

MASTER OF SCIENCE THESIS

A Model For Describing and
Executing Test Cases Using XML

and Jini/JavaSpaces

By

Roland Ljungh

Stockholm, November 2000

Examiner and Adviser:
Björn Pehrson and Vladimir Vlassov
Royal Institute of Technology (KTH)

Supervisors:
Roger Westerberg and Per Sjöholm
Ericsson Radio Systems AB

Abstract

Abstract
Ericsson Radio Systems AB is developing a new IP based GSM system.
The system comprises several subsystems, or nodes. Every node must
be thoroughly tested in order to verify that the functionality is correct.
Since the different nodes are developed in parallel there is a need to
simulate the environment surrounding the test object. These
simulations are performed using various test tools, tools that are
programmed to behave in a certain way. The verification of
functionality, or testing, is performed manually in the sense that a
programmer constructs a test program for a specific test tool, runs the
test program and examines the results to verify that the requirements
are reached.

This thesis introduces a model for automated verification of
functionality in the new IP based GSM system. The model includes a
description of how test cases best are represented as well as a
mechanism for distribution of test cases amongst an arbitrary number
of test tools. A prototype implementation of the model was developed
using test cases represented in XML and Jini and JavaSpaces as a
mechanism for distribution of the test cases. The prototype
implementation was evaluated in the actual test environment.

Contents

Contents

1 Introduction ...7

1.1 Background..7
1.2 Problem Definition ...7
1.3 Motivation ..7
1.4 Objective ...8
1.5 Structure of the Report..8

2 Test Environment...9
2.1 IP-BSS (Internet Protocol based Base Station Subsystem)......9

2.1.1 IP-BSS Architecture...9
2.1.2 Verification of Functionality ..10

2.2 Documents Related To Testing..10
2.3 Tools Used For Testing..11

3 Overview of Technologies..12
3.1 XML Introduction ...12

3.1.1 Validating XML...13
3.1.2 Parsing XML..13
3.1.3 Converting XML..13

3.2 SAX, DOM and JDOM...14
3.3 Choosing XML Parser..14
3.4 XML on the Network ...15
3.5 XML Schemas and DTDs..15
3.6 Jini ...17
3.7 JavaSpaces ...19

4 Integration And Verification Test Model (IVTM)..............................21
4.1 Design Issues ...21
4.2 Overview...21
4.3 Representation of Test Cases...22
4.4 Tool Handler ..22
4.5 Distributing Test Cases...24
4.6 Extending the Model With A New Test Tool24
4.7 Requirements on Test Tools ...25

5 Implementation...26
5.1 System Overview..26
5.2 Test Case Creation ...29

5.2.1 Test Case Representation ...29
5.2.2 Generating XML ...30
5.2.3 The Test Case Document ..30
5.2.4 The Report Document ..33
5.2.5 The DTD Generator ...33
5.2.6 Future Improvements..34

5.3 Execution of Test Cases...35
5.3.1 Execution..35
5.3.2 Report Creation...36
5.3.3 Communication Mechanisms and Leasing37

Contents

6 Evaluation..38
6.1 Describing test cases in XML...38
6.2 XML Editors...39
6.3 The Distribution Mechanism ...39

7 Conclusions and Future Work ...41
8 References...42
Appendix A: Class Diagrams ...44
Appendix B: User Manual ..46

Introduction

7

1 Introduction

1.1 Background
The M.Sc. thesis project called “A Model for Describing and Executing
Test Cases Using XML and Jini/JavaSpaces” was done at Ericsson
Radio Systems AB in Stockholm during the Autumn 2000.

The objective was to develop a model for test case execution that allows
automated testing and to implement part of the model as a case study.

1.2 Problem Definition
Ericsson Radio Systems AB is developing a new IP based GSM system.
The system comprises several nodes, where a node is an isolated part
of the system that has a well-defined interface for communication.
Every node must be thoroughly tested in order to verify that the
functionality is correct. Since the different nodes are developed in
parallel there is a need to simulate the environment surrounding the
test object. These simulations are done using various test tools, tools
that are programmed to behave in a certain way. The verification of
functionality, or testing, is performed manually in the sense that a
programmer constructs a test program for a specific test tool, runs the
test program and manually examines the results to verify that the
requirements are reached.

Test cases are documented in test specifications (one or more test cases
per test specification). The test cases are executed by manually
starting the appropriate tool and feeding it with instructions. If a
computer program could interpret the test cases, the execution of the
instructions could be automated. The objective of this project was to
evaluate the test case execution process and suggest a model that could
automate this process. To illustrate the use of the new model a
prototype was implemented from this model.

1.3 Motivation
The motivation of the project is mainly to increase the efficiency of the
test process, which would help increase the quality of the products.

Every time extensions have been made to a product the same tests
have to be performed to ensure that all of the old functionality still
work as expected. This is a very time consuming process since there is
a large amount of test cases. Still, the testing is necessary to be able to
guarantee the quality of the product. To automate these tests would
therefore be a way to help ensure high quality of the products. The

Introduction

8

outcome of this project is a model and a prototype implementation of a
system that can be started in the evening and then executes test cases
all night and produces a report in time for the work to start in the
morning.

1.4 Objective
The objective of this thesis project was to develop an automated test
case execution model and to implement a prototype as a case study.
The prototype was also evaluated and incremental steps for future
development suggested.

1.5 Structure of the Report
Chapter 2 gives a brief introduction to the test environment, which is
referred to throughout the report.

Chapter 3 gives an introduction to the technologies used in this project;
XML for test case representation and Jini/JavaSpaces as a mechanism
for distribution of test cases.

Chapter 4 introduces and describes the Integration and Verification
Test Model (IVTM) that is one of the objectives of this project.

Chapter 5 describes the prototype implementation of the model
introduced in chapter 4.

Chapter 6 gives a brief evaluation of the model and implementation
that are results of this project.

Chapter 7 concludes the work and gives suggestions on the future
development.

Test Environment

9

2 Test Environment

2.1 IP-BSS (Internet Protocol based Base Station
Subsystem)

The Internet Protocol based Base Station Subsystem (IP-BSS) is an IP
based system able to handle a combination of wireless packet data
(GPRS and EDGE) and circuit switched GSM services. An overview of
the IP BSS system is shown in figure 2 – 1.

2.1.1 IP-BSS Architecture

The IP-BSS architecture comprises the following system components:

The IP-BSS architecture comprises the following system components:

• Radio Network Server (RNS)

The Radio Network Server handles all radio network functions (for
example, handover and channel allocation). The RNS has an open
platform architecture and is built on Ericsson’s new server based
platform. The network applications are written in Java and the
operating system is Solaris. The RNS hardware consists of a high
performance, open industry standard multiprocessor platform.

• IP Network
The IP network consists of real-time routers that have been
specially designed for the real-time environment in a radio access
network. The IP transport layer enables the non real-time data
traffic to be run with lower priority within the BSS network
“on top of” real-time traffic, such as speech. This leads to increased
flexibility in the dimensioning and significant transmission savings

Figure 2 - 1: Illustrating the different nodes of the complete IP-BSS
system. The separate parts are developed by different units within
Ericsson, in parallel. The main focus of this project is the verification of
functionality in the Radio network Server (RNS) node.

RBS
BSS
GW

O&M

RNS

IP Network

Test Environment

10

compared to circuit switched implementations, where bandwidth is
peak allocated

• BSS Gateway
The BSS Gateway connects the base station subsystem to the core
network. It connects the IP and circuit switched networks.

• Radio Base Station (RBS)
The Radio Base Station is the link between the wireless and the
wired networks.

• Operation and Maintenance System (O&M)
Used for configuration and maintenance of the system.

2.1.2 Verification of Functionality
The verification team does the testing concerned by this project. The
objective is thus to aid them in their work in assuring correct
functionality of the product. The verification of functionality is within
this scope performed on node level were all components of the system,
except the ones that are being tested, are simulated. The test
environment is depicted in fig. 2 – 1.

The different parts of the system, the nodes, are developed in parallel,
which makes it hard to test the whole system before all the nodes are
finished. This problem is addressed by simulating all nodes of the
system except for the nodes that are currently being tested. All nodes
have well defined interfaces of communication, which makes this
simulation possible. There are a number of test tools available for
simulating traffic in this environment each with its benefits and
drawbacks. One common thing for these tools is that they require
implementation of advanced test programs to do the simulation. To set
up the environment and execute test cases is a time-consuming process
and on every new release of the system regression tests have to be
performed in order to verify that the old functionality is still correct.

2.2 Documents Related To Testing
Amongst the routines for testing Ericsson uses a document structure
that describes the expected functionality as well as the test cases that
are supposed to be passed. The documents are written in MS Word. To
be able to understand the test process an understanding of these
documents are important. To be able to automate the test process
these documents should be converted to a format that is more suitable
for parsing and interpretation by a computer program.

Test Environment

11

Simplified overview of the documents related to testing:

FS, Function Specification:
• Description of the included functions.

TS, Test Specification:
• Background/description (text, images).
• Configuration needed, hardware/software components that should

be included.
• Environment, other hardware/software that has to be set up.
• Code (start-up script files).
• Test cases.

 TI, Test Instruction:
• code, occasionally plain text for manual execution.

TC, Test Case:
• subset of the Test Specification, contains description plus start-up

scripts

2.3 Tools Used For Testing
Several different tools are used in the test process. Here is an overview
of the most commonly used tools and a short description of where in
the development process they are used.

Tools used for testing:
• TSS 2000, used by the verification team. Advanced tool designed to

simulate parts of a GSM system. Test programs are written in its
own language, called SMILE. The TSS 2000 is used in
communication through packet-based interfaces and can be used to
generate large amounts of network traffic.

• Function Test Driver, used by the verification team. Is basically a
Java API that is used to create test programs in Java. The Function
Test Driver is currently used in communication through CORBA
interfaces.

• Test Harness, used by both developers and the verification team.
Offers fast feedback about the correctness of the basic functionality.
The Test Harness is used in communication through packet-based
interfaces and can in some situations be used instead of the TSS
2000.

• JUnit [27], used by developers. Designed for verification of
functionality on code level.

The TSS 2000, the Function Test Driver and the Test Harness are
Ericsson internally developed products.

Overview of Technologies

12

3 Overview of Technologies
This chapter gives a brief introduction to the different technologies
used in this project. An introduction to XML is followed by an
introduction to Jini and JavaSpaces.

3.1 XML Introduction
“The Extensible Markup Language (XML) is a subset of SGML” [2].
“XML has been designed for ease of implementation and for
interoperability with both SGML and HTML” [2]. XML is a markup
language, like e.g. SGML and HTML, which means that information is
contained within tags, see fig. 3 – 1. A tag is a string surrounded by ´<´
and ´>´ characters.

XML can be used to describe and to store data. The basic idea is that
the tags are created using names that reflect the content of the tags,
much like how a table in a relational database1 should be designed.
The data is then in a sense marked and can easily be interpreted or
searched. XML is often called a meta language, which means that it is
a language that can be used to create other languages, often referred to
as XML dialects. An XML dialect is defined through a Document Type
Definition (DTD) [2] or an XML Schema [4]. To create an XML dialect
a set of tags is defined along with the structure of the XML document.
This definition can then be used to validate that a certain document
only contains valid tags and has a valid structure, i.e. to validate that
the document conforms to a certain XML dialect.

1 This is actually a quite common comparison although there are, of course, big
differences. Notable is that it is often a straightforward process to represent a table
in a relational database in XML but not to do the opposite, i.e. to store an XML
document in a relational database, due to the tree structure of the XML.

<?xml version=”1.0”?>
<Person>
 <Name>

 Sven Svensson
 </Name>
 <Address>
 Kistagången 26, 144 23 Kista
 </Address>
</Person>

XML declaration

start tag

data

Figure 3 - 1: Example XML document.

end tag

Overview of Technologies

13

To create an XML document, as described above, is a very simple task2
and this is part of what makes it so useful and popular. What makes
XML really powerful are the possibility to automatically validate
documents, the possibility to process XML in computer programs in a
standardized way as well as the possibility to convert XML documents
into e.g. HTML or PDF by applying a style sheet that is independent of
the data contained in the document.

3.1.1 Validating XML
Validating XML means ensuring that a document conforms to a given
standard, or dialect. This means that the structure of a specific type of
XML documents should be specified beforehand. Every document that
conforms to this specification, XML Schema or Document Type
Definition3 (DTD), is a valid XML document of that type.

3.1.2 Parsing XML
XML documents can be parsed by computer programs. To parse a
document means that a program traverses the document and takes
different actions that reflect the content of the document. Programs
that can be used to parse XML documents are generally referred to as
XML parsers. There are several APIs available for parsing and
processing XML documents. This gives a system the ability to parse
XML documents, manipulate the content (e.g. add or remove data) and
then write the data back to a new XML document. There are XML
parsers available, for free, for virtually every well-known programming
language.

3.1.3 Converting XML
The Extensible Style sheet Language (XSL) [9] is an XML based
language that can be used to convert an XML document into a
document of another type. Conversions between two dialects of XML,
from XML to HTML or XML to PDF are some of the applications of
XSL. Some web browsers have built in support for XML to HTML
conversions, for example Internet Explorer 5 and Mozilla.

XML can easily be converted to HTML by applying an XSL style sheet.
In this way the data is contained in the XML file and the style, i.e. the
layout, is described in the XSL file. This means that the content of a
web page can be altered or exchanged without changing the
appearance of the page and vice versa. XML thus provides a separation

2 I.e. technically speaking, it does require a lot of work to make an elegant and
functional design when dealing with complicated issues.
3 See chapter 3.5 for more information about XML Schemas and DTDs.

Overview of Technologies

14

of data and layout, which greatly simplifies the maintenance of a web
page with content that frequently changes.

3.2 SAX, DOM and JDOM
In order to be able to read and manipulate XML documents
programmatically an Application Programming Interface (API) is
needed. The most well known are the Document Object Model (DOM)
[7], the Simple API for XML (SAX) [6] and JDOM [18].

The document object model is a W3C [20] standard and provides an in-
memory tree representation of XML documents. That is, the nodes of
the XML documents are represented as objects arranged in a tree
structure. The tree can be edited dynamically; nodes can be added or
removed and the modified tree can then be stored as a new XML
document. The DOM API can also be used to create an XML document
from scratch based on input from any desired source of information.

The simple API for XML is not a W3C standard but has due to its
enormous popularity reached the status of a standard. SAX does not
build an in-memory structure representing an XML document, as the
DOM does, instead it sends events to registered listeners as the
document is traversed. It is then up to the program that receives these
events to react on them in whatever suitable way. The simple API for
XML is thus a more lightweight API that can be used whenever an in-
memory representation of a document is not needed.

JDOM is a new open source Java API for reading, writing and
manipulating XML from Java programs. JDOM has similarities with
the document object model (DOM), the document is represented as a
tree structure built up of Java objects. JDOM is designed from the
start to be implemented in Java and therefore offers more advanced
capabilities than the general DOM. For example extracting nodes from
the JDOM tree is simpler than from the DOM tree. Furthermore it is
easier to use JDOM to create XML documents from scratch, building
their structure dynamically, than DOM. JDOM is not a standard but a
JDOM representation can easily be converted into a DOM repres-
entation if required.

3.3 Choosing XML Parser
There are a vast number of Java XML parsers, most of which are free
of charge. Most XML parsers come bundled with a set of utility classes,
an API, that simplifies XML processing. The parsers and the
corresponding APIs can be combined in any way so that, e.g., the
fastest parser can be combined with an API that suits a specific need.
The most well known parsers written in Java are:

Overview of Technologies

15

• The Java Project X Parser, developed by SUN but donated to the
Apache Xerces Project. Supports XML 1.0. No XML Schema
support. Requires jdk1.1 or later.

• The XML4J Parser, developed by IBM but donated to the
Apache Xerces Project. Has a lot of nice features, such as a DTD
class. Requires jdk1.1 or later.

• The Xerces-J Parser, is devloped as an open source project by
The Apache Group. Both XML4J and JAXP (the java project x
parser) will be integrated in Xerces-J why it will be the most
complete parser. Supports part of the XML Schema draft and
allows parsing of DTDs. Requires jdk1.1 or later.

• JDOM, JDOM is not a parser, it actually uses the Xerces-J
parser, it is a Java API developed as an open source project.
JDOM is designed and written exclusively for Java and makes
use of the reflection and collection APIs why it is the most easy
to use XML API for Java. Requires jdk1.2 or jdk1.1 with the
Collections extension.

3.4 XML on the Network
A popular application of XML is as an information container for
communication between different systems that exchange data. Here
XML is very popular because of the easy way to specify and verify that
data conform to the various interfaces of the applications. There is a
downside, however, a message-based protocol with messages described
in XML introduces a lot of overhead since the tags and attributes
themselves constitute a large fraction of XML documents.

3.5 XML Schemas and DTDs
A DTD provides applications with advance notice of what names and
structures can be used in a particular document type. Using a DTD
means you can be certain that all documents belonging to a particular
type will be constructed and named in a conformant manner. However,
DTDs are very limited. For example it is not possible to restrict the
range of a numeric field, just to specify the type of the field. Also, DTDs
are written with its own special syntax. An alternative to DTDs are
XML Schemas which is a much more powerful way to define the
structure of a document. XML Schema is a relatively new concept
though, the specification is not finalised yet. Since the specification is
not finalised the standard validating parsers do not yet support XML
Schemas.

Overview of Technologies

16

<TestCaseNo>123456789</TestCaseNo>

<ProductID>J123456</ProductID>

Figure 3 – 2: An XML document fragment.

<!ELEMENT TestCaseNo (#PCDATA)>

<!ELEMENT ProductID (#PCDATA)>

Figure 3 – 3: DTD fragment describing elements in figure 1.

<element name= TestCaseNo type= positive-integer />

<element name= ProductID type= ProductCode />

<simpleType name= ProductCode base= string >
 <pattern value= [A-Z]{1}d{6} />
</simpleType>

Figure 3 – 4: XML Schema fragment describing elements in figure 1.

Figure 3 – 2 shows what could be a fragment of a header in an XML
document representing a test case. There are two tags, one that holds
the unique identifier of a test case and one that holds the product
identifier. Figure 3 – 3 shows how the declaration of these tags could
be represented in a DTD. The TestCaseNo and the ProductID are
declared as elements, i.e. tags, and their type as PCDATA, which is an
abbreviation for Parseable Character Data. In figure 3 – 4 we can see
another XML document which in fact is the same element declarations
represented in an XML Schema. Here the type of the TestCaseNo is
declared to be an integer and the type of the ProductID is declared to
be a string which is comprised of exactly one letter between A – Z and
six decimal numbers.

This example illustrates one of the great benefits of XML Schema over
the DTD. Using the DTD as illustrated in figure 3 – 3 leaves it up to
the application programmer to validate that the ProductID has the
correct format. Doing this validation on application level not only
introduces the problem of having to code validation logic in every
application that will ever interpret this XML document but also makes
it harder for the XML document creator to validate that the XML
documents conforms to the rules set by the applications. Using XML
Schema eliminates these problems since the validation can be done
directly by the XML editor as well as by the XML parser.

Overview of Technologies

17

XML Schemas are written in XML and this is an advantage compared
to DTDs. This means that the definition of an XML document can be
parsed and interpreted by a program using the same tools as for the
document itself.

3.6 Jini
Jini [23] is a technology from SUN Microsystems that was designed to
let electronic devices interact with other electronic devices. Through a
protocol common to these devices they would be able locate each other
and invoke services that are made available. A common example is
when a Jini enabled camera is connected to a Jini network it can, for
example, find a printer and let the user print the photos without the
need of any manual configuration. The Jini architecture comprises
mainly three types of components:

• Services, a device that implements a Jini Service can be located
automatically and will let clients interact with it in a specified
way.

• Clients, Jini Clients can use the Jini Lookup Service to find
services on the local network and, when found, ask these
services to perform certain tasks.

• Lookup Service, a Jini Service that is used to locate other
services and to store so-called proxy objects that let the clients
interact with the services.

Figure 3 – 5: the main compnenents of the Jini architecture.

lookup
service

service
provider client

service
proxy

registrar

service
implementation

registrar

service
proxy

3

2 5

6

7

1 4

Overview of Technologies

18

The Lookup Service lets clients find the available services. Figure 3 – 5
shows the flow of events when a service is registered with the lookup
service and a client finds this service and calls it.

1. The service provider sends a multicast message on the network.
2. The lookup service answers by returning a registrar object that

the service provider can use for further, direct, communication
with the lookup service.

3. The service provider uploads a service proxy to the lookup
service. The service proxy can be anything in between a proxy
object that forwards all method calls, performed by the client, to
the service implementation on the service provider to a full
implementation of the service that is executed solely on the
client side.

4. The client sends a multicast message on the network.
5. The lookup service answers by returning a registrar object that

the client can use for further, direct, communication with the
lookup service.

6. The client asks for a certain service and the lookup service
returns the service proxy object.

7. The client starts using the service and depending on the
implementation of the service proxy the proxy might do remote
calls to the service object on the service provider.

Following are two especially interesting features of the Jini
architecture that should be stressed.

• Neither the client nor the service provider need to know the
location (i.e. IP-address or hostname) of neither each other nor
the lookup service. The dynamic lookup service makes it possible
to extend the system with both new services and new clients
without having to alter any system properties, such as
configurations.

• The implementation details of a service are not known by the
client. Instead the client communicates with the service proxy
through a well-known interface. If communication between the
service proxy and the service implementation is necessary the
service proxy will handle all the details transparently.

Overview of Technologies

19

3.7 JavaSpaces
The JavaSpaces [24] service is a distributed object storage strongly
influenced by the Linda4 systems. SUN Microsystems provides the
specification and has a publicly available implementation of the
specification, called outrigger. The JavaSpaces service fits into the Jini
architecture by being a Jini service. By combining Jini and JavaSpaces
the JavaSpaces service’s user can use the Jini lookup service to locate
the JavaSpace. This reduces the amount of configuration that has to be
performed in order to get the system up and running.

The JavaSpaces service can be seen as a distributed object database in
which objects can be stored and retrieved from. There are major
differences, though, for example a simple matching mechanism is used
to retrieve objects from the JavaSpace as opposed to the querying
performed at databases.

An object that can be stored in a JavaSpaces service is called an Entry
and implements the “Entry interface”. When an entry is stored in the
JavaSpace it can be retrieved by sending a request to the space
including a template object. The JavaSpace performs a matching
operation on the entries contained in the space, using the template,
and if the matching is successful the entry that matched the template
is returned.

The JavaSpaces service can be seen as a tool for writing distributed
algorithms, it provides mechanisms for synchronisation of threads and
transactions.

4 “Linda” is the name of a public domain technology originally propounded by Dr. David Gelernter of
Yale University [26].

Overview of Technologies

20

The JavaSpaces service provides a small set of operations that can be
performed on it. All operations are atomic which means that the
application programmer does not have to consider thread
synchronisation issues. These operations are listed in table 3 – 1.

Operation Result

read
returns a copy of an entry in the space, does not return until such an
entry exists

readIfExists returns a copy of an entry in the space if it exists

take
takes an entry from the space, does not return until such an entry
exists

takeIfExists takes an entry from the space if it exists

write writes an entry to the space

notify
tells the space to notify the caller when an entry of a certain type is
entered into the space

snapshot returns a snapshot of a single element in the space

Table 3 - 1: Listing of the required operations of a JavaSpaces service
according to the specification.

The JavaSpaces system design is strongly influenced by Linda
systems, which support a similar model of entry-based shared
concurrent processing. JavaSpaces systems are similar to Linda
systems in that they store collections of information for future
computation and are driven by value-based lookup. They differ in some
important ways.

Integration And Verification Test Model (IVTM)

21

4 Integration And Verification Test Model
(IVTM)

This chapter describes a model for automated test case execution. The
focus is on the representation of test cases as well as on the
distribution of test cases amongst the test tools.

4.1 Design Issues
The basic idea was to use existing test tools for testing and to add a
new system that can control these tools remotely. Following is a list of
requirements that was present at early stages of the project.

• Test programs that had been written for a specific test tool
should still be used in the automated model.

• It should be possible to execute tests that make use of one or
several test tools running on one or several networked
machines.

• It should be possible to execute the same test case in different
test environments with different configurations, e.g. in the early
stages of product development several parts of a system may be
simulated in software but the more mature the product becomes
the less parts must be simulated.

4.2 Overview
An automated test case constitutes three phases of which the first is
the set-up phase, the second is the execution phase and the third is the
teardown phase. The set-up phase is handled by the Integration and
Verification Test Model (IVTM), see fig. 4 – 1, and includes setting up
the test environment, starting the test tool and loading the test
program code into the test tool. The test tool handles the execution
phase and during this phase the IVTM is idle. The teardown phase is
handled by the IVTM and includes stopping the test tool, collecting the
result of the test and cleaning up the test environment. To be able to
perform automated tests two requirements are imposed on the test
programs; it must be possible to automatically determine when a test
case is finished and it must be possible to determine the result of the
test case, to determine if it is successful or not.

A basic overview of the test case execution process is depicted in figure
4 – 1. The central part is the test tool that performs the actual testing.
A test program contains the instructions that are needed for execution
of a specific test case. The test tool is in some specified way connected
with the test object. IVTM is the tool that controls the automatic
execution, it is responsible for starting the test tools and setting up the
test environment as well as collecting the result of the test cases and
generating a report that reflects the status of the tests.

Integration And Verification Test Model (IVTM)

22

Figure 4 - 1: illustrating the relationship between test tool, test
program, test object and the test model.

4.3 Representation of Test Cases
The test cases are described in a document called Test Specification
which is a general document describing the test cases that has to be
executed in order to verify correct functionality of the product. The test
specification is currently written using MS Word, which results in a
document format not suitable for interpretation by computer
programs. Instead this model suggests using another format, such as
XML, that can easily be interpreted and manipulated from a computer
program. The test case document will constitute the input information
to the automatic test system as well as it should be readable to anyone
who need to understand what functionality the test verifies. The test
case documents should be stored in a database or file system.

4.4 Tool Handler
To make the system depicted in figure 4 – 1 easier to extend with new
test tools the IVTM is split up into two separate systems, see figure 4 –
2. The first system, the Test Case Handler, is responsible for loading
the test case documents from the database, or file system, and for
parsing the test case documents as well as collecting the test results
and generating reports. The other system, called Tool Handler, is
responsible for setting up the test environment and controlling the test
tool. This set-up is illustrated in figure 4 – 2. The tool handler is
strongly coupled with its corresponding test tool. For every test tool
that will be part of this model there will have to be a Tool Handler that

Test pgm

IVTM

instructions

result

 Test
Object

Test
Tool

DB

Integration And Verification Test Model (IVTM)

23

can control the test tool. This, in turn, requires that the test tool can be
remotely controlled by another system.

The Tool Handler may have the responsibility to set up the test object
prior to executing a test case. This means that before a test case can be
executed the Tool Handler sets up both the test object and the test tool
used. The test object may have more than one interface for
communication, e.g. one CORBA interface and one interface that
communicates through a simple UDP based protocol. This introduces
the need of using several different test tools, connected to the same
test object, and participating in the same test case. This is also
illustrated in figure 4 – 2 where two test tools are connected to the
same test object. The test tool, or tools, can be running on either the
same machine as the test object or on dedicated machines depending
on the type of test case.

Every Tool Handler must have a well-defined interface for
communication. The Test Case Handler communicates with the Tool
Handlers through a message-based protocol where the messages
contain test instructions or results from the test case executions.

Tool
Handler

Figure 4 - 2: illustrating the role of the tool handlers in the system model.
The test case handler is connected to a database or file system where test
case documents and reports are stored

IVTM
Tool

Handler

Tool
Handler

Test
Case

Handler

Test pgm

instructions

result

Test
Tool

Test pgm

instructions

result

Test
Tool

Test

Object

DB

. . .

Integration And Verification Test Model (IVTM)

24

4.5 Distributing Test Cases
A test case may involve one or several test tools running on one or
several networked machines connected to the test object. Therefore, it
must be possible to execute test cases that involve several test tools
running on different machines on the network. To achieve this some
kind of mechanism for distribution of test cases had to be added to the
model. The solution became to let the Test Case Handler partition the
representation of a test case into one or several tasks. Every task
would then contain all the information needed to execute the part of
the test case that is aimed for one single test tool. The task could then
be assigned to a Tool Handler.

The communication between Test Case Handler and Tool Handlers can
be performed using any mechanism that allows message passing
between systems running on different machines. Examples of such
mechanisms are CORBA and Java’s RMI. From a performance point of
view the choice of communication mechanism is not important since
the actual test case execution will dominate in the total execution time
of the system.

The protocol for communication between the Test Case Handler and
Tool Handlers will be a simple form of a send-expect protocol, i.e. a
protocol that lets the communicating parties send a message and then
wait for the, previously specified, expected answer. In the
communication model of Test Case Handler to Tool Handler the Test
Case Handler sends a task message to a Tool Handler and then
expects a result message in return. The task message contains the
information extracted from the test case document and the result
message can contain anything from a comma-separated list of strings
to an XML document.

4.6 Extending the Model With A New Test Tool
The test environment is constantly changing to reflect the progress of
the work on the product. To make the process of incorporating a new
test tool into this model as simple as possible the mechanisms for
interaction with test tools has to be as general as possible. It was
decided that when a new test tool is introduced its corresponding Tool
Handler should announce itself on the network. This announcement
should include an interface description as well as the location, e.g.
hostname, of the machine it is currently running on. By letting the
Tool Handlers announce themselves as described introduces some very
interesting possibilities. Firstly, there is no need to inform the Test
Case Handler about the location and interfaces of the Tool Handlers,
all necessary information will be passed on to a suitable Tool Handler
based on some criteria specified in the test case document. Secondly,
the introduction of a new test tool does not require any extra

Integration And Verification Test Model (IVTM)

25

configuration or a restart of the system. Thirdly, if some of the system
components, e.g. tool handler or test tool, goes down due to some
failure the rest of the system will be left intact and the test case
handler may find another test tool that can execute that test case.

4.7 Requirements on Test Tools
There are some requirements that have to be met in order to make this
model successful. Following are requirements, imposed by this model,
on the test tools:

• It must be possible to remote control the test tools.
• The test programs must be designed to let the Test Case

Handler know when the test case is finished.
• The test programs must be designed to let the Test Case

Handler know if the test case is successful or not.

Implementation

26

5 Implementation
The previous chapter described a model for automatic test case
execution. This chapter will take on were that chapter ended and
explain how this model was implemented and motivate the design
choices made. The two major parts discussed in the previous chapter
were how the test cases should be represented and how the
distribution of test cases amongst the test tools should be handled.
This chapter describes the components of the system and motivates the
design choices made.

5.1 System Overview
It was early in the project decided that XML would be used for
representation of test cases. XML is a widely spread standard with
numerous application programming interfaces and parsers available.
XML is both suitable from an application programming point of view
as well as it offers the features of validation that is necessary from the
test case creator’s, i.e. the user’s, point of view. Also, the test cases can
be converted into other formats, using XSL (see chapter 3.1.3), to be
readable to anyone not familiar with XML.

XML is also used in the communication between the different parts of
the system. The Tool Handlers must have a well-defined interface for
communication. This interface is described using a DTD or XML
Schema, although the current implementation only supports DTDs.
The Test Case Handler communicates with the Tool Handlers through
a message-based protocol where the messages contain the partitioned
XML representations of test cases, i.e. tasks, or results from tests.

The mechanism for distribution of test cases, or tasks, was chosen to be
the Jini service JavaSpaces.

The JavaSpaces service was chosen to handle the communication
between the Test Case Handler and the Tool Handlers. Every message,
e.g. tasks or results, are placed in the JavaSpaces service and picked
up by the recipients. This solution makes it possible for the Test Case
Handler to communicate with the Tool Handlers without knowing
their location within the network. Using the JavaSpaces service to
distribute the test cases also makes it possible to do automated testing
using an arbitrary number of test tools executing simultaneously. The
Test Case Handler can in fact be seen as a compute server, which
distributes tasks among its clients, or servants. Each Tool Handler
picks up tasks at its own pace, determined by the speed of the
computer it runs on as well as the size of the task. The number of
running Tool Handlers can be altered during execution in order to
better adapt to the number of pending tasks. When there are only a

Implementation

27

few pending tasks it may be considered enough to have just one
running test tool and when there are a lot any number of test tools can
be started.

Using the Jini lookup service to locate the available JavaSpaces
services on the network brings the possibility to automatically detect
what test tools are available at a given time. Also, the system could be
extended with new test tools dynamically since no part of the system is
dependent of another part.

The process of testing can be viewed as two isolated processes of which
the first is the test case creation process and the second the test case
execution process. Each of these two processes is described in more
detail in the next two sections.

See table 5 – 1 and figure 5 – 1 for an overview of the components
discussed in the next two sections.

Implementation

28

System component

Description

DB Database (or file system) that holds the XML
test specifications.

Test Case Handler

Reads a test case in XML format from a
database or file system. Converts the XML
into tasks that are put into the JavaSpace. Is
also responsible for collecting the results from
the tests and generate reports.

JavaSpace

Holds all pending tasks, allowing the Tool
Handlers to fetch tasks in whatever pace they
like.
Characteristics:
 - Distributed storage.
 - Handles transactions.
 - Advanced technology with high abstraction
to the developer.

Jini Loockup Service

Lookup Service that is used to locate the
JavaSpace. The Lookup Service itself can be
located by sending multicast messages on the
network.

Tool Handler

A Tool Handler is a program that is used to
control a specific test tool.
Common characteristics are:
 - has a well defined interface.
 - has a DTD that defines its interface.

Test Tool

Any tool that can be used for performing tests
on either hardware or software components,
for example:
 - TSS 2000
 - Function Test Driver 2000
 - JUnit
 - Test Harness

DTD Generator

The DTD Generator collects Tool Handler
interface definitions from the network and
generates a DTD that can be used to create
XML test cases using any XML editor.

Table 5 - 1: overview of the components that are part of the automated
testing environment.

Implementation

29

5.2 Test Case Creation

5.2.1 Test Case Representation
The test cases are represented as XML documents which makes it
possible to have the Test Case Handler interpret the information
contained in the documents. The test cases are created using an XML
editor. The XML editor uses a document type definition (DTD) to aid
the user in making a valid XML document. This DTD is generated by
the DTD Generator discussed in section 5.2.4. The test case document
consists mainly of the three sections set-up, execution and cleanup.
The configuration part is independent of the execution part in order to

Test Case
Handler

JavaSpaces
Service

DTD
Generator

Jini
Lookup
Service

Tool
Handler

Test Tool

IP Network

DB

Tool
Handler

Test Tool

Figure 5 – 1: The different system components does not know neither
what other components are running on the network nor their location.
Still they can interact through the common JavaSpaces Service. The
JavaSpace is located through the Jini Lookup Service, which is located
by sending a multicast message and then wait for a reply.

Implementation

30

make it possible to execute the same test case in different
environments with different configurations.

The XML representation of a test case constitutes the input
information to the automatic test system.

5.2.2 Generating XML
Coding XML in a text editor is something you generally want to avoid.
There are mainly two reasons for this. Firstly, to make a document
that conforms to a specific DTD or XML Schema can be tricky if you
are not used to XML coding. Secondly, the readability of an XML
document is not very high since a relatively large portion of the
document consists of tags and attributes. Instead you want to use an
XML editor or generate the XML document automatically from some
other document type.

An XML editor is an editor that can be of big help when creating XML
documents. There are a large number of XML editors, e.g. XMetaL
[23], on the market, enough for everyone to find an editor that suites
their needs. There are XML editors that are free, developed as open
source projects, as well as more expensive ones with support for
SGML. A lot of these editors are based on the same concept, an
expandable tree in which all nodes can be overviewed and edited as
well as a dedicated area for text input. Usually there is also the
possibility to validate a document against the DTD, browse the
generated XML and sometimes to design and apply style sheets.

5.2.3 The Test Case Document
In fig. 5 – 2 we can see a test case represented as an XML document.
We can see the title, number and who prepared it as well as that it
uses exactly one test tool, the TSS2000.

An XML document is arranged in a tree structure, this can be seen in
figure 5 – 2. The root node of the XML tree is the Instruction node. The
instruction node, in turn, contains several other nodes called Header,
Purpose, Prerequisites, Requirement, Preparation and Implementation.
Some of these nodes also contain nodes while other contain text. The
header section of the document contains information necessary to
identify the document as well as who prepared it and who approved it.
The prerequisites and requirement tags are not used in the automated
testing, they are only present for MS Word compatibility. The
preparation section is used to declare what tools are used in the test
and to specify in what environment the test is to be executed. The
implementation tag contains the instructions used for the execution,
first the set-up, then the execution and last the teardown section. Each

Implementation

31

of the set-up, action and teardown tags contain one or several
instructions and then a result tag.

The test case document is partitioned into one or several tasks that are
assigned to one or several Tool Handlers. The document illustrated in
figure 5 – 2 is partitioned into three tasks, with a mutual restriction
regarding in what order they may be executed. The three tasks
correspond to the sections set-up, action and cleanup. The instructions
contained in the three sections is depending on what Tool Handler they
are to be sent to, i.e. the XML used in these sections is defined in the
corresponding Tool Handler interface definition. This means that the
instructions used in the test case document depend on the Tool
Handler implementation.

Implementation

32

 <?xml version="1.0" ?>
<Instruction>
 <Header>
 <No>1/152 41-FAY 223 10</No>
 <Title>3.1.1, Test case: Requesting Full rate Speech version 1, Successful</Title>
 <Prepared>Britney Spears</Prepared>
 <Approved>Eminem</Approved>
 <Date>2000-09-18</Date>
 <Rev>PA89</Rev>
 </Header>
 <Purpose>Sending 'Assignment Request' with Full rate Speech version 1, which is a
 supported Service, is send to RNS.</Purpose>
 <Prerequisites>Add an extra cell.</Prerequisites>
 <Requirement> Ref. 9-2</Requirement>
 <Preparation>
 <Tool>
 <TSS instance="tss01">Used to simulate MS, BTS, AGW and MSC.</TSS>
 <FTD instance="ftd01">Used to add an extra cell.</FTD>
 </Tool>
 <Environment>
 <Clearcase view="erardlh_view" />
 </Environment>
 </Preparation>
 <Implementation hostname="purple103.era-a.ericsson.se">
 <Setup instance="ftd01">
 <FTDriver>
 <TestSuite>cmmo.CmMoSuite</TestSuite>
 </FTDriver>
 <Result>
 <Output test_program="" timeout="120" />
 <Description>Successful if no errors are reported.</Description>
 </Result>
 </Setup>
 <Action instance="tss01">
 <TSS2000 useAdapter="true">
 <File>ASSIGNMENT</File>
 <Parameters>
 <Parameter test_program="Assignment_MSC"
 param_name="FULL_RATE_Version1" value="1" />
 </Parameters>
 </TSS2000>
 <Result>
 <Output test_program="Assignment_MSC" timeout="120">Assignment
 completed</Output>
 <Output test_program="Assignment_MSC">Testcase 124 completed</Output>
 <Description>If the 'Assignment Request' is successfully terminated, an
 'Assignment complete' will be send to the MSC.</Description>
 </Result>
 </Action>
 <Cleanup instance="ftd01">
 <FTDriver>
 <TestSuite>cmmo.CmMoSuite</TestSuite>
 </FTDriver>
 <Result>
 <Output test_program="" timeout="120" />
 <Description> Successful if no errors are reported </Description>
 </Result>
 </Cleanup>
</Implementation>

</Instruction>

Figure 5 - 2: An XML document representing a simple test case.

set-up

execution

preparation

teardown

Implementation

33

5.2.4 The Report Document
The Tool Handlers reports the outcome of a test case by sending a
report message to the Test Case Handler. The Test Case Handler
collects all these report messages and creates a complete report that
contains the results of all test cases. An example of such a report is
shown in figure 5 – 3. The report contains a header with information
relevant for all test cases as well as test records that reflects the
outcome of individual test cases. This report is represented in XML
and can be transformed into other formats, such as HTML or PDF. The
Test Case Handler by default creates reports in XML, HTML and PDF.

<?xml version="1.0" encoding="UTF-8" ?>
<Report>
 <Header>
 <No>3/385 45-GHJ 345 77</No>
 <Title>Testsuite ASSIGNMENT</Title>
 <Prepared>Britney Spears</Prepared>
 <Approved>Eminem</Approved>
 <Date>2000-09-18</Date>
 <Rev>PA89</Rev>
 <TestDate>Fri Nov 10 12:59:16 CET 2000</TestDate>
 </Header>
 <TestRecords>
 <TestRecord>
 <Title>3.1.1, Test case: Requesting Full rate Speech version 1,
 Successful</Title>
 <Status>OK</Status>
 <Reason>
 <Row>Assignment Completed</Row>
 <Row>Testcase 124 completed</Row>
 </Reason>
 </TestRecord>
 <TestRecord>
 <Title>3.1.2, Error case: MS reverted to old channel</Title>
 <Status>NOK</Status>
 <Reason>
 <Row>Timer Expired</Row>
 </Reason>
 </TestRecord>
 </TestRecords>
</Report>

Figure 5 - 3: Example of the report XML document created by the Test Case
Handler after a test case execution is finished.

5.2.5 The DTD Generator
To aid the user in the process of creating valid XML representations of
test cases a DTD is used as input to the XML editor. The DTD needs to
be updated every time a new test tool with a new Tool Handler is
introduced since the new Tool Handler may have its own set of
instructions. This set of instructions is represented as a DTD and
called interface definition. Every tool handler has an interface
declaration represented as a DTD document. The DTD Generator
collects all interface definitions of all Tool Handlers and puts them
together with a general DTD into one “master” DTD. The user then
uses this “master” DTD when creating test cases using an XML editor.

Implementation

34

This makes it possible to extend the test environment with new test
tools without affecting the rest of the system. No configuration changes
are necessary and no currently running test tool or Tool Handler has to
be restarted.

The main motivation for using this method with a separate interface
definition for each Tool Handler is that it eliminates the need to
specify a “general” instruction set that is suitable for every possible
Tool Handler Implementation. Instead every Tool Handler can use its
own custom instruction set, which simplifies the development of new
Tool Handlers.

5.2.6 Future Improvements
Instead of using DTDs XML Schemas should be used. Using XML
Schemas would make the DTD Generator more flexible and
extendable. Problem is there are currently no XML editors supporting
XML Schema.

Instead of using an XML editor to write test cases a new application
should be developed. This new application should take an XML
Schema and from it generate a graphical user interface that can aid
the user in creating valid test cases in a higher degree than is possible
with an ordinary XML editor. The application should adapt to the
schema and present the user a graphical user interface that is
reflecting the XML Schema. Problem is there has not been enough
time to implement this yet.

Implementation

35

5.3 Execution of Test Cases

5.3.1 Execution
The event flow when executing test cases is depicted in figure 5 – 4.

1. The Test Case Handler parses test cases represented as XML
documents and creates task objects. A task object consists of an
XML document that contains information aimed at either a
specific type of test tools or a specific test tool instance. The
example document from figure 5 – 2, for example, will be
partitioned into three task objects; one for each of the sections
set-up, execution and teardown. These three tasks originate
from the same test case why they will be grouped together and
picked up by the same Tool Handler. The set-up phase is
performed in order to ensure that the test object is in a certain
state when the actual test case is executed. Therefore, it is of
utmost importance that the set-up task is grouped with the
corresponding execution task.

2. The Test Case Handler then uses the Jini Lookup Service to
locate a JavaSpaces Service in which the task objects are placed.

3. All tool handlers on the same network can now access this
JavaSpace, by getting a reference from the Jini Lookup Service,
and query it for task objects. A query includes a template task
object including information on the type of task the Tool
Handler expects, for example it can include the hostname of the
machine and the name of the test tool. Once a Tool Handler
finds a test case in the JavaSpace it takes it.

4. The Tool Handler then extracts the relevant information from
the message and sets up the test environment. In the example of
figure 5 – 2 this includes acquiring the three task objects that
originate from this test case.

5. The Tool Handler then starts the execution of the test. In the
example of figure 5 – 2 the three tasks will now be executed in
the order they appear in the test case document.

Implementation

36

5.3.2 Report Creation
When the execution of a test case is finished the Tool Handler is
responsible for reporting the outcome of the test case. Figure 5 – 5
shows the event flow of the report creation process.

1. The test tool determines that the test case is finished.
2. The Tool Handler collects the result from the test tool and

creates a result object.
3. The result object is put in the JavaSpace.
4. The result object then is accessible by the Test Case Handler

who takes it from the space and creates a final report, which
includes the results from all test cases that originates from the
same test run.

5. The final report is then stored in the database.

Figure 5 – 5: flow of events when reporting result from test case.

Figure 5 – 4: flow of events when executing test cases.

Tool
Handler

Tool
Handler

Test pgm

Test
Tool

Test pgm

Test
Tool

 Test
Object

DB

JavaSpace

Test
Case

Handler

1

.

2

.
3

.
4

.

5

.

Tool
Handler

Tool
Handler

Test pgm

Test
Tool

Test pgm

Test
Tool

 Test
Object

DB

JavaSpace

Test
Case

Handler

1

.

2

.
3

.

4

. 5
.

Implementation

37

5.3.3 Communication Mechanisms and Leasing
The protocol used between Test Case Handler, Report Handler and
Tool Handlers is a message-based protocol with messages represented
in XML. The message body contains either a tool handler interface
definition, a task document or a result document.

When a Tool Handler is started it will post its interface definition in
the JavaSpace. Every message posted in the JavaSpace has a lease
time, which indicates for how long the message is valid. The Tool
Handler will renew that lease until either the message is removed
from the space or the tool handler is taken down. As soon as the
interface definition is posted the other systems will be able to use the
corresponding test tool and the Tool Handler starts looking for a task
message in the JavaSpace. To retrieve a message from the space a
request that includes a template message is sent to the space. The
template message is an empty message of the desired type. For
example, sending an empty task message results in retrieval of a
message containing a task document. When the JavaSpace receives a
request including a template message it performs a matching
operation on the entries it is currently holding. This matching
mechanism makes use of attributes in the messages, these attributes
enables a more fine-grained matching. Examples of attributes are the
hostname attribute, which specifies that this task message is aimed at
a specific host, and the group and order attributes, which specifies that
this task object is part of a certain group and that it must be executed
in a specific order within that group. Attributes can easily be added or
removed from the messages enabling easy extensions of the matching
mechanism.

The Tool Handler implementation is not restricted or controlled by any
specifications or interfaces. The only demands are that it must be able
to interact with the JavaSpaces service and that it communicates
through the task and report messages. The body of the task message is
the task XML document which is created using a specific Tool
Handler’s interface definition.

Evaluation

38

6 Evaluation
The model for automated verification of functionality was implemented
in Java as a prototype to illustrate the concepts and to evaluate the
design decisions taken. The evaluation shows that this model can
simplify the verification process.

The implementation of the prototype was done with a few critical
design issues in mind. These critical design issues were extendibility,
easiness of use and robustness.

• Extendibility – since the test environment frequently changes
the system must be flexible in terms of configuration. The test
case document should contain as little information about the
environment as possible and the system should not require a lot
of configuration.

• Easiness of use – the system must be easy to incorporate in the
every day work. This means that it must be a simple task to
create the test case documents as well as to execute them.

• Robustness – the system must be able to continue if one or
several test tools go down. The system cannot rely on the test
tools to be free from bugs and always work as expected.

It should be noted that execution and response times of the different
systems are not critical issues. This arises from the fact that the
execution time of the test tools are several orders of magnitude larger
than the execution time of the rest of the system. For example it does
not matter if the time to send a message to a Tool Handler is a
millisecond or a second when the execution time of the test tool is
about five minutes.

6.1 Describing test cases in XML
The choice of describing test cases in XML is based on several factors.
Firstly XML is simple to use, both from a system development point of
view and from the end users point of view. The basic criteria is that the
test cases must be represented in a format that can be interpreted by a
computer program and an alternative could be to represent test cases
as Java classes. This would be possible and in some cases it might be a
good idea. Since Java is a programming language it would let the test
case creator do virtually anything from a test case. There are a few
downsides to this approach, though, of which easiness of use is one.
The test case creator must have some knowledge of Java and the result
would not be a document readable by a non-programmer. When using
XML, on the other hand, the test case document can be converted to,
for example, HTML or PDF and read by anyone, a great benefit if test
cases are to be reviewed by non-programmers.

Evaluation

39

To describe the test cases in XML documents instead of MS Word
documents, as they are today, will be slightly more time consuming.
Mostly because of the more formal way a test case must be described in
order to let the Tool Handler interpret the information contained in the
document. The test case creator also must get acquainted to the XML
editor, but this should be pretty straightforward and not take much
time.

6.2 XML Editors
Using an XML editor together with a DTD to create test cases is a very
simple approach but it is not optimal when it comes to easiness of use.
The problem with XML editors is that they are to general, they do not
help the user to validate the content of a document – just to validate
the structure. To ensure that a computer program can interpret the
document both the content and the structure must be validated.

There are two possible solutions to this problem. The first solution
would be to use an XML editor that supports XML Schema. XML
Schemas are much more powerful than DTDs because they include,
amongst other things, the possibility to restrict values of the data in a
document as well as the structure. The problem with this solution,
however, is that there are currently no XML editors with XML Schema
support available. The other solution would be to create a new
customized application that takes an XML Schema as input and
dynamically creates a graphical user interface with which the user can
create XML documents by simply choosing values from, for example,
drop down boxes or lists of alternatives. The problem with this
approach is, of course, that it will take some time to create this
application and with the limited time of this project it has not been
possible to realize this solution

The XML editor in combination with a DTD has been chosen because
of the simplicity it brings from the development perspective.

6.3 The Distribution Mechanism
By adding Jini to the system we benefit through the possibility to
locate the currently available Tool Handlers automatically. This is an
important feature in a networking environment that frequently
changes since the need for configuration of the system is minimized.

By adding the JavaSpaces service to the system we achieve a way to
synchronise and distribute the test cases over the network. We also get
the possibility to incorporate an arbitrary number of test tools in the
test case execution.

Evaluation

40

The Test Case Handler and Tool Handlers communicate through the
JavaSpaces service. A different approach would be to implement them
as Jini services. Being Jini services they would have the ability to
locate each other and then perform direct communication through e.g.
RMI. This approach is harder to implement, though, and there are no
obvious benefits of such a solution. The JavaSpaces service also makes
the system easier to administrate since it is simple to query it for the
number of pending tasks and the number of active Tool Handlers at
any given point in time. Since every message is passed through the
JavaSpaces service it might end up as a bottleneck, but this is neither
very believable, the space can hold up to a million messages depending
on the machine it is running on, nor a great problem since a new
JavaSpaces service can be started and used in parallel.

 Conclusions and Future Work

41

7 Conclusions and Future Work
The objective of this thesis was to develop a model that allows
automated verification of functionality in the IP-BSS development
project. A prototype of the model for automated verification of
functionality was implemented to illustrate the concepts and to
evaluate the design decisions taken. The evaluation shows that this
model can simplify the verification process.

The model makes use of existing test tools for the test case execution
and the test cases are described in XML. It was shown how the Jini
technology can be used to dynamically locate and interact with
resources on the network as a means to achieve a dynamic and failsafe
system with minimal configuration requirements. Describing test cases
in XML proved to be both a fairly straightforward process from the test
case creator’s point of view as well as from the application developer’s.

The biggest challenge of a project of this kind is to integrate it into the
daily work. The model has proved to work in small scale but will need
continuous development efforts during the process of getting it into
everyday use. This arises from the fact that new test tools will be
incorporated in the model and they need handlers that can control
them.

The implementation of the model described in this thesis can be
improved in several ways. The most important enhancement would be
to simplify the test case creation process by developing a customised
application that let the user create valid XML documents in a more
controlled way than an XML editor is capable of. Another important
enhancement would be to replace the DTDs with XML Schemas. XML
Schemas are more flexible and it would make the DTD Generator more
powerful. DTDs do not explicitly support the kind of fragmentation
that is needed to incorporate the Tool Handler interface definitions
into the one DTD that the test case creator uses. Another possible
enhancement would be to include some mechanism for order control of
test case execution and repetitive test case execution. It could, for
example, be interesting to do repeated executions of the same test case
with slightly different environment set-ups for each execution.

References

42

8 References
[1] Natanya Pitts-Moultis and Cheryl Kirk, XML Black Book,

Coriolis Technology Press 1999, ISBN 1-57610-284-X
[2] Tim Bray (Textuality and Netscape), Jean Paoli (Microsoft), C.

M. Sperberg-McQueen (University of Illinois at Chicago),
Extensible Markup Language (XML) 1.0, W3C Recommendation
10-February-1998

[3] Tim Bray, The Annotated XML Specification, 1999,
http://www.xml.com/axml/axml.html

[4] David C. Fallside (IBM), XML Schema Part 0: Primer, W3C
Working Draft, 25 February 2000

[5] Henry S. Thompson (University of Edinburgh), David Beech
(Oracle Corp.), Murray Maloney (Commerce One), Noah
Mendelsohn (Lotus Development Corporation), XML Schema
Part 1: Structures, W3C Working Draft, 7 April 2000

[6] David Megginson, SAX 1.0: The Simple API for XML, url:
http://www.megginson.com/SAX/SAX1/index.html

[7] Vidur Apparao (Netscape), Steve Byrne (Sun), Mike Champion
(ArborText), Scott Isaacs (Microsoft), Ian Jacobs (W3C), Arnaud
Le Hors (W3C), Gavin Nicol (Inso EPS), Jonathan Robie (Texcel
Research), Robert Sutor (IBM), Chris Wilson (Microsoft), Lauren
Wood (SoftQuad, Inc), Document Object Model (DOM) Level 1
Specification, url: http://www.w3.org/TR/REC-DOM-Level-1

[8] Paul V. Biron (Kaiser Permanente, for Health Level Seven),
Ashok Malhotra (IBM), XML Schema Part 2: Datatypes, W3C
Working Draft 07 April 2000

[9] James Clark, XSL Transformations (XSLT) Version 1.0, url:
http://www.w3.org/TR/xslt

[10] Mark Johnson, Programming XML in Java, Part 1, JavaWorld
March 2000

[11] Mark Johnson, Programming XML in Java, Part 2, JavaWorld
April 2000

[12] Mark Johnson, Programming XML in Java, Part 3, JavaWorld
July 2000

[13] Robert Husteadt, Mapping XML to Java, Part 1, JavaWorld
August 2000

[14] Jason Monberg, How Sparks.com Uses XML and XSL for
Dynamically Generated Pages, CNet June 2000,
http://www.builder.com/Programming/XMLToday/index.html

[15] XMLInfo.com, The XML Information Site,
http://www.xmlinfo.com

[16] XML Magazine, url: http://xmlmag.com
[17] Apache, The Apache XML Project, http://xml.apache.org
[18] JDOM, The JDOM Open Source Project, http://jdom.org
[19] Java Technology and XML, SUN's XML Pages,

http://java.sun.com/xml

References

43

[20] World Wide Web Consortium (W3C), www.org
[21] SoftQuad: XML solutions for e-business, url:

http://www.xmetal.com
[22] Jan Newmarch, Jan Newmarch's Guide to JINI Technologies,

http://pandonia.canberra.edu.au/java/jini/tutorial/Jini.xml
[23] Ken Arnold, Bryan Osullivan, Robert W. Scheifler, Jim Waldo,

Ann Wollrath, Bryan O'Sullivan, The Jini(TM) Specification
(The Jini(TM) Technology Series), Addison-Wesley Pub Co;
ISBN: 0201616343

[24] Eric Freeman, Susanne Hupfner, Ken Arnold, JavaSpaces(TM)
Principles, Patterns and Practice (The Jini(TM) Technology
Series), Addison-Wesley Pub Co; ISBN: 0201309556

[25] Eric Freeman and Susanne Hupfner, Make Room For
JavaSpaces, http://www.javaworld.com/javaworld/jw-11-1999/jw-
11-jiniology-2.html

[26] Nicholas Carriero, David Gelernter, Linda in Context, CACM
32(4): 444-458 (1989), http://www.informatik.uni-
trier.de/~ley/db/journals/cacm/cacm32.html#CarrieroG89

[27] JUnit, Testing Resources for Extreme Programming, url:
http://www.junit.org

[28] IBM alphaWorks, Provides developers direct access to IBM's
emerging "alpha-code" technologies. The latest software
technologies, for download and evaluation,
http://www.alphaworks.ibm.com/

Appendix A: Class Diagrams

44

Appendix A: Class Diagrams
Following are simplified class diagrams of the Test Case Handler and
the Tool Handler that handles the TSS 2000.

The Test Case Handler class is responsible for reading test case
documents from the file system and parsing them. The Report Handler
class is responsible for collecting report messages from the JavaSpaces
service and generating a complete report. Both the Test Case Handler
and the Report Handler makes use of the Task Generator class for
communication with the JavaSpace. The Task Generator is also
responsible for partitioning the test cases into tasks.

The TSS2000 class is the main class of the Tool Handler illustrated in
figure A – 2. It communicates with the JavaSpace through the Task
Collector class. The XML Handler class handles the parsing of the
task, which is represented in XML. The XML Handler communicates
with the test tool, in this case the TSS 2000, through the TSSAdapter

TaskGenerator

TestCaseHandler

ReportHandler

Figure A - 1: Object diagram of the Test Case Handler.

Figure A - 2: Object diagram of a Tool Handler, the TSS 2000 handler-

TaskCollector

TSS2000

ToolHandler

XMLHandler

TSSAdapter

XMLHandlerInterface

Appendix A: Class Diagrams

45

class. The TSSAdapter class provides a set of methods that are used to
send instructions to the test tool. In the Tool Handler implementation
for the FT Driver, for example, the three classes TSS2000,
XMLHandler and TSSAdapter are replaced by the classes FTDriver,
XMLHandler and FTDAdapter. The different Tool Handler
implementations are located in different packages, which means that
there are no restrictions on the naming of these classes.

Appendix B: User Manual

46

Appendix B: User Manual

Introduction
This document gives an introduction to the Integration and
Verification Test Model (IVTM), a system for performing automated
verification of functionality within the RNS development project. The
IVTM is a system that uses existing test tools to execute test cases
defined in XML representations of test specifications.

Installation
The IVTM comprises several programs, written in Java. The IVTM
comes as a tar-file that should be extracted in a directory beneath the
user’s home directory. The IVTM directory structure is illustrated in
figure B – 1.

• src – the source directory contains the source code of the
IVTM

• classes – the classes directory contains the java classes, i.e.
the binaries.

• bin – the bin directory contains some shell scripts that can
be used to start the different programs that is included in
the IVTM.

• doc – the doc directory contains JavaDoc generated
documentation of the Java code.

• xml – the xml directory contains sample XML documents,
templates, that can be used as input to the Task Generator.

• xsl – the xsl directory contains style sheets that can be used
to convert XML representations of test cases and IVTM
reports into HTML documents.

• reports – the reports directory contains the reports that are
generated during test case execution.

ivtm

reports xml classes bin doc src xsl

Figure B – 1: Illustrating the directory structure of the IVTM.

templates

Appendix B: User Manual

47

The installation does not require anything in addition to extracting the
tar-file.

Test Case Representation
The test case documents are described in XML and created using an
XML editor. To aid the test case creator a DTD can be used together
with the XML editor. The DTD should be generated by the supplied
DTD Generator. Each XML document will contain an XML
representation of one test case. To make it easier to setup an
automated test including several test cases the test cases can be
grouped together in a test suite document. For example, the test cases
that correspond to a certain test specification can be grouped together
to a test suite enabling easy execution of all test cases from a certain
test specification.

A sample test case document is depicted in figure B – 2. This test case
makes use of three test tools; the FTDriver for the setup phase, the
TSS 2000 for the actual test case and the TestHarness for the cleanup
phase. To create a new test case document this example document can
be used as a base and be modified as needed. To verify that the created
document is correct, in terms of XML syntax, the validate.sh script can
be used (see the System Components section).

Appendix B: User Manual

48

<?xml version="1.0" ?>
<Instruction>
 <Header>
 <No>1/152 41-FAY 223 10</No>
 <Title>3.1.1, Test case: Requesting Full rate Speech version 1, Successful</Title>
 <Prepared>Britney Spears</Prepared>
 <Approved>Eminem</Approved>
 <Date>2000-09-18</Date>
 <Rev>PA89</Rev>
 </Header>
 <Purpose>Sending 'Assignment Request' with Full rate Speech version 1, which is a
 supported Service, is send to RNS.</Purpose>
 <Prerequisites>Add an extra cell.</Prerequisites>
 <Requirement> Ref. 9-2</Requirement>
 <Preparation>
 <Tool>
 <TSS instance="tss01"> Used to simulate MS, BTS, AGW and MSC </TSS>
 <FTD instance="ftd01"> Used to add an extra cell </FTD>
 <HARNESSS instance="harness01"> Clean up after execution </HARNESS>
 </Tool>
 <Environment>
 <Clearcase view="erardlh_view" />
 </Environment>
 </Preparation>
 <Implementation hostname="purple103.era-a.ericsson.se">
 <Setup instance="ftd01">
 <FTDriver>
 <TestSuite>cmmo.CmMoSuite</TestSuite>
 </FTDriver>
 <Result>
 <Output test_program="" timeout="120" />
 <Description>Successful if no errors are reported.</Description>
 </Result>
 </Setup>
 <Action instance="tss01">
 <TSS2000 useAdapter="true">
 <File>ASSIGNMENT</File>
 <Parameters>
 <Parameter test_program="Assignment_MSC"
 param_name="FULL_RATE_Version1" value="1" />
 </Parameters>
 </TSS2000>
 <Result>
 <Output test_program="Assignment_MSC" timeout="120">Assignment
 completed</Output>
 <Output test_program="Assignment_MSC">Testcase 124 completed</Output>
 <Description>If the 'Assignment Request' is successfully terminated, an
 'Assignment complete' will be send to the MSC.</Description>
 </Result>
 </Action>
 <Cleanup instance="harness01">
 <TestHarness>
 <JariScript>HarnessLoad.txt</JariScript>
 </TestHarness>
 <Result>
 <Output test_program="" timeout="120" />
 <Description> Successful if no errors are reported </Description>
 </Result>
 </Cleanup>
</Implementation>

</Instruction>

Figure B – 2: An example of a test case document.

set-up

execution

preparation

cleanup

Appendix B: User Manual

49

Test Case Execution
The test case execution involves the following programs; the
taskgenerator, the jini lookup service, the javaspaces service and one
or several of the tool handlers. The Jini Lookup service and the
JavaSpaces service are not part of the IVTM system, they are provided
by Sun Microsystems, but still necessary.

The TaskGenerator is started by executing the shell script
start_TaskGenerator.sh. with, as argument, the path to the test case
document or the test suite document that represents the test case.

 [~/ivtm/bin]$./start_TaskGenerator.sh ../xml/testcase01.xml

The Task Generator will now read the test cases and create task
objects that can be distributed to the available Tool Handlers.

The actual test case execution is controlled by the Tool Handler
applications. Therefore, to get going a Tool Handler must be started.
There are currently three Tool Handlers available; the TSS2000
Handler, the FTDriver Handler and the TestHarness Handler. To start
these handlers try one of the following:

 [~/ivtm/bin]$./start_TSS2000.sh

 [~/ivtm/bin]$./start_FTDriver.sh

 [~/ivtm/bin]$./start_TestHarness.sh

When a Tool Handler is started it will contact the JavaSpaces service
and look for a test case to execute.

NOTE: There should never be more than one Tool Handler executing
on the same machine. Each Tool Handler will when started look for a
test case and then start executing it. If there are several Tool Handlers
running on the same machine the corresponding test tools might
interfere with each other.

System Components
The IVTM comprises several system components, or programs. The
most important of these programs are the Task Generator and the Tool
Handlers. These are the programs that are used to perform the actual
test case execution. However, there are also a few programs to simplify
the test case creation process and there are also the Jini Lookup
Service and the JavaSpaces Service that are used for the distribution
of test cases among the test tools. The different programs can be
configured by setting properties in their corresponding property files,

Appendix B: User Manual

50

located in the classes directory. Following is an overview of the
different system components.

Task Generator
The Task Generator parses the test case documents and creates task
objects. These task objects are then stored in the JavaSpace. When the
task objects are stored in the JavaSpace the Task Generator begins to
wait for results. When the results are found the Task Generator
creates a report, in XML, that reflects the results of the executed test
cases. The report will be stored in a directory with a name on the
format “YYYYMMDD_HHMMSS”, i.e. the date and time of the test
case execution. This directory will be created in the reports directory
beneath the ivtm root, unless something else is specified in the
taskgenerator.properties file located in the classes directory.

TSS2000 Handler
The TSS2000 Handler searches for tasks in the JavaSpace and as soon
as a task is found it takes it and starts to execute it. The actual test
case execution is handled by the TSS 2000 itself. When the execution
of a test case is finished the TSS2000 Handler collects the result from
the TSS 2000 and creates a report object that is stored in the
JavaSpace. The TSS 2000 Handler uses the TSS Remote Control to
communicate with the TSS 2000. When the TSS2000 Handler is
started it stores its interface definition, in the form of a DTD fragment,
in the JavaSpace. This interface definition defines the XML tags that
can be interpreted by this handler.

FTDriver Handler
The FTDriver Handler retrieves tasks from and returns results to the
JavaSpace in the same manner as the TSS2000 Handler. The
FTDriver is able to create reports in HTML, why the Task Generator
can use these rather than create its own reports. When the FTDriver
Handler is started it stores its interface definition, in the form of a
DTD fragment, in the JavaSpace. This interface definition defines the
XML tags that can be interpreted by this handler.

TestHarness Handler
The TestHarness Handler retrieves tasks from and returns results to
the JavaSpace in the same manner as the TSS2000 Handler. The
TestHarness does currently not allow the handler to determine if a test
case execution is successful or not, which implies that the report will
not contain any information regarding the outcome of a test case. This
is of course a big drawback but it is probably addressed in a later
release of the TestHarness. When the TestHarness Handler is started
it stores its interface definition, in the form of a DTD fragment, in the
JavaSpace. This interface definition defines the XML tags that can be
interpreted by this handler.

Appendix B: User Manual

51

DTD Generator
The DTD Generator collects Tool Handler interface definitions from
the JavaSpace and assembles them into a complete DTD that can be
used by the test case creator. The DTD Generator should be used when
a new Tool Handler is created in order to incorporate its interface
definition into the DTD used by test case creators.

Validator
Used to validate that an XML document conforms to a given DTD.
Makes use of the Xerces-J validating parser.

XML2HTML Converter
Used to convert, or transform, XML documents into HTML documents.
Makes use of the Xerces-J parser as well as the Xalan XSLT processor.

Jini Lookup Service
The Jini Lookup Service is used by the IVTM system components to
locate the JavaSpaces service. There is only need for one instance of
the Jini Lookup Service to be running. However, multicast messages
are used to locate the lookup service itself why it is necessary to use
different lookup services on networks separated by a router that does
not forward multicast messages. See the documentation provided by
SUN Microsystems for details on the Jini Lookup Service.

JavaSpaces Service
The JavaSpaces Service is a distributed object storage where Java
objects can be temporarily stored. There is only need for one instance
of the JavaSpaces Service to be running. The tasks and report objects
stored in the JavaSpace are marked with id numbers to prevent them
from interfering with each other. See the documentation provided by
SUN Microsystems for details on the JavaSpaces Service.

SpaceBrowser
The SpaceBrowser can be used to browse the objects the JavaSpace is
currently holding. This is very useful when debugging or gaining an
understanding of the system. See the documentation provided by SUN
Microsystems for details on the SpaceBrowser.

Shell Scripts
The shell scripts described in this section are all located in the bin
directory,

start_TSS2000.sh
Tool Handler that executes test cases using the TSS 2000 test tool.
Example:
 [~/ivtm/bin]$./start_TSS2000.sh

Appendix B: User Manual

52

start_FTDriver.sh
Tool Handler that executes test cases using the FTDriver test tool.
Example:
 [~/ivtm/bin]$./start_FTDriver.sh

start_TestHarness.sh
Tool Handler that executes test cases using the Test Harness test tool.
Example:
 [~/ivtm/bin]$./start_TestHarness.sh

start_TaskGenerator.sh
The Task Generator reads and parses test cases represented in XML
and creates task objects. The task objects are then stored in the
JavaSpace where they can be located and from which they can be
retreived, by Tool Handlers.
Format:

start_TaskGenerator.sh <xml-file>
Example:
 [~/ivtm/bin]$./start_TaskGenerator.sh testcase01.xml

start_DTDGenerator.sh
The DTDGenerator is used to create a DTD that can be used by the
test case creator. The DTD comprises the different Tool Handlers
interface definitions.
Format:
 start_DTDGenerator.sh <dtd-file>

Example:
 [~/ivtm/bin]$./startDTDGenerator.sh test.dtd

validate.sh
validate.sh is a small program that can be used to validate that XML
documents conforms to a given DTD.
Format:
 validate.sh <xml-file>
Ex:
 [~/ivtm/bin]$./validate.sh testcase01.xml
Result (successful):

[Beginning of document]
[End of document]

Result (unsuccessful):
[Beginning of document]
<Error message containing information about the error, such
as row number etc.>
[End of document]

Appendix B: User Manual

53

xml2html.sh
xml2html.sh converts an XML document into HTML using an XSL
style sheet.
Format:
 xml2html.sh <xml-file> <xsl-file> <output-file>

Example:
 [~/ivtm/bin]$./xml2html.sh test01.xml test.xsl example.html

space_browser.sh
takes a snapshot of the JavaSpace and presents the user an overview
of all the objects currently stored in the space.
Example:
 [~/ivtm/bin]$./space_browser.sh

