
[image: image1.wmf]

Master Thesis

Computer Science

February 8, 2001

Platform for Mobile IT-Services

by

Anna Löfgren

Examiner:
Prof. Seif Haridi

Department of Microelectronics and Information Technology

Royal Institute of Technology

Supervisor:
Thomas Sjöland

Department of Microelectronics and Information Technology

Royal Institute of Technology

Industrial Supervisor:
Lennart Öhman

Sjöland & Thyselius Telecom AB

Abstract

The technology development during the latest years has brought new ways to access information and services. WAP-phones, web browsers and telephones are some examples of terminals that may be used. This entails that separate applications have to be developed for each terminal despite that information and services accessed are often similar and in some cases the same.

This master thesis is about a platform that makes the same applications, which offer IT-services, accessible to different types of terminals. The applications are developed independent of the end-users’ terminals and the storage that the information originates from. When the application is accessed, the output from the application is tailored by the platform to the characteristics of the terminal.

Application development using the platform is harder and less effective than application development using standard techniques adjusted to a certain type of terminal. The benefits from application development using the platform will therefore arise first when the developed applications are accessible to many different types of terminals.

The pros and cons of using Extensible Markup Language (XML) to represent information within the platform have been considered. XML can easily be transformed into other formats, which is of great use when tailoring the output from the applications to the different terminals. On the other hand XML has some shortcomings regarding interaction with information sources and processing of XML documents is time-consuming, which affects the performance of the platform.

The platform has been used to investigate how WAP-services can be tailored to the characteristics of different WAP-phones. It appeared that the platform is useful for that purpose.

Table of Contents

11
Introduction

11.1
Background

11.1.1
Sportnik

11.1.2
WAP

11.1.3
XML

21.2
Goals

21.3
Report Outline

32
Background

32.1
A Platform for Mobile IT-Services, What Is That?

32.1.1
The Terminals

42.1.2
The Information Sources

42.1.3
The Existing Systems

42.1.4
The Applications

42.2
The Field of Application

42.3
What Will the Platform Substitute?

52.3.1
Web Server

52.3.2
Interactive Voice Response

52.4
Further Functionality

52.5
Products on the Market

52.5.1
Unified Messaging

62.5.2
Products for Tailoring WAP-services

73
Software Architecture

73.1
Introduction

73.2
Software Components

73.3
Logical Separation

73.3.1
Layered Architecture

73.3.2
Model-View-Controller

83.3.3
The Model

83.3.4
The View

83.3.5
The Controller

83.4
The Data Access Layer

93.4.1
Data Access Objects

93.4.2
Database Pool

93.5
Physical Separation

93.6
Access to the Platform

93.6.1
Servlets

93.6.2
Remote Procedure Call

114
XML

114.1
Introduction

114.2
Structure of an XML Document

114.2.1
The Prolog

114.2.2
The Body

124.2.3
The Epilog

124.3
Vocabulary and Document Type Definition

134.4
Relationships within Documents

134.5
XML Parsers

134.5.1
Non-validating and Validating Parsers

134.5.2
Document Object Model

134.5.3
Simple API for XML

144.6
Transforming XML

144.7
Styling XML

144.7.1
Visual Presentation

144.7.2
Aural Presentation

144.8
XML Path Language (XPath)

154.9
Dynamic Generation of XML

154.9.1
XML-QL

164.9.2
XQL

164.9.3
XSLT and XPath

164.10
XML for Interchange of Information

164.10.1
XML and Legacy Data

164.11
XML and Databases

164.11.1
Template-driven and Model-driven Mappings

174.11.2
XML and Relational Databases

174.11.3
Mapping Relational Databases to XML

194.11.4
XML and Object-oriented Databases.

194.11.5
Querying XML vs. Querying the Database

204.12
Character Encodings

204.12.1
Character Encodings in XSLT

215
WAP

215.1
Introduction

215.2
Characteristics of the Wireless Environment

215.3
WAP Architecture

215.3.1
Wireless Terminal

225.3.2
WAP Gateway

225.3.3
Origin Server

225.3.4
Naming Model

225.3.5
Communication Example

235.4
WAP Protocol Stack

235.4.1
Adjustments to the Wireless Environment

245.4.2
Wireless Application Environment (WAE)

255.4.3
Wireless Session Protocol (WSP)

255.4.4
Wireless Transaction Protocol (WTP)

255.4.5
Wireless Transport Layer Security (WTLS)

255.4.6
Wireless Datagram Protocol (WDP)

255.4.7
Wireless Bearers

265.5
WML

265.5.1
Character Encodings in WML

265.6
WMLScript

275.7
Security in the WAP Environment

275.8
User Agent Profile

296
A Method for Application Development

296.1
Introduction

296.2
XML Vocabulary Design

296.2.1
ProgrammingXML

306.2.2
PageXML

306.2.3
Other Possible Vocabularies

306.3
Interaction with Information Sources

306.3.1
Dynamic Generation of Information – The query Element

316.4
Interaction with Relational Databases

316.4.1
Representing a Relational Database with XML

316.4.2
Mapping the Query Construct to SQL

326.5
Interaction with Existing Systems

336.6
Tailoring to Different Terminals

336.7
XML - Benefits and Drawbacks

336.7.1
XML as Input Format

336.7.2
XML as Output Format

346.7.3
XML for Application Development

346.8
Conclusions

357
Platform Design and Implementation

357.1
Introduction

357.2
Identification of an Application

357.3
A MVC Architecture

357.4
Platform Overview

367.4.1
The Controller

367.4.2
Client Controller and Interaction with the Controller

367.4.3
The Model

367.4.4
The Method Call Handler

367.4.5
The XML Questioner

367.4.6
The Database Handler

377.4.7
The View

377.5
Access to the Platform

387.6
Course of Events when Accessing the Platform

387.7
Adding Components for Access from a New Terminals

387.8
Adding Components for Interaction with a Database

387.9
Adding Components for Interaction with Existing Systems

397.10
Administration and Upgrading

397.11
Future Functionality

397.12
The Implementation

418
Development of WAP-Services

418.1
Introduction

418.2
Differences Between WAP Terminals

418.2.1
Ericsson R320

418.2.2
Ericsson R380

428.2.3
Identifying a Terminal

428.3
WAP Emulators

428.4
Tailor-Made WAP-services for Different Terminals

428.4.1
Tailoring the Graphical Representation of WML Elements

438.4.2
Tailoring the Information Content

438.4.3
Tailoring with Respect to the Input Device

438.5
Developing WAP-services Using the Platform

438.5.1
The Web Server is Substituted

448.5.2
The Developed Application

448.5.3
The Tailoring Process

448.5.4
New Components for Access from WAP terminals

458.5.5
Problems

458.6
Performance Tests

458.6.1
Test Setup

458.6.2
Factors That May Affect XML Parsing

458.6.3
Test 1 – Different Factors Effecting the Performance

468.6.4
Test 2 – Static Programming

468.6.5
Test 3 – Dynamic Programming

478.6.6
Source of Error

478.6.7
Conclusions from the Tests

478.7
Conclusions Regarding Development of WAP-services

489
Final Conclusions

489.1
Development of WAP-services

489.2
Future Work

50References

52Appendix A - DTD for the ProgrammingXML Vocabulary

54Appendix B - DTD for the PageXML Vocabulary

56Appendix C - DTD Representing the Sportnik Database

60Appendix D - Class Diagrams

60Overview

61Package Controller

61Package Model

62Package Db

62Package Util

62Package View

64Appendix E - Sequence Diagrams

64Course of Events when a Terminal Sends a Request to the Platform

64Course of Events when a ProgrammingXML Document is Processed

List of Figures

3Figure 2.1: The connection between the platform and different terminals, information sources and existing systems.

11Figure 4.1: The hierarchical tree structure of a well-formed XML document.

12Figure 4.2: Example of a valid XML document.

13Figure 4.3: An example of an external Document Type Definition.

15Figure 4.4: Examples of XPath expressions.

18Figure 4.5: Example of a mapping of a relational database to XML using the ID/IDREF method.

19Figure 4.6: Example of a mapping of a relational database to XML using the nesting method.

20Figure 4.7: An xsl:output element.

21Figure 5.1: The WAP architecture.

23Figure 5.2: Communication between the terminal, the WAP Gateway and the origin server.

23Figure 5.3: The WAP protocol stack.

24Figure 5.4: Access control for WTA services.

29Figure 6.1: The platform processes ProgrammingXML and PageXML documents.

31Figure 6.2: DTD for the query element.

32Figure 6.3: A mapping between an XPath expression and a SQL query.

32Figure 6.4: DTD for the methodCall element.

35Figure 7.1: The platform architecture.

38Figure 7.2: Course of events when accessing the platform.

41Figure 8.1: Ericsson R320

42Figure 8.2: Ericsson R380.

44Figure 8.3: Architecture for access to the platform from a WAP-terminal.

List of Tables

46Table 8.1: The average response time when validation is turned on or off.

46Table 8.2: The average response time for static programming using the web server and the platform.

46Table 8.3: The average response time when processing ProgrammingXML files of varying size and the corresponding response time for the web server.

47Table 8.4: The average response time for dynamic programming using the web server and the platform.

1 Introduction

1.1 Background

The technology development during the latest years has brought new ways to access information and services. It may be data from a business system or an information source that are presented for the end-users. These end-users want access to information and services irrespective of the time, the place and their available terminals. Today terminals like WAP-phones, cellular phones, web browsers, telephones or PDAs
 can be used for this purpose. This entails that separate applications have to be developed for each terminal, e.g. one application that produces HTML pages and another application producing WML
 pages. The information and services that are accessed from these terminals are often similar and in some cases the same. The core programming logic, which fetches information and interacts with the existing business systems, is therefore often the same for all the applications. This procedure is both expensive and ineffective since large parts of the code have to be rewritten and when a service needs to be changed, code at several places has to be upgraded.

A platform that supports the application developer to write applications independently of the end-users’ terminals may be a solution to this problem. The platform would support a number of terminals and when an application is written all terminals, supported by the platform, should be able to access the application and thus receive information tailor-made to the terminal. The platform would handle information independent of the end-users’ terminals and transform the information to the programming language used by the terminal when needed. A further step towards independence would be taken if the platform also lets the developers handle information independent of the information source.

The platform may also support the application developer with other functionality that would simplify the development phase. Examples of such functionality are security, session and transaction management.

1.1.1 Sportnik

Sportnik
 is a communications portal for sports clubs. Its purpose is to facilitate the communication within a team. Sportnik can today be accessed through the web and can send SMS
 messages, but will in the future even be accessed through a WAP-phone. Each team has its own page on the web where they for instance can handle information about the team members, send messages to each other and administrate match and training programs.

Sportnik is one example of an information system that could be accessed by different terminals and consequently a support for application development independent of the terminal would be useful.

1.1.2 WAP

The Wireless Application Protocol (WAP) is a standard for presentation and delivery of wireless information and telephony services on different wireless terminals. The WAP-phones may have different capabilities with respect to display size, input facilities and memory capacity among other things. Therefore it would be desirable to adapt the content sent to the terminal in the best possible way. This is another area where the platform may be useful.

1.1.3 XML

The Extensible Markup Language (XML) is a language used to describe data. XML is not a markup language itself, but enables description of data through self-defined structures. XML can therefore be used to define a personal markup language. XML has during the latest years become an accepted standard for data exchange between platforms and applications.

1.2 Goals

A platform that supports developers to write applications independent of the end-users’ terminals is a wide subject. This master thesis has therefore been focused on the information management, i.e. tailoring of information to different terminals and interaction with information sources. XML has been chosen to describe information, and advantages and disadvantages of that method will be considered.

The master thesis is divided in two parts. The goal of the first one is to investigate the architecture of a platform that lets the developers manage information in a source and terminal independent way and how applications that fetch and insert information from an underlying information source are written. The following have been considered:

· How applications running on the platform are written.

· How information is interchanged with information sources, with focus on relational databases.

· How interaction with existing systems is managed.

· How terminals access the platform to receive information and how this information is transformed to the programming language used by the terminals.

· How the platform could be expanded to be able to handle access from new terminals that emerge on the market.

The purpose of the second part of this project is to investigate how the platform may be used to develop WAP-services to Sportnik, and considers the following:

· How information is adapted to WAP-phones.

· How information is tailor-made to different WAP-phones with respect to their capabilities.

1.3 Report Outline

The first section, Section 2, will explain what a Platform for Mobile IT-Services is, how it will be used and what it will substitute. The immediately following three sections will cover the different techniques used during the master thesis. Section 3 discusses some aspects of software architecture design that were considered when the platform was developed. Section 4 is an introduction to the Extensible Markup Language and the tools used when working with XML documents. This section also covers how XML and databases can be used together. Section 5 discusses the WAP architecture, the WAP protocol stack and the characteristics in the wireless environment.

The design of the platform and how it has been implemented are described in the following two sections. Section 6 presents the method for application development that has been designed. Section 7 shows how the platform runs the developed applications and how they are accessed from different types of terminals.

Section 8 describes how the platform may be used to develop WAP-services. This section also discusses how WAP-services can be tailor-made to different models of WAP-phones with diverse presentation and input possibilities. The results of a performance test of the platform are also presented.

The last section, Section 9, summarizes this master thesis and presents how the platform may be improved in the future.

2 Background

2.1 A Platform for Mobile IT-Services, What Is That?

The word platform has many meanings. A platform may be defined as hardware and/or software that define a standard around which a system can be developed. The term is often used as a synonym of operating system. A broader meaning is an underlying computer system on which application programs can run. Throughout this paper, the word platform will be used in the meaning of a server-side system in which information providing applications accessible to different types of terminals are developed and running. These applications are developed independent of the terminal type and the information source, and are able to interact with various existing systems. Figure 2.1 illustrates the connection between the platform and different terminals, information sources and existing systems.

[image: image2.wmf]Wireless

Network

Wireless

Network

WAP

-

phone

WAP

Gateway

Internet

Internet

Platform

Information

Sources

Existing

Systems

Web

browser

Figure 2.1: The connection between the platform and different terminals, information sources and existing systems.
2.1.1 The Terminals

A terminal is a client-side device that enables communication with a server, on which applications offering different types of services are running. Examples of terminals are WAP-phones, web browsers, PDAs or telephones. There are a lot of differences between terminals, above all with respect to the following:

· Presentation capabilities

· Interaction capabilities

· Programming language for presentation and interaction on the terminal

· Communication protocol

The applications running on the platform are written independent of the terminals. The platform will tailor the output from these applications to the characteristics of the terminals with respect to the presentation and interaction capabilities and convert the output to the programming language used by the terminal.

Terminals use different communication protocols and communications architecture. The applications running on the platform should therefore be accessible using different communication protocols.

2.1.2 The Information Sources

The information that will be presented on the terminal may originate from different information sources. Examples of information sources are relational databases, object-oriented databases, text files and legacy information systems. The format of the information and the methods for receiving information differs between the sources. The platform should hide these differences from the application developer.

2.1.3 The Existing Systems

An existing system may contain valuable data that has been collected over the years. Much of the programming investment within a company often resides in applications on those systems. Therefore access to these systems is desirable. The existing systems may be written in different programming languages and may be running on different operating systems. The platform should facilitate interaction with existing systems for the application developer.

2.1.4 The Applications

The applications running on the platform will offer IT-Services, i.e. managing and processing information. This is a wide area and examples of applications are a telephone book application or a stock-in-trade management application.

The platform will define a method for application development. An application developed using that method will be independent of the characteristics of the terminal and the information source, and may interact with existing systems.

2.2 The Field of Application

The platform will be used to develop the applications described above to different types of terminals without writing several versions of the code. The platform will support the application developers with functionality that will facilitate this development.

The developed applications will be running on the platform and the platform will tailor the output to the accessing terminals. The behaviour of the platform when a request is received can schematically be described as follows.

1. The platform receives a request for a service from a terminal.

2. The request is encoded using the communication protocol used by the requesting terminal, and therefore the request has to be decoded.

3. The requested application, which offers the wanted service, is started. The application interacts with existing systems and generates information content from the information sources.

4. The output from the application will be converted to the programming language used by the requesting terminal.

5. The information is encoded into the format determined by the communication protocol.

The response is transmitted to the terminal.

2.3 What Will the Platform Substitute?

Different terminals communicate with different types of servers to provide services. Various techniques, depending on the type of server, are used to develop the applications offering these services. The platform will substitute the servers that only provide services to one specific terminal. The techniques used to write applications on these servers will be replaced with the method for writing applications defined by the platform. Below is a short description of some servers that the platform may replace.

Depending on the architecture of the server, it may not be possible to completely replace it. The applications will then be developed using the platform and the original server will be used to access these applications.

2.3.1 Web Server

A web server can be used to provide applications, i.e. web pages, for web browsers. The communication protocol used between the web browser and the web server is HTTP
. There are different techniques used to generate web pages. Web pages can be static HTML pages stored on disk or dynamically generated HTML pages. Server scripts, like CGI-script
 or ASP
, are small programs executed by the web server. The server script may be used to interact with existing systems and to dynamically generate HTML pages with information from e.g. databases.

A web server can also be used to provide applications for WAP-phones. The same techniques may be used, with the difference that WML
 pages are generated instead of HTML pages.

2.3.2 Interactive Voice Response

Interactive Voice Response (IVR) system is an interactive telephone answering machine that provides information and instructions. The calling party uses a keypad telephone to communicate with the applications within the system.

Text-to-speech conversion is needed to replace an IVR system with the platform. For this purpose VoiceXML, a new technology for making Internet content and information available via voice and phone, may be useful. See Section 4.7.2 for more information about VoiceXML.

2.4 Further Functionality

The platform should facilitate the application development. Examples of functionality that further may do this are session, transaction and security management. Functionality like this will not be considered in this master thesis.

A session is a process that lasts for multiple requests from a user. On example is a customer buying products. First he adds products to his shopping cart and when he is finished he pays the products. Another example is a user who has logged in to check his mail. He does not want to login once for each mail he likes to read.

A transaction is a series of operations executed as one contiguous atomic operation. Transactions allow multiple users to share the same data and guarantee that updates will be completely written without interleaving from other users. Some existing systems have built-in support for transactions, others do not. In the other case transaction management provided by the platform is needed.

Authentication is one example of security functionality, e.g. a user who wants access to sensitive information must be individually identified. Another is data integrity, i.e. the data transmitted between the platform and the terminal is guaranteed to be unchanged and uncorrupted.

2.5 Products on the Market

2.5.1 Unified Messaging

Unified messaging is a system that unifies different kinds of messages into one central point, e.g. a mailbox, and makes it possible for the user to access these messages from different kinds of terminals. A unified messaging system should support accessing from telephone, facsimile, e-mail, and web browser. An incoming message is transformed into a fixed format and stored in one location together with the other messages. It should be possible to read a message on any terminal irrespective of the terminal used to send the message.

getsorted.com
 from Viatel is a web based unified messaging solution. The user can send and receive messages through e-mail, facsimile, cellular phone or traditional phone. A notification can be sent, via one of the given terminals, to the user when a new message is received.

2.5.2 Products for Tailoring WAP-services

It is a well-known problem that different WAP-phones have diverse presentation and interactions capabilities and manages the presentation of WML pages in different ways. There exist some products dealing with this problem. These solutions often have at least one thing in common, they use XML to describe the information and then transforms the information with respect to the characteristics of the terminal.

Nocom Mobilctrl™ from Nocom is a platform for mobile access intended for companies that want to make information in their internal systems and information sources accessible to users with a WAP-phone or a PDA. The users’ terminals have direct access to the services from the platform through the GSM network, without using the Internet. This brings about the possibility to use the security built-in in the GSM network. Data from the companies that will be presented for the users are converted to XML. The platform manages the capability differences between the terminals and adapts the information with respect to the different presentation possibilities. All users are registered and only registered users have access to services from the platform. By that statistics about the users and the services that they have used are stored. [11]
3 Software Architecture

3.1 Introduction

“The software architecture of a program or computing system is the structure or structures of the system, which comprise software components, the externally visible properties of those components, and the relationships among them.” [3]
This section will cover some principles for software architecture, above all principles of design for system access from multiple types of clients and interaction with information sources.

3.2 Software Components

A software component is code that implements a set of well-defined interfaces. Software components are used like building blocks when developing applications. The goal when developing software components is to make them general and reusable and thus promote rapid application development. A component can represent work being performed and are used to model for instance business processes or tasks. It can also be used to model objects, e.g. a customer or a document, and contains methods for manipulating this object.

3.3 Logical Separation

The goal when developing the platform is to achieve an architecture that makes the platform scalable, extensible and maintainable. One general concept used to achieve that is the layered design, where the different responsibilities within the platform are separated into functional layers. Since the platform should support different types of terminals accessing the platform for services, that also has to be considered in the design phase. An architecture that distinguishes between software components that can be shared or reused by different types of terminals and software components that need to be implemented separately is the Model-View-Controller architecture.

3.3.1 Layered Architecture

In layered software architecture each layer consists of a set of software components that performs a specific task and has a clearly defined API towards the other layers. One advantage of partitioning an application into logical layers is that each layer is isolated from the others and that enables development in one layer without effects on others. It makes it possible to swap out an entire layer to take advantage of a new technology. There are different opinions about how the layers should be divided. The basic division is in the three layers that are described below.

· The presentation layer, contains components dealing with user interfaces and user interaction.

· The business logic layer, contains components performing data processing and computing. This layer can be divided into three sub layers, the application layer, the service layer and the domain layer. The domain layer contains objects representing data and the service layer contains methods for manipulating these data objects. The advantage with this method is that different applications can use the same services.

· The data layer, provides a permanent storage of object state. The storage is often databases.

3.3.2 Model-View-Controller

Application data and business rules are independent of the types of the terminals that access the application, and these objects should be shared across all the terminals accessing the application. The Model-View-Controller (MVC) architecture makes it possible to handle multiple types of terminals that have similar functionality although different mechanisms are used to present their interfaces to the user and to interact with the application. When this architecture is used in the right way, new types of terminals can be introduced with minimal additional effort. The MVC architecture divides an application into three different responsibilities, the model, the view and the controller. The responsibility of the model is to abstract the application data and the business rules that change this data. The view accesses the data from the model and adapts it to the terminal. The controller maps the user’s actions into actions to be performed by the model. [10]
The MVC architecture was originally developed to map the input, processing, and output tasks to a graphical user interface. However, it is straightforward to map these concepts into the domain of multiple types of terminals accessing the same application.

3.3.3 The Model

The responsibility of the model is to abstract the application data and the rules and methods used to change this data. The model is shared across all the terminals that access the application and should not be adjusted to a specific terminal. If users have different levels of authorisation to the system, access control can be handled by a separate component that implements an authorization barrier. In this manner the model can be shared across all terminals and users, and at the same time access control can be handled. [10]
3.3.4 The View

The view accesses data from the model and adjusts it in a manner suitable for the terminal. The view changes across terminals, but parts of the view can be shared if the same terminal is used for presentation but the users access different functionality. Examples are a user and an administration interface. [10]
3.3.5 The Controller

The controller defines the application behaviour by interpreting user actions and map them into actions performed by the model. Terminals that access identical functionality from the application should use the same controller, the controller should in other words be terminal independent. If users access different functionality separate controllers might be needed.

The controller interacts with the view implementation that is terminal dependent. These interactions might be terminal dependent and has to be translated to a view-neutral representation in order to achieve the objective of a terminal independent controller. There are two kinds of interactions between the view and the controller, interception of user actions and selecting of view. Examples of user actions are "button pressed" or a GET request for a URL. An event translator can be used to translate these actions to a view-neutral representation. Then a new terminal is introduced, the only change that has to be done is implementation of a new event translator for the event generated by that terminal view.

The controller selects which view to display. The view depends on the terminal. It can be a Java interface with panels, lists and other components or it can be a web interface with HTML pages. If the controller expresses the views in a technology-neutral fashion and a view generator is used to translate them into technology-specific renderings, the controller can remain terminal independent. One view generator for each terminal is needed. [10]
3.4 The Data Access Layer

Data can be stored in information sources like relational databases, object-oriented databases, file systems, legacy systems or some other persistence engine. Multiple persistence engines, with belonging drivers and storage schemas, have to be considered when designing the access to the data layer. An interface for creating, reading, updating and deleting data has to be designed in such a manner that it is possible to implement the interface on many types of persistence engines. That avoids making direct references in the code to the actual implementation of the persistence storage and its drivers. A new persistence engine or changes of persistence engine then only requires implementation of that interface. The interface may constitute a sub layer in the business logic layer called the data access layer.

3.4.1 Data Access Objects

A data access object is an encapsulation of access to data. A data access object implements the actual logic for accessing the database, and the component that wants access to the database does not need to have any knowledge about the actual implementation. Data access objects for different database schema and database types can share a common interface and thus be independent of the database type. [10]
3.4.2 Database Pool

Connections to databases are expensive resources in a system. An effective approach to that problem is to establish a pool of database connections. The pool is shared across all the clients and when a client needs access to the database it pulls a connection from the pool, uses it and returns it for other clients to use when finished. Connection pooling scales to support a large number of concurrent users.

3.5 Physical Separation

The logical layers are purely abstractions and do not correspond to any physical distribution. A process boundary, a machine boundary or a boundary across the Internet can physically separate the layers into different tiers. A two-tier architecture physically separates two of the layers from the third and a three-tier architecture physically separates all the three layers from each other. A layer can also be separated into different tiers. Architectures with three or more tiers are often referred to as N-tier architectures.

Advantages with several tiers are that each tier may be maintained without affecting the other tiers and errors localized in one tier do not affect other tiers that still may function properly. Disadvantages may be communication performance sufferings since the tiers have to communicate across physical boundaries.

3.6 Access to the Platform

The methods used by different types of terminals to access the platform depend on the communicating protocol used. A simple socket connection is one alternative, others are Servlets and remote procedure call.

Direct access to the platform from the terminal is not always possible or desirable. Then the terminal sends the request to some server that in its turn access the platform using some communicating protocol.

3.6.1 Servlets

A Servlet is a network component that can be used to extend the functionality of a web server. The Servlet can be viewed as an applet running on the server. The Servlet receives a HTTP-request performs the request and sends back a HTTP-response. Since Servlets are written in the Java programming language, they can have the same functionality as an ordinary Java application.

3.6.2 Remote Procedure Call

A Remote Procedure Call (RPC) is a protocol used for procedural invocation from a process on one machine to a process on another machine. Remote Method Invocation (RMI) is a Java version of RPC that allows invocation of methods on objects remotely, not merely procedures.

XML

3.7 Introduction

The Extensible Markup Language (XML) is a language used to describe data. It has been developed by the World Wide Web Consortium (W3C) and is a subset of the Standard Generalized Markup Language (SGML), which is an international standard for how a document markup language is specified. XML is not a markup language itself, it only enables description of data through self-defined structures. XML can therefore be used to define a personal markup language. The purpose of XML is to describe the syntax of the data and thus be able to share the data with others.

3.8 Structure of an XML Document

There are two types of XML documents, well-formed and valid documents. A well-formed document just follows the rules in the XML syntax specification, while a valid document must also follow the rules in a Document Type Definition (DTD). A DTD describes a set of self-defined structures used to define a personal markup language. A well-formed XML document has a hierarchical tree structure. The root node is called the document root and the other nodes are the prolog, the body and the epilog. Figure 4.1 illustrates the structure of a well-formed XML document.

[image: image3.wmf]Document

Root

Element

Tree

Prolog

Epilog

Document

Element

Body

Figure 4.1: The hierarchical tree structure of a well-formed XML document.

3.8.1 The Prolog

The prolog is the first part of the XML document and it contains an XML declaration, which indicates that this is an XML document, what kind of character encoding method is used and other configurations. A Document Type Declaration can also be included in the prolog and it is used to validate the XML document. The prolog is optional for a well-formed document, but the Document Type Declaration part of the prolog must be included in a valid document. Lines 1-2 in Figure 4.2 are an example of a prolog in a valid XML document.

3.8.2 The Body

The body is the mandatory part of the document and it consists of one or more elements containing data. Lines 3-13 in Figure 4.2 are an example of a body in a valid XML document.

The body has a hierarchical tree structure of elements where the root is called a document element. The hierarchical tree structure is called the element tree. There can only be one document element and this element is parent to all the other elements in the document. All the elements must be properly nested, unlike HTML where the elements can overlap each other. Another difference compared to HTML is that all XML markup is case-sensitive.

An element is like a container for content that might have different characteristics. The characteristics are stored as attributes and the element content is often character data (text) or other elements. The element content can also be character references, entity references, processing instructions or CDATA sections.

A character reference is a decimal or hexadecimal number that will be replaced by the character that corresponds to that value. An entity reference allows insertion of string literals into element content and attribute values. There are five built-in entities for the characters used as markup delimiters, but it is also possible to define your own entities. Processing Instructions (PIs) is a method for associating an element with an application. PIs are used since XML does not have any support for how an element or its content should be processed. A CDATA section is a method for including a text containing characters that otherwise would have been interpreted as markup.

There is no semantical difference between using an attribute or a text-only element to describe a characteristic of data, and it can sometimes be hard to determine which method to use. A good rule of thumb is to compare text-only elements with nouns and attributes with adjectives.
3.8.3 The Epilog

The epilog is an optional part at the end of the document, which purpose is unclear. XML does not define an end-of-document indicator and thus applications must use the last tag in the body, the end-tag of the document element, for end-of-document indicator. Since the epilog is the part of the document that follows the end-tag of the document element, there are no guarantees that the epilog will be processed. There is no epilog in the example XML document in Figure 4.2.

1. <?xml version="1.0" encoding="ISO-8859-1" ?>

2. <!DOCTYPE team SYSTEM "team.dtd">

3. <team>

4.
<teamname>Sweden</teamname>

5.
<members>

6.

<member category="goalkeeper">

7.

<membername>Magnus Hedman</membername>

8.

</member>

9.

<member category="forward">

10.

<membername>Henrik Larsson</membername>

11.

</member>

12.
</members>

13. </team>

Figure 4.2: Example of a valid XML document.
3.9 Vocabulary and Document Type Definition

Then sharing information e.g. within a company an XML tag set that describes the information can be defined. Such a tag set is called an XML vocabulary. The syntactic rules that a document written in that vocabulary must follow are defined in a Document Type Definition (DTD). The DTD is a description of the structure of the document, i.e. which elements follow which element. It is possible to conform that an instance of an XML document is valid, i.e. follows the syntactic rules of the vocabulary, with a validating parser.

A DTD can either be internal or external. An internal DTD is included in the Document Type Declaration in the prolog of the XML document. While an external DTD is written in a separate document and a reference to that document is included in the Document Type Declaration. The syntax of the DTD is the same in both cases. The DTD has its own syntax, which is not similar to the XML syntax. Figure 4.3 is the external DTD that the example document in Figure 4.2 refers to.

<!ELEMENT team (teamname, members)>

<!ELEMENT teamname (#PCDATA)>

<!ELEMENT members (member*)>

<!ELEMENT member (name)>

<!ATTLIST member category CDATA #REQUIRED >

Figure 4.3: An example of an external Document Type Definition.
3.10 Relationships within Documents

Relationships within an XML document, for example to describe that a member belongs to a team, can be handled with parent-child relationships or with ID-IDREF/IDREFS relationships. When the parent-child model is used the relationship between elements are modelled by encapsulating one element into another and form a hierarchical structure. One-to-one and one-to-many relationships within an XML document can also be modelled by using the ID and IDREF/IDREFS attribute types. The attribute type ID is used to uniquely identify a given element within a document. The attribute type IDREF is used to model one-to-one relationships between two elements. An IDREF attribute is like a pointer to an element identified by an ID attribute. The attribute type IDREFS points to more than one element identified by their ID attribute and is therefore used to model one-to-may relationships.

3.11 XML Parsers

3.11.1 Non-validating and Validating Parsers

A parser can be used to check that an XML document follows the syntax rules of XML. There are two types of XML parsers, non-validating and validating. Both checks the syntax of an XML document against the core rules of XML syntax, but the validating parser also uses the information in the DTD to check that the document follows these rules as well.

3.11.2 Document Object Model

The Document Object Model (DOM) is an API for manipulating XML documents. A DOM parser is a tree-based parser, which means that it reads the entire XML document and offers a tree-structured view of the document. Through the API offered by the DOM navigation through the tree-structures is provided and it is possible to access and manipulate items in the tree.

3.11.3 Simple API for XML

The Simple API for XML (SAX) provides an API for access to an XML document. A SAX parser is an event-driven parser, which means that it processes each part of the document and offers events when e.g. a start tag, some element content or an end tag emerges. It is up to the program using the SAX parser to take action to the provided events. The SAX parser just processes through the XML document and therefore it does not have to read the entire XML document into memory. This makes it suitable for very large XML documents.

3.12 Transforming XML

There is a need for transforming an XML document written in one vocabulary into another vocabulary. The Extensible Stylesheet Language Transformation (XSLT) is an XML based language designed for such transformations. An XSLT stylesheet is a well-formed XML document that includes different rules for transforming the XML document from one vocabulary into another. Apart from transformations from one vocabulary to another, XSLT has support for sorting the elements, conditional processing of elements and numbering of the elements.

An XSLT stylesheet consists of so-called templates that specify how each element in the XML document should be transformed. The stylesheet only specifies how the result document should look and does not include any information about how the transformation should be executed. XSLT is consequently a declarative language and therefore a processor that executes the transformation is needed. An XSLT processor takes the stylesheet and the XML document as input, performs the transformation and produces the output in the desired format.

3.13 Styling XML

XML only describes the content in terms of data unlike HTML that describes how the data is displayed and how to interact with the user. In XML the data is completely separate from the presentation. For visual presentation of the data stored in an XML document, a styling language for XML can be used. A styling language is a declarative language, like XSLT, where the desired result of the styling is specified in a stylesheet and a processor is used to perform the styling. The presentation of the data can also be aural.

3.13.1 Visual Presentation

For visual rendition there are different styling languages available. The simplest language is Cascading Style Sheets (CSS), which is a way for assigning styling information to named XML elements. CSS has no support for transformation of XML elements. Another more flexible technique is Extensible Stylesheet Language (XSL). XSL handles both the document transformation and the styling and is basically divided into two different parts. One is XSLT, described in Section 4.6, and the other is XSL Formatting Objects (XSL-FO). XSL-FO is dealing with transformations of XML into other formats more suitable for visual rendering, e.g. PDF.

3.13.2 Aural Presentation

The aural rendition is complex and is in its development phase. The VoiceXML Forum
 is an industry organization which has established the Voice Extensible Markup Language (VoiceXML), whose purpose is to make Internet content and information accessible via voice and phone. VoiceXML is an XML vocabulary used to develop interactive voice applications. A VoiceXML application consists of dialogs involving a series of user interactions. Navigation and input is produced via speech recognition of the user’s voice and output is produced by text-to-speech conversions.

A VoiceXML application can be stored on a web server and be accessed through an aural browser, in much the same way as a web browser accesses HTML pages from a web server. Another area of use is for telephony applications and then in combination with an Interactive Voice Response (IVR) system.

3.14 XML Path Language (XPath)

The XML Path Language (XPath) is a language whose primary purpose is to address parts of an XML document, and it has been designed to be used together with XSLT. The XML document is modelled as a tree of nodes and a compact non-XML syntax is used to address parts of the document. An expression consists of an optional location path and one or more location steps and is evaluated to yield a node set, a boolean, a string or a number.

The location path specifies the context node, from which the location steps are evaluated. If the location path is not specified the root element is used as context node. The location step has the form axis::node test[predicate] and is used to select nodes from the document and return the node set that fulfils all the stated conditions. The axis defines the partition of the document, based on the context node, to analyse, i.e. defines the nodes which the node test and the predicates are applied on. The node test specifies the elements or node types to be selected from the specified axis. The predicate is a boolean expression for further filtering the node set identified by the axis and the node test.

Line 1 in Figure 4.4 is an example of an XPath expression that selects the category attribute of the first member in the example document in Figure 4.2.

1. team.xml#/child::team/child::members/

 child::member[position() = 1]/attribute::category

2. team.xml#/team/members/member[1]/@category

Figure 4.4: Examples of XPath expressions.

Commonly used constructs in expressions may be abbreviated. The expression on line 2 in Figure 4.4 is the expression on line 1 in its abbreviated form.

In addition to the primary purpose of XPath, addressing parts of an XML document, it also provides basic facilities for manipulation of node sets, strings, numbers and booleans. It is for example possible to concatenate two strings, summarize numbers and test if an object is true or false. [8]

 REF _Ref499716006 \r \h
[22]
3.15 Dynamic Generation of XML

An XML query language can be used to dynamically generate an XML document from other XML documents. Today there are no standard for querying XML documents. But there are at least two proposals to the World Wide Web Consortium (W3C) called XML-QL and XQL. It is also possible to query an XML document using the existing W3C recommendations XSLT and XPath together.

There are some properties that a query language should have and some properties that sometimes may be useful. These properties can be used when comparing two query languages to each other, and are described below: [8]
· An XML query language should be able to handle both parent-child relationships and ID-IDREF/IDREFS relationships.

· The query language should be able to handle both text-only child elements and attributes of the parent element. These two cases are semantically identical but syntactically different.

· The query language should be able to preserve the sequence of the XML elements, since this sequence can be used to uniquely identify elements. This is extremely important when working with text markup documents, since it is not desirable to read the paragraphs in a text out of order. But it is not a big problem when working with data documents.

· Sometimes it can be desirable to preserve the structure of the XML document after the query is applied. If a portion of a large XML document is interesting it is not desirable to recreate the structure of the document in the query. E.g. if all teams with more than ten members is wanted, it is not desirable to create the structure of the team element in the query.

3.15.1 XML-QL

XML-QL is an XML query language that is similar to the Structured Query Language (SQL) used in relational databases. It provides a mechanism for receiving information from the XML document and constructing the output in any desirable format. The drawbacks with XML-QL are that it does not preserve the sequence of the elements and the structure of the document. [8]
3.15.2 XQL

XQL is an XML query language that solves some problems with XML-QL since it both preserves the sequence of elements and the structure of the document. The syntax for an XQL query is a direct ancestor of XPath. But while XQL solves some of the problems with XML-QL it has some other shortcomings. It is not possible to identify when two elements have the same contents, leading to the possibility of receiving a node list with duplicates. Because of the preserving of structure it is not possible to manipulate data in a flexible way. Visualize the following: A structure where a team element contains information about its members is present. A list with all members and the team in which they play is wanted. Then, it is not possible to use an XQL query to receive the desired output. [8]
3.15.3 XSLT and XPath

The combination of XPath and XSLT can be used to query XML documents. XPath is then used to access individual nodes of the document. XSLT is then used to manipulate the resulting node set and constructing new elements. It is a flexible method since it is possible to preserve both sequence and structure if wanted, while the opposite is also possible. The drawbacks are that two different syntaxes have to be used and the tools are not originally designed for this purpose.

3.16 XML for Interchange of Information

XML provides a mechanism for describing data in a platform independent manner and is therefore suitable for interchange of information between different platforms and applications. The information stored has to be transformed into XML and then retransformed from XML in one or another way. The chosen method depends on how the data is stored, e.g. in a legacy system, in a relational database or in an object-oriented database.

3.16.1 XML and Legacy Data

Legacy data refers to data stored in an old format that is not easily accessible to modern software. Such data can still be both valuable and useful and access to the data might be wanted from new applications. There exist tools that convert a text file with delimited data fields into an XML document. Consequently legacy data that can be stored on a text file can be migrated to new applications.

A conversion application can iterate over each row of data in the text file and insert the appropriate data fields into an XML document. XML Generator, an application earlier included with the XML Parser XJParser from DataChannel
, made such conversions. The mapping between the fields in the text file and the XML elements and attributes were described in a template, that itself was a well-formed XML document. [9]
3.17 XML and Databases

A lot of information is stored in databases. Since XML is used to describe data, there is a high probability that this data originates from a database. This section covers some relationships between databases and XML.

3.17.1 Template-driven and Model-driven Mappings

When transferring data between a database and an XML document it is necessary to map the structure of the document to the structure of the database. Such mappings can either be template-driven or model-driven.

There is no pre-defined mapping between the document structure and the database structure in a template-driven mapping. Commands for reading information stored in the database are embedded in a template that is processed by the database transfer middleware, which performs the commands and replaces the template with the result formatted as XML. It is only possible to use template-driven mappings when transferring data from a database to an XML document. An example of a template-driven mapping is SQL queries embedded in elements in an XML document. When the XML document is parsed the elements with SQL queries are replaced with the result set of the SQL queries formatted as XML.

In a model-driven mapping a data model of the database is forced into the structure of the XML document. The result of a database query is an XML document that follows a stated model, which is a DTD. XSLT can then be used to transform that vocabulary into another more suitable vocabulary. There are three common models. The first model, which is used for transferring data between an XML document and a relational database, models the data in the XML document as a single table or set of tables. The second model, which is applicable when using object-oriented or hierarchical databases, models the data in the XML document as a tree of data-specific objects in which elements corresponds to objects and attributes and PCDATA corresponds to properties. The third model models the data in the XML document as a directed graph using ID and IDREF/IDREFS attributes. Model-driven mappings can be used when transferring data from a database to an XML document and vice versa. [15]
3.17.2 XML and Relational Databases

When relational databases should be mapped to XML the differences between XML documents and relational databases have to be considered. A primary key is a unique value identifying a single row of a particular table. The ID attribute in XML provides unique access to an element in a similar way. The big difference between primary keys and ID attributes is that an ID attribute must be unique across the whole document, while the primary key is only unique within that column. Foreign keys are used within relational databases to bind different tables together. The analogue concept provided by XML is IDREF/IDREFS. The use of ID and IDREF/IDREFS is one technique to model relationships between tables, another is nesting. When nesting is used, the relationship between one table that corresponds to another is modelled by placing the element, representing the first tables, inside the elements that represent the second table. This approach is not always possible. The following conditions must be met for this approach to be appropriate. [7]
· The foreign key must not be optional.

· It must be the only foreign key so modelled in the table.

· Every desired row must refer to a row that will be included.

· The foreign key must not point to the same table.

XML does not have any support for data types since all data in an XML document is text. Data stored in a field in a database is strongly typed, e.g. a string, a boolean, a float, an int or a point of time. When data is stored in an XML document this information will be lost. Therefore information about the data type, the storage size and the precision of the data type has to be stored together with the data. [15]

 REF _Ref499716104 \r \h
[7]
In a relational database a null value is different from an empty value, a zero length string or the number 0. This has to be modelled in the XML document representing the database. Null value data is modelled through optional element types and attribute. If a field in the database is null, the corresponding element or attribute is not included in the XML document. A field with an empty value is modelled as an element or attribute containing a zero length string or the number 0. [15]
XML documents can contain any Unicode character except some characters used as markup delimiters. Many databases may not support Unicode and requires special configurations to handle non-ASCII encodings of character data. See Section 4.12 for the character encodings used in XML documents. [15]
3.17.3 Mapping Relational Databases to XML

There are some different approaches for model-driven mappings between relational databases and XML. The constituents of a database are the tables, the records and the fields. These should be conceptually modelled in XML. There are two main proposals, with some variation within each proposal. The first is to use ID and IDREF/IDREFS to model the relationship between different tables and the other is to use nesting.

The following procedure can be used to model a relational database into XML with the ID/IDREF method. Figure 4.5 is an example of such a mapping.

· The database is the root element of the XML document. The root element contains one or more elements that represent tables.

· A table is represented as an element. The table element contains the elements that represent the records in that table. The table element may contain an attribute whose value is a list of all the names of the primary keys of the table. It may also contain an attribute whose value is a list of all the names of the foreign keys in the table.

· A record is represented as an element. The record element contains either the element or the attributes that represents the fields of the record. It may contain an ID attribute that uniquely identifies the record. This ID can be compared with the primary key but with the difference that the ID attribute is unique within the whole XML Document. This is achieved by for example putting the name of the table in front of the primary key value. The real primary key value is modelled as an ordinary field, see the next item. The record element may also contain an IDREF/IDREFS attribute that models the relationship between records, i.e. foreign keys. This IDREF/IDREFS attribute refers to ID attribute/attributes in the related record/records.

· A field can be represented in two ways, either as an individual element or as an attribute in the record.

· If the element method is used the field is represented as an individual element type. The field value can either be stored in the element content or in an attribute. The field element may also contain attributes that include information about the type of the field, e.g. string or number, and the size and/or precision of the field value.

· If the attribute method is used the field value is stored within one attribute in the record element. If there are a lot of fields in the table or if information about field type and size/precision is wanted this method may be hard to grasp.

<sportnik>

<teamtbl pkey_id="t_tid">

<team pkey="team1">

<t_tid value="1"></t_tid>

<t_name value="Sweden"></t_name>

</team>

</teamtbl>

<membertbl pkey_id="m_mid" forkey_id="m_tid">

<member pkey="member1" forkey="team1">

<m_mid value="1"></m_mid>

<m_tid value="1"></m_tid>

<m_surname value="Magnus"></m_surname>

<m_famname value="Hedman"></m_famname>

</member>

<member pkey="member2" forkey="team1">

<m_mid value="2"></m_mid>

<m_tid value="1"></m_tid>

<m_surname value="Henrik"></m_surname>

<m_famname value="Larsson"></m_famname>

</member>

</membertbl>

</sportnik>

Figure 4.5: Example of a mapping of a relational database to XML using the ID/IDREF method.

The following procedure can be used to model a relational database into XML with the nesting method. Figure 4.6 is an example of such a mapping.

· The database is the root element of the XML document. The root element contains those tables that do not have any foreign key relations to other tables.

· A table is represented as an element. The table element contains the elements that represent the records in that table. The table element contains an attribute whose value is a list of all the names of the primary keys of the table.

· A record is represented as an element. The record contains the elements or the attributes that represent the fields of that record. For each primary key in the table that the record belongs to, a new table element is created. The records in the new table are those in the related table that have the primary key as its foreign key. The fields in the new table that contain the foreign keys are then omitted since its relationship is obvious.

· The field is represented in the same way as the field is represented in the previous example.

<teamtbl pkey_id="t_tid">

<team>

<t_tid>1</t_tid>

<t_name>Sweden</t_name>

<membertbl pkey_id="m_mid">

<member>

<m_mid>1</m_mid>

<m_surname>Magnus</m_surname>

<m_famname>Hedman</m_famname>

</member>

<member>

<m_mid>2</m_mid>

<m_surname>Henrik</m_surname>

<m_famname>Larsson</m_famname>

</member>

</membertbl>

</team>

</teamtbl>

Figure 4.6: Example of a mapping of a relational database to XML using the nesting method.

3.17.4 XML and Object-oriented Databases.

An object-oriented database stores objects and their attributes and methods permanently on secondary storage. An object may have relationships to other objects, forming a hierarchical structure that also has to be stored in the database. Object-oriented databases arose to store objects from programs written in languages like Java or C++.

There is a close affinity between objects and XML elements. Individual nodes in an XML document can be represented by objects in the database and the hierarchy contained in an XML document has a correspondence in the relationships between objects in the database. This makes object-oriented databases suitable for storing XML documents. XML documents can also be used to represent data stored in attributes of the object. This is preferably done by modelling an object as an element and using the parent-child method to model relationships to other objects, i.e. a related object is encapsulated into the element representing the object.

3.17.5 Querying XML vs. Querying the Database

If the reason for representing information in XML is to achieve a storage independent representation of the information, querying the database using the query language supported by the database would destroy the storage independence. To achieve a representation of the information that is totally independent of the storage the language used to query the database has to be mapped to an XML query language.

No concrete example of a tool with support for transformations between an XML query language and a relational query language has been found. There are tools, e.g. DB2XML from FH Wiesbaden [20], that executes SQL queries and returns the result as XML elements. The lack of such a tool probably depends on the fact that there is no fixed recommendation for a query language in XML. In the future when there will be a standard for a query language it will most likely be tools available that maps queries in that language into SQL queries, executes them in the database and transform the result into XML elements. Among others the author of DB2XML mentions such an extension. [20]
3.18 Character Encodings

All XML parsers are required to support at least the Unicode encodings UTF-8 and UTF-16. Unicode is a standard that aims to unambiguously represent every character in every human language. UTF-8, 8-bit Unicode Transfer Format, is a variable length encoding of Unicode that treats 7-bits ASCII normally but requires 2 to 5 bytes to represent other characters. It is a good alternative for predominately ASCII text, but is not a good choice for international use. UTF-16, 16-bit Unicode Transfer Format, uses 16 bits to store a character. UTF-16 is simpler than UTF-8 since it uses a constant number of bytes to store a character. There exists other character encodings that are supported by some XML parsers. One example is ISO-8859-1, also known as Latin-1, which is a 8-bits character set which covers US ASCII characters and most Western European characters.

The character encoding used within an XML document is declared in the encoding attribute in the XML declaration, the character encoding used in the example document in Figure 4.2 is ISO-8859-1.

3.18.1 Character Encodings in XSLT

When an XSLT processor should output the result tree as sequence of bytes it is possible to specify how the result tree should be output. Such a specification is done with the xsl:output element. The method attribute identifies the overall method that should be used for outputting the result tree, e.g. XML or HTML. The other parameters in the xsl:output element provide parameters for the chosen output method. The encoding attribute specifies the character encoding used to encode characters as bytes. There are attributes in the xsl:output element used to specify the DTD that the output document must follow. The XSLT processor should do as specified by the xsl:output element, but is not required to do so. Figure 4.7 illustrates an example of an xsl:output element that specifies that the output from the transformation should be a WML document encoded with the ISO-8859-1 character encoding. [23]

<xsl:output method="xml" encoding="ISO-8859-1"

doctype-public="-//WAPFORUM//DTD WML 1.1//EN"

doctype-system="http://www.wapforum.org/DTD/wml_1.1.xml"/>

Figure 4.7: An xsl:output element.

4 WAP

4.1 Introduction

The Wireless Application Protocol (WAP) is a standard for presentation and delivery of wireless information and telephony services on different wireless terminals. The specification of WAP is developed by WAP Forum, an industry association founded by the leaders of the wireless telecommunications industry, Ericsson, Motorola, Nokia and Phone.com (formerly Unwired Planet) in June 1997. Their goals are to create a global wireless protocol specification that works across all wireless technologies and to enable creation of content and application that work on different wireless bearer networks and device types, and thus brings Internet access to wireless terminals. [19]
4.2 Characteristics of the Wireless Environment

The wireless environment has limitations compared to the wired environment that are important to take into consideration when working with WAP. The computing environment available in the wireless terminals is limited compared to desktop computers. The wireless terminals have less powerful CPUs, less memory, restricted power consumption, smaller displays and different input devices. The limitations in the wireless networks compared to wired networks are above all less bandwidth, more latency, less connection stability and less predictable availability. The bandwidth will increase with new bearers like GPRS and UMTS, more about these bearers in Section 5.4.7, but then the power consumption of the wireless terminal will also increase. The battery capacity is the restriction that will limit the available bandwidth and the power consumption of the CPU, memory and display. [19]
4.3 WAP Architecture

The WAP-technology is based on existing mobile networking technology and Internet technologies and standards, and its architecture is similar to the WWW architecture. But due to the characteristics of the wireless communication network and the wireless terminals optimisations and extensions have been made. The WAP architecture, described in Figure 5.1, consists of the wireless domain where the WAP-protocols are used and the Internet domain where the WWW protocols, HTTP/TCP/IP, are used. These domains are connected using proxy technology.

[image: image4.wmf]Wireless

Network

Wireless

Network

Wireless

Terminal

WAP

Gateway

Origin

Server

Wireless

Domain

(WAP

Protocols

)

Internet

Domain

(WWW

Protocols

)

Internet

Internet

Figure 5.1: The WAP architecture.
4.3.1 Wireless Terminal

The wireless terminal uses a user agent, e.g. a micro browser, to view the WAP content, which can either be WML, a markup language similar to HTML, or WMLScript, a scripting language like JavaScript. These languages are designed to meet the characteristics of the wireless environment. They have for example a compact binary encoding.

4.3.2 WAP Gateway

The WAP Gateway translates requests from the WAP protocol stack to the WWW protocol stack, and vice versa. The WAP content transferred from the origin server to the wireless terminal is translated into a compact encoded format in the WAP Gateway to reduce the bandwidth used on the wireless network. The WAP Gateway also has functionality for caching frequently used information, which will result in a decreased response time for the wireless terminal. The computing resources available in the WAP Gateway can be used thus offloading the wireless terminal from some computing tasks. One example of a task that the WAP Gateway can take over is DNS services to resolve domain names used in the URLs. The wireless terminal can therefore be simpler and less expensive, and the power consumption can be decreased.

4.3.3 Origin Server

The origin server is usually a web server where the WAP content is stored or generated. There are advantages with using a standard web server since WAP content and applications can be developed using WWW technology, which is both familiar and proven.

4.3.4 Naming Model

Uniform Resource Locator (URL) is the standard naming model used to identify resources on the Internet. The URL contains the name of the protocol required to access the resource, a domain name that identifies a specific computer on the Internet, and a hierarchical description of the file location on the computer. URL is also the naming model used by WAP to identify WAP content on the origin servers. The URL used to identify the content on the origin server always specifies the protocol used by the origin server regardless of the session protocol used between the wireless terminal and the WAP Gateway. The only protocol that user agents, e.g. micro browsers, support right now is HTTP.

4.3.5 Communication Example

The communication that arises when an end user wants an application including WML and WMLScript offered by an origin server is illustrated in Figure 5.2. The communication can be summarized in the following course of events:

6. The user agent in the wireless terminal sends a GET-request, including the URL to the wanted service, to the WAP Gateway using the session protocol in WAP, called WSP.

7. The WAP Gateway receives the request and translates it to an HTTP GET-request, which it forwards to the origin server.

8. The origin server replies by sending back a HTTP GET-response, including a WML deck, to the WAP Gateway.

9. The WAP Gateway converts the WML deck to the compact WML bytecode format, which is sent to the user agent in the wireless terminal using WSP.

10. The user agent discovers references to WMLScript in the WML deck and sends one new request to the WAP Gateway for each WMLScript reference, using WSP GET-requests.

11. The WAP Gateway receives the request and translates it to an HTTP GET-request, which it forwards to the origin server.

12. The origin server replies by sending back a HTTP GET-response, including the WMLScript, to the WAP Gateway.

The WMLScript compiler in the WAP Gateway compiles the script into bytecode format, which is sent to the user agent in the wireless terminal using WSP.

[image: image5.wmf]Wireless

Terminal

8. WSP

Response

(

Binary WMLScript

)

5. WSP

Request

(URL)

1. WSP

Request

(URL)

4. WSP

Response

(

Binary

WML)

7. HTTP

Response

(

WMLScript

)

6. HTTP

Request

(URL)

2. HTTP

Request

(URL)

3. HTTP

Response

(WML)

WAP

Gateway

Origin

Server

WML

WMLScript

Encoders

and

Decoders

Protocol

Conversion

User

Agent

Figure 5.2: Communication between the terminal, the WAP Gateway and the origin server.
4.4 WAP Protocol Stack

The WAP protocol stack is a protocol stack similar to the Internet HTTP/TCP/IP protocol stack. It has a layered design, like normally networking protocols, where each layer is accessible by the layer above. This design enables other applications and services to access the features provided by the WAP-stack. The WAP-stack is divided into five layers, which are described in Figure 5.3.

[image: image6.wmf]Application Layer

:

Wireless

Application

Environment (WAE)

Application Layer

:

Wireless

Application

Environment (WAE)

Session

Layer

:

Wireless Session

Protocol

(WSP)

Session

Layer

:

Wireless Session

Protocol

(WSP)

Transaction

Layer

:

Wireless Transaction

Protocol

(WTP)

Transaction

Layer

:

Wireless Transaction

Protocol

(WTP)

Security Layer

:

Wireless Transport

Layer Security

(WTLS)

Security Layer

:

Wireless Transport

Layer Security

(WTLS)

Transport

Layer

:

Wireless Datagram

Protocol

(WDP)

Transport

Layer

:

Wireless Datagram

Protocol

(WDP)

Network

Layer

: Different

Bearers

Network

Layer

: Different

Bearers

Other

Services

and

Applications

SMS

CSD

GPRS

UMTS

Etc

…

Figure 5.3: The WAP protocol stack.
The four lowest layers can together be configured in different ways. That results in four different connection modes between the wireless terminal and the WAP Gateway; connectionless mode, connectionless mode with security, connection mode and connection mode with security. WSP on top of WDP offers a connectionless mode, a datagram service where no delivery guarantee is offered. The application has to manage the retransmission of lost packets itself. If WTLS is added to that configuration a connectionless communication with security is achieved. Connection mode is attained if WTP is used together with WSP and WDP. Such a mode is reliable, i.e. all messages are acknowledged and if one message is lost it is retransmitted. The session layer handles this control. A connection-oriented communication with security is offered if all the four lowest layers are used. [2]
4.4.1 Adjustments to the Wireless Environment

The protocol stack has been developed with consideration taken into the characteristics of the wireless network and the wireless devices, which resulted in a protocol stack where all the layers are optimised for these special circumstances. Establishment and teardown phases in which no data can be sent, have been avoided and the number of packets sent have been minimized by avoiding to send static information more than once. This has led to savings of the used bandwidth. The WAP protocol uses less than half the number of packets that the standard HTTP/TCP/IP stack uses to deliver the same content. [19] The WAP-protocol is designed to support different wireless networks, depending on which are available and most suitable for a special service.

4.4.2 Wireless Application Environment (WAE)

Wireless Application Environment (WAE) is an application environment based on technologies from both World Wide Web and Mobile Telephony. It provides the developer with a development environment for applications and services intended for different wireless devices. Logically it consists of two layers, User agents and Services and Formats. A user agent is an item that interprets contents and handles user interaction. A user agent can for example be a WML browser, a phonebook or a message editor. The content that is accessible to the user agent is from the services and formats layer. Examples of formats from the services and formats layer are WML, WMLScript and image formats.

Wireless Telephony Application (WTA) is a user agent that provides access to telephony functionality by providing an interface to the telephony infrastructure. This interface is called Wireless Telephony Application Interface (WTAI) and can be used from WML and WMLScript. WTAI has three different function libraries. One of these, the Public Functions, can be invoked from a WML browser. The only telephony functionality available from that library right now is initiation of a phone call. The other two libraries specify functions available in all types of networks and functions that are specific for a certain network type. These are intended for network operators and service providers trusted by the network operators. To secure that WTA services are trusted, WTA services have been separated from other WAE services. The separation is done using different port numbers, one for WTA services and another for other WAE services. In that way the WTA user agent can only access WTA services from the WTA domain controlled by the network provider. This is illustrated in Figure 5.4. [2]

[image: image7.wmf]Wireless

Terminal

WAP

Gateway

WTA

User

Agent

Other

WAE

User

Agents

Firewall

WTA

Domain

WTA

Domain

Internet

Internet

Common

WAE Port

WTA Port

Common

WAE

Services

WTA Services

Figure 5.4: Access control for WTA services.

The WAP specification is device independent, this means that it only specifies the minimum functionality a device must have, but accommodates further functionality. It is up to the user agent to display the received content using the capability of the device. This should result in application development without writing separate versions of the code for different devices. But it is possible to get information about the particular capability of the devices and thus customize the application to a specific device. See Section 5.8 for more information.

4.4.3 Wireless Session Protocol (WSP)

Wireless Session Protocol (WSP) is a session protocol which purpose is to establish and keep up a connection between the wireless terminal and the WAP Gateway. This connection can either be connection-oriented or connectionless as mentioned in Section 5.4. WSP handles capabilities negotiation at the session establishment, the set of user agent capabilities that are exchanged between the origin server and the terminal are defined in WAE. WSP has support for long-lived sessions, which means that a session can be suspended and later resumed without having to establish a new connection. Another approach that WSP uses to minimize the utilized bandwidth is header caching. In HTTP, which does not support header caching, about 90% of the requests contain static header information that have to be sent with every request. [2]
The latest version of WAP, WAP 1.2, has support for push functionality, i.e. the origin server can send information to the wireless terminal without receiving a request. By using this functionality the terminal can automatically receive new information when the information is updated. This functionality is suitable for message notification applications or applications for stock market rates.

4.4.4 Wireless Transaction Protocol (WTP)

WTP is a transaction-oriented protocol that offers a reliable communication service to the upper layers. It controls the transmission and receiving of datagrams, through uniquely identifying each datagram. Each datagram must be acknowledged and if a datagram is lost, WTP is responsible for the retransmission.

4.4.5 Wireless Transport Layer Security (WTLS)

The Wireless Transport Layer Security (WTLS) is based on the industry-standard Transport Layer Security (TLS) protocol, formerly known as Secure Sockets Layer (SSL), but have been optimised for networks with narrow bandwidth. WTLS offers data integrity, privacy, authentication and denial-of-service protection. Data integrity means that data transmitted between the wireless terminal and the WAP Gateway is guaranteed to be unchanged and uncorrupted. Privacy ensures that the data can not be understood if a third party intercepts it. Authentication implies that the WAP Gateway and the wireless terminal can be sure that parties in the communication are who they claim to be. Denial-of-service protection detects and rejects data that is replayed or not successfully verified.

4.4.6 Wireless Datagram Protocol (WDP)

The Wireless Datagram Protocol (WDP) works as a general transport service above the different bearers supported by various network types. It offers an interface to the upper layer protocols, which makes it possible for them to function independently of the underlying wireless network. This enables the possibility to add new bearers when they are developed.

4.4.7 Wireless Bearers

WAP is designed to support different bearers on the network layer level. The different bearers offer different quality of service with respect to throughput, error rate and delays. The upper layer protocols are therefore designed to compensate for or tolerate it. Today there are two bearers available in GSM, Circuit Switched Data (CSD) and Short Message Service (SMS).

CSD provides a point-to-point connection between the terminal and the WAP Gateway. The terminal establishes the connection by dialling the WAP Gateway, and stays online while the user makes use of any WAP service. This can be expensive since the user is charged for the connection time, and not for the data transmitted. The maximum transmission rate offered by CSD is only 14.4 Kbps.

SMS is a telephony service in the GSM specification, which primary purpose is to send text messages to cellular phones, but can also be used as a bearer for WAP. An SMS messages has a maximum size of 140 bytes, but a character encoding with 7 bits is used, resulting in a message size of 160 characters. Because of this limitation several SMS messages has to be sent even for the simplest transaction. This is time consuming and results in protocol overhead, and makes SMS unsuitable as a bearer for WAP.

General Packet Radio Services (GPRS) is a packet-based bearer that was introduced on the GSM networks during 2000. The terminal is always connected to the network and thus always ready to send and receive packets without any connection establishment delays. Another advantage with GPRS, since it is packet-based, is that it is possible to charge the user per byte instead of charging per time. The transmission rate will increase with GPRS, a speed between 56 and 114 Kbps is promised. [16]
Universal Mobile Telecommunications System (UMTS) is a third generation packet-based broadband communication service based on GSM. The planned introduction is in 2002, and UMTS should then be able to transmit data at a rate of 2 Mbps. [16]
4.5 WML

Wireless Markup Language (WML) is a markup language based on the XML standard. It is similar to the WWW's HTML but is optimised for the characteristics of the wireless environment, especially for presentation on limited displays and user interaction with limited input facilities. A WML document consists of a set of cards which together often is referred to as a deck. The end user browses through the cards and receives the services from the origin server. Instead of fetching the cards individually from the origin server, a whole deck is fetched when needed. This will decrease the network traffic.

WML is specified to be used on devices with different capabilities with respect to presentation possibilities and input facilities. Therefore WML does not specify how the elements in the WML documents should be presented or how interaction with the user should be handled. It is up to the device to manage the man-machine-interface in the best possible way according to the abstract specifications.

WML has a browser context with the purpose of handling states within the user agent. The browser context includes possibilities to save variables within one card or deck as well as support for sharing the variables between multiple decks. The browser context also includes a history stack with information about previously entered cards. With support from the browser context applications that include states can be developed, for example session management.

The fact that WML is based on XML enables automatic content transformation. Content written in XML can be converted into WML using an XSLT processor. See Section 4.6 for more information about XML transformations.

4.5.1 Character Encodings in WML

Since WML is an XML language it inherits the XML document character set. WML documents may be encoded with any character encoding as defined by the HTML 4.0 Specification. Commonly used character encodings are ISO-8859-1, ISO-8859-5 (like ISO-8859-1 but with support for Cyrillic characters instead of Western European characters), different Japanese encodings and UTF-8. The character encodings UTF-8 and ISO-8859-1 are described in Section 4.12. A user agent determines the character encoding of a WML document based on the following precedence (listed highest to lowest): [12]

 REF _Ref499716337 \r \h
[21]
· The value of the charset parameter in the Content-Type header in the session protocol.

· The meta-information placed within the WML document.

· The encoding attribute in the XML declaration.

· Heuristics or user settings, e.g. documents with the MIME type for WML, text/vnd.wap.wml, can be assumed to be using ISO-8859-1 or the default character encoding can be assumed to be UTF-8.

4.6 WMLScript

WMLScript is a lightweight scripting language based on a subset of the WWW scripting language JavaScript, which has been extended to meet the characteristics of the wireless environment. WMLScript is enhancing the functionality presented by WML by offering procedural logic. WMLScript makes more advanced user interaction behaviours possible and introduces abilities to access device facilities, like the telephone book. For example, interaction with the end user can be handled without contacting the origin server, which reduces the network traffic and the interaction with the user feels faster.

WMLScript is a weakly typed language where the variables can change type depending on the type of the data it currently contains. If needed WMLScript tries to automatically convert between the different types. WMLScript has access to the WML browser context and can thus access the variables stored there.

WMLScript has support for library functions to provide access to core functionality of the terminal. There are for example libraries with functions for handling strings and URLs, a library with functions for accessing the WML context and a library with user interface functions.

4.7 Security in the WAP Environment

The security protocol used on the wireless domain is WTLS and the security protocol used on the Internet domain is SSL. The WAP Gateway manages the translation of messages between the two protocols. The reason for not using SSL on the wireless domain is that it is designed for an environment with high bandwidth, low latency and strong processing capability in the client. In other words, SSL is not well suited for wireless terminals and networks. WTLS on the other hand, does not require the same level of processing capacity and uses data compression to minimise the bandwidth. [13]
The security protocol in WAP, WTLS, can only offer end-to-end security between the wireless terminal and the WAP Gateway. SSL handles the end-to-end security between the WAP Gateway and the origin server. This means that the WAP Gateway is the weak link in the security chain between the terminal and the origin server. To achieve end-to-end security between the wireless terminal and the origin server there are some solutions, but none of the ones that are available today are fully satisfactory. One solution is that the wireless terminal and the origin server communicate directly using the WAP protocols and another is to trust the WAP Gateway, for example by locating it at the same physically secure place as the origin server. Other actions that must be taken to improve the security on the WAP Gateway are to ensure that decrypted content are never stored on secondary media and to forbid remote access to the WAP Gateway. A better security solution, which can offer end-to-end security between the wireless terminal and the origin server, is necessary in WAP. There is a lot of work going on in this area right now.

Mobey Forum is a new global forum whose goal is to encourage the use of mobile technology in financial services. It was created in May 2000 by major financial institutions together with the leading mobile phone manufacturers. Ericsson, Nokia and Motorola are now developing the so-called WIM-card for Mobey Forum. The WIM-card (Wireless Identification Module) is a small card that will be installed as hardware on the wireless terminal. By offering encryption and digital signatures the communication between the wireless terminal and the origin server can be secure and the user can be identified. A digital signature is a piece of code that is added to the message. This piece of code is used to uniquely identify the sender. [1]
Some support for security is provided in the application layer. The WMLSCrypto library is an optional WMLScript library with support for digital signature functionality for WAE user agents. WMLSCrypto is a new function in WAP 1.2, the latest version of WAP.

4.8 User Agent Profile

The wireless terminals may have different capabilities with respect to display size, input facilities and memory capacity among other things. These differences will become even bigger in the future when new models are introduced. The network characteristics can be different depending on the bearer. The user may have different preferences about the content presentation. This is information that can be very useful for the application developer when adapting the content to the terminal and other circumstances.

User Agent Profile, also referred to as Capability and Preference Information (CPI), is a method for transference of capabilities about the wireless terminal, the user and the wireless network between the wireless terminal, the WAP Gateway and the origin server. The CPI includes information about hardware characteristics (e.g. screen size and manufacturer), software characteristics (e.g. operating system), WAP characteristics (e.g. WAP version and WMLScript libraries), network characteristics (e.g. latency and throughput) and application/user preferences. There is an emerging standard on the Internet with the same purpose called Composite Capability/Preference Profile (CC/PP). It is a method for describing and exchanging capabilities of web clients and web users’ preferences. The CC/PP profiles are transported using HTTP 1.1 with HTTP Extension Framework. The goal when developing CPI was interoperability with CC/PP. User Agent Profiles is an extension to WAP 1.1. WAP 1.1 is the version of WAP used by most terminals on the market today. [18]
The WSP protocol is used to transport the CPI over the wireless network. There is a binary encoding of the CPI to save bandwidth on the wireless network. The CPI is only transferred when the connection with the WAP Gateway is established, thereafter this information is cached in the WAP Gateway. The WAP Gateway is responsible for forwarding the CPIs to the origin server. The CPI is transported to the origin server using HTTP Extension Framework in the HTTP header. This is only available in HTTP 1.1. If the HTTP request passes through proxies on its way to the origin server that do not support HTTP 1.1, the CPI information will be discarded. It is possible for network elements, like the WAP Gateway, that is passed by on the way from the wireless terminal to the origin server to add information to the CPI. When the origin server receives the request the information received from the CPI can be used to customize the content sent back to the wireless terminal. The origin server may include the CPI it used when the content was generated in the response back to the wireless terminal. This is used to indicate with respect to which CPI the content was generated. [18]
5 A Method for Application Development

5.1 Introduction

The objective of the platform is to make it possible to develop applications offering IT-services independently of terminals and information sources and to enable interaction between the applications and different existing systems. An XML vocabulary, called ProgrammingXML, has been designed for this purpose. The output from such an application is an XML document following another vocabulary, called PageXML. This document can then be transformed by the platform to meet the characteristics of the different terminals. Figure 6.1 illustrates how the platform processes documents written in these vocabularies.

This section will describe the designed method for application development.

[image: image8.wmf]Programming

language used

by the

requesting

terminal

ProgrammingXML

Platform

ProgrammingXML

processor

XSLT

processor

PageXML

Figure 6.1: The platform processes ProgrammingXML and PageXML documents.

5.2 XML Vocabulary Design

The two vocabularies that have been designed are ProgrammingXML, intended for application development, and PageXML, used to represent the output from the application. The ProgrammingXML vocabulary is an extension of the PageXML vocabulary, it also enables descriptions of how to dynamically build elements in the PageXML vocabulary and how to interact with existing systems.

These two vocabularies are simple and have been designed to serve as an example. They have been used to develop applications in order to show the possibilities of adapting information to different types of terminals. Real-world vocabularies would probably need to be more complex.

5.2.1 ProgrammingXML

The ProgrammingXML vocabulary, see Appendix A, is designed for application development using the platform. When a user wants access to a service, a request for a file written in the ProgrammingXML vocabulary is sent to the platform. Optional parameters with user input or static information may be sent together with the request. The platform serves the request by processing the ProgrammingXML file and thus creating a document in the PageXML vocabulary. This process will be described in Section 7.

One purpose of the ProgrammingXML vocabulary is to describe how to dynamically build a PageXML document. This is done using an insert and a query element. These two elements will be replaced by other elements or element content when processing the ProgrammingXML file. An insert element describes a name of a parameter received from the user and will consequently be replaced by the value of that parameter. The query element is used to interact with information sources to receive information and create new elements based on that information. This element is described with more details in Section 6.3.

The other purpose is to describe how to interact with existing systems. This is done using a methodCall element. When the ProgrammingXML file is processed each methodCall element results in that the described call to an existing system is executed. Depending on the result of the calls it is possible to affect the content in the PageXML file that will be created. The methodCall element is described with more details in Section 6.5.

5.2.2 PageXML

The PageXML vocabulary, see Appendix B, is used to describe a page with both information and user interaction. A page is divided into one or more section elements and an optional group of action elements.

A section describes one part of the page. A section has a headline and a mixture of text, images and tables. At the end of a section there is a possibility to describe input from the user through a text field or a choice menu. A section can contain a subsection, which consists of the same constituent as the section apart from the possibility to receive user input. A page is divided into sections since some terminals with limited display capabilities can not show all the content at the same time and thus have to split it or have to omit the content in the lowest levels of subsections.

An action is used to describe access to a new service from the platform. The action element describes the path to the new ProgrammingXML file and the optional parameters with user input or static information which together compose a request.

5.2.3 Other Possible Vocabularies

The PageXML describes both information and user interaction. Another vocabulary where the possibilities to describe input are omitted may also be conceivable. It is less time consuming to run an application developed using standard server programming languages, which the platform will substitute, than using the ProgrammingXML vocabulary, as a test in Section 8.6 will show. A proposal is therefore to use the standard methods for the user interaction and when information should be presented a request with these inputs is sent to the platform. This procedure reduces processing of XML documents, which is time consuming, but the aim of developing applications independent of the terminals is partly lost.

5.3 Interaction with Information Sources

All information managed and processed by the application will first be converted to XML. This can either be done by an external tool or by the platform. By converting the information to XML the format differences between information sources are hidden for the application developer. Another advantage is that the application developer can use the same tools to process the information independent of the source.

The query element in the ProgrammingXML vocabulary is used to generate PageXML elements based on dynamic information from a source. This construct is used to query other XML documents, and by converting information stored in arbitrary sources to XML it becomes possible to receive that information using the same query construct.

To support the application developer to independently interact with a certain type of information source a DTD that represents the structure of the information source in XML must be defined. This DTD provides the application developer with a model of the information structure. Thereafter a process that converts information from that source to an XML document following the DTD must be developed. Finally the query syntax used to the address parts of an XML document must be mapped to the syntax used to receive data from the information source.

5.3.1 Dynamic Generation of Information – The query Element

Since all information is converted to XML the intention was to use an XML query language to dynamically generate information, but today there is no recommendation from the World Wide Web Consortium (W3C) for any query language. Therefore the method that uses XPath and XSLT together as a query language was chosen. XPath and XSLT are recommendations from W3C and will not change dramatically. There are some proposals for query languages, see Section 4.9, but since these are only working drafts they are subject to changes. When there is a recommendation from the W3C the best choice will be to use that query language.

The DTD of the query element in the ProgrammingXML vocabulary is described in Figure 6.2. The XML document to be queried may originate from different information sources therefore the type attribute is used to describe the type of source. The source attribute identifies the same XML document. Depending on the type of the source different methods are used. If the XML document to be queried is an ordinary XML document, the source attribute is a URL to that document. The content of the xpath element is the XPath expression used to access the chosen nodes of the XML document to be queried. The content of the xsl element is a CDATA section with the XSLT stylesheet that manipulates the resulting node set from the evaluated XPath expression and constructs new elements. The query element is replaced by these elements then the ProgrammingXML file is processed by the platform.

The procedure for identifying and generating the XML document to be queried may differ depending on the information source. The procedure for relational databases is described in Section 6.4.

<!ELEMENT query (xpath+, xsl)>

<!ATTLIST query type CDATA #REQUIRED

 source CDATA #REQUIRED >

<!ELEMENT xpath (#PCDATA)* >

<!ELEMENT xsl (#PCDATA)>

Figure 6.2: DTD for the query element.
5.4 Interaction with Relational Databases

Interaction with relational databases is described using the query element. The value of the type attribute then indicates that the information originates from a relational database. The value of the source attribute is the name used to identify the database within the platform, see Section 7.4.6.

5.4.1 Representing a Relational Database with XML

The query element in the ProgrammingXML vocabulary uses a model-driven mapping between the information source and the XML document representing the source. There are two methods for representing a relational database with XML, see Section 4.11.3. The mapping that makes use of ID and IDREF/IDREFS attributes to represent the relationships between different tables in a relational database has been chosen. The reason for choosing this model is that it enables modulations of foreign keys that point to the same table.

For each relational database used to receive information from a DTD must be stated. These DTDs follow the same pattern and are determined by using the first method described in Section 4.11.3. The database used as storage in Sportnik is a relational database. Appendix C contains a subset of the DTD used to model that database.

It is important to make clear that the model is only an abstract representation of the database and that the whole database will never be converted to XML. Only the information from the database that is needed in a query will be converted when the query is executed.

5.4.2 Mapping the Query Construct to SQL

The syntax of the query element in the ProgrammingXML vocabulary must be mapped to the syntax of the Structured Query Language (SQL), the query language used to retrieve information from relational databases. In that way the requirement of information source independence can be fulfilled. When a standard for an XML query language is determined by W3C, tools for such mappings probably will be available.

The part of the query construct that can to be mapped to SQL is the XPath expression, since it is not possible to map the XSLT stylesheet. A complete mapping between XPath and SQL is complex, therefore only the mappings between some specific XPath expressions and SQL queries have been considered. This mapping manages queries that retrieve all records in a table satisfying a condition on one or more fields and/or a join condition. The condition on a field can either be that the field equals an expression or starts with an expression.

A basic SQL query consists of a SELECT FROM WHERE block. The SELECT clause contains a list of field names whose values are to be retrieved by the query. The FROM clause contains a list of the table required to process the query. The WHERE clause contains a conditional expression that identifies the records to be retrieved by the query. Remember from Section 4.8 an XPath expression consists of one or more location steps, each consisting of an axis, a node test and a predicate. These must be mapped to the SQL clauses. The mapping that has been used simplified comes about as follows. The first axis is mapped to the SELECT clause, all axes used in the expression are mapped to the FROM clause and the predicate is mapped to the WHERE clause. Figure 6.3 illustrates an XPath expression and the SQL query that it has been mapped to. The result of that query is all members in the Swedish international team whose family name begins with L.

//member[starts-with(m_famname/@value,"L") and

 m_tid/@value=//team[t_name/@value='Sweden']

 /t_tid/@value]]

SELECT membertbl.*

FROM membertbl, teamtbl

WHERE m_famname like "L%" and

 ((t_name='Sweden') and membertbl.m_tid=teamtbl.t_tid)

Figure 6.3: A mapping between an XPath expression and a SQL query.

5.5 Interaction with Existing Systems

When interaction with an existing system is needed a software component performing the calls to the system must be developed and installed on the platform. This procedure is described in Section 7.4.4. The ProgrammingXML vocabulary has an element used to describe how this component is used to interact with the system. When the ProgrammingXML file is processed the platform performs the described calls.

The DTD of the methodCall element used in the ProgrammingXML vocabulary is described in Figure 6.4. The componentName attribute identifies the software component and the methodName attribute describes the method that performs the call. If the method takes any parameters, these are described using the methodParameters element. The parameters passed to the method can either contain user input or static values. The id attribute in the methodCall element enables creation of different PageXML elements depending on the result of the call.

<!ELEMENT methodCall (methodParameters?)>

<!ATTLIST methodCall id ID #REQUIRED

 componentName CDATA #REQUIRED

 methodName CDATA #REQUIRED >

<!ELEMENT methodParameters ((methodParameter)+)>

<!ELEMENT methodParameter (#PCDATA | insert)* >

<!ATTLIST methodParameter key CDATA #REQUIRED >

Figure 6.4: DTD for the methodCall element.

5.6 Tailoring to Different Terminals

Different XSLT stylesheets, at least one for each terminal type, are used to tailor the output PageXML document to the characteristics of the terminals and to transform it to the programming language used by the terminals. This transformation is managed by the platform and the application developer does not have to participate in that process. But the developer has to consider how the process performs the transformation when developing applications.

Since the output information content is marked up it is possible to choose those elements that are suitable for presentation on a particular terminal when tailoring. It is difficult to design a vocabulary that enables such transformations, since different terminals may have quite varying presentation and interaction capabilities. When the application developer uses the PageXML vocabulary, he has to be careful so the developed service can be presented on all terminals supported by the platform satisfactorily. One example is that images should not be used to explain something, since images can not be presented on all terminals, images should instead be used to make something clearer. Another example is that some terminals, e.g. WAP-phones, can only display a limited amount of text, and thus a summary of the text is needed. This summary can be contained in a section element and the subsection may contain a more detailed description of the subject. This exemplifies some difficulties that have to be considered both when developing applications using the PageXML vocabulary and when designing the vocabulary.

5.7 XML - Benefits and Drawbacks

XML has not only been used to describe the information processed by applications, it also has been used as a programming language for application development and to describe the output from an application. There is an advantage of using the same technique overall since the same tools can be used. At the same time there is a drawback concerning the available tools used for processing of XML documents. There are not always tools and standards present for dealing with different kinds of XML processing, e.g. XML conversion of data stored in other formats, and the distance between XML and relational databases is still great. Another problem concerns the performance when parsing and transforming XML document, since the tools available are time consuming. Below are some benefits and drawback from using XML in different situations.

5.7.1 XML as Input Format

XML is used for structuring information content and has during the latest years become an accepted standard. It is version independent since a vocabulary is self-defined and it is suitable for data exchange since a simple text file is used. Using XML to describe the information from various sources would therefore make a lot of information available for development of IT-services using the platform. Another advantage is that the format difference between different sources is hidden for the application developer. The disadvantage is as mentioned above the lack of tools for the conversions, but there will probably be an improvement in the future.

5.7.2 XML as Output Format

A markup language is suitable for organizing structured information. An item that has been marked can be handled by applications as they wish, and thus the output from the application can be tailor-made to the characteristics of the requesting terminal and transformed to the programming language used. The good possibilities to transform XML using XSLT stylesheets is another contributory cause that makes XML suitable as output format from the application.

There are some drawbacks of the DTD grammar that affected the PageXML vocabulary design. It is not possible to express the type of an element content or attribute value, e.g. a number or a date, and the possibilities to describe how many instances of an element type that are permitted is limited.

5.7.3 XML for Application Development

The choice of using XML to develop applications was not obvious. When XML is used as a programming language an XML document describes functionality which are executed when the document is parsed. One reason for using XML is that applications running on the platform will offer IT-services and therefore a lot of the programming have to do with managing and processing information. For that purpose XML is a good choice. XML is used to describe data and can therefore even be used to describe how the interaction with existing systems should be managed. By using XML for application development the introduction of a new technology is avoided.

5.8 Conclusions

It is possible to develop applications independent of both the terminal and the information sources using XML. The difficulty is to design a PageXML vocabulary that is independent of the terminals but at the same time enables transformations of the described content to the characteristics of different terminals. The vocabulary must make it possible to mark the content in such a way that it can be transformed to different terminals in a satisfying manner. The vocabulary must also be unambiguously defined to facilitate for the application developer, i.e. what each element should contain must be clearly described. The method also makes demands on the developer who has to organize the information logically and according to the stated rules, in order to develop high-quality applications.

The construct in the ProgrammingXML vocabulary for dynamic generation of content has some shortcomings. It is not as flexible as wanted when compared to other query languages, like SQL, and it is troublesome to have to use two different syntaxes, XPath and XSL, to write a query. But for want of something better it works. Besides, it is complex to map the used query syntax to other query languages, e.g. SQL.

6 Platform Design and Implementation

6.1 Introduction

The platform will be used to develop applications as well as to run the developed applications. The method for application development has been described in the previous section. This section will discuss how the platform runs the developed applications, i.e. how the functionality described in the ProgrammingXML vocabulary is executed to offer services.

6.2 Identification of an Application

An application is identified by the path to its ProgrammingXML file. This path is relative to the directory where all applications running on the platform are stored and must be included in a request from a terminal.

The communication protocol used to access the platform differs between the terminals. Therefore all requests are translated to a terminal independent representation. This internal representation of a request contains the path to the ProgrammingXML file and the optional parameters with user input or static information that may be sent together with the request.

6.3 A MVC Architecture

A Model-View-Controller (MVC) architecture has been used since it separates the software components bound to a specific terminal from those components that can be shared across all terminals. The components that process the ProgrammingXML file can be shared across all terminals. The components that manage the access to the platform from the terminals and those that tailor the output from the application to the characteristics of the terminal must on the contrary be separate for each terminal.

6.4 Platform Overview

Figure 7.1 is an overview of the platform architecture. The components that are shared across all the terminals are light grey and components separate for each terminal type are white. Appendix D contains a complete class diagram for all the components. The basic components, their responsibilities and relationships to other components are described below.

[image: image9.wmf]Model

Contoller

View

View

Generator

Event

Translator

Presentation

Layer

Business

Logic Layer

Data

Layer

Presentation

Tier

Business

Logic Tier

Data

Tier

Client

Controller

Internal

request

Internal

request

PageXML

file

PageXML

file

File

in the

programming

language used

by the

requesting

terminal

Request

Method Call

Handler

Database

Handler

Information

Sources

Existing

Systems

Platform

Figure 7.1: The platform architecture.

6.4.1 The Controller

The Controller intercepts internal requests and maps them into actions performed by the Model. There is only one request type and it contains the path to the ProgrammingXML file and the optional parameters as described in Section 7.2. The Model processes the ProgrammingXML file and returns a PageXML file. That PageXML file is then returned by the Controller as a response to the request.

6.4.2 Client Controller and Interaction with the Controller

The communication protocol used to access the platform differs between terminals. A Request Translator is therefore used to translate a request from a terminal to the internal representation of a request. This request can thereafter be intercepted by the Controller. In that way the Controller can stay terminal independent.

The PageXML file returned from the Controller as a response to a request must be tailored to the characteristics of the terminal and transformed to the programming language used by the terminal. This process is performed by the View Generator, which uses an XSLT processor to perform the transformation. The View Generator may use information in the request received from the terminal, to tailor to different models of the same terminal type.

One Request Translator and one View Generator have to be developed for each terminal type that accesses the platform. These two are the constituent in components called Client Controllers.

6.4.3 The Model

The Model processes the ProgrammingXML file and the functionalities described are executed. This is done by generating a DOM representation of the file, thus be able to manipulate the file and extract needed information. First the value of the parameters with user input received together with the request is inserted. Thereafter the calls to existing system described by the methodCall elements are performed using the Method Call Handler. Finally the dynamic generation of information described by the query elements are performed either by the XML Questioner or the Database Handler. The result of the process is a PageXML file.

6.4.4 The Method Call Handler

To interact with an existing system, a software component that communicates with the system and performs the wanted tasks must be developed. This component is thereafter inserted into the Method Call Handler that makes the component accessible to the Model. When the Model finds a methodCall element it calls the Method Call Handler that executes the described call.

The existing system may be running on different operating systems, may be implemented in different programming languages and may use different communication protocols. The developed component should hide these differences. It is the programming languages used to implement the platform that limits what is possible to implement and not, and by that which existing systems that can be used.

6.4.5 The XML Questioner

When the Model finds a query element whose type attribute value indicates that the information source is an XML document it calls the XML Questioner. The XML Questioner evaluates the query by evaluating the XPath expression on the given XML document and performing the XSLT transformation.

6.4.6 The Database Handler

When the Model finds a query element whose type attribute value indicates that the information source is a database it calls the Database Handler. The Database Handler provides access to databases independent of the database implementation. A Database Mapper is used to translate between the stated model (a DTD), which describes the structure of the database, and the actual implementation of the database. The Database Mapper also maps the query construct used in the ProgrammingXML vocabulary to the query language used by the database. The component used to connect and receive information from a database is called a Database Connector. All Database Connectors implements the same interface and thus the actual database driver is hidden.

The Database Handler contains a pool of database connections to each database, these connections are shared between all terminals accessing the platform. The pool is identified by the name of the database. When the query element in the ProgrammingXML vocabulary is used to describe a query to a database, the value of the source attribute is the name of a database pool.

The Database Handler is also a component inserted in the Method Call Handler. Consequently methods for manipulating information in a database, i.e. delete, insert and update methods, are accessible through the method call construct in the ProgrammingXML vocabulary.

6.4.7 The View

The View is the presentation medium used by the requesting terminal. It can for example be a WAP-browser or a web browser.

6.5 Access to the Platform

The access to the platform from the terminals depends on the communication architecture and protocol used by the terminal, e.g. some terminals can not send requests directly to the platform but have to use an intermediate layer that forwards requests on behalf of the terminal. Therefore several components, each managing the access from one terminal, have to be developed. This component listens for requests and when one is received it uses a Client Controller to interact with the Controller.

The platform is one unit located at the same tier. Another solution should have had a different physical separation; the platform containing only the Controller and the Model located in one tier and the Client Controllers in other tiers. The advantages with the chosen solution are that it hides the architecture of the platform and how an internal request is represented. Besides, the access to the platform can be done in various ways by implementing different components for access instead of being bound to the programming language used to implement the platform. The disadvantage is that it becomes more difficult to add new Client Controllers since these have to be dynamically loaded into the platform, to avoid stopping the platform while upgrading.

6.6 Course of Events when Accessing the Platform

The sequence diagram in Figure 7.2 illustrates the course of events when a request from a terminal is received.

[image: image10.wmf]Accessor

ClientController

RequestTranslator

Controller

ProgXmlDoc

ViewGenerator

performClientRequest()

translate()

performRequest()

performMethodCalls()

performMethodCalls()

generateDocument()

transformPageXmlDoc()

response

request

insertParameters()

Figure 7.2: Course of events when accessing the platform.

6.7 Adding Components for Access from a New Terminals

To make the applications running on the platform accessible from a new type of terminal the following must be implemented:

· A component that manages the access to the platform.

· A Client Controller complete with a Request Translator and a View Generator.

· An XSLT stylesheet used for tailoring PageXML documents to the characteristics of the terminal and to transform it to the programming language used by the terminal.

Thereafter the developed components have to be dynamically loaded into the platform, this is described in Section 7.10.

6.8 Adding Components for Interaction with a Database

When the application developer wants access to a database which storage schema and database drivers are not supported by the platform a DTD that represents the structure of the database must be designed and the following components must be implemented:

· A Database Mapper.

· A Database Connector.

Thereafter the developed components have to be dynamically loaded into the platform and made accessible to the Database Handler, this is described in Section 7.10.

6.9 Adding Components for Interaction with Existing Systems

When the application developer wants access to a new existing system the following components must be implemented:

· A component that interacts with the existing system.

Thereafter the component has to be dynamically loaded into the platform and inserted into the Method Call Handler, this is described in Section 7.10.

6.10 Administration and Upgrading

A Master component is used to manage the administration of the platform, i.e. start, stop, supervise and upgrade. An administration program is used to control the Master component. The upgrades e.g. to support access from new terminals or interaction with new databases or existing systems, are described in configuration files written in XML. The administration program parses the files and performs the upgrades by dynamically load the new components. The upgrade can thus be performed while the platform is running. The administration program will also be used to manage connections to databases.

The files used by the platform and the administration program are arranged in the following directory structure:

· The applications, i.e. ProgrammingXML files, are stored in the /applications/ directory.

· XML files like the XSLT stylesheets used for tailoring to different terminals and DTD for the ProgrammingXML and PageXML vocabularies are stored in the /xml/ directory.

· Configuring files used by the administration program are stored in the /config/ directory.

6.11 Future Functionality

To facilitate the development phase for the application developer new functionality may be needed. The process when the platform is extended with new functionality may be done in the following way. First elements used to describe the new functionality must be added to the ProgrammingXML vocabulary. Thereafter a component that performs the described functionality must be developed. This component must be integrated into the platform thus the Model can use that component when processing the ProgrammingXML file. The Model may also need to be changed.

6.12 The Implementation

The prototype of the platform that has been developed for this master thesis is implemented using Java 1.3. Xerces 1.2.1, an XML parser from The Apache XML Project
, and Xalan 1.2, an XSLT processor from the same project, have been used to process XML documents. These tools are both written in Java.

The developed prototype can run applications developed using the ProgrammingXML vocabulary described in the previous section. It is possible to receive information from a relational database, tested using a MySQL database, and to manipulate information in the same database. Applications running on the platform can be accessed from a web browser or a WAP-phone. These terminals use the same method for access to the platform. That method will be described in the next section when development of WAP-services is discussed.

The administration program is limited. It is possible to upgrade the platform to support access from new types of terminals and to support interaction with new existing systems while running.

Development of WAP-Services

6.13 Introduction

The developed prototype of the platform has been used to investigate how WAP-services can be tailored to the characteristics of different WAP-phones. Applications running on the platform have been tailored to two WAP-phones from Ericsson with different presentation and input capabilities, Ericsson R320 and Ericsson R380.

The processing of XML documents is time-consuming therefore a test has been performed where the performance of the platform has been compared to a web server. The response time for receiving a WML page from the platform has been compared with corresponding time for a web server.

6.14 Differences Between WAP Terminals

WML does not specify how the elements in a WML document should be presented or how the interaction with the user should be handled. It is up to the device to manage the man-machine-interface in the best possible way according to the abstract specification. The reason is that it should be possible to use WML on devices with different presentation and input capabilities without having to write separate versions of the WML code.

The first WAP terminals had small displays, which could only display a few lines of text and a numeric keypad as input devices. The terminals have improved and today there also exist terminals where the size of the displays has become bigger and touch screens have improved the input possibilities.

6.14.1 Ericsson R320

Ericsson R320, which is illustrated in Figure 8.1, was Ericsson’s first phone with a WAP browser included. The browser has support for WAP 1.1. The maximum size of a deck sent to this terminal is 3.000 bytes, images not included, and the maximum size of an image is 1.500 bytes.

The size of the graphical display is 30x23 mm and it is divided in two sections, a Header containing the title of the current card and a Browser Area there the card content is presented to the user. It is possible to show four lines at a time in this area. For input fields and select lists Overlays, are used. An Overlay is a window that partly covers the Browser Area and is shown when an input field or select list is activated. A keypad with four directional arrow keys is used for browsing through information in an application and to input text data. [5]
[image: image11.jpg]

Figure 8.1: Ericsson R320

6.14.2 Ericsson R380

Ericsson R380, which is illustrated in Figure 8.2, is a phone with built-in PDA
 functionality. The WAP browser included has support for WAP 1.1. The maximum size of a deck sent to this terminal is 3.800 bytes, images not included. The maximum number of images per card is 30, where each image has a maximum size of 3.800 bytes.

The display is a grey scale black and white touch screen and the size is 83x28 mm. The display is divided in three sections. The Card Title Bar shows the title of the current card and the titles of the previously browsed cards. The content of the card is displayed in the Browser Area and a vertical scroll bar can be used to scroll card information. A Toolbar contains buttons required by the browser, e.g. to reload a page, to add a bookmark or to go to the previous browsed card. Browsing through information is done using the toolbar and the scrollbars and text is written using either a character recognition screen or an on-screen keyboard. [6]
[image: image12.jpg]SaT > SaT
Valkornrmen tll Sjaland 8 Thyselius!
Inforration

58T Stockholm

52T Gotehorg
SaTTelecom

Sok jobly

Figure 8.2: Ericsson R380.

6.14.3 Identifying a Terminal

User Agent Profiles, see Section 5.8, is a method for transference of capabilities about the terminal between the terminal and the origin server. This would have been a great method to receive information about the terminal that could have been used as input parameters to the process that manages the tailoring to the capabilities of the requesting terminal. But since User Agent Profile is an extension to WAP 1.1 there does not exist any terminals on the market that implement this feature. Instead the terminal is identified by the User-Agent request field in the HTTP/1.1 header. It is a recommendation that terminals should include this field with an HTTP-request, but may ignore it under particular circumstances. [14]
The drawback of this method is that different stylesheets, each describing the tailoring for one terminal model, have to be developed since only one input parameter to the tailoring process is available. A solution to that problem could be a database where the capabilities of each terminal model are stored. The value of the User-Agent field could be used to retrieve information from the database that could be used as input parameters to the tailoring process. The drawback of this solution is that the database has to be maintained and updated for new terminals.

6.15 WAP Emulators

A WAP emulator is intended to be used for testing WML applications. Ericsson has emulators for both R320 and R380, which have been used. The functionality of the emulators is similar to the browsers in the real terminals.

6.16 Tailor-Made WAP-services for Different Terminals

WAP-services may be tailored with respect to the following:

· The graphical presentation of the WML elements.

· The information content that is delivered to the terminal.

· The input device.

6.16.1 Tailoring the Graphical Representation of WML Elements

According to the WML specification the presentation of elements is user agent dependent, which results in that the developer can only make assumptions that the object representing the element will be displayed and that it will fulfil stated functionality. One example is the do element that is used to start actions and change states. The only assumption about the presentation of that element is that it will be mapped to a user interface widget that the user can activate. Ericsson R320 maps a do element to the Options Menu, which is a menu that can be reached by pressing a button. Ericsson R380 on the other hand represents a do element with a graphical button on the touch screen. This gives two diverge layouts. A more similar layout may be achieved if an anchor element, which will be displayed as a link, is used on Ericsson R320 as a complement to the do element. Some WML elements may only be presented if the browser supports the element, this applies among others to images. Other elements have attributes that may be used in the presentation of the object but may as well be ignored, e.g. the title attribute in a table element.

It is possible to develop WML pages that can be displayed on all terminals, but a more appealing design can be achieved if the WML page is tailor-made for the terminal. If a terminal supports the use of an element or attribute the result of using these will be better than using elements and attributes that work on all terminals. The fieldset element can be mentioned as an example. According to the WML specification the fieldset element is used to group related fields and text. Ericsson R320 discards the fieldset elements and just displays the elements within the fieldset element. Ericsson R380 on the other hand uses the fieldset element to indent the elements within the fieldset element. This makes the information easier to grasp.

6.16.2 Tailoring the Information Content

The information that can be delivered to the user through a WAP-service is limited by the maximum size of the deck that can be sent to a terminal and the size of the graphical display. The number of bytes that can be sent to Ericsson R320 does not differ much from Ericsson R380, but the presentation capabilities do. Ericsson R380 with its larger display has better possibilities to show larger amounts of information in a foreseeable way.

Tailoring with respect to the information content can be done using the developed platform. Using the PageXML vocabulary it is possible to mark content and when the WML page is generated it is possible to choose which parts of the information that are appropriate to show. For a small graphical display only the content of the section element may be appropriate to show, while both the section and the first level of subsections may be appropriate for a bigger display.

6.16.3 Tailoring with Respect to the Input Device

To complete an input field using a numeric keypad is time consuming. It is much easier with a touch screen using either a character recognition screen or an on-screen keyboard. The touch screen creates new opportunities for WAP services that are not suitable for terminals with a numeric keypad. Using the developed platform it would be possible to mark services with a lot of input fields using the PageXML vocabulary and then only offer these services to terminals with a good input device. There is actually no or tiny gain of offering a service that is hard to use.

6.17 Developing WAP-services Using the Platform

6.17.1 The Web Server is Substituted

WML pages are usually stored and generated on a web server. When the platform is used for development and running of WAP-services the web server and its technologies for application development will be replaced.

Static WML pages may be compared to ProgrammingXML files written without using the insert, methodCall or query elements. While dynamically generated WML pages, e.g. generated with ASP
 or PHP
, may be compared with applications developed using all the functionality described in the ProgrammingXML vocabulary.

6.17.2 The Developed Application

The application that has been developed for this test is a telephone book for Sportnik’s members. Using the application it is possible to seek for telephone numbers to members within a team and to change the members’ telephone numbers.

6.17.3 The Tailoring Process

The Model generates a PageXML document when processing a ProgrammingXML document. The output PageXML document is transformed to a WML page using an XSLT processor. This transformation is performed with respect to the graphical representation of the WML elements used by the terminal and the amount of text suitable for presentation on the terminal, No consideration is taken to the available input device.

One XSLT stylesheet that describes this transformation for Ericsson R320 and another that describes the same for Ericsson R380 are designed. A default stylesheet used for other terminals and terminals not identified, is also designed. The applied stylesheet is chosen with respect to the User-Agent field in the HTTP-request.

6.17.4 New Components for Access from WAP terminals

The components needed to access applications running on the platform from WAP terminals are a component that manages the access to the platform and a Client Controller for WAP terminals.

Figure 8.3 illustrates the architecture for access from a WAP-terminal to the platform. To access a service from the platform the terminal sends a GET-request or POST-request to the WAP Gateway using the WSP protocol. The WAP Gateway translates the request to a HTTP-request that is sent to a Servlet. The Servlet is in other words the intermediate layer between the terminal (the WAP Gateway) and the platform. The Servlet is listening for HTTP-requests and when one is received, Remote Method Invocation (RMI) is used to forward the request to the platform. The component that manages the access to the platform using RMI is interacting with a Client Controller for WAP-terminals. RMI and Servlets are described in Section 3.6.

To be able to forward the request using RMI the Servlet must contain a reference to the component on the platform that manages the RMI access. A RMI Registry is a name service that must be running on the platform to enable the Servlet to get such a reference.

[image: image13.wmf]Wireless

Network

Wireless

Network

WAP

Terminal

WAP

Gateway

Internet

Internet

Servlet

Platform

WSP

HTTP

RMI

Figure 8.3: Architecture for access to the platform from a WAP-terminal.

The Wap Client Controller is a Client Controller that consists of an Http Request Translator and a Wap View Generator. The Http Request Translator translates an incoming HTTP GET-request or POST-request to the internal request format that can be performed by the Model. The Wap View Generator performs the tailoring process described in Section 8.5.3.

6.17.5 Problems

Different character encodings caused the biggest problems when developing the application, e.g. the problem to determine the character encoding used by the terminal when submitting user input parameters. To determine the character encoding used in a HTTP-request from the terminal the charset parameter in the Content-Type field in the HTTP-request can be used. This parameter can be set using the accept-charset attribute in the go element in the WML vocabulary. The go element is used to navigate to a URI.

6.18 Performance Tests

The processing of XML documents appeared to be time-consuming. Therefore some tests have been performed where the time for generating a WML page using the platform have been measured. There are some factors that may affect the processing of XML documents negatively. How these factors may influence the performance of the platform has been measured in the first test.

When using the platform for development and running of WAP-services the web server and its technologies for application development will be replaced. The other tests compare the behaviour of the platform with a web server. The response time for receiving WML pages with either static or dynamic content have been compared.

6.18.1 Test Setup

The response time for receiving a WML page from either the platform or a web server has been measured using the Apache JMeter 1.5 from Java Apache
. JMeter is an application designed to load test and measure performance of among others web servers and Servlets. The tool was running on another computer on the same network and was set to send one request for a WML page every other second for four minutes.

The web server used for the test was an Apache web server with a PHP
 module. PHP is a server-side embedded scripting language originally designed for dynamic generation of HTML pages, but can as well be used for generation of WML pages.

6.18.2 Factors That May Affect XML Parsing

The following factors may affect XML parsing negatively, i.e. result in a longer parsing time: [17]
· Validation. Validation is expensive and should be turned off if not needed.

· External DTDs and external entities. A reference to an external DTD in the prolog results in that the DTD file must be opened and parsed.

· The character encoding. Documents written using character encodings that need multiple bytes sequences to represent one character become longer and consequently these documents will take longer to parse.

6.18.3 Test 1 – Different Factors Effecting the Performance

The ProgrammingXML vocabulary was used to develop an application presenting static information and the response time for receiving the output from that application as a WML page was measured for different configurations. The character encoding used overall was ISO-8859-1. The following three configurations of the platform were considered.

· Validation turned on and the DTD of the ProgrammingXML vocabulary in an external file.

· Validation turned on and the DTD of the ProgrammingXML vocabulary included in the prolog.

· Validation turned off and no reference to the DTD of the ProgrammingXML vocabulary.

No measurable differences of the response time between the two configurations with validation turned on could be found. As expected the response time was reduced when validation was turned off. The results are summarized in the Table 8.1.

Table 8.1: The average response time when validation is turned on or off.

	Configuration
	Average response time (ms)

	Validation turned on
	280

	Validation turned off
	225

The configuration with validation turned off and no reference to the DTD of the ProgrammingXML vocabulary was used in the following tests. The reason for omitting the reference to the DTD was that the XML Parser used, Xerces, opens the DTD if a reference is present even though validation is turned off.

6.18.4 Test 2 – Static Programming

The ProgrammingXML vocabulary may be used to write static applications if the insert, methodCall and query elements are not used. The response time when the platform processes such a ProgrammingXML document and converts the output to WML was compared with the response time when the web server replies with a static WML page stored on disk. The static WML page stored on disk was one generated by the platform. The result of the test is summarized in Table 8.2.

Table 8.2: The average response time for static programming using the web server and the platform.

	Method
	Average response time (ms)

	Web server
	2

	Platform
	225

The ProgrammingXML file used in this test was rather small, about 900 bytes. All information described in the file was converted to WML, resulting in a page with about 70 words. Table 8.3 summarizes the result when processing larger ProgrammingXML files. The output was converted to WML even though the size of such a WML page will exceed the maximum size that can be transferred to a WAP terminal. But the purpose of the test was to investigate the performance of the platform.

Table 8.3: The average response time when processing ProgrammingXML files of varying size and the corresponding response time for the web server.

	Size of ProgrammingXML file (byte)
	Number of Words in the resulting WML page
	Average response time platform (ms)
	Average response time web server (ms)
	

	900
	70
	225
	2
	

	5000
	700
	310
	2
	

	50000
	7000
	5500
	800
	

6.18.5 Test 3 – Dynamic Programming

The platform may be used to generate a WML page with data from an information source using the ProgrammingXML vocabulary. The response time when the platform processes such a ProgrammingXML file and converts the output to WML was compared with the response time when the web server dynamically generates a WML page using PHP. Both methods generated the same WML page, which contained information from a relational database. The result is summarized in Table 8.4.

Table 8.4: The average response time for dynamic programming using the web server and the platform.
	Method
	Average response time (ms)

	Web server
	10

	Platform
	500

6.18.6 Source of Error

The values of the response time received from this test are relative, since there are sources of error that may have effected the result, above all DNS lookup, network load and background processes running on the server. The same tests were run several times, therefore these sources of error would have affected the results equally without giving any configuration advantage over another configuration.

6.18.7 Conclusions from the Tests

As expected the tests show that the platform is much slower than a web server. This is not surprising since the platform is only in its development phase and there are a lot of components that may be improved. The web server with the PHP-module is on the other hand an established technology. The measured times for generation of WML pages using the platform are however acceptable for WAP-services.

The platform is much more general and flexible than the web server and that has to be taken into consideration when analysing the results from these tests. It is hardly possible to develop a platform with as short response times as all the server systems that it will replace.

When developing the platform further a cache would improve the performance of the platform under certain circumstances. The result of tailoring the output from a processed ProgrammingXML file may be cached, and when a request for the same service is received from terminals of the same type the cache could be used instead of performing the whole process again. This kind of caching is only applicable for applications with static content.

Since validation deteriorates the performance of the platform, validation should be turned off when running the platform. Validation has however appeared to be helpful when developing applications and could therefore be turned on during the development phase.

6.19 Conclusions Regarding Development of WAP-services

The reason for an abstract specification of WML, without any specification of how the elements should be presented or how the interaction with the user should be handled, was to avoid writing separate versions of the code for different types of terminals. It is possible to develop WAP-services that can be presented on all terminals, but these have a tendency to be plain. Applications developed using the platform may easily be tailored with respect to the presentation of WML elements used by different terminals.

A great advantage when using the platform to develop WAP-services is the possibilities to adapt the information content with respect to the capabilities of the terminal. Thus it is possible to benefit from the new improved terminals.

It is simpler and more effective to develop and run WAP-services using ordinary techniques like ASP or PHP. The platform is therefore not suitable for developing applications only accessible to one type of terminal. The platform may be used to develop applications only accessible to different types of WAP-terminals, but that is an unnecessary complicated method. The benefits by application development using the platform arise when the applications are accessible to different types of terminals and models of the same type of terminal, not only to WAP-terminals.

7 Final Conclusions

The goal of this master thesis was a platform for development and running of applications, which are developed independently of the end-users’ terminals and the storage that the information originates from and which enable interaction with existing systems. A prototype of such a platform has been developed, which shows that it is possible.

A method for application development using XML has been designed. Application development using that method is harder and less effective than development using standard techniques adjusted to a certain type of terminal. The benefits from application development using the platform will therefore arise first when the developed applications are accessible to different types of terminals and models of the same type of terminal.

The response time when accessing services from the platform will be longer than the response time when accessing services developed using standard techniques adjusted for a certain type of terminal. This has to be considered as acceptable since the platform is much more general and flexible. The increased response time above all depends on the processing of XML documents, which is time consuming.

Development of applications independently of the end-users’ terminals and then tailoring the output to the characteristics of the terminals is a good and useable solution. XML is well suited for this purpose through the possibilities to mark information content and the good transformation possibilities offered by XSLT.

The goal with the platform was to manage information independently of the information source. This is rather complicated and here XML has some shortcomings. XML is suitable for describing the information and the transformation between the storage schema used by the source and XML does not cause any problem, despite the loss of good tools. The difficulties above all concerns a common method for querying the information sources. There is no standard for querying XML documents, instead a combination of two other tools has been used. It may be complex to map a syntax used to query XML documents to the syntax used by the different information sources. It may therefore be beneficial to partly give up the goal of information independence and query the information source using the syntax used by the source and then convert the result to XML.

7.1 Development of WAP-services

The platform is useable for development of WAP-services. Partly for the possibilities to tailor with respect to the presentation of WML elements used by different terminals, but also for the possibilities to adapt the information content with respect to the capabilities of the terminal.

7.2 Future Work

This master thesis has been the first step towards a platform. The developed platform is only a prototype and there are a lot of improvements that are needed in order to get a useable platform. Some of the components developed for the prototype have to be improved and other new components providing new functionality are necessary.

The great benefit from using the platform arises when several different terminal types can access the applications developed for the platform. This master thesis has been focused on WAP-terminals, but the platform is designed to be accessed from other terminals as well. How other terminals may access the platform must be further analysed.

The functionality for interaction with information sources must be further developed, since the information is the corner stone of IT-services. Some database vendors will add XML features to their databases, but while waiting support for querying databases and convert the storage schema to XML have to be built-in in the platform.

A need for components dealing with security and session management has become apparent, above all to be able to develop applications not accessible to all users.

References

[1] Andersson, Göte. 2000-09-13. Banktjänster blir mobila. Dagens Nyheter. http://www.dn.se/Dnet/articles/132200-132299/132230/bank.html.

[2] AU-System Radio AB. 1999. WAP White Paper. http://www.wapguide.com/

[3] Bass, Clements, and Kazman. 1997. Software Architecture in Practice. Addison-Wesley. http://www.sei.cmu.edu/architecture/definitions.html.

[4] DataChannel, Inc. http://www.datachannel.com.

[5] Ericsson Mobile Communications AB. 2000. Mobile Phone R320 Design Guidelines for WAP Services. http://www.ericsson.com/developerszone/uploadedfiles/r320_design_guidelines_b.pdf.

[6] Ericsson Mobile Communications AB. 2000. Mobile Phone R380 Design Guidelines for WAP Services. http://www.ericsson.com/developerszone/uploadedfiles/R380s_design_guidelines_B.pdf.

[7] Lee Buck. Modeling Relation Data in XML. http://www.extensibility.com/tibco/resources/modeling.htm.

[8] Martin, Didier, Birbeck Mark, et al. 2000. Professional XML. ISBN 1-861003-11-0. USA: Wrox Press Ltd.

[9] Morrison, et al. 2000. XML Unleashed. ISBN 0-672-31514-9. Sams Publishing.

[10] Nicholas Kassem and the Enterprise Team. 2000. Designing Enterprise Applications with the Java™ 2 Platform, Enterprise Edition Version 1.0. http://java.sun.com/j2ee/download.html.

[11] Nocom AB. 2000. Nocom Mobilctrl™. http://www.nocom.se/losningar/mobile/pdf/nmc.pdf.

[12] Nokia Corporation. 1999. WML Reference Version 1.1. http://www.forum.nokia.com.

[13] Phone.com Inc. 2000. Understanding Security on the Wireless Internet. http://www.phone.com/pub/security-wp.pdf.

[14] R. Fielding, UC Irvine, et al. 1997. Hypertext Transfer Protocol -- HTTP/1.1. http://www.ietf.org/rfc/rfc2068.txt.

[15] Ronald Bourret. 1999. XML and Databases. http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[16] TechTarget.com. 1996-2000. IT-specific encyclopedia Whatis?com. http://whatis.com

[17] The Apache Software Foundation. 1999, 2000. Performance FAQs. http://xml.apache.org/xerces-j/faq-performance.html.

[18] Wireless Application Protocol Forum Ltd. 1999. Wireless Application Group User Agent Profile Specification (WAG UAPROF) Version 10-Nov-1999. http://www.wapforum.com/what/technical.htm.

[19] Wireless Application Protocol Forum Ltd. 2000. Wireless Application Protocol White Paper. http://www.wapforum.com/what/whitepapers.htm

[20] Volker Turau. 1999. Making legacy data accessible for XML applications. http://www.informatik.fh-wiesbaden.de/~turau/ps/legacy.pdf

[21] World Wide Web Consortium (W3C). 1999. HTML 4.01 Specification. http://www.w3.org/TR/html4/

[22] World Wide Web Consortium (W3C). 1999. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath.

[23] World Wide Web Consortium (W3C). 1999. XSL Transformations (XSLT) Version 1.0. http://www.w3.org/TR/xslt.html.

[24] World Wide Web Consortium (W3C). 2000. Extensible Markup Language (XML) 1.0 (Second Edition). http://www.w3.org/TR/2000/REC-xml-20001006.

Appendix A - DTD for the ProgrammingXML Vocabulary

<!ENTITY % imageTypes '(gif|gif-4grey|jpeg|wbmp)'>

<!ENTITY % methodResults '(error|true|false|CDATA)'>

<!ENTITY % methodResultTypes '(boolean|String)'>

<!ENTITY % boolean '(true|false)'>

<!ELEMENT program (methodCalls?, page*)>

<!ELEMENT methodCalls (methodCall+)>

<!ELEMENT methodCall (methodParameters?)>

<!ATTLIST methodCall id ID #REQUIRED

 componentName CDATA #REQUIRED

 methodName CDATA #REQUIRED >

<!ELEMENT methodParameters ((methodParameter)+)>

<!ELEMENT methodParameter (#PCDATA | insert)* >

<!ATTLIST methodParameter key CDATA #REQUIRED >

<!ELEMENT page (conditions?,

 (section | query)+,

 (query | actionInput)?,

 (query | action)*)>

<!ATTLIST page name CDATA #REQUIRED >

<!ELEMENT conditions (condition+)>

<!ELEMENT condition EMPTY >

<!ATTLIST condition methodCallId IDREF #REQUIRED

 result %methodResults; #REQUIRED

 resultType %methodResultTypes; #REQUIRED>

<!ELEMENT section ((headline | query),

 (text | query | table | image)*,

 subsection*,

 input*)>

<!ATTLIST section id ID #REQUIRED >

<!ELEMENT headline (#PCDATA | insert)*>

<!ELEMENT query (xpath+, xsl)>

<!ATTLIST query source CDATA #REQUIRED

 type CDATA #REQUIRED >

<!ELEMENT xpath (#PCDATA | insert)* >

<!ELEMENT xsl (#PCDATA)>

<!ELEMENT insert EMPTY>

<!ATTLIST insert key CDATA #REQUIRED>

<!ELEMENT methodInsert EMPTY>

<!ATTLIST methodInsert key IDREF #REQUIRED>

<!ELEMENT text (#PCDATA | insert | methodInsert)*>

<!ELEMENT table (row+)>

<!ATTLIST table title CDATA #REQUIRED

 rows CDATA #REQUIRED

 columns CDATA #REQUIRED

 firstRowHeadlines %boolean; #REQUIRED>

<!ELEMENT row (cell+)>

<!ELEMENT cell (text?)>

<!ELEMENT image (imageType+)>

<!ATTLIST image description CDATA #REQUIRED>

<!ELEMENT imageType EMPTY>

<!ATTLIST imageType type %imageTypes; #REQUIRED

 src CDATA #REQUIRED>

<!ELEMENT subsection (headline,

 (text | query | table | image)*,

 subsection*)>

<!ELEMENT input (textfield | choice)>

<!ATTLIST input description CDATA #IMPLIED >

<!ELEMENT textfield EMPTY >

<!ATTLIST textfield id ID #REQUIRED>

<!ELEMENT choice (aChoice+)>

<!ATTLIST choice id ID #REQUIRED>

<!ELEMENT aChoice EMPTY>

<!ATTLIST aChoice value CDATA #REQUIRED

 description CDATA #REQUIRED>

<!ELEMENT actionInput (parametersInput?)>

<!ATTLIST actionInput id ID #REQUIRED

 name CDATA #REQUIRED

 newxml CDATA #REQUIRED >

<!ELEMENT parametersInput ((parameter |

 inputParameter |

 query)*)>

<!ELEMENT parameter (#PCDATA | insert)* >

<!ATTLIST parameter key ID #REQUIRED

 type (String | Integer) #IMPLIED>

<!ELEMENT inputParameter EMPTY>

<!ATTLIST inputParameter key CDATA #REQUIRED >

<!ELEMENT action (parameters?)>

<!ATTLIST action id ID #REQUIRED

 name CDATA #REQUIRED

 newxml CDATA #REQUIRED >

<!ELEMENT parameters ((parameter | query)*)>

Appendix B - DTD for the PageXML Vocabulary

<!ENTITY % imageTypes '(gif|gif-4grey|jpeg|wbmp)'>

<!ENTITY % boolean '(true|false)'>

<!ELEMENT page (section+, actionInput?, action*)>

<!ATTLIST page name CDATA #REQUIRED >

<!ELEMENT section (headline,

 (text | table | image)*,

 subsection*,

 input*)>

<!ATTLIST section id ID #REQUIRED >

<!ELEMENT headline (#PCDATA)>

<!ELEMENT text (#PCDATA)>

<!ELEMENT table (row+)>

<!ATTLIST table title CDATA #REQUIRED

 rows CDATA #REQUIRED

 columns CDATA #REQUIRED

 firstRowHeadlines %boolean; #REQUIRED>

<!ELEMENT row (cell+)>

<!ELEMENT cell (text?)>

<!ELEMENT image (imageType+)>

<!ATTLIST image description CDATA #REQUIRED>

<!ELEMENT imageType EMPTY>

<!ATTLIST imageType type %imageTypes; #REQUIRED

 src CDATA #REQUIRED>

<!ELEMENT subsection (headline,

 (text | table | image)*,

 subsection*)>

<!ELEMENT input (textfield | choice)>

<!ATTLIST input description CDATA #IMPLIED >

<!ELEMENT textfield EMPTY >

<!ATTLIST textfield id ID #REQUIRED>

<!ELEMENT choice (aChoice+)>

<!ATTLIST choice id ID #REQUIRED>

<!ELEMENT aChoice EMPTY>

<!ATTLIST aChoice value CDATA #REQUIRED

 description CDATA #REQUIRED>

<!ELEMENT actionInput (parametersInput?)>

<!ATTLIST actionInput id ID #REQUIRED

 name CDATA #REQUIRED

 newxml CDATA #REQUIRED >

<!ELEMENT parametersInput ((parameter | inputParameter)*)>

<!ELEMENT parameter (#PCDATA)* >

<!ATTLIST parameter key ID #REQUIRED

 type (String | Integer) #IMPLIED >

<!ELEMENT inputParameter EMPTY>

<!ATTLIST inputParameter key IDREF #REQUIRED >

<!ELEMENT action (parameters?)>

<!ATTLIST action id ID #REQUIRED

 name CDATA #REQUIRED

 newxml CDATA #REQUIRED >

<!ELEMENT parameters ((parameter)*)>

Appendix C - DTD Representing the Sportnik Database

This DTD is a subset of the DTD that represents the relational database used by Sportnik.

<!ENTITY % types'(int|varchar|text|timestamp|date|datetime) '>

<!ENTITY % t_types '(torganisation|tclub|tsection|tteam) '>

<!ENTITY % m_userfuncs '(anhorig|lagledare|medlem|malsman) '>

<!ELEMENT sportnik (countrytbl,

 areatbl,

 teamtbl,

 membertbl)>

<!ELEMENT countrytbl (country*)>

<!ATTLIST countrytbl pkey_id CDATA #IMPLIED>

<!ELEMENT country (c_cid, c_code, c_name, c_info?)>

<!ATTLIST country pkey ID #REQUIRED>

<!ELEMENT c_cid EMPTY>

<!ATTLIST c_cid value CDATA #REQUIRED

 type %types; #FIXED "int"

 size CDATA #FIXED "11">

<!ELEMENT c_code EMPTY>

<!ATTLIST c_code value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "8">

<!ELEMENT c_name EMPTY>

<!ATTLIST c_name value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "80">

<!ELEMENT c_info EMPTY>

<!ATTLIST c_info value CDATA #REQUIRED

 type %types; #FIXED "text"

 size CDATA #FIXED "">

<!ELEMENT areatbl (area*)>

<!ATTLIST areatbl pkey_id CDATA #IMPLIED

 forkey_id CDATA #IMPLIED>

<!ELEMENT area (a_aid, a_paid, a_code,

 a_name, a_localname?, a_info?)>

<!ATTLIST area pkey ID #REQUIRED

 forkey IDREFS #IMPLIED>

<!ELEMENT a_aid EMPTY>

<!ATTLIST a_aid value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "10">

<!ELEMENT a_paid EMPTY>

<!ATTLIST a_paid value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "10">

<!ELEMENT a_code EMPTY>

<!ATTLIST a_code value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "8">

<!ELEMENT a_name EMPTY>

<!ATTLIST a_name value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "80">

<!ELEMENT a_localname EMPTY>

<!ATTLIST a_localname value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "80">

<!ELEMENT a_info EMPTY>

<!ATTLIST a_info value CDATA #REQUIRED

 type %types; #FIXED "text"

 size CDATA #FIXED "">

<!ELEMENT teamtbl (team*)>

<!ATTLIST teamtbl pkey_id CDATA #IMPLIED

 forkey_id CDATA #IMPLIED>

<!ELEMENT team (t_tid, t_pid, t_aid, t_name, t_type,

 t_category, t_city, t_address?, t_contact?,

 t_zip?, t_addrcity?, t_phone?, t_email?)>

<!ATTLIST team pkey ID #REQUIRED

 forkey IDREFS #IMPLIED>

<!ELEMENT t_tid EMPTY>

<!ATTLIST t_tid value CDATA #REQUIRED

 type %types; #FIXED "int"

 size CDATA #FIXED "11">

<!ELEMENT t_pid EMPTY>

<!ATTLIST t_pid value CDATA #REQUIRED

 type %types; #FIXED "int"

 size CDATA #FIXED "11">

<!ELEMENT t_aid EMPTY>

<!ATTLIST t_aid value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "10">

<!ELEMENT t_name EMPTY>

<!ATTLIST t_name value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "100">

<!ELEMENT t_type EMPTY>

<!ATTLIST t_type value %t_types; "tteam">

<!ELEMENT t_category EMPTY>

<!ATTLIST t_category value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "20">

<!ELEMENT t_city EMPTY>

<!ATTLIST t_city value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "60">

<!ELEMENT t_address EMPTY>

<!ATTLIST t_address value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "100">

<!ELEMENT t_contact EMPTY>

<!ATTLIST t_contact value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "100">

<!ELEMENT t_zip EMPTY>

<!ATTLIST t_zip value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "10">

<!ELEMENT t_addrcity EMPTY>

<!ATTLIST t_addrcity value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "60">

<!ELEMENT t_phone EMPTY>

<!ATTLIST t_phone value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "80">

<!ELEMENT t_email EMPTY>

<!ATTLIST t_email value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "80">

<!ELEMENT member (m_mid, m_tid, m_surname, m_famname,

 m_address?, m_zip?, m_addrcity?,

 m_phone?, m_email?, m_userfunc?)>

<!ATTLIST member pkey ID #REQUIRED

 forkey IDREFS #IMPLIED>

<!ELEMENT m_mid EMPTY>

<!ATTLIST m_mid value CDATA #REQUIRED

 type %types; #FIXED "int"

 size CDATA #FIXED "11">

<!ELEMENT m_tid EMPTY>

<!ATTLIST m_tid value CDATA #REQUIRED

 type %types; #FIXED "int"

 size CDATA #FIXED "11">

<!ELEMENT m_surname EMPTY>

<!ATTLIST m_surname value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "50">

<!ELEMENT m_famname EMPTY>

<!ATTLIST m_famname value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "50">

<!ELEMENT m_address EMPTY>

<!ATTLIST m_adress value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "100">

<!ELEMENT m_zip EMPTY>

<!ATTLIST m_zip value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "10">

<!ELEMENT m_addrcity EMPTY>

<!ATTLIST m_addrcity value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "60">

<!ELEMENT m_phone EMPTY>

<!ATTLIST m_phone value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "80">

<!ELEMENT m_email EMPTY>

<!ATTLIST m_email value CDATA #REQUIRED

 type %types; #FIXED "varchar"

 size CDATA #FIXED "80">

<!ELEMENT m_userfunc EMPTY>

<!ATTLIST m_userfunc value %m_userfuncs; "medlem">

Appendix D - Class Diagrams

Overview

[image: image14.wmf]+setClientController()

«interface»

Accessor

+translate()

«interface»

RequestTranslator

+ClientController()

+performClientRequest()

+setController()

+transalteReq()

+controller : Controller

+reqTranslator : RequestTranslator

+viewGenerator : ViewGenerator

ClientController

+Controller()

+performRequest()

+callHandler : MethodCallHandler

+dbHandler : DbHandler

Controller

+MethodCallHandler()

+deploy()

+perform()

+remove()

MethodCallHandler

+Master()

Master

+MethodCallComponent()

+execute()

-supportedMethods

MethodCallComponent

+DbConnection()

+disconnect()

+delete()

+insert()

+update()

+read()

-dbId

-dbName

DbConnection

+connect()

+disconnect()

+delete()

+insert()

+read()

+update()

«interface»

Connector

+mapDelete()

+mapInsert()

+mapRead()

+mapReadResult()

+mapUpdate()

«interface»

DbMapper

+DbHandler()

+delete()

+disconnect()

+execute()

+getDbConnector()

+getDbMapper()

+getDbTypes()

+getQueryTypes()

+insert()

+newConnection()

+read()

+update()

DbHandler

+transformErrorDoc()

+transformPageXmlDoc()

«interface»

ViewGenerator

+ProgXmlDoc()

+generateDocument()

-performMethodCalls()

-performQueries()

-insertParameters()

-results

ProgXmlDoc

reqTranslator

viewGenerator

clientController

controller

supervises

supervises

supervises

callHandler

contains

processes

manages

uses

uses

dbHandler

Package Controller

[image: image15.wmf]+setClientController()

«interface»

Accessor

+translate()

«interface»

RequestTranslator

+performRequest()

«interface»

WebControllerRemoteInterface

+performRequest()

«interface»

WapControllerRemoteInterface

+ClientController()

+performClientRequest()

+setController()

+transalteReq()

+controller : Controller

+reqTranslator : RequestTranslator

+viewGenerator : ViewGenerator

ClientController

+Controller()

+performRequest()

+callHandler : MethodCallHandler

+dbHandler :

Controller

+HttpTranslator()

+translate()

HttpTranslator

+SimpleHttpRequest()

+headers

+path

+postData

+queryString

SimpleHttpRequest

+WapController()

WapController

+WapControllerRemote()

+performRequest()

+setClientController()

WapControllerRemote

+WebController()

WebController

+WebControllerRemote()

+performRequest()

+setClientController()

WebControllerRemote

receives

receives

clientController

clientController

reqTranslator

reqTranslator

controller

Package Model

[image: image16.wmf]+MethodCallHandler()

+deploy()

+perform()

+remove()

MethodCallHandler

+Master()

Master

+MethodCall()

-componentName

-id

-methodName

-parameters

MethodCall

+MethodCallComponent()

+execute()

-supportedMethods

MethodCallComponent

+MethodResult()

-result

-description

MethodResult

+Parameter()

-key

-value

Parameter

+Request()

-id

-insertParamters

-xmlFile

Request

+Response()

-result

-xmlDoc

Response

+SportnikComponent()

+execute()

+login()

SportnikComponent

+ProgXmlDoc()

+generateDocument()

-performMethodCalls()

-performQueries()

-insertParameters()

-generateDom()

-results

ProgXmlDoc

insertParameter

insertParameter

performs

returns

supervises

contains

Package Db

[image: image17.wmf]uses

+DbConnection()

+disconnect()

+delete()

+insert()

+update()

+read()

-dbId

-dbName

DbConnection

+connect()

+disconnect()

+delete()

+insert()

+read()

+update()

«interface»

Connector

+mapDelete()

+mapInsert()

+mapRead()

+mapReadResult()

+mapUpdate()

«interface»

DbMapper

«interface»

DbRequest

«interface»

DbResponse

+DbHandler()

+delete()

+disconnect()

+execute()

+getDbConnector()

+getDbMapper()

+getDbTypes()

+getQueryTypes()

+insert()

+newConnection()

+read()

+update()

-getDbConnection()

-putDbConnection()

DbHandler

+DbRequestSql()

-sqlQuery

DbRequestSql

+DbResponseSql()

-rs

DbResponseSql

+MySqlConnector()

+connect()

+delete()

+disconnect()

+insert()

+read()

+update()

MySqlConnector

+XmlToSqlMapper()

+mapDelete()

+mapInsert()

+mapRead()

+mapReadResult()

+mapUpdate()

XmlToSqlMapper

manages

uses

Package Util

[image: image18.wmf]+Validator()

+validate()

Validator

+XmlTransformer()

+transform()

+transformWithStylesheetParameters()

XmlTransformer

Package View

[image: image19.wmf]+transformErrorDoc()

+transformPageXmlDoc()

«interface»

ViewGenerator

+WapGenerator()

+writeErrorDoc()

+writeResultDoc()

WapGenerator

+WebGenerator()

+writeErrorDoc()

+writeResultDoc()

WebGenerator

 - Sequence Diagrams

Course of Events when a Terminal Sends a Request to the Platform

[image: image20.wmf]Accessor

ClientController

RequestTranslator

Controller

ProgXmlDoc

ViewGenerator

performClientRequest()

translate()

performRequest()

ProgXmlDoc()

performMethodCalls()

performQueries()

generateDocument()

transformPageXmlDoc()

response

request

insertParameters()

Course of Events when a ProgrammingXML Document is Processed

[image: image21.wmf]Controller

ProgXmlDoc

generateDocument()

generateDom()

insertParameters()

MethodCallHandler

perform()

A Method Call Component

execute()

DbHandler

read()

A DbConnection

read()

A Db Mapper

mapRead()

A Db Connector

read()

getDbConnection()

mapReadResult()

putDbConnection()

Performs

method calls

Performs

queries

� Personal Digital Assistant (PDA), a small handheld device for computing and information storage.

� Wireless Markup Language (WML) is a markup language similar to the WWW’s HTML that is used for presentation of information on WAP-phones.

� http://www.sportnik.com

� Short Message Service

� Hypertext Transfer Protocol

� Common Gateway Interface

� Active Server Pages

� Wireless Markup Language (WML) is a markup language similar to the WWW’s HTML that is used for presentation of information on WAP-phones.

� http://www.getsorted.com

� http://www.voicexml.org

� http://www.datachannel.com

� http://xml.apache.org

� Personal Digital Assistant (PDA), a small handheld device for computing and information storage.

� Active Server Pages

� A HTML-embedded scripting language.

� http://java.apache.org

� http://www.php.net

_1040458297.ppt

Wireless Network

WAP-

phone

WAP

Gateway

Internet

Platform

Information

Sources

Existing

Systems

Web browser

_1041237664.ppt

Programming

language used

by the requesting

terminal

ProgrammingXML

Platform

ProgrammingXML

processor

XSLT

processor

PageXML

_1041934101.ppt

Model

Contoller

View

View

Generator

Event

Translator

Presentation Layer

Business Logic Layer

Data Layer

Presentation Tier

Business Logic Tier

Data Tier

Client Controller

Internal

request

Internal

request

PageXML

file

PageXML

file

File in the

programming

language used

by the requesting

terminal

Request

Method Call

Handler

Database

Handler

Information

Sources

Existing

Systems

Platform

_1042291443.vsd

_1042351451.doc
[image: image1.png]et

é@% KONST é?
oy
KTH

_1042291387.vsd

_1042291191.vsd

_1041684451.vsd

_1041919990.vsd

_1041250139.vsd

_1041160272.vsd

_1041231438.vsd

_1041231492.vsd

_1040805946.ppt

Wireless Network

WAP

Terminal

WAP

Gateway

Internet

Servlet

Platform

WSP

HTTP

RMI

_1036581885.ppt

Wireless Network

Wireless

Terminal

WAP

Gateway

Origin

Server

Wireless Domain

(WAP Protocols)

Internet Domain

(WWW Protocols)

Internet

_1036582037.ppt

SMS

CSD

GPRS

UMTS

Etc…

Application Layer:

Wireless Application Environment (WAE)

Session Layer:

Wireless Session Protocol (WSP)

Transaction Layer:

Wireless Transaction Protocol (WTP)

Security Layer:

Wireless Transport Layer Security (WTLS)

Transport Layer:

Wireless Datagram Protocol (WDP)

Network Layer: Different Bearers

Other Services

and

Applications

_1036582101.ppt

Wireless

Terminal

WAP

Gateway

WTA

User Agent

Other WAE

User Agents

Firewall

WTA Domain

Internet

Common

WAE Port

WTA Port

Common WAE

Services

WTA Services

_1036581945.ppt

Wireless

Terminal

WAP

Gateway

Origin

Server

WML

WMLScript

Encoders

and

Decoders

Protocol

Conversion

User

Agent

8. WSP Response

(Binary WMLScript)

5. WSP Request(URL)

1. WSP Request(URL)

4. WSP Response

(Binary WML)

7. HTTP Response

(WMLScript)

6. HTTP Request(URL)

2. HTTP Request(URL)

3. HTTP Response

(WML)

_1036581550.ppt

Document

Root

Element

Tree

Prolog

Epilog

Document

Element

 Body

