframe can be accessed.

Managing AXE via the Internet 22(31)

 Figure 6.2

In this thesis work, the “legacy system” is the FROM platform.

6.5 Competitive technologies
• HTTP-CGI – The HTTP/CGI is slow, clumsy, and on top of that

stateless. This can only be regarded as a good choice in very
small applications, but maybe not even then.

• RMI – Remote Method Interface is Java’s distributed object
model. Its largest drawback is that it is language dependent. That
is, only RMI objects can only talk to other RMI objects and they
must be written in Java. RMI does not support interface reposi-
tories or dynamic invocations, it does not provide a protocol for
secure transactions.

• DCOM – Very few implementations of DCOM run on non-
Windows platforms, and for DCOM to scale on the server side,
it requires the Microsoft Transaction Server (MTS). MTS is cur-
rently only available on Windows NT. In addition, DCOM does
not have a distributed naming service, instead it uses the NT reg-
istry. DCOM objects do not maintain state between connections.
This can be a problem in an environment with faulty connec-
tions, like the Internet.

• RPC – Using a Remote Procedure Call you call a specific func-
tion (the data is separate). In contrast with an ORB, you call a
method within a specific object. Different object classes may re-
spond to the same method call differently. All RPC classes have
no specificity: all functions with the same name are imple-
mented the same way.

Below is a table16 showing performance on remote ping for various
client-server techniques. The remote ping example used is perhaps
too simple to make any important conclusions, but it gives a hint on
the performance of the different methods.

CORBA/IIOP DCOM RMI HTTP/CGI Sockets

3,3 ms 3,9 ms 5,5 ms 603,8 ms 2,0 ms

16 Instant CORBA, table 2-1, [6]

Managing AXE via the Internet 23(31)

6.6 Benefits
CORBA is an ISO standard with an open specification and is sup-
ported by a large number of hardware and operating system plat-
forms.

CORBA is language independent and thus makes it possible to
modify and reuse existing code. In addition, all objects interact via
interfaces. The implementation of the interfaces are “hidden” to the
application and as long as the interface stays the same developers
can modify the object implementation without having to change
other parts of the application.

CORBA has location transparency in the sense that objects are
located independently of their physical location. Objects may refer
to objects that are in the same program, in a different process on the
same machine, or located on a remote machine. Each kind of object
is used in exactly the same way. Furthermore, an object can poten-
tially change its location without braking the application. The ORB
provides the necessary mechanisms for this transparency.

Software designers does not have to worry about low-level pro-
gramming issues like controlling network connections, marshalling
data, and setting up servers to listen for incoming requests. This is
all taken cared of by the ORB, client stubs and server skeletons.

Using the Internet Inter-ORB Protocol (IIOP), CORBA objects
can interact with other ORBs even if they come from a different
software vendor. On top of that, software bridges make it possible
for CORBA objects to communicate with Microsoft ActiveX-
DCOM objects.

CORBA provides security features like encryption and
authentication to protect objects from unauthorised use.

6.7 Drawbacks
CORBA is slower than using sockets, this is natural since it is a
middleware. Therefore, if networking performance crucial, you’ll
probably have to use sockets.

CORBA is quite complex compared to for example HTTP/CGI,
and it can take time to understand all of the features.

In order to protect corporate networks from unlawful entries,
firewalls between the corporate network and Internet are used.
Firewalls make it possible for people on the inside to access www
but prevents outsiders to break in (hopefully). This of course makes
it harder for ORBs to interact. There are different ways of dealing
with this problem, one solution is called HTTP-tunnelling, where
the IIOP packets are converted to HTTP packets that the firewall
can recognise and deliver to the correct receiver.

Managing AXE via the Internet 24(31)

7 Accessing the FORM platform via the Internet

7.1 Introduction
I chose to implement the prototype using Java and CORBA mainly
for the following reasons:
• Java is platform independent, thus the client program can be

used on any computer with a JVM.
• CORBA is an open standard and is also platform independent.
• Using CORBA, it is possible to distribute parts of the FORM

platform to different physical machines. This could help to in-
crease performance of the FORM platform.

• It is easy to reuse existing code using a CORBA-“wrapper”
which is like a layer surrounding the existing code. This keeps
the additional code one has to write to a minimum. This will be
explained below.

The scenario for the FORM platform prototype was to reuse “leg-
acy”-code, although “legacy” is a hardly the correct word when
talking about the FORM platform. The prototype was made in these
steps:
1. Identify the existing interface.
2. Write an IDL-specification of the interface.
3. Run the IDL-specification through an idl-to-java-compiler to re-

trieve the client stubs, and an idl-to-c++-compiler to retrieve the
server skeletons.

4. Write the implementation code for the client and the server.
5. Compile the server skeletons together with the server implemen-

tation code to get the “corbyfied” server.
6. Register the server in the CORBA daemon.
7. Compile the client stubs together with the client implementation

code to get the “corbyfied” client.

7.2 Identify the existing interface
To simplify the use of the classes in PDI17, the APDI18 provides a
container class to hide the structure of the PDI, and a set of iterators
for retrieving information from a parsed printout. For the prototype,
I used the APDI_ParamIterator, which makes it possible to traverse
the parse tree a step at the time.

The APDI_ParamIterator class contains the following methods:
• virtual int next()

Steps to the next node in the parse tree.
• void setParam(const char* theParam)

Sets the name to iterate over in the parse tree.

17 Printout Description Interface
18 Application based Printout Description Interface

Managing AXE via the Internet 25(31)

• virtual const char* getName() const
Returns the name of the current node.

• const char* getType() const
Returns the type of the current node.

• const char* getValue()
Returns the value of the current node.

• void getPosition(int& theRow, int& theColumn) const
Returns the position of the current node.

In addition to these methods, the method createParser was added.
This method is not specified in APDI_ParamIterator.h. The purpose
of createParser is to hide the low level setup of the parse tree and
iterator creating.
• void createParser(in string thePrintOutFile)

Adding this method was necessary, since I did not distribute the
whole FORM-platform. See Appendix C – iter_i.cc for more de-
tails.

7.3 Write an IDL-specification of the interface
Now, when we have identified the methods that the client will be
able to use, it is time to write an IDL-specification for these meth-
ods. The whole specification can be found in Appendix A but I will
list a few of the mappings below:
• long next();
• void setParam(in string theParam);
• void getPosition(out long row, out long col);

Operations may have zero or more parameters, and each parameter
must be tagged with a keyword to indicate in which direction ar-
guments will be passed at run time.
• in – the argument is passed from client to server.
• out – the argument is passed from server to client.
• inout – the argument is passed from client to server, possibly

modified, and then returned.

7.4 Compile the IDL-specification
When using two languages like in the FORM platform prototype,
you have to compile the IDL specification twice, once with a IDL-
to-Java-compiler and the other with the IDL-C++-compiler.

We now have our client stubs and server skeletons that will take
care of the low-level networking issues.

The IDL-to-language compiler also gives us source code skele-
tons with the method declarations already created. For the server
implementation, we get two files named iter_i.h19 and “iter_i.cc20”,

19 Appendix B, iter_i.h
20 Appendix C, iter_i.cc

Managing AXE via the Internet 26(31)

where the “i” stands for implementation. Below is a small part of
these files to give you an example:
//iter_i.h
#ifndef iter_ih
#define iter_ih

class iter_i : public iterBOAImpl
{
public:

 virtual CORBA::Long next(CORBA::Environment &IT_env);

 virtual void setParam(const char * theParam,
 CORBA::Environment &IT_env);

// iter_i.cc
#include "iter_i.h"
CORBA::Long iter_i::next(CORBA::Environment &IT_env)
{
}

void iter_i::setParam(const char * theParam,
 CORBA::Environment &IT_env)
{
}

All we have to do now is to put our implementation code in each
method and add some declarations in the iter_i.h-file.

7.5 Write implementation code for the server object
Since we to create a wrapper for the APDI_ParamIterator we only
have to map our methods to the corresponding APDI_ParamIterator
methods. In the iter_i.h-file, we have added the line below to give
us an APDI_ParamIterator object:
 APDI_ParamIterator anIterator;

The mapping of the methods in APDI_ParamIterator is now pretty
straightforward. For the methods “next” and “setParam” above, we
get:
CORBA::Long iter_i::next(CORBA::Environment &IT_env)
{
 return anIterator.next();
}

void iter_i::setParam(const char * theParam,
 CORBA::Environment &IT_env)
{
 anIterator.setParam(theParam);
}

To complete the server-side part of this implementation, we also
have to write code for the actual server21. The server creates a

21 Appendix D, Sr v_Main.cc

Managing AXE via the Internet 27(31)

server object and tells the ORB that it is ready to receive method
calls.
 // create an iterator object – using
 // the implementation class iterator
 iter_i *myIterator= new iter_i();

 // tell Orbix that we have completed
 // the server's initialisation:
 CORBA::Orbix.impl_is_ready("iter");

7.6 Compile the server skeletons together with the server
implementation code to get the “corbyfied” server.
This will give us an executable program that we can register with
the CORBA daemon. After that, any method calls will be for-
warded by the CORBA daemon to the server object.

7.7 Write implementation code for the client
We can now create our Java client using the methods of
APDI_ParamIterator in the same way as we would do with any
other non-distributed object. There is however one thing we have to
do before we start. We must obtain an object reference for the
server object:
 public static _iterRef myIterObj = null;

 // Obtain a reference for the server object
 myIterObj = iter._bind(":iter", hostname);

As mentioned before, the “createParser” method was added by me
to setup the parse tree. Furthermore, to simulate a printout coming
from an AXE-switch, I read a printout text file from disk.
 printoutString=new String(fileToString(printoutFileName));
 myIterObj.createParser(printoutString);

After these small procedures, we are now able to use the methods
of APDI_ParamIterator to traverse the parse tree.

When the client implementation code is written, all we have to
do is compile the client stubs together with the client implementa-
tion code. This will give us a Java client using objects of the
FORM platform.

Managing AXE via the Internet 28(31)

8 Conclusions
In this thesis work I have described a number of Internet technolo-
gies that could be used to make the FORM-platform available to
the Internet. Due to obvious reasons, I had to limit the number of
technologies in order to fit the necessary work involved, into this
thesis project.

When I was about to start implementing the prototype I identi-
fied two scenarios:

1. Designing a client with a not so advanced user interface
that was not platform- or language independent. This
could be done with HTML and a combination of
JavaScript and CGI.

2. More freedom when creating the user interface and plat-
form independent client. Using one or more of the tech-
nologies that I have described, that would mean using-
Java with CORBA as middleware.

I saw greater potential in succeeding with scenario number two,
and therefore I choose to go with Java and CORBA.

If you take in to account that prior to this thesis I had only taken
two courses in Java and C++ programming and I did not know of
CORBA, and that I managed to develop a working prototype, one
can assume that it would not be too hard for more experienced de-
velopers to create a more advanced CORBA-interface to the whole
FORM-platform.

Managing AXE via the Internet 29(31)

9 References

9.1 Books
9.1.1 C++

[1] Strostrup, Bjarne
The C++ programming language, second edition
1991, Addison Wesley
ISBN: 0-210-53992-6

9.1.2 Perl
[2] Wall, Christiansen, Schwartz

Programming Perl, Second Edition
O'Reilly & Associates, Inc. (1996)
ISBN: 1-56592-1449-6

9.1.3 Java
[3] Flanagan

Java in a Nutshell, Second Edition
O'Reilly & Associates, Inc. (1997)
ISBN: 1-56592-262-X

[4] Vogel, Duddy
Java Programming with CORBA
John Wiley & Sons, Inc. (1997)
ISBN: 0-471-17986-8

9.1.4 CORBA
[5] Baker, Seán

CORBA Distributed Objects Using Orbix
Addison Wesley Longman Ltd
ISBN: 0-201-92475-7

[6] Orfali, Et al.
Instant CORBA
John Wiley & Sons, Inc. (1997)
ISBN:

9.2 Papers and articles
9.2.1 Ericsson Documents

[7] The FORM Concepts, UAB/I/R-96:196 Uen
[8] FPI, FORM Platform Interface Application Programmer’s In-

terface, UAB/I/MT 1997-11-16, 155 10 – CXA 110 214 Uen
9.2.2 WWW

[9] T. Berners-Lee, R. Caillau
WoldWideWeb: Proposal for a HyperText Project, 1990
www.w3c.org/Proposal.html

9.2.3 Java
[10] What is Java? Intro FAQ.

www.javasoft.com

http://www.javasoft.com/

Managing AXE via the Internet 30(31)

[11] The Java Language: An overview.
www.javasoft.com

[12] Michael O’Connell
Java: The Inside Story.
Sun World Online –July 1995.
www.sun.com/sunworldonline/swol-07-1995/swol-07-java.htm

9.2.4 C++
[13] Will Watts

Bjarne Again. Interview with Bjarne Strostrup.
EXE – March 1998.

9.2.5 CORBA
[14] OrbixWeb Programming Guide

Part of the OrbixWeb documentation
[15] Steve Winoski

CORBA: Integrating Diverse Applications Within Distributed
Heterogeneous Environments.
IEEE Communications Magazine, Vol. 14, No.2, February
1997.

[16] Distributed Object Computing in the Internet Age
Visgenic Software
http://www.visigenic.com/prod/vbrok/wp.html

http://www.sun.com/sunworldonline/swol-07-1995/swol-07-java.htm

Managing AXE via the Internet 31(31)

Appendices
Appendix A iter.idl A1
Appendix B iter_i.h B1
Appendix C iter_i.cc C1
Appendix D Srv_Main.cc D1
Appendix E iterClient.java E1

Managing AXE via the Internet A1

Appendix A. iter.idl
// iter.idl
//
// An IDL-interface for methodes in APDI_ParamIterator.h which
// is part of the FORM platform. Check out comments below as well!
//

interface iter {

 void createParser(in string thePrintOutFile);
 // Method for creating the parse tree.
 //
 // This method is NOT specified in APDI_ParamIterator.h!
 // The purpose of createParser is to hide the low level
 // set up of the parse tree and iterator creating.
 //
 // Check out the implementation in "iter_i.cc" and compare
 // with the non-CORBA example in "apdi_test/t_APDI.cc".
 //

 //
 // The methodes below maps methods in APDI_ParamIterator.h
 //

 long next();

// Steps to the next value in the parse tree.

 void setParam(in string theParam);
 // Sets the name to iterate over in the parse tree

 string getName();

// Returns name of the current node.

 string getType();

// Returns type of the current node.

 string getValue();

// Returns value of the current node.

 void getPosition(out long row, out long col);

// Returns position of the current node.

};

Managing AXE via the Internet B1

Appendix B. iter_i.h
#ifndef iter_ih
#define iter_ih

#include "FMRT_APDI.h"
#include "APDI_ParamIterator.h"
#include "APDI_ParamSetIterator.h"
#include "SCAN_nameFinder.h"
#include "PDI.h"
#include "FMRT_FFI_FileInfo.hh"
#include "iter.hh"

class iter_i : public iterBOAImpl
{
 APDI_ParamIterator anIterator;

public:
 //ctor
 iter_i::iter_i();

 //dtor
 iter_i::~iter_i();

 virtual void createParser(const char * thePrintoutFile,
 CORBA::Environment &IT_env);

 virtual CORBA::Long next(CORBA::Environment &IT_env);

 virtual void setParam(const char * theParam,
 CORBA::Environment &IT_env);

 virtual char * getName(CORBA::Environment &IT_env);

 virtual char * getType(CORBA::Environment &IT_env);

 virtual char * getValue(CORBA::Environment &IT_env);

 virtual void getPosition(CORBA::Long& row,
 CORBA::Long& col,
 CORBA::Environment &IT_env);
};

#endif

Managing AXE via the Internet C1

Appendix C. iter_i.cc
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <strstream.h>
#include <fstream.h>
#include <iostream.h>
#include <sys/param.h>

#include "FMRT_APDI.h"
#include "APDI_ParamIterator.h"
#include "APDI_ParamSetIterator.h"
#include "SCAN_nameFinder.h"
#include "PDI.h"
#include "FMRT_FFI_FileInfo.hh"

#include "iter_i.h"

//ctor
iter_i::iter_i() {}

//dtor
iter_i::~iter_i() {}

void iter_i::createParser (const char* thePrintoutFile,
 CORBA::Environment &IT_env)
{
 SCAN_nameFinder* myAssoc=SCAN_nameFinder::Instance();
 if (!myAssoc)
 {
 fprintf(stderr , "No SCAN name finder.\n");
 exit(-1);
 }
 PDI::errorReport myError;
 istrstream myInFile(thePrintoutFile, strlen(thePrintoutFile));

 if (!myInFile)
 {
 fprintf(stderr , "Error while creating the istream myInFile\n");
 exit(-1);
 }
 streampos myPos=myInFile.tellg();
 int myPlace=0;
 char myHeader[128];

 myAssoc -> get_header(myInFile , myPlace , myHeader);
 if (myPlace < 0)
 {
 fprintf(stderr , "Cannot fetch the header.\n");
 exit(-1);
 }

 char* myPosFile;
 FMRT_FFI_FileInfo myFileInfo("APZ 211 10 R2, APT 210 08 R5");
 myPosFile=myFileInfo.getPpmFile(myHeader);
 if (!myPosFile)
 {
 fprintf(stderr , "Cannot fetch the header symbol.\n");
 exit(-1);
 }

 FMRT_APDI myApp;

Managing AXE via the Internet C2

 if (myApp.createParser(myPosFile , myPlace))
 {
 fprintf(stderr , "Unable to create a parser with \"%s\".\n" ,
 myPosFile);
 exit(-1);
 }

 myInFile.seekg(myPos);
 if (myApp.parse(myInFile , myError))
 {
 fprintf(stderr , "Unable to parse.\nError during
 myApp.parse()\n");
 exit(-1);
 }

 myApp.connectIterator(anIterator);
}

CORBA::Long iter_i::next(CORBA::Environment &IT_env)
{
 return anIterator.next();
}

void iter_i::setParam(const char * theParam,
 CORBA::Environment &IT_env)
{
 anIterator.setParam(theParam);
}

char * iter_i::getName(CORBA::Environment &IT_env)
{
 return CORBA::string_dupl(anIterator.getName());
}

char * iter_i::getType(CORBA::Environment &IT_env)
{
 return CORBA::string_dupl(anIterator.getType());
}

char * iter_i::getValue(CORBA::Environment &IT_env)
{
 return CORBA::string_dupl(anIterator.getValue());
}

void iter_i::getPosition(CORBA::Long& row,
 CORBA::Long& col,
 CORBA::Environment &IT_env)
{
 int a, b;
 anIterator.getPosition(a , b);
 row=a;
 col=b;
}

Managing AXE via the Internet D1

Appendix D. Srv_Main.cc
#include <stream.h>
#include <stdlib.h>
#include "iter_i.h"

int main()
{
 // create an iterator object - using
 // the implementation class iterator
 iter_i *myIterator= new iter_i();

 try
 {
 // tell Orbix that we have completed the
 // server's initialisation:
 CORBA::Orbix.impl_is_ready("iter");
 }
 catch (CORBA::SystemException &sysEx)
 {
 cerr << "Unexpected system exception" << endl;
 cerr << &sysEx;
 exit(1);
 }
 catch (...)
 {
 // an error occured calling impl_is_ready() - output the error.
 cout << "Unexpected exception" << endl;
 exit(1);
 }

 // impl_is_ready() returns only when Orbix times-out an idle server
 // (or an error occurs).
 cout << "server exiting" << endl;

 return 0;
}

Managing AXE via the Internet E1

Appendix E. iterClient.java
package testiter;

import java.io.*;
import IE.Iona.Orbix2.CORBA.IntHolder;
import IE.Iona.Orbix2._CORBA;
import IE.Iona.Orbix2.CORBA.SystemException;

public class iterClient
{
 public static _iterRef myIterObj = null;
 static String printoutString;
 static IntHolder aLine=new IntHolder();
 static IntHolder aCol=new IntHolder();

 public static void main(String args[])
 {
 /**
 * Command line syntax is as follows...
 *
 * iterClient filename paramname
 *
 * filename is a printout ascii file.
 * paramname is a parameter in a printout.
 *
 **/

 boolean useOrbixProt = true;
 String printoutFileName=new String(args[0]);
 String myParam=new String(args[1]);
 String hostname=new String(args[2]);

 if (useOrbixProt)
 {
 // Using the Orbix Protocol
 // So set the Orbix Protocol default values
 //
 // See Configure.java
 _CORBA.IT_BIND_USING_IIOP = false;
 }

 // Obtain a reference for the server object
 try
 {
 myIterObj = iter._bind(":iter", hostname);
 }
 catch (SystemException ex)
 {
 System.out.println("Exception during bind");
 System.out.println(ex.toString());
 System.exit(1);
 }

 // create parser
 try
 {
 printoutString=new String(fileToString(printoutFileName));
 }
 catch (IOException ex)
 {
 System.out.println("FAIL\tException during fileToString");
 System.out.println(ex.toString());
 }

Managing AXE via the Internet E2

 try
 {
 myIterObj.createParser(printoutString);
 }
 catch (SystemException ex)
 {
 System.out.println("FAIL\tException during createParser");
 System.out.println(ex.toString());
 return;
 }

 try
 {
 myIterObj.setParam(myParam);
 }
 catch (SystemException ex)
 {
 System.out.println("FAIL\tException during setParam");
 System.out.println(ex.toString());
 return;
 }

 try
 {
 while(myIterObj.next()!=0)
 {

try
 {
 String aLabel=myIterObj.getValue();
 System.out.println("Its value is "+aLabel);
 }
 catch (SystemException ex)
 {
 System.out.println("FAIL\tException during getValue");
 System.out.println(ex.toString());
 System.exit(-1);
 }
 }
 }
 catch (SystemException ex)
 {
 System.out.println("FAIL\tException during next");
 System.out.println(ex.toString());
 System.exit(-1);

}
 }

 public static String fileToString(String f) throws IOException
 {

File inFile=new File(f);
int fileSize=(int)inFile.length();

 int bytesRead=0;
 FileInputStream inStream=new FileInputStream(inFile);
 byte[] fileData=new byte[fileSize];
 while(bytesRead < fileSize)
 {
 bytesRead+= inStream.read(fileData, bytesRead, fileSize-bytesRead);
 }
 String aString=new String(fileData);
 return aString;
 }
}

	Thesis background and introduction
	Managing AXE via the Internet, a master thesis
	Problem definition
	The literature study
	The prototype
	Limits to the study

	Introduction to the FORM platform
	Ericsson AXE Research and Development
	The I/O system
	The FORM platform
	Using the FORM platform
	The objects of the FORM platform

	WWW, HTML, CGI, …
	Introduction
	HTML and HTTP
	CGI
	Introduction
	Benefits
	Drawbacks

	JavaScript
	ASP
	Benefits
	Drawbacks

	Java
	Introduction
	How does it work?
	Advantages
	Architecture independent
	Simple and robust
	Advanced features are built-in.

	Disadvantages
	Performance

	Distributed object computing
	Introduction
	Object Orientation
	Distributed Computing
	Distributed object-orientation

	The OMG and CORBA.
	Introduction
	How CORBA works
	The Interface Definition Language, IDL
	CORBA services
	BOA
	Calling a distributed object

	Creating CORBA Objects
	3-tier integration of legacy systems
	Competitive technologies
	Benefits
	Drawbacks

	Accessing the FORM platform via the Internet
	Introduction
	Identify the existing interface
	Write an IDL-specification of the interface
	Compile the IDL-specification
	Write implementation code for the server object
	Compile the server skeletons together with the se
	Write implementation code for the client

	Conclusions
	References
	Books
	C++
	Perl
	Java
	CORBA

	Papers and articles
	Ericsson Documents
	WWW
	Java
	C++
	CORBA

