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Abstract

This paper examines how well suited clusters of OSE nodes are to implement a Single System Image (SSI) at operating system level and how it could be done. An SSI aims to create an illusion that a system of several computing elements looks like, and acts like, a single computing resource. An operating system level SSI means for the application developer that he/she does not have think about whether the application is to be executed on one or several nodes. The study is based on recent research in the area and a study of the OSE Delta operating system. Furthermore, an implementation of a Remote Call Server, which makes system calls work on remote targets, is described and evaluated.

It is believed today that implementing an operating system SSI requires a complete solution. However, this report clearly shows that some applications will benefit from a partial SSI support in the operating system, e.g. debugging tools. Furthermore, making the SSI support optional will not prevent the use of the operating system if SSI is not wanted.
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1 Introduction

OSE Delta is a real-time operating system used in real-time embedded systems with the need for distribution and high availability and is therefore well suited for embedded clusters. A cluster of embedded nodes has many properties that are the same as for a cluster of workstations or PCs. The concept of clusters is not new, especially not in the telecommunication business, however falling prices for high performance microprocessors and high-speed networks, as well as standard tools for high performance distributed computing may explain the increasing interest in cluster computing. An old property in distributed computing, single system image (SSI), i.e. a system with many nodes that look like a single “machine”, is now possible to implement with an acceptable degree of performance. This report will show that the single system image is useful also in an embedded cluster used in the telecommunication industry, for example in a radio base station.

1.1
Single System Image in OSE Delta clusters

The projects goal was to evaluate the consequences of implementing a single system image service into a cluster of OSE Delta nodes and how it could be done. The current OSE Delta version does not implement a complete operating system level SSI, and for that reason many components of the OSE Delta kernel must be re-implemented to reach a complete Single System Image. 

My task was to design and implement a Remote Call Server (RCS), in the context of SSI. The Remote Call Server handles the remote system calls requests, i.e. system call requested on a remote processes. Using a Remote Call Server it should be possible to use all system calls on any process in an OSE cluster. The remote call support was designed for OSE Delta in 1991 but a Remote Call Server was actually never implemented neither the design nor implementation was fully tested. The design and implementation of a Remote Call Server and an investigation of the problems with the current design of the remote call support in the OSE kernel is presented in this report. Additionally, the effects on the application design are shown when virtually all system calls work on processes anywhere in the cluster.

1.2
Project organization

This master thesis report is the result of a master thesis project performed at Enea OSE Systems by two students at the Royal Institute of Technology, Filip Larsson and Anna Synnergren. Each student designed and implemented a system service in the context of SSI and presented the above study as well as the design and implementation in a separate master thesis report.

1.3
Organization of the report

The report is organized as follows, section 2 to 5 gives a general theoretical background for the project area, section 6 describes the design of the existing remote call support in OSE Delta and section 7 the implementation of the Remote Call Server. Section 8 is a conclusion of the above work and section 9 tells about future work that has to be done.

Section 2 to 5 are based on the joint effort of the study of the single system image property in OSE Delta clusters by Filip Larsson and Anna Synnergren, thus these sections may have similarities with sections found in Anna Synnergren’s report.
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2 Background

The market for embedded systems has in the last few years been rapidly growing. The end-market of embedded system has changed from a fairly few military and space applications, a few decades ago, to an uncountable number of embedded systems and applications in almost every market, today. Embedded systems can today be found in telecommunication products, e.g. base stations, to cheap consumer products, e.g. mobile telephones. The trend towards integrating a full system-on-a-chip (SOC) with very advanced processors and the on-going mobile and wireless revolution makes the real-time embedded market a highly interesting segment for many years to come [embedded application design using a real-time operating system].

As the processors used in the real-time embedded industry get more advanced, faster and cheaper and the systems more diverse and complicated, the market for operating systems specialized for the embedded market, i.e. real-time operating systems, grows with the higher demands for time to market. The traditional real-time operating systems built for single embedded systems with an 8-bit or 16-bit microprocessors and very limited memory, has the biggest market share today. With the growing demands from the market, that the embedded system should work in a networked environment puts new requirements on the real-time operating systems. Many new real-time operating system as well as real-time extensions to existing workstation operating systems, is now entering the arena in hope of taking a piece of the growing market share. OSE Delta is one of them, successfully aiming at the telecommunication and data communication market segment with customers such as Lucent, Nokia and Ericsson. 

The difference between the responsibilities of traditional operating systems, e.g. Unix, Linux and Windows NT, and a real-time operating system dissolves. The real-time operating system developers can therefore gain a lot by looking at research aimed and adapted by traditional operating systems and vice versa. In the last few years the concept of cluster computing has become an interesting field of research, and much work has been done, for example on Beowulf clusters [1 Preliminary Investigation …. Beowulf Cluster], Java on Clusters [2 en sådan referens] ünd en till [3 en till ref].    

There has been little work on operating systems specifically for clusters; most of the work has been done at middleware level on existing operating systems. One of the advantages of the middleware solution is that a Single System Image (SSI) can be created partially and implemented in stages, but this also means that a complete SSI cannot be reached. This is due to the fact that the applications have to be SSI aware. However, to reach a complete SSI every component of the operating system must provide SSI. This means that implementing an SSI at operating system level requires more work than the middleware solution and therefore the cost is greater than doing it at the middleware level. [4 buyya]

2.1 
OSE Delta

Enea OSE Systems AB in Täby, Sweden develops and sells a real-time operating system named OSE. OSE is built on a message passing micro-kernel architecture and is intended for embedded systems. OSE comes in different versions, OSE Delta is aimed at 32 bit microprocessors, OSE Treat for Digital Signal Processors (DSPs) and OSE Epsilon for small embedded systems with strict memory constraints. 

Consultants from Enea Data designed OSE Delta in the early 1980’s for usage in Ericsson’s telecommunication equipment. In 1996, Enea OSE Systems spawned off from Enea Data and many vendors, around the globe, now use OSE Delta. OSE Delta is used in telecommunications equipment, industrial control and similar high performance and safety critical systems that have a need for high availability and fault tolerance. [5] 

3 Clusters

In recent years, the cluster concept has become more and more common in the distributed computing research, books and articles. The definition of a cluster is, according to G. F. Pfister [6] XE "[1]" \t "[1]" :

“A cluster is a type of parallel or distributed system that consists of a collection of interconnected whole computers, and is used as a single, unified computing resource.”

This definition involves the Single System Image (SSI) property discussed in section 5 of this report. It is important to note that the term cluster is often used to mean a collection of workstations, several levels of software abstraction higher than a collection of real-time embedded nodes. However, this report will use the research aimed at the higher level of abstraction and try to apply it to the lower levels. It also important to remember that the two worlds are coming together and it may be impossible to separate them at all.

3.1
Reasons to use clusters

There will always be a need for systems with high performance and high availability. This implies the use of parallel computers. Massively (highly) Parallel Processing (MPP) systems are specifically designed for resource demanding tasks that cannot be performed on commonplace machines. Lowly parallel systems are, opposed to MPPs, built on commercial components and can therefore, by being price competitive, offer another type of parallelism that attracts a major part of the computing public. 

The main reason for using clusters, or other lowly parallel processing systems, is that they offer reliability. By implementing a collection of machines as a cluster, a failure of a cluster node results in submitting the workload of the down/inoperative machine to the others. This way, programs will be run continuously, although less effective at failures, but the point is that they still will be accessible. By implementing a highly parallel system, a high performance level can be guaranteed at all times but not reliability, For the majority of computer users the performance level is not essential for carrying out the their work. What they are interested in is a relatively cheap reliably system protected from total system failure, even if the drawback is a fall in performance at times. 

A cluster is a type of lowly parallel computer organization and has a program model that is different to other lowly parallel system architectures, for example the Symmetric Multiprocessor (SMP) architecture. An SMP is a computer that has several identical processors that have access to exactly the same memory and I/O. Having different architectures, the approach and algorithms for problems in one program model is not applicable on another without a non-trivial translation. Clusters are not generally superior over any other architecture; that depends on the type of application. 

Simply, a cluster can be regarded as a network of independent machines where the inter-node communication is established by a standard network technology, e.g. Ethernet. Elements that must be included for the cluster node to be considered as a standalone machine are: CPU(s), memory, I/O facilities and an operating system. [6] 
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Figure 1. 
Cluster implementations are mainly, so far, built of networks of PC’s, workstations or SMPs. The development in high-speed network technology has contributed to cluster usage. The figure to the right is a SMP

3.2 
General Cluster Characteristics

Fast and continuous growth in processor speed is what has made cluster computing a strong and realistic successor to traditional super computing. Constant increase in processor performance has resulted in a significantly reduced need for parallelism. Clusters, built of commercial off-the-shelf components, manage to execute tasks that only massively parallel systems could earlier. 

A cluster should be seen as a “subparadigm” of a parallel or distributed system with a number of distinctions and similarities to these. It is not obvious what distinguishes a parallel from a distributed system. Both parallel and distributed processing aim to speed up the processing. Simplified, parallel computing can be considered to have to do with processor algorithms and speed and the objective is to use parallel processing to execute tasks fast. Distributed systems do things fast by spreading the workload/tasks over loosely coupled hardware. 

Like other parallel or distributed systems clusters may supply features, such as:

· High performance – Can be obtained by using more powerful processors, use better methods or do things in parallel. Clusters fit the latter statement; high performance is obtained by the use of several processors in parallel.

· Expandabiliy – Additional computer resources may be attached to the system when greater performance is needed, by adding extra nodes at any time.
· Scalability – Clusters offer good scalability due to its composition of whole separate nodes. The cluster grows in performance by adding another node. A network connects cluster nodes, which is a critical property in cluster scalability. The cluster must be able to handle a dynamic network topology satisfyingly; otherwise a decreased performance might be obtained rather than an improvement.

· High availability – Jobs within a cluster are permitted to move when needed, e.g. at node failures. Because clusters are built on cheap off-the-shelf components high availability can be offered at a low cost.

· Price efficiency – Built on off-the-shelf products and having a good scalability, many consider clusters to have better price/performance ratio than other alternatives.
Key issues are high performance and scalability and this type of cluster computing is referred to as High Performance clustering.  Another view of clustering is from a more critical side. Clusters could be used to provide high availability, i.e. High Availability clustering, and is acquired by redundant nodes that will pass over workload at node failure. These two views tend to grow into each other as the computing requirements grow, but availability is still the main concern since the performance is quite useless if the system is not available. [referens] 

3.2.1
Clusters versus SMP

Commercially, the Symmetric Multiprocessor (SMP) architecture is the only truly lowly parallel competitor to clusters. Advantages and disadvantages for a cluster over an SMP [6]:

· Scalability – Scaling is generally easier in the cluster case, since cluster can, theoretically, scale to whatever size as long as the medium between the nodes manages the increased communication. In the case of the SMP, adding more processors needs bigger processor caches, faster and more memory, faster bus, bigger and faster disks, making it much more expensive to scale an SMP.
· Availability – A system must fulfil two basic requirements to be regarded as highly available. Firstly, the system cannot have any single point of failure, i.e. a single element must not bring down the entire system if it fails. Secondly, a failed element can be replaced before anything else breaks [pfister].  The second property normally does not cause major difficulties. It is the single point of failure property that distinguishes clusters from SMPs. SMPs are not capable of managing single of point failures, which clusters can. This of course implies that the communication medium between the nodes in the cluster is not a single point of failure, e.g. a single Ethernet. Clusters are said to be able to provide higher available systems than SMP, although this is not done for free. 

· Single System Image – Managing a cluster is naturally more complex than a single SMP. This is because an SMP has one instance of all its components, e.g. operating system and memory, whereas a cluster often has many instances of each.
· Performance ​​– The performance is generally less in a cluster for computing intensive problems than on a SMP, because message passing overhead.
3.2.2 Comparison of Clusters, Highly Parallel, and Distributed systems

Comparing clusters to highly parallel and distributed systems, gives a few distinctions between them [6]:
	Characteristic
	Highly Parallel
	Clusters
	Distributed

	Number of nodes
	Hundreds
	Tens
	Thousands

	Performance metric
	Turnaround time
	Throughput and turnaround time
	Response time

	Node individualization
	No
	No
	Yes

	Inter-node communication standards
	Proprietary or non-standard
	Standards or proprietary
	Standards

	Nodes per problem
	1
	1 or more
	1 or more

	Inter-node security
	No
	No if enclosed, yes if open
	Required

	Node Operating system
	Homogenous
	Often homogeneous
	Heterogeneous


Table 1.
 A comparison of Clusters, Highly Parallel, and Distributed systems.

3.3
Embedded clusters

A cluster of embedded nodes is in this report called an embedded cluster. Embedded clusters differ from “ordinary” clusters, e.g. cluster of workstations, in terms of software, hardware and usage. However, as stated before, the distinction is not clear. Applications areas where embedded clusters are used are for instance space applications, signal processing applications, and telecommunication applications. Some examples of embedded clusters with these type of applications can be seen in Figure 2 below.[white paper]
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Figure 2.
 Three kinds of embedded systems: A) Space applications  B) Signal processing applications C) Telecommunication application (radio base station)

The hardware of the nodes in an embedded cluster is often very specialized with severe constraints on size, weight and power as well as latency and reliability. These systems often has real-time constraints and the main software on an embedded cluster node is for that reason a real-time operating system (RTOS) that can give real-time deadline guarantees. An RTOS also fits the specialized hardware better because it generally supports more processor architectures and need less memory than a traditional operating system. The next section, OSE Delta operating system, describes the main responsibilities of an RTOS.

In a cluster of workstations, the single system image property is meant to be very important. Is this also the case in a cluster of embedded nodes with a real-time operating system? The Single System Image section below shows that this is not always the case for embedded clusters.

3.4 
Cluster Operating Systems

There are few operating systems that are designed specifically for clusters today. This means that the support from the kernel when writing a cluster application is not satisfying and it is harder for the developer to create the illusion of one big machine, i.e. Single System Image (SSI).

To reduce complexity and to guarantee a predictable behaviour, most work on clusters has been done at middleware level. Another reason is that changes in middleware can be ported easily to other operating systems. Operating systems that can be seen as cluster operating systems are Intel’s Paragon OS [9 referens] and Sun’s Solaris MC [10 referens] but it should be noted that all fail to provide an SSI at the kernel level, which is desired. Since there is not any existing product that provides a functioning operating system (at kernel level) for clusters there are differences in opinions of what a cluster OS should provide. [4Buyya] points out a few basic desirable features which is not included in 3.2 General Cluster Characteristics above:

· Manageability – Easy system administration. Often associated with a Single System Image (SSI), which can be realized on different levels, from high-end application to hardware levels. 

· Stability – Robustness, failure recovery, and usability under heavy load.

· Support – There has to be tools, hardware drivers and a middleware environment available, else it doesn’t matter how ingenious the design is.

· Heterogeneity – A cluster must not necessarily consist of homogenous hardware; therefore the same operating system should be able to run across multiple architectures. There are definite efficiencies to be gained from homogeneous clusters, as well as there is economic reason for having such a cluster. Despite this fact, heterogeneity is often inevitable, and operating systems may not be the best place to address it. There is a need to provide, at some layer, a homogeneous set of abstractions for the higher layers. The lowest level on which heterogeneity causes problems is the data representation, e.g. big-endian vs. little-endian. Performance arguments would put this endian conversion in hardware. The “end-to-end” argument in networking [referens] would argue for pushing this to the highest level possible, i.e. application level.

Some of these design goals are unfortunately mutually exclusive. For example, supplying an SSI at the OS level may be very good in terms of manageability but poor in terms of scalability [11 white paper – SSI].
3.5 
Summary

Cluster computing is a topic that has become a popular research field in the last few years due to the cheaper and better processor and network devices. Two areas in cluster computing have been emerging: high performance clustering and high availability clustering. The former is useful for heavy simulations (calculations) and the latter in telecommunication and Internet solutions where availability is important. 

In embedded clusters high availability is the main concern. This often means that the cluster consists of a couple of well functioning almost identical nodes and the workload is balanced between the nodes. If one node fails the cluster as a whole is still functional, and the failed element is restarted or replaced. 

Cluster related problems lie mostly in the software, the hardware mostly satisfies the functionality requirements. The biggest problem with clusters is that they are hard to administrate and maintain, despite this a complete single system image approach in clusters has not yet reached a commercial breakthrough. The SSI deficiency is one of the most troublesome issues involving cluster software. Ideally, clusters should provide a single system image but clusters may offer efficient solutions even if there is a lack of SSI at certain levels. The cluster concept has proven to be useful even if the cluster software is failing to provide an SSI.

4  OSE Delta Operating System 

OSE Delta is a Real-Time Operating System (RTOS) built around a micro kernel architecture with built-in communication support for distributed systems. In order to fully understand the design solutions in OSE Delta and how it could be used in a cluster, it is essential to understand the properties of an RTOS as well as a distributed operating system.

4.1 
Real-Time Operating Systems

An operating system is software that provides an interface between the application programs and the computer hardware in order to present the user with a virtual machine that is easier to use and understand. An additional function or view is that the operating system should organize efficient and correct use of the computer resources, i.e. work as a resource manager. Common computer resources are processors, memories, timers, disks, terminals, network interfaces, and a wide variety of other devices. [12 Tanenbaum][13 Li Yangbing]

A real-time system must ensure that certain actions must be taken within a specific time, i.e. a real-time system has real-time deadline constraints. Furthermore, real-time systems can be divided into two kinds, hard and soft real-time systems. [14 DOSA]

4.1.1
Hard real-time systems

A hard real-time system is a system, there every task (action) must be guaranteed to complete within its deadline. Systems that need this guarantee are often safety-critical, for example in an airplane control system.

4.1.2
Soft real-time systems

A system that has deadlines but is working as long as not too many deadlines are missed is called a soft real-time system. The relaxation on the deadline guarantee often means a more dynamic and efficient use of the system resources, which means that soft real-time guarantees in some cases is preferred before hard real-time guarantees.

An operating system running a hard or soft real-time system and gives real-time deadline guarantees appropriate to the system, is said to be a real-time operating system. 

4.1.3
Micro kernel

Most modern real-time operating system consists of a micro kernel. A micro kernel provides only the services that are difficult or expensive to provide anywhere else. The goal is to keep the kernel small and the services are provided as a set of libraries. Therefore its possible to extend the operating system by letting the linker put in the services used by the application. 

The traditional operating systems (e.g. unix, windows) consist of a monolithic kernel that essentially provides every service the user wants, for example networking facilities and an integrated file system. Although this is sometimes practical it is definitely not flexible. 

The microkernel approach is a way of focusing on getting the functionality out of the low system levels. This is because the function provided by lower-system levels almost always has to be re-implemented at higher levels, in order to correctly meet the application’s requirements.[End to end]

4.2
The main services provided by a RTOS

The smallest subset of services provided by a real-time kernel is usually [12]: 

· Process
 (task) management 

· Interprocess communication 

· Memory management 

· Low-level input/output (I/O) management (interrupt handling)

4.2.1
Process management

The most central concept in a real-time operating system is the concept of processes. A process is a logical structure that consists of its own program code and a state consisting of the register and memory values. A process can be periodic or aperiodic. A process is periodic if it should execute once every T second, where T is the period. An aperiodic process may execute at arbitrary times, e.g. on a hardware interrupt or at arrival of a message. Every process is said to have a deadline. A deadline is the time at which a process must finish its execution after being initiated.

A process can be in three states: waiting, ready and executing. On a uniprocessor system, only one process can be executing at any time. A process is waiting if it is blocked for external events and ready if it is ready to execute and not blocked. The switch from one process to another is called a context switch. A process that is suspended even though it is logically runnable is said to be preempted. 

One of the main responsibilities of a real-time operating system is to schedule the set of processes, so every process can execute within its deadline. The scheduler in the system provides the scheduling mechanism and the algorithms used are the scheduling policy. The scheduling algorithm is very important for the system performance and correctness of the system, because most problems in practice perform completely different with different policies. Some operating systems therefore separate the scheduling mechanism from the scheduling policy, e.g. the Mach operating system [16 John Dru, Mach]. In such systems, the operating system provides the scheduling mechanism and a couple of policies from where the application can choose. In that way the application can control the scheduling without doing the scheduling itself. 

Furthermore, scheduling policies are divided into three groups: cooperative policies, static priority-driven policies, and dynamic priority-driven policies. A cooperative policy relies on that the process executing gives up the CPU before the execution of another process, i.e. the process cannot be preempted. This is rarely used in practice. A static priority-driven policy can preempt a process and the current executing process is the one with the highest priority. In dynamic priority-driven policies the highest priority process is still executing but the scheduling policy reevaluates process priorities on the fly. [17 David stepner]

4.2.2
Interprocess communication

In a real-time operating system a process often manages a simple task, e.g. reading the keyboard. This means that processes frequently need to communicate with each other to accomplish something useful. The communication primitives between processes in a system are called the InterProcess Communication (IPC) primitives. 

Many IPC primitives exist, both on language level and as system calls, among these the most important are:

· Semaphores – A semaphore is a built in system type construct associated with locks and queues for process-blocking purposes. By using semaphores a shared variable or critical region can be protected from concurrent access thus semaphores can be used as an IPC primitive. Semaphores were first described by Djikstra in [18 Djikstra]. 

· Monitors – A monitor is a higher-level synchronization primitive. Monitors are a language construct, unlike semaphores and message passing that are based on system calls. A monitor is a collection of procedures variables and data structures that are all grouped together in a special kind of module or package. Only one process can access the monitor at any instant. [19] 

· Message passing – uses two primitives send and receive. The send primitive sends a message to the given destination and the receive primitive receives a message from a given source (or any source). If no message is available, the receiver blocks until one arrives[12]. 

Using message passing as the primarily used IPC primitive has several advantages with regard to pure semaphores and monitors. A message can carry data and the synchronization is implicit in the reception of the message. Semaphores and monitors are used to solve the mutual exclusion problem on one or more processes with shared memory. In distributed systems with no common memory, these primitives become inapplicable, because they cannot provide for information exchange between machine boundaries. 

IPC in a real-time system are more complicated than in an ordinary operating system because of the time constraints. Typically, the IPC primitives must consume a bounded amount of time for worst-case situations. Furthermore, the use of shared resources, for example a semaphore, can lead to problems, like race conditions, priority inversion and deadlocks. [5] 

4.2.3
Memory management

The memory is an important resource and has to be carefully managed. Every real-time operating system today is using the multiprogramming model, i.e. allows several processes to be run on the same processor in pseudo-parallel. The memory management system in an operating system often provides virtual memory and memory protection. In traditional operating systems each process has its own virtual address space, which is much bigger than the physical memory. The virtual memory is divided into equal size pages and just a few pages of a program are in main memory at the same time. The whole program is stored on disk. If an instruction references a virtual memory address in a page that is not located in main memory, the page is swapped in from disk to the main memory. The different pages in main memory must be protected from each other because they can belong to different programs. Both virtual memory and memory protection can be obtained by using the processor’s Memory Managing Unit (MMU). In real-time operating system, swapping is seldom used because of the real-time constraints. 
4.2.4
Input/output management

Most operating systems have some primitives for input and output, i.e. read and write. This is an abstraction from using the hardware devices, such as RS232 ports and hard drives, directly. The system call code takes care of the I/O for the user in a uniform and device independent way by using a device driver. The device drivers contain the device dependent code and provide a device dependent interface to the kernel. The error handling, resource sharing, device driver, and interrupt handling is hidden away from the programmer in a library procedure, e.g. the C library call write(fd, buffer, nbytes). Figure 3 shows the layers of an I/O system.
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 Figure 3.
 Layers of the I/O system.

In multiprogramming system the above approach may lead to problems such as deadlock and livelock – a process requires a lock and never releases it – and therefore spooling is often used. Spooling is a way of solving the problems with shared I/O devices, by creating a special process, called a daemon. The daemon is the only process that has access to the device, and other processes must give their I/O requests to the daemon. The daemon handles the queue of requests, thus eliminating the risk that one process occupies a device an unnecessarily long time.

4.3  
The OSE Delta operating system

OSE Delta is as described above a Real Time Operating System with built-in support for distributed communication. The real-time and distribution properties of OSE Delta are described below [5]. 

4.3.1
Process management
The one most fundamental concept in OSE is the process. There are two different categories of processes in OSE, static processes and dynamic processes. The processes that are created at system start are called static processes whereas the processes created at runtime are called dynamic. The static processes are often crucial for the system correctness; if a static process goes down (at a time it is not supposed to), the system will go down as well.

There are five different types of processes in OSE: interrupt processes, timer-interrupt processes, prioritized processes, background processes, and phantom processes. The interrupt, timer-interrupt (periodic), and prioritized processes can all be assigned a priority from 0 – 31, where 0 is the highest priority. Each process has a 4 bytes process identifier. This process identifier is always local, i.e. the same process identifier can exist on several nodes in a cluster but never within a single node.

In OSE Delta the scheduling mechanism is not separated from the scheduling policy. This means that the application processes are scheduled with the following algorithms depending on process type:

· Periodic time interval (Periodic processes) – Processes can be scheduled to run at certain time intervals.

· Static priority (Prioritized processes) – The process with the highest priority will run as long as no interrupt (or timer-interrupt) processes are in service. A process can only be preempted by a process with higher priority. Therefore, all other processes of equal priority have to wait until the executing process voluntarily gives up the CPU. A user may set the priority of a process in runtime. 

· Round Robin (Background process) – All background processes execute at the same priority level, which is the lowest in the system. Every background process is assigned a time slice at creation. This time slice may be different from the other background processes’ time slices. The first process in the ready queue executes its time slice and is thereafter put at the back of the queue.

4.3.2
Interprocess communication

OSE has many ways of doing interprocess communication or synchronization, for example message passing, environment variables and semaphores. Message passing and semaphores are explained above. Each process or block (for more information on blocks see 4.3.3. Memory management below) in OSE Delta can have one or more environments variables, which is basically is named strings. These variables can be created and modified in run-time and are used by applications to store status and configuration information associated with a specific block or process. As all processes in a node can modify another process named environment variable, these can be regarded as global variables within a node. Message passing is the most interesting interprocess communication mechanism in a distributed OSE Delta system, because of the physical memory boundaries.

OSE messages are called signals, although in this paper, the term message will be used consistently. In order to be able to send a message the process must first allocate a message buffer from the memory pool. This buffer should be big enough to hold the message identity and the data (see Figure 4) below. Apart from the message identity and data contents, all messages have some hidden attributes associated with them maintained by the kernel, e.g. the owner of the message, the size, the sender, and the addressee.

Message:

	Message identity (4 bytes)
	Data content (( 0 byte)


Hidden attributes:

· Owner – There can be only one owner of a message buffer.

· Sender – The sender of the message.

· Addressee – The receiver of the message.

· Size – The size of the message, i.e. the message number of four bytes plus the data content.

Figure 4. 
An OSE Delta message contains a 4 bytes message number and zero or more bytes of additional data content. Each message has some hidden attributes, e.g. the owner, sender and addressee of the message.

When a process gains access to a buffer, either by receiving a message or allocating it, it becomes the owner of the message. Only the owner may perform operations on the buffer, i.e. once the sender of the message has sent the message it cannot access the message buffer, thus there is no risk that the sender reuses the buffer before the kernel has had a chance of sending it. 

The kernel has a very powerful subset of system calls that can be used then sending messages. These are:

· hunt –  A process can only send a message to another process if it knows its process identifier. If the process that wants to send a message has not communicated with the receiver before, the sender must locate the receiver, i.e. get the receivers process identifier. The hunt system call takes the name of the process to be located and the message to be returned when the process is found as parameters. For example, if we want to find the process with the name “B”, we issue hunt(“B”, message), there message is the message returned when “B” is found. The sender of the message will be the process “B’s” process identifier. If the process is located on another node the path to the process is supplied to the hunt, i.e. hunt(“link name/B”, message). The link name is the name of the link handler on the node there B is located. It is not possible to cancel a hunt unless the issuing process dies.  Instead it is possible to use the system call hunt_from. The process that issued hunt_from now is able to cancel the hunt by killing the process specified as the from parameter. This process is preferably a phantom process. 

· attach – If the hunt succeeds and the process is found, then we can supervise the process with the attach system call. The attach system call take a message to be returned by the kernel if the attached process terminates, thus the kernel supervises the attached process for the application. 

· send – Send sends a message to an addresse. Send is non-blocking.

· receive – Each process has an incoming message queue associated with it and the receiving process may specify what messages it is interested in receiving. This is done by passing an array of message numbers to the receive system call. The process will receive the first message in the message queue with a number equal to a number in the provided array of wanted messages. A process can specify that it wants to receive all messages. The messages not received will be left in the message queue. The system call receive_w_tmo, works like receive but it is also possible to specify a timeout. 

· detach – If no more communication is wanted with a process it is possible to detach from it. By doing this the attached message will not be returned if the process terminates. 

If a message is to be processed by another process than the one to which it was sent, for example if a process acts like a proxy for another process, a redirection table can be used. A redirection table is a table of message numbers and corresponding receiving processes, thus it is possible to route messages depending on message number. The main reason for redirection tables is to use them in conjunction with link handlers. This makes it possible to catch and handle signals sent by clients to processes in another target system. A process identifier in OSE is always local, thus for every remote process there is a phantom process with a redirection table to a link handler. 

The link handler manages communication between processes in separate target systems, i.e. the kernel locates remote processes and sends signals to these through the link handlers, which must be implemented in every target where communication is required. The communication is transparent for the application, and the system calls hunt, attach, send, receive and detach 
are used in the same way for both intra-node and inter-node communication. Moreover, supervision of processes in different targets is included in the link handler functionality, meaning, the link handler will automatically notify remote targets if a process would terminate. The developer is free to write his or her own link handlers or use the one supplied with OSE Delta. [20] 

The link handler manages its duties by creating phantom processes for the communicating processes in the separate targets. A phantom process is created, when using the hunt system call, in the target of the initiating process. Phantom processes works as proxies for the remote processes and are created by the link handler after the process has been found in the remote target, see Figure 5.
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Figure 5.
Process A on node 1 hunts for process B on node 2, i.e. issues a hunt(“LH2/B”). A system deamon called the hunt deamon, takes care of the hunt. The hunt deamon sends the remote hunt request via the phantom link handler (the message is redirected by LH2’ redirectiontable) with the name “LH2”. The link handler will establish the connection as above and the result from the hunt will be a phantom process B’ representing B on the remote node and A’ representing A one node 1 (step 1 – 7). Process A then sends a message to process B’. The message will be redirected to the link handler through B’ redirectiontable. The link handler will examine the addressee field of the message (in this case B’) and the sender field (in this case A), and map those identifiers to the remote ones and thereafter send the message to the remote addressee (step 8 – 11). 

4.3.3
Memory management

The memory in OSE can be divided into pools and segments. A pool is an area of memory from which message buffers, stacks and kernel areas are allocated. It is also possible to allocate “local” pools, which resides in the same memory space as the processes they support.

It is possible to group a number of processes into a block. A block can be allocated with it’s own memory pool or it can use the system pool. The processes allocate memory and message buffers from the pool. If a pool is corrupted, it will only affect the processes and blocks using the pool, and those communicating with the processes in that pool. Furthermore, it is possible to arrange the pools into segments. These segments can be hardware protected by an MMU, see Figure 6 below. OSE Delta has does not allow swapping today, thus the virtual addresses often maps directly to the physical memory addresses.
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Figure 6.
 The memory can be divided into memory-protected segments. The segments can in its turn be divided into logical structures called pools and blocks.

4.3.4 Input/output management (interrupt handling)

OSE Delta does not have any I/O primitives built into the kernel. Instead, for maximum flexibility, the I/O services (interrupt handling) are instead built around a concept called Board Support Package (BSP). A BSP, consist of several software modules, e.g. hardware setup modules and device drivers. The device drivers consist of a set of functions that supplies a standard interface to a device controller application. The device controller can for example be a file system or a TCP/IP stack, for example OSE Embedded File System as in Figure 7 below. 
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Figure 7.
 The I/O management in OSE Delta. 

4.4 
OSE Delta in a distributed environment

OSE Delta can easily be used in a distributed environment, by using a link handler. This may sound straightforward and easy but it is important to remember that the characteristics of a distributed system is entirely different from a uniprocessor system, i.e. a conventional real-time operating system (RTOS). OSE Delta is designed to work in both environments, but the semantics is not the same. If OSE Delta is used only on a uniprocessor all the system calls will work as expected. Using it in a distributed environment, forces the user to use a limited subset of the available system calls, see Figure 8, thus OSE Delta is more a conventional RTOS than a distributed operating system, but has distributed capabilities. Also, if the user does not use a naming service, as would not be the case in a uniprocessor system, he/she has to know the exact location of the resources, because the hunt system call is not location transparent. 

OSE Delta has a naming service called OSE Name Server. The OSE Name Server (NS) is a global service registry for distributed OSE systems and makes clients independent of the physical location of the services. The OSE Name Server provides the functionality of register and deregister services, obtain process identifiers and hunt paths to registered services, and to subscribe for notification of changes. [20]


[image: image8.wmf] 

OSE Delta RTOS

 

Distributed OSE Delta 

 

 


Figure 8. 
Using OSE Delta in a distributed environment limits the functionality of the original RTOS. The filled area of the right oval above represents the system calls that cannot be used or has different semantics in a distributed environment.



4.4.1
Using OSE Delta in a cluster

Operating systems based on the micro kernel and message passing concept have a structure that is particularly well suited for clusters, since clusters use message passing programming model and the flexibility of a micro kernel allows more freedom to the cluster application developer.

OSE Delta has support to be used in a distributed environment and therefore has the prerequisites to be used in a cluster. However, this does not mean that OSE Delta has the functionality to be said to be a cluster operating system. 

In the Cluster operating systems section above a few basic characteristics are pointed out, e.g. manageability, scalability and performance, that is desirable in a cluster operating system. These properties often involve Single System Image (SSI), which OSE Delta does not provide. A further explanation of SSI and a discussion of how it can be obtained in an OSE Delta system can be found in the next section.

4.5
Summary

OSE Delta is an RTOS that is targeted against the telecommunication market segment, and therefore has to work in a distributed environment. The most central concept in OSE is the process (in real-time literature often called task). A process can be part of a block, which is a logical structure, often supposed to represent an application. The block can reside in a pool and the processes can allocate memory and message buffers from the pool. The pools lies in segments that are the smallest structure that can be memory protected from each other via a MMU.

The system calls hunt, attach, send, receive and detach in conjunction with the link handler makes the inter-node message passing almost transparent from the local one (hunt is not location transparent). It is possible to supervise the remote processes, in order to achieve some degree of fault tolerance.

Because of the message passing and micro kernel architecture OSE Delta is well suited to work in a cluster. However, OSE Delta does not provide an SSI that many in the computing community think is very useful, especially in a cluster environment. 

5 Single System Image 
This section describes the Single System Image property in general and how it could be applied to the OSE Delta operating system. 

A distributed system with loosely coupled hardware and loosely coupled software is nothing more than a number of machines connected by a network of some kind. The problem with this kind of distributed system is that as the system grows and become more complex, e.g. the topology becomes more complicated and more and more resources are added, the system management becomes difficult and expensive. It is also troublesome for a user to remember where the resources are located and by what name it is called. A true distributed system is therefore a system with tightly coupled software, which tries to create the illusion of one single computing resource. This property of a distributed system, for example within a cluster, is often referred to as a Single System Image (SSI)[12]. 

A good definition of a single system image can be found in [11]:

“A Single System Image (SSI) is the property of a system that hides the heterogeneous and distributed nature of the available resources and presents them to users as a single unified computing resource. … Furthermore, an SSI can ensure that a system continues to operate after some failure (high availability) as well as ensuring that the system is evenly loaded and providing resource management and scheduling.”

Furthermore, an SSI has the following structure [6]:

· Every SSI has a boundary.

· The SSI support can exist at different levels within a system; one level may build on another. 

The SSI boundary defines when a cluster presents an SSI. Inside the SSI boundary, the cluster as a whole looks like a single machine, but any action outside the boundary, effectively destroys the illusion of one single machine, and the cluster appears as a number of nodes. There are also different levels of SSI support; these levels are described in detail in SSI implementation levels below.

5.1
Advantages and disadvantages with SSI

In a cluster, the SSI concept has been proven to be useful. Nevertheless, there are also some disadvantages with an SSI. It is important to be aware of these.

5.1.1
Advantages

A single system image can provide many benefits to a cluster [4]:


· It simplifies system and application design.

· It provides a simple and straightforward view of all system resources, from any node within the cluster.

· It allows the use of resources in a transparent way irrespective of their physical location. 

· It simplifies system management and thus reduces the cost of ownership.

· The end-user does not have to bother about where in the cluster the application will run.

· It provides location-independent message communication. 

An SSI in a cluster may also provide a couple of key services, e.g. 

· Single point of entry –  A user can connect to the cluster as a single system, instead of connecting to the individual nodes as in a distributed system.

· Single file hierarchy – On entering the system, the user sees a file system as a single hierarchy of files and directories under the same root.

· Single point of management and control – The entire cluster can be monitored or controlled from a single window using a single GUI tool.

These services can be offered by one or more layers, and may stretch along several dimensions of the application domain.

5.1.2 Disadvantages

An SSI has many advantages, but also some disadvantages. 

· In order to provide an SSI the overhead may be significant if the number of nodes and services becomes high. The overhead makes the scalability and extendibility of the cluster harder.

· In some situations such as debugging an SSI is not wanted. For example, when a base station manages a call it is normally of little interest which node that actually takes care of it, i.e. SSI is wanted. However, in the case of node failure, the SSI is no longer wanted and it must be possible to locate the faulty node. 

· Performance can also be a problem if the semantics of the system calls is intended to be exactly as within a single machine. This probably means a lot of overhead. 

· To provide SSI is expensive because it is harder to develop and perhaps maintain a system providing an SSI.

· The system becomes more inflexible since the application developer is forced into the SSI. All applications do not benefit from an SSI, and an embedded developer that thinks programming on bits and bytes level are arousing, may have a hard time accepting the SSI. 

5.2
SSI implementation levels
An SSI can be achieved in several different levels of implementation and/or with a co-operation of these levels. The main levels are the application levels, the operating system (kernel) levels and the hardware level. By letting applications use lower levels of SSI support, it is possible to save much effort when creating the SSI (see Figure 9) [6].
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Figure 9.
 The different levels of implementation of an SSI.

5.2.1
Application levels
The application level is the highest and most important level in one sense because it is what the end-user sees. The only purpose of all the other levels is to make it easier for developers to create applications exhibiting a single system image to the user. 

It is possible to divide the application level into two sublevels:

· User applications – Applications that may provide an SSI for the user is for example a batch system or a system management application. These systems typically run across multiple nodes but the user do not need to know where. The application has created as single system image potentially spanning over a large network.

· Middleware – The middleware level is sometimes called subsystem level. Programs on the middleware level are not an integral part of the operating system, but provide desirable or necessary services to applications. The middleware level often involves databases, distributed databases and distributed file systems. These are typical examples of middleware and are normally used by an extensive number of applications. One of the most valuable services a middleware program can provide to the application is a single system image. If this is the case, the user application developers can benefit the SSI without any effort on their part, as a result the cost and time for developing the user applications are significantly reduced.

5.2.2
Operating system levels
The advantages of an operating system level SSI are the same as those at middleware level except that middleware application also can benefit from the SSI. 

Another big advantage with kernel level SSI is that the application developer does not have to think about which system calls and shell commands he/she uses, i.e. what is allowed and not allowed. The benefits of this are, for example, that an application developer writing an application that will exhibit a performance boost by putting the processes on different nodes, do not have to think about where. The operating system level SSI will ease his/her mind. Separate processes are “automatically” placed on nodes as appropriate; it is built into the (serial) system primitives for standard, unaltered, serial uniprocessor programs. Operations that are split into multiple processes using standard, uniprocessor, serial communications facilities can, exhibit speedup by being run on several multiple nodes simultaneously. Individual jobs may run with increased efficiency, because system-provided parallelism can off-load system operations. The levels of where this can be achieved in the operating system are the over kernel, kernel services and kernel level.

· Over kernel – This level contains programs and toolkits that make the use of the operating system easier, i.e. shell, file systems and various protocol implementations. 

· Kernel services – A software component that is strongly associated with the operating system but not part of the core kernel is in this paper existing on kernel services level. This could for example be operating system service as the OSE Name Server or OSE Link Handler. 

· Kernel – The operating systems discussed here are supposed to consist of a micro kernel. The kernel level represents the micro kernel and the system servers supplying the core services, e.g. memory management.

5.2.3
Hardware level
There are a couple of systems that actually provide SSI at hardware level, for example the Symmetric Multiprocessor (SMP), which provides SSI support for memory and I/O within the system. Therefore, SMP software that provides SSI is common, and may be one reason for its success. 

5.3
SSI Requirements 
Requirements for cluster-based SSI systems are mainly focused on complete transparency of resource management, scalable performance, and system availability in supporting user applications [4]

5.3.1
Transparency of resource management
Achieving SSI, different types of transparency must be attained. Ideally, all the different types of transparency below should be satisfied, however in practice some of them are very hard to achieve and therefore not fully implemented.

Desired types of transparency:

· Location transparency – the user does not need to know where hardware and software resources (e.g. CPUs, printers) are located.

· Migration transparency – resources must be free to move from one location to another without having their names changed.

· Replication transparency – the user should not be able to tell how many copies of files and other resources that exist. Moreover, copies should be made without notifying the user.

· Concurrency transparency – the users should not be aware of each other and must be able to share the resources in a safe way (i.e. resources should only be accessed sequentially and never concurrently).

· Parallelism transparency – the compiler, runtime system and operating system should be able to figure out how to take advantage of the potential parallelisms without the user being aware of it. This is, however very difficult and there is no system today that fulfills this goal.

5.3.2
Scalable performance
A cluster can be easily expanded and the performance of the cluster should scale as well. To reach maximum performance, the cluster SSI service must support load balancing and parallelism by distributing workload evenly among nodes. The SSI service must be provided with little overhead, as well as the communication between the nodes must offer a low latency and a high throughput.  

5.3.3
System availability
One of the most important properties of a cluster is high availability. Ideally, a single point of failure should be recoverable without affecting the application. When SSI services are offered, failure of any node should not affect the system’s operation. For instance, when a file system is distributed among many nodes with a certain degree of redundancy and a node fails, that portion of the file system could be migrated to another node transparently.  

5.4
SSI in OSE Delta clusters
Transparency should be achieved in two different levels. The first is at application level, e.g. transparency when a user is sitting at a terminal and cannot from that see that several processors are doing the work. The second, lower levels 
should make the system transparent towards programs, i.e. system call interface and APIs should be designed so that the existence of multiple nodes is not visible. An OSE cluster does not need to have homogenous hardware and the hardware is loosely coupled, e.g. no shared memory. Thus is virtually impossible to provide an SSI at hardware level in an OSE Delta cluster, and no further discussion of this approach will be done here.
5.4.1
Application levels
The OSE Delta operating system currently does not provide an SSI at lower levels. Thus, today, it is up to the application developer (the customer of OSE Delta) to present this service to the user, either by using a middleware API that provides SSI or implement the SSI into the application. In the former case the SSI boundary is the Application Program Interface (API) of the middleware program. As long as an application only uses services provided by the API, that application will see a single system image. A step outside the boundary, by bypassing the middleware’s facilities, e.g. using an operating system call, will effectively destroy any illusion of an SSI.

OSE Delta applications on this level that may provide an SSI for the user is for example a system management application for a base station used for mobile communication. A base station typically run across multiple nodes but the system management application user may only be interested in the total performance of the base station, and not what every node does, i.e. wants to see the base station as a single system. However, if one node fails the system manager certainly want to know which node that is defective and the image of a single system is not longer wanted. 

Although, the lower levels of OSE does not provide a complete SSI, the design of OSE Delta and some of its mechanism offers support to the application developer that wants to provide the above SSI requirements above to a end-user. For example, the OSE Name Server supplies location transparency, the attach and detach system calls makes the system fault tolerant and the use of the link handler makes the inter-node communication transparent. However, the other types of transparency, i.e. migration, concurrency, replication and parallelism transparency, cannot be fulfilled at the application levels in OSE Delta.

5.4.1
Operating system levels 
Providing an SSI at the operating system level means that a consistent, coherent single system image is seen on every system call made by every program running on the system. Because no program can access anything outside its address space without using a system call, forces it through the system code that will maintain the SSI. This means that all names used for every facility throughout the system must be unique system-wide identifiers that allow users to gain access to all resources without specifying where it resides. In addition, operating system SSI can do some things that over-kernel support seldom does, for example high availability support and job migration.

· Over kernel – OSE provides some services on this level like, Embedded File System (EFS) and the OSE Shell. EFS can be distributed and thus can be viewed as a global directory service with location transparency. The OSE Shell does not provide SSI and would have to be entirely rewritten to do so. 

· Kernel services – The Name Server (NS) is an OSE Delta over-kernel facility that provides location transparency, and therefore can be used to obtain SSI. There are two ways of locating a service process in OSE Delta. The application developer can either use the Name Server or the hunt system call. In the latter case the developer has to have knowledge of the cluster topology. If the developer has this knowledge he/she may choose not to use the Name Server, i.e. use the hunt system call, and thereby step out of the SSI boundary.

· Kernel – A cluster is said to possess an SSI if it was designed to appear as a single unified resource. This implies that there must be a single set of system calls available on all machines, and that these calls must be designed to make sense in a distributed environment. A logical consequence of having the same system call interface on every node is to run identical kernels on all nodes in the cluster. Of course, each kernel must be allowed to have considerable control over its own local resources, for example, since there is no shared memory, it is logical to allow each kernel to manage its own memory [12]. This can be done with the Remote Call Server described in the next section.

The only global reachable resource in OSE is the process (and those reachable from a process), thus only the system calls involving processes have to work in a distributed environment. For example the system call send involves a process identifier and has to work remotely but the system call alloc do not because you can not allocate memory anywhere else than your own address space, even within a node. See Appendix 3. System calls for a list of all system calls.

The OSE Delta kernel does not provide load balancing and migration (system parallelism). This is a requirement for the performance of an SSI service. Furthermore, the process and block identifiers are always local. The use of phantom processes does not prevent the programmer to step outside of the SSI by sending the process identifier in a message to another node. The process identifier will have in this node mean the wrong process or no process at all. Without global process identifiers, it is impossible to provide a complete SSI, since the system cannot inspect all messages, identify the process identifiers, and create a phantom process for it. 

5.4 Summary
The hardware level can offer the highest level of transparency but is very inflexible. The kernel level can offer full SSI to all users (application and programmers) but this approach is expensive to develop and maintain. A middleware-level approach helps realize SSI partially and requires that each application is to be developed as SSI-aware. A key advantage is that this SSI-awareness can be implemented in stages and the user can benefit from it immediately. Whereas, in operating system level approach, unless all components of the kernel are specifically developed to support SSI, the operating system cannot be put in use or released to the market as an operating system exhibiting an SSI. This does not mean that components of the operating system do not benefit from providing a single system image.

The OSE Delta kernel does not provide a complete SSI and will never do, if the kernel is not completely redesigned to support load balancing, migration and global process identifiers. Some of the kernel services provide location transparency, for example the EFS, but most of the services do not.

6
Remote Call Server Design

The interface between the user applications and the operating system is defined by the set of system calls that the operating system provides. The system calls create, delete and use various software objects, for example processes and semaphores. As described under the section Single System Image above, it is essential that every system call work in a distributed environment in order to provide an SSI, i.e. the user should be able to use the same set of system calls even if the application is a part of a bigger distributed application.[12] 

In OSE Delta, only the system calls involving process identifiers have to work in a distributed environment since the only globally reachable resource in OSE Delta is the process and those resources associated with processes. Most system calls in OSE Delta do not deal with names; they deal with process identifiers. A process identifier is always local, and therefore the system calls only work on process identifiers that specify local processes. Phantom processes are often used for representing remote processes, i.e. works as a reference for remote processes. The system calls have little or no effect on phantom processes. 

For example, the system call start(A), starts a process with the process identifier A. If the process identifier A identifies a phantom (remote) process, the system call will have no effect, because it is not possible to start a phantom process. This behavior is not consistent with the behavior of a system with single system image (SSI). By attaching a Remote Call Server to the phantom processes the kernel will translate the system calls to messages and send to the Remote Call Server. The Remote Call Server will perform the specified system call on the remote process and then replies to the kernel. This section investigates the possible problems with the current design and implementation of the remote call support in the OSE kernel and describes the design of a Remote Call Server.

6.1
Remote services
Much research has been done on distributed systems during the years, and the problems of executing services on remote nodes, i.e. remote services, are well evaluated and understood. Its primary purpose is resource sharing in a distributed system, which allows multiple clients on different machines to share common resources as file systems, peripherals, and processing capabilities. The design of the Remote Call Server uses Remote Procedure Calls (RPC), which is the de facto standard in distributed client-server applications [4].
6.1.1
Remote Procedure Calls

Remote procedure calls is a method for one process on one machine to call a procedure on another machine, without any message passing or I/O visible for the programmer. The calling process on the local node is suspended and the execution of the procedure takes place on a remote node. Information can be transported from the caller to the called procedure in the parameters by something called a client stub. The result is then sent back, by the server stub, and delivered to the process on local node as a return parameter (if there is one) and the process continues its execution. RPC is often used at language level and is used as an abstraction for a request/reply message exchange between clients and servers. 

As OSE Delta is built on a message passing architecture, there is actually no need for RPC at language level. However, in the case of remote system calls, the kernel uses RPC as the communication mechanism to perform the remote call. Hence it is essential to know that basic RPC operation has a number of problems, in the design of the Remote Call Server. [12][14]:

1. Parameter passing and data conversion – Because the processes execute on different machines, they belong to different address spaces and may have different data representation. The parameters and the result thus have to be passed and translated between the caller and the server processes. Packing parameters into a message is called parameter marshalling. There are many problems associated with parameter marshalling, for example passing complex data structures, passing pointers, and handle the byte order (i.e. big endian or little endian).

2. Binding – The client can use many different methods to locate the server. One method is to hardwire the addresses of each server into the code. Although conceptually simple, this approach is very inflexible and should not be used other than in extremely simple systems if at all. Another approach is to use some form of dynamic binding, i.e. look-up the addresses of the servers at run-time. Dynamic binding has several disadvantages. A centralized binder is likely to become a bottleneck in a large distributed system so multiple binders are needed. Decentralized binders on the other hand may create considerable overhead because a substantial number of messages will be needed to keep the binders updated and consistent
. However for small to medium size cluster (< 30 nodes), the decentralized solution may work very well depending on the implementation.
3. Exception and failure handling – RPC differ from local procedure calls because of network limitations and failures. Exceptions are abnormal conditions raised by the execution of stub and server procedures. Failures are problems caused by crashes of clients, servers, or the communication network. 

4. RPC protocols – Which is the most effective protocol to use in terms of performance, cost of implementation, security, and failure handling. Is it best to use a standard general-purpose protocol or a one specifically designed for RPC, e.g. optimistic protocols (work as long as everything is fine), TCP/IP, or UDP/IP [12][4]. 

5. Security – In an open system, security is of great importance. How is confidentiality and authentication handled? 

Popular products and protocols that are based on the RPC include:

· Network File System (NFS) – NFS is based on RPC protocols. RPC’s connectionless model fits the need for file system operations and is easy to build into function libraries. [21]

· Hyper Text Transfer Protocol (HTTP) 1.1 – HTTP is based on RPC mechanisms. The client connects to a web server with a request for a web page. The web server processes the request, sends back the reply and closes the connection. [22]  

6.2 
Remote Call Server design

The OSE remote system call support was designed in 1991 together with the first implementation of OSE Delta. Basically, some of the system calls that work on process identifiers were supposed to work remotely. It was defined that these system calls should work on local as well as remote processes and it is up to the kernel to decide if the process is local or remote. A block in OSE Delta may have a Remote Call Server (RCS) associated with it, and all system calls on processes within a block with an associated RCS will be sent to the RCS as a remote call, see Figure 10.
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Figure 10. 

A block may have an associated Remote Call Server (RCS). If a system call, that is supposed to work remotely, is issued on a process that is part of a block with an RCS (for example on B’), the system call will automatically be translated to a remote system call and sent to the associated RCS (RCS1).

The OSE Delta operating system has 82 system calls providing services to the application (see Appendix 2. System Calls). It is easier to discuss these in the following study if the system calls are categorized in the following categories:

· Process management – System calls that creates and destroys processes and blocks, e.g. create_process, start, stop, create_block, and kill_proc.

· Message communication – System calls that manages the inter-process communication via messages, i.e. hunt, send, receive, sender, and alloc.
· Semaphore calls – System calls working on semaphores and environment variables, e.g. set_fsem, signal_fsem, and wait_fsem.

· Environment variable calls – System calls working on semaphores and environment variables, e.g. get_env, get_env_list and set_env.

· Debugging calls – System calls used when debugging, e.g. get_pid_list, get_pcb, get_uid, and get_mem. 

· Memory management calls – System calls managing the MMU, e.g. attach_block, attach_segment, and create_pool.
· System specific calls – System calls directly directed towards the system, e.g. get_systime, tick, and get_ticks.
· Failure handling – System calls involving failure handling, e.g. attach, detach, and error.

The original design consists of 23 system calls that are supposed to work on remote processes, they all have in common that they have a process identifier as a parameter, for example stop(process identifier). A list of the 23 remote system calls can be found in Appendix 3. Remote system calls. The remote system calls can be divided into process managing calls, semaphore calls, environment variable calls, and debugging calls.

The remote system calls were implemented with the remote system call support in mind but a Remote Call Server was never designed and implemented. My task was to design and implement a Remote Call Server. My Remote Call Server implementation was designed to satisfy the following criteria as much as possible:

· Scalability – A design that does not add a lot of communication overhead between the nodes and needs a lot of memory requirements, is often scalable. 

· Performance – A normal system call takes maybe 5 microseconds and a remote system call may take 5 ms, a factor of thousand slower. The performance is often very important. However, the performance of a design is often closely related to how scalable, fault tolerant and transparent the design is. It is a question of priorities. 

· Fault tolerance – What happens in the presence of failures? Is the semantics different in this case? It is important to minimize the overhead that is needed to make the design fault tolerant, e.g. use as few acknowledgements as possible.

· Transparency and SSI – The design should be transparent for the application. However this may not be possible due to the presence of failures. The design should as far as possible hide the fact that the system call is executing on another node from the application.

· Flexible – As Tanenbaum points out in Modern Operating Systems, “Flexibility, along with transparency, is like parenthood and apple pie; who could possibly be against them?”. A flexible solution is a solution that does nothing more than to provide the most essential services making it possible to be used by a broader base of applications.

6.2.1 Issuing a remote system call

The very idea with RPC is to make the remote procedure call look like a local one. In other words, we want the RPC to be transparent for the user. This is achieved by using a client stub. In OSE Delta the client stub is actually an extension of the system call. The extended version packs the parameters into a message and sends the message to the local RCS. The system call then calls a blocking receive, and thus blocks the calling process, until the reply is received. The application has no idea that the work is done remotely instead of the local kernel. The remote call interface used by the kernel consists of three messages: 

· remote_call – This message is sent from the kernel to the local RCS and contains the system call and its marshalled parameters.
· remote_response – This is the response message sent from the RCS to the kernel and contains the return parameter/s.
· remote_cancel – If anything goes wrong during the remote system call, this message is sent to the kernel.

As described above the kernel will only send the system calls as remote calls if the involved process is part of a block with an associated RCS. In order to associate an RCS with a block, the link handler has to create the block and assign the RCS to it. The link handler has to place the phantom processes that represents remote processes into the block. 

When the local RCS receives the remote call from the kernel it forwards the message to the Remote Call Server located on the node of the remote process. This Remote Call Server performs the specified system call on the remote process by creating a help process, which takes care of the system call. The help process returns to the RCS, which in turn replies to the local RCS on the origin node that replies to the kernel. The kernel unblocks the process that originally issued the system call as can be seen in Figure 11. 
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Figure 11.
The system call issued on B’ is translated by the kernel to a remote call and sent to the local RCS. The remote call is thereafter sent to the remote RCS, which executes the system call and sends back the response. The response is then forwarded back to the kernel (the executing process).

The RCS in Figure 12 is a separate process and not a link handler. However, it is possible that the RCS also is a link handler.

6.2.2
Recursive system calls

In Figure 11 above, the nodes are peer-to-peer. This is not a requirement for the RCS to work. The use of a help process has two major advantages. The first is that the error handling is trivial as explained below; see 6.2.5 Exception and failure handling. The second reason is that the help process allows recursive system calls, i.e. the nodes can be connected in any topology, for example as the nodes in Figure 12. The only requirement is that all the participating nodes have an RCS process running.
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Figure 12. 
The  recursive system call chain. Process A issues a system call on phantom process C’. 

If, for example, process A on node 1 communicates with process C on node 3 it has to communicate via the link handlers on node 2. The phantom process C’ on node 1 will in this case be mapped to another phantom process on node 2, i.e. C’’. This will in turn be mapped to the “real” process C. If the process A issues a remote system call on C’, the RCS on node 1 (RCS1) sends the remote call to the RCS on node 2 (RCS2). RCS2 creates a help process and forwards the remote call to it. Now, given that the process C’’ is a “remote” process, the kernel will block the help process and send a remote call to RCS2. This is the main reason for the help process. If RCS2 tried to carry out the system call it would have blocked by the kernel, and it is impossible for RCS2 to carry out the following remote call request. The RCS on the intermediate node/s, i.e. node 2 in Figure 12, is in this case acting as a gateway. RCS1 has no idea that RCS2 is not the executing RCS.   

6.2.3 Parameter passing and data conversion

The parameter passing is done on the client side by the kernel. The kernel takes the parameters in the system call and puts them into a remote_call message and sends it to the RCS. The parameter passing is rather easy because the system calls has a well-specified interface. The kernel does no data conversion, if needed this must be done by the RCS entities. The parameter passing on the server side is done by the RCS, it takes the return parameter/s from the system call and puts them into a remote_response message.

6.2.4 Binding

It is necessary for the local RCS to locate the correct remote RCS to send the remote call to. The mapping from the phantom process identifier in the remote call to the node of the real corresponding process is not trivial. By convention the name of the phantom process is set to “link name/name”, so a subsequent hunt will yield the response immediately. However, to get the process name we have to use a system call (get_pcb) that is also a remote system call. For the same reason as recursive system calls, it is not allowed for the RCS to issue remote system calls because it will lead to a kind of deadlock/starvation situation. It will for that reason not work to get the name of the phantom processes. Luckily, it is not the name that is wanted but rather the link name. The link handler does provide this information. The method used in the design is to get the link name from the link handler and then locate the remote RCS. This is done on each remote call in a lazy manner, i.e. only when it is needed. The interface in the design consists of two messages: rcs_query_rpln and rcs_reply_rpln. The former is the query for the remote process identifier and link name and the latter is the reply. 

The Name Server is not used because it does not solve the problem. It is possible to get all the link names for the remote RCS entities, but it is not possible to map the phantom process in the remote call to the link names received from the Name Server. Nonetheless, it is possible to use the Name Server so the remote RCS entities’ phantom processes are always represented on the local target and thus the binding with the remote RCS will go much faster and not result in a remote hunt.
6.2.5
Exception and failure handling 

The above design works fine if there are no failures. However, if there is a failure in the remote system call chain it will not work as it is described above. In OSE Delta the system call attach can be used to detect if a process terminates and the link handler adds the functionality of supervising remote processes. This means that it is possible for a process to attach on a phantom process representing a remote process and get notified if the remote process dies or the link goes down. If the supervision is not longer wanted, the process can detach from the supervised process by using the detach system call. In order to discuss exception and failure handling, it is important to know what kind of failures that can occur during the remote system call:
1. The client (local) RCS is unable to locate the server (remote) RCS
This is of course a severe problem because this will not happen in a local system call, therefore the transparency will be lost if, for example an exception is thrown “Cannot Locate Server”. But is this a problem in practice? If the remote RCS is not found, it is easy to send back a remote cancel and a remote cancel can be any kind of failure, i.e. the transparency is not lost if the local system call also may fail for some reason. 

2. The request message from the client to the server is lost or the reply message from the server to the client is lost
A solution to this problem is to have a timer and if the timer expires, send a new message and never give up. It is important to note here that it is not necessarily the client that is responsible for the re-transmission. The client may use a reliable service, e.g. TCP or the OSE link handler, that guarantees that sent messages are received in the right order and that the content is correct. 
3. The server RCS crashes after receiving a request
If the server receives the request and crashes, there are two possible situations. Either the server crashed before or after the execution of the request. Unfortunately the client cannot decide which of these two that occurred, and therefore there is no good solution to this problem. One solution is to make the requests as atomic actions, i.e. transactions. This will however impose more overhead than most applications want. It is possible to guarantee at least once semantics and at most once semantics. At least once semantics guarantees that the request has been carried at least once. The idea is to try until the server succeeds. This requires that the action is idempotent, i.e. the action will yield the same result regardless of the number of times it has been performed At most once semantics means that the client gives up if there is a failure and therefore the request may just have been carried at most one time, which means that the action do not have to be idempotent. More about semantics can be found below in 6.3.5 Semantics.
4. The client crashes after sending a request
If the client crashes before it has received the reply the computation may still be active but no one is waiting for the reply. Such unwanted computations are called orphans. Normally, orphans are hard to deal with. In OSE Delta they are easy, because the server can attach on the client. However, this is not necessary in this case because the computation is one simple remote system call and the overhead this creates is manageable. 
6.2.6 RPC protocol

By choosing a “standard” protocol as the ONC Remote Procedure Call protocol [rfc 1831] much work can be saved if a full implementation is needed. In some situations, a specifically designed protocol is justified, e.g. when high performance is an issue or if the designed system is only used as a reference implementation. The protocol used in this design is a specifically designed protocol, thus if the implementation is going to be used for “real” the protocol must be redesigned, or preferable a protocol as the one above should be used. The protocol consist of three messages: 

· rcs_remote_call – Consists of the necessary administrative data as well as the original remote call sent by the kernel.
· rcs_remote_response – Consists of the necessary administrative data as well as the remote response created by the remote RCS.
· rcs_remote_cancel – Consists of the necessary administrative data.
Note that the binding calls, rcs_query_rpln and rcs_reply_rcs, are not part of the RPC protocol. This important and necessary function also has to be implemented by the RCS. The administrative data in the messages above is needed because the RCS is designed to be state less. This means that all information that is needed with a remote call is supplied in the remote call messages.

The RCS protocol can be used over any transport and network protocol but I use UDP, which is built over IP. UDP/IP has a couple of advantages. First, many implementations are available, including one for OSE Delta. Secondly, IP and UDP packets can be directly carried over many existing networks. Third, by using the OSE link handler, the communication is reliable, even if UDP is an unreliable protocol. IP also has disadvantages, e.g. big-size headers, calculations of checksum etc, but these are considered to be of little importance in this prototype design.

6.2.7
Security

This is a very important concern in open systems. In this design no security aspects have been considered. This is because OSE Delta clusters often is closed in practice. However, in the future, when OSE Delta is used in, for example, ad hoc networks like BluetoothTM, the security can be an issue of great interest. This is also a reason for using a standard protocol; there security considerations already have been done.

6.3
Evaluation of the design

The two most obvious problems with the existing design are the remote system calls on block identifiers, as you cannot hunt on blocks, and the non-existing interface to the link handler in order to map local phantom process identifiers to remote “real” process identifiers. Other issues about the existing design is that some of the existing remote system call is hard to motivate as remote, and that some system calls have been added since the original design.

6.3.1
Remote system calls on blocks

In the original design some of the remote system calls work on block identifiers. Since there is no way to hunt for a block there is also no such thing as a phantom block, which means that there is no mapping from a local block identifier to a remote block identifier. Therefore, there is no way the Remote Call Server can perform the remote calls associated with a block identifier sent from the kernel, without any modifications to the design. 

There are three “solutions” to this problem:

1. Remote Call Server approach – Ignore the remote calls on block identifiers. The Remote Call Server can always get the local type of the process by using the get_ptype(process identifier) system call. If the answer is a block, return a remote cancel message. The drawbacks of this method is that it is impossible to list the processes in a block with an associated RCS, because the system call get_pid_list(block identifier) will then be ignored. There are more remote system calls that are equally bad in that aspect, for example get_pcb. This approach means that there is no need for modifications of the kernel. 

2. Kernel approach – The kernel does the checking to see if the process type is a block. If so, the kernel does not issue a remote system call, thus the applications may still use get_pid_list and ​​get​_pcb​ on local blocks with an associated RCS. This approach means minor modification of some system calls in the kernel code.

3. Invent a phantom block – A real solution to this problem would of course be to “invent” a phantom block, i.e. a phantom process for a block, maybe by allowing the user to hunt for a block. This approach means major modifications of the OSE Delta design and implementation.

In my design the second approached was chosen because it avoids the disadvantages with the first approach and only needs minor modification of the kernel. The third approach was not chosen because it would need to much modifications to the kernel and therefore is difficult and tiresome to do.

6.3.2
Non-existing interface to link handler

The process identifier in the original remote call is the local phantom process identifier. Since the remote call is performed on a remote node this process identifier will probably not be the same as the process identifier of the “real” process. Therefore, if the RCS is not a link handler, the RCS must ask the link handler for the mapping to the real process identifier as well as the link name so the RCS is able to locate the remote RCS. Unfortunately, this communication with the link handler is not designed and therefore must be added to all link handlers that are supposed to work with an RCS.

If the RCS is a link handler, the interface is not needed. However, the RCS must do the mapping anyway, so this functionality must be added to all link handlers, but there is no need for an extended API. Another functionality that must be added to the link handlers is the creation of the block with an RCS.

It is written in the OSE Delta manual [5] that the RCS often also is a link handler. There are several advantages with this approach as well as disadvantages. 

The advantages are: 

· The link handler already has a mapping from the local process identifier to the remote one, thus it is possible to preserve the existing link handler API. 

· Furthermore, because no message exchange has to be done between the RCS and the link handler, the performance will be better.  

The disadvantages are: 

· It is not good design to put too much functionality into one process. If the link handler also is an RCS the code may become hard to read and maintain.

· There may be a need for several link handlers and the number of link handlers multiplies the memory requirements of the Remote Call Server support. 

· The likely presence of failures makes the implementation more complicated (more special cases) and hard to integrate with an existing design used by many customers (the less changes in the existing design the better for the customer).

How to implement the RCS is not obvious. If the main concern is a maintained link handler API (but not function!) and performance the RCS should be implemented as a link handler. If code readability, sustainability and extendibility are important the RCS should be a separate process. The latter was the main concern for my implementation and for that reason I chose to implement the RCS as a separate process.

6.3.3
Study of the existing remote system call architecture

Most of the existing system calls that can be used as remote calls are actually used when debugging, i.e. debugging calls. There are just a few remote system calls that actually may be used by an ordinary application; the semaphore, environment variable and the process management calls. 

The semaphore and environment variable calls are of no little practical use in an OSE Delta cluster. There are two kinds of semaphores in OSE Delta: ordinary semaphores and fast semaphores. The ordinary semaphores work like expected and there are no reason to make them work remote. A fast semaphore is a semaphore that belongs to a process. A process’ fast semaphore can in the local case be set, inspected, signaled, and waited for, but in the remote case only be set, inspected and signaled. This is due to the fact that if a local process waits on a fast semaphore, it would be very hard for the remote kernel to return the remote process execution. Furthermore, semaphore calls are in general not idempotent. This means that they cannot be performed twice without giving the same affect. Environment variable calls are idempotent, but these are like fast semaphores preferable not used on remote processes. The performance of a remote system call is much worse than pure message passing as can be seen in 7.3.4 Performance below. 

The process management calls that are remote are start and stop. The system call start may be very useful in the future if a transparent migration service is built into the kernel. It is therefore important to provide these as remote system calls in order to maintain the illusion of an SSI. As most remote system calls are used when debugging it is logical to draw the conclusion that the main usage for the remote system call support is for debugging, a debugging application can be seen in 7.3.5 Test application.
Another problem with the remote system calls is that some of them are ambiguous in meaning, e.g. get_signal. For example, if a user application process attaches a message on a remote process, the real attach will be on the local phantom process. However, when the user debugs the system he uses get_signal​ to inspect the attach queue of a process. As get_signal​ is a remote call, it will not be possible to inspect the attach queue of the phantom process, and the attach message received from ​get_signal​ will come from the remote process and thus not be the correct attached message.

6.3.4
System calls added after original design

There are nine system calls added after the original design. Six of these are debugging calls and could be useful as remote system calls. The others are probably not useful as remote call. A more detailed study of these calls can be found in Appendix C. Added System Calls.
6.3.5
RPC call semantics

Some system calls are not idempotent as stated above. On the other hand most of these system calls are quite useless to use remote, except the process managing calls. This means that at most once semantics is preferred over at least once semantics. Ideally, exact once semantics should be used, but for most applications this would imply too much overhead than necessary, and the implementation of the RCS will be further complicated. Another thing that is important to mention is that the kernel does a timeout after exactly 10 seconds if the response fail to arrive and the kernel will raise a “Link Handler Deadlock Exception”, and continue to wait. This is maybe not the optimal way of doing it. It would be good if the timeout could be specified at system setup. Ten seconds are maybe too long for some applications or maybe the time is not important at all.

It is important to note here that the type of connection, i.e. if the connection is reliable or unreliable, does not change the semantics. Even if we use a reliable connection, e.g. TCP or the OSE link handler, a duplicate request may be delivered to the server. This can happen, for example, if the local RCS uses a timeout waiting for a response to its request, i.e. on top of OSE Link Handler timeouts. If the local RCS gets a timeout it maybe will attempt to retransmits its request. Note that the failure of a remote call does not necessarily mean that the server has crashed, since it could fail due to network problems, buffer overflows etc. Whether or not the server failed, it might or might not have performed the service.   
6.3.6
Consistency

A system is consistent from the user’s point of view if there is uniformity in using the system and the systems behavior is predictable. The behavior of the system when using remote system calls in OSE Delta is not consistent with the behavior of the system otherwise. This is because most of the system calls are blocking in the latter case and can be seen as non-blocking in the former. If the kernel detects that a system call shall be executed remotely it sends the remote message to the RCS. After this, the kernel issues a receive system call that will block the process that issued the system call and let another process with the same or lower priority to run. This would not be the case if remote calls were not used. 

For example, the environment variable calls get_env/set_env can be seen as read/write operations on shared memory. The get_env system call takes the process identifier of the process that owns an environment variable as well as the name of it as parameters and returns the value. The set_env system call takes the process identifier, name of environment variable and value to set the named variable to. Assume that there are six processes on one node, A, B, C, D, E, and F. The processes A, B, C and D all have equal priority, thus they cannot preempt each other. The priorities of process E and F are of no importance in this example. Process A writes “Hello” to the process E’s environment variable “E”, i.e. set_env(E, “E”, “Hello”). Process B writes “World!” to process F’s environment variable “F”. After this process C reads process E’s environment variable “E” and prints the value on the terminal, i.e. get_env(E, “E”), and process D reads process F’s environment variable “F” and also prints the result on the terminal. The result will in this case always be “HelloWorld!”. However, if process E and F do not reside on the same node the result could be different as can be seen in Figure 13.


[image: image12.wmf]A

 

B

 

C

 

D

 

F

 

E

 

set_env

 

(E, “E”, “Hello”)

 

...

 

delay

 

set_env

 

(F, “F”, “

World

”)

 

...

 

delay

 

get_env(E, “E”)

 

print terminal

 

...

 

delay

 

get_env(F, “F”)

 

print terminal

 

...

 

delay

 

E = “Hello!”

 

F = “World!”

 

Terminal:

 

 

HelloWorld!

 

 

Node boundary

 

A

 

B

 

C

 

D

 

F

 

E

 

set_env

 

(E, “E”, “Hello”)

 

...

 

delay

 

set_env

 

(F, “F”, “

World!

”)

 

...

 

delay

 

get_env(E, “E”)

 

print terminal

 

...

 

delay

 

E = “Hello!”

 

Terminal:

 

 

World!Hello

 

 

get_env(F, “F”)

 

print terminal

 

...

 

delay

 

F = “World!”

 


Figure 13.
 The output from the single node example will always be “HelloWorld!”, however the multinode example can give different results, e.g. “World!Hello” 
This is of course not valid in a system with a complete SSI. The environments variables in a distributed case can be seen as global shared memory. In systems with distributed shared memory it is commonly to speak about access consistency models [14] such as atomic, sequential causal, and processor consistency.

· Atomic consistency – The consistency of a centralized shared memory system with no replication of data.

· Sequential consistency – The result of any execution is the same as if the operation of all the processes were executed in some sequential order, and the operations of each individual process appear in this sequence in the order specified by its program.

· Causal consistency – In this model, a write is interpreted as a message-send event and a read is considered as a message-receive event. The memory is said to be consistent if all processes on all nodes agree on the order of causally related events.

· Processor consistency – This model ignores the causality requirements in the causal consistency model, i.e. writes from different processes on different nodes may be observed in any order. 

In the example above, the single node case can be said to follow the atomic consistency model and the multiple node case to follow processor consistency. The design of the RCS also follows processor consistency in the absence of failures. 

6.4   
Summary

The Remote Call Server design is based on remote procedure calls and as remote procedure calls are well understood, the function of the Remote Call Server is expected to work fine. However, there are a few problems that must be fixed or partially dealt with before the remote call support by the kernel can be used by an application. 

The design was chosen to be state-less, i.e. no data is stored, to minimize memory usage and the communication overhead. No communication is needed between the RCS entities in order to keep it consistent making the design scalable. Locating the other RCS entities is done in a lazy manner. Only when a remote call is issued the binding with the remote RCS is made. This also makes the design scalable but sadly hurt the performance. The uses of attach and detach make the RCS fault tolerant if the communication uses a reliable transport service, such as the OSE link handler.

6 Remote Call Server implementation 

This section describes the implementation of the Remote Call Server (RCS) as well as a modified debugging application OSE Surfer, used as a test application. The design, and thus the implementation, is not complicated but since it has to be able to cope with failures there are quite a few system calls and messages involved. In order to fully understand the design and implementation, it is easiest to see an example. A few of the system calls, e.g. attach and detach, has been removed from the below example and figures to make it easier to read and understand. This, however, does not make them unnecessary, and in 7.1.3 Presence of failures below, the use of attach and detach will be discussed further.

7.1 
RCS implementation example

There are two communication nodes in this Remote Call Server (RCS) example, node 1 and node 2, although the RCS will work with any number of nodes. Each of the nodes has an RCS and a link handler (LH1 and LH2), which are connected peer-to-peer by a network of some kind. In the rest of the example a process identifier of a process is written as the letter alone in italics, for example, the process with process identifier A is written as A. The name of the process is written within quotation marks, e.g. “A”.

A process with process identifier A wants to establish a logical connection to a remote process B. Process A therefore locates process B and can thereafter send messages to B. Note that the block that contains the phantom processes, which represents the remote processes, is associated with an RCS. The arrows representing this association will not be drawn in the following figures.

7.1.1
The fourteen steps of execution

The process A decides to stop the process B’. B’ is the local process identifier for the remote process “B”. The remote call that follows can be divided into fourteen steps:

	Step
	Action
	Message or system call

	1.
	Process A  issues stop(B’).
	

	2.
	The kernel sends a remote call to the RCS1 process.
	remote_call(stop, B’)

	3.
	RCS1 queries the link handler for the remote process identifier and the path to remote RCS. Supplies the original remote call into a rcs_remote_call message.
	rcs_query_rpln

(rcs_remote_call)

	4.
	The link handler will respond with the link name and process identifier.
	rcs_reply_rpln(rcs_remote_call, link name, process identifier)

	5.
	RCS1 locates RCS2.
	hunt(“lh2/rcs”, hunt_sig(rcs_remote_call))

	6.
	The kernel returns the message supplied with hunt when RCS2 is found.
	hunt_sig(rcs_remote_call)

	7.
	RCS1 sends remote call to RCS2.
	rcs_remote_call
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Figure 14. 
The situation after the first number of steps.
	8.
	RCS2 sends remote call newly created  help process.
	rcs_remote_call

	9.
	rh makes the system call, in this case stop(B).
	stop( B’)

	10.
	The kernel on node 2 stops process B.
	

	11.
	The help process rh returns the response from the system call to RCS2.
	rcs_remote_response

	12.
	RSC2 forwards the response to the client RCS, i.e. RCS1.
	rcs_remote_response

	13.
	RCS1 responds to the kernel.
	remote_response

	14.
	The kernel returns execution to the blocked process.
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Figure 15. 
The last couple of messages and system calls in the remote system call “chain”.

7.1.2
Sequence diagram

In the above example there is a few system calls and a quite much message passing. In the below sequence diagram in Figure 16, the system calls and messages is ordered in the sequence they happen.   
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Figure 16. 
Sequence diagram over the system calls and sent messages. 

7.2
Evaluation of the RCS implementation

The RCS was developed for the OSE Soft Kernel for Solaris. OSE Soft Kernel is intended to run in a host operating system, such as a Solaris, and is similar to the Real Time Delta Kernel. The implementation was written in C using Emacs and Diab’s dmake tool with a gcc compiler. By using the Soft Kernel the development went pretty fast and it was easier to set up a system of many nodes. The host TCP/IP stack was used instead of the version for OSE. The development and testing was faster but the perfomance testing on the other hand was not easy. The Soft kernels runs as ordinary Solaris processes and thus can be preempted at any time. To send an IP-packet from one process to another and back resulted in many context switches of the heavy Solaris processes. There was no time to test the implementation on real targets.

7.2.1
Parameter Passing and remote call execution

As stated above the parameter marshalling is not so complicated with one exception, the byte order. In my implementation no such conversion is made, thus the implementation will only work for machines with the same byte order. This could be a future enhancement to the RCS.

The implementation of the remote system calls execution done by the help process is pretty straightforward. Simply receive the remote system call and extract the parameters and call the real system call with the parameters. Take the response from the kernel and pack this into a remote response and send this back to the RCS. As always, there is one exception, the debugging call get_signal. The response to get_signal is a message. Since the message has sender and addressee, who are not contained within the message, these have to be supplied in the response as well. But a sender of a message on one node does not have to be represented on every node as a phantom process. As the process identifiers are not global we cannot just send the process identifier over without some translation. So, in order to preserve the SSI, we have to find the link and process identifier of the real process for the sender field in each message and create a phantom process with this mapping in the node that issued the get_signal call. However, in my implementation, only half of this is done, i.e. no phantom process is created. Instead the sender field is set to the number, which in my implementation is interpreted as an invalid process identifier. 

7.2.2 
Binding

The binding is as explained above done by asking the link handler for the link name and then locate the remote RCS. But which link handler has the mapping? Since the phantom process in the remote call is redirected to the correct link handler the rcs_query_rpln is sent to the phantom process. The link handler checks the sender of the message sent via the phantom and if it is the RCS it will perform the request. This of course means that the link handler already knows the process identifier of the RCS server. The link handler gets this knowledge by doing a hunt for the RCS at start-up.

7.2.3 
Presence of Failures

The implementation has to work in the presence of failures. OSE Delta has two very powerful system calls that is very useful, i.e. the attach and detach calls. In the implementation these calls are used as can be seen in Figure R.
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Figure R. 
The attach/detach “chain”. Each remote call needs this chain. The message supplied with the attach-call, is a remote cancel. If the attach message is returned, the remote call is forwarded back in the chain to the origin process (kernel). 

Before the binding is made, the client RCS attaches a remote_cancel on the phantom process included in the remote system call. The local RCS will then do a hunt_from(phantom process) for the remote RCS. Since the phantom process is alive the remote node must be up and running and thus the remote RCS, since it is declared static (see section 4. OSE Delta Operating System). Given that the RCS is alive, the link must be up, since the link handler will kill the phantom process otherwise. The OSE Delta kernel does in this case guarantee that the RCS is found..

What happens if the link goes down, short before the hunt_from, i.e. it is still pending. A little later the remote_cancel attached on the phantom process will be sent to the RCS and forwarded to the kernel, when the link handler cleans up. Because we did a hunt_from the pending request will be removed to.
7.2.1 Performance 

It is important to evaluate the performance of the implementation to see if the design has subtle deficiencies. In order to do so I took a closer look at the critical path. The critical path is the sequence of instructions that is executed on every Remote Procedure Call (RPC) [12] as can be seen in Figure Z.
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Figure Y. 
Critical path from client to server.

When investigating the critical path one looks for those steps where most of the time is spent. The time spent in the critical path above can be seen Figure Z. The measurement was done with two OSE Delta nodes on an Ultra-Sparc II 450 MHz processor running Solaris. Because the two OSE Delta nodes was running in one Solaris process each, a context switch had to be done for each message sent over the network. A context switch on Solaris is much heavier than a context switch on OSE, therefore the latency, throughput and transmission times of the network were hard to measure, i.e. the link handler metrics, and are not included below. Much of the time in the critical path is actually context switches. On the above system a context switch was measured to approximately 40 microseconds (40 (s). 

The time for RCS1 below is without a remote hunt. Due to the lazy binding of the remote RCS the first remote system call to a specific node (worst case) will take much longer than the following, since the binding is made with a remote hunt. This is acceptable if the application that uses remote calls does not have needs for good performance, for example a debugging application. However, another type of application may put other needs on performance. It is also worth to mention that RCS2 created the help process at system start to avoid the extra overhead of creating a process. If another remote call has to be processed before the help process replies, RCS2 creates another help process. This is done since it is possible that the former remote call was a recursive remote call.
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Figure Z. 
Breakdown of the RPC critical path. Time of the different steps for a remote system call with 70 bytes.

It is easy to see what part of the path that takes up most of the time, i.e. the work done by RCS1 takes up more than 50 percent. This is bad. Almost of third of this are context switches (3 times 40 = 120 (s). The two extra context switches come from the communication with the link handler, i.e. the ​rcs_query_rpln and rcs_reply_rpln. This could be avoided in a future implementation either by caching information (no caching is used today) or simple implement the RCS as a link handler, which as stated earlier has other deficiencies.

7.4 Test application

In order to see if the implementation fulfilled the functionality and performance requirements a test application was used. The test application is an existing OSE Delta product called OSE Surfer. The OSE Surfer is a debugger used for educational purposes. By using a standard web browser, e.g. Netscape, it is possible to connect to an OSE Surfer process running on a node thru a port via HTTP, and debug the system running on that node. 

It is possible to gain information about the segments, pools, blocks, and processes on the node by using OSE Surfer. Figure 17, below, shows all the processes on node 1 in the example above, but with one major distinction; the phantom processes are not placed in a block with a Remote Call Server. Note that process A (“proc_A”) is a prioritized process with priority 15 and that process B on node 2 is represented as a phantom process with name “node2/proc_B”.
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Figure 17. 
All processes on node 1. The phantom process B is not placed in a block with an RCS.

As stated in 6.2.1 Issuing a remote call, the link handler has to create a block with an RCS and put the phantom processes in the block. This means that the link handler has to be modified to work with the RCS. The OSE Surfer implementation was also modified, since the original implementation made some assumptions about remote processes, which did not work well. This means that all the processes on remote targets that has been located by a hunt and/or messages has been sent from are displayed as remote processes. All actions on remote processes work as local ones, i.e. it is possible to inspect signal queues, environment variables, etc of the remote process. This may be of help then debugging because there is no need to switch between several browsers in order to, for example, see if a sent signal reached its destination. It also allows you to use a browser to inspect the communicating processes, even if some of them reside on a target with no OSE Surfer or other debugging support. However, there are some drawbacks. First, it will only work without problems if there is a Remote Call Server (RCS) installed on each node. Secondly, if the bandwidth is limited, the response time may be annoyingly long because of the extra message overhead with remote system calls.

In figure 18 below, the same situation as above is shown, but the link handler creates a block for each link and put the phantom processes for each link in their corresponding block.
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Figure 18. 
All processes on node 1. The phantom process “node2/proc_B” is now “replaced” with the remote process “proc_B”, which is part of the block “node2”. 

Note that we have one more process on Figure 18 than on Figure 17, i.e. the remote process “ose_rcs”. This illustrates the use of the “[remote process]” label and that the processes are placed in a block with the link name. The user would otherwise have a difficult time separating the processes with the same name on different nodes. The explicit labeling clearly invalidates the SSI property, and if SSI is wanted this labeling has to be removed.

By using a RCS, the user can now inspect the signal queues and environment variables of the remote processes in the same way as with local processes. In Figure 18, process B has received one messages and has two environment variables. The user can click on the numbers and names and would not notice the difference from the local case. With the debugging tool OSE Illuminator, the above result can be seen without the syntactic hints that the processes are remote. The OSE Illuminator works fine without any modifications.

7.5 Summary

The implementation of the RCS shows that the remote call architecture designed in 1991 actually works quite well. The test of the RCS implementation however showed some weaknesses both in the architecture and my design and implementation. One of the weaknesses in the architecture is that it is hard to map a phantom process identifier to a remote one; this is most obvious when implementing the get​_signal​ system call as remote. The performance of the implementation is not in any way optimal. Using caching would speed up the remote calls significantly, however this leads to consistency problems.

7  Conclusions

The era of clusters is here. The increasing interest in clusters is a consequence of the availability and low cost of powerful microprocessors and high-speed networks as well as the maturing software components able to support high performance and high availability. The difficulty of clusters computing lies is in the software and not in the hardware and a single system image (SSI) is one of the most desirable features for clusters. An SSI at operating system level is, probably, in most implementations most desirable, although also the most difficult to realize. A substantial, expensive software effort must be put into getting the commands and libraries of an operating system to work. In many cases they work without modification, in other cases they do not. Command, library, and utility modification constitute the real bulk of the work to implement operating system level SSI, because that’s the location of most of code. So far, no vendor has managed to produce a cluster operating system that offers an SSI at the operating system level. 

The OSE Delta operating system has many properties that make it very suitable for embedded clusters. This has been proven by many of the customers in the telecom and datacom market, e.g. Ericsson, Nokia, and Motorola. However, to fully exploit the potential in a cluster, it is essential to make it more distributed. A property that is certainly worth considering is SSI. Although this would be very difficult to realize, since this means a redesign of the core kernel as well as the above changes. The benefits of an SSI are so big that the concept must be considered when building over-kernel services. Some of the components that are included in the OSE Delta suite do not provide an SSI to the application, for example the Shell. This and other components, would certainly gain a lot by supplying an SSI.

Except the modification of some system services, the kernel has to be modified as well. To provide a complete SSI all system calls has to work both locally and remote. For this, a Remote Call Server (RCS) has been designed and implemented. The evaluation of the current remote call architecture and the design and implementation of the RCS, pointed at a couple of problems. Some of these have to be solved in order to get the RCS to work in practice, e.g. the use of blocks. The evaluation also showed that OSE Delta has to be redesigned if the use of remote calls shall be completely transparent. For example, some of the system calls that are ambiguous must be altered, location and migration transparency be provided, which implies a global process identifier space. 

The RCS design and implementation works pretty well despite the flaws in the current architecture. Since most of the remote system calls is used for debugging the primary use of a RCS would be in when debugging as well and therefore the RCS design has prioritized scalability among with transparency and fault tolerance before performance. 

In order to get the remote call support to work some changes in the kernel and link handler were made. By using a test application, OSE Surfer with some modification the system could easily be tested. As a final test the OSE Illuminator, a debugging tool, was used. The RCS works fine with the Illuminator even if it was not modified in any way. 

8 Future work

As described above, the difficulty of cluster computing lies in software. It is not possibly to obtain a complete transparency and SSI today, since many system call are ambiguous and the semantics and consistency model is not the same as in a local call. The design and implementation of the Remote Call Server must also be subject to future changes if it is going to be used in a real system. The remote call server does not work without the purposed changes in the kernel and link handler. However, even with these changes some things are left to do as future work:

· Byte order conversion –  The Remote Call Server implementation does not work if the processor architectures do not have the same byte order. This need to be added to the existing implementation or  by choosing a standard protocol.
· Standard protocol – If the implementation is going to be used in practice a standard protocol may be of use. An existing standard may help with such things as 
· Security – If the RCS is going to be used in an open system security is important. This can either be obtained by using a secure protocol or modify the existing.
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Appendix 1. Glossary

	Single System Image (SSI)
	A Single System Image (SSI) is the property of a system that hides the heterogeneous and distributed nature of the available resources and presents them to users as a single unified computing resource.

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	


Appendix 2. System calls

	System Call
	Description

	addressee 
	Finds the addressee of a message.

	alloc 
	Allocates a buffer of requested size.

	assign_linkhandler 
	Assigns a process as link handler to the system.

	attach 
	Stores a message buffer owned by the caller in the control block of the specified process or block.

	attach_block 
	A call from OSE to tell the MMU software that a new block has been created.

	attach_segment 
	A call from the MMU to tell OSE that the specified block resides in the indicated memory segment.

	clear_bp 
	Removes a previously set break point.

	create_block 
	Creates a block and returns the block ID. A block can be associated with a remote call server.

	create_error_handler 
	Creates an error handler for the specified process or block.

	create_pool 
	The MMU creates a new pool and attaches it to the specified block.

	create_process 
	Creates a process as a part of the specified block and returns the process ID.

	create_sem 
	Creates and initializes a semaphore.

	current_process 
	Returns the process-ID of the calling process.

	delay 
	Puts a process to sleep for a specified number of milliseconds.

	detach 
	Removes a message that has previously been attached to a process or block by the caller.

	error 
	Reports an error to the OSE kernel or to the error handler if such exists.

	error2 
	Reports an error to the OSE kernel or to the error handler if such exists, with an extra user defined parameter.

	flush 
	Removes all messages sent by any of a set of processes specified from the message queue of a process.

	free_buf 
	Returns a message buffer to the pool associated with the block.

	get_bid 
	Returns the block ID that the specified process is a part of.

	get_bid_list 
	Lists all the blocks that are available to the specified user number.

	get_cpu 
	Returns an identification string of the operating system where the specified process is executing.

	get_env 
	Reads the content of the named environment variable.

	get_env_list 
	Environment Variable B Lists the environment variables available in the specified block or process.

	get_envp 
	Reads a 32-bit pointer from a named environment variable for the specified process or block.

	get_fsem 
	Reads the current value of a fast semaphore.

	get_mem 
	Reads data from the address space of the specified process or block.

	get_pcb 
	Returns the status of a specified process or block.

	get_pid_list 
	Lists all the processes that are part of a specified block.

	get_pool_list 
	Lists all pools that are available to the specified user number.

	get_poolcb 
	Interrogates the status of the specified pool

	get_pri 
	Returns the priority of a process.

	get_ptype 
	Returns the type of the specified process.

	get_segid 
	Finds the segment that the specified block or process is part of.

	get_sem 
	Reads the current value of a semaphore.

	get_sig_info 
	Extract detailed information about a message buffer.

	get_sig_poolid  
	Returns the ID of the message pool associated with a specified block or process.

	get_signal
	Returns a copy of the message located in the queue at the specified process.

	get_stk_poolid 
	Returns the ID of the stack pool associated with a specified block or process.

	get_systime 
	Returns the number of ticks since system start and the number of microseconds since the last tick.

	get_ticks 
	Returns the number of ticks since system start.

	get_uid 
	Returns the user number of the specified process or block.

	hunt 
	Searches for a process by name and returns the process ID.

	hunt_from 
	Hunts for a process with the access rights evaluated for the process specified in the “from” parameter.

	intercept 
	Stops a process or trips a previously set breakpoint.

	kill_proc 
	Kills a process or a block.

	kill_sem 
	Returns a semaphore to the OS memory pool.

	mem_move 
	A call from OSE requiring a block of memory to be copied from one memory segment to another by the MMU.

	power_fail 
	Shuts down the system and enables the system for a subsequent restart.

	receive 
	Receives selected message(s).

	receive_from
	Like receive but it only accepts from a specified process.

	receive_w_tmo 
	Receives selected message(s) with a selectable time-out.

	restore 
	Makes the caller owner of a message and clears the redirection information.

	resume 
	Re-enables an intercepted process or all intercepted processes in a block.

	select_segment 
	A call from OSE requiring the MMU to select the address space in which the process about to be swapped in will run.

	send
	Sends a message to a destination process.

	sender 
	Returns the ID of the process which last sent a specified message.

	send_w_s 
	Sends a message with a stated sender.

	set_bp 
	Sets a breakpoint in a process or block.

	set_env 
	Creates or updates an environment string for the specified process or block.

	set_envp 
	Stores a 32-bit pointer in a named environment variable.

	set_fsem 
	Initializes a fast semaphore with the specified value.

	set_mem 
	Writes data to the address space of a specified process or block.

	set_pcb 
	Sets the CPU registers of the specified process.

	set_pri 
	Sets a new priority level for the calling process.

	set_pri_for
	Sets a new priority level for a process

	set_redirection 
	Replace the redirection table of a process.

	set_segment 
	The effective segment number for the calling process is set by the MMU.

	set_segment_mode 
	A call from OSE telling the MMU what type of processes that reside in the specified segment.

	set_sigsize 
	Attempts to change the size of a message buffer without actually reallocate and copy it.

	set_suid 
	Temporarily assigns superuser privileges to the calling process.

	signal_fsem 
	Increments a fast semaphore value.

	signal_sem 
	Increments the value of the specified semaphore.

	sigsize 
	Returns requested size of a message buffer.

	start 
	Starts a newly created or previously stopped block or process.

	start_OSE 
	Creates and initializes the OSE kernel.

	stop 
	Stops a single process or all processes in a block.

	system_tick 
	Returns the system tick length in microseconds.

	tick 
	Increments the system timer.

	wait_fsem 
	Waits for a fast semaphore to become non-negative.

	wait_sem 
	Waits for the specified semaphore to become non-negative.

	wake_up 
	Informs an interrupt process of how it was invoked.


Appendix 3. Remote system calls

	System Call
	Explanation

	

	Process managing calls:


	start
	Starts a process or block.

	stop
	Stops a process or block. 

	

	Semaphores and environment variable calls:

	get_env
	Reads the content of the named environment variable.

	get_env_list
	Lists the environment variables available in the specified block or process.

	get_fsem
	Reads the current value of a fast semaphore.

	set_env
	Creates or updates an environment string for the specified process or block.

	set_fsem
	Initializes a fast semaphore with the specified value.

	signal_fsem
	Increments a fast semaphore value.

	

	Debugging calls:

	clear_bp
	Removes a previously set break point.

	
	

	
	

	get_cpu
	Returns an identification string of the operating system where the specified process is executing.

	get_mem
	Reads data from the address space of the specified process or block.

	get_pcb
	Returns the status of a specified process or block.

	get_pid_list
	Lists all the processes that are part of a specified block.

	get_pri
	Returns the priority of a process.

	get_signal
	Returns a copy of the message located in the queue at the specified process.

	get_uid
	Returns the user number of the specified process or block.

	intercept
	Stops a process or trips a previously set breakpoint.

	resume
	Re-enables an intercepted process or all intercepted processes in a block.

	set_bp
	Sets a breakpoint in a process or block.

	set_mem
	Writes data to the address space of a specified process or block.

	set_pcb
	Sets the CPU registers of the specified process.

	
	

	Obsolete (?):
	

	create_error_handler
	Creates an error handler for the specified process or block.

	flush
	Removes all messages sent by any of a set of processes specified from the message queue of a process.


Two of the remote system calls above are hard to motive:

· create_error_handler – It says in the manual that it is not legal to create an error handler in another segment, thus it should not be legal to create an error handler in another CPU. 

· rem_flush – As this system call is obsolete, there is no meaning to have a remote call version of it.
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� The term task is often used instead of process in the real-time literature. In this text a process performs a real-time task (action), and many processes may or may not reside in the same address space. A process in this text is therefore not the same as a Unix process.
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