
Implementation of a transaction-intense
multi-user system

Students:
Jon Ekdahl 760328-1614

Thomas Pettersson 760624-0518

Examinator:
Seif Haridi
Advisor:

Thomas Sjöland

Mint advisors:
Wouter van der Wijngaart

Gunnar Karlberg

March 1, 2001

Abstract

This thesis describes the specification and implementation of a payment system
where the consumer uses his or her GSM phone for identification, instead of a mag-
netic card. By using this service the consumer will not have to carry around a wallet
with cash, credit cards and bonus cards. The consumer makes a purchase simply by call-
ing a number (and perhaps punching a PIN code). The shop owner has to have a Point
Of Sales unit (POS) to communicate with Mint. Both consumers and shop owners can
do follow-up of the transactions on their personal Mint web page.

The problem was to build a system that could handle high load (i.e. many concurrent
transactions) and that was fault tolerant. Our main focus has been on specifications
and implementation of the Mint server, to which all calls are directed, both from the
consumer’s GSM phone and the shop owners POS unit.

The result of our work is a system built on a transaction based system, the Teligent
P90/E system from Teligent AB. The tests show that our system can handle 300 transac-
tions per minute, which is well within the boundaries of the calculated load.

ii

Contents

1 Introduction 1
1.1 Possible Mint scenarios . 1

1.1.1 The impulsive person . 1
1.2 History of Mint . 1
1.3 Goals for thesis work . 2

2 Hardware and software choice 3
2.1 Decision . 3

3 Unified Modeling Language (UML) 4
3.1 History of UML . 4
3.2 Why UML? . 4
3.3 Use cases and actors . 5
3.4 Sequence diagrams . 5

3.4.1 Classes and objects . 5
3.5 Textual documentation . 6
3.6 Use case diagrams . 6
3.7 Activity diagrams . 7

4 The P90 architecture 8
4.1 P90 transactions . 8
4.2 P90 components . 8

4.2.1 Transaction Manager - TM . 8
4.2.2 Transaction Logger - TLG . 8
4.2.3 Application Controller - AC . 9
4.2.4 Programming Interface - PIF . 9
4.2.5 Relational Database - RDB/RDS . 9
4.2.6 Main Data Storage - MDS . 9
4.2.7 Line Interface - LI . 9
4.2.8 Modempool component - LIM . 9
4.2.9 Security component - SEC . 10
4.2.10 Alarm Handler - ALH . 10
4.2.11 Email Sender - EMS . 10
4.2.12 Cross System Router - XSR . 10
4.2.13 Execute component - EXC . 10

5 Application Builder 11
5.1 Basic building blocks in the Application Builder 11
5.2 Working with the Application Builder . 12

6 System description 14
6.1 Mint System . 14

6.1.1 Payment System . 14
6.1.2 Web system . 14
6.1.3 Economy system . 14
6.1.4 Database . 15

iii

7 The POS protocol 16
7.1 Messages and message syntax . 16
7.2 Security and fault tolerance . 16
7.3 Encryption . 16
7.4 Communication fault tolerance . 17

8 Implementation 18
8.1 Scheduling . 18
8.2 Activation . 18
8.3 LI application . 18

8.3.1 Payment branch . 19
8.3.2 Activation branch . 19

8.4 Modem application . 20
8.4.1 Update branch . 20
8.4.2 Payment branch . 20

8.5 SMS sender program . 21
8.6 Implementation problems . 22

8.6.1 P90 related issues . 22
8.6.2 Application Builder issues . 23

9 Setup of components and applications 25

10 Tests 26
10.1 Load tests . 26
10.2 Functionality tests . 26
10.3 POS test . 27
10.4 Conclusions . 27

11 Future work 28
11.1 New services . 28
11.2 Hardware improvements . 28
11.3 Software improvements . 28

iv

1 Introduction

1.1 Possible Mint scenarios

Today or in the future when Mint is popular all over the world the following scenario is
very possible and it shows the usefulness of Mint as a payment system.

1.1.1 The impulsive person

You are out on a walk and feel that a calm VHS-night is a good idea for yourself and
someone you care about. You pass by the local VHS-distributor on your way home and
enter. After all the trouble with finding the right movies you reach for your wallet and
going for the cash register, but the wallet is not there. You begin to curse to yourself and
are just about to return the movies to their right places when you remember something.
You don’t have any cash nor the creditcard but you do have your GSM-phone, which you
always carry around. The night before, you activated your Mint service on your phone and
this particular VHS-distributor is a registered Mint retailer. So, happy again, you take the
movies back just before another consumer tries to fetch them and return to the cash register.
You tell the cashier that you want to pay with your mobile. He or she tells you to call a
certain 020-number (free of charge) from your mobile phone and a few seconds later you
are out of the shop with the movies and an SMS-receipt plus an additional paper receipt if
you wish. The VHS-distributor you just left may have a campaign which lets you rent the
10th movie for free and without bothering Mint has taken care of all the administration for
you and the movies you have rented are registered in the bonus system/campaign of the
VHS-distributor.

1.2 History of Mint

Mint was registered as a company in February 2000. It was founded by three persons,
Wouter van der Wijngaart, Fredric Ankarcrona and Patrik Mossberg. Mint’s business idea
is to provide a solution for mobile payments, integrated with loyalty programs. Its vision
is to move everything in peoples wallets on to a server, including cash, plastic cards (such
as credit cards and bonus cards) and eventually even IDs, membership cards and drivers
licenses. All you should need to have to access this wallet is your mobile phone, together
with a PIN code. You should also be able to log in to your personal Mint web page to check
your latest transactions and other Mint specific information.

In February 2000, Mint had developed a test system, including a Point-Of-Sales unit
(unit standing in store, from here on called a POS) and a test server coded in LabView
with enough database functionality to perform a purchase. The communication between
the two consisted of modem communication over a GSM link. In April 2000 the server
had been upgraded to a Java program working towards a PostgreSQL database and the
POS was now a little fancier with a color touchscreen and some added functionality. This
solution was used in a test run in May 2000 in a coffee shop in central Stockholm. The
test included 1 POS and about 100 consumers. The feedback from the tests were very
positive and Mint decided to go out and apply for financing. The goal was to have a ready
production platform by September 2000.

1

1.3 Goals for thesis work

In order for the Mint system to be able to handle thousands of POS units, it of course
needed to be implemented in a very scalable way. The goal of our thesis work was to
implement a production version of the Mint server (excluding the database), that could
support thousands of POS units and had functionality for activation of consumers and
changes that they make to their profile information. The activation is part of the Mint
security. Since Mint handles peoples’ money, the system has to be reliable and consistent,
meaning that all transactions in the system must be traceable. It should also have a high
percentage of up-time, otherwise people won’t use it.

Our tasks were to suggest a way of implementing the system, including choice of pro-
gramming language/development platform and middleware, be part of developing the
requirement specifications for the system, and finally implement the server software ac-
cording to the requirements.

In this report we first explain why we chose to work with the tools and methods we
have used and how they work. This is explained in section 2 to section 7.

In section 8 and 9 we describe how we implemented the system and we also describe
what problems we encountered and how we solved them.

Section 10 discusses the tests we have conducted on the system and some conslusions
that we have made based on them.

In the final section (section 11) we suggest improvements that should and probably will
be implemented in the future.

2

2 Hardware and software choice

It was included in our task to aid in the choice of hardware and software. The object was
to find the optimal solution for the system as a whole, or at least the best combination of
different components. Scalability and fault tolerance were desired system features. We
started the work, having in mind a server, or server cluster, that could handle multiple
incoming connections through modem pools or telephone switchboards.

It turned out that there were not that many options. Pretty soon we had three candidates
for the hardware implementation. The first one was IBM, in which case we would use
their hardware, middleware and transaction server. The other alternative was a swedish
platform called the P90/E, developed by the telecom company Teligent. The third and last
contender was to build our own platfrom from scratch and use hardware from different
distributors.

The choice of software was very related to the choice of hardware. For the IBM solu-
tion and the own platform solution, we proposed the use of Java to implement the server
application. The reasons for this were:

� It was fast enough - the bottleneck would not be the server program, but rather the
access of the database or the POS unit software, or the communication between the
server and the POS unit. These conclusions were made from experiences from the
test run with the prototype, which was implemented in Java.

� It was scalable enough - with an appropriate Virtual Machine (VM), it’s possible to
spawn thousands of threads [1]. The architecture also allowed for several VM:s to
run on different machines.

� It could be implemented fast enough - the implementation of the prototype was done
in Java, so we could probably reuse some of that code. We also preferred Java instead
of any other languages, such as C++, because of our own experience of developing in
Java.

For the P90/E solution there were no choices. The choice of Teligent hardware forced
us to use a development tool called Application Builder (see Section 5).

To be able to decide in favor of the different solutions, a more thorough evaluation had
to be made. Therefore, estimations were made on costs for the three alternatives, to develop
a first version of the system.

2.1 Decision

IBM wanted a lot of money just to make an initial architecture as a basis for cost estimation.
Therefore, the IBM alternative was dropped at a very early stage.

The Teligent solution is based on standard Intel PC:s and therefore not very expensive.
The cost estimation for this alternative was 10.0 million SEK. Implementation time was
approximated to 5 months, including tests.

The alternative where we build our own platform was based on Sun machines. The
cost for the hardware and the licenses for OS:es and software was calculated to 12.7 million
SEK. No specific time estimation was made but the guess was that this alternative would
take a lot more time than using the Teligent solution, with many ready components and
experience in the field of telecommunication.

With the estimations of cost and developing time in hand, Mint decided to go with the
Teligent solution. The fact that we wanted to implement the solution in Java and build our
own platform was overruled, due to the higher price and longer time-to-market.

3

3 Unified Modeling Language (UML)

Throughout our thesis work we’ve been working with specifications and requirements for
the system using software from Rational. To visualize the solution we have used Rational
Rose 2000, which is using UML notation, and to describe it in text we have used Microsoft
Word.

In this section we are trying to describe how we made the specifications and to help
you understand how the software we used works. To get a good introduction to UML we
recommend you to read [2].

3.1 History of UML

Modelling languages have been introduced to the market during 1990s, all with different
notations, values and weaknesses. Three of the most popular methods were OMT (Rum-
baugh), Booch (Booch) and OOSE (Jacobson) [2]. All three inventors used their own stan-
dard, but started to adopt good things from each other. However, they still had their own
unique notations. The use of different notations brought confusion to the users since one
symbol could have different meanings to different people. They finally came up with an
attempt to standardize the artifacts of analysis and design. In October 1995 the first draft
(version 0.8) of UML was released. The Object Management Group (OMG) adopted UML
as the standard modeling language in November 1997.

Harel

Wirfs-Brock

Fusion

UML

Rumbaugh

Jacobson

Meyer

Embly

Gamma

Shlaer-Mellor

Odell

Booch

Figure 1: Booch, Jacobson and Rumbaugh had most influence when specifying UML but
they were not alone [2].

3.2 Why UML?

UML is a modeling language that is used to visualize a solution with graphs and pictures
instead of just ideas in someone’s head. Models that are created with UML are useful
for understanding problems and promote better understanding of requirements, cleaner
designs and more maintainable systems. After working with the programs for a while we
realized that they were pretty good and made the specifications more interesting because
we at the same time got to know useful programs.

4

It is very important to build models of complex systems because it is not possible to
comprehend such systems in their entirety. In high school, for example, you didn’t need
to draw models of each assignment you had to do because you could easily visualize them
in your head, but the system we have built is far more complex. Models help us organize,
visualize, understand and create complex things and also makes it easier for someone else
to understand the structure and functionality of the system.

3.3 Use cases and actors

To make a good general model of the system we had to identify all situations (use cases)
that the system must be able to handle. The use cases represent the functionality provided
by the system. The formal definition for a use case is: “A use case is a sequence of trans-
actions performed by a system that yields a measurable result of values for a particular
actor.” [2]. A use case in the Mint system is for example Pay with mint .

Actors are not part of the system - instead they represent someone or something that
interacts with the system. An actor can both have input to the system and receive informa-
tion from the system. An Actor is usually the initiator for a use case. Typical actors in the
Mint system are the POS unit and the Consumer.

In figure 2 you can see a use case (Pay with Mint) and an actor (Consumer) and how
they look in UML.

Pay with Mint
Consumer

Figure 2: Notation of an actor and a use case.

3.4 Sequence diagrams

Use cases are very general and therefore you need to describe them in more detail in one
or several sequence diagrams. For each use case, several sequence diagrams can be used
to describe different flows within it. It is not possible to draw different paths in one se-
quence diagram so instead you will have to draw one sequence diagram for each path.
Each sequence diagram contains classes, actors and their interactions with each other.

3.4.1 Classes and objects

To be able to make the sequence diagrams we had to identify the classes and objects we
were about to use. A class is a description of a group of objects with common properties,
common behaviour, common relationships to other objects, and common semantics. A
typical class could be Database .

An object is a concept, abstraction or thing with well-defined boundaries and meaning
for a system [2]. Each object is an instance of one class. Two typical objects in the Mint
system are Oracle database and MDS database .

A simplified sequence of a successful payment call is visualized in figure 3.

5

Start application()

Hangup()

Play voice prompt()

Store Anumber, TimeStamp and Bnumber()

Check if registered Consumer()

:P90 :RDB :MDS

Figure 3: Example of a simple sequence.

3.5 Textual documentation

Each use case must be described in more detail and therefore we have created a small Word
document for each one of them and described them in textual form. We have described
what/who initiates them, how the main flow and possible alternate flows work, and what
must be fulfilled before the use case starts and which consequences it has.

3.6 Use case diagrams

If we put all use cases, actors and their relations to each other together we have a use
case diagram of the whole system. This diagram together with the textual documentation
makes the system easy to visualize. We see which actors interact with which use cases and
the documentation describes this interaction on a very high and understandable level.

After the model was finished we could set requirements for the system and begin to see
how things could be done in practice.

6

3.7 Activity diagrams

An activity diagram could be drawn to visualize the dynamics of one or several use cases.
These kinds of diagrams look very similar to the flows we had to draw/implement in
Application Builder so we did not draw them in detail using UML. We have done one
overall diagram for a part of the system though, see figure 4.

Wait for call

Decide what to do
depending on Bnumber

Store Anumber, Bnumber
and timestamp in MDS

Check if registered
Consumer

Retrieve A and
Bnumber

Produce and send
SMS/email to Consumer

Receive HLO msg

Wait for matching
call in MDS

Continue
communication

Continue
communication

Send "payment OK"
to POS

Produce and send
SMS/email to Consumer

Send "No match"
to POS

registered

GSM calling

POS calling

= Hangup

Not registered

Idle state li-application

msg received

No call foundcall found

No msg received

modem-application

Figure 4: Activity diagram describing a part of the Mint system.

7

4 The P90 architecture

The P90 architecture [3] is transaction based communication system, implemented on top
of TCP/IP. It is comprised of components that send transactions between each other. The
most important component is the Transaction Manager (TM), through which all normal
transactions are sent. The platform is implemented on top of different Unix variants such
as Free BSD and SCO Unix, depending on which type of hardware the machine has.

A machine running the P90 software is called a node, and several nodes working to-
gether under one TM is called a segment. It is also possible to have different segments
working together to obtain fault tolerance, fail-over functionality and load balancing.

Below, we give a description of how the transaction system is constructed. We also give
a short description of the different components we’ve used in our solution.

4.1 P90 transactions

The P90 uses a message format that is called the Teligent P90 Transaction Format (TPTF) [3]
and the TPTF messages are sent using TCP/IP. Each transaction message contains a time
stamp, sequence number, the name of the service and the return destination. In addition to
this you can send parameters, or FICS:es (Function Independent Containers), depending
on which function you’re calling. Licences for the TPTF package can be bought if you want
to develop your own software that needs to communicate with the P90.

4.2 P90 components

We haven’t used all components available for the P90 platform but the ones we have been
using are explained in this section. Some of the components didn’t fulfill our requirements
in their original versions, so they have been changed to fit our purposes.

4.2.1 Transaction Manager - TM

The Transaction Manager (TM) is the center of the P90 architecture. All normal transactions
are delivered through the TM. This makes it possible to keep logic for detecting faulty
components and timeouts in one place, namely the TM. The TM is responsible for starting
the different components in the system at startup and for keeping them alive by restarting
them if necessary. The TM communicates with the components through a unique and
dedicated socket (one socket per component).

The TM can be used to obtain control, prioritization, load balancing and surveillance.
Several variables such as load, peak load and transaction counters are constantly being
updated and can be used to monitor and increase performance in the P90 system.

However, since most transactions pass through the TM, it is a single point of failure
(there are ways to send transactions directly to another component, without using the TM,
but we don’t address that in our report).

4.2.2 Transaction Logger - TLG

The TLG component logs transactions that are sent through the system. Usually, only trans-
actions that change the state of the system are logged. The reason for this is that the log can
be used to recover the system if it goes down for some reason, which means that there is
no interest in logging “read”-transactions. The recovery result would still be the same, no
matter if you include them or not.

8

It is possible to log read transactions as well. This can be very useful when debugging
applications.

4.2.3 Application Controller - AC

The AC is responsible for running applications. Each application is run by a Script Inter-
pretor (SI), and one AC can handle 100 SI:s. Several AC:s can be run under one TM so this
is not a limiting factor.

4.2.4 Programming Interface - PIF

The PIF is used for connecting to a P90 system from a workstation running the P90 devel-
opment program Application Builder. It enables a user to send transactions to the system.
This makes it possible to run simulations on a workstation, handling the logic in the Appli-
cation Builder but sending real transactions through the P90 system. At the same time you
can follow the flow on your screen which makes it easier to debug the application. This is
called a Live On System simulation (LOS).

4.2.5 Relational Database - RDB/RDS

The RDB is used for connecting to an Oracle database. Once connected, you use SQL
queries to insert and extract data from the database. It is not possible to call stored proce-
dures (SP:s) from these components. Once you have a connection, via an RDB component,
to the database no other applications can use this component.

The solution to this problem is the RDS component. This component is limited to select
queries only but allows sharing of the connection to the database.

4.2.6 Main Data Storage - MDS

The MDS is a real-time database for simple but fast queries based on a file database.

4.2.7 Line Interface - LI

The P90 system was designed to be used for telephony applications for intelligent networks
(IN services). The LI is the interface towards the telephony system and it supports several
different signalling protocols. With the LI you can can route incoming calls as you like, for-
ward them to other locations etc. You can also answer them and play voice prompts to the
calling party. This makes it possible to implement services like redirection and mailboxes
for voice messages, using voice menus and DTMF tones for navigation.

4.2.8 Modempool component - LIM

The LIM handles the connection to a modempool. The data delivered to the modempool
is delivered to the LIM through a virtual serial port. The LIM then delivers the data to the
application.

Due to the fact that the initial LIM didn’t support binary data, and the Mint application
sends encrypted strings using this component, this component was adapted to suit the
needs of Mint.

9

4.2.9 Security component - SEC

The SEC component contains an implementation of the encryption mechanism DESX.
DESX is an extension of the Data Encryption Standard (DES) with longer keys, thus provid-
ing greater security. The SEC component can also be used for our triple DESX encryption
(see section 7.3). This is a component made especially for Mint’s purposes.

4.2.10 Alarm Handler - ALH

The ALH is handling alarms in the P90 system. Alarms are created when something ab-
normal occurs in the system i.e. an application or component crashes, a transaction is not
acknowledged in time or at all. The ALH can be configured to act upon alarms in several
different ways; when a component crashes it may have to recover by releasing resources
allocated by the component or when an application fails for some reason it can send an
SMS to the system administrator.

4.2.11 Email Sender - EMS

The EMS is basically an implementation of an SMTP client, allowing you to send email
simply by sending a transaction through the P90 system.

4.2.12 Cross System Router - XSR

The XSR or Cross System Router is a component that keeps track of other P90 segments,
and which components they have. It also handles the communication with these segments.

4.2.13 Execute component - EXC

The EXC supports only one transaction, Execute Unix Command. This is a sometimes
useful shortcut and we use it to run an SMS sending program (see section 8.5) and the
sleep command.

10

5 Application Builder

Applications for the P90 platform are written in a script language called the Transaction
Script Language (TSL). There is a toolbox including compiler, linker and libraries for build-
ing applications. TSL was developed because the developers found it tedious to write the
code in C, which is also possible. The next step in making it easier to build P90 applica-
tions was to develop a graphical design program which could generate the TSL code. This
graphical design tool was called the Application Builder and it is this program we have
used to build our applications.

The basic idea behind the Application Builder is that you draw your program, like a
flowchart. In theory, it could be used to generate scripts in any script language but cur-
rently, it only supports TSL. Unfortunately, the program is rather new and still has lots of
bugs in it, some of which makes it very hard to work with it in a normal way.

5.1 Basic building blocks in the Application Builder

The basic building blocks are different ENTRY- and EXIT-blocks, flow control blocks IF
and WHILE, assignment ASSIGN and no operation NOP. There are also the P90-specific
transactions which each are one block, and with which you are able to send transactions
to the other components in the system. Each specific P90-transaction belongs to a specific
component (see Section 4). On top of this, there is the function block, which can contain all
of the above. Figure 5 shows a basic example of an Application Builder function.

Figure 5: Example of Application Builder function

11

5.2 Working with the Application Builder

In the top left of Fig. 6 you can see the toolbox, containing defined variables, transactions,
interfaces (ENTRY/EXIT), library functions and user defined functions. Below the toolbox
you find the IF, WHILE, ASSIGN and NOP. The white area with the boxes to the right is
called the workspace and this is where you build your flow. You do it by using drag-n-
drop from the sections to the left, putting your building blocks on the workspace, and then
connecting the boxes with arrows. On the arrows you can also specify input and output
parameters to the functions.

Figure 6: Application Builder

12

Runnable progran

Application Builder

AppB workflow

P90/E

TSL code

TSL code

FTP transfer

generation
Code

(p90compile)

Compilation

Figure 7: Flowchart of the compilation steps

Once you have built your flow you compile it in Application Builder producing a file
with generated TSL code (see Fig. 7). This file is then uploaded to the P90 where it is
compiled again. The output from this compilation is a program that you can load in the
Application Controller (AC, see Section 4.2).

13

6 System description

The system we have built is one of the first mobile payment systems in the world. As a
registered Mint consumer you can go to a registered Mint retailer and buya product or
service by only using your GSM-phone. The registered Mint retailer will, at least in the
beginning, have a Mint Point Of Sales(POS) unit that communicates with our platform.
The POS unit software is developed by Mint and the plan for the future is that the software
can be installed in the retailer’s ordinary cash register and therefore it will not be necessary
to have an extra POS unit.

6.1 Mint System

The Mint system consists of several, more or less complex, parts. Here we try to describe
them all in a very general way for you to get a picture of the whole Mint system.

6.1.1 Payment System

The payment system is the main product from Mint. To make a payment we need three
elements: a GSM-phone, a P90/E(P90) platform and a POS unit. The POS unit calls in to
the P90 platform with our applications running on it. The P90 receives the call and estab-
lishes a connection for further communication. The application communicates according
to the POS-protocol (see Section 7) with the POS unit. Simultaneously a GSM phonecall
is received by another application (LI application, see Section 8.3) and the two calls are
matched togheter in one of the applications and the payment is either accepted or declined
depending on whether the calling consumer fulfill certain requirements (i.e. enough credit
etc.) or not.

This system will in the future also handle loyalty services such as discount when you
buy for a certain amount, every 10th pizza for free etc.

6.1.2 Web system

You can register as a new consumer on the web using an ordinary browser. When you
have fulfilled the registration process, including activation of your Mint service using an
activation code sent home, you can access your personal Mint site(MyMintSite). On your
personal MyMintSite you can check the purchases you have made, change information,
PIN-limits and if you have any problem you can get in contact with Mint support. When
you register you can choose whether you want to be a postpaid or a prepaid consumer. If
you choose the postpaid option (i.e. credit) a creditcheck will be performed online and you
will immediately receive an accept or decline.

6.1.3 Economy system

The economy system we define as the system that takes care of the money flow. If you
are a prepaid Mint consumer and deposit money on a specific bank account the economy
system will register the amount of money to your Mint account. If you are a postpaid Mint
consumer the economy system will, every month, send out an invoice on the amount you
have made Mint purchases for. This system also handles the money flow to and from the
Retailers.

14

6.1.4 Database

The database is the spider in the web in the Mint system. It is an Oracle8 database and it is
running under Linux. All the other systems communicate with the database. The database
is a single point of failure and if it should break, the payments, the dynamic webpages and
the economy system will stop working. To make the database more failproof the computer
it is running on is equipped with RAID discs and backups are done continously. If the
database computer crashes Mint’s maintenance group will get an alarm and be able to
restart the database within a couple of minutes.

15

7 The POS protocol

In order to communicate between the Mint server and the POS unit, some kind of protocol
had to be developed. It had to be flexible as well as fault tolerant. Flexibility was desired in
case you ever want to change something. It’s quite easy to change the server software but
very tediuos to collect and reprogram all POS units, once they are put in store. But if the
protocol is flexible enough, it should be possible to change only the server software and the
POS units could be left untouched. Fault tolerance is of course a property that is absolutely
necessary, there is no room for failure when dealing with peoples’ money.

To obtain the flexibility that was needed, the protocol was based on the idea that the POS
unit acts only on demand from the server, using messages like “Send payment amount”,
“Show message 22” and so on. The POS unit was not allowed to take any initiative.

7.1 Messages and message syntax

The POS protocol we have set up consists of several different messages where a few of
them can have different meanings depending on submessages within the main message.
We will not go into detail on the syntax and structure of the messages as this information
is considered security sensitive.

7.2 Security and fault tolerance

In a money transaction system, like the Mint system, error handling is a crucial point. Even
if errors occur, the system must handle them and never create incorrect transactions. Since
the communication to the Mint server can be performed over a GSM connection, there is
a possibility that the communication can be interrupted at any time. When designing the
protocol, these issues had to be taken into consideration.

In order for the POS unit and the Mint server to agree on whether a transaction was
actually made, we use a kind of Two Phase Commit (2PC). The idea is that the Mint server,
with access to the database, checks the consumer’s account. If the balance is bigger than
the payment amount of the transaction, the transaction is approved. At this point the Mint
server adds the transaction to the database, as a pending transaction, this is the first phase
of the 2PC. The Mint server then sends the information to the POS unit, telling it to approve
the transaction. The POS unit shows “Payment Accepted” on the screen and saves that the
transaction was successful. Then it sends an acknowledgement back to the Mint server
that the last message was received properly. This means that the Mint system can move the
transaction from the pending status to committed.

If the communication would be interrupted at some point when the transaction is pend-
ing, the transaction-ID of the pending transaction is saved in the database. When a POS
unit contacts the Mint system again, the Mint server checks the database to see if the unit
has a pending transaction. If so, a recovery mechanism in the protocol is used, that allows
the Mint server to ask for the status of the last transaction that a POS unit made. If the
POS unit replies that the last transaction was OK, the pending transaction is committed.
Otherwise, it is simply deleted.

7.3 Encryption

There is also the problem of someone attacking the system, either by “wire tapping” or
actively trying to contact the system, acting as a POS unit. To protect the system against
attacks like this, we use encryption. More specifically, we use an encryption mechanism

16

called DESX. The encryption algorithm is based on the well known Data Encryption Stan-
dard (DES), which is a symmetric algorithm i.e. the same key is used for both encryption
and decryption. For more detailed information about the encryption we have been using
see [4].

One of the differences between DES and DESX is the key length, DESX uses 128 bit
keys while DES uses only 56 bits. This makes the time for an exhaustive key search (trying
every key until you find the right one) longer. However, with enough time and computer
resources, it is possible to break the encryption. There is also a difference in implementa-
tion. The three steps in DESX encryption are:

� XOR the cleartext and the first part of the DESX key.

� The second step of DESX is ordinary DES encryption. The DES key used is the second
part of the DESX key.

� Finally, another XOR operation is performed.

7.4 Communication fault tolerance

To handle errors that occur during transmission of protocol messages, every message has
a checksum attached to it. It’s a regular Cyclic Redundancy Check (CRC) of 4 bytes. When
receiving a message, the checksum is recalculated and compared to the checksum received
together with the message. If they are equal, the message is considered to have been cor-
rectly transmitted.

Every message that is sent begins with an STX character (0x02) and ends with an ETX
character (0x03). This is done to be able to delimit the messages from each other. However,
since we’re sending binary data, these characters can occur inside the messages as well.
This means that they have to be escaped, in other words preceded with an escape character.
The escape character we use is DLE (0x10). Hence, this character must also be escaped
when it occurs inside the messages. An illustration of a typical protocol message is shown
in Fig. 8.

STX ETXENCTYPE CHKSUM’#’’#’ MESSAGE

Figure 8: Example of a typical message as sent over the communication link.

17

8 Implementation

In this section we will explain which applications we have implemented and explain how
and why we have chosen the functionality we have. We will go on by discussing some of
the problems we had on the way and what we did to solve them. We have implemented all
our applications using the program Application Builder (see section 5) except for the SMS
sender program, which we implemented in C.

Due to the fact that when a payment is made, we have communication both with a POS
unit and a GSM phone, we chose to split the program into two different applications on the
platform. The applications that together handle a payment are called li and modem.

8.1 Scheduling

To be able to update the POS units when they are placed in a store, without going to the
store, we had to insert some kind of scheduling for the POS units. It could be done in two
ways, either the POS unit could initialize the update by calling the Mint server or the Mint
server could call the POS unit. We decided to go for the first alternative because of the
similarities with a payment, where the POS unit is calling the Mint server.

We use the scheduling for updates of parameters in the POS units and security updates.
The POS units have the next update time stored in memory and polls that field continu-

ously to check whether the current time is after any of that time. If that is the case the POS
unit automatically calls the Mint server, which has the same time stored in the database.
If the Mint server and the POS unit have the same time stored for update they agree on
the service type and the scheduled event is performed. If somehow the times are different
and the POS unit is calling too early, the Mint server thinks it is a payment and sends out a
STP#PAYmessage toghether with the next update time in the database (see section 7) and
after the failed payment (because the application can’t find a matching call) the times are
equal again.

8.2 Activation

In the Mint system we have an activation procedure. When a consumer registers for the
first time an activation code is generated and sent, by ordinary mail, to the Consumer’s
home address. To be able to pay with your mobile you first have to activate the service
by dialling a certain telephone number and punch your activation code. This procedure
has to be done from the registered mobile phone number the consumer entered during the
registration process.

This activation procedure prevents us from having someone registering someone else’s
mobile phone number and immediately be able to pay with it.

When sensitive personal information (i.e. information such as mobile phone number,
address, pin code etc.) is changed at the personal MyMintSite the activation code procedure
is triggered. The sensitive changes are stored in a separate table in the database where they
are pending until the consumer calls in and activates them.

8.3 LI application

This application handles the incoming GSM phone call. When someone calls a Mint pay-
ment or activation number the application first checks in the Oracle database whether or
not the calling number (A-number) is a number that belongs to a registered Mint consumer.
If this is not the case, a voice prompt will be played and an SMS will be sent to the specific

18

A-number. The voice prompt and SMS contains the same information: Explaining that
you first must register as a Mint consumer before you can make any payments with your
mobile.

If the calling person is recognized as a Mint consumer and the consumer is not blocked,
the application checks whether the phone number the consumer called (B-number) is the
activation phone number or a payment phone number and chooses one of the two branches
described below (blocking can occur if the Mint service is misused, or if the consumer
decides to temporarily block the service).

8.3.1 Payment branch

So, the calling A-number is registered in Mint’s database and the called B-number is a pay-
ment number. Everything we have to do now is to store GSM phones A-number together
with a timestamp and have the B-number as primary key. We store the information in the
MDS, to get as fast result as possible. Since each B-number is connected to one and only
one specific POS unit we can identify which POS unit the consumer is trying to make a
payment to. Everything we have to do now is to play a voice prompt telling the consumer
that the purchase has been initialized and that he or she will receive an acknowledgement
from the POS unit. As you can see above, all important execution is done when the voice
prompt begins to play so the system does not fail if the consumer hangs up before the voice
prompt has reached the end.

When the A-number and timestamp is stored and the voice prompt is played everything
is done and we can hang up the call.

The whole procedure takes about seven seconds because of the length of the voice
prompt we are playing. However, as soon as the voice prompt starts playing, the mo-
dem application can pick the payment call from the MDS and continue the protocol. This
means that it is possible to get an OK from the POS unit just three to four seconds after the
GSM call is received.

8.3.2 Activation branch

When we have reached this far we know that the calling A-number is registered in Mint’s
database and the called B-number is the activation phone number. The reason for call-
ing the activation phone number is to activate the Mint service for your phone when you
have registered to be a user of the system. It is also necessary to activate security sensitive
changes you have made in your Mint profile from your MyMintSite or through support.
To activate these things the Consumer needs to have an activation code, which he or she
gets sent home via ordinary mail.

In this part of the application we look in the database if the consumer who this A-
number belongs to, has some changes that can be activated. If this is not the case we play a
voice prompt telling him or her that he or she has nothing to activate and hang up.

If the consumer has something to activate he or she will be asked to punch in his or
her 13-digit long activation code on the GSM phone. The application reads this punched
code using DTMF (Dual Tone Multiple Frequency) and compares it with the activation
code in the Oracle database. If the activation code is correct, the application commits the
changes associated with the activation code and plays a voice prompt telling the caller that
the service or changes now have been activated. The caller gets three tries to enter the right
activation code before we hang up and the consumer must call in again or call support to
get help doing it the right way.

19

8.4 Modem application

The modem application is the biggest and most complex application and it handles the
communication between the POS units and the platform. All communication is based
on the own designed POS protocol (see section 7) and sensitive information as payment
amount, PIN code etc. are encrypted using the DESX algorithm (see section 7.3).

The platform has a modempool, which the POS units call in to when a payment is
initialized. The POS units will call in to the system when the cashier presses a button and
initializes a payment. The POS units can also be scheduled to call in to the system for an
update. The update time is stored in the database and sent to the POS unit every time
some communication is done. Thus, the POS unit will always have updated update times.
Updates are scheduled for each POS when the specific retailer is closed. This means that
retailers that are open around the clock cannot use the POS unit for a couple of minutes
each night because payment is not possible during a scheduled event.

When a POS unit makes a call we check in the database to choose the right service. If
the POS unit is calling in and we do not have any scheduled events (i.e. update) a payment
will be performed. If we on the other hand have a scheduled event, this event will have a
higher priority than a payment. This has implications on the way that the retailers should
operate the POS unit. For the scheduled events to take place at night, the POS unit has to
be turned on. If the retailer turns on the POS unit in the morning, and immediately tries
to make a payment, the server will see that the unit should do an update. Instead of a
payment the consumer and retailer have to wait until the POS unit has got the updates. We
prioritize a scheduled event over a payment because a payment without valid information
will not be succesful.

8.4.1 Update branch

If an update is scheduled, the application enters the update branch.
This branch starts off by sending message STP#UPD, stating that the servicetype is up-

date. After getting the acknowledgement from the POS unit, the application starts gath-
ering information from the database. Ideally, only the things that have changed in the
database since the POS unit was last updated, should be transmitted. This is especially
true if the POS units get somewhat more advanced, and need updates that are bigger than
a couple of hundred bytes. For example, they might get the ability to display colour images.
Then it would be important not to send the entire library of images if only one image has
changed. In other words, the update should be as economical as possible. This is solved
by having a timestamp on every piece of data concerning the POS unit. The timestamps
are compared with the POS unit’s last update time, and the data is included only if its
timestamp is later the the POS unit’s.

Once the application has collected all data it starts transmitting them. When this is
accomplished, the next update time is changed in the POS unit to mark that no update
needs to be performed and the last update time is changed as well.

8.4.2 Payment branch

The payment branch is taken whenever a POS unit without a scheduled event calls in. The
first thing that happens in this branch is that the Mint server sends the STP#PAY-message,
and this message is acknowledged by the POS unit with an ACK#STP-message.

At this point, the application checks the database to see if this particular POS unit has
a pending transaction. If so, the message PAY#LTS is sent. The purpose of this message

20

is to find out if the POS unit did in fact approve the last transaction (see section 7.2). If it
did, the status for the pending transaction is set to “performed”, otherwise status is set to
“deleted”.

Then, the Mint system sends the PAY#PA-message. At this point, the POS unit prompts
the retailer to enter the payment amount and the consumer has the option to enter a tip. The
total payment amount is sent back to the Mint server using the SND#PAmessage. Knowing
this information, together with the ID of the POS unit, the Mint server starts polling for
incoming GSM calls in the MDS. If found, the profile and account information of the con-
sumer that made the payment call are retrieved from the database. The balance and PIN
limit are then compared with the payment amount. One of three things can happen:

� The payment amount is bigger than the balance - the payment is aborted.

� The payment amount is smaller than the balance, and smaller than the PIN limit - the
payment is performed.

� The payment amount is smaller than the balance, but bigger than the PIN limit - the
Mint server request a PIN code from the POS unit. If it matches the one connected to
the consumer’s account, the payment is performed. If not, the Mint server asks for
a second try. If a consumer fails to enter his/her PIN code three times in a row, the
account is blocked.

Before a “Payment OK” is sent to the POS unit, the transaction is saved in the database as
a pending transaction. When the POS unit acknowledges the OK, the transaction is moved
from status “pending” to status “performed”.

If no matching GSM call is found within a limited time (typically 30 seconds) the Mint
system sends a certain reason code to the POS unit, which then hangs up and displays a
failure message on the screen.

8.5 SMS sender program

Since our application had to be able to send SMS:s this was an issue we had to look into.
There were already components in the P90 that had this ability, but they only supported
the X25 protocol. Our SMS deliverer, however, doesn’t support X25, but instead uses HTTP
or more specificly XML messages over a TCP/IP connection. The protocol works like this:

� First, you post a LOGIN document, supplying your username and password. The
reply to the login document includes a couple of cookies that you need to supply in
every following message that you send to the SMS server.

� Secondly, you post a BIND document, that specifies which service you want to use
(usually “SEND SMS”, but it’s also possible to receive SMS:s or check that previously
sent SMS:s has been delivered).

� Once this is done you can post SEND documents, as many as you like.

� Finally the LOGOUT document is sent which invalidates the cookies thus preventing
further communication with the server.

The implementation of the SMS program was done in C, using the socket implementation.

21

8.6 Implementation problems

When implementing our applications, we ran into trouble from time to time. In this section,
we’ll describe the problems we had and what we did to solve them.

8.6.1 P90 related issues

A lot of problems originated in the P90 components that we used, and the fact that we used
them in a way they apparently weren’t designed for. Also, documentation was not always
correct and there were bugs in the components that took us some time to figure out. There
was no way for us to verify or correct these bugs, as we were not permitted to read the
source code.

The component that is most critical to our application is the LIM. It handles data com-
munication between the Mint server and the POS unit. The original LIM was designed
to handle only ASCII data. This was of course a problem since our application uses en-
cryption of messages and the encrypted data can very well contain binary zeros (null), and
other control characters that might affect the functionality of the modem. There was also
supposed to be a variant of the Receive Data transaction that took the additional string
parameter UNTIL . The return value was the contents of the modem buffer until the value
of the UNTIL parameter was found. This seemed perfect for our application, since we sur-
round our messages by start and end tags (see Section 7.4). Unfortunately, it didn’t work.
We had to make a workaround solution, a function that reads character by character from
the buffer, each time checking if the pattern is found.

To be able to use encrypted messages, we needed an encryption component. This com-
ponent, the SEC (for SECurity), is an implementation of the DESX encryption technique
and developed exclusively for Mint. Surprisingly, when it was implemented, it didn’t sup-
port binary data either. This problem was fixed by Teligent.

Another important component is the RBD which handles communication with an Or-
acle database. Only one connection can be set up in an RDB. This is a very limiting factor
because the server must be able to have several incoming calls simultaneously and every
one of them needs access to the database. There is also no way of “sharing” a connection
since the RDB works in a strict transaction manner, meaning that an SQL INSERT or UP-
DATEis not entered in the database until you explicitly use the “Commit”-transaction. If
two applications would share one connection it would mean that there is a possibility of
committing each others INSERT:s or UPDATE:s.

The solution we used was the new RDS component, in almost all cases a direct copy
of the RDB. The exception is that the RDS doesn’t allow any INSERT:s or UPDATE:s,
only SELECTstatements. With this functionality, it is safe to share the connection between
applications.

While most of our SQL are SELECTstatements, there are a couple of places in the code
where we really need to use UPDATEand INSERT. In these places, we are forced to use the
RDB. To make sure that the applications doesn’t have to wait to get an RDB connection,
there are four RDB:s in each segment (see section 9) and the applications occupy the con-
nection as short time as possible. The conclusion is that we use the RDB component when
we want to change something in the database and immediately disconnect when it is done
and when we just want to retrieve information we use the RDS component.

We wanted to obtain a high grade of fault tolerance in our system. This means that the
system should handle machines going down or telecommunication links breaking down.
In the case where a machine goes down, all incoming calls must be routed to another ma-
chine. This is handled by the teleoperator and was verified in the tests (see section 10).

22

When both segments are up and running, the calls are randomly routed between them.
This means that the POS call and the GSM call of a specific payment could end up in differ-
ent segments. Since the modem application looks for a matching call in the MDS database,
it will not find one if the GSM call is registered in the MDS of the other segment. This
was solved by setting up the MDS:s to use the XSR to replicate each other between the
segments.

8.6.2 Application Builder issues

The other big source of problems was the program Application Builder (AppB). Without
complaining too much we try to describe the problems we had in AppB and what we did
to solve them, if possible.

The purpose of AppB is to simplify the coding and instead of writing code in the
Teligent script language (TSL) use boxes and lines to draw the program flow. This may
be a good idea if you don’t want to have control over what you are doing and have trust
in the program you are working with. The problem with AppB is that we lost the trust
for it after a couple of days. It doesn’t work as it should and if you have done something
wrong and want to correct it, it is sometimes not possible. The list below is a collection of
the problems we encountered in AppB.

� String handling - This function is very poor in AppB. It is not possible to edit strings
you have once written, but instead you have to create a new string and delete the old
one.

� Missing variables - Variables may come and go as they prefer. Sometimes it is impos-
sible to find variables in the variables list even when they are used in the program
flow. This makes it impossible to use the same variable further on in the flow and
you have to create another variable instead.

� Initializing of variables - In the beginning of each flow you have to initialize each
variable to be sure that it doesn’t contain any information you don’t want.

� Memory capacity - When several flows (typically above 10) are opened in AppB it
takes several minutes to switch between them. This get worse and worse the longer
you have the program opened and you finally have to reboot the computer.

� Multiple starts - When you start AppB it sometimes (typically 40% of the times)
doesn’t start and you have to try again. Very time consuming.

� Parameter length - Parameters are a way to send data between functions and they
are not allowed to have a name length bigger than 52 characters. This should be
more then enough if it wouldn’t have been for the naming convention when AppB
translates the flows into TSL. AppB sets a prefix on every variable and parameter
which can be up to 50 characters long and that gives the user (52-50=) 2 characters to
find a good name for the variable.

� Missing of floats - There is no such thing as floats in AppB so when we want to deal
with decimals (often used when we are working with currency) we have to multiply
everything by 100.

� Modulo - When building with modulo boxes in AppB and the graphical flows are
translated into TSL the modulo boxes are translated into plus. you manually have
to edit the generated TSL code and change the plus signs (+) into modulo operators
(mod).

23

The list is far from complete and the reason why we encountered so many problems
with AppB is probably because we developed applications with functionality they hadn’t
tested before. AppB has been used to develop common telephony applications such as
voice mailboxes, DTMF navigation applications and other small applications. When we
used these features we didn’t encounter so much problems but when trying to write more
complex functions we surely did. The problems with AppB have been very time consuming
and frustrating due to the fact that we couldn’t fix the problem ourselves but had to rely
on Teligent.

We’ve got 27 fixes for AppB to correct the problems we have reported but since the
fixes sometimes made it impossible to even compile the flows without an additional fix we
decided to go for the original version and live with the known problems. A fix for fixing a
fix is never a good solution.

24

9 Setup of components and applications

2 Mbit/s

Internet
connection

30 channel

ISDN

30 channel

ISDN

mintecp1

* LI_A

mintsn05

* TM_D

mintsn07

* TM_E

R
ep

lic
at

io
n

mintsn02

* TM_C

mintsn01

* TM_B

mintsn08

* LIM_A

Segment 2 Segment 4

Segment 5

Segment 3

* AC_[A,B]

* AC_[A,B]

* EMS

* EMS

* SCH
* SEC
* MDSA
* XSR
* EXC
* 4 x RDB

* SCH
* SEC
* MDSB
* XSR
* EXC

mintora1

Oracle DB

30 channel

ISDN

30 channel

ISDNmintsn08

* TM_A

mintsn08

* LIM_A

mintweb1

Apache

mintweb2

Apache

Segment 1

* OTS

* RDB

* RDB

mintsn04

mintecp2

* LI_A

* LIM_A

* 2 x RDS

* 2 x RDS
* 4 x RDB

Admin segment

Figure 9: The segments of the system and their components

Figure 9 is an overview sketch of the Mint system. The outer boxes are P90 segments
and the inner ones are nodes within the segments. Each segment has to have a TM to
control the components that are running in the segment, and the communication between
them. There are also computers that don’t run any P90 software, thus not belonging to any
P90 segment. These computers are mintweb1, mintweb2 and mintora1.

As you can see, Segment3 is a copy of Segment2 and Segment5 is a copy of Segment4.
This setup is used to obtain fault tolerance in the system. The routing capabilities included
in the TM:s can handle the case where one segment crashes and try to send the transaction
to another segment. This ability makes the system very robust and fail-safe. Additionally,
it allows you to take one segment down, for upgrades or bug fixes, still keeping the system
running.

Another interesting feature is the replication of the MDS database. The setup is called
“Mated pair”, and states that the two databases must have the same view at all times, i.e.
the same data exists in both databases. If this wasn’t the case, it would mean that the GSM
phone call and the POS call would have to be directed to the same segment, which basically
erases all fault tolerance that we have disussed above.

25

10 Tests

We conducted both functionality tests and load tests on the system. In this section we will
try to explain how these tests were made and the conclusions we have made based upon
them.

10.1 Load tests

The goal for these tests were to make sure that the system could handle the load that were
estimated for the near future. To make the load tests we had to hire an external com-
pany specialized at testing telephonysystems, namely Telia Validation. They can generate
phonecalls in the net with a very high speed and verify if they get an answer or not.

Telia Validation programmed their computer that generates the GSM calls to gener-
ate an amount of calls per second and verified if they got any answer. When the call is
answered all computation is done in the platform already, so an answer indicates that ev-
erything is working just fine. A channel is occupied for approximately seven seconds, due
to the length of the voice prompts we are playing.

Call rate Percentage
answered

Time Other

1/sec 100% 60sec
1/sec 100% 60sec Functionality test
1/sec 100% 60sec Functionality test
5/sec 100% 60sec
10/sec 75% 60sec
7/sec 100% 60sec

Table 1: Test results

Since we have 60 channels connected to the system and each call takes seven seconds the
table above is pretty self explaining. If we have 10 calls per second we will run out of
channels after six seconds and we will lose calls for one second (i.e. miss 10 calls), before
the first second’s channels will be free again.

10.2 Functionality tests

The functionality tests that were made during the tests were made to verify that the plat-
form could handle breakdowns and broken telephony lines.

In the first functionality test one of the two telephony cables was disconnected from
the system during the heavy traffic and all calls were automatically redirected to the other
cable. The first cable was then connected again and the second one was disconnected.
Every generated call got an answer so the system can handle failures in the telephony net.

In the second functionality test the two computers handling the incoming calls were
shut down, one at a time, and recovered. While one of the computers was down the other
computer handled all traffic and it was balanced again when both were up and running.

26

10.3 POS test

We had 28 POS units calling to one of the segments simultaneuosly as Telia validation
generated GSM calls. In a perfect world the POS units should have found a matching
GSM call for every one of the faked purchases, but because all POS unit were using GSM
modems and were all calling from the same operator we overloaded the GSM cell in that
area and far from all POS calls made it through.

The problem we got was to make enough POS calls at the same time so we could also
verify that the POS channel could handle enough load. We have the same bandwith for
both channels (LI and LIM), which is 60 simultaneously channels (i.e. phone calls), so from
the telephone net’s point of view both channels can handle the same amount of traffic.
Due to the fact that we have different components answering the different channels and
we were not able to load the POS channel with enough traffic due to the limitations in one
GSM cell we are not sure if that channel can handle the same amount of traffic.

10.4 Conclusions

From the load and functionality tests we can make some conclusions. The system can
handle at least 5 (five) simultaneous calls/second or 300 calls/minute, which is more than
enough for the next two years. Due to the fact that we haven’t been able to load test the
LIM component we are not really sure how many purchases can be done simultaneously
but from the telephony line’s point of view it is 300 purchases per minute. During the tests
we could only see that all POS calls that made it through also made successful payments.

If Mint however, in the future, would like to handle more purchases we have some ideas
of how that could be done easily (see section 11).

27

11 Future work

Mint will in the future probably find many improvements that can be done to the system
and get several ideas from their Consumers, which are very hard to foresee now but they
already have some ideas of new services for the future. As we have written throughout
this report we also have some ideas about how the system/service can be improved to
handle more simultaneous calls, shorten purchase time etc. In this section we will try to
summarize the ideas that we have in this area.

11.1 New services

In the beginning of this project we planned to implement a lot more services, but the lack
of time forced us to reconsider and postpone the implementation to future versions. Some
of the services that should be implemented in the future are listed below.

� Consumer2Consumer payments - In the future it should be possible for a Mint Con-
sumer to transfer money from his or her Mint account to another Mint consumer’s
Mint account. This should be possible via different kind of media such as SMS and
an ordinary phone call, navigating with DTMF.

� Loyalty services - For the next version of Mint payment system some loyalty services
should be implemented. This means that you, as a registered Mint Consumer, don’t
have to bother about all bonuscards and coupons. Mint will take care of that for you.

11.2 Hardware improvements

Some improvements or upgrades that can be done to the hardware of the system are listed
below.

� Connect more incoming channels - The system still has two unconnected lines (à 30
channels), for each segment. So the capacity can easily be doubled.

� Add an extra segment - More segments gives Mint more computers, which in turn
gives Mint more incoming channels and a more fault tolerant system.

� Set up backup for web site - As it is today there is no backup machine.

11.3 Software improvements

In the software (our applications) there are some improvements that can be made.

� Shorten the calls - Use shorter voice prompts and by that shorten the calls by a few
seconds. This will lead to shorter occupation of the channels and more calls can be
answered within the same time period. It is also possible to add an extra check and
check if the calling party have hung up or not, during the voice prompt. If the calling
party has hung up the Mint server can also hang up and gain a couple of seconds.

� Read more then one byte at a time from the modempool - As it is today we read
one byte at a time from the modem pool’s input buffer and that generates a lot of
transactions (one for each byte) in the LIM component. We haven’t encountered any
complications because of this but it however can be improved. Why we did like this
in the first place was because of the poor string handling in Application Builder.

28

� Load balancing of components - Today we don’t use all load balancing features in the
P90 platform due to the amount of time it takes to change it, it was not done to version
one. For example we only use one of the two RDS components at each segment and
the RDBs are not used equally either.

29

References

[1] Neffenger, J. Volano report. <http://www.volano.com/report.html>. 2001-02-02.

[2] Quatrani, T. March 2000. Visual Modeling with Rational Rose 2000 and UML. Chapter 1-4.

[3] Teligent. 1999. The P90 reference manual.

[4] Scheier, B. 1996. Applied Cryptography - Protocols, Algorithms and Source Code in C. Chap-
ter 11-12, 15.

[5] Killian, J. & Rogaway, P. 1997. How to Protect DES Against Exchaustive Key Search.

30

