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Abstract

Abstract

Prof. Gerald Maguire, head of the Computer Communication Systems Laboratory (CCSlab) at the Department of
Teleinformatics, KTH, Stockholm, Sweden and Dr. Mark. T. Smith, HP Labs, Palo Alto, California, USA have
developed a slightly larger than ID-card sized wearable computer, the so-called SmartBadge. This device is designe
for low power consumption and equipped with a 200 MHz RISC processor, 1 MB of FLASH and 1 MB of SRAM
memory, various communication channels, audio input and output, video output, and a socket for PCMCIA cards,
which allows to use for example wired or wireless network cards. In addition to this equipment, which is comparable
to other PDA-like devices it also contains a variety of sensors. These sensors allow it to extend its range of possible
applications by adding knowledge about the environment which can be used to provide new context- and location-
aware services.

In the first chapters of this thesis | give an introduction to the hardware platform. The operation and configuration
of several processor units is explained and their use is shown via a set of example routines and programs.Thes
samples together with their explanations allows a new user to quickly write simple applications.

The second part of this thesis, which comprises the main work of this thesis, concerns a port of the Linux IrDA-
stack to the SmartBadge. The IrDA-stack is a set of protocols that allow wireless communication between devices via
an infrared link. These protocols are already widely used for data exchange between Laptops (and increasingly alsc
PDAs), mobile phones and other mobile devices. Together with the use of Infrared-Access-Points this
implementation provides wireless network-connectivity for the Badge. Through such wireless network access the
possible range of applications again can be significantly extended. After an introduction to the relevant protocols |
present the details of my implementation. | conclude with a summary of why fitting these various pieces of hardware
and software together was difficult and provide some hints of future work.
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Introduction

1. Introduction

With ever growing computing power and increasing levels of integration which leads to the ever decreasing size
and price of electronic components -- mobile applications are increasingly important. PDAs already offer impressive
computing power and mobile phones are a fixture of everyday’s life. Increasingly these advances are leading to a
fusion of PDA like devices with communication. This is compounded with the explosive growth of the internet.

Prof. Gerald Maguire, head of the Computer Communication Systems Laboratory (CCSlab) at the Department of
Teleinformatics, KTH, Stockholm, Sweden and Dr. Mark. T. Smith, HP Labs, Palo Alto, California, USA have
developed a wearable computing platform that was optimized in terms of power consumption and size, but yet offers
state of the art computing power. In addition to that they have integrated a humber of sensors for measuring light,
temperature, humidity, and acceleration. This allows one to investigate and develop a new class of applications anc
services. The new concept is that the applications now can acquire information about their environment. This results
in so called context- and location-aware services. Some location aware services have already been introduced, fc
example mobile systems that detect their location (e.g. by means of the global positioning system (GPS) or by other
means provided by the cellular network infrastructure) and based upon the knowledge of their position can offer
information services that provide (only) information that is relevant at a certain location (this could be information
about shops, restaurants, public services, localized traffic information and many more).

The sensors also add an additional dimension. They can detect if the device is still attached to its user (which
could be used for authentication mechanisms). As long as the users are still wearing their device they do not need tc
reauthenticate. Other applications are e.g. medical monitoring. Combining these additional technologies and a
communication infrastructure allows services that are based on both the location and the context of a user.

In addition these so called SmartBadges are equipped with audio input and output, an IR transceiver, and car
utilize PCMCIA-form factor network adapters (the later two can provide wireless access to network infrastructure).
All this put together results in a huge field of possible applications.

The SmartBadge as used in this thesis was version 3, a new version 4 is to be introduced soon. In the course of thi
thesis work my main field of work involved enabling infrared communication, with the final goal to provide network
access via an infrared link.

After a short introduction to the hardware platform and the available operating systems | present the use of some
of the processor units such as: serial communication, general purpose Input/Output, timers, etc. Later chapters
describe some aspects of the code generation of the compiler and the problems of debugging embedded systems. T
final chapters present the main result of my work, an implementation of the IrDA protocol stack which in
combination with an infrared access point (that is attached to a fixed network) provides the SmartBadge with network
access via an infrared link.
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2. Basic Architectures

In this chapter | give an introduction to the hardware architectures of both SmartBadge 3
and the new SmartBadge 4. As most of my work was based on SmartBadge 3, | also give a
short overview of the StrongARM SA-1100 microcontroller which is used on Badge 3. Its
successor, the SA-1110, used on Badge 4, differs from the SA-1100 only in the memory
interface (which now also supports SDRAM and allows SRAM, DRAM, and SDRAM in the
same system) and the PCMCIA controller. The SA-1111 companion chip provides the
PCMCIA controller as well as support for Compact Flash, a complete USB Host Controller,
two serial ports (Serial Audio Controller and SSP Serial Port), PS/2 Trackpad and Mouse
Interfaces and an additional general purpose 1/O Interface.

2.1 SmartBadge 3

SmartBadge 3 [1] consists of the following basic blocks as shown in Figure 1:
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Figure 1. SmartBadge 3 Block Diagram

The central element is an Intel StrongARM SA-1100, a 32 bit RISC controller clocked at up to 200MHz. It is
connected to 1 MB of FLASH memory (16 bit), 1 MB of SRAM (32 bit) and an audio and telecom codec (Philips
UCB 1200). The SA-1100 is described in more detail in the next section.

The circuit can be powered by onboard batteries or - for test and development - by an external power supply. The
power supply block takes this unstabilized voltage and generates 1.5V for the microcontroller core, 3.3 V for the
microcontroller peripherals and the other circuits and optionally 5V for the PCMCIA slot if a 5V card is used. The
buffers between the SA-1100 and the PCMCIA connector are necessary to convert between the 3.3 V system supply
and the 5V PCMCIA supply, when a 5V card is being used.
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The FLASH memory is 16 bit wide while the SRAM memory utilizes the full width of 32 bit. Although the
SA-1100 also supports DRAM, SmartBadge 3 doesn’t provide any DRAM, mainly to reduce the power consumption.

The Philips UCB1200 [2] is a single chip, integrated mixed signal audio and telecom codec. It allows direct
connection of a microphone and a speaker via the audio codec channel. The telecom codec channel can be directl
connected to a DAA and supports high speed modem protocols. These two channels mainly differ in the output
impedance, therefore if the telecom functionality is not required the two channels can be combined to form stereo
audio input/output. In addition the UCB contains a built-in 10-bit ADC. A built-in analog multiplexer allows
selection between four general purpose analog inputs and a four input touch screen interface. Finally there are ter
digital general purpose I/O-pins available. On SmartBadge 3 the general purpose ADC-inputs and two of the touch
screen interface inputs are used to read in the analog sensor values while the digital 1/0-pins allow selectively
powering the sensors. The UCB1200 is connected to the SA-1100 via the multimedia serial port (serial port 4, MSP
mode).

The following sensors are included by default, additional sensors can be connected via the general purpose 1/O-pin:
or the serial ports, if required:

* three-axis accelerometer,
* two humidity sensors,
* two temperature sensors,
* alight sensor.
The light sensor is mounted on the front side, as well as one of the humidity sensors and one of the temperature
sensors. The other sensors are mounted on the backside. This allows the system to differentiate between sensors

the side orientated towards the user’s body and the side orientated away from the body if the Badge is worn, using one
of the two slots in the Badge - as shown in the two photos below:
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2.2 Description of the StrongARM SA-1100 Microcontroller

The StrongARM SA-1100 [6] is a highly integrated high-performance low-power microcontroller, especially

suited for (mobile) telecommunication applications. It consists of a 32-bit StrongARM RISC processor core,
extended by system support logic (memory-, DMA-, interrupt-, power-management-controllers, timers and
real-time-clock), caches, various communication-channels, an LCD controller, PCMCIA controller, and general
purpose input/output ports. Due to its special low-power design it has a typical power dissipation of about 200 MW @
200 MHz. For further power saving the clock can be slowed or stopped under software control. Logically these
elements can be grouped into the following main modules:

Processor core
MMU, caches, read and write buffer

System Control Module (General Purpose I/O, Interrupt Controller, Real Time Clock, Operating System Timer,
Power Manager, Reset Controller)

Memory and PCMCIA Control Module
Peripheral Control Module (DMA Controller, LCD Controller, Serial Ports 0-4, Peripheral Pin Controller)
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Figure 2 gives an overview of these basic components:

Read Buffer ITAG 16 KB
Instruction
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StrongARM 8 KB
CPU Data Cache
DMMU
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Write Interrupt
Buffer Controller General
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Memory DMA Serial
Controller Controller Controllers
LCD Interval Real Time
Controller Timer Clock

Figure 2. Components of the StrongARM SA-1100

In the following sections | will give a short overview of the caches, buffers and MMU. More detailed information
can be found in [5] and [6]. Some of the peripheral units will be described in more detail in a later chapter (See 4.
“Using some of the Peripherals”).

2.2.1 Instruction Cache

The instruction cache (IC) has a size of 16 kBytes, set up as 512 lines of 32 bytes (8 words) and is arranged as a 3.
way set associative cache. It can be enabled or disabled via the SA-1100 Control Register and is disabled through
reset sequence ( i.e. on the assertion of the nRESET line, software or sleep). It's operation further depends on the sta
of the Memory Management Unit and the Cacheable bit stored in the Memory Management Page Table. The cache
works as follows:

The IC operates with virtual addresses, therefore care must be taken to ensure consistency with the MMU
mappings, special care is needed if the mappings are changed. The IC is not coherent with stores to memory. If
program writes to cacheable instruction locations not only must the cache operation be taken into consideration bu
also the write buffer (see section 2.2.3) must be drained as instruction fetches do not check the write buffer.

If the cache is disabled, no lines are placed in the cache, but the cache is always searched and data found will b
used by the processor - only cache misses are affected by the state of the cache, the MMU and the Cacheable (C) bi
This is particularly important if the cache is disabled by software after having been enabled for some time. If the data
in the cache must not be used the cache must be flushed.

In the case of a cache miss the behaviour depends on the state of the MMU and the Cacheable bit:

* MMU disabled or C bit is set for the given virtual address: a linefetch of eight words is performed and placed in a
cache bank with a round-robin replacement algorithm.

* MMU enabled and C bit is zero for the given virtual address: an external memory access for a single word is
performed and the cache is not written.

Note: if Memory Management is disabled, all addresses are regarded as cacheable (i.e. C=1).
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2.2.2 Data Caches

The SA-1100 contains two logically separate data caches:

* main data cache: intended for use during most data accesses

* mini data cache (also called mini-cache): alternate caching structure for dealing with large data structures which
could thrash the main cache.

Both caches use virtual addresses and allocate only on loads, write misses never allocate in the cache. Besides the
actual data each cache line contains also the physical address of this line and two dirty bits. The dirty bits indicate the
status of the first and the second half of the line. Store hits in the cache cause the associated dirty bit to be set. When
a line is evicted from the cache the dirty bits are used to decide which part of the line (all, half, or none) has to be
written back to memory using the physical address stored together with the line. Both caches always reload a
complete line (8 words) at a time.

As for the instruction cache the data caches can be enabled and disabled via the SA-1100 Control Register and are
disabled by resets (including watchdog reset). Apart from this global enabling/disabling the operation depends on the
Bufferable (B) bit and the Cacheable (C) bit stored in the Memory Management Page Table. Cache operation
therefore requires the MMU to be enabled. Again as virtual addresses are used by the caches consistency in the
virtual to physical mappings performed by the MMU must be ensured. In particular it is assumed that every virtual
address maps to a different physical address. Doubly-mapped virtual addresses should be marked as uncacheable to
avoid cache inconsistencies (each virtual address has a separate entry in the cache and only one entry is updated on a
write operation).

Typically main memory is marked as cacheable whereas I/O space should always be marked as uncacheable to
make sure that the hardware registers are always directly read instead of copies of earlier values stored in the cache.

2.2.2.1 Main Data Cache

The main data cache is an 8 kByte writeback data cache. It consists of 256 lines of 32 bytes (8 words) in a 32 way
set associative organization (i.e. 8 sets, each consisting of 32 blocks of 8 words) . It allocates on loads to memory
locations marked as B=1 and C=1. Replacements in the main data cache are selected according to a set of round robin
pointers. At reset the pointers in each set of the cache point to block zero of each 32-block set. As lines are allocated,
the pointers are incremented to the next block. After block 31 has been allocated, the next line fill replaces (and
copies back to memory, if dirty) the data in block zero.

2.2.2.2 Mini Data Cache

The mini-cache is a 512 byte writeback cache consisting of 16 lines of 32 bytes (8 words2 iway set
associative organization. It allocates on loads to memory locations marked as B=0 and C=1. Replacements in the mini
data cache also use a round robin pointer mechanism. But, since this cache is only two way set associative, the
replacement algorithm reduces to a simple Least-Recently-Used (LRU) mechanism.

2.2.2.3 Detailed Operation with Respect to the C and B Bits

Cache hits are always served, i.e. on a load cache hit the according cache delivers the data and on a store cache hit
the data is stored to the according cache and the line is marked as dirty.

As the caches only allocate on load misses, on a store miss the data is stored to memory without affecting the cache
(no allocation).

In the case of a load cache miss the operation depends on the C and B bits as follows:

e (C=0: load from memory, no cache allocation
e C=1 and B=0: load from memory and allocate to mini cache
e C=1 and B=1: load from memory and allocate to main cache
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load store
BJC cache hit cache miss cache hit cache miss
0 | O deliver cache data  load from memory|- store to either cache |- store to memory, no allocat

7

no allocate mark line dirty
0 | 1| deliver cache data allocate to mini caghe  store to either caclstore to memory, no allocat

D

mark line dirty
1| 0| deliver cache data  load from memory|- store to either cache |- store to memory, no allocat]

Y7

no allocate mark line dirty
1| 1| deliver cache datp  allocate to main cache  store to either cqcktore to memory, no allocat]

7

mark line dirty

Table 1. Data cache operation

2.2.2.4 Data Cache Flush

The SA-1100 supports flush and clean operations on single entries of the data caches as well as flushing the whol
cache by writes to the Cache Operations registers. But as the caches are writeback caches, in order to prevent the lo
of data, a flush whole must be preceded by a sequence of loads to cause the cache to write back any dirty entries. Tt
memory controller in the SA-1100 provides an internally decoded memory space (residing in the upper 512
Megabytes of the memory map, starting at virtual address 0xEO00 0000) that returns zeros without incurring external
memory latency.

2.2.3 Write Buffer

The SA-1100 contains a write buffer to improve system performance by buffering up to eight blocks of data of 1
to 16 bytes at independent addresses. The buffer can be globally enabled or disabled via the SA-1100 Contro
Register. Its operation further depends on the Cacheable and Bufferable bits in the Memory Management Page
Tables, therefore the MMU must be enabled in order to use the write buffer.

In detail it operates as follows:

When the CPU performs a store, first the data caches are checked. If the store hits in one of the caches the writ
completes in the cache, provided that the protection for the location and the mode of the store allow the write to the
cache. The write buffer is not used.

If a store misses in both data caches the action depends on the B bit:

* B=1 (and write buffer enabled): The data is placed in the write buffer and the CPU continues execution. The write
buffer performs the external write some time later.

* B=0 (or write buffer disabled): On write to an unbufferable area the processor is stalled until the write buffer
empties and then the write completes externally. This requires several clock cycles.

2.2.4 Read Buffer

The SA-1100 contains a software programmable read buffer which can increase the performance of critical loops
by prefetching data. The read buffer enables the preallocation of read-only data into one of four 32 byte buffers
without stalling the pipe. For subsequent loads which hit in the read buffer, data is sourced from the buffer instead of
the data cache at a rate of 1 word per core clock. As the data to be contained in the read buffer is explicitly specified
in software, critical data can be locked in.
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2.2.5 Memory Management Unit (MMU)

The SA-1100 implements the standard ARM memory management functions using two 32 entry fully associative
Translation Buffers (TBs). One is used for instruction accesses and the other for data accesses. On a TB miss the
translation table hardware is invoked to retrieve the translation and access permission information from the Memory
Management Page Tables. Once retrieved, if the entry maps to a valid Page or Section then the information is placed
into the TB. The replacement algorithm in the TB is round robin. For an invalid page or section an abort is generated
and the entry is not placed in the TB. More detailed information can be found in [5].

2.3 Peripheral Devices in the StrongARM Architecture

While the memory and PCMCIA controller, DMA controller and the LCD controller are directly attached to the
ARM System Bus, the peripherals, such as e.g. serial ports, timers, general purpose 10, are attached to the ARM
Peripheral Bus, which is coupled to the ARM System Bus via a bridge (see Figure 3). All the on-chip devices and
controllers are accessed using memory mapped /O, that is, the control and data registers are mapped into memory
and are accessed using the memory load/store instructions.

off-chip_
' 3.686 . _ Instructions
ik P SA-1100 «
] | v
, mm . |0OSC PC
P | IMMU Icache
: PLL2 (16 kilobytes)[™®
: %A-l
mm . |OSC OMMU Dcache |Add ore
. 32,768 (8 kilobytes) <@
KHz mini-cache
"""" ! RTC A
OS Timer load/store data
ﬁ General
Purpose 1/0
Interrupt
Controller LCD
Power Read Read H
Management| Buffer Buffer Controller
Reset
Controller
ARM System Bu
DMA Memdory
Bridge an
9 Controller PCMCIA )
ARM Peripheral Bus I
Serial Serial Serial Serial Serial
Channel 0 Channel 1 Channel 2 Channel 3 Channel 4
ubDC UART IrDA UART Codec

Figure 3. SA-1100 Block Diagram (Note that the two crystals are off-chip)
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Figure 4 gives an overview of the SA-1100 memory map:
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Figure 4. SA-1100 Memory Map
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2.4 SmartBadge 4

SmartBadge 4 uses the SA-1110 microcontroller [7] and its companion chip, the SA1111 [8]. The basic building

blocks are shown in Figure 5:
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Figure 5. SmartBadge 4 Block Diagram

Version 4 offers the following improvements and extensions over SmartBadge 3:

* Flash memory and SRAM both doubled to 2 MBytes each, and the data path from the FLASH is now 32 bits wide
e Support for (optional) additional SDRAM memory

e CFLASH slot in addition to PCMCIA slot

* Improved audio support now offers 16-bit 44kHz stereo input/output and better shielding

* Port for stereo heads-up display

* Dedicated ADC, separated from digital circuitry to achieve better noise immunity

e USB master, optional BlueTooth interface via USB

10
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3. Operating Systems for the Badge

In this chapter | will briefly describe the three operating systems that currently support the
SmartBadge. Personally | worked only with Angel, while VxWorks and E-Kernel were used
by two groups of students during the Telecommunications “Fingercourse” at KTH in spring
2000. Thus I will describe Angel in more detail while | will give only a short summary of the
experiences with the two other operating systems. HP is also working on porting Linux to
Badge 4.

3.1 Angel

3.1.1 Introduction

Angel is a software packet specifically designed to aid the development of ARM based appliances. An Angel
system typically consists of two main components:

* Debugger: The debugger is executed on a host computer which is connected to the target hardware via &
communications link, typically a serial link but IP/UDP over ethernet is also supported. A Windows-based
debugger is included in the ARM Software Development Toolkit, but any other debugger capable of handling the
“Angel Debug Protocol” (documented in [3]) can be used. The debugger controls downloading images to the
target, executing programs and reading/setting memory locations on the target platform.

* Angel Debug Monitor: This is software that runs on the target and communicates with the host debugger. The
debug monitor can be built in two versions:

* a full version, including support for the debugger, semihosted operations (See 3.1.2), basic operating system
functionality; intended for use on development hardware.

* a minimal version for use on production hardware.

The two versions of Angel allow a smooth migration from development to production hardware. The typical
development cycle for ARM based software using the ARM Tools, as described in chapter 6.2 of [4], then is as
follows:

e Evaluation of an application using the ARMulator, a cycle-exact emulator for ARM processors. As the
ARMulator only emulates the ARM-core (but not for instance the additional devices included in the StrongARM)
this only works if no interrupts are used and no external hardware is accessed.

or

* Evaluation of an application on a PIE board under full Angel. The PIE board is an ARM-based development
board running a full version of Angel. It's not necessary to customize Angel, applications can be downloaded,
executed and tested using an ARM debugger.

* Building applications on a custom development board, highly dependent on Angefo run on a custom board
the low level layers of Angel have to be ported to support the actual hardware. Then applications can be built and
tested with the support of the full Angel version, i.e. using the semihosted operations, Angel device driver
framework, and others. The SmartBadge is an example for such a custom board running full Angel.

* Building applications on a custom development board, little dependence on AngeAfter the application has
been developed and evaluated using full Angel it can be changed to little dependence on Angel. The board is still
running full Angel to support the use of the debugger but the application itself hardly uses Angel features any
more.

11



Operating Systems for the Badge

Moving the application to production hardware. Now that the application doesn’t rely on Angel any more
Angel can be rebuilt as minimal version. Minimal Angel is structured the same way as full Angel, i.e.
initialization, device drivers, interrupt support work the same, but features such as debugging, semihosting,
multiple channels on one device are no longer supported. This frees up resources (memory need, communication
links,...) which are not needed any more and are scarce on production hardware.

Application with Application on PIE
Armulator —®| board using Angel

X y

Application using full
Angel on development board
(very dependant on Angel)

v

Application using full
Angel on development board
(little dependant on Angel)

Y

Application under minimal
Angel on final hardware

Figure 6. The Angel development cycle [4, p. 6-4]

3.1.2 Angel C Library Support, Semihosted Operations

The C Library for Angel is split into two parts, the C Library itself which is linked with the application, and

support for the semihosted parts of the library - this part is linked with Angel.

Angel doesn'’t provide a symbol file to link applications against, therefore Angel functions cannot be called

directly from user applications that have been downloaded to the target via the debugger. Through the use of software
interrupts (SWI) Angel allows such applications to make requests. Some of these requests are semihosted, i.e. a
request from the user program is communicated to the host and executed there.

To avoid interfering with operating systems that also use SWis Angel uses only one SWI for all operations. The

particular service that is requested is encoded in register r0, the parameters are passed in a block which is pointed to
by register r1. The result is returned in r0, either as a value or as a pointer to a data block.

The supported semihosted operations are as follows [3, p. 8-3 ff.]:

SYS_OPEN: open a file on the host computer
SYS_ CLOSE: close a previously opened file

SYS_ WRITEC: write a byte to the debug channel, when executed under debugger control the byte appears on the
display device connected to the debugger

SYS_WRITEO: write a O-terminated string to the debug channel, appears at the debugger display device
SYS_WRITE: write a data block to a previously opened file on the host

SYS READC: read a byte from the debug channel, i.e. from the keyboard attached to the debugger
SYS_READ: read a block of data from a previously opened file on the host

SYS_ISERROR: check a status word

12



Operating Systems for the Badge

* SYS_ISTTY: check if a handle to a previously opened file or device object identifies an interactive device
* SYS_SEEK: setthe position in a seekable file

* SYS_FLEN: return the length of a seekable file

* SYS_TMPNAM: get a temporary filename from the host

e SYS REMOVE: delete a file on the host

* SYS_RENAME: rename a file on the host

e SYS_CLOCK: return the time since the support code started executing, queried from the host

e SYS_TIME: return the number of seconds since the start of 1970

* SYS _SYSTEM: pass a string supplied in a buffer to the host’s command interpreter and return the status
* SYS_ERRNO: return the value of the C library variagdriemo associated with the host support

e SYS_GET_CMDLINE: return a string of the command line used to call the executable

Other operations intended to be used by user applications:

e SYS_HEAP_INFO: return info about stack and heap base and limit

* angel_SWiIreason_EnterSVC: on return the processor will execute in SVC (supervisor) mode with interrupts
disabled. It returns the address of a function to be called to return to USR (user) mode (Angel_ExitTOUSR).

* angel_SWiIreason_LateStartup: Angel supports late startup for the debugger, i.e. the application starts standalon
and upon need can request the debugger to be started to inspect an error condition.

* angel_SWiIreason_ReportException: allows the application to report an exception directly to the debugger, e.g.
that execution has completed.

3.1.3 Communications Architecture for Angel

Figure 7 shows a model of the communication layers for Angel.

Angel User application

ADP | BooT | Tocc | cus | upsG |
Reliable comms and buffer management | APPL |

Device driver (with error detection) | Raw device driver

Devices

Figure 7. Communication layers for Angel [3, p. 8-10]

At the lowest level Angel uses Devices. Normally there is at least a device using a serial link but other devices are
also possible. For example, for a certain development board (ebsal10) which contains an ethernet controller, Ange
can be configured to include the Fusion IP/UDP stack, which then allows debugging via ethernet. To support this, low
level device drivers for the used ethernet controller are provided, which the IP/UDP stack uses to transmit/receive. To
make the ethernet accessible for Angel an additional wrapper layer was added which models an Angel device usinc
the provided socket functions to access the IP/UDP stack. From an Angel point of view the whole network stack is
just another device which can be accessed through the common Angel device framework. The device driver layer
provides detection or rejection of bad packets but doesn't offer reliability.

13
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The device driver multiplexes reliable packets from Angel with raw packet access from the application. This
makes the transition from full Angel to minimal Angel easier - the interface for the application (raw device) remains
the same, the raw device driver then just directly accesses the link.

All communications for debugging (the channels ADP (Angel debug protocol), BOOT (boot agent channel),
TDCC (Thumb direct comms channel), CLIB (semihosted C library support), UDBG (user debug support for
extended debugger features accessible for the application) ) require a reliable channel between the target and the host.
The “Reliable comms and buffer management” layer implements reliability, retransmission and multiplexing/
demultiplexing for these channels. To allow retransmissions after errors this layer also implements buffer
management. Reliability is achieved by using sequence numbers in the packets that allow to detect missing packets
and retransmission of these or corrupted packets.

At the top level, Angel communicates with the debugger through the described channels, the user application can
request semihosted operations (CLIB) or extended debugger features (UDBG) and can use the device connected to
the debugger host for its own communication (APPL) and/or other devices.

Angel supports polled devices, interrupt driven devices and half interrupt driven/half polled devices (i.e. the
operation is started via an interrupt but then completed by polling). As packet processing can result in time
consuming operations, this can cause problems if executed within interrupt handlers. To avoid blocking the system by
performing lengthy tasks within an interrupt handler Angel provides a serialization mechanism. As this mechanism
proofed vital for my IrDA implementation I'll describe it in some more detail in the next section.

3.1.4 Serialization and CPU Modes

The serialization model used by Angel is explained using an example:

Callback
——
IR S ! :
QI--I_Q'Nl N2

Application X '
|

o

mmmmmmm execution with interrupts disable

L

e cXecution with interrupts enable

Figure 8. Serialization [3, p. 8-38]

The application is running, when an interrupt request (IRQ) occurs. Angel stores the application stack and task
info, disables interrupts, switches the CPU mode to IRQ and executes the interrupt handler. The interrupt handler
calls Angel_SerialiseTask (S) and provides a function as an argument. Angel keeps a structure called “the
lock” to achieve mutual exclusion. If the lock is currently “unowned”, the passed function is immediately executed in
SVC (supervisor) mode, but with interrupts reenabled. If the lock has already been taken by another call, the
complete context information to execute the function later on, when the lock has been returned, is saved. From point
“S” on the function executes in SVC mode. The rest of the packet then can be polled in and the appropriate callback
function can be determined. NoAngel QueueCallback is called (Q) to queue a callback function for to
process the packet for later execution. When the packet is complete the packet assembly code (i.e. the serialized
function) returns. This is intercepted Bygel_NextTask (N1). Instead of returning to the application the queued
callback function is executed in USR mode. When this has finished it returns. Again the return is intercepted by
Angel_NextTask which returns execution to the application.

Through this mechanism interrupt handlers can postpone execution of potentially time consuming code to a later
time and thus minimize the time spent with interrupts disabled. The serialization provides mutual exclusion because
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only one function at a time can grab the lock. On each return of a task Angel checks the callback queues and execute
the queued requests according to their priority specified in the daligel QueueCallback

3.1.5 Summary

Angel is a debug monitor that allows to download user applications to a target platform via a debugger. The user
application can request services on the host running the debugger through the semihosted C library.

Angel provides a device driver framework that allows to add and integrate new devices relatively easily. Using
this framework it is possible to smoothly migrate from development hardware using full Angel support to production
hardware with minimal Angel support.

The serialization mechanism allows mutual exclusion and to delay time consuming tasks by queuing callback
functions for later execution, thus minimizing the time spent with interrupts disabled.

Porting the low level layers of Angel is not an easy task, especially as at this level a logic analyzer is nearly the
only possible method of debugging. At higher levels the code is documented quite well, allowing modifications to fit
special needs.

A disadvantage is that by default interrupt handlers have to be (statically) compiled into Angel, changing handlers
and calling Angel functions from programs downloaded via the debugger is not possible. As explained in section 4.1
“Extensions to Angel” this can be changed by applying some modifications to Angel.

More information on Angel can be found in [3] and [4].

3.2 VxWorks

VxWorks is a commercial real-time operation system by Windriver Software. It has a rich feature list and offers
nearly everything one can think of with respect to an embedded operating system, including a full TCP/IP stack. The
cost is an enormous image size and high complexity. The student group working with VxWorks spent most of their
time trying to configure the OS to make it work instead of being able to concentrate on their own code. The OS was
delivered in a new version which the students were not able to configure properly, even with the help of an
VxWorks-experienced HP developer. Finally they switched back to the old version which was known to run.
Although listed in the feature list it was not possible to configure the OS such that self developed programs could be
downloaded via the serial link. They had to be compiled and linked directly with VxWorks, thus requiring rewriting
the whole FLASH memory for every change in the program code - a time consuming process. To sum up, VxWorks
offers a lot of features but is extremely complex and big in size - typical image sizes including the OS and a small
user program were about 800-900 KB, i.e. the OS itself took up most of the available FLASH memory. An example
for a working application is a web server running in a SmartBadge equipped with a wireless LAN card, allowing to
query the sensor values.

3.3 E-Kernel

E-Kernel is a component OS being developed by Tim Connors, HP Labs, Palo Alto. It consists of various
relatively independent modules that can be linked in according to the specific requirements of a given application. At
the moment it offers multithreading and modules for console I/O and mutex. In combination with an RPC-based
daemon a simple command shell allows to load and start programs stored on the host running the daemon
RPC-daemon also provides semihosted services similar to Angel, i.e. I/O functiopsitife andgetline are
redirected to the host terminal. HP has also licensed a TCP/IP stack which, in combination with a WaveLAN driver
also written by Tim Connors, allows full network access in a wireless infrastructure. The experiences in general were
quite good, the OS already offers the basic functionality one can expect. A big advantage over VxWorks is that the
size of the OS is extremely small, with the TCP/IP stack included it takes up about 140 KB. Some problems arose due
to the still very limited documentation, a result of the early development stage of the OS. A drawback compared to
Angel and VxWorks is that, at least until now, there is no debugger hook. With better documentation and especially
adding debugger support I'm convinced that the E-kernel will become a valuable alternative.
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4

. Using some of the Peripherals

This chapter first describes the changes applied to Angel to offer enhanced functionality and
then describes some of the peripheral components, such as interrupts, general purpose 1/O,
peripheral pin controller, timers, UARTS, and infrared port, in more detail. For each unit
discussed here first a brief explanation of the controlling registers is given, followed by code
examples that demonstrate how to use the unit. Some of the units that the SA-1100 also
offers, such as USB device controller, SDLC mode for serial port 1, serial port 4 (multimedia
port), LCD controller, power management and reset controller are omitted here, more
information on them can be found in [6].

4.1 Extensions to Angel

4.1.1 Description of the Changes Applied to Angel

First | describe an extension to Angel that has been made by Prof. G.Maguire and M.T.Smith, then some more
extensions which | have added during my work.

In its current design Angel keeps a table containing the address of a handler function and an additional 32-bit
word to be passed to that handler for each of the 32 first level interrupt sources (see section 4.3 “Interrupts”). This
table is kept in SRAM but is statically compiled into Angel. Thus no runtime modification by application programs
downloaded via the Debug Monitor is possible. To get around this problem, Prof. G.Maguire and M.T.Smith have
changed syscall 0x16 , which by default returns heap information, to return additional information including
the base address of this interrupt handler table - thus making it possible to install/remove interrupt handlers at
runtime. The table is located in the flarm211\Angel\Source\brutus\devices.c , Which also contains
the added arragysinfo

The mechanism to access the table works as follows: Angel provides no symbol file to link against at runtime.
Therefore applications can't call any Angel functions directly. In order to offer services Angel uses a software trap:
executing a SWI (Software Interrupt) instruction causes a trap which is intercepted by Angel. The SWI trap handler
calls SysLibraryHandler (in file \Arm211\Angel\Source\brutus\sys.c ) which evaluates some of
the processor registers that have been set up suitably in advance. Their contents are interpreted as an index to select a
function to call and as parameters to pass to that function respectively. These functions implement the so-called
syscalls and carry out the requested service. The services mainly represent the semihosted operations described in
section 3.1. One of these functionsyscall 0x16 , returns information about the heap. The integer pointer array
sysinfo  was added to the fildevices.c  and contains the address of the Angel device table, the device status
table, the interrupt and the polling handler table, and the default interrupt handler. This array was added to the
existing variable of typstruct AngelHeapStackDesc in the file\Arm211\Angel\Source\stacks.c
This variable in turn is returned whersyscall 0x16 is executed. Now that we have the base address of the
interrupt handler table it is possible to replace any interrupt handler during runtime.

| used the same mechanism to add some more information to be returned by the above system call. During my
work on the IrDA implementation | faced severe problems regarding the CPU mode in which code is executed.
Basically the whole IrDA implementation is event driven, either communication events or timer events. The timer
events can only be generated using (OS Timer) interrupts and trigger the execution of partly quite time consuming
functions. The problem now was that doing the timer check and executing all following actions within the timer
interrupt handler would block all other interrupts during this time which is clearly unacceptable. As explained in
section 3.1, Angel offers a mechanism which is intended to exactly solve this type of problems by queuing time
consuming tasks for later execution in user mode with interrupts reenabled. But again the problem was that these
functions could only be used by code that was statically linked with Angel, not by application programs (running
under the Debug Monitor). Therefore | extendedslisinfo  array to contain pointers to the functions | needed. By
executing syscall 0x16  these function pointers are returned and can be used to call internal Angel functions
from application programs. | added only the functions | needed, bugythifo  array can easily be extended to
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contain the address of any Angel function that is needed by an external program. The following steps have to be taker
to add a function, see also the code examples in section 4.2 “Support code” for details:

* add a pointer to the function sysinfo  at the end of fil&ngel\Source\brutus\devices.c
* add a#define “index” in file util\util_misc.h
* add atypedef declaring a function pointer of that type in fili#\util_misc.h

* addextern function_type function_pointer in file util\util_misc.h
* add a variabléunction_type function_pointer in file util\util_misc.c
* add an assignment misc_InitAngelFunctions() at the end of fileutil\util_misc.c

Another extension | made concerns the caches. When | tried to do the SIR modulation in software (See section
5.2.2 “SIR via Software Modulation”) it turned out that the maximum toggle frequency for the pin generating the
signal was far below the required 200 kHz, despite the fact that the SA-1100 is a 200 MHz RISC processor which
should be easily capable of this task. Further examination showed that in accordance to the power up messag
displayed by the Debug Monitor the caches were enabled, but the cacheable batwasfor any memory region,
thus effectively disabling the caches.

| added an additional configuration flaCACHEABLE BIT _ENABLEDto the file \Arm211\Angel\

Source\brutus\devconf.h which contains the hardware description of the system for which Angel is to be
built. This define is evaluated Mrm211\Angel\Source\brutus\banner.h (to add an appropriate string
to the boot message), M\rm211\Angel\Source\brutus\makelo.c (generates an assembler include file

out of the C-configuration file) and most importantly, VArm211\Angel\Source\brutus\target.s
Depending on the value of the flag, SRAM and FLASH memory are marked as cacheable or non- cacheable in the
SA_INITMMU macro in this file.

Another problem was related to the interrupt handling. After extensive search and disassembling it turned out that
the SmartBadge | was working with contained a version of Angel that handled only three specific interrupt requests
while neglecting all others. The available source code version of Angel did not have this constraint which made
finding the error quite difficult. In addition it turned out that the existing code contained an error - the low level
interrupt handler did not take into account the contents of the interrupt controller mask register (See section 4.3
“Interrupts” for more details), thus handling even masked interrupts. | added code to make sure that only unmasked
interrupt requests are further handled by the interrupt handler. This code is also located in
\Arm211\Angel\Source\brutus\target.s.

When experimenting with the GPIO pins | was surprised to find that the available GPIO pins GP102-GPIO9 were
configured as outputs after reset. Further search in Angel showed that they were configured as outputs in a macr
called INIT_GPIOS in \Arm211\Angel\Source\brutus\target.s . This might be a relict from the
porting process were the GPIO pins were heavily used for debug purposes. In normal usage this is not desired thoug
(power consumption and possible short circuits as discussed in section 4.4 “General Purpose I/O Controller (GPIO)”
and section 4.5 “Peripheral Pin Controller (PPC)” ), therefore | changed the macro to have all pins be configured as
inputs. Additionally | added some codedgsablerising and falling edge detection for these pins which was not done
by default.

While most of these changes, although driven by needs resulting from my IrDA implementation, can be well used
in a general Angel image | applied some more changes which are primarily meant for use in combination with the
IrDA implementation. They are controlled by flags in tHevconf.h  file (mainly IRLAN_SUPPORTEPand
described in more detail in Chapter 9. "IrDA Implementation”.

4.1.2 Rebuilding Angel for the Badge

To rebuild an Angel image containing my changes the following steps have to be followed:
1. Install ARM Software Development Tools Version 2.11 in C:\ARM211.

Note: It must be Version 2.11, currently (Badge-) Angel cannot be rebuilt using the new ARM SDK Version 2.5 !
Also there seems to be problem if the ARM SDK is not installed into C\ARM211.
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2. Unpack the file ChwolfAngel.zip containing my Angel source code into the directory C:\ARM211\Angel\Source
(if step one has been omitted because ARM SDK is already installed, any modified files in the source directory
should be backed up before unpacking my file).

3. Start the ARM Project Manager

4. To rebuild standard Angel open the projacgelsa.apj , to rebuild Angel with support for the IrDA stack
open the projeangeleth.apj , both in directonfC:\ARM211\Angel\Source\brutus.b\apm.

5. Edit the fileC:\ARM211\Angel\Source\brutus\devconf.h to configure Angel to your needs (mainly
the two flags which | added, CACHEABLE_BIT_SUPPORTED and IRLAN_SUPPORTED and, in case of
IRLAN_SUPPORTED-=1, the flag BOOTP, might be of interest).

6. Rebuild the target “Bootloader image”. This will produce quite a number of warnings which can be ignored. At
the end it should say: “Project up to date”. In this case it will have produced thegidisa.axf  (the image
file name is the same for both projeeisgelsa.apj  andangeleth.apj ) in the directory
C:\ARM211\Angel\source\brutus.b\apm\Bootloader image .

7. The produced image fiengelsa.axf ~ can then be downloaded to the FLASH izadfl
angelsa.axf .

4.2 Support code

Here | present some code which utilizes the previously described extension to Angel to support calling of some of
the internal Angel functions as well as some other declarations and functions which were needed during my work, but
are not directly related to one of the units described in the following sections.These are the corresponding functions
and global variables:

Description:
various helper macros and definitions

--Christoph Wolf
chwolf@it.kth.se

#ifndef util_misc_h
#define util_misc_h

#ifdef IRDA

#include <irda/socket.h>
#include <irda/address.h>

#endif

#define BITO 0x00000001
#define BIT1 0x00000002
#define BIT2 0x00000004
#define BIT3 0x00000008
#define BIT4 0x00000010
#define BITS5 0x00000020
#define BIT6 0x00000040
#define BIT7 0x00000080
#define BIT8 0x00000100
#define BIT9 0x00000200
#define BIT10 0x00000400
#define BIT11 0x00000800
#define BIT12 0x00001000
#define BIT13 0x00002000
#define BIT14 0x00004000
#define BIT15 0x00008000
#define BIT16 0x00010000
#define BIT17 0x00020000

Listing 1. General support declarations and macros [file util\util_misc.h]
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#define BIT18 0x00040000
#define BIT19 0x00080000
#define BIT20 0x00100000
#define BIT21 0x00200000
#define BIT22 0x00400000
#define BIT23 0x00800000
#define BIT24 0x01000000
#define BIT25 0x02000000
#define BIT26 0x04000000
#define BIT27 0x08000000
#define BIT28 0x10000000
#define BIT29 0x20000000
#define BIT30 0x40000000
#define BIT31 0x80000000

I/ control bits in the program status register

/I can be used to globally enable/disable IRQs and FIQs

#define MISC_F_MASK  BIT6
#define MISC_|_MASK ~ BIT7
#define MISC_INT_MASK  BIT7 | BIT6

/I bits in register 1 of coprocessor 15 to enable/disable
/ MMU, data and instruction cache and the Write Buffer

#define MISC_MMU BITO
#define MISC_D_CACHE  BIT2
#define MISC_WRITE_BUFFER BIT3
#define MISC_|_CACHE  BIT12

/* two heavily used macros to access peripheral registers and to

* test a certain bit in a register
*/

#define REG(base,offs) (*(volatile unsigned int*)(base+offs))
#define TEST_BIT(base,offs,bit) ((*(volatile unsigned int*)(base+offs)) & bit)

/* some often used type declarations */
typedef unsigned int UI32 ;

typedef unsigned short UI16;

typedef unsigned char UCS;

typedef UI32 BOOL;

#define bool BOOL

/* The Angel software trap prototype*/
int _syscall(int, int *);
#define angel_SWIreason_EnterSVC 0x17

/*

* Function: misc_SysEnablelCache

* Purpose: Enable the SA-1100 Instruction Cache
*

* Parameters: none

* Returns: void

*/

void misc_SysEnablelCache(void);

/*
* Function: misc_SysDisablelCache
* Purpose: Disable the SA-1100 Instruction Cache

Listing 1. General support declarations and macros [file util\util_misc.h]
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* Parameters: none

* Returns: void

*/

void misc_SysDisablelCache(void);

/*

* Function: misc_SysEnableDCache

* Purpose: Enable the SA-1100 Data Cache
*

* Parameters: none

* Returns: void

*/

void misc_SysEnableDCache(void);

/*

* Function: misc_SysDisableDCache

* Purpose: Disable the SA-1100 Data Cache
*

* Parameters: none

* Returns: void

*/

void misc_SysDisableDCache(void);

/*

* Function: misc_SysEnableWriteBuffer

* Purpose: Enable the SA-1100 Write Buffer (which holds data on its way to be
* written to external memory)

*

* Parameters: none

* Returns: void

*/

void misc_SysEnableWriteBuffer(void);

/*

* Function: misc_SysDisableWriteBuffer

* Purpose: Disable the SA-1100 Write Buffer
*

* Parameters: none

* Returns: void

*/

void misc_SysDisableWriteBuffer(void);

[* for fast debugging without the real target hardware
* In armulate the Angel extension of course does not work. Complex programs
* needing the extension can’t be debugged with Armulate anyway, but some
* simple programs (which under Angel still require Angel_EnterSVC() /
* Angel_ExitToUSR() were useful to debug with Armulate in which case the
* function pointer must not be used.
*/
/I#define ARMULATE
#ifdef ARMULATE
#define Angel_EnterSVC()
#define Angel_ExitToUSR()
telse
#define Angel_EnterSVC() __Angel_EnterSVC()
#define Angel_ExitToUSR() __ Angel_ExitToUSR()
#endif

[* needed for the IrDA implementation */
Listing 1. General support declarations and macros [file util\util_misc.h]
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#define cli() Angel_EnterSVC()
#define sti() Angel_ExitToUSR()
#define restore_flags(x)

#define save_flags(x)

/*
* Function: misc_GetRandomBytes

* Purpose: Get one or four pseudo-random bytes
*

* Parameters:
*  Input: nbytes 1 or 4 to specify the number of bytes
*  QOutput: buf the requested number of random bytes

Returns: void

*

* This function stores either 1 or 4 pseudo-random bytes into the supplied

* puffer (intended for the IrDA protocol). The bytes are taken from the

* OS Timer count register. It is assumed that the supplied buffer can hold

* the requested number of bytes.
*/
void misc_GetRandomBytes(void* buf, int nbytes);

/*

* Function: misc_PrintErrorStdout

* Purpose: print an error message to the standard output
*

* Parameters:
* Input: text The error message to output
* Returns: void

*

* Note: the function uses the semihosted function fprintf and therefore
* cannot be used in interrupt handlers or in queued functions !!

*/

void misc_PrintErrorStdout(char *);

/* defines and typedefs for the Angel hooks */

/* offset of first function to beginning of sysinfo array */
#define ANGEL_FUNCTION_OFFSET 5

/* indices of the currently implemented hooks */
#define ANGEL_FUNCTION_ENTER_SVC 0
#define ANGEL_FUNCTION_EXIT_TO_USR 1

#define ANGEL_FUNCTION_DISABLE_INTERRUPTS_FROM_SVC 2
#define ANGEL_FUNCTION_ENABLE_INTERRUPTS_FROM_SVC 3
#define ANGEL_FUNCTION_RESTORE_INTERRUPTS_FROM_SVC 4

#define ANGEL_FUNCTION_SERIALISE_TASK 5
#define ANGEL_FUNCTION_QUEUE_CALLBACK 6
#define ANGEL_FUNCTION_YIELD 7

#ifdef IRDA

#define ANGEL_FUNCTION_NETSTART_MAIN 8
#define ANGEL_FUNCTION_CONFIGURE_IP 9

#define ANGEL_FUNCTION_PROCESS_ONE_PACKET 10
#define ANGEL_FUNCTION_IP_GET_DEVICE_ADDRESS 11
#define ANGEL_FUNCTION_IP_SET_DEVICE_ADDRESS 12
#define ANGEL_FUNCTION_SOCKET 13

#define ANGEL_FUNCTION_CLOSE_SOCKET 14
#define ANGEL_FUNCTION_SENDTO 15

#define ANGEL_FUNCTION_BIND 16

#define ANGEL_FUNCTION_RECV_FROM 17
#define ANGEL_FUNCTION_RECV 18

#define ANGEL_FUNCTION_GET_SOCK_NAME 19

Listing 1. General support declarations and macros [file util\util_misc.h]
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#endif

[* priority types for queued functions */

typedef enum angel_TaskPriority {
TP_IdleLoop =0,
TP_Angellnit =1,
TP_Application = 2,
TP_ApplCallBack = 3,
TP_AngelCallBack = 4,
TP_AngelWantLock =5

} angel_TaskPriority;

#define TP_MaxEnum (TP_AngelWantLock)

[* typedefs for queued and serialised functions */
typedef void (*angel_SerialisedFn)(void *);
typedef void (*angel_CallbackFn)(void *al,

void *a2,

void *a3,

void *a4);

I* typedefs for the different hook functions */
typedef void (*Angel_EnterSVC_fn)(void);
typedef void (*Angel_ExitToUSR_fn)(void);
typedef int (*Angel_DisablelnterruptsFromSVC_fn)(void);
typedef int (*Angel_EnablelnterruptsFromSVC_fn)(void);
typedef void (*Angel_RestorelnterruptsFromSVC_fn)(int);
typedef void (*Angel_SerialiseTask_fn)(bool called_by_yield,
angel_SerialisedFn fn,
void *state,
unsigned empty_stack);
typedef void (*Angel_QueueCallback_fn)(angel_CallbackFn fn,
angel_TaskPriority priority,
void *al, void *a2, void *a3, void *a4);
typedef void (*Angel_Yield_fn)(void);

#ifdef IRDA
typedef int (*eth_xmit_func)(unsigned char* buff, unsigned int size);

struct irlan_info_block

/I FIXME replace with define, maybe common with Angel
unsigned char hw_address|[6];
unsigned int* irflan_eth_xmit;
unsigned char* balance_buf;
unsigned char* irlan_recv_buf;
unsigned int* irlan_recv_buf_count;
unsigned int* irlan_recv_buf_size;

h

typedef int (*Angel_NetstartMain_fn)(struct irlan_info_block* info);
typedef int (*Angel_ConfigurelP_fn)(ip_addr ip);
typedef int (*Angel_EthernetProcessOnePacket_fn)(int device_no,

unsigned char* input_buffer, unsigned char* *output_buffer);
typedef void (*Angel_IPGetDeviceAddress_fn)(int device_no, ip_addr ip);
typedef void (*Angel_IPSetDeviceAddress_fn)(int device_no,ip_addr ip);
typedef int (*Angel_Socket_fn)(int af, int type, int protocol);
typedef int (*Angel_Close_fn)(int socket);
typedef int (*Angel_SendTo_fn)(int socket, const void *msg, int len, int flags,

const struct sockaddr *destaddr, int addrlen);

typedef int (*Angel_Bind_fn)(int socket, struct sockaddr_in *localaddr, int addrlen);
typedefint (*Angel_RecvFrom_fn)(int socket, void *buf, int len, int flags,

Listing 1. General support declarations and macros [file util\util_misc.h]
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struct sockaddr *fromaddr, int *addrlen);
typedef int (*Angel_Recv_fn)(int socket, void *buf, int len, int flags);
typedef int (*Angel_GetSockName_fn)(int socket, struct sockaddr *localaddr, int
*addrlen);

/* the variables containing the addresses to the hook functions */

extern Angel_EnterSVC_fn __Angel_EnterSVC;

extern Angel_ExitToUSR_fn __Angel_ExitTOUSR,;

extern Angel_DisablelnterruptsFromSVC_fn Angel_DisablelnterruptsFromSVC;
extern Angel_EnablelnterruptsFromSVC_fn Angel_EnablelnterruptsFromSVC;
extern Angel_RestorelnterruptsFromSVC_fn Angel_RestorelnterruptsFromSVC;
extern Angel_SerialiseTask_fn Angel_SerialiseTask;

extern Angel_QueueCallback_fn Angel_QueueCallback;

extern Angel_Yield_fn Angel_Yield;

extern Angel_NetstartMain_fn Angel_NetstartMain;

extern Angel_ConfigurelP_fn Angel_ConfigurelP;

extern Angel_EthernetProcessOnePacket_fn Angel_EthernetProcessOnePacket;
extern Angel_IPGetDeviceAddress_fn Angel_IPGetDeviceAddress;

extern Angel_IPSetDeviceAddress_fn Angel_IPSetDeviceAddress;

extern Angel_Socket_fn Angel_Socket;

extern Angel_Close_fn Angel_Close;

extern Angel_SendTo_fn Angel_SendTo;

extern Angel_Bind_fn Angel_Bind;

extern Angel_RecvFrom_fn Angel_RecvFrom;

extern Angel_Recv_fn Angel_Recv;

extern Angel_GetSockName_fn Angel_GetSockName;

#endif

/*

* Function: misc_GetAngelFunction

* Purpose: Get the address of one of the hooks into Angel

*

* Parameters: index The number of the function whose address is
* to return

* Returns: The address of the requested function cast to a int pointer
*

* This function returns the address hook function specified by index.

* This address then can be used to call the (internal) Angel function

* from an application program. See the include file for the defined

* indices.

*/

unsigned int * misc_GetAngelFunction(int index);

/*

* Function: misc_InitAngelFunctions

* Purpose: Set up the global function pointers with the Angel function
* addresses

*

* Parameters: none

* Returns: void

*

* This function determines the addresses of the implemented hooks into
* Angel and stores them in their respective global variables. The

* function should be called first in an application program because

* many other functions rely on these pointers. To enhance speed the
* pointers are not checked for validity before usage.

*/

void misc_|InitAngelFunctions(void);

Listing 1. General support declarations and macros [file util\util_misc.h]
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/*

*  Description:

* Various helper functions for use with the Badge and Angel
*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

*/

#include <util/util_misc.h>
#include <util/util_ostimer.h> // needed for the function misc_GetRandomBytes
#include <stdio.h>

[* Global variables to contain function pointers to hooks into Angel.

* The functions are internal Angel functions which are useful for

* application programs, but not directly accessible.

* misc_InitAngelFunctions() sets the pointers which can then be

* used to call the Angel functions.

* The comments are taken from the file \arm211\Angel\Source\serlock.h
*/

Function: Angel_EnterSVC

Purpose: Switch to SVC mode from USR mode, setting the I-bit
and the F-bit (two bits in the Program Status Register,
that disable IRQs and FIQs respectively, if set).

Effect: Execution continues in SVC transparently. The I-bit and
the F-bit are both set. A switch of stacks occurs (the
USR stack pointer and stack limit are copied to the

*

*

*

*

*

* Pre-conditions: The caller must presently be executing in USR mode.
*

*

*

*

* SVC registers), so that the transition is transparent to
*

APCS.
*/
Angel_EnterSVC_fn __Angel_EnterSVC;
/*
* Function: Angel_ExitToUSR
* Purpose: Switch back to USR mode after executing for a while
* in SVC.
*
* Pre-conditions: The caller must presently be executing in SVC.
*
* Effect: Execution continues in USR mode transparently. The I-bit
* and F-bit are both cleared. The SVC stack pointer and
* stack limit are copied to the USR registers, so that the
* transition is transparent to APCS, and the SVC stack
* is reset to an empty state.
*/

Angel_ExitToUSR_fn __Angel_ExitToOUSR,;

/*
Function: Angel_DisablelnterruptsFromSVC
Purpose: Disable interrupts while executing in SVC mode

*
*
*
* Pre-conditions: The caller must presently be executing in SVC mode
* and must have obtained the serialiser lock.

*

*

Inputs: None
Listing 2. General support functions and macros [file util_misc.c]
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*

* Returns: Processor State on entry to the routine

*

* Effect: Interrupts are disabled.

*/

Angel_DisablelnterruptsFromSVC_fn Angel_DisablelnterruptsFromSVC;
/*

* Function: Angel_EnablelnterruptsFromSVC

* Purpose: Enable interrupts while executing in SVC mode

* Pre-conditions: The caller must presently be executing in SVC mode
* and must have obtained the serialiser lock.

* Inputs: Nothing

*

* Returns: Processor State on entry to the routine

*

* Effect: Interrupts are enabled.

*/

Angel_EnablelnterruptsFromSVC_fn Angel_EnablelnterruptsFromSVC;

/*

* Function: Angel_RestorelnterruptsFromSVC

* Purpose: Enable interrupts while executing in SVC mode

* Pre-conditions: The caller must presently be executing in SVC mode.
*

* Inputs: state  State returned from previous call to

* Angel_DisablelnterruptsFromSVC() or

* Angel_EnablelnterruptsFromSVC().

*

Effect: The interrupt state is restored.
*/
Angel_RestorelnterruptsFromSVC_fn Angel_RestorelnterruptsFromSVC;

/*
Function: Angel_SerialiseTask
Purpose: To queue a function to be executed in a serial queue of
actions with “the lock”. In this desired state, mutual
exclusion is automatically achieved, by serialization.

*

*

*

*

*

* Arguments: called_by_yield 1 if called by Angel_Yield
* 0 otherwise.

* fn is the function which desires the lock
* state is a parameter for fn

* empty_stack the value of the stack pointer
* of the current mode such that its

* stack is empty - it will be reset

* to this value, and hence fn must

* not need to access any items which
* might have been left there

*

*

*

*

*

*

*

*

*

*

*

*

*

Implicit Argument Angel_MutexSharedTempRegBlocks[0] must hold the
interrupted regblock on entry to Angel_SerialiseTask.

Pre-conditions: This function may be called from IRQ, FIQ, UND or SVC
mode.

Effect: If the lock is presently unowned, fn will be executed
immediately in SVC with the I-bit and F-bit clear. If it
is already owned, however, the complete context needed
to execute it later is saved.

This is not a “normal” function, in the sense that it
Listing 2. General support functions and macros [file util_misc.c]

25



Using some of the Peripherals

E L T S . T S S S .

*

does not necessarily preserve sequence.

When fn is ready to be executed, the registers will be
as follows:

r0 (al) = <state>
sp ->(empty) SVC stack area

sl = SVC stack limit

fp =0 (no previous frames)
Ir  ->entry point to NextTask
pc -><in>

cpsr => SVC mode, |-clear, F-clear

Thus, when fn exits, it will invoke NextTask.

Angel_SerialiseTask_fn Angel_SerialiseTask;

~
*

EE I I R T S T I S T S L N . S . S S R R . N S S S T N .

*/

Function: Angel_QueueCallback

Purpose: This routine enables device drivers, the breakpoint
(undefined instruction) handler, the SWI handler or the
“yield” code to queue requests.

Itis, in fact, just a veneer on QueueTask - for the
sake of ease of use.

Arguments: fn the function to be placed in the appropriate

Angel queue

priority this identifies the queue into which the

request is to be placed (see the datatype
angel_TaskPriority in the include file misc_util.h).

al first argument to <fn> (goes in r0)

a2 second argument to <fn> (goes in rl)
a3 third argument to <fn> (goes in r2)
a4 fourth argument to <fn> (goes in r3)

Pre-conditions: This code must be called in SVC mode, with the lock
(aquired via Angel_SerialiseTask).

Effect: QueueTask is called, with registers set up as above,
and in addition:

fp =0 (no previous frames)

Ir -> entry point of NextTask

pc -><fn>

cpsr = USR, I-clear, F-clear

sl, sp are set to be the Application stack

Note: This routine is not atomic, but it does call QueueTask,
which is.

Angel_QueueCallback_fn Angel_QueueCallback;

~
*

ECE T S S S S .

Function: Angel_Yield

Purpose: This is a voluntary yield function, which allows the
polling loop to execute; this permits an application to
give control to the polling loop and perform any necessary
polling actions.

Pre-conditions: This routine may be called either from USR or from SVC.
In the latter case, the lock should be held.

Effect: If notin SVC, a transparent stack switch is made (the
USR stack pointer and stack limit register are copied to

Listing 2. General support functions and macros [file util_misc.c]
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* the SVC ones) so that the code is APCS (ARM Procedure Calls
* Standard) conformant. The polling loop is then called so that
* any polled devices may be checked (AngelYield()->

* Angel_YieldCore()->Angel_DeviceYield() { check all polling
* handlers in the polling table }.

*

* On exit, a transparent switch is made back to USR if the

* original call came from USR - in which case the SVC stack

* is also reset so that it is empty.

* Angel_Yield can be called in “waiting”, e.g., when

* waiting for a device to become ready,...

*/

Angel_Yield_fn Angel_Yield;

Function: Angel_NetstartMain [file netstart.c]
Purpose: This routine initializes the UDP/IP stack for use
with the Badge IrDA-stack

*
*
*
*
* Arguments: irlan_info pointer to a structure containing the MAC
* address of the Ir(LAN device and pointers to the the

* irlan transmit and recive functions

*

*

*

*

Pre-conditions: an irlan-connection must be initialized in order to
provide a valid MAC-address

Angel_NetstartMain_fn Angel_NetstartMain;
Angel_ConfigurelP_fn Angel_ConfigurelP;

Angel_EthernetProcessOnePacket_fn Angel_EthernetProcessOnePacket;

Angel_IPGetDeviceAddress_fn Angel_IPGetDeviceAddress;
Angel_IPSetDeviceAddress_fn Angel_IPSetDeviceAddress;

Il socket functions

Angel_Socket_fn Angel_Socket;
Angel_Close_fn Angel_Close;
Angel_SendTo_fn Angel_SendTo;
Angel_Bind_fn Angel_Bind;
Angel_RecvFrom_fn Angel_RecvFrom;
Angel_Recv_fn Angel_Recy;
Angel_GetSockName_fn Angel_GetSockName;

/I a global variable to detect if the Angel function hooks have
/l been initialized (by calling misc_InitAngelFunctions)
int misc_initialized = FALSE;

/*

* Function: misc_SysEnableWriteBuffer

* Purpose: Enable the SA-1100 Write Buffer (which holds data on its way to be
* written to external memory)

*

* Parameters: none

* Returns: void

*/

void misc_SysEnableWriteBuffer(void)

Angel_EnterSVC();
__asm

MRC p15, 0, r0, c1, c0, 0
MOV rl, #MISC_WRITE_BUFFER

Listing 2. General support functions and macros [file util_misc.c]
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ORR 0, 10, r1 /I set bit 3 in control reg 1
MCR p15, 0, r0, c1, c0, 0

}
Angel_ExitToUSR();
}

/*

* Function: misc_SysDisableWriteBuffer

* Purpose: Disable the SA-1100 Write Buffer
*

* Parameters: none

* Returns: void

*/

void misc_SysDisableWriteBuffer(void)

Angel_EnterSVC();
__asm

{
MRC p15, 0, r0, c1, c0, 0
MOV r1, #MISC_WRITE_BUFFER

BIC rO, rO, r1
MCR p15, 0, r0, c1, c0, 0 // clear bit 3 in control reg 1

}
Angel_ExitToUSR();
}

/*

* Function: misc_SysEnablelCache

* Purpose: Enable the SA-1100 Instruction Cache
*

* Parameters: none

* Returns: void

*/

void misc_SysEnablelCache(void)

Angel_EnterSVC();

__asm
{
MRC p15, 0, r0, c1, c0, 0
MOV r1, #MISC_I_CACHE
ORR 0, r0, r1
MCR p15, 0, r0, c1, c0, 0 // set bit 12 in control reg 1
}
Angel_ExitToUSR();
}
/*

* Function: misc_SysDisablelCache

* Purpose: Disable the SA-1100 Instruction Cache
*

* Parameters: none

* Returns: void

*/

void misc_SysDisablelCache(void)

Angel_EnterSVC();
__asm

MRC p15, 0, r0, c1, c0, 0
MOV r1, #MISC_|_CACHE

Listing 2. General support functions and macros [file util_misc.c]
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BIC 1O, rO, r1
MCR p15, 0, r0, c1, c0, 0 // clear bit 12 in control reg 1

}
Angel_ExitToUSR();
}

/*

* Function: misc_SysEnableDCache

* Purpose: Enable the SA-1100 Data Cache
*

* Parameters: none

* Returns: void

*/

void misc_SysEnableDCache(void)

Angel_EnterSVC();

__asm

{
MRC p15, 0, 10, c1, c0, 0
MOV r1, #MISC_D_CACHE

ORR O, r0, r1
MCR p15, 0, r0, c1, c0, 0 // set bit 2 in control reg 1

}
Angel_ExitToUSR();
}

/*
* Function: misc_SysDisableDCache
* Purpose: Disable the SA-1100 Data Cache

* Parameters: none

* Returns: void

*/

void misc_SysDisableDCache(void)

Angel_EnterSVC();

__asm

{
MRC p15, 0, r0, c1, c0, 0
MOV rl, #MISC_D_CACHE

BIC 1O, rO, r1
MCR p15, 0, r0, c1, c0, 0 // clear bit 2 in control reg 1

}
Angel_ExitToUSR();
}

/*
* Function: misc_PrintErrorStdout

* Purpose: print an error message to the standard output
*

* Parameters:
*  Input: text The error message to output
Returns: void

*
*
* Note: the function uses the semihosted function fprintf and therefore
*

cannot be used in interrupt handlers or in queued functions !!
*

Listing 2. General support functions and macros [file util_misc.c]
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void misc_PrintErrorStdout(char * text)

fprintf(stdout, “Error: %s\n”, text);
fflush(stdout);

}

/*
* Function: misc_GetRandomBytes

* Purpose: Get one or four pseudo-random bytes
*

* Parameters:

*  Input: nbytes 1 or 4 to specify the number of bytes

*  Qutput: buf the requested number of random bytes
*

Returns: void
*
* This function stores either 1 or 4 pseudo-random bytes into the supplied
* puffer (intended for the IrDA protocol). The bytes are taken from the
* OS Timer count register. It is assumed that the supplied buffer can hold
* the requested number of bytes.
*
void misc_GetRandomBytes(void * buf, int nbytes)

{
if(nbytes == 1)

// take a byte from the ostimer count register
*(UI32%)buf = REG(OSTIMER_BASE, OSCR) & 0x000000ff;

else if(nbytes == 4)

/I take four bytes from the ostimer count register
*(U132%)buf = REG(OSTIMER_BASE, OSCR);

else

*(UI32%)buf = 0;

/*
* Function: misc_GetAngelFunction
* Purpose: Get the address of one of the hooks into Angel
*
* Parameters: index The number of the function whose address is
* to be returned
* Returns: The address of the requested function cast to a int pointer
*
* This function returns the address of the function specified by index.
* This address then can be used to call the (internal) Angel function
* from an application program. See the include file for the defined
* indices.
*/
unsigned int * misc_GetAngelFunction(int index)
{
int block[10];
int ret;
int args[1];
unsigned int* j;

/I the extended version of _syscall returns a pointer to the sysinfo
/I structure in block[4], which then can be used to access get the
/l address of some of the internal Angel functions

args[0] = (int) (block);

ret = _syscall(Ox16, args);

Listing 2. General support functions and macros [file util_misc.c]
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j = (unsigned int*) block[4];
return (unsigned int *) JANGEL_FUNCTION_OFFSET+index];
}

/*
* Function: misc_InitAngelFunctions
* Purpose: Set up the global function pointers with the Angel function
* addresses
*
* Parameters: none
* Returns: void
*
* This function determines the addresses of the implemented hooks into
* Angel and stores them in their respective global variables. The
* function should be called first in an application program because
* many other functions rely on these pointers and, to enhance speed, the
* pointers are not checked for validity before usage.
*
/
void misc_InitAngelFunctions(void)
{
int block[20];
int ret;
int args[1];
unsigned int* j;

if(!misc_initialized)

/I the extended version of _syscall returns a pointer to the sysinfo
/I structure in block[4], which then can be used to access get the
/I address of some of the internal Angel functions

args[0] = (int) (block);

ret = _syscall(0x16, args);

j = (unsigned int*) block[4];

__Angel_EnterSVC =
(Angel_EnterSVC_fn)j[ANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_ENTER_SVC];

__Angel_ExitToUSR =
(Angel_ExitToUSR_fn)j[ANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_EXIT_TO_USR];

Angel_DisablelnterruptsFromSVC =
(Angel_DisablelnterruptsFromSVC_fn)j[ANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_DISABLE_INTERRUPTS_FROM_SVC];

Angel_EnablelnterruptsFromSVC =
(Angel_EnablelnterruptsFromSVC_fn)j[ANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_ENABLE_INTERRUPTS_FROM_SVC];

Angel_RestorelnterruptsFromSVC =
(Angel_RestorelnterruptsFromSVC_fn)j[ANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_RESTORE_INTERRUPTS_FROM_SVC];

Angel_SerialiseTask =
(Angel_SerialiseTask_fn)jJANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_SERIALISE_TASK];

Angel_QueueCallback =
(Angel_QueueCallback_fn)jJANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_QUEUE_CALLBACK];

Angel_Yield=
(Angel_Yield_fn)j[ANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_YIELD];

Listing 2. General support functions and macros [file util_misc.c]
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#ifdef IRDA
Angel_NetstartMain = (Angel_NetstartMain_fn)jJANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_NETSTART_MAIN];

Angel_ConfigurelP = (Angel_ConfigurelP_fn)[ANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_CONFIGURE_IP];

Angel_EthernetProcessOnePacket = (Angel_EthernetProcessOnePacket_fn)
J[ANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_PROCESS_ONE_PACKET];

Angel_IPGetDeviceAddress = (Angel_IPGetDeviceAddress_fn)
JJANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_IP_GET_DEVICE_ADDRESS];

Angel_IPSetDeviceAddress = (Angel_IPSetDeviceAddress_fn )
JJANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_IP_SET_DEVICE_ADDRESS];

Angel_Socket = (Angel_Socket_fn)j[ANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_SOCKET];

Angel_Close = (Angel_Close_fn)jJANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_CLOSE_SOCKET];

Angel_SendTo = (Angel_SendTo_fn)j[ANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_SENDTO];
Angel_Bind = (Angel_Bind_fn)jJANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_BIND];

Angel_RecvFrom = (Angel_RecvFrom_fn)j[ANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_RECV_FROM];

Angel_Recv = (Angel_Recv_fn)[ANGEL_FUNCTION_OFFSET+ANGEL_FUNCTION_RECV];

Angel_GetSockName = (Angel_GetSockName_fn)j[ANGEL_FUNCTION_OFFSET+
ANGEL_FUNCTION_GET_SOCK_NAME],

#endif

misc_initialized = TRUE;
}
}

Listing 2. General support functions and macros [file util_misc.c]

4.3 Interrupts

The SA-1100 offers two types of interrupts:

* FIQ: fast interrupt request
* |RQ: interrupt request

The interrupt hierarchy is a two level structure. The first level is represented by 32 different interrupt level one
sources. Each of these is represented by a bit in the Interrupt Controller IRQ Pending Register (ICIP) and the
Interrupt Controller FIQ Pending Register (ICFP). For each first level interrupt source the user can choose if a request
by one of the sources should lead to a IRQ or FIQ. This is done by programming the Interrupt Controller Level
Register (ICLR). The sources can be masked or unmasked via the Interrupt Controller Mask Register (ICMR).

Given that the interrupt is unmasked, a set bit in one of the Pending Registers causes the corresponding handler
(IRQ or the FIQ) to be executed.

The second level of the interrupt structure is represented by registers contained in the device that generates the
first level interrupt request. The handler must read additional status bits to determine the exact reason for the
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interrupt. Usually several second level interrupts are or'ed together to cause a first level interrupt request. The
different second level interrupt sources are enabled within the source device.

In general the exact reason for an interrupt can be determined by reading two registers - first the ICIP or ICFP
register, depending on the handler being called, to determine the requesting device and then a status register withi
this device to determine the function within the device that needs to be serviced. In idle mode the mask register is
ignored and any interrupt causes the SA-1100 to exit the idle mode.

The purpose of the FIQ interrupts is to provide fast service for special devices. The FIQ vector is located at the
end of the exception vector table (See [6], p. 24 for further information)

Address Exception Mode on enfry
0x0000 000( Reset Supervisdr
0x0000 0004 Undefined instructipn  Undefined
0x0000 0008  Software interrupf Supervisgr

0x0000 000C¢  Abort (prefetch) Abort
0x0000 001( Abort (data) Abort
0x0000 0014 not used

0x0000 001§ IRQ IRQ
0x0000 001C FIQ FIQ

Table 2. Exception vector table

This arrangement can save an otherwise necessary branch to the handler routine as the FIQ handler code can |
placed directly following the exception table. A dedicated processor mode (FIQ mode), providing a separate stack
and its own set of registers further enhance the FIQ performance.

Figure 9 shows the block structure of the interrupt controller:

Interrupt Level

ICLR -
Register All other Qualified
= sk Interrupt bits
nterrupt Mas
ICMR Register
>1
Idle Mode ————— Py 31 31
Disable Idle
ICCR ;
Mask Bit FIQ
L — 51 Intet(r)rupt
Interrupt Source & & Processor
Bit
8 IRQ
— >1 |nt9{gupt
Interrupt Pending ‘ & Processor
ICPR Register
IRQ Interrupt
ICIP Pending Register<
FIQ Interrupt

A

ICFP Pending Registe

Figure 9. Interrupt Controller Block Diagram
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4.3.1 Register Description

Interrupt Controller operation is determined by the following registers:

Address | Nam Bescription Acclss
[0x9005 0000 ICIP Interrupt Controller IRQ_Pending ﬁeg ster (0]
0x9005 0004 ICMR Interrupt Controller Mask Register RAW
0x9005 0008 ICLR Interrupt Controller Level Register RW
0x9005 000C¢ ICCR Interrupt Controller Control Register RjW
0x9005 0010 ICFR Interrupt Controller FIQ Pending Register RO
0x9005 0020 ICPR Interrupt Controller Pending Register RO

Table 3. Interrupt Controller register block

Following reset all IRQ and FIQ interrupts are disabled and the state of all of the interrupt controller’s registers is
undefined. These registers must be initialized before enabling any interrupts.

4.3.1.1 Interrupt Controller Pending Register (ICPR)

The ICPR is a 32 bit read only register that shows the state of all (first-level) interrupt sources in the system. The
state of this register is not affected by the mask register and does not differentiate between FIQ and IRQ requests.
Table 4 shows the assignment of the different interrupt sources to the 32 bits in the ICPR. This assignment is the same
for all the interrupt controller’s registers. The table also lists the number of second level interrupts associated with
each first level interrupt, these are or'ed together to produce the Interrupt source bit shown in Figure 9.

Bit Positior] _ unit Source Module Number of level 2 Sou Bitfield -Description

[ IP[31] | System Real Time Clock 1 RTC equals alarm registe
IP[30] 1 One HZ clock tick occurred
IP[29] Operating System Timer 1 OS timer equals match regis]er 3
IP[28] 1 OS timer equals match registet|2
IP[27] 1 OS timer equals match registe|11
IP[26] 1 OS timer equals match register]0
IP[25] |Peripheral DMA Controller 3 Channel 5 service request
IP[24] 3 Channel 4 service request
IP[23] 3 Channel 3 service request
IP[22] 3 Channel 2 service request
IP[21] 3 Channel 1 service request
IP[20] 3 Channel 0 service request
IP[19] Serial Port 4 3 SSP service request
IP[18] Serial Port 4 8 MCP service request
IP[17] Serial Port 3 6 UART service request
IP[16] Serial Port 2 6+6 UART/HSSP service requeq
IP[15] Serial Port 1b 6 UART service request
IP[14] Serial Port 1a 6 SDLC service request
IP[13] Serial Port 0 6 UDC service request
IP[12] LCD Controller 12 LCD Controller service reques

—

Table 4. Bits in the Interrupt Controller registers
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Bit Position  unit Source Module Number of level 2 Soufces Bitfield Description

_HD[ll] éystem General |5urpose [J{0) 17 “OR” of (m 1..27
IP[10] 1 GPIO[10] Edge Detect
IP[9] 1 GPIO[9] Edge Detect
IP[8] 1 GPIO[8] Edge Detect
IP[7] 1 GPIO[7] Edge Detect
IP[6] 1 GPIO[6] Edge Detect
IP[5] 1 GPIO[5] Edge Detect
IP[4] 1 GPIO[4] Edge Detect
IP[3] 1 GPIO[3] Edge Detect
IP[2] 1 GPIO[2] Edge Detect
IP[1] 1 GPIO[1] Edge Detect
IP[O] 1 GPIO[0] Edge Detect

Table 4. Bits in the Interrupt Controller registers

A set bit indicates that either an FIQ or an IRQ request by that source is pending.

4.3.1.2 Interrupt Controller IRQ Pending Register (ICIP) and FIQ Pending Register (ICFP)

Both registers contain a bit per first-level interrupt source which indicates that an interrupt request has been made
by one of the sources.

Usually the IRQ or FIQ service routine checks its associated pending register to determine the source unit
requesting service. After having found the first level source, the software has to read this unit’s registers to service the
specific function requesting interrupt service. The bits in each of the two (first level) pending registers are the result of
or'ing the interrupt pending flags within the associated unit. These second level flags have to be cleared by the user ir
order to finally cause the first level pending bit to be cleared (done automatically by hardware), once all second level
requests have been serviced. All the second level interrupt status bits are cleared by writing a one to them, while
writing a zero has no effect.

4.3.1.3 Interrupt Controller Mask Register (ICMR)

The interrupt controller mask register contains one mask bit per possible (first level) source. Cleared mask bits
(i.e. set to zero) prevent a pending bit from generating a processor interruption, while set bits cause an interruption if
the corresponding interrupt request becomes active. As already mentioned the mask bits are ignored while the
SA-1100 is in idle mode. If an interrupt request occurs while the processor is in idle mode, the interrupt becomes
active regardless of the state of its mask bit (with one exception as described in section 4.3.1.5 “Interrupt Controller
Control Register (ICCR)").

The mask bits have two main applications:

* They allow software polling of interruptible sources without actually generating interrupts

* They allow the interrupt handler to prevent interrupts of lower priority from occurring while still maintaining a set
of pending interrupts which may have occurred previously or occurred while servicing another interrupt.

Note that the mask register is not initialized at reset, but is cleared by Angel upon startup.

4.3.1.4 Interrupt Controller Level Register (ICLR)

The interrupt controller level register controls whether a pending interrupt request generates an FIQ or an IRQ
processor interrupt. If a bit is cleared (to zero) the interrupt request is routed to the CPU'’s IRQ interrupt input, if a bit
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is set to one, then the request is routed to the FIQ interrupt input, both generate interrupts only if the matching
interrupt is unmasked. For masked interrupts the ICLR has no effect.

4.3.1.5 Interrupt Controller Control Register (ICCR)

This register contains only a single bit, the Disable Idle Mask bit (DIM) at bit position zero. If this bit is set only
unmasked interrupts can bring the SA-1100 out of idle mode. Otherwise as described before, all interrupts cause a
transition out of idle mode, regardless of their masking state.

4.3.2 Interrupt handling under Angel

Initially Angel allowed only statically linked interrupt handlers, hence there was no way to use user-defined
interrupt handlers with programs that are downloaded to RAM (for example, using the Debug Monitor).

On assertion of the IRQ signal the SA-1100 branches to the IRQ entry in the exception table which under Angel
contains a branch to its low level interrupt handling code (foundim211\Angel\Source\suppasm.s ina
standard installation of the ARM-tools). This code switches off all other interrupts, saves the current state, sets up the
stack space, and does some other necessary preparations depending on the mode the processor was in at the moment
of interruption. Then it calls the mac®ETSOURCEn file \Arm211\Angel\Source\brutus\target.s
to determine, which of the 32 possible first level interrupt sources requested service (i.e. it looks for the highest set bit
in the ICPR). The macro returns the position of this bit which is then used to compute an offset into a table containing
the actual interrupt handlers for the various interrupt sources. The appropriate handler then is executed.

As described in 4.1 “Extensions to Angel”, Prof. G.Maguire and M.T.Smith have extersysdall 0x16 to
return the base address of the interrupt handler table to be able to install and remove interrupt handlers at runtime. |
used this modification to write some functions that allow convenient dealing with interrupt handlers under Angel.
4.3.3 Interrupt Controller Declarations and Functions

Some general macros and declarations that can be used when dealing with interrupts on the SmartBadge:

*  Description:

* Type declarations for use with interrupts on the Badge
*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

*

#ifndef util_interrupt_h
#define util_interrupt_h

#define INT_NUM_INT_HANDLERS 32

/* All SA-1100 interrupts */
#define INT_GPIOO
#define INT_GPIO1
#define INT_GPIO2
#define INT_GPIO3
#define INT_GPIO4
#define INT_GPIO5
#define INT_GPIO6
#define INT_GPIO7
#define INT_GPIO8
#define INT_GPIO9
#define INT_GPIO10 0
#define INT_GPIO_GROUP 11
#define INT_LCD 12

Listing 3. Generic interrupt declarations and macros [file util\util_interrupt.h]

mrOoO~NOOP~WNREO
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#define INT_UDC 13
#define INT_SDLC 14
#define INT_UART1 15
#define INT_UART2 16
#define INT_UART3 17
#define INT_MCP 18
#define INT_SSP 19
#define INT_DMAO 20
#define INT_DMA1 21
#define INT_DMAZ2 22
#define INT_DMA3 23
#define INT_DMA4 24
#define INT_DMAS 25
#define INT_OSTIMER_O 26
#define INT_OSTIMER_1 27
#define INT_OSTIMER_2 28
#define INT_OSTIMER_3 29
#define INT_RTC_ONE_HERTZ 30
#define INT_RTC_ALARM 31

/*

* The base address of the interrupt controller and the
* offsets of the interrupt controller registers.

*/

#define INT_BASE 0x90050000

#define ICIP  0x00 // Interrupt Controller IRQ Pending Register
#define ICMR  0x04 // Interrupt Controller Mask Register
#define ICLR 0x08 // Interrupt Controller Level Register
#define ICCR 0cOC // Interrupt Controller Control Register
#define ICFP  0x10 // Interrupt Controller FIQ Pending Register
#define ICPR 0x20 // Interrupt Controller Pending Register

/* Mask or unmask the given interrupt */

#define INT_MASK(n) (REG(INT_BASE,ICMR) &= ~(1<<(n)))
#define INT_UNMASK(n) (REG(INT_BASE,ICMR) |= (1<<(n)))
#define INT_IS_MASKED_Q(n)  (/(REG(INT_BASE, ICMR) & (1<<(n))))
#define INT_IS_UNMASKED_Q(n) (REG(INT_BASE, ICMR) & (1<<(n)))

/* check for pending interrupts */

#define INT_IS_IRQ_PENDING_Q(n) (REG(INT_BASE, ICIP) & (1<<(n)))
#define INT_IS_FIQ_PENDING_Q(n) (REG(INT_BASE, ICFP) & (1<<(n)))
#define INT_IS_PENDING_Q(n) (REG(INT_BASE, ICPR) & (1<<(n)))

/* set and get interrupt level (IRQ or FIQ) */

#define INT_SET_IRQ(n) (REG(INT_BASE, ICLR) &= ~(1<<(n)))
#define INT_SET_FIQ(n) (REG(INT_BASE, ICLR) |= (1<<(n)))
#define INT_GET_LEVEL(n) (REG(INT_BASE, ICLR) & (1<<(n)))

/* set idle mode for interrupts (INT_SET_IDLE_ALL => all interrupt requests

* will bring SA-1100 out of idle mode; INT_SET_IDLE_UNMASKED => only unmasked

* interrupt requests will bring it out of idle mode

*/

#define INT_SET_IDLE_ALL (REG(INT_BASE, ICCR) = 0)
#define INT_SET_IDLE_UNMASKED (REG(INT_BASE, ICCR) =1)

#endif

Listing 3. Generic interrupt declarations and macros [file util\util_interrupt.h]
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Some functions to use interrupts within Angel:

/*

*  Description:

* Code to deal with interrupt handlers on the Badge.
*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

*/

#include <stdio.h>
#include <util/util_interrupt.h>
#include <util/util_debug.h>

I* Angel interrupt handler function */
typedef void (*angel_IntHandlerFn)(

unsigned ident, I* HW-specific identifier, i.e. interrupt number */
unsigned data, [* data in interrupt table */
unsigned empty_stack /* to be passed thru to SerialiseTask */

);

I* Angel interrupt handler entry */
typedef struct

angel_IntHandlerFn handler; /* the handler function */
unsigned data; /* data passed to handler */
} angel_IntHandlerEntry;

/I checked in int_Init because debug functionality
I is used in the int_DummyHandler
extern int debug_initialized;

/*
* Function: int_DummyHandler

* Purpose: Default interrupt handler.
*

* Parameters:

*  Input: ident interrupt 1D

* data data from the angel interrupt table

* empty_stack to be passed to Angel_QueueCallback
*

Returns: void
*
* Dummy interrupt handler. The handler masks the interrupt that called
* the handler and outputs a warning message on the debug UART channel.
* This handler is intended to prevent crashes if by accident an interrupt
* is unmasked without having set an appropriate handler that masks/handles
* this interrupt.
*
* | The dummy handler requires debug_Init() to have been called !
* This is done automatically in int_Init(), but has to be done extra if
* int_DummyHandler is used without having called int_Init().
*/
void int_DummyHandler(unsigned int ident, unsigned int data, unsigned int empty_stack)

char buf[50];
INT_MASK(ident);
sprintf(buf, “\r\n\n!! unhandled interrupt %d shut down !\n\n\r", ident);

Listing 4. Code to deal with interrupts under Angel [file util_interrupt.c]
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debug_String(buf);

/*

* Function: int_Init

* Purpose: Set default interrupt handlers.

*

* Parameters: none

* Returns: void

*

* Install the error reporting dummy interrupt handler for every interrupt
* except interrupt 17 = UARTS3 interrupt (this is the Angel interrupt).

* This function should be called at the beginning of programs to prevent
* overwriting already setup special interrupt handlers.

*/

void int_Init(void)

inti;
if('debug_initialized)

debug_Init();

for(i=0;i<17;i++)

int_InstallHandler(i, int_DummyHandler);

}
for(i=18;i<INT_NUM_INT_HANDLERS;i++)

int_InstallHandler(i, int_DummyHandler);

}
}

/*
* Function: int_GetIntTableBase
* Purpose: Return the base address of the Angel interrupt handler array
* which then can be used to set new interrupt handlers.
*
* Parameters: none
* Returns: angel_IntHandlerEntry* the base address of the Angel interrupt
* handler array
*
* By default Angel only supports statically linked interrupt handlers.
* Prof. G.Maguire and M.T.Smith modified Angel syscall 0x16 to access the
* interrupt handler structures:
* Added system information for IRQs:
*
* unsigned int * sysinfo[] = {
* (unsigned int *)angel_Device,
* (unsigned int*)angel_DeviceStatus,
* (unsigned int*)angel_IntHandler,
* (unsigned int*)angel_PollHandler,
* 0
* }‘
*/
angel_IntHandlerEntry* int_GetIntTableBase(void)
{
int block[10];
int ret;
int args[1];
unsigned int* j;

Listing 4. Code to deal with interrupts under Angel [file util_interrupt.c]
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extern int _syscall(int, int *);

Il the extended version of _syscall returns a pointer to the sysinfo
/I structure in block[4], which then can be used to access the int
/I handler array.

args[0] = (int) (block);

ret = _syscall(0x16, args);

j = (unsigned int*) block[4];
return ((angel_IntHandlerEntry *) j[2]);

/*
* Function: int_InstallHandler

* Purpose: Install a new IRQ interrupt handler
*

* Parameters:

*  Input: int_nr the interrupt number for which the handler

* is to be set

* new_handler the new handler function

*

* Returns: the address of the old interrupt handler

*

*/

angel_IntHandlerFn int_InstallHandler(int int_nr, angel_IntHandlerFn new_handler)
{

angel_IntHandlerFn old_handler;
angel_IntHandlerEntry * angel_IntHandlerArray;

angel_IntHandlerArray = int_GetIntTableBase();
old_handler = angel_IntHandlerArray[int_nr].handler;
angel_IntHandlerArray[int_nr].handler = new_handler;

return old_handler;

/*
* Function: int_PrintHandlerTable
* Purpose: Print the addresses of the currently set interrupt handlers
* to stdout.
*
* Parameters: none
* Returns: void
*
*/
void int_PrintHandlerTable(void)
t
inti;
angel_IntHandlerEntry * angel_IntHandlerArray, *ientry;

angel_IntHandlerArray = int_GetIntTableBase();

for (i=0;i<INT_NUM_INT_HANDLERS; ++i) {
ientry = &angel_IntHandlerArray([i];
fprintf(stdout, “entry = %d:\t", i);
fprintf(stdout, “handler = 0x%x\t”, (int)(ientry->handler));
fprintf(stdout, “data = 0x%x\n", ientry->data); }
}

Listing 4. Code to deal with interrupts under Angel [file util_interrupt.c]
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4.3.4 Interrupt Latency under Angel

| carried out some tests to determine the latency related to interrupt handling when using Angel. | interconnected
two of the free GPIO pins and configured one of them as an output, the other one as an input with interrupt on rising
edges. Then | measured the time between changing the pin state to generate a rising edge and the interrupt handl
being executed as a consequence of the detected edge using the OS Timer Count Register (for more information o
GPIO and the OS Timer unit see sections 4.4 and 4.5 respectively). The basic measurement (measuring the timi
between setting a pin and execution of the interrupt handler) was repeated 15 times in a loop. This was done with four
different setups (debug / release version, each of these with and without using printf, as explained further down). To
determine the influence of the caches, each of the four setups was tested with the four different possible combination:
of data and instruction cache enabled/disabled. The code can be found in Section B.2, Table 5 shows the results:

Debug Release
IC IC
on off on off
on | 60/51 | 59/39 33 29
with DC
printf off 26 28 16 16
on 49/4 | 39,21 13/4 10,28
without DC
printf off 36/8 28 16/6,7 16

Table 5. Interrupt latency depending on various cache and build options.

If values are given in the format x/y, then x represents the time for the first measurement, y the times for the
following ones. Values in the format x,y mean that both x and y appeared about equally frequent. The unit of the
shown values is OS Timer ticks, i.e. one unit is equal to 270ns.

In the first version | used the Debug target in the ARM Project manager and output the result directly following
each single measurement using printf. The measured values are shown in the table “Debug target with printf”. To my
surprise the variant with both caches enabled yielded the worst rd3igdéhling the instruction cacheleft the time
for the first loop nearly equal while the following times show significant improvement.

Disabling the data cachedecreases the time by more than half with only a slight difference between instruction
cache enabled and disabled. Searching for an explanation of this behaviour led to the question of could the printf-calls
be responsible for the low cache efficiency, as the rest of the code in this example should easily fit into the cache. To
check this out | changed the original version to only store the acquired values into an array within the loop and output
them after all measurements have been executed. The results for this setup are shown in the table “Debug targe
without printf”. In fact nearly all values (except the first loop with IC enabled and DC disabled, and as expected the
version with both caches disabled) show improvements, some of them dramatic.

Both caches enabledThe first iteration of the loop shows an improvement of more than 10% which is surprising
on the first glance as the time for initially loading the caches shouldn'’t differ much. A possible explanation is related
to the cache allocation strategy: as the caches always allocate complete cache lines (i.e. 8 words) even a small chan
in the code may lead to a difference (plus or minus) of up to seven additional instructions that have to be loaded on a
cache miss. The execution times for the following iterations are reduced by a factor of more than 10. Disabling the
instruction cache further reduces the time for the first iteration. Both values show an improvement compared to the
printf variant, but the value for the following iterations now is significantly worse than with the instruction cache
enabled.

Data cache disabled, instruction cache enabledhis again shows an improvement for the first iteration over the
version with the data cache enabled (though not as large as in the printf variant) and similarly the second value is
much better than the first value, but now slightly worse than with the data cache enabled.

The two variants having been built with the Release Target generally show the same behaviour, but are (partly
significantly) faster in nearly every measurement. However, there are no differences between the first and the
following iterations in the Release printf variant.
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4.3.4.1 Conclusions

The results show that the effectivity of the caches tremendously depends on the code - even slight changes (in
either Angel or the application program that at first seem utterly without any influence on the performance of a
particular section) can completely change the behaviour and timing - merely changing the position of the time critical
code by inserting a few instructions in soatker part of the program can make all the difference.

The fact that the performance is greatly increased if the printf statements are taken out of the loop (although none
of them is in the time critical path) shows that the printf code fills up a large percentage of the cache, hence replacing
most of the other code. This is further backed up by the fact that the version with both caches disabled is among the
fastest - for every iteration of the loop (most of) the cache has to be reloaded from external memory - not just single
instructions but complete cachelines of eight words which in this particular case seems to load additional, not needed,
code which results in a significant performance penalty.

This might also explain why disabling the data cache in some cases improves the performance - only a few data
locations are used but complete cache lines have to be loaded all the time. This can be as bad as having to load two
cachelines of eight words each to use only two words if they are located across a cache line border.

If reproducible and short interrupt latency is required it might be worth trying to configure the memory block that
contains the exception vector table as uncacheable (via the MMU): on each CPU interrupt request the pipeline is
stalled and the processor branches to entry 7 of the exception table and executes the branch to the low level interrupt
handler which is stored there. If the instruction cache is enabled this results in a load of eight words instead of only
the one which is actually needed. This might not matter too much if it occurs only the first time and then the code
executes even faster out of the cache, but if other code in the meantime replaces this cacheline, interrupt latency
suffers a penalty. No general recommendation can be given, for each application this has to be determined separately
using the final code.

To sum up, the caches can greatly enhance the performance (and in fact were necessary to be able to do the
infrared SIR modulation in software (section 5.2.2) but can also lead to heavy performance penalties if critical code
segments map to the same cache locations. Even tiny changes to the code in one location can lead to a completely
changed behaviour and a performance change in other parts of the program.

Note: in the current Angel implementation the low level interrupt handler (actually the macro GETSOURCE)
determines the interrupt request to service through the following mechanism: starting with bit O of the ICIP register it
tests each bit up to bit 31 (except for bit 17 - the interrupt request bit for UART3, which is used as the Angel
communication port, e.g. for debugger communication - which is tested at the end). The last set bit in this chain of
tests “survives” and is considered as the highest priority request to be served. This implementation results in constant
latency for all interrupts but causes unnecessary delays for the higher prioritized interrupts. If the test sequence were
reversed - starting with the highest priority bit and in the case of a set bit immediately branching to the code that sets
up everything before calling the high level interrupt handler for this source, thus skipping the tests for the lower
prioritized interrupts - the higher prioritized interrupts could be accelerated. The cost would be an additional
conditional (i.e., it has to be loaded in any case but will only be executed if the condition is passed, i.e., the bit is
actually set) branch instruction per first level interrupt source. Again depending on the particular application, this
might be tolerable and preferable over the current implementation.

4.4 General Purpose 1/0 Controller (GPIO)

The SA-1100 provides 28 general purpose I/O port pins for application specific digital input and output. Each of
these pins can be programmed to act as an input or output and optionally to trigger an interrupt on detection of a
rising and/or falling edge. Additionally most of the pins can be used to provide alternate functions for certain modes
within the serial controllers and the LCD controller that require extra pins. Following a hard reset all pins are
configured as inputs. Configuring them as inputs prevents short circuits and reduces the processor’s power
consumption as there is no need to drive these pins - it may however increase overall system power consumption (See
4.5.1.4 for further details). Therefore actual output pins should be configured as outputs as soon as possible after
reset.
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Figure 10 shows a block diagram of a single GPIO pin. The different registers and their function is described
afterwards. For all the registers bits 0 to 27 correspond to the 28 GPIO pins 0 to 27, bits 28 to 31 are reserved anc
return zero on reads, while writes are ignored.

Pin Direction
Register

GPDR

Alternate Function

Register GAFR

0 Pin Set and GPSR
| Clear Registers GPCR

GPIO Pin

‘ 1 Alternate Function
(Output)

Alternate Function
(Input)

&

Edge Edge Detect
Detect Status Register GEDR

é > Rising Edge Detect GRER

Enable Register

Falling Edge Detect

Enable Register GFER
Pin Level
gl Register GPLR

Figure 10. GPIO port block diagram
4.4.1 Reqister Description

The GPIO block is controlled by the following eight registers:

Address Nam 'Description Acceps
0x9004 0000 G;;_PL GPIO Pin Level Register RO
0x9004 0004 GPDR GPIO Pin Direction Register RIW
0x9004 0008 GPSR GPIO Pin Output Set Register W}o
0x9004 000G GPCR GPIO Pin Output Clear Register WO
0x9004 0010 GRER GPIO Rising-Edge Detect Registier RW
0x9004 0014 GFER GPIO Falling-Edge Detect Register RYW
0x9004 0018 GEDR GPIO Edge Detect Status Register R/W
0x9004 001G GAFR GPIO Alternate Function Registgr RAW

Table 6. GPIO register block

4.4.1.1 GPIO Pin Level Register (GPLR)

The GPIO Pin Level Register monitors the state of each of the GPIO pins. Bits 0 to 27 correspond to the 28 GPIO
pins and each one shows the current level of the associatedegerdlessof the programmed pin direction. The
register is read-only. As the register shows the current state of the pins regardless of the pin direction it can also be
used to detect conflicts with external hardware (e.g. if external hardware drives the pin to a different value than
programmed via the GPSR/GPCR registers).
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4.4.1.2 GPIO Pin Direction Register (GPDR)

This register controls whether a pin acts as an input or output pin. Writing a one to one of the GPDR bits makes
the corresponding GPIO pin an output pin. Programming a bit to zero makes the GPIO pin an input. As mentioned
before, following a hard reset all bits in this register are cleared, thus configuring all GPIO pins as inputs. Soft resets
and sleep resets have no effect on the GPDR register.

4.4.1.3 GPIO Output Set Register (GPSR) and Output Clear Register (GPCR)

When a GPIO pin is configured as an output the state of the pin can be controlled by writing to the output pin set
register (GPSR) or the output pin clear register (GPCR). To set a pin, a one has to be written to the corresponding bit
within the GPSR, to clear a pin a one has to be written to its corresponding bit within the GPCR. These two registers
are write only registers, reads return unpredictable values. Writing a zero to any of the GPSR or GPCR bits has no
effect, as well as writing a one to a GPSR or GPCR bit corresponding to a pin which has been configured as an input.
(However, the programmed values will set the pin state if the pin is configured as an output later on.)

4.4.1.4 GPIO Rising Edge Detect Register (GRER) and Falling Edge Detect Register (GFER)

Each GPIO port can be programmed to detect a rising-edge, falling edge, or either transition of a pin. When an
edge is detected which matches the type of edge programmed for the pin, a status bit is set. The interrupt controller
can be programmed to signal an interrupt to the CPU or wakeup the SA-1100 from sleep mode when any one of these
status bits is set.

Writing a one to a bit in the Rising Edge Detect Register (GRER) causes the corresponding bit in the GPIO Edge
Detect Status Register (GEDR) to be set, if a rising edge (i.e. a transition from logic level zero to one) is detected on
the corresponding port pin. Likewise writing a one to the Falling Edge Detect Register (GFER) causes the bit in the
GEDR to be set if a falling edge is detected on the pin. If the bits are set in both registers any transition on the port
causes the status bit to be set.

4.4.1.5 GPIO Edge Detect Status Register (GEDR)

When an edge detect occurs on a pin that matches the type of edge programmed in the GRER and/or GFER
registers, the corresponding status bit in GEDR is set. Once a status bit is set the CPU must clear it by writing a one to
that bit. Writing zeros to status bits has no effect. This technique is also used in some other status registers and allows
single write operations instead of read-modify-write cycles (just writing a one to that particular bit instead of OR or
AND the bit in).

An edge detect which sets the corresponding GEDR status bit can trigger an interrupt request. Pins 11-27 form a
group that can cause an interrupt request to be triggered if any of the status bits 11 through 27 is set. The interrupt
handler then has to read the GEDR register to find the pin(s) that caused the interrupt. GPIO pins 0-10 each can cause
an independent first level interrupt. Enabling interrupts is described in Section 4.3.

Note: edge detection is independent of the pin direction, i.e. also changing the state of pins configured as outputs
causes the edge detection bits to be set, if the corresponding edge detection type is enabled.

4.4.1.6 GPIO Alternate Function Register (GAFR)

This register contains 28 control bits which correspond to the 28 GPIO pins. When a bit is set in the GAFR, the
corresponding GPIO pin is switched over to that pin’s alternate function and cannot be used as a GPIO any more.
Alternate functions include: sample clock input for the serial ports, UART receive and transmit pins for serial port
one (if SDLC and UART mode are to be used at the same time), etc. More information can be found in [6].
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4.4.2 GPIO Declarations

The following are some declarations and macros to facilitate using GPIO functionality:

/*
*
*
*
*
*
*
*
*

*/

Description:
Type declarations and macros for use with the GPIO functions
on the badge

--Christoph Wolf
chwolf@it.kth.se

#ifndef util_gpio_h
#define util_gpio_h

#define GPIO_BASE

#define GPLR
#define GPDR
#define GPSR
#define GPCR
#define GRER
#define GFER
#define GEDR
#define GAFR

0x00 /* GPIO Pin Level Register */

0x04 /* GPIO Pin Direction Register */

0x08 /* GPIO Pin Output Set Register */
0x0C /* GPIO Pin Qutput Clear Register */
0x10 /* GPIO Rising-Edge Detect Register */
0x14 /* GPIO Falling-Edge DetectRegister */
0x18 /* GPIO Edge Detect Status Register */
0x1C /* GPIO Alternate Function Register */

/* GPIO port pins */

#define GPIOO
#define GPIO1
#define GPIO2
#define GPIO3
#define GP104
#define GPIO5
#define GPIO6
#define GPIO7
#define GPIO8
#define GPIO9
#define GPIO10
#define GPIO11
#define GPIO12
#define GPIO13
#define GPIO14
#define GPIO15
#define GPIO16
#define GPIO17
#define GPIO18
#define GPIO19
#define GPIO20
#define GPI0O21
#define GPI1022
#define GPI023
#define GP1024
#define GP1025
#define GPIO26
#define GPI0O27

/* macros to set pin direction, state and read current state */

/I set the given GPIO pin(s) as output
Listing 5. GPIO declarations and macros [file util\util_gpio.h]

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00008000
0x00010000
0x00020000
0x00040000
0x00080000
0x00100000
0x00200000
0x00400000
0x00800000
0x01000000
0x02000000
0x04000000
0x08000000

0x90040000  /* base address of GPIO registers */
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#define GPIO_SET_OUTPUT(pin) (REG(GPIO_BASE,GPDR) |= (pin))

/I set the given GPIO pin(s) as input
#define GPIO_SET_INPUT(pin) (REG(GPIO_BASE,GPDR) &= ~(pin))

/I set the given GPIO pin(s) (set it to one)
#define GPIO_SET_PIN(pin) (REG(GPIO_BASE,GPSR) = (pin))

/I clear the given GPIO pin(s) (set it to zero)
#define GPIO_CLEAR_PIN(pin) (REG(GPIO_BASE,GPCR) = (pin))

I return the current level of the given GPIO pin(s)
#define GPIO_READ_PIN(pin)  (REG(GPIO_BASE,GPLR) & (pin))

[* macros related to edge detection */

/I enable / disable rising edge detection for the given GPIO pin(s)
#define GPIO_ENABLE_RISING_EDGE(pin) (REG(GPIO_BASE, GRER) |= (pin))
#define GPIO_DISABLE_RISING_EDGE(pin) (REG(GPIO_BASE, GRER) &= ~(pin))

// enable / disable falling edge detection for the given GPIO pin(s)
#define GPIO_ENABLE_FALLING_EDGE(pin) (REG(GPIO_BASE, GFER) |= (pin))
#define GPIO_DISABLE_FALLING_EDGE(pin) (REG(GPIO_BASE, GFER) &= ~(pin))

Il read/reset the edge detect status of the given GPIO pin(s)

/I IMPORTANT: when an edge detect has occured, the corresponding status

/' bit has to be cleared by the CPU by writing a one to it, writing zeros

/I doesn't affect the register.

#define GPIO_READ_EDGE_STATUS(pin)  (REG(GPIO_BASE, GEDR) & (pin))

#define GPIO_CLEAR_EDGE_STATUS(pin) (REG(GPIO_BASE, GEDR) = (pin))

#define GPIO_CLEAR_EDGE_STATUS_ALL (REG(GPIO_BASE, GEDR) = OxFFFFFFFF)

/* alternate functions */

/I enable / disable alternate function for a given pin

#define GPIO_ENABLE_ALTERNATE_FUNCTION(pin) (REG(GPIO_BASE, GAFR) |= (pin))
#define GPIO_DISABLE_ALTERNATE_FUNCTION(pin) (REG(GPIO_BASE, GAFR) &= ~(pin))
#endif

Listing 5. GPIO declarations and macros [file util\util_gpio.h]

4.5 Peripheral Pin Controller (PPC)

While the GPIO block is located in the System Control Module, the PPC is part of the Peripheral Control Module,
but as the PPC provides similar functionality as the GPIO block | chose to describe it here.

The peripheral pin controller (PPC) takes individual control of the LCD’s and serial port 1-4’s pins when one or
more of the units are disabled, allowing the user to utilize them as general purpose digital 1/O pins. When controlled
by the PPC these pins operate similarly to GPIO pins, with the exception that they cannot perform edge-detection or
generate interrupt requests. An additional feature is the possibility to specify the direction of the peripherals’ pins
when sleep mode is entered. A further difference is that rather than two set/clear registers and a pin level register there
is a single state register (PPSR)

The serial ports 1-3 contain separate enables for their transmit and receive engines. If only half-duplex operation
is required, one pin can be used for the serial communication while the other pin remains free for digital /0. The pins
of serial port O are dedicated to the USB device controller and thus cannot be used as digital I/O pins as the USB
controller drives a differential transceiver.

46



Using some of the Peripherals

After a hard reset all peripheral control module units are disabled which gives control of their pins to the PPC
(except for serial port 0). To prevent short circuits the PPC controller then configures these pins as inputs. Similar to
the case for GPIO, if PPC pins are intended to be used as outputs, they should be configured as soon as possible.

To limit off-chip power consumption during sleep mode the PPC contains a special register that, unlike the
peripherals, is not reset upon entry to sleep mode. This register allows the programmer to explicitly configure 22 of
the peripherals’ pins as either outputs or inputs during sleep mode. Without that register, resetting the peripherals
would configure all pins as inputs. When sleep mode is exited the direction and state of the pins is maintained until a
special bit in the power manager is set (Release Peripheral Pin, RPP), which should be done after the peripherals hay
been reprogrammed. Once RPP is set, control of the peripherals’ pins is given back to the individual peripherals anc
to the PPC unit.

4.5.1 Register Description

The PPC contains the following registers:

Address Namj Description Acceas
0x9006 0000 PPDR PPC Pin Direction ﬁegister W

0x9006 0004 PPSR PPC Pin State Register R/W
0x9006 0008 PPAR PPC Pin Assignment Register R/W
0x9006 000¢ PSDR PPC Sleep Mode Direction Redister [R/W
0x9006 0010 PPFR PPC Pin Flag Register RO

Table 7. PPC register block

4.5.1.1 PPC Pin Direction Register (PPDR)

The Pin Direction Register is used to set the pin direction (output or input) if the corresponding peripheral is
disabled, otherwise the bit is ignored. If the direction bit is programmed to a one, the pin acts as an output, if the bit is
cleared, the pin works as an input. As mentioned, following reset all peripherals are reset which gives control of their
pins to the PPC which in turn configures them as inputs by clearing all bits in the Pin Direction Register.

Figure 11 shows the location of each pin direction bit and to which peripheral pin it corresponds.

Bit 31 21 20 19 18 17 16
R q S | S |RXD[TXD|RXD[TXD
eserve FRMICLK| 4 | 4 | 3| 3

Bt 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXD[TXDJRXD[TXD[ L_ [L_F|L_L|L_P|LCD|LCD|LCD|LCD|LCD|LCD|LCD|LCD
2| 2| 1| 1 BIASCLK|CLK|CLK| [7]1 | (6] | [B] | [41 | [31 | [21 | 1] | [O]

Figure 11. PPC Pin Direction Register

Bits 0-11 belong to the LCD Controller, bits 12 and 13 belong to serial port 1, bits 14 and 15 to serial port 2, bits
16 and 17 to serial port 3, and bits 18-21 to serial port 4.

4.5.1.2 PPC Pin State Register (PPSR)

Pin state of the PPC pins can be both monitored and controlled by reading/writing the PPC Pin State Register. The
register contains one bit for each of the 22 peripheral pins under control of the PPC. The register can be read at an
time to determine the current state of the pin, even if the pin is controlled by a peripheral rather than by the PPC.
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If a peripheral is disabled and the direction of the pin is set to output (via the corresponding bit in the PPDR) its
state can be controlled by writing to the Pin State Register. Writing a value to a pin state bit whose port is an input or
under control of a peripheral has no effect.

PPSR is implemented as two separate registers, one of which is accessed by reads and monitors the pin state,
while the other is accessed by writes and is used to control the state of pins set as GPIO outputs. The readable register
is synchronized with the actual pin state at a frequency of 7.3728MHz. Therefore, after changing the state of an
output pin via a write to the PPSR, it takes some time until the value is output to the pin and the change is reflected in
the monitor register.

4.5.1.3 PPC Pin Assignment Register (PPAR)

Serial port 1 and serial port 4 each support two different protocols - UART/SDLC and SSP/MCP respectively. To
allow both protocol engines to be used simultaneously the engines can be reassigned to GPIO pins (alternate
functions) via two bits in the PPC Pin Assignment Register.

* UART Pin Reassignment (UPR)

If UPR=0 serial port 1 uses its standard TXD1 and RXD1 pins and the SDLC/UART select (SUS) bit in SDLC
control register 0 selects either UART or SDLC operation.

If UPR=1, SUS is ignored and the SDLC engine uses pins TXD1 and RXD1, while the UART engine is connected
to GPIO14 for transmission and GPIO15 for receiving. To enable proper operation bits 14 and 15 in the GPIO
Alternate Function Register (GAFR) must be set and in the GPIO Pin Direction Register (GPDR) bit 14 must be
set and bit 15 must be cleared to enable the alternate functionality and set the ports as output/input respectively.

e SSP Pin Reassignment (SPR)

When SPR=0, serial port 4 uses its standard pins TXD4, RXD4, SCLK, and SFRM and the MCP enable (MCE)
and SSP enable (SSE) bits are used to select the protocol for serial port 4.

If SPR=1, MCE and SSE must both be set and serial port 4 defaults to MCP operation using the standard pins
TXD4, RXD4, SCLK, and SFRM. SSP is configured to use GPIO10 for transmission, GPIO11 for receiving,
GPIO12 for the serial clock, and GP1013 for serial frame. Again bits 10-13 in GPIO GAFR must be set, as well as
bits 10, 12, and 13 in GPIO GPDR while bit 11 must be cleared.

4.5.1.4 PPC Sleep Mode Pin Direction Register (PSDR)

As already mentioned above, the PPC allows the user to set the direction of the PPC pins during sleep mode to
prevent external devices attached from burning power due to floating inputs. The sleep Mode Pin Direction Register
contains a bit for each of the 22 pins under control of the PPC. Writing a one to a bit causes the associated pin to be
configured as an input during sleep, while writing a zero to a bit causes the pin to be configured as an output which is
driven low during sleep.

4.5.1.5 PPC Pin Flag Register (PPFR)

This read-only register contains eight bits which tell which peripherals are currently under control of the PPC. If a
unit is enabled, the corresponding bit is cleared, if a unit is disabled (and thus the associated pin is under control of
the PPC) the bit is set. As serial ports 1-3 allow separate enabling/disabling of their transmit and receive engines,
separate flags exist for their transmit and receive pins.
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Figure 12 shows the location of the flag bits:

Bit 31 18 17 16
Reserved SP4 SRl;(B %3(3

Bit 15 14 13 12 0
SRI;(Z %3(2 Sle(l ?—I)D(l Reserved LCD

Figure 12. PPC Pin Flag Register
4.5.2 PPC declarations

Some macros and declarations to access the PPC:

/*
Description:
Type declarations and macros for use with the PPC functions
on the badge

--Christoph Wolf
chwolf@it.kth.se

*
*
*
*
*
*
*
*

*

#ifndef util_ppc_h
#define util_ppc_h

#define PPC_BASE 0x90060000 /* base address of PPC registers */

#define PPDR  0x00
#define PPSR  0x04
#define PPAR  0x08
#define PSDR 0x0C
#define PPFR  0x10

/* PPC Pin Direction Register */

/* PPC Pin State Register */

/* PPC Pin Assignment Register */

/* PPC Sleep Mode Direction Register */
[* PPC Pin Flag Register */

/* PPC port pins */

#define LDDO 0x00000001
#define LDD1 0x00000002
#define LDD2 0x00000004
#define LDD3 0x00000008
#define LDD4 0x00000010
#define LDD5 0x00000020
#define LDD6 0x00000040
#define LDD7 0x00000080
#defineL_P_CLK  0x00000100
#defineL_L_CLK  0x00000200
#define L_F_CLK  0x00000400
#define L_BIAS 0x00000800
#define TXD1 0x00001000
#define RXD1 0x00002000
#define TXD2 0x00004000
#define RXD2 0x00008000
#define TXD3 0x00010000
#define RXD3 0x00020000
#define TXD4 0x00040000
#define RXD4 0x00080000

Listing 6. PPC declarations and macros [file util\util_ppc.h]
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#define S_CLK 0x00100000
#define S_FRM 0x00200000

[* PPC pin reassignment flags */
#define PPC_UPR 0x00001000
#define PPC_SPR 0x00040000

/* units for the PPC_READ_FLAG macro */
#define PPC_LCD 0x00000001
#define PPC_SP1_TX  0x00001000
#define PPC_SP1_RX  0x00002000
#define PPC_SP2_TX  0x00004000
#define PPC_SP2_RX  0x00008000
#define PPC_SP3_TX  0x00010000
#define PPC_SP3_RX  0x00020000
#define PPC_SP4 0x00040000

[* macros to set pin direction, state and read current state */

#define PPC_SET_OUTPUT(pin) (REG(PPC_BASE,PPDR) |= (pin))

#define PPC_SET_INPUT(pin)  (REG(PPC_BASE,PPDR) &= ~(pin))
#define PPC_GET_DIRECTION(pin) (REG(PPC_BASE,PPDR) & (pin))

#define PPC_SET_PIN(pin)  (REG(PPC_BASE,PPSR) |= (pin))
#define PPC_CLEAR_PIN(pin)  (REG(PPC_BASE,PPSR) &= ~(pin))

#define PPC_READ_PIN(pin)  (REG(PPC_BASE,PPSR) & (pin))

[* enable/disable parallel operation of SDLC and UART engines for port 1

* (pin reassignment)

*/

#define PPC_ENABLE_PORT1_DUAL_OP (REG(PPC_BASE, PPAR) |= (PPC_UPR))
#define PPC_DISABLE_PORT1_DUAL_OP (REG(PPC_BASE, PPAR) &= ~(PPC_UPR))

[* enable/disable parallel operation of MCP and SSP engines for port 4

* (pin reassignment)

*/

#define PPC_ENABLE_PORT4_DUAL_OP (REG(PPC_BASE, PPAR) |= (PPC_SPR))
#define PPC_DISABLE_PORT4_DUAL_OP (REG(PPC_BASE, PPAR) &= ~(PPC_SPR))

[* set PPC pins as input or (low driven) output during sleep state */
#define PPC_SLEEP_INPUT(pin) (REG(PPC_BASE, PSDR) |= (pin))
#define PPC_SLEEP_OUTPUT(pin) (REG(PPC_BASE, PSDR) &= ~(pin))

[* determine if a unit is under control of the PPC or the corresponding
* peripheral

*/

#define PPC_READ_FLAG(unit) (REG(PPC_BASE, PPFR) & (unit))

#endif
Listing 6. PPC declarations and macros [file util\util_ppc.h]

4.5.3 Maximum Toggling Frequency of GPIO and PPC Pins

While trying to find a solution to get around the SA-1100 SIR bug with software modulation (see section 5.2 for
more details), | experimented with the GPIO and PPC pins. Here | present some measurements regarding the
maximal achieveable toggling frequency for GPIO and PPC pins. The measurements were done by using the two
programs described in section B.1. There are two versions, one running under Angel, the other one is a standalone
version to check if Angel imposes performance penalties. The standalone version was executed out of FLASH as well
as out of SRAM, the Angel version could only be executed out of SRAM (I did not write a version which could be
statically compiled into Angel). Both GPIO and PPC pin toggling was measured once with the instruction cache
enabled and once with the instruction cache disabled (as there are no data accesses to cacheable locations the data
cache has no effect here). In the case of the PPC pin toggling | added an assembler loop as an alternative because the
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code generated by the compiler was far from being optimal. All three variants (GPIO, compiler generated PPC, and
hand optimized PPC) executed a tight loop which just set and cleared a pin, thus generating a slightly asymmetric
square wave signal. Table 8 shows the results:

Standalone Angel Instruction
FLASH SRAM SRAM count
GPIO cached 50-60ns/130-140ns  50-60ns/130-14@ns 60ns/120-1BOns 2+q+1
no cache 700ns/2.7us 400ns/1.54us 400ns/1.5¢s 2+0+|1
PPC cached 150ns/330ns 160ns/330ns 130ns/260ns 6+2+1
cached, opt. 150ns/310ns 150ns/310ns 130ns/260ps 4+2H1
PPC no cache 2.76us/6.88us 1.54us/3.82us] 1.52us/3.7§us 6+241
no cache, opt. 2.08us/5.54us 1.17us/3.08us 1.15us/3.03us 4+241

Table 8. Maximum toggling of GPIO and PPC pins [high time/period time]

The times were measured using a 100MHz HP Logic Analyzer, i.e. the finest resolution was 10ns. Deviations of

+/-10ns were quite frequent in some measurements, in these cases | put both values. In the other cases a few valu
differed by +/-10ns, but the majority of the values were the one given in the table. The first number represents the
high time of the resulting signal, the second number the whole period length (it includes the time for the branch,
therefore it's not exactly twice the first number). Due to timing constraints just a small number of samples was looked
at, therefore the values cannot be taken as highly exact, but they still give some clear hints:

As expected, when executing out of cache, the FLASH and the SRAM version yield practically equal results.

Execution out of SRAM instead of FLASH results in a performance gain by nearly a factor 2 when the cache is
disabled. This is not surprising as the data path to/from SRAM is 32 bits wide while the path from the FLASH is
only 16 bits wide.

Enabling the cache speeds up by about a factor of 10 in the case of SRAM, nearly factor 20 in the case of FLASH.

The optimized version for the PPC loop results in a performance gain of nearly 30% when the cache is disabled.
With the cache enabled there is only a very small performance gain as now the sampling frequency of the PPC pin
is the limiting factor instead of the delay caused by additional instructions.

For the PPC case the Angel version with cache enabled reaches the theoretical limit which is imposed by the
sampling frequency of the PPC pin state register while the GPIO pins work at a higher frequency.

The PPC unit suffers from having only one pin state register. In general a read-modify-write cycle is necessary to
change the state of a PPC pin, i.e. aload and a store operation and a data manipulation operation (OR or bit clear)
giving a total of three instructions. In this special case it could have been reduced to the data manipulation

operation as no other pins are involved in this test program. But in general, when the other pins’ operation is not
always known, the full cycle has to be undergone. The GPIO unit on the other hand has separate registers for
setting and clearing pins. Thus per state change only one (write) operation is necessary. So if due to a shortage ©
GPIO pins one has to consider additionally using PPC pins, the decision of which function should be done via

GPIO vs. PPC should be made based on the required speed and expected usage of the pin.

The comparison between the standalone SRAM and Angel SRAM version shows a slight advantage for the Angel
version. The setup for the memory timing is the same in both versions, but the Angel version runs with the MMU
enabled. The reason for the difference might be related to this fact, but | did not further investigate this question.

The instruction count in the last column gives the number of load/store + manipulation + branch instructions that

make up the whole loop. Disassembling the compiler generated code for the PPC showed that for each of the twc
state changes it reloaded the PPC register base address from one register into another, although the second regis
was never changed - resulting in two additional, unnecessary instructions.
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Note: the measurements shown were acquired using the Release target in the ARM Project Manager. Using the
Debug target resulted in completely different code which yielded far worse results. For a more detailed discussion on
the code generation see section 6. “Accessing Peripherals, Code Generation with the ARM Compiler”.

4.6 Real Time Clock

The SA-1100 contains a real time clock (RTC) to provide a general purpose time reference for the system. After
hardware reset the RTC is uninitialized and must be set to the desired value. Following that the counter will remain
valid until the next hardware reset, which is assumed to occur infrequently. Transitions into and out of sleep mode,
software reset, and watchdog reset do not affect the RTC counter. The counter is incremented on rising edges of the 1
HZ clock.

In addition to the counter (which is accessible via the RTC Count Register, RCNR) the RTC unit contains a 32 bit
Alarm register (RTAR). This Alarm register can be programmed to a value which will be compared against the
counter after each incrementation of the counter register. If the two registers match, a status bit is set which can be
programmed to cause a first level interrupt. A second flag which also can generate an interrupt is set on each rising
edge of the 1 HZ clock. Both status bits can be cleared by writing a one to their bit position.

The 1 HZ clock is generated by dividing down the 32.768 kHZ crystal oscillator output. The divider logic is
programmable which allows the user to trim the clock to adjust inaccuracies in the crystal’s frequency. The trimming
mechanism allows you to adjust the RTC to an accuracy of +/- 5 seconds a month. Apart from that this mechanism
could also be used to generate an arbitrary frequency of up to 32.768 kHZ, in which case the clock is no longer 1 Hz!

4.6.1 Register Description

The real time clock is controlled by the following four registers:

Address | Nam f)escription Accqss
0x9001 0000 RTAI;: RTC Alarm Register R7
0x9001 0004 RCNR RTC Count Register R/W
0x9001 0008 RTTR RTC Timer Trim Register R/
0x9001 0010 RTSR RTC Status Register RIW

Table 9. Real Time Clock register block

4.6.1.1 RTC Counter Register (RCNR)

The RTC counter register is a read/write register and is not cleared by any reset source. The counter may be
written at any time, although write access should be restricted to the OS via the MMU protection mechanisms.

Writes to the register are controlled by a hardware mechanism that delays the actual write by up to one 32 KHz
clock (i.e. ~30us) after the processor store to compensate for the asynchronous nature of the 1 Hz clock relative to the
processor clock.

After a processor write to the RCNR all other writes to this register location are ignored until the new value has
actually been loaded into the counter. The RCNR may be read at any time, reads reflect the value in the counter
immediately after increment or load.

4.6.1.2 RTC Alarm Register (RTAR)

The Real Time Clock Alarm Register is a 32 bit read/write register. Following each rising edge of the 1 Hz clock,
this register is compared to the RCNR. If both values are equal, then the Alarm bit in the status register is set. If in
addition the Alarm Interrupt Enable bit is set this causes a first level interrupt.
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After a hardware reset this register is undefined.

4.6.1.3 RTC Status Register (RTSR)

The status register contains four valid bits (see Figure 13), all other bits are reserved and return zeros on read an
are unaffected by writes.

Bit 31 30 29 28 3 2 1 O

Reserved HZE|ALE| HZ | AL

Figure 13. RTC Status Register (RTSR)

The AL (RTC Alarm Detected) and HZ (1 Hz Rising Edge Detected) bits are set if an alarm (i.e. match between
the counter and the alarm register) or a rising edge of the 1 Hz clock respectively have been detected.

The ALE (RTC Alarm Interrupt Enable) and HZE (1 Hz Interrupt Enable) bits determine if the corresponding
status bits generate a first level interrupt, when set.

The two status bits AL and HZ have to be cleared by writing ones to them to clear the interrupt request.

4.6.1.4 RTC Trim Register (RTTR)

The RTTR is programmed to select the frequency of the “1 HZ” clock. If the register is not programmed but
instead left at it's reset value (all zeros) then the clock will actually run at 32.768 KHz.

The register is divided into two areas, bits 0-15 for the Clock Divider Count, referred to as C[15..0], and bits 16-25 for
the Trim Delete Count, referred to as D[9..0].

The trim operation is described in the next section.

4.6.2 RTC Trim Procedure

The 1 Hz clock that is used to increment the RTC counter register is obtained by dividing the output of the 32.768
KHz oscillator. In theory using a 15 bit counter will generate exactly a one Hz clock each time the counter overflows.
In reality inherent inaccuracies of the crystals and parasitic capacitances will cause the timebase to be inaccurate
Through the trim procedure the 1 Hz clock can be adjusted to an accuracy of +/- 5 seconds per month.

Following reset the RTTR is initialized to zero, thus disabling the trim mechanism. This results in the 32.768 KHz
oscillator output directly feeding the RTC.

To compute the trim value first the actual output frequency of the 32.768 KHz oscillator must be determined.
Configuring GPIO pin 27 as an output and selecting the alternate function for this pin makes the clock signal
externally available where it can be measured. Trimming the clock is done by dividing the oscillator output by an
integer value and then doing fine grain fractional adjustment by periodically deleting clocks from the stream feeding
this integer divider:

The integer part of the measured clock is loaded into the C0-C15 field of the RTTR. This value is compared
against a 16 bit counter clocked by the 32.768 KHz oscillator. The counter is reset and generates a pulse when the twi
values are equal. This generates the 1 HZ signal.

For the fine adjustment once everiP seconds (approximately 17 minutes) a programmable number of O to

1023 (210-1) 32.768 KHz clocks are deleted from the stream feeding the 16 bit counter. This value is set via the
DO0-D9 field of the RTTR.
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The relationship between the oscillator output (f32k) and the generated 1 Hz clock (f1) is given by the following
formula:

_ (219-1)+ (C[15...0] +1) -D[9...0], f 32k

fl (219-1) « (C[15...0] + 1) (C[15...0]) + 1

Two examples for trimming taken from [6]:

1. measured oscillator frequency has no fractional component:

The oscillator output is measured to be 36045.00 Hz. This output is exactly 3277 cycles above the nominal fre-
quency of the crystal and has no fractional component. Therefore only the integer trim function is needed,
whereas the D0-D9 field of the RTTR is left at zero to disable the fractional trimming. The integer trim field of
RTTR, C0-C15 is programmed with 36045-1 or 0xX8CCC. This example leaves an error of zero.

2. measured oscillator frequency has a fractional component:

The oscillator output is measured to be 32768.92 Hz. Therefore by trimming the clock must be adjusted in a way
that on average 32768.92 cycles are counted before a 1 Hz pulse is generated. In analogy to example one the inte-
ger field DO-D15 is loaded with 32768-1 or OX7FFF. As the real clock frequency is 0.92 Hz faster than the integer
value the resulting 1 Hz clock will be slightly too fast and must be further slowed down. On average 0.92 cycles

per second have to be deleted. As the trimming procedure is performed once éQ/érFZLOZS seconds,
0,92*1023=941.16 clocks have to be deleted every 1023 seconds. The fractional trimming field DO-D9 therefore
has to be loaded with 941 or 0x3AD. The remaining fraction of 0.16 cannot be trimmed out and results in a trim-
ming error of 0.16 cycles per 1023 seconds.

See chapter 10. for a description on how to do the trimming in an automatic way.

The error calculation yields (in Parts-Per-Million or PPM):

0.16cycles | _lsecond

1023semnds 32768:yc|es: 0.004&PM

For comparison the maximum error and the guaranteed real time clock accuracy are also calculated:

The maximum error is smaller than 1 clock cycle d@fﬁseconds, thus the maximum error is:

lcycle 1lseond

1023semnds 3276&ycles O OFPM

Maximumerror<

To maintain the guaranteed accuracy of +/-5 seconds per month the required accuracy is:

Ssecnnds. 1month
month  259200Gemnds

= 1.9PPM

This indicates that the accuracy provided by the SA-1100 trim mechanism is good enough to compensate for
static environmental and manufacturing variables and still provide acceptable accuracy.

Extending the above calculations to a year shows that the maximum accumulated error during one year is less
than one second:
lcycle 1seond  3153600@emnds _ 0.94semnds

Maximumerror< 1023semnds 3276&ycles year year
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4.6.3 Real Time Clock Declarations

Some macros to use the Real Time Clock unit follow, a sample program can be found in Appendix B.3 "Real Time
Clock Example”.

Description:
Type declarations and macros for use with the operating
system timer.

--Christoph Wolf
chwolf@it.kth.se

#ifndef util_realtime_h
#define util_realtime_h

#include <util/util_misc.h>
#include <util/util_interrupt.h>

#define REALTIME_BASE 0x90010000

/I status register bits

#define REALTIME_AL 0Ox1

#define REALTIME_HZ  0x2

#define REALTIME_ALE 0x4
#define REALTIME_HZE 0x8

/I Real Time Clock Register Offsets

#define RTAR 0x00 // RTC Alarm Register
#define RCNR 0x04 // RTC Count Register
#define RTTR 0x08 // RTC Timer Trim Register
#define RTSR 0x10 // RTC Status Register

/I Attention: take care when writing to the status register (RTSR) as AL and
Il HZ are status bits which are readeable and cleared by writing ones to them
/l while ALE and HZE are normal control bits (thus operations of the type

Il reg |= ctrl_bit to set a control bit are not possible as they would clear

I/l any set status bits as an unwanted and unexpected side-effect)

/I get the current count of the Real Time Counter Register
#define REALTIME_GET_COUNT REG(REALTIME_BASE, RCNR)

I/ set the value of the Real Time Counter Register
#define REALTIME_SET_COUNT(val) (REG(REALTIME_BASE, RCNR) = (val))

/I get the current value of the alarm register
#define REALTIME_GET_ALARM REG(REALTIME_BASE, RTAR)

I/ set the alarm register to a new (abs. or relative to current count) value

#define REALTIME_SET_ALARM(val) (REG(REALTIME_BASE, RTAR) = (val))

#define REALTIME_INC_ALARM(val) (REG(REALTIME_BASE, RTAR) =\
(val)+REALTIME_GET_COUNT)

/I clear the status bits and disable the interrupts
#define REALTIME_RESET_FLAGS (REG(REALTIME_BASE, RTSR) =\
REALTIME_AL | REALTIME_HZ)

Listing 7. Real Time Clock declarations and Macros [file util\util\realtime.h]
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/Il get the status of the real time clock - has an alarm or 1 HZ tick occured ?

#define REALTIME_GET_STATUS REG(REALTIME_BASE, RTSR)

#define REALTIME_GET_STATUS_ALARM (REG(REALTIME_BASE, RTSR) & REALTIME_AL)
#define REALTIME_GET_STATUS_ONE_HZ (REG(REALTIME_BASE, RTSR) & REALTIME_HZ)

/I enable/disable interrupt on 1 HZ rising edge
/I Attention: take care not to clear the AL and HZ bits by or-operations
#define REALTIME_ENABLE_ONE_HZ_INT\
(REG(REALTIME_BASE, RTSR) = (REG(REALTIME_BASE, RTSR) & 0x0C) | REALTIME_HZE)
#define REALTIME_DISABLE_ONE_HZ_INT (REG(REALTIME_BASE, RTSR) &= 0x4)

/I query/clear status of 1 HZ interrupt enable bit

/I Attention: take care not to clear the AL bit when clearing the HZ bit by

I/l just or'ing in REALTIME_HZ !!

#define REALTIME_ONE_HZ_INT_ENABLE_Q (REG(REALTIME_BASE, RTSR) & REALTIME_HZE)
#define REALTIME_CLEAR_ONE_HZ_INT (REG(REALTIME_BASE, RTSR) &= OXFFFFFFFE)

/I enable/disable interrupt both on 1 HZ rising edge AND alarm match

/I Attention: take care not to clear the AL and HZ bits by or-operations

#define REALTIME_ENABLE_ONE_HZ_ALARM_INT \
(REG(REALTIME_BASE, RTSR) = (REALTIME_HZE | REALTIME_ALE))

#define REALTIME_DISABLE_ONE_HZ_ALARM_INT \
(REG(REALTIME_BASE, RTSR) = 0)

[/l enable/disable interrupt on alarm match
/I Attention: take care not to clear the AL and HZ bits by or-operations
#define REALTIME_ENABLE_ALARM_INT \
(REG(REALTIME_BASE, RTSR) = (REG(REALTIME_BASE, RTSR) & 0x0C) | REALTIME_ALE)
#define REALTIME_DISABLE_ALARM_INT (REG(REALTIME_BASE, RTSR) &= 0x8)

/I query/clear status of alarm interrupt enable bit

/I Attention: take care not to clear the HZ bit when clearing the AL bit by

I/l just or'ing in REALTIME_AL !!

#define REALTIME_ALARM_INT_ENABLE_Q (REG(REALTIME_BASE, RTSR) & REALTIME_ALE)
#define REALTIME_CLEAR_ALARM_INT (REG(REALTIME_BASE, RTSR) &= OxFFFFFFFD)

/I for trimming the clock
#define REALTIME_SET_TRIM(divider_c, delete_c) \
(REG(REALTIME_BASE, RTTR) = (delete_c << 16) | divider_c)

#endif //util_realtime_h
Listing 7. Real Time Clock declarations and Macros [file util\util\realtime.h]

4.7 Operating System Timers

The SA-1100 contains a 32 bit counter which is clocked by the 3.6864 MHz oscillator and can be used as an
operating system timer. This Operating System Count Register (OSCR) is a free running monotonically increasing
counter which is not cleared during any reset and thus contains an unknown value after reset. In addition the OS timer
unit contains four 32 bit match registers (OSMR[3:0]) which can be read and written. When the value of the OSCR
matches the value of one of the match registers the corresponding bit in the OS Timer Status Register (OSSR) is set,
if the corresponding bit in the OS Timer Interrupt Enable Register (OIER) is also set. The status bits are also routed to
the Interrupt Controller and can be unmasked to cause an interrupt if a match occurs. Match register 3 additionally
serves as a watchdog match register which resets the SA-1100 when a match occurs. Except for the Watchdog Match
Enable Register (reset to 0) all registers contain an unknown value after reset and have to be initialized by the user
before the corresponding FIQ or IRQ interrupts are enabled.
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4.7.1 Register Description

Address Name 'Description Accqdss
0x9000 0000 OSMR[O] OS Timer Match Register O Rw
0x9000 0004 OSMRJ[1] OS Timer Match Register 1 RAW
0x9000 0008 OSMRJ[2] OS Timer Match Register 2 RAW
0x9000 000¢ OSMR[3] OS Timer Match Register 3 RAW
0x9000 0010 OSCR| OS Timer Counter Register RwW
0x9000 0014 OSSR| OS Timer Status Register H/W
0x9000 0018 OWER| OS Timer Watchdog Enable Register R/W
0x9000 001¢ OIER | OS Timer Interrupt Enable Register  H/W

Table 10. OS Timer register block

4.7.1.1 OS Timer Count Register (OSCR)

The OS Timer Count Register is a 32 bit counter which is incremented on rising edges of the 3.6864 MHz clock.
The register can be read and written at any time and contains an unknown value after reset.

4.7.1.2 OS Timer Match Registers 0-3 (OSMR[0], OSMR[1], OSMR[2], OSMR[3])

These are 32 bit read- and writable registers which are compared against the OSCR following every rising edge of
the 3.6864 MHz clock. If any of these registers matches the counter at this time, the corresponding status bit in the
OSSR is set, provided that the corresponding enable bit is also set. OSMR([3] can be used as a watchdog timer.

4.7.1.3 OS Timer Watchdog Enable Register (OWER)

This register contains a single bit at position 0 to enable or disable the watchdog function. The bit is set by writing
a one to it and can only be cleared by one of the reset functions (hard reset, software reset, watchdog reset) or b
entering sleep mode. If the bit is zero then OS timer match register[3] matches cause a normal OS Timer match
interrupt request, if the bit is set to one, match register[3] matches cause a reset of the SA-1100.

4.7.1.4 OS Timer Status Register (OSSR)

The status register contains four bits (bits 0-3) indicating whether a match has occurred on any of the four match
registers since the last clear. The bits are set when a match occurs (following the rising edge of the 3.6864 MHz
clock) and must be cleared by writing a one to the proper bit position. Writing zeros to this register has no effect.

4.7.1.5 OS Timer Interrupt Enable Register (OIER)

This register contains four enable bits (bits 0-3) that determine whether a match between one of the match
registers and the count register will set the corresponding status bit in the OSSR. If a status bit is already set, ther
clearing the corresponding interrupt enable bit will not clear the status bit. If both the corresponding OIER and OSSR
bits are set a level 1 interrupt request occurs.

4.7.2 Watchdog Timer

OS Timer Match Register[3] can also be used as a watchdog compare register. If a match between this register ani
the count register is detected and the watchdog has been enabled (by setting bit 0 in the OWER), reset is applied t
the SA-1100. The internal reset is activated for 256 processor clocks and then removed, allowing the SA-1100 to
reboot. The Power Manager, Refresh Timer, and the PLL configuration do not receive this reset. Following a
watchdog reset a status bit is set in the Reset Controller Status Register (RCSR) (see [6].)
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To use OSMR[3] as a watchdog the OS should periodically read the count register (OSCR), add a number to the
value read and write the resulting value to OSMR][3]. The added value corresponds to the amount of time before the
next time-out. If the OS fails to repeat this procedure within the programmed time, i.e. before the match occurs, the
match will cause a watchdog reset, thus forcing the execution of the reset code.

4.7.3 OS Timer Declarations and Functions

The following macros can be used to directly access the various OS Timer registers:

/*

Description:
Type declarations and macros for use with the operating
system timers.

--Christoph Wolf
chwolf@it.kth.se

*
*
*
*
*
*
*
*

*

#ifndef util_ostimer_h
#define util_ostimer_h

#include <util/util_misc.h>
#include <util/util_interrupt.h>

#define OSTIMER_BASE 0x90000000

#define OSTIMER_CHANNEL_O
#define OSTIMER_CHANNEL_1
#define OSTIMER_CHANNEL_2
#define OSTIMER_CHANNEL_3

WNEFO

/* OS Timer Register Offsets */

#define OSMRO 0x00 /* OS Timer Match Register 0 */

#define OSMR1 0x04 /* OS Timer Match Register 1 */

#define OSMR2 0x08 /* OS Timer Match Register 2 */

#define OSMR3 0x0C /* OS Timer Match Register 3 */

#define OSCR 0x10 /* OS Timer Counter Register */

#define OSSR 0x14 /* OS Timer Status Register */

#define OWER 0x18 /* OS Timer Watchdog Enable Register */
#define OIER 0x1C /* OS Timer Interrupt Enable Register */

[* status register bits */

#define OSSR_MO BITO
#define OSSR_M1 BIT1
#define OSSR_M2 BIT2
#define OSSR_M3 BIT3

[* interrupt enable register bits */
#define OIER_EO BITO
#define OIER_E1 BIT1
#define OIER_E2 BIT2
#define OIER_E3 BIT3

[* get/set the current value of the OS Timer Counter Register */
#define OSTIMER_GET_COUNT REG(OSTIMER_BASE,OSCR)
#define OSTIMER_SET_COUNT(n) (REG(OSTIMER_BASE, OSCR)=(n))

/* Note: the following macros with parameter “channel” are intended
* to be used with the previously defined constants

Listing 8. OS Timer declarations and macros [file util\util_ostimer.h]
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OSTIMER_CHANNEL_O - OSTIMER_CHANNEL_3.

Using the constants OSSR_MO0..0SSR_M3 and OIER_EO0..OIER_E3 and
redefinition of the macros would allow you to manipulate more than

one channel a time, e.g.:

#define OSTIMER_ENABLE_INT(arg) REG(OSTIMER_BASE, OIER) |= (arg)

OSTIMER_ENABLE_INT(OIER_EO | OIER_EZ2);
I chose the other method however to allow easy manipulation in

combination with the interrupt channels (see functions in
util_ostimer.c)

L S I

*
~

/* set the specified channel (0 to 3) to the given (absolute) value */
#define OSTIMER_SET_MATCH_REG(channel, val) \
(REG(OSTIMER_BASE,((channel)*4)) = (val))

/* set the specified channel (0 to 3) to the current

* counter value+given increment

* Attention: before unmasking the corresponding interrupt the appropriate

* status bit should be reset to make sure it is not set from an earlier

* match. This step can be omitted if one knows that the status bit has

* been reset a reasonably short time ago (e.g., in an interrupt handler that

* resets the status bit and shortly afterwards sets the new timeout)

*/

#define OSTIMER_INC_MATCH_REG(channel, inc) \
(REG(OSTIMER_BASE,((channel)*4))=REG(OSTIMER_BASE,OSCR)+(inc))

[* enable interrupt for the given channel (0 to 3) */
#define OSTIMER_ENABLE_INT(channel) \
(REG(OSTIMER_BASE,OIER) |= 1<<(channel))

/* disable interrupt for the given channel (0 to 3) */
#define OSTIMER_DISABLE_INT(channel) \
(REG(OSTIMER_BASE,OIER) &= ~(1<<(channel)))

[* disable interrupts for all channels and reset match flags */
#define OSTIMER_DISABLE_INT_ALL REG(OSTIMER_BASE,OIER) = 0; \
REG(OSTIMER_BASE,OSSR) = 0xf

/* query the match bit for the given channel */
#define OSTIMER_QUERY_MATCH(channel) \
(REG(OSTIMER_BASE,OSSR) & 1<<(channel))

/* reset status bit for a given channel -> write a one to the
specified bit, zeros don’t matter */

#define OSTIMER_RESET _INT(channel) \
(REG(OSTIMER_BASE,OSSR) = 1<<(channel))

Listing 8. OS Timer declarations and macros [file util\util_ostimer.h]

Some functions that proved useful in combination with the OS Timer functionality:

/*

Description:
Various functions for use with the OS timers
First some helper functions for use with the hardware timers,
then a software timer implementation, especially for use with
the IrDA stack.

--Christoph Wolf
chwolf@it.kth.se

*
*
*
*
*
*
*
*
*
*

*/
Listing 9. Functions to use the OS Timer functionality [file util_ostimer.c]
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#include <util/util_ostimer.h>
#include <util/util_debug.h>

/I enable/disable debug messages
/I#define DEBUG_OSTIMER
#ifdef DEBUG_OSTIMER
extern int debug_initialized,;
#define DEBUG_STRING(c) debug_String(c)
#define DEBUG_PUTBYTEDIRECT(c) debug_PutByteDirect(c)
#else
#define DEBUG_STRING(c)
#define DEBUG_PUTBYTEDIRECT(c)
#endif

/I mask and unmask the software timer interrupt
#define OSTIMER_LIST_INT_ON INT_UNMASK(INT_OSTIMER_O+ostimer_list_channel)
#define OSTIMER_LIST_INT_OFF INT_MASK(INT_OSTIMER_O+ostimer_list_channel)

/I keep info about the four timer channels (handler and if a handler

/I has gone off (used in the generic timer handler ostimer_TimerHandler)

volatile ostimer_timer_info ostimer_info[4] = { {NULL, FALSE}, {NULL, FALSE},
{NULL, FALSE}, {NULL, FALSE}};

/*

* Function: ostimer_TimerHandler

* Purpose: Default OS Timer handler

*

* Parameters: Interrupt handler arguments passed by Angel.

* Returns: void
*

* |f the timer goes off, the interrupt request is reset and

* ostimer_info[channel].gone_off is set to true.

*/

void ostimer_TimerHandler(unsigned int ident, unsigned int data, unsigned int
empty_stack)

int channel = ident-INT_OSTIMER_O;
OSTIMER_RESET_INT(channel);
ostimer_info[channel].gone_off = TRUE;

}

/*
* Function: ostimer_InitChannelDefault

* Purpose: Install a default OS timer handler.
*

* Parameters:

*  Input: channel the channel for which the handler is to
* be installed

* update install handler in any case or only if no

* handler has been installed yet.

* Returns: 0 The new handler has been installed

* -1 There was already a handler installed

*

* Install a standard timer for the given channel.

* |f update=TRUE install in any case, if update=FALSE install the
* timer only if no timer has been installed on this channel yet.

*/

int ostimer_InitChannelDefault(int channel, BOOL update)

{
Listing 9. Functions to use the OS Timer functionality [file util_ostimer.c]
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if(ostimer_info[channel].handler && !update)

return -1;

}

else

{
OSTIMER_ENABLE_INT(channel);
int_InstallHandler(INT_OSTIMER_O+channel, ostimer_TimerHandler);
ostimer_info[channel].handler = ostimer_TimerHandler;
return O;

/*
* Function: ostimer_InitChannelCustom
* Purpose: Install a custom OS timer handler.

*

* Parameters:

*  Input: channel the channel for which the handler is to
* be installed

* handler the new handler to be installed

* update install handler in any case or only if no

* handler has been installed yet.

* Returns: 0 The new handler has been installed

* -1 There was already a handler installed

*

* Install a custom timer handler for the given channel.

* If update=TRUE install in any case, if update=FALSE install the

* timer only if no timer has been installed on this channel yet.

*/

int ostimer_InitChannelCustom(int channel, angel_IntHandlerFn handler, BOOL update)

if(ostimer_info[channel].handler && !update)

return -1;

}

else

OSTIMER_ENABLE_INT(channel);
int_InstallHandler(INT_OSTIMER_O+channel, handler);
ostimer_info[channel].handler = handler;
return O;

}

}

/*
* Function: ostimer_RemoveChannel

* Purpose: Remove a timer from the given channel.
*

* Parameters:

*  Input: channel the channel which is to be reset and disabled.
*

* Returns: 0 The channel has been reset and disabled.

* -1 The channel was not used

*

* This function disables the interrupt settings and resets the
* appropriate ostimer_info entry.

*

int ostimer_RemoveChannel(int channel)

if(ostimer_info[channel].handler)

OSTIMER_DISABLE_INT(channel);
Listing 9. Functions to use the OS Timer functionality [file util_ostimer.c]
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INT_MASK(INT_OSTIMER_0+channel);
ostimer_info[channel].handler = NULL;
ostimer_info[channel].gone_off = FALSE;
return O;

}

else

{

}
}

return -1,

/*
* Function: ostimer_WaitTime

* Purpose: Wait for a certain time or condition in a busy loop
*

* Parameters:

*  Input: channel the channel to be used for the wait

* time the amount of time to wait

* unit the unit (u’ = us, 'm’'=ms, 's’ = sec.) to

* wait ('s’ is default, i.e., every value

* except 'u’ and 'm’ is interpreted as seconds)

* *cond a condition which stops the waiting loop when
* set to true

* Returns: TRUE The given timeout has passed.

* FALSE *cond was set to true before the timeout was
* reached

*

* Wait on the given channel for either the given time or until
* cond becomes TRUE. The function does a busy wait until either
* of the conditions is met.
* The timer has to be installed before calling the function.
* Return is TRUE if the timer went off, FALSE if *cond became true
* before the timer went off.
*/
BOOL ostimer_WaitTime(int channel, int time, char unit, BOOL *cond)
t

int inc;

switch(unit)

case 'U’: inc = 3.6864*time;
break;

case 'm’: inc = 3686.4*time;
break;

default: inc = 3686400*time;

ostimer_info[channel].gone_off = FALSE;

OSTIMER_INC_MATCH_REG(channel, inc);
OSTIMER_RESET_INT(channel);

INT_UNMASK(INT_OSTIMER_0+channel);
while(!(ostimer_info[channel].gone_off || *cond) )

return ostimer_info[channel].gone_off;

/*
* Function: ostimer_WaitCount

* Purpose: Wait for a certain number of clock ticks or condition in a busy loop
*

* Parameters:
*  Input: channel the channel to be used for the wait
* inc the number of (3.6864MHz) clock ticks to wait

Listing 9. Functions to use the OS Timer functionality [file util_ostimer.c]
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* *cond a condition which stops the waiting loop when
* set to true

* Returns: TRUE The given timeout has passed.

* FALSE *cond was set to true before the timeout was
* reached

*

* Wait on the given channel for either inc ticks of the system timer

* clock or until *cond becomes TRUE. The function does a busy wait
* until either of the conditions is met.

* The timer has to be installed before calling the function.

* Return is TRUE if the timer went off, FALSE if *cond became true
* pbefore the timer went off.

*/

BOOL ostimer_WaitCount(int channel, int inc, BOOL *cond)

{

ostimer_info[channel].gone_off = FALSE;
OSTIMER_INC_MATCH_REG(channel, inc);
OSTIMER_RESET_INT(channel);
INT_UNMASK(INT_OSTIMER_O+channel);
while(!(ostimer_info[channel].gone_off || *cond))

return ostimer_info[channel].gone_off;

}
Listing 9. Functions to use the OS Timer functionality [file util_ostimer.c]

4.7.4 Software Timer Implementation

Implementation of the IrDA protocol stack required a number of different timers, therefore | implemented
“software timers”, similar to the Linux timers. For each timer a structure of typer_list is created and filled
in with values for the desired timeout (fiekkpires ), a function pointer for a callback function to be executed
when the timer expires (fielflinction ) and an optional value to be passed to the callback function fital ).
This structure is passed to tlestimer_AddTimer  function. The software timers operate based on the global
variableostimer_ticks

The functionostimer_InitListInt() initializes the necessary data structures and installs an interrupt
handler for the supplied OS Timer channel. This handler resets the interrupt status bit, sets the new value for the
match register and increments the variabkimer_ticks . Then it calls Angel_SerialiseTask (see
section 4.2) to serialize the functiarstimer_CheckTimers to check the active software timers for expiry,
executing in supervisor mode, but with interrupts enabled. In the current implementation the timer resolution is 1ms,
but can easily be changed via the cons@&TIMER_LIST_TIMER_INC which is the increment for the match
register. If the timeout values for the timers are given in multiples/fractions of seconds by using the constant SEC
(e.g.20*SEC/1000 for 20ms), then the timeouts are not affected by changes in the resolution.

The serialized functiorostimer_CheckTimers compares theexpires -fields of all currently registered
timers with the value irostimer_ticks . If it detects a match it removes the timer from the timer queue and
gueues the corresponding callback function for later execution in user mode via afradiéb QueueCallback
(see section 4.2). Finally it checks the variabiimer_bh_marked  and if it is not zero, it queues the function
ostimer_QueueBH . ostimer_bh_marked can be set via callingpstimer_MarkBH(flag) with an
appropriate value foflag to request a certain service. This is similar to the Linux bottom half mechanisms and
allows to regularly check for certain conditions and execute appropriate functions if one of the conditions is true.
Currently three conditions are implemented to support receiving and transmitting within the IrDA protocol stack. For
more details see Chapter 9. "IrDA Implementation”.

Declarations for the software timer functionality:

#define OSTIMER_CLOCKRATE 3686400
#define OSTIMER_LIST_TIMER_INC 3686 // about every ms
/l#define OSTIMER_LIST_TIMER_INC 2510 // seems to be minimally possible value

Listing 10. Declarations for the software timer functionality [file util\util_ostimer.h]
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I/l one sec, used to specify time outs independant of the timer resolution
#define SEC OSTIMER_CLOCKRATE/OSTIMER_LIST_TIMER_INC

typedef void (*TIMER_CALLBACK)(unsigned long);

/I software timer structure
struct timer_list {
struct timer_list *next; /* MUST be first element */
struct timer_list *prev;
unsigned long expires;
unsigned long data;
TIMER_CALLBACK function;
| void (*function)(unsigned long);

-~

Function: ostimer_InitTimer
Purpose: Init the supplied software timer structure

*
*
*
* Parameters:
*  Input: timer the timer structure to be initialized.
*
*

Returns: void

*

* This function should be called for every software timer before it is
* passed to ostimer_AddTimer.

*/

__inline void ostimer_InitTimer(struct timer_list * timer)

timer->next = NULL;
timer->prev = NULL;
}

#ifdef IRDA

/I extern function prototypes
void irport_BHTransmit(void);
void irport_BHReceive(void);

/I used to set bottom half handler service requests
extern volatile int ostimer_bh_marked;

/I flags to request bottom half service

#define OSTIMER_BH_IRPORT_TRANSMIT 0x1
#define OSTIMER_BH_IRPORT_RECEIVE 0x2
#define OSTIMER_BH_IRPORT_UNWRAP 0x4

/*
* Function: ostimer_MarkBH

* Purpose: set a bottom half handler service request
*

* Parameters:

*  Input: mode the service to be requested, a combination of
* the above defined flags

* Returns: void

*/

__inline void ostimer_MarkBH(int mode)

{

Listing 10. Declarations for the software timer functionality [file util\util_ostimer.h]
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ostimer_bh_marked |= (mode);

}

/*
* Function: ostimer_UnmMarkBH
* Purpose: clear a bottom half handler service request after execution

*

* Parameters:

*  Input: mode the service request to be cleared,

* a combination of the above defined flags
* Returns: void

*/

__inline void ostimer_UnmarkBH(int mode)

ostimer_bh_marked &= ~mode;

}

/*
* Function: ostimer_IsMarkedBH
* Purpose: check if any bottom half handler service is requested

*

* Parameters: none

* Returns: 0 no bh service requested
* other bh service requested
*/
__inline bool ostimer_IsMarkedBH(void)
{
return ostimer_bh_marked;
}

#endif // IRDA

Listing 10. Declarations for the software timer functionality [file util\util_ostimer.h]

Code that implements the software timer functionality (including the bottom half handler mechanisms used in the
IrDA implementation):

/* to check if the Angel function hooks have been initialized */
extern int misc_initialized;

/* the interrupt handler for the software timer interrupt */
void ostimer_ListHandler(unsigned int ident, unsigned int data, unsigned int
empty_stack);

/* the list of currently active software timers */
static struct timer_list ostimer_timer_list;

/* the OS timer channel to be used for the software timers */
volatile static int ostimer_list_channel;

/* the current software timer "time count" */
volatile unsigned long ostimer_ticks = 0;

/I block all ostimer tasks during SA1100 SIR (sofware modulation)
/I transmission
volatile int ostimer_blocked = FALSE;

#ifdef IRDA

Listing 11. Functions for SW timers and bottom half handling

65



Using some of the Peripherals

I/ global variables needed for IrDA bottom half handling

/I which bottom half handler is to execute
volatile int ostimer_bh_marked = 0;

/I if true, then check for bh tasks in the timer interrupt
volatile int ostimer_bh_active = 0;

/I prevent multiple queuing of the ostimer bh function
volatile int ostimer_bh_pending = FALSE;

#endif // IRDA

/*
* Function: ostimer_InitListint
* Purpose: Init the software timer functionality

*

* Parameters:

*  Input: channel the OS timer channel to be used for the
* software timers

*

* Returns: 0 the software timer functionality was

* properly initialized

* -1 the supplied timer channel was already

* used by another handler

*

* Initialize the software timer data structures and install the interrupt
* handler. The interrupt remains masked until the first timer is set.

* If a handler is already set for the given channel (ostimer_info[])

* the function returns -1, otherwise 0 to signal success.

* |f DEBUG_OSTIMER is defined, the function checks if debug_Init()
* has been called and calls it if necessary. Further it executes

* misc_InitAngelFunctions if necessary.

*/

int ostimer_InitListInt(int channel)

{

#ifdef DEBUG_OSTIMER
if('debug_initialized)

debug_Init();
#endif

if('misc_initialized)

{
}

[/ init the timer list
ostimer_timer_list.next = NULL;
ostimer_timer_list.prev = &ostimer_timer_list;

misc_InitAngelFunctions();

if(ostimer_info[channel].handler)
return -1;

I/ set up the interrupt
OSTIMER_ENABLE_INT(channel);
int_InstallHandler(INT_OSTIMER_O+channel, ostimer_ListHandler);

/I update the global variable ostimer_list_channel
ostimer_list_channel = channel;
ostimer_info[channel].handler = ostimer_ListHandler;

Listing 11. Functions for SW timers and bottom half handling
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return O;

}

/*

* Function: ostimer_AddTimer

* Purpose: Add a software timer

*

* Parameters:

*  Input: timer structure describing the timer to add
*

*

Returns: void
*
* When the first timer is added to the list of software timers the timer
* interrupt is enabled. The supplied timer is added to the timer list.
* To guarantee atomic access to the timer list the function is guarded

* by Angel_EnterSVC()/Angel_ExitToUSR().

*/

void ostimer_AddTimer(struct timer_list * timer)
{

/I switch to SVC mode
Angel_EnterSVC();

/I activate the interrupt when first timer is added to list
if(ostimer_timer_list.next == NULL)

OSTIMER_INC_MATCH_REG(ostimer_list_channel, OSTIMER_LIST_TIMER_INC);
INT_UNMASK(INT_OSTIMER_O+ostimer_list_channel);

}

/l append new timer to the list
timer->prev = ostimer_timer_list.prev;
(ostimer_timer_list.prev)->next = timer;
ostimer_timer_list.prev = timer;
Angel_ExitToUSR();

/*
* Function: ostimer_DelTimer
* Purpose: Remove a software timer

*

* Parameters:

*  Input: timer structure describing the timer to remove
*

*  Returns: 0 the timer could be removed

* -1 the supplied timer was not found in the list
*

of currently active software timers.

*
* To guarantee atomic access to the timer list first supervisor mode is
* entered. Then the supplied timer is searched and removed from the list, if
* found. Finally if there are no timers left and bottom half handler services
* are not active the timer interrupt is disabled.
*/
int ostimer_DelTimer(struct timer_list * timer)
{

struct timer_list* temp;

int on = TRUE;

/I disable timer interrupt to prevent simultaneous manipulation
/I of the list

Angel_EnterSVC();

temp = ostimer_timer_list.next;
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/I find given timer in list
while(temp != timer && temp != NULL)

{

}
if(temp = NULL)

temp = temp->next;

/I if timer was found, remove it
(temp->prev)->next = temp->next;

/I remove timer from end of list
if(temp->next == NULL)

ostimer_timer_list.prev = temp->prev;

/1 if timer was last timer in list stop the interrupt
#ifdef IRDA
if((ostimer_timer_list.prev == &ostimer_timer_list) &&
lostimer_bh_active)
telse
if(ostimer_timer_list.prev == &ostimer_timer_list)
#endif

DEBUG_STRING("timer int shut off\n");

on = FALSE;
}
}
/I remove timer from within the list
else

(temp->next)->prev = temp->prev;

temp->next = NULL,;
temp->prev = NULL,;

/I if there are timers left or bh services requested, then reenable the
/I interrupt.
if(fon)

OSTIMER_LIST_INT_OFF;

Angel_ExitToUSR();
return O;

}
Angel_ExitToUSR();
return -1;

#ifdef IRDA

/*
* Function: ostimer_SetBHActive

* Purpose: enable bottom half handler services
*

* Parameters: none

* Returns: void

*/

void ostimer_SetBHActive(void)

ostimer_bh_active = TRUE;
Listing 11. Functions for SW timers and bottom half handling
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/*
* Function: ostimer_SetBHInactive

* Purpose: disable bottom half handler services
*

* Parameters: none

* Returns: void

*/

void ostimer_SetBHInactive(void)

ostimer_bh_active = FALSE;
}

/*
* Function: ostimer_QueueBH
* Purpose: call a bottom half handler function

*

* Parameters:
*  Input: arg0, argl,

* arg2, arg3 not used
*

* Returns: void

*

* If called at least one bottom half handler flag is marked, therefore

* test for the flags and execute the appropriate function(s)

*/

static void ostimer_QueueBH(void * arg0, void* argl, void* arg2, void* arg3)

{
ostimer_bh_pending = FALSE;

/l transmit service requested
if(ostimer_bh_marked & OSTIMER_BH_IRPORT_TRANSMIT)

irport_BHTransmit();
}

I receive service requested (i.e. complete packet ready to be passed
/I up the protocol stack
if(ostimer_bh_marked & OSTIMER_BH_IRPORT_RECEIVE)

irport_BHReceive();
}

/I received bytes to be unwrapped
if(ostimer_bh_marked & OSTIMER_BH_IRPORT_UNWRAP)

irport_BHUnwrap();
}

if(ostimer_bh_marked & OSTIMER_BH_IRLAN_TRANSMIT)

/I not implemented because not supported by used IP stack

}

/[ invalid flag set
if(ostimer_bh_marked & ~(OSTIMER_BH_IRPORT_TRANSMIT | OSTIMER_BH_IRPORT_RECEIVE |
OSTIMER_BH_IRPORT_UNWRAP | OSTIMER_BH_IRLAN_TRANSMIT))

ostimer_bh_marked = 0;

}
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}
#endif // IRDA

/*
* Function: ostimer_QueueTimerFunction
* Purpose: call the passed timer callback function

*

* Parameters:

*  Input: func the callback function to be executed

* timer_data 32 bit argument to be passed to the callback
* arg2, arg3 not used

*

*

Returns: void
*
* This function is just a wrapper because Angel_QueueCallback expects four
* parameters, while the timer callback functions just use one parameter.
*/
static void ostimer_QueueTimerFunction(TIMER_CALLBACK func, void* timer_data,
void* arg2, void* arg3)

(*func)((unsigned long)timer_data);

/*

* Function: ostimer_CheckTimers

* Purpose: Check for expired software timers and bottom half
* service requests

*

* Parameters:

*  Input: arg not used

*

* Returns: void

*

* Executed after the call to Angel_SerialiseTask. Checks if any of the
* current timers has gone off and if so removes it and queues its

* callback function for execution in user mode.

* After that it queues the ostimer_QueueBH function if at least one of
* the bottom half handler flags is set.

* As a serialized function it has the lock and executes in supervisor

* mode, therefor no need for guarding Angel_EnterSVC()/Angel_ExitToUSR()
* calls. If a timer interrupt should occur already during execution of

* this function, the interrupt handler is executed but the newly queued
* call to ostimer_CheckTimers() can only be executed after this call

* has returned, therefor no problem with the list.

*/

static void ostimer_CheckTimers(void* arg)

{
struct timer_list* temp;
temp = ostimer_timer_list.next;

/I check timers in the list
while(temp !'= NULL)

if(temp->expires <= ostimer_ticks)
/l remove the expired timer
(temp->prev)->next = temp->next;

/I remove timer from end of list
if(temp->next == NULL)
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ostimer_timer_list.prev = temp->prev;
}
/l remove timer from within the list
else

(temp->next)->prev = temp->prev;

temp->next = NULL,;
temp->prev = NULL;

/I queue expired timers for later execution in user mode
Angel_QueueCallback((angel_CallbackFn)ostimer_QueueTimerFunction,
TP_AngelCallBack, (void*)(temp->function),(void*)(temp->data),
NULL,NULL);
}
temp = temp->next;

}

#ifdef IRDA
/I check for bh service requests
if(ostimer_bh_marked &&!ostimer_bh_pending )

ostimer_bh_pending = TRUE;

/I queue bh handler for execution in user mode
Angel_QueueCallback((angel_CallbackFn)ostimer_QueueBH, TP_AngelCallBack,
NULL, NULL, NULL, NULL);

}
#endif // IRDA

/*

* Function: ostimer_ListHandler

* Purpose: The core software timer interrupt handler

*

* Parameters: interrupt handler arguments passed by Angel

* Returns: void

*

* Just reset the interrupt request flag, set the match register for the

* next timeout, increment the time base and call Angel_SerialiseTask to do

* the actual processing, if not blocked.

*/

void ostimer_ListHandler(unsigned int ident, unsigned int data,
unsigned int empty_stack)

{

OSTIMER_RESET_INT(ident-INT_OSTIMER_0);
OSTIMER_INC_MATCH_REG(ostimer_list_channel, OSTIMER_LIST_TIMER_INC);
ostimer_ticks++;

I try to
if(lostimer_blocked)

Angel_SerialiseTask(0, ostimer_CheckTimers, NULL, empty_stack);
}

}

Listing 11. Functions for SW timers and bottom half handling
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4.8 UARTSs

Three of the five serial ports of the SA-1100 support UART operation. Serial port 3 is a pure UART port and is
used with the ARM debugger when using Angel. Serial port 1 offers the SDLC protocol in addition to the UART
mode while serial port 2 is intended as an infrared port. It contains a UART with modulation to support slow infrared
mode (SIR) as well as an HSSP for highspeed infrared communication (FIR). This section describes how to program
the UARTSs of the SA-1100 (identical for all three UART units). It also shows how to set up serial port 1 for UART
communication. For the SDLC mode see [6]. The details related to serial port 2 infrared communication are covered
in Chapter 5. "Infrared Communication”.

The SA-1100 UARTSs are general purpose, full-duplex, universal asynchronous receiver/transmitter units which
support most of the functionality of the National Semiconductor 16550 protocol. They can operate at baud rates
between 56.24 bps and 230.4 Kbps; support 7 or 8 data bits; odd, even or no parity; one start bit; one or two stop bits;
and can transmit a continuos break signal. The external pins dedicated to these units are TXDx and RXDx (x = 1,2,3).
The transmit and receive engines can be en-/disabled separately. If an engine is disabled its pin is controlled by the
PPC and can be used for general purpose 1/O.

Each of the UARTSs contains an 8-entry x 8-bit transmit FIFO to buffer outgoing data and a 12-entry x 11-bit
receive FIFO to buffer incoming data. The additional three bits in the receiver FIFO are used to store framing, parity
and receive FIFO overrun error flags for each character received and stored in the FIFO. The FIFOs can be
filled/emptied using DMA or register writes/reads (either polled or interrupt driven). Interrupts are generated when an
error (framing, parity or receiver overrun) is present within the bottom four entries of the receive FIFO, when the
receive FIFO is one- to two-thirds full, when the receive FIFO is not empty and the receiver has been idle for at least
three frame periods, when the transmit FIFO is half-empty and when a begin or end of break is detected by the
receiver.

The UART units do not provide modem control signals (RTS, CTS, DTR and DSR), if required these can be
implemented using GPIO pins.

After a hardware reset the UARTSs are disabled and control of their pins is given to the PPC which configures all
pins as inputs. Reset also causes the FIFOs to be flushed. Before enabling a UART all status bits must first be cleared
by writing a one to each bit. Then the control registers can be programmed to select the desired mode. If desired the
transmit FIFO can be filled with data at this point. Then transmitter and/or receiver can be enabled to start the
communication.

Figure 14 shows the UART data frame format.

Start h arit) Sto Sto
git |Data[0] Data[1]| Data[2] Data[3] Data[4] Data[$] Data[p] Data 7rBity Bit:l’.) Bitg
Optional Optional

LSB MSB [

U

T

Receive data sample frequency = 16 x bit frequency, each bit sampled on eighth clock

Figure 14. UART Data Frame

Each frame begins with a start bit, represented by a high to low transition. Then, depending on the selected mode,
seven or eight data bits are transmitted, starting with the least significant bit. Optionally a parity bit can follow (set if
even parity is enabled and the data byte contains an odd number of ones or if odd parity is selected and the data byte
contains an even number of ones). The frame ends with one or two stop bits, represented by one or two successive bit
periods of logic one. The receiver tests for only one stop bit per frame.
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The UARTs use NRZ encoding to represent individual bit values, i.e. logical one is represented by a line
transition, while logical zero is represented by no line transition. Figure 15 shows an example of NRZ encoding for
the data byte 01001011b:

Bit Value 1 0 1 0 0 1 0

<
n
(o8]

Digital Data

LSB
1

NRZ ! ' ' | :
Data [ ' !

Figure 15. Example for NRZ encoding

The baud rate is generated by dividing down the 3.6864 MHz clock first by a programmable number between 1
and 4097 and then by a fixed value of 16. The receiver clock is synchronized with the incoming data stream using a
digital PLL each time the start bit is detected. The bits are then sampled at the middle of each bit period by counting
8 of the 16 clocks which are produced before the fixed divide by 16 takes place.

4.8.1 Receive Operation

The UART receives incoming data using a serial shifter, removes start, parity, and stop bits; then transfers the date
into the receive FIFO. If parity is enabled the number of one bits within the frame is counted and checked against the
received parity bit. If a parity error is detected the parity error flag in the FIFO is set for the corresponding entry. If a
logic zero is detected where a stop bit (logic one) was expected, the corresponding framing error flag is set.

When the FIFO is one- to two-thirds (i.e., five to eight bytes) full, an interrupt or DMA request is signalled. If the
FIFO is completely filled and more data are received, the overrun error flag is set for the last valid entry in the FIFO.
Any more data received while the FIFO is full is discarded.

The error flags are transferred down the FIFO along with the data that caused the error. Whenever one of the
bottom four FIFO entries contains one or more set error bits an interrupt request is generated and receive FIFO DMA
requests are disabled until the entry containing the error is flushed out of the FIFO. Each time an entry is transferred
to the bottom position of the FIFO the three error flags are transferred to their respective flags in the status register. If
set they indicate that the next byte to be read from the FIFO contains an error. Therefore if the “error interrupt” was
generated, the flags must be checked and programmed I/O must be used to remove the FIFO entries one byte at a tin
until the four bottom entries in the FIFO are free of errors. At this point DMA is automatically reenabled.

4.8.2 Transmit Operation

As the UARTSs are full-duplex the transmission engine can operate at the same time as the receive engine. Byte:
are read from the transmit FIFO, start, optionally parity, and stop bit(s) are added to generate a valid frame which is
then loaded into the serial shifter. Its contents are then transferred to the corresponding TXD pin, clocked by the
programmed baud clock. When the transmit FIFO is half empty an interrupt or DMA request is generated. When the
transmit FIFO is completely emptied, the TXD pin is set to high (one) and remains at this level until additional data is
written to the FIFO.

Note: this means that although the transmitter is not busy it powers the TxD pin and the connected line and
therefore adds to the power consumption, unless the transmit engine is disabled.

4.8.3 FIFOs

To reduce chip size and power consumption, the UART'’s FIFOs use self-timed logic (i.e. they are not clocked).
Due to process and environmental variations the depth at which a service request is triggered to empty the receive
FIFO is variable. This variation spans a maximum of four FIFO entries. The receive FIFO service request occurs
when the FIFO contains between five and eight (of a maximum of twelve) entries.
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This variation applies only to the receive FIFO, the transmit FIFO always generates the service request as soon as
it contains four or more empty entries and negates the request when the FIFO contains five or more data bytes.

If DMA is used to service either of the FIFOs the burst size must be set to four words, even though more than four
valid entries may exist within the receive FIFO. If programmed I/O is used to service the FIFOs four bytes may be
written to the transmit FIFO / read from the receive FIFO without any checking. After that the status bits (transmitter
not full, receiver not empty) must be checked before writing more bytes to the transmitter or reading more bytes from
the receiver FIFO.

4.8.4 Register Description

The UARTs contain seven byte-wide registers, four control registers (UART2 contains one additional control
register), one data register and two status registers. The control registers are used to program baud rate, number of
stop bits, parity, enable/disable transmit and receive operation, interrupts, and some more functions. The data register
addresses the top location of the transmit FIFO and the bottom location of the receive FIFO. If it is written, data is
written to the transmit FIFO, if it is read, data is read from the receive FIFO. The status registers contain bits to signal
interrupt requests, FIFO state, and error conditions.

The three UARTSs have the following base addresses:

Port Base Addregs
[Serial port 1, UARTL 0x8001 00q0

Serial port 2, UART2 0x8003 0040

Serial port 3, UART3 0x8005 00q0

Table 11. Base addresses for SA-1100 UARTs 1, 2, and 3

The registers are as follows:

Offsef] Name Description Accesd
0x00 | UTCRQ UART Control ﬁegister 0 RIW |
0x04 | UTCR1 UART Control Register 1 R/W
0x08 | UTCRZ UART Control Register 2 R/W
0x0C| UTCR3 UART Control Register 3 R/W
0x10| UTCR4 UART Control Register 4 (only UART|2) R/W
0x14| UTDR| UART Data Register R/W
0x1C| UTSRQ UART Status Register 0 R/W & RO
0x20| UTSR1 UART Status Register 1 RO

Table 12. UART register block
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4.8.4.1 UART Control Register 0 (UTCRO)

Bit|Name) Description
0 F_Parity Enable
0 - Parity checking on received data and parity generation on transmitted data is enabled.
1 - Parity checking on received data and parity generation on transmitted data is disabled.
1 | OES | Odd/Even Parity Select
0 - Odd parity checking/generation selected.
1 - Even parity checking/generation selected.
2 | SBS| Stop Bit Select
0 - one stop bit per frame.
1 - two stop bits per frame.
Note: the receiver is not affected by SBS, it always checks for one stop bit.
3 | DSS | Data Size Select
0 - 7 bit data
1 - 8 bit data
(in 7-bit mode data is right justified in the FIFO entries, MSBs are zero filled/ignored)
4 | SCE | Sample Clock Enable
0 - on-chip baud rate generator
1 - external sample clock input via GPIO pin, for details see [6]
5 | RCE | Receive Clock Edge Select use rising or falling edge of external sample clock, for details see|
6 | TCE | Transmit Clock Edge Select use rising or falling edge of external sample clock, for details seq
7 - |Reserved

Table 13. UART Control Register 0

4.8.4.2 UART Control Register 1 and 2 (UTCR1 and UTCR2)

(6]
(6]

Control registers 1 and 2 are used to program the baud rate. Control register 1 (UTCR1) contains the upper four
bits BRD[11:8] and UTCR2 contains the lower eight bits BRD[7:0] of the 12-bit baud rate divisor field BRD[11:0]
which is used to select the baud rate of the UART. The possible 4096 values allow for baud rates ranging from 56.24
bps up to 230.4 Kbps.

The relationship between the resulting baud rate and the BRD value to be programmed into UTCR1 and UTCR2
is given by the following two formulas:

_ 3.686410°
BaudRate= 16+ (BRD+1)
6
BRD = 3:686410

~ 16+ BaudRate

These are the values for setting two frequently used baud rates:

9600 baud: BRD =

3.686410°

=6 9600~ L = 2% = 0x17, , thus UTCR2 = 0x17, UTCR1 = 0x0

6
115200 baud: BrD = 2980410 4 _ 3 -3 thus UTCR2 = 0x01, UTCR1 = 0x0

16+ 115200 ~
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Bits 4-7 of UTCRL1 are reserved, writes are ignored, reads return zeros.

4.8.4.3 UART Control Register 3 (UTCR3)

UTCRS3 is an eight-hit register that mainly contains the bits to enable the receiver and the transmitter and the related
interrupts.

Bit [Name Description
0 | RXE | Receiver Enable

Enable/disable UART receive operation. When the receiver is disabled (RXE=0), control of its RXD pin i§ trans-
ferred to the PPBefore setting RXE, all other control bits, including the transmit bits, have to be seff
RXE is cleared to zero while the UART is receiving data, the receive operation is stopped, the bits withirj the

receive serial shifter and all entries within the receive FIFO are reset, while all other control/status/flag bit4 remain
intact.

1 | TXE | Transmitter Enable

Enable/disable UART transmit operation. When the transmitter is disabled (TXE=0), control of its TXD pjn is
transferred to the PPBefore setting TXE, all other control bits, including the receive bits, have to be set
TXE is cleared to zero while the UART is transmitting data, the transmit operation is stopped, remainingjbits
within the transmit serial shifter and all entries within the transmit FIFO are reset, while all other control/§ta-
tus/flag bits remain intact.

2 | BRK |Break

If the break control bit is set, a break is transmitted by forcing the transmit pin low. For more informationjsee [6]
3 | RIE |Receive Interrupt Enable

—

This bit is used to enable/disable both the receive FIFO service request interrupt and the receiver idle inferrupt. If
RIE=0 these interrupts are masked and the state of the receive FIFO service request (RFS) and receiver [dle (RID)
status bits is ignored by the interrupt controller. This bit only controls the generation of the interrupt request, it

does not affect the state of RFS and RID and generation of the receive FIFO DMA request which is assgrted any
time RFS=1.

4 | TIE |Transmit Interrupt Enable

The TIE bitis used to mask or enable the transmit FIFO service request interrupt. If TIE=0 the interrupt is jnasked
and the state of the transmit FIFO service request (TFS) bit is ignored by the interrupt controller. Again the bit
does not affect the state of TFS or the generation of the transmit FIFO DMA request.

5 | LBM [Loop Back Mode
When LBM=0 the UART operates normally, with independent transmit and receive data paths. When LBNI=1 the

output of the transmit serial shifter is directly connected to the input of the receive serial shifter and contrdl of the
RXD and TXD pins is transferred to the PPC.

6-8] - |Reserved

Table 14. UART Control Register 3

Only TXE and RXE are reset to a known state (0) to ensure that the UARTS are disabled after a reset, while the
state of all other UART control bits is unknown after reset. Note that before enabling transmitter or receiver the sticky
status bits (see 4.8.4.5 “UART Status Register 0 (UTSRO0)“) have to be cleared !

Note: if one of the two engines (transmit or receive) is disabled, then the corresponding interrupts should be
disabled. When working with the IR port | had some cases where | got receiver interrupts even though the receiver
was disabled !

4.8.4.4 UART Data Register (UTDR)

The UART data register is an eight-bit register corresponding to both the top entry of the transmit FIFO and the
bottom entry of the receive FIFO.

If the register is read, the lower 8 bits of the bottom entry of the 11-bit wide receive FIFO are returned. As data
enters the top of the receive FIFO, bits 8-10 are used to store error conditions which occurred during reception of the
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corresponding data entry. These error bits are transferred down the FIFO together with the data entry that caused th
error. When a data entry reaches the bottom of the receive FIFO, the three error flags are transferred to the parity erro
(PRE) flag, the framing error (FRE) flag, and the receiver overrun (ROR) flag within UART status register 1. These
flags can be read before reading the receiver FIFO to determine any errors in the next byte to be read. If any of the
error flags is set within the bottom four entries of the receive FIFO, the error in FIFO (EIF) flag bit is set. This causes
an interrupt to be generated and receive FIFO DMA requests to be disabled to allow manually emptying the FIFO by
checking the error flags in the status register before reading the FIFO entries. After removing an entry the EIF flag
should be checked to see if any errors remain, and the procedure repeated until all erroneous entries have been flush
from the FIFO. Then EIF is automatically cleared and DMA requests are re-enabled.

When UTDR is written the top-most entry of the 8-bit transmit FIFO is accessed, causing the data to be
transferred down to the lowest location within the transmit FIFO which does not yet contain valid data.

4.8.4.5 UART Status Register 0 (UTSRO)

Status Register 0 contains bits which signal interrupt requests to the interrupt controller. All can be read, some of
them are read/write bits and have to be cleared by software by writing ones to them (called sticky status bits, while
read-only bits, which are set and cleared by hardware, are referred to as flags). As usual, writing zeros to status bit:
has no effect, flags are not affected by any write operation.

Bit[Namd Accesh Description
0| TFS RO | Transmit FIFO Service ﬁequest ﬁag

TFS is set any time the transmit FIFO has four or fewer entries of valid data and is cleared whe[E it has

five or more entries of valid data. When the bit is set, a DMA service request is made, as well as pn inter-
rupt request, if TIE=1. Then, after DMA or CPU (via programmed 1/O) have filled the FIFO to conthin at
least five entries, TFS, DMA request, and interrupt request are automatically cleared.

1| RFS RO | Receive FIFO Service Request Flag

RFS is set when the receive FIFO contains between five and eight entries of valid data. When the bit is
set, a DMA service request is made, as well as an interrupt request, if RIE=1. As described preyiously,
DMA has to be configured to a burst size of four words, alternatively four entries may be read usipg pro-
grammed I/O without checking. Then the receive FIFO not empty (RNE) flag must be polled befofe each
read to see if more data remains. If the FIFO has been emptied so that at least five locations are pvailable
the RFS flag and DMA and interrupt request are cleared.

2 | RID | R/W |Receiver Idle Status

The RID bit is set when the receiver is enabled (RXE=1), the receive FIFO contains at least one pntry of
data and the receiver has been idle for three frame periods. If RIE=1 an interrupt request is made when
RID is set.

3 | RBB | R/W | Receiver Begin of Break Status

This bit is set if the begin of a break is detected, i.e. when the receive line is held low for one franje dura-
tion. When RBB is set, an interrupt is signalled and a single null byte is placed in the FIFO. Addi’t}nally

the framing error bit is set and all subsequent null frames with framing errors are ignored. RBB hgs to be
cleared by software and can not be set again until the receiver end of break status (REB) bit has peen set.
This interlock is cleared when REB is set, when RXE is cleared or the SA-1100 is reset.

4 | REB| R/W | Receiver End of Break Status

The REB bit is set when the RBB interlock is set and the receiver detects a rising edge on the recgive pin.
When REB is set an interrupt is signalled and the RBB interlock is cleared so that any future datgframes
will be stored in the receive FIFO. After the bit is cleared it will not be set again until the RBB bifis set

once again.

Table 15. UART Status Register 0
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Bit[Name Accesps Bescription
5 | EIF RO | Error in FIFO

The EIF flag is set if any of the error bits is set within the bottom four entries of the receive FIFQ and is
cleared if there are no remaining errors within the bottom four entries. If EIF is set, an interrupt reluest is

made and receive DMA requests are disabled until EIF is cleared again. The source of the errof can be
found by reading the error flags in status register 1. When EIF has been cleared after removingjthe bot-
tom four FIFO entries via programmed I/O the interrupt request is cleared and DMA is re-enablgd.

6-8| - - Reserved

Table 15. UART Status Register O

The reset state of all writable status bits is unknown and must be explicitly cleared by writing a one to them before
enabling the UART.

4.8.4.6 UART Status Register 1 (UTSR1)

Status Register 1 contains read-only flags that indicate the current status of the UART:

Bit [Name Description

0 | TBY |Transmitter §usy ﬁag

TBY is set when the transmitter is processing data for transmission (the serial shifter contains data) and if cleared
when the transmitter is idle or is disabled (TXE=0).

1 | RNE | Receive FIFO Not Empty

RNE is set whenever the receive FIFO contains one more bytes of valid data and is cleared when it doe§ not con-
tain any more data. This bit can be polled when reading the receive FIFO using programmed /O after PMA or
interrupt requests.

2 | TNF | Transmit FIFO Not Full Flag

TNF is set whenever the transmit FIFO contains one or more empty entries and is cleared when the trgnsmit
FIFO is completely full. This bit can be polled when using programmed I/O to fill the transmit FIFO ovef its
half-way mark.

3 | PRE | Parity Error Flag

The PRE flag is set if the bottom entry in the receive FIFO contains a parity error.

4 | FRE | Framing Error Flag

FRE is set when the stop bit of the bottom entry in the receive FIFO was zero instead of one when the frqgme was
received.

5 | ROR | Receiver Overrun Flag

ROR is set within the top entry of the receive FIFO whenever an overrun occurs, i.e. data is received while the
FIFO is full. This tag travels along with the last byte received before the overrun occurred, as it moves ghrough
the FIFO. When this data entry reaches the bottom FIFO entry the error tag is transferred to the ROR Hit.

6-7 - Reserved

Table 16. UART Status Register 1

Note: | found that, at least in some cases, TBY is not set immediately after transmission of a character has been
started. | noticed this while working with test code for the IrDA implementation: as IrDA is half-duplex | started the
transmission and then went into a busy loop checking the Transmitter Busy Flag to find the end of the transmission
before switching to receive mode. The test for the TBY was the first code executed after starting the transmission and
apparently this does not leave enough time for the TBY to be set. Hence, if the TBY flag has to be checked
immediately after starting the transmission, some sort of a delay has to be inserted to make sure that the flag is
actually set before it is tested the first time. | made some tests using an empty for-loop to generate the delay. It turned
out that the needed time varied from a loop count of about 5 to 100. Generally a loop count of 150-300 should be
sufficient.

See chapter 10. for a description on how to detect when the transmission is finished.
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4.8.5 UART Declarations and Functions

Macros and declarations to use the UART channels:

/*
Description:
Type declarations for use with serial ports (UARTS) on the Badge

--Christoph Wolf
chwolf@it.kth.se

*
*
*
*
*
*
*

*

#ifndef util_serial_h
#define util_serial_h

#include <util/util_ringbuf.h>
#include <stdio.h>

/* serial port base addresses */

#define UART1_BASE 0x80010000 /* UART 1 base address */

#define UART2_BASE 0x80030000 /* UART 2 (Infrared port low speed) base */
#define UART3_BASE 0x80050000 /* UART 3 base (used by Angel)*/

#define SDLC_BASE 0x80020060 /* SDLC base address */

/* SDLC regs/values offsets from base address */
#define SDCRO 0x00 /* SDLC Control Register 0 */
#define SDCR1 0x04 /* SDLC Control Register 1 */
#define SDCR2 0x08 /* SDLC Control Register 2 */
#define SDCR3 0x0C /* SDLC Control Register 3 */
#define SDCR4 0x10 /* SDLC Control Register 4 */
#define SDDR 0x18 /* SDLC Data Register */
#define SDSRO 0x20 /* SDLC Status Regiser 0 */
#define SDSR1 0x24 /* SDLC Status Regiser 1 */

/* SDLC control register bits */
#define SDCRO_SUS 0x01 /* SDLC/UART Select */

/* UART register bits */

/* UART control register 0 bits */

#define UTCRO_PE 0x01 /* Parity Enable */

#define UTCRO_OES 0x02 /* Odd/Even Parity Select */
#define UTCRO_SBS 0x04 /* Stop Bit Select */

#define UTCRO_DSS 0x08 /* Data Size Select */

#define UTCRO_SCE 0x10 /* Sample Clock Enable */
#define UTCRO_RCE 0x20 /* Receive Clock Edge Select */
#define UTCRO_TCE 0x40 /* Transmit Clock Edge Select */

/* UART control register 3 bits */

#define UTCR3_RXE 0x01 /* Receiver Enable */

#define UTCR3_TXE 0x02 /* Transmitter Enable */

#define UTCR3_BRK 0x04 /* Break */

#define UTCR3_RIE 0x08 /* Receive FIFO Interrupt Enable */
#define UTCR3_TIE 0x10 /* Transmit FIFO Interrupt Enable */
#define UTCR3_LBM 0x20 /* Loop Back Mode */

/* UART interrupt status bits (status register 0) */
#define UTSRO_TFS 0x01 /* transmit fifo service request */

Listing 12. UART macros and declarations [file util\util_serial.h]
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#define UTSRO_RFS 0x02 /* receive fifo service request */
#define UTSRO_RID 0x04 /* receiveridle */

#define UTSRO_RBB 0x08 /* receiver begin of break */
#define UTSRO_REB 0x10 /* receiver end of break */
#define UTSRO_EIF 0x20 /* errorin fifo */

/* UART line status bits. (status register 1) */

#define UTSR1_TBY O0x01 /* transmitter busy flag */

#define UTSR1_RNE 0x02 /* receiver not empty (LSR_DR) */
#define UTSR1_TNF 0x04 /* transmit fifo non full */

#define UTSR1_PRE 0x08 /* parity read error (LSR_PE) */
#define UTSR1_FRE 0x10 /* framing error (LSR_FE) */
#define UTSR1_ROR 0x20 /* receive fifo overrun (LSR_OE) */

/* UART register offsets from base address */

#define UTCRO 0x00 /* UART Control Register 0 */
#define UTCR1 0x04 /* UART Control Register 1 */
#define UTCR2 0x08 /* UART Control Register 2 */
#define UTCR3 0x0C /* UART Control Register 3 */
#define UTCR4 0x10 /* UART Control Register 4 */
#define UTDR 0x14 /* UART Data Register */
#define UTSRO 0x1C /* UART Status Register 0 */
#define UTSR1 0x20 /* UART Status Register 1 */

/* macros for UART register access */

/I enable receiver, transmitter or both

#define SER_UART_ENABLE_R(base) (REG(base, UTCR3) |= UTCR3_RXE)

#define SER_UART_ENABLE_T(base) (REG(base, UTCR3) |= UTCR3_TXE)

#define SER_UART_ENABLE_TR(base) (REG(base, UTCR3) |= (UTCR3_RXE | UTCR3_TXE))

/I disable receiver, transmitter or both

#define SER_UART_DISABLE_R(base) (REG(base, UTCR3) &= ~UTCR3_RXE)

#define SER_UART_DISABLE_T(base) (REG(base, UTCR3) &= ~UTCR3_TXE)

#define SER_UART_DISABLE_TR(base) (REG(base, UTCR3) &= ~(UTCR3_RXE | UTCR3_TXE))

/I enable receiver/transmitter interrupt

#define SER_UART_ENABLE_RI(base) (REG(base, UTCR3) |- UTCR3_RIE)

#define SER_UART_ENABLE_Tl(base) (REG(base, UTCR3) |= UTCR3_TIE)

#define SER_UART_ENABLE_TRI(base) (REG(base, UTCR3) |= (UTCR3_TIE | UTCR3_RIE))

/I disable receiver/transmitter interrupt

#define SER_UART_DISABLE_RI(base) (REG(base, UTCR3) &= ~UTCR3_RIE)

#define SER_UART_DISABLE_TI(base) (REG(base, UTCR3) &= ~UTCR3_TIE)

#define SER_UART_DISABLE_TRI(base) (REG(base, UTCR3) &= ~(UTCR3_TIE | UTCR3_RIE))

[/l enable/disable loopback mode
#define SER_UART_ENABLE_LOOPBACK(base) (REG(base, UTCR3) |= UTCR3_LBM)
#define SER_UART_DISABLE_LOOPBACK (base) (REG(base, UTCR3) &= ~UTCR3_LBM)

Il select UART or SDLC operation for serial port 1
#define SER_UART_UART1_SEL_UART (REG(SDLC_BASE,SDCRO0) |= SDCR0_SUS)
#define SER_UART_UART1_SEL_SDLC (REG(SDLC_BASE,SDCRO0) &= ~SDCR0_SUS)

/I query receiver/transmitter status

#define SER_UART_REC_NOT_EMPTY_Q(base) (REG(base,UTSR1) & UTSR1_RNE)
#define SER_UART_TRANSM_NOT_FULL_Q(base) (REG(base,UTSR1) & UTSR1_TNF)
#define SER_UART_TRANSM_BUSY_Q(base) (REG(base,UTSR1) & UTSR1_TBY)

/I completely shut down the UART / clear sticky status bits
#define SER_UART_SHUTDOWN(BASE) (REG(base, UTCR3) = 0x0)
#define SER_UART_CLEAR_STATUS_BITS_ALL(base) (REG(base, UTSRO0) = OxFF)

Listing 12. UART macros and declarations [file util\util_serial.h]
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#define SER_UART_CLEAR_STATUS_BITS_RBB(base) (REG(base, UTSRO0) = UTSRO_RBB)
#define SER_UART_CLEAR_STATUS_BITS_REB(base) (REG(base, UTSR0) = UTSRO_REB)
#define SER_UART_CLEAR_STATUS_BITS_RID(base) (REG(base, UTSRO) = UTSRO_RID)

/I write a byte to the UART data register
#define SER_UART_PUT_BYTE_DIRECT (base, ch) = (REG(base, UTDR) = (ch))

/Il defines for the UART init function ser_Uartlnit
#define SER_INIT_PARITY_DIS 0
#define SER_INIT_PARITY_EN 1

#define SER_INIT_PARITY_ODD 0
#define SER_INIT_PARITY_EVEN 1

#define SER_INIT_ONE_STOP_BIT 0
#define SER_INIT_TWO_STOP_BIT 1

#define SER_INIT_DATA_SIZE_7 0
#define SER_INIT_DATA_SIZE 8 1

/I currently only these two are defined, format UTCR1<<8|UTCR2
#define SER_INIT_BAUD_9600 0x0017
#define SER_INIT_BAUD_115200 0x0001

#define SER_INIT_RECEIVE_INT_DIS 0
#define SER_INIT_RECEIVE_INT_EN 1

#define SER_INIT_TRANSMIT_INT_DIS 0
#define SER_INIT_TRANSMIT_INT_EN 1

/*
* Function: ser_UartPutByteHex
* Purpose: transmit a byte in hex representation
* Parameters:
*  Input: base base address of UART to be used
* ch the byte to be written
*
* Returns: void
* The function writes the hexadecimal representation (‘dd ‘ where ‘d’ are
* hex digits) of the given byte to the UART.
* (intended and used mainly for debug purposes, therefore declared as
* inline for execution speed reasons)
*/
__inline void ser_UartPutByteHex(UI32 base, UC8 ch)
{
char buf[4];
sprintf(buf, “%2.2x “, ch);

while(lSER_UART_TRANSM_NOT_FULL_Q(base))

REG(base, UTDR) = buf[0];
while('SER_UART TRANSM_NOT_FULL_Q(base))

REG(base, UTDR) = buf[1];
while('SER_UART TRANSM_NOT FULL_Q(base))

REG(base, UTDR) = buf[2];

#endif
Listing 12. UART macros and declarations [file util\util_serial.h]
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Functions to use the UARTS:

/*

*  Description:

* Functions to access the serial ports (UARTS) on the Badge.

* SDLC (port 1) and MCP/SSP (serial port 4) are not yet implemented)
*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

*/

#include <stdlib.h>
#include <string.h>

#include <util/util_serial.h>

/*

* Function: ser_Uartlnit

* Purpose: Initialize a UART port

*

* Parameters:

*  Input: base base address of UART to be initialized
* baud baud rate to be used

* parity_en en/disable parity check and generation
* parity_sel select odd or even parity

* stop one or two stop bits

* data_size_sel 7 or 8 data bits

* receive_int  en/disable receive interrupt

* transmit_int  en/disable transmit interrupt

*

*

Returns: void
*
* The function initializes all control registers of the given UART, clears
* the sticky status bits, but doesn not yet enable the receiver and
* transmitter.
* The value to be supplied for the parameter baud is BRD[11..0], see
* constants in the include file (also for the other parameters).
*/
void ser_Uartlnit(UI32 base, U116 baud, int parity_en,
int parity_sel, int stop, int data_size_sel,
int receive_int, int transmit_int)

/I serial port 1 contains UART and SDLC, thus UART has to be selected
if(base == UART1_BASE)

SER_UART_UART1_SEL_UART;
}

/I disable the transmitter and receiver and clear any status bits
REG(base, UTCR3) = 0x00000000;
SER_UART_CLEAR_STATUS_BITS_ALL(base);

/I control register 0

/I PE =0/1; parity disabled/enabled

/I OSE = 0/1 ; dont care about even/odd parity

/I SBS = 0/1 ; one stop bit

/I DSS = 0/1 ; 7/8 data bits

/I SCE =0 ; on chip baud rate generator

/I RCE = X ; reveive edge unused

/I TCE = X ; transmit edge unused

REG(base, UTCRO) = (data_size_sel<<3)|(stop<<2)|(parity_sel<<1)|parity_en;

Listing 13. Functions to use the UARTSs [file util_serial.c]

82



Using some of the Peripherals

/I set the BRD fields in control registers 1 and 2
REG(base, UTCR1) = baud >> 8;
REG(base, UTCR2) = (baud & 0xff);

/Il control register 3

/I RXE = 0 ; receive enable

/I TXE = 0 ; transmit enable

/I BRK =0 ; break disabled

/I RIE =0/1 ;receive interrupt

/I TIE=0/1 ;transmit interrupt

REG(base, UTCR3) = 0x00000000 | (receive_int<<3) | (transmit_int<<4);

}
/* Polled 1/0 */

/*

* Function: ser_UartGetByte

* Purpose: read a byte from the given UART channel
* Parameters:

*  Input: base base address of UART to be used

* Returns: the read byte

*

* The function reads a byte from the UART data register until
* having waited in a busy loop until there is a valid entry in the
* receive FIFO (i.e. the flag RNE becomes 1)

*/

unsigned char ser_UartGetByte(UI32 base)

{

// wait in a busy loop until there is a byte in the receive FIFO
while(!SER_UART_REC_NOT_EMPTY_Q(base))

/I Read the byte
return REG(base, UTDR);

/*
* Function: ser_UartPutByte
* Purpose: transmit a byte using a given UART channel

*

* Parameters:

*  Input: base base address of UART to be used
* ch the byte to be written

*

*

Returns: void
*
* The function writes the given byte to the UART data register until
* having waited in a busy loop until there is a free entry in the
* transmit FIFO (i.e. the flag TNF becomes 1)
*/
void ser_UartPutByte(UI32 base, unsigned char ch)
{

// wait in a busy loop until transmit FIFO not full
while(lSER_UART_TRANSM_NOT_FULL_Q(base))

Listing 13. Functions to use the UARTSs [file util_serial.c]
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I/l put the character into the transmit FIFO
REG(base, UTDR) = ch;

Function: ser_UartPutStringDirect
Purpose: transmit a null-terminated string on the given UART by
directly writing to the transmit FIFO

*

*

*

*

* Parameters:
*  Input: base base address of UART to be used
* string the string to be output

*

*

Returns: void

* The function writes the string to the transmit FIFO of the given
* UART. For each character to transmit it waits until there is
* space in the FIFO.
*/
void ser_UartPutStringDirect(UI32 base, unsigned char* string)
t

inti;

int len = strlen((char*)string);

for(i=0;i<len;i++)

while('SER_UART_TRANSM_NOT_FULL_Q(base))

’

/l put the character into the transmit FIFO
REG(base, UTDR) = string[i;
}

[* Interrupt driven I/O */

/*

* Function: ser_UartPutStringint

* Purpose: transmit a null-terminated string on the given UART using
* a RingBuffer

*

* Parameters:

*  Input: base base address of UART to be used

* tx_buf the RingBuffer to be used for the output
* string the string to be output

*

*  Returns: 0 o.k.

* -1 not enough space in the RingBuffer

* The function writes the string to the given ringbuffer (provided
* it has enough space) and then activates the transmit interrupt on
* the given UART to start the transmission
*/
int ser_UartPutStringInt(U132 base, RingBuffer* tx_buf, unsigned char* string)
{
inti;
int len = strlen((char*)string);
if(len<=ringbuf_GetSpace(tx_buf))

for(i=0;i<len;i++)
ringbuf_WriteByte(tx_buf, string[i]);

SER_UART_ENABLE_TI(base);
return O;

Listing 13. Functions to use the UARTSs [file util_serial.c]
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}

else
return 1;

/*
* Function: ser_UartPutStringBlocking
* Purpose: transmit a null-terminated string on the given UART using

* a RingBuffer and wait until there is enough space in the
* buffer.

*

* Parameters:

*  Input: base base address of UART to be used

* tx_buf the RingBuffer to be used for the output
* string the string to be output

*

Returns: void
*
* The function waits until there is enough space in the RingBuffer, then
* writes the string to the buffer and activates the transmit interrupt on
* the given UART to start the transmission
*
/
void ser_UartPutStringBlocking(UI32 base, RingBuffer* tx_buf,
unsigned char* string)
{

inti;
int len = strlen((char*)string);
while(len>ringbuf_GetSpace(tx_buf))

forkizo;i<len;i++)
ringbuf_WriteByte(tx_buf, string[i]);

SER_UART_ENABLE_TI(base);

/*
* Function: ser_UartPutNewLinelnt
* Purpose: transmit a CR/LF on the given UART using a RingBuffer

*

* Parameters:

*  Input: base base address of UART to be used

* tx_buf the RingBuffer to be used for the output
*

*  Returns: 0 o.k.

* -1 not enough space in the RingBuffer

*

* The function writes the CR/LF bytes to the given ringbuffer (provided
* it has at least two free positions) and then activates the transmit

* interrupt on the given UART to start the transmission

*/

int ser_UartPutNewLinelnt(U132 base, RingBuffer* tx_buf)

if(ringbuf_GetSpace(tx_buf)>=2)
{

ringbuf_WriteByte(tx_buf, 0x0a);
ringbuf_WriteByte(tx_buf, 0x0d);
SER_UART_ENABLE_TI(base);
return O;

}

else
return -1;

}

Listing 13. Functions to use the UARTSs [file util_serial.c]
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5

. Infrared Communication

Serial port 2 of the SA-1100 is intended for infrared communication. It provides two different
units, one for the original IrDA standard for speeds up to 115200 baud (referred to as SIR
mode in the following), the other one for the newer 4.0Mbps standard (referred to as FIR
mode). Both units have a distinct set of control registers, but they share the same pins for
transmission/receiving and the same interrupt and cannot be operated at the same time.
Each unit consists of a bit encoder/decoder and a serial to parallel data engine. SIR mode is
based on a UART (UART 2) while the engine for the high speed mode is a high speed serial
to parallel (HSSP) receiver-transmitter. To support a variety of IrDA transceivers, both the
transmit and the receive data pins can be configured to use either normal or inverted data.
The pins are designed to be directly connected to infrared transceiver modules. After the
design for SmartBadge 3 had already been finished it turned out that only a very small
percentage of the intended IR transceiver modules actually worked at the stated and
required voltage specifications. Therefore a small daughtercard was added to convert
between the original pin layout on the SmartBadge board and the (different) layout of the
new transceiver module. Another severe problem was that the original SA-1100 has a bug in
the SIR modulation unit which makes it unusable for transmission (although the receive
operation works properly). In this chapter | will first describe some small modifications to
the daughtercard to simplify watching the communication by using a logic analyzer and to
allow SIR mode which was not supported in the default configuration of the daughtercard.
Then | describe the SIR unit, including a method to perform SIR software modulation in
order to circumvent the previously mentioned SA-1100 bug. After that | describe the FIR
unit, followed by a description of the setup and environment | used to debug the infrared
communication. The infrared support code can be found in Appendix A "Infrared support
code”, some example programs making use of this support code are listed in Appendix B
"Example Programs”. The user of the IrDA interface for higher level protocols will be
described in subsequent chapters.

5.1 Hardware Modifications to the SmartBadge

5.1.1 Modifications to Observe Communication via a Logic Analyzer

As infrared communication was not working properly at the beginning of my experiments - although | thought
that | had configured everything properly - | looked for a way to observe the generated signal. By connecting two
wires to the IR daughtercard (on paths leading to pins 8 and 9, see Figure 16 and Figure 17) | was able to attach a
logic analyzer to the transmit and the receive pins respectively. (Logic analyzer) Ground was connected to the
daughtercard shield. Using the logic analyzer | found that in SIR mode the correct bit pattern is generated by the
SA-1100, but at a frequency that was too high. It seems that the SIR modulation unit is incorrectly clocked by the
FIR clock. This explained why | could not receive anything from the Badge on other SIR devices | had used (this
included various notebooks with IrDA ports and a second Badge). Subsequently | learned that this was due to a bug in
the implementation of the SA-1100.

5.1.2 Modifications to Allow SIR Mode

The transceiver module that originally had been planned to be used had only one mode pin that allowed a
processor to select between SIR and FIR mode, therefore only one GPIO pin (GPI026) was dedicated to control the
transceiver module. The IR transceiver module which is now used has three mode pins, one to select between SIR
and FIR and two to select between various power modes ( Shutdown, 1/3, 2/3, or full power).

The truth table for this new module is shown in Table 17. To fit the new module into the existing Badge design (with
a different pin-layout for the module and only one GPIO pin available to be used for mode select) a small daughter-
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card, which is plugged into a connector at the position of the original transceiver module, was added. On that card the
mode pin MD1 is hardwired to ground. This disables all combinations which are greyed in the truth table. Mode pin
MDO now switches between “Shutdown” and “Full Distance Power”, while FIR_SEL selects between SIR and FIR

mode.
MDO MD1 FIR=SEL RX Function TX Function
1 0 X Shutdown Shutdown
0 0 0 SIR Full Distance Powqr
0 1 0 SIR 2/3 Distance Powel
1 1 0 SIR | 1/3 Distance Powe}
0 0 1 MIR/FIR | Full Distance Powgr
0 1 1 MIR/FIR 2/3 Distance Powe]
1 1 1 MIR/FIR | 1/3 Distance Powel

Table 17. HSDL-3600 Transceiver Control Truth Table

The design of the IR daughercard allows two configurations:

* Transmission mode fixed to FIR, select between Full Distance Power and Shutdown via GPIO 26 (default

configuration for the SmartBadge)

* Fixed to Full Distance Power, select between SIR and FIR transmission mode via GPIO 26 (requires a small

hardware modification).

Figure 16 shows the circuit diagram of the IR daughtercard in the default configuration. FIR_SEL is connected to
VCC via a 10k pull-up resistor (R2) and MDO is connected to the GPIO pin via the 0-ohm resistor R1 (which acts just
as a jumper), resistor R3 is not mounted. As mentioned, this fixes the mode to be FIR and allows the processor to
select between Full Distance Power and Shutdown - SIR mode is not available, but due to the bug in the early

versions of the SA-1100 this mode was not usable in any case.

R3 0

I

JP1
(Connector to
SmartBadge
3 N Ul/-\ L Board)
RxD vccll
2 1
97xp LEDA|l0  Bead 2 3
3 6 TxD 5
FIR_SEL 8 RxD 7
10 GPIO 9
4MDO  GND— L2 12 Vee 11
5'MD1 AGND|2 _L 14 13
SHIELD c1 16 15
Bead 0.47uF
HSDL-3600 Header 8x2
R1 0
—N
R2 10k

Figure 16. IR daughtercard circuit diagram (default configuration)

One of my tasks was to implement IrDA communication to provide IP network connectivity to a badge via an HP
NetbeamIR access pointAlthough from the point of view of speed and power consumption FIR mode is clearly
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preferable, unfortunately the IrDA protocol suite (in particular IrLAP) requires that the initial communication take
place in SIR mode at 9600 baud (with the possibility to negotiate a higher speed afterwards). So | tried to get around
the SA-1100 bug with software modulation as will be described later, but this still required a modification to the
transceiver module to operate in SIR mode. The necessary changes are as follows:

As can be seen from the truth table, the only way to allow both/A\® FIR mode is by setting mode pin MDO
to zero and use pin FIR_SEL to switch between the two transmission modes. This can be done by removing the
0-ohm resistor R1 and adding a 0-ohm resistor R3, and connecting MDO to ground. This modification is shown
greyed in Figure 16. Now MDO is fixed to zero and the level of FIR_SEL can be set via GPIO 26 (the remaining
pull-up resistor R2 doesn’t change the function, but could be removed to save power -- when GPIO 26 is driven low
for SIR mode).

Figure 17 shows the topside layout for the original and the modified IR daughtercard. The modification is done by
moving the 0-ohm resistor from position R1 to R3 (step 1 in the figure) and grounding pin MDO (i.e., pin 4 of the IR
transceiver U1, e.g. by connecting the now free pad of R1 to the nearby groundplane, which is connected to pins 5
and 7 of U1 - step 2 in the figure). After this modification the transceiver module is tied to full power mode, but can
now be switched between SIR and FIR mode via GPIO 26. It should also be noted that the transceiver can no longer
be powered down, this causes a small waste of power as the detector is always enabled.

Hid

Hlin)

Unmodified version Modified version

Figure 17. IR Daughtercard Modification

5.2 SIR Mode

Low speed IrDA transmission uses the Hewlett-Packard Serial Infrared standard (SIR) for bit encoding and UART
2 as the serial engine. Following reset both the UART and the HSSP engine are disabled and control of the serial port
2 pins is given to the PPC which configures them as inputs. If IrDA transmission is not needed, UART 2 can be
enabled while disabling the HP-SIR encoder, thus serial port 2 can be used as another general purpose serial port.

SIR modulation is used for baud rates up to 115.2 Kbps. Logic zero is represented by a pulse of light which is
either 3/16 of the bit time or 1.8s wide (1.61s being 3/16 of the bit time of the maximum bit rate of 115.2 Kbps).

1. This access point utilizes IrLAN (described in chapter 8.) to allow IR frames to and from a device to be bridged to a wired
ethernet.
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The rising edge of the pulse constitutes the start of the bit time. Logic one is represented by the absence of light
pulses. As the start bit is zero, each serial frame begins with a pulse allowing the receiver to detect the beginning of
the frame and synchronize the receiver clock. Note that as with a normal serial frame the data byte is transmitted
starting with the least significant bit (LSB). Figure 18 shows an example of HP-SIR modulation of the ASCII
character ‘F’, represented by the byte 01000110b.

. Start LSB MSB Stop
Bit Value

Bit | 0 1‘1 o‘o‘o 1 0o | Bit

Digital Data

e | | R S T | N | R | R | R

—p» -— 3/16 of the bit time

Figure 18. HP-SIR Modulation Example

The required frame format is eight data bits, one stop bit, and no parity bit.

5.2.1 SIR Using Normal UART Operation on Revised SA-1100

Newer revisions of the SA-1100 don't have the described bug any longer and thus can be used for SIR
communication. Programming UART 2 is exactly the same as for the standard UART 3 (see section 4.8 “UARTS").
However, it contains one additional control register (control register 4) to control HP-SIR modulation. Similarly as in
serial port one, UART mode for serial port 2 has to be enabled by clearing bit O (ITR - IrDA Transmission Rate) in
HSSP control register 0.

5.2.1.1 UART Control Register 4 (UTCR4)
UTCRA4 consists of two bits, HP-SIR Enable (HSE) as bit 0 and Low Power Mode (LPM) as bit 1.

HP-SIR Enable (HSE)

When HSE=0, HP-SIR modulation is disabled and, if UART 2 operation is enabled in HSSP control register 0,
serial port 2 can be used for normal, general purpose serial communication (NRZ encoding). If HSE=1, HP-SIR
modulation is enabled, zeros are represented by pulses of 3/16 of the programmed bit widthgavide§, while
ones are represented by no pulses.

Low Power Mode (LPM)

This bit controls whether zeros are represented by pulses of 3/16 of the chosen bit width or pulses offfixed 1.6
width. If LPM=0, zeros are encoded as pulses whose width is 3/16 of the bit width programmed via the UART's baud
rate divisor field. When LPM=1 the programmed bit length is ignored for the pulse generation, each pulse has a fixed
width of 1.6us. This minimizes the on-time of the off-chip IR LED transmitter and thus minimizes power
consumption.

Note that the UART must be disabled (RXE=TXE=0) when changing the state of either of these two bits.
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5.2.1.2 Serial Port 2 Configuration for SIR Mode

To use serial port 2 as a SIR port the following steps have to be done:

* Initialize UART 2 for the desired speed and with parameters 8N1 (eight data bits, no parity, one stop bit).

e Clear bit 0 (ITR) of HSSP Control Register 0 to select SIR modulation/UART engine for port 2 (see
section 5.3.7.1 for more information).

* Configure GPIO 26 as output and clear it to zero (selects SIR mode for the transceiver module).
Once all of the above steps are complete, then receive/transmit operation can begin.

5.2.2 SIR via Software Modulation

As mentioned before, the SIR transmission unit of the original SA-1100 cannot be used, but SIR mode is required
to initiate communication with the HP NetbeamlIR. Therefore | looked for a way to do the required modulation in
software. This was possible, because the transmit and receive engines can be enabled and disabled independently. So
by enabling the receive engine it was possible to do all receive operation within the UART unit while disabling the
transmit engine gave control of the transmit (TXD) pin to the PPC unit which could be used to directly modulate the
pin to produce the desired signal.

Some basic facts: as described, zeros are represented by pulses of 3/16 of the bit width while ones are represented
by no pulses. At 9600 bps one bit time has a duration of aboyid.0fhe basic unit therefore is 1/16 of 13Awhich
is about 6.pis. If a zero bit is to be transmitted, the pin has to be set for 1&%3®d then be reset for the following
84.64us. If a one bit is to be transmitted the pin stays reset for the compleigs1U4is concept was implemented
using one of the OS Timer channels to generate an interrupt after a timeout depending on the current state.

At the time | was using a version of Angel which had the complete memory configured as non-cacheable. It
turned out that in this configuration the achievable interrupt frequency was too slow to support software modulation.
After changing the memory configuration to cacheable, SIR transmission using the software modulation was
possible. While there were no problems in simple demonstration programs that only transmitted sequences of
characters out of a buffer, it turned out though that in my IrDA implementation with lots of other tasks (software
timers,...) running at the same time, packets were corrupted in some cases. | was not able to determine the exact
reason, but my suspicion is that another interrupt (either a timer interrupt or the Angel communications interrupt used
to communicate with the debugger) occurred at an “unlucky” time, thus slightly deferring the OS Timer interrupt
responsible for the software modulation. Any delay caused by the occurrence of another interrupt of course
completely destroys the bit timing. A fact that supports this suspicion is that the corrupted packets contained
sequences of Oxffs -i.e. no pulses for eight bit times - after which the receiver resynchronized and properly received
the rest of the packet. | tried to switch off the software timer functionality (except for the core interrupt handler to
increment the tick count and to reset the status bit) but that didn’t solve the problem. With additional code it should be
possible to delay (i.e. block completely) the timer interrupt while a character is transmitted and only allow interrupts
in between but this would make the code more complicated and still not solve the problem of the Angel interrupt. So
while software modulation is possible in theory, its practical use seems to be limited to applications where complete
control over the interrupts is possible. Another possibility might be to implement the modulation interrupt as an FIQ,
but this might require substantial changes to Angel (e.g. regarding the stack setup and allowing FIQs to interrupt an
IRQ currently being serviced - as far as | know this is not supported in the standard Angel implementation).

5.3 FIR Mode

For high-speed infrared communication the HSSP (High-Speed Serial to Parallel) unit is used. As with the other
serial ports, before enabling the port for high-speed operation, all writable status bits have to first be reset by writing
a one to them. Then the intended mode is chosen by setting the control registers. Optionally the HSSP transmit FIFO
can be pre-filled with up to 16 values, then the HSSP can be enabled and receive/transmit operation can begin.
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In the following sections | will first describe the modulation scheme used for high-speed infrared operation, then
the frame format, followed by some more information regarding receive and transmit operation, and the FIFOs.
Finally | will explain the HSSP registers.

5.3.1 Infrared High-Speed Modulation

The 4.0Mbps infrared standard uses a different modulation scheme than HP-SIR mode, called 4PPM
(four-position pulse) modulation. Two data bits are encoded at a time by placing a single 125ns light pulse within one
of four timeslots. The set of four timeslots is called a “chip”. Data is encoded byte by byte, each of which is divided
into four nibbles (two-bit pairs) and transmitted LSB first. Figure 19 shows the 4PPM encoding of the four possible
2-bit combinations, Figure 20 shows an example of 4PPM modulation of the byte 10110001b. Note that the byte is
taken as it is and divided into the four nibbles. These are encoded and THEN the nibbles are reordered to transmit the
least significant (nibble 0) first and the most significant (nibble 3) last.

Chip

Time Slots

22| e ] o
pata=00[ |
Data = 01 [ ]
Data = 10 [ ]
Data = 11 [ ]

Figure 19. 4PPM Modulation Encoding
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LT

Eglue ‘ 1 ‘ 0 1 1 ol ol o 1
Original Nibble 3 Nibble 2 Nibble 1 Nibble 0
Byte Ordef 1 0 1 1 0 0 0 1

Reordere 0 1 0 0 1 1 1 0
Nibbles Nibble 0 Nibble 1 Nibble 2 Nibble 3
Chips ‘ 1 2 3 4
Time

Slots 1|2|3|41|2|3|4 1|2|3|4 1|2|3|4

125ns

_>|_|<_|_L
i)

Receive data sample frequency = 6x pulse width, each time-slot sampled on third clock

Figure 20. 4PPM Modulation example

5.3.2 HSSP Frame Format

The frame format defined for the infrared high-speed mode is shown in Figure 21. It is derived from the SDLC
format (alternatively used in serial port 1), with the following modifications:

* HSSP start/stop flags and CRC are twice as long as in the SDLC standard.
* Instead of only a start flag, a preamble and a start flag are used.

8180 chips

. . 4 chips 4 chips 16 chips .
64 chips 8 chips (8 bits) (8 bits) (20 Atgabytes) (32 bits) 8 chips
Preamble | Start Flag Addres (grt))t?é:]oalll) Data CRC-32 Stop Flag

L |0000]1100|0000|1100]0110]0000|0110|0000]
|2000]0000]1010]1000|... repeated 16 times
|0000|1100|0000|1100]0000|0110]0000|0

Figure 21. High Speed Serial Frame Format for IrDA Transmission (4.0Mbps)
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The preamble, start, and stop flags are assembled from chips that contain either 0, 1, or 2 pulses. Chips with 0 an
2 pulses don't represent any valid encoding of (data) bit pairs and thus are used to distinguish flags from normal data

The preamble contains 16 repeated transmissions of the four chips: 12000 0000 1010 1000; the start flag is a singls
sequence of eight chips: 0000 1100 0000 1100 0110 0000 0110 0000; the stop flag is similar to the start flag but the
sequence of chips in the second half is rotated by one position: 0000 1100 0000 1100 0000 0110 0000 0110.

The other fields (address, control, data, and CRC-32) use the standard 4PPM encoding to represent two bits per ch

5.3.2.1 Address Field

The 8-bit (4 chips) address field is used to either address a single station (addresses 0x00 to OXFE) or to send
broadcast message to all stations within range (address OxFF). The HSSP unit contains an eight bit register (AMV)
which can be programmed to hold an address to be compared against the address field of incoming frames. If the
address match function is enabled and the addresses match or if the incoming frame was sent to the broadcast addre:
the address is stored in the FIFO along with the normal data. The address is transmitted and received starting with it:
LSB and ending with its MSB.

5.3.2.2 Control Field

The 8-bit control field is optional and its meaning is defined by the user. There is no hardware support to handle it,
the HSSP treats all bytes between the address field and the CRC as data and stores the bytes in the FIFO.

5.3.2.3 Data Field

In the standard the data field is defined to be any number of bytes from 0 to 2045. The length should be chosen
according to the specific application and the transmission characteristics. The HSSP unit however does not limit the
length of the data field in any way (except that it must be a multiple of eight bits, otherwise an abort is signalled).

5.3.2.4 CRC Field

Infrared high-speed mode uses a 32-bit cyclic redundancy check (CRC-32) to detect bit errors during
transmission. The CRC is computed using the address, control, and the data field and is placed in the frame, betwee
the data field and the stop flag. The HSSP contains separate CRC-generators for the transmit and the receive bloc
The transmitter calculates the CRC on the fly while the data is transmitted and places the inverse of the resulting
32-bit value at the end of each frame before the stop flag is transmitted. Similarly the receiver calculates the CRC for
each received frame and compares the result to the received CRC field. If these two values do not match an interrup
is signalled. The CRC computation logic is preset to all ones before reception or transmission and the computed value
is inverted before it is used for transmission or comparison. The 32-bit CRC is transmitted and received least
significant byte first and most significant byte last. As usual within each byte the least significant nibble comes first.

The CRC uses the following 32-term polynomial:

32, 26, 23, .22 16, 12, 11 10 , 8, 7, 5, A 2
CRO(X = (X "+X T +X7+X"+X +X"+X +X +X +X +X +X +xX +x+1)

5.3.3 Baud Rate Generation

The infrared high-speed baudrate is 4 Mbps, thus a “chip frequency” of 2 MHz is required. Each chip consists of
four time slots, resulting in a slot frequency of 8 MHz. Using a digital PLL the timeslot clock for the receiver unit is
synchronized with the incoming data stream during preamble reception and afterwards whenever a transition is
detected. The pattern of the preamble is used to identify the first time slot. As mentioned in Figure 20, the receive
data are sampled with a frequency 6 times the slot frequency, capturing the sample value at the third clock of each slo
period. The required sampling frequency of 48 MHz is taken from one of the two on-chip PLLs, the 8 MHz slot
frequency is derived from this clock by division by six.
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5.3.4 Receive Operation

Due to the nature of infrared communication the IrDA standard specifies that all communication has to be
half-duplex, i.e., at any time a station can either transmit or receive, but not both. The HSSP hardware however does
not impose such a restriction, transmitter and receiver can be enabled at the same time which is particularly useful
when using the loopback mode to verify proper setup and operation of transmitter and receiver and the corresponding
code..

When the receiver is enabled, it selects an arbitrary chip boundary, receives four incoming 4PPM chips from the
RxD2 pin, and latches and decodes them one at a time. If the received chips do not decode to the four-chip preamble
pattern, the time slot counter’s clock is forced to skip one 8-MHz period, which delays the time-slot count by one.
This procedure is repeated until the preamble pattern is recognized, signifying that the time-slot counter has
synchronized. The four-chip preamble pattern is repeated at least 16 times, but can be transmitted continuously to
signal an idle receive line.

At any time after the transmission of 16 preambles the start flag can be sent. This flag is eight chips long and if
any part does not decode to the expected pattern the receiver logic signals a framing error and starts looking for the
preamble pattern again.

After detection of a correct start flag each subsequent group of four chips is decoded into a data byte and placed in
a 5-byte temporary FIFO. This FIFO is used to prevent the CRC from being placed within the receiver FIFO. When
this temporary FIFO has been filled, the bytes are pushed out one by one and written to the receiver FIFO.

The first data byte of the frame is interpreted as the address. If receiver address matching is enabled the address
byte is compared to the value stored in the address match register. If the two values are equal or the address byte is all
ones, indicating a broadcast transmission, all following bytes, including the already received address byte are written
to the FIFO. If the values do not match, nothing is stored in the FIFO and the receiver logic starts looking for the
preamble again, ignoring any further data bytes. The optional control byte must be decoded in software if it is to be
used.

The IrDA standard specifies a maximum of 2047 data bytes. There is no limit on the number of bytes that can be
received by the HSSP receive logic, the user has to ensure that a received frame does not exceed the specified
maximum frame length.

Similar to the UART FIFOs, when the receive FIFO is one- to two-thirds full, an interrupt request or DMA
transfer is signalled. If the data is not read fast enough and the FIFO is completely filled, an overrun error is signalled,
when the receiver logic tries to put additional data into the FIFO. Any subsequently received data bytes are discarded,
but the contents of the FIFO remain intact.

If any two sequential chips within the data field do not contain any pulses (i.e., are 0000), the frame is aborted.
The least recent byte within the temporary FIFO is moved to the receive FIFO, while the remaining four entries in the
temporary FIFO are discarded. The end-of-frame (EOF) tag is set within the FIFO entry containing the last valid data
byte. The receiver logic then begins to search for the next preamble. An abort also occurs if any received data chip
contains 0011, 1010, 0101, or 1001 (invalid chips not contained in the stop flag).

During receive operation the receive logic continuously searches for the 8-chip stop flag. Once it is recognized,
the last byte in the receive FIFO is marked as the last data byte of the frame. The bottom four entries of the temporary
FIFO are compared to the continuously computed and updated CRC-32 value. If the received and the computed CRC
value do not match the last byte in the receive FIFO is also tagged with a CRC error. The CRC value is not placed in
the receive FIFO.

If the receiver is disabled during operation, reception of the current byte is stopped immediately, the FIFOs are
cleared, all receiver-used clocks are stopped to save power and control of the RxD2 pin is given to the PPC unit.

Note: if the RxD2 pin is used for general purpose 1/O care must be taken to ensure proper polarity of the pin.
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5.3.5 Transmit Operation

Before enabling the HSSP transmitter the user can either fill the transmit FIFO using programmed I/O or wait for
interrupt/DMA requests to fill the FIFO once the transmitter is enabled. For each frame to be transmitted at least 16
preambles are output. If there are no valid data in the FIFO after 16 preambles, the transmitter continues to outpu
preambles until at least one byte of valid data resides in the transmit FIFO. The preambles are followed by the start
flag and then the data (four chips, i.e., 8 bits are encoded at a time and then output on the TxD2 pin via a serial shiftel
clocked by the 8Mhz clock.

Note: preambles, start and stop flags, and CRC are automatically generated by the transmitter and need not b
placed in the FIFO.

Whenever the FIFO is emptied at least halfway, a DMA request and/or an interrupt request are signalled. If the
FIFO empties completely before new data is supplied, one of two actions (programmable by the user) can be taken -
a FIFO underrun can either signal the regular completion of the frame or an unexpected termination of a frame being
transmitted.

If the user has chosen normal frame completion and an underrun occurs, the transmitter sends the CRC which ha
been calculated during transmission of the frame (the CRC includes the address and control bytes). Following the
CRC the stop flag is sent to signal the end of the frame. After that the transmitter again sends preambles until new
data is available in the transmit FIFO in which case transmission of the new frame starts.

If “unexpected frame termination” has been programmed and a FIFO underrun occurs, the transmitter sends ar
abort and interrupts the CPU. The abort is transmitted until new data is available in the transmit FIFO. As soon as this
happens, the transmitter starts transmission of the next frame by sending the 16 preambles, followed by start flag an
data.

At the end of each frame, the HSSP outputs a pulse called the serial infrared interaction pulse (SIP). A SIP is
required at least every 500ms to keep SIR-devices (speeds up to a maximum of 115kBaud) from interfering with the
FIR transmission. The pulse simulates a start bit which causes all SIR-devices to await their turn for transmission for
at least another 500ms. The SIP pulse is generated by setting the transmit pin (TxD2) high for a periodusf, 1.625
followed by a low period of 7.37% (total length fis). After this Qus period normal operation is resumed by
transmitting preambles until valid data is available in the transmit FIFO. It is the user’s responsibility that a SIP pulse
can be generated at least every 500ms. As most IrDA compatible devices produce a SIP pulse after each transmitte
frame it is enough to ensure that at least one frame is either transmitted or received every 500ms.

Note that this is no limitation regarding the frame length - the maximum frame length is 16376 bits which takes 4ms
at 4Mb/s.

If the transmitter is disabled during operation, transmission of the current byte is immediately stopped, the serial
shifter and the transmit FIFO are cleared, and control of the TxD2 pin is given to the PPC. Also all clocks needed for
transmit operation are shut down to save energy. Again, if the pin is to be used for general purpose 1/0O care must be
taken to ensure proper polarity of the pin.

5.3.6 Transmit and Receive FIFOs

As in the case of the UART FIFOs, the HSSP’s FIFOs use self-timed logic to reduce power consumption and chip
size. As explained in Section 4.8.3, the depth at which a service request to emptgehe FIFO is triggered, is
variable. The variability can span up to four FIFO entries. To compensate for this variability and to allow efficient use
of the high datarate, the receiver FIFO has 20 entries. The receive FIFO generates a service request if it is filled from
two-fifths to three-fifths (nine to twelve entries of data).

The transmit FIFO has 16 entries and is guaranteed to signal a service request if there are eight or more free
entries and to negate the request if there are less than eight free entries.

For DMA operation the burst size must be set to eight words. With programmed 1/O eight bytes can be written to
the transmit FIFO or read from the receive FIFO without checking, following that the appropriate status bits must be
polled.
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5.3.7 HSSP Register Description

The HSSP unit contains six registers, three control registers, one data register and two status registers. The HSSP

memory map is shown in Table 18, the base address is 0x80040000.

Offset Name] Description Acﬂ
60 HSCRQ HSSP control register D R/W
64 HSCR1 HSSP control register L R/W,|
6C HSDRZ HSSP data register RW
74 HSSRQ HSSP status register ( R/W &JRO
78 HSSR1 HSSP status register 1 RO
0x9006 0028 HSCR2 HSSP Control Register 2 R/}

Table 18. HSSP register block

Note: HSSP Control Register 2 is located inRIRC address spacat 0x9006 0028.

5.3.7.1 HSSP Control Register 0 (HSCRO)

Bit [Name Description

0 | TR |Irda transmission rate.
0 - 115.2Kbps (select HP-SIR modulation, enable serial port 2 UART)
1 - 4.0 Mbps (select 4PPM modulation, enable serial port 2 HSSP)
Note: this is the only bit in this register that affects both the UART and the HSSP; once one of the two mqdes is
selected, all further programming is controlled by the individual units (UART or HSSP).

1 | LBM [Loopback mode.
0 - Normal serial port operation enabled.
1 - Output of HSSP’s transmit serial shifter is directly connected to the input of the receive serial shifter. Cdgntrol of
TxD2 and RxD2 is given to the PPC unit if ITR=1.
Note: the IrDA standard requires half-duplex operation but the HSSP’s hardware allows full-duplex operaion
which is essential for the loopback mode.

2 | TUS | Transmit FIFO underrun select.
0 - Transmit FIFO underrun masks transmit underrun interrupt generation (status flag TUR in HSSP statug register
0 is ignored) and causes frame to be finished regularly (transmitting CRC, stop flag, and SIP).
1 - Transmit FIFO underrun causes an abort to be transmitted, and generates an interrupt (state of TUR isfvaluated
by the interrupt controller).

3 | TXE | Transmit enable.
0 - HSSP transmit logic is disabled; control of the TxD2 pin is given to the PPC unit if ITR=1
1 - HSSP transmit logic is enabled if ITR=1.
Note: immediately after enabling the transmitter a SIP pulse is transmitted.

4 | RXE | Receive enable.
0 - HSSP receive logic is disabled; control of the RxD2 pin is given to the PPC unit if ITR=1.
1 - HSSP receive logic is enabled if ITR=1.

5 | RIE |Receive FIFO interrupt enable.
0 - “Receive FIFO two- to -three-fifths full or more” condition does not generate an interrupt (RFS bit igndred).
1 - An interrupt is generated if the receive FIFO is two- to three-fifths full or more.

Table 19. HSSP Control Register
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Bit|Name) Description
6 | TIE |Transmit FIFO interrupt enable.
0 - “Transmit FIFO half-full or less” condition does not generate an interrupt (TFS bit ignored).

1 - An interrupt is generated if the transmit FIFO is half-full or less.
7 | AME |Address match enable.
0 - Disable receiver address match function; store data from all incoming frames in the receive FIFO.

1 - Enable receiver address match function; only data from frames with matching address or broadcast agdress (all
ones) is stored in the receive FIFO.

Table 19. HSSP Control Register

Some more remarks:

e Transmit FIFO Underrun Select (TUS): when TUS=0, transmit FIFO underruns signal to the transmit logic that
the end of the frame has been reached and the frame is to be terminated with CRC, stop flag, and SIP pulse
Additionally the transmit FIFO underrun interrupt request is masked.

When TUS=1 a transmit FIFO underrun signals that the end of the frame has not yet been reached but the data
rate to fill the FIFO was not sufficient. The transmitter outputs two chips containing all zeros (0000) to signal the
abort. This is followed by a SIP pulse and a minimum of 16 preambles. Transmission restarts as soon as new data
is available within the transmit FIFO. Additionally setting TUS=1 enables the transmit FIFO underrun interrupt.

For normal operation TUS should be set to 1 at the start of a frame in order to generate aborts if the FIFO under-
runs. Just before the end of the frame the user clears TUS to 0. When the FIFO underruns the frame is properly
terminated. Before changing the state of TUS the FIFO should be filled in order to avoid the FIFO to underrun at
the same time TUS is written.

* Transmit Enable (TXE): enable/disable HSSP transmit operation. When TXE=0 the transmit logic is disabled, its
clocks are turned off in order to save power, and control of the TxD2 pin is given to the PPC unit. As with the
UARTSs it is required that all other bits be programmed before setting TXE to 1. TXE is ignored if ITR=0 (UART
mode), TXE and RXE are the only bits in HSSP control register 0 that are reset to a known state (0).

* The Address Match Enable (AME) bit is used to enable or disable the receive logic form comparing the address
programmed in the Address Match Value (AMV) field to the address of the incoming frames.
If AME=1 data of received frames is stored in the receive FIFO only if the value in AMV and the address field of
the incoming frame match or if the incoming frame was sent with the broadcast address (all ones). For frames
whose address does not match, data and CRC are ignored and the receiver logic keeps looking for the next prean
ble.

If AME=0, the address values are not compared and the data in every frame is stored in the receive FIFO.

5.3.7.2 HSSP Control Register 1 (HSCR1)

HSSP control register 1 (HSCRL1) is used to store the 8-bit address match value AMV.

The address match mechanism can be used to filter out frames, that are not destined for the local station, by mear
of hardware, without using processor time. To enable this function the desired address match value has to be writter
to HSCR1 and the AME bit must be set. Then for matching incoming frames the frame’s address, control and data are
stored in the receive FIFO. Frames, whose address does not match, are discarded and the receive logic searches
the next preamble to synchronize on. Frames containing the broadcast address OxFF always match, their contents a
automatically stored in the receive FIFO.

AMV is uninitialized after reset and can be written at any time, the update becomes active with the next frame.

5.3.7.3 HSSP Control Register 2 (HSCR2)

Unlike all other HSSP registers this register is located in the PPC address space. It contains two read- and writable
bits that are located in byte 2 of the addressed word (bits 23..16), word writes or reads should be used to access thi
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register. These two bits determine the polarity of the TXD2 and RXD2 pins. Both bits are reset to 1 resulting in “true”
mode for both pins.

e Transmit Pin Polarity Select (TXP): This bit is located in bit 18 of HSCR2 and determines whether data output via
the TXD2 pin is output true or complemented. When TXP=0, all data output via this pin (UART, HSSP, and PPC)
first is inverted. When TXP=1 all data is output true/non inverted. This applies only for output, if the pin is used
for general purpose I/O input (PPC), TXP has no effect on the state of TXD2.

Note: if TXP=0, indicating inverted data, also the corresponding bit in the PPC sleep state register has to be
inverted.

* Receive Pin Polarity Select (RXP): RXP is located in bit 19 of HSCR2 and controls the behaviour of the serial
port 2 receive pin RxD2. If RXP=0, data input from the RxD2 pin is first inverted before being sent to the UART,
the HSSP or the PPC. When RXP=1, data input from the RxD2 pin is not inverted before being sent to its
destination unit. The bit is also set to 1 after reset, but unlike the TXP bit it controls the PPCii@tGn pin
RxD2. Also unlike TXP, it has no effect on the PPC sleep state register, therefore the corresponding bit
PSDR<15> should be programmed normally.

5.3.7.4 HSSP Data Register (HSDR)

The HSSP Data Register (HSDR) is an eight-bit register corresponding to both the top and the bottom entry of the
transmit and receive FIFOs, respectively.

The mechanism is the same as with the UART FIFOs: when HSDR is read the lower eight bits of the bottom entry
of the 11-bit wide receive FIFO are accessed. As data enters the top of the receive FIFO, bits 8-10 are used as tags to
indicate various conditions related to each received data byte. The tags are transferred down the FIFO along with the
data byte they belong to. When the data byte reaches the bottom position of the FIFO the tag bits are transferred to the
status bits end-of-frame (EOF) flag, CRC error (CRE) flag, and the receiver overrun (ROR) flag, all in status register
1. These bits can be checked by the user to detect the end of a frame or an error condition before reading the
corresponding data byte.

Again in analogy to the UART FIFOs the ‘end/error in FIFO’ (EIF) flag is set in status register O, if any of the tag
bits is set within the eight bottom entries of the receive FIFO and is cleared if no tag bit is set in the bottom eight
entries. If EIF is set, DMA is disabled and an interrupt is generated. The user then can check which condition lead to
the interrupt by checking the status flags in status register 1 and read the data bytes one at a time until there are no
more data bytes with set tag bits left within the bottom eight receive FIFO entries. At this point the EIF flag is cleared
automatically and DMA is reenabled.

When HDSR is written, the topmost entry of the 8-bit transmit FIFO is accessed. Data is transferred to the lowest
location within the FIFO that does not yet contain valid data and transmission starts as soon as a byte reaches the
bottom and the transmitter is enabled.

5.3.7.5 HSSP Status Register (HSSRO0)

HSSP status register O is an eight bit wide register that contains six bits to signal FIFO service requests and error
conditions. Each of the bits signals an interrupt request. Read/write bits are called status bits and have to be cleared
by the user by writing a one to the bit, read-only bits are called flags and are cleared by hardware, they are not
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affected by any write operation. The reset state of all writable bits is unknown and has to be cleared before enabling

the HSSP.
Bit [Name) Description Acceds
0 | EIF [End/Error in FIFO. RO
0 - Bits 8-10 are not set within any of the eight bottom entries of the receive FIFO.
1 - At least one of the tag bits is set within the bottom eight entries of the receive FIFO.
1 | TUR | Transmit FIFO underrun. R/W
0 - Transmit FIFO has not experienced an underrun.
1- Transmit logic attempted to fetch data from the transmit FIFO while it was empty. This generates
an interrupt request, if TUS=1.
2 | RAB |Receiver Abort. R/W
0 - No abort has been detected for the incoming frame.
1 - During receipt of the incoming frame an abort (two or more chips containing no pulses) hds been
detected. The EIF bit is set in the receive FIFO next to the last valid data byte and an interrupt|service
is requested.
3 | TFS | Transmit FIFO service request. RO
0 - Transmit FIFO is more than half-full (nine or more entries filled) or the transmitter is disaljled.
1 - Transmit FIFO is half-full or less (eight or fewer entries are contained). DMA service request is
signalled and also an interrupt service request, if TIE=1. Note that the DMA request is not affected by
the state of RIE. After CPU or DMA have written new data to the FIFO, and it thus contains eight or
more valid data bytes, TFS is automatically cleared.
4 | RFS | Receive FIFO service request. RO
0 - Receive FIFO contains 11 or fewer entries of data or the receiver is disabled.
1 - Receive FIFO is two- to three-fifths full (9-12 entries) or more. DMA and interrupt service request
are signaled, the latter only if RIE=1. Note that the DMA request is not affected by the state of RIE.
5 | FRE | Framing Error. R/W
0 - no framing errors encountered
1 - a framing error has occurred (a preamble followed by something other than another preamble or
start flag.
7.6 - |Reserved.

Table 20. HSSP Status Register 0 (HSSRO)

Some more remarks on the bits in status register O:

End/Error in FIFO Flag (EIF): the bit is set, if any of the eight bottom entries in the receive FIFO contains a set
tag bit. (Receiver) DMA is disabled and an interrupt request is signalled. The user should then check the state of
the bits EOF, CRE, and ROR in HSSP status register 1 and read the next data byte in the receive FIFO using
programmed I/O. This has to be repeated until none of the tags is set in the bottom eight entries of the FIFO any
more which automatically clears the EIF flag and reenables DMA.

Transmit Underrun Status (TUR): The bit is set if the transmit logic tries to fetch data from the transmit FIFO
after this has already been emptied. Further action depends on the state of the TUS flag in control register O:

* TUS=0: the transmitter ends the frame regularly by transmitting the accumulated CRC value, followed by a
stop flag and a SIP pulse.

e TUS=1: the transmitter sends abort chips (containing all zeros) until new data is available in the transmit
FIFO. Then a new frame is initiated by sending preambles and the start flag, followed by the newly available
data. If TUS=1an interrupt request is signalled to notify the CPU/user program that the data rate is too low.

Receiver Abort Status (RAB): This bit is set when an abort is detected during receipt of an incoming frame. The

abort condition is that two or more chips that do not contain any pulses (all zeros) or chips containing 0011, 1001,
or 0101 (i.e., chips that do not represent any valid data encoding and are not contained in the stop flag) are
received after a valid start flag but before a valid stop flag has been detected. When an abort condition occurs the

99



Infrared Communication

EOF tag is set in the receiver FIFO entry that holds the last valid data byte. The receiver then starts searching for a
preamble.

Receive FIFO Service Request Flag (RFS): set to indicate that the receive FIFO requires service to prevent an
overrun. As with the UART FIFOs the service request is guaranteed to occur only in a certain range, not with a
certain number of bytes contained in the FIFO. In the case of the HSSP receive FIFO it is guaranteed to signal a
service request when it is two- to three-fifths full (or more), i.e., when it contains at least 9 to 12 valid entries. The
request is cleared when the FIFO contains 9 to 11 remaining entries. The DMA burst size must be set to eight
words, using (interrupt driven) programmed I/O up to eight bytes can be read without checking, then the RNE flag
has to be checked if additional data is available.

5.3.7.6 HSSP Status Register 1 (HSSR1)

Status register 1 contains seven non-interruptible read-only bits to indicate receiver and transmitter state, FIFO

state, and frame state info.

Bit

Name Description

0

RSY | Receiver synchronized flag.
0 - Receiver is in hunt mode or is disabled.
1 - Receiver logic is synchronized with the incoming data.

TBY |Transmitter busy flag.
0 - Transmitter is idle (sending continuous preambles) or is disabled.

1 - Transit logic is currently transmitting a frame (address, control, data, CRC, or start/stop flag).

RNE | Receive FIFO not empty flag.
0 - Receive FIFO is empty.
1 - Receive FIFO contains at least one valid entry.

TNF [ Transmit FIFO not full flag.
0 - Transmit FIFO is full.

1 - Transmit FIFO has space for at least one more data byte.

EOF | End of frame flag.
0 - Current frame has not yet completed.

1 - The value at the bottom of the receive FIFO is the last byte of data within the current frame.

CRE | CRC error flag.
0 - No CRC errors encountered in the receipt of data.

1 - CRC calculated on the incoming data does not match the CRC value contained within the current frgme.

ROR | Receive FIFO overrun flag.
0 - Receive FIFO has not experienced an overrun.

1 - Receive logic attempted to place data into the receive FIFO while it was full. The next data byte to bg read is
the last “good” one before the overrun occurred.

Table 21. HSSP Status Register 1 (HSSR1)

Some more remarks:

Receive FIFO Not Empty Flag (RNE): the bit is set whenever the receive FIFO contains at least one byte of valid
data and is cleared when the FIFO is empty. It can be polled when using programmed 1/O to remove any
remaining bytes after a DMA transfer or an interrupt driven access (which can remove only eight bytes at a time
although more bytes may be contained).

Transmit FIFO Not Full Flag (TNF): the flag is set whenever the transmit FIFO contains at least one empty entry
and is cleared when the transmit FIFO is completely full. Similar to the RNE flag, this flag can be polled when
using programmed I/O to fill the transmit FIFO over the halfway mark.
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The following three flags represent the tag bits (bits 8-10 of the receive FIFO that travel along with the
corresponding data byte) of the current bottom entry of the receive FIFO. When one of the tag bits is set within the
bottom eight FIFO entries the EIF flag is set and generates an interrupt request. As long as this bit is set, the use
should check the three status register 1 flag bits described in the following before reading the next byte out of the
FIFO.

* End-of-Frame Flag (EOF): bit 8 in the receive FIFO is set when the last byte of data within a frame (including
aborted frames) is moved from the receive serial shifter to the top of the receive FIFO. When this FIFO entry
reaches the bottom of the FIFO, its bit 8 is moved to the EOF flag bit to indicate that the last byte of data of the
current frame resides within the bottom entry of the receive FIFO.

* CRC Error Status (CRE): The CRC Error Status flag is moved from bit 9 of the receive FIFO when the
corresponding FIFO entry reaches the bottom position. It indicates that the new bottom entry in the FIFO is the
last byte of a frame whose transmitted checksum value did not match the computed checksum.

* Receiver Overrun Status (ROR): this bit is moved from bit 10 in the receive FIFO when the corresponding data
entry reaches the bottom position and indicates that the new bottom entry is the last valid data byte before the
receiver overrun occurred.

5.4 Support Code for Infrared Communication

The code for infrared communication on the SmartBadge is split into three files, a common header file declaring
all the constants, macros and function prototypes, and two C-files, containing the code for SIR mode and FIR mode,
respectively. By defining or undefining the symbol SIR_UART_TRANSMISSION the SIR code can be configured to
use software modulation or normal UART functionality (for use on revised versions of the SA-1100). As this file has
to be configured and recompiled for each application it should be added to the project as another source file while the
file containing the FIR code can be added to the library containing the support code for the other peripherals. The
support code can be found in Appendix A "Infrared support code”, some basic example programs demonstrating the
use of this support code are listed in Appendix B.6 "IR SIR-Mode Examples” and Appendix B.7 "IR FIR-Mode
Examples”.

5.5 Setup to Debug Infrared Communication

During my work on the infrared code | frequently had to watch the infrared communication in order to be able to
determine the source of errors. Especially in the early stages of the implementation of the IrDA protocol stack the
ability to actually watch what was transmitted was a necessity for making progress. By listening to the
communication between an infrared access point and a notebook | could acquire important information about the
protocols. It was also necessary to check my own transmission routines, especially at the stage where | was working
with the software modulation.

Apart from using the logic analyzer at a very low level at the beginning to watch and check the transmission of
single bits | used two methods:

* An HP Omnibook 600 which is equipped with a UART compatible infrared port. By configuring the infrared port
as a serial port | could directly record the characters being transmitted via the infrared link.

* My second method was to use another SmartBadge and use its infrared port for listening. During my work on the
IrDA stack | used the second Badge to just record the sent characters and then on demand transmit them to a P«
running Linux where | had a small program that analyzed the received data to check it for the frame delimiters and
the CRC. Using a second SmartBadge for recording allowed an orientation such that one Badge was talking to the
access point whereas the other SmartBadge could receive information from both the access point and the firs
SmartBadge at the same time. Using only a notebook this would not have been possible as the notebooks usuall
have a lens in front of the infrared transceiver that limits the receiving angle. As the SmartBadges are not
packaged they have a bigger angle and probably also reflections were helping quite a lot in this case.
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6. Accessing Peripherals, Code Generation with
the ARM Compiler

As described in the overview of the StrongARM and the chapter about the peripherals,
peripherals are accessed via memory mapped registers which are manipulated by the load
and store instructions provided in the ARM architecture. In the type of applications
potentially using the StrongARM processor I/O-operations represent a considerable fraction
of the whole code. Therefore it's worth trying to minimize that code both in terms of codesize
and execution time. As Tatjana Simunic points out in her paper [10] in regard to the power
consumption even the specific type of memory used - SRAM, DRAM (available only on
SmartBadge Version 4), or FLASH - is of importance. This section deals with some issues
concerning the code generated by the compiler in the ARM Software Development Tools
v2.1. In the first part | describe a few different ways of accessing the registers that control
the peripherals. In the following section | examine the assembly code produced by the
compiler for each of the different coding methods using the different optimization levels
provided by the compiler and compare the results in terms of instructions and memory
consumption.

6.1 Methods of Accessing the Peripherals’ Registers

As an example | use a simple initialization function for UART 1 and describe four ways of accessing the
necessary registers. Although the initialization might not be executed frequently, it serves as a nice example as it
shows the basic instructions which are necessary for every interaction with a device.

If the content of a memory location can be changed by different tasks, e.g. it is accessed in a normal function but
also in an interrupt routine or, as in the case of memory mapped registers, can be modified directly by hardware,
problems can arise if the compiler does not know about this fact and tries to optimize the code. The problems usually
occur if the variable is accessed multiple times, for instance in a polling loop in which case the compiler might move
the code to access the variable out of the loop. To avoid this the variable used to access the memory location must be
declared awolatile . In the case of the initialization function described in the next sections, all registers are
accessed only once, therefore the problem does not occur. To demonstrate the problem | give an example at the end of
this chapter where the compiler generates incorrect code if the variable is not declatetias

6.1.1 Declaration as const unsigned int

For each register a variable of typenst unsigned int is declared and initialized with the address of that
register. To read or write the register the variable is cast to a pointer and then read/assigned the new value.

/I UART1 Port addresses

const unsigned int const_UT1CRO0 = 0x80010000; /UART1 Control Register 0
const unsigned int const_ UT1CR1 = 0x80010004; //UART1 Control Register 1
const unsigned int const UT1CR2 = 0x80010008; //UART1 Control Register 2
const unsigned int const_UT1CR3 = 0x8001000C; //UART1 Control Register 3

/I set up UART1 for 9600 baud with everything enabled to go
void const_init(void)
{

/I control register 0 (basic setup)

*(volatile unsigned int *)const_UT1CRO = 0x00000008;

Il control register 1 & 2 (baud rate)

*(volatile unsigned int *)const_UT1CR1 = 0x00000000;
*(volatile unsigned int *)const_UT1CR2 = 0x00000001;

Listing 14. Register access wittonst unsigned int
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/I control register 3 (transmitter and receiver enable)
*(volatile unsigned int *)const_UT1CR3 = 0x00000003;

}
Listing 14. Register access wittonst unsigned int

6.1.2 Declaration as Pointer

For each register a pointer of typelatile unsigned int* is declared and then dereferenced to read or
write the register.

/I UART1 Port addresses pointer declaration

volatile unsigned int* pUT1CRO = (unsigned int¥*)0x80010000; //UART1 Control Register 0
volatile unsigned int* pUT1CRL1 = (unsigned int*)0x80010004; //UART1 Control Register 1
volatile unsigned int* pUT1CR2 = (unsigned int*)0x80010008; //UART1 Control Register 2
volatile unsigned int* pUT1CR3 = (unsigned int¥*)0x8001000C; //UART1 Control Register 3

/I set up UART1 for 9600 baud with everything enabled to go
void pointer_init(void)

/I control register 0 (basic setup)
*pUT1CRO = 0x00000008;

/I control register 1 & 2 (baud rate)
*pUT1CR1 = 0x00000000;
*pUT1CR2 = 0x00000001;

/I control register 3 (transmitter and receiver enable)
*pUT1CR3 = 0x00000003;

}
Listing 15. Register access with pointers

6.1.3 Declaration as Structure

First a structure describing the register block is defined. To access the registers a pointer of that type is declarec
and initialized with the base address of the register block. Then each register can be accessed via the correspondir
entry in the structure.

[* structure describing the UARTSs on the Badge */
typedef volatile struct

unsigned int UTCRO;
unsigned int UTCR1,;
unsigned int UTCR2;
unsigned int UTCR3;
unsigned int UTCR4;
unsigned int UTDR;
unsigned int reserved,;
unsigned int UTSRO;
unsigned int UTSR1;
} uart;

/I UART1 port address pointer declaration
uart* pUART = (uart*) 0x80010000; //UART1 Base Address

I/l set up UART1 for 9600 baud with everything enabled to go
void struct_init(void)

/Il control register 0 (basic setup)
PUART->UTCRO = 0x00000008;

I/ control register 1 & 2 (baud rate)
Listing 16. Register access using a structure
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pUART->UTCR1 = 0x00000000;
PUART->UTCR2 = 0x00000001;

/I control register 3 (transmitter and receiver enable)
pPUART->UTCR3 = 0x00000003;

}

Listing 16. Register access using a structure

6.1.4 Use of #define

For each peripheral #define is used to specify the base address of that register block. Then there is another
#define for each of the registers, giving the offset of that register to the base address.

To access a register, its address (adding base address and offset) is cast to a pointervofatijpe
unsigned int . This can be conveniently done in a preprocessor macro.

/* base address of UART 1 */
#define UART1_BASE 0x80010000

I* UART regs/values offsets from base address */

#define UTCRO 0x00 /I UART Control Register O
#define UTCR1 0x04 /I UART Control Register 1
#define UTCR2 0x08 /I UART Control Register 2
#define UTCR3 0x0C /I UART Control Register 3

[* access a register by its base address and an offset */
#define REG(base, offs) (*(volatile unsigned int*)(base+offs))

/I set up UART1 for 9600 baud with everything enabled to go
void define_init(void)

{

/I control register 0 (basic setup)
REG(UART1_BASE, UTCRO0) = 0x00000008;

I/ control register 1 & 2 (baud rate)
REG(UART1_BASE, UTCR1) = 0x00000000;
REG(UART1_BASE, UTCR2) = 0x00000001;

/I control register 3 (transmitter and receiver enable)
REG(UART1_BASE, UTCR3) = 0x00000003;

}

Listing 17. Register access using #define

Note: Preprocessor macros and definitions can be used to enhance this declaration style in order to generalize

accessing any devices. New macros can be defined for the wvarious actions, like
device_read_status(device, register) , device_set_control(device, register,
value) , device read_data(device, len, buf) , device_write_data(device, len, buf)

Based on the parametéevice these macros can be simple renamings of the basic mag(base, offset) ,

or calls to specialized functions if the action cannot be done in a simple macro (e.g. to support devices that are to be
accessed interrupt-driven or via DMA on Badge4, serial port 4,...). The important point is, that all of this can be done
at compile time. It is thus possible to have a generic interface to all devices without runtime overhead like for instance
function tables which are widely used for this purpose.
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6.2 Code Produced by the Compiler

In the ARM Project Manager projects are subdivided into so called “variants”. All the variants have the same set of
source files, but they can have different options. The usual variants are “Debug” and “Release”. These two are alread)
predefined when a new project is created. There are three sets of compiler options which influence the code genere
tion:

* Debug Control
* Enable debug table generation
* Include preprocessor symbols
* Source Level Debug Optimization
* None
* No register allocation optimization
*  Optimize fully
* Optimize Code
* Default balance
* For space
* Fortime

These can be set on the tab folder “C & Debug” (Project->Tool Configuration for ...-><cc>=armcc->set in the
ARM Project Manager) or by the command line options.

The primary difference between the “Debug” and the “Release” variant is that in the “Debug” variant the option
“Enable debug table generation” is enabled. It turns out that for the chosen example when this option is enabled, the
option group “Source Level Debug Optimization” influences the resulting code, while the options in the group
"Optimize Code” have no influence. If the option “Enable debug table generation” is disabled, the resultant code is
not influenced by any of the options in either of the two groups - the ARM compiler always creates “its” optimal code
(which is not in all cases the theoretically optimal code). Therefore | will only discuss the three cases for “Source
Level Debug Optimization” with “Enable debug table generation” enabled. The third case - “Optimize fully” -
generates the same code as all cases with “Enable debug table generation” disabled. Of course with other code the|
will be differences between the different optimization levels. However, in any case the issues | am talking about in the
next sections remain valid.

In the following sections | will first give a short introduction to the load/store instructions available in the ARM
instruction set. A more detailed description can be found in the ARM Architectural Reference Manual ([5]). Then |
will compare the generated code for the three optimization levels using the different coding variants. It turns out that
variants one (see section 6.1.1) and two (see section 6.1.2) are just notational variants, the code produced is exact
the same, so | will describe these two cases together. There is a difference though in memory allocationstthe
declarations are stored in a read only data segment (FLASH) whiledinger declarations are put into a read-write
data segment, i.e. in the (S)RAM. As mentioned in the introduction to this chapter this difference may be significant
with respect to speed and power consumption.
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6.2.1 ARM load/store Instructions

The ARM architecture provides two different ways to load a register with a value:

* The move instruction
¢ the load instructions

The move instruction is used to move a value from one register to another, to put a constant value into a register
and to perform a shift without any other arithmetic or logical operation. The general format is as follows:

MOV{<cond>} Rd, <shifter_operand>

MOV moves the value ofshifter_operand> into Rd and, based on the result, updates the condition code
flags. Like all other ARM instructions it is only executed if the condition <cond> (basically a code for the processor
status flags) is true. If Rd is the program counter register (PC) a branch occurs.

There are eleven types of <shifter_operand>, including immediate value rotated right, registers - directly or
logically/arithmetically shifted left/right by an immediate value in the range 0 to 31 or by the value in a second
register, or rotated right by an immediate value or a value in a second register.

The immediate format produces a value by rotating an 8-bit constant value to the right by an even number of bits.
That implies that not all 32-bit constants can be produced using this instruction. Unavailable values must be obtained
by combining the MOV instruction with arithmetic operations or by loading a value from a memory location. This is
accomplished via the load instruction LDR (the counterpart for storing values from a register to memory (STR) uses
the same format):

LDR{<cond>} Rd, <addressing mode>

<cond> the instruction is only executed if the condition is passed
Rd the destination register for the load operation

<addressing mode> The ARM instruction set offers nine addressing modes used to calculate the address for
store/load operations of words or unsigned bytes. They can be divided into three groups:

“Normal mode” the value at address is loaded into Rd

pre-indexed mode the offset is applied to the base register, the result is used as the address of the location to
load into Rd as in normal mode, but additionally, if <cond> is passed, the base register is
updated with the new address.

post-indexed mode  the base register gives the value used for addressing the storage location. Afterwards, if
<cond> was passed, the offset is applied to the base register and written back.

Each of the three modes supports the following three types of instruction:

Immediate offset  Rn, #+/-<12_bit_offset> load the value at location Rn+/-offset into
register Rd.

Register offset Rn, +/-Rm load the value at location Rn+/-Rm into
register Rd.

Scaled register offs&n, +/-Rm, <shift>#<shift_imm> load the value at location Rn+/- (shifted/

rotated value of Rm) into register Rd.

Note that instructions of the formabR Rd, offset are pseudo-instructions - actually they are encoded as
LDR Rd, pc, #offset to give an offset relative to the current location
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6.2.2 Code Examples for the Initialization Function with no Optimizations Enabled

Without optimizations enabled the compiler generates the following code foortke /pointer variant:

20 I/l set up UART1 for 9600 baud with everything enabled to go
21 void const_init(void)
22
23 /I control register 0 (basic setup)
24 *(unsigned int *)const_UT1CRO = 0x00000008;
0x00008194 mov r1,#8
0x00008198 Idr  r0,0x000081d8 ; = #const_UT1CRO
0x0000819c  Idr  rO,[r0,#0]
0x000081a0 str r1,[r0,#0]
26
27 Il control register 1 & 2 (baud rate)
28 *(unsigned int *)const_UT1CR1 = 0x00000000;
0x000081a4 mov r1,#0
0x000081a8 Idr  r0,0x000081d8 ; = #const_UT1CRO
0x000081ac Idr r0,[r0,#4]
0x000081b0 str r1,[r0,#0]
29 *(unsigned int *)const_UT1CR2 = 0x00000001;
0x000081b4 mov rl,#1
0x000081b8 Idr  r0,0x000081d8 ; = #const_UT1CRO
0x000081bc  Idr  rO,[r0,#8]
0x000081c0 str r1,[r0,#0]
30
31 Il control register 3 (transmitter and receiver enable)
32 *(unsigned int *)const_UT1CR3 = 0x00000003;
0x000081c4 mov r0,#3
0x000081c8  Idr  r1,0x000081d8 ; = #const_UT1CRO
0x000081cc Idr rl,[rl,#0xc]
0x000081d0 str r0,[r1,#0]
33 }
0x000081d4 mov pc,ri4
0x000081d8 dcd  0x0000aa28

Listing 18. Code for const declaration without optimisations

It turns out that the compiler generates four assembly instructions for each of the four assignments. The first four
instructions are necessary, but for the following three assignments the code could be reduced as the base addre
remains the same.
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The code of the first two variants results in a memory layout like that shown in Figure 22:

Location Content Name Type
const_init() program code
0x81d4 mov bc,r14
0x81d8— dcd Oxaa28 nearby immediate
data
Oxaa28'» 0x80010000 const UT1CRO
Oxaa2C 0x80010004 const UT1CR1
Oxaa30 0x80010008 | || const_uTicrR2 RO/RWdata
Oxaa34 0x8001000C | const UT1CR3
0x80010000 - UTCRO
0x80010004 — UTCR1 memory mapped
0x80010008 UTCR2 registers
0x8001000¢ UTCRS3

Figure 22. Memory layout for const/pointer variant

The location of the peripheral registers is fixed, the location of the four variables depends on their declaration -
read only memory for the constant declaration, RAM for the pointer declaration. To write a value (#8) to one of the
peripheral registers first this value is loaded into a processor register using the move instruction:

0x00008194 mov  rl,#8

Then the content of the variable const_ UT1CRO which holds the address of the register to access must be loaded.
The address of this variable is a 32-bitimmediate value which cannot be generated by the move instruction. Therefore
the value is stored in a location immediately after the end of the function. This location is accessible using an
immediate offset:

0x00008198 Idr  r0,0x000081d8 ; = #const_UT1CRO

This output has been transformed to be easier to read - in fact the instruction is encoded as:
Idr r0, pc, +#offset

where #offset = 0x81d8 - address(current instruction) - 8 . The subtraction of eight is the
result of the pipelined architecture.

Now register r0 holds the value Oxaa28 which is the address of the variable. The content of the variable (i.e. the
address of the register to access) can now be loaded:

0x0000819c ldr  r0,[r0,#0]
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Now rO holds the memory address of the peripheral register to access and the new value can be stored there:
0x000081a0 str  ri1,[r0,#0]

This code sequence is repeated for each of the three following assignments. However, as | have mentioned befor
there is no difference in the generated code between the pointer antbiisé variant in any of the three
optimization levels. This shows that the optimization methods in the compiler are not very effective. As the pointer
values could be changed in the pointer case it is hard to tell that the targeted memory locations all lie within a small
offset and therefore the code could have been optimized. But in the constant case the compiler could analyse the
contents of the variables and do optimizations. An interesting detail is that in the first three assignments register rl is
used to hold the new value while register rO is used to hold the address. In the fourth assignment this order is
swapped.

When using a pointer to a structure describing the register block the compiler produces the following code:

20 /I UART1 port address pointer declaration
21 uart* pUART = (uart*) 0x80010000; /UART1 Base Address
22
23 /I set up UART1 for 9600 baud with everything enabled to go
24 void struct_init(void)
25
26 /I control register 0 (basic setup)
27 pPUART->UTCRO = 0x00000008;
0x000080cc mov r1,#8
0x000080d0  Idr  r0,0x00008110 ; = #pUART
0x000080d4  Idr  r0,[r0,#0]
0x000080d8 str r1,[r0,#0]
28
29 Il control register 1 & 2 (baud rate)
30 pUART->UTCR1 = 0x00000000;
0x000080dc mov  rl,#0
0x000080e0  Idr  r0,0x00008110 ; = #pUART
0x000080e4 Idr r0,[r0,#0]
0x000080e8  str  rl,[r0,#4]
31 pPUART->UTCR2 = 0x00000001;
0x000080ec mov r1,#1
0x000080f0  Idr  r0,0x00008110 ; = #pUART
0x000080f4  Idr  r0,[r0,#0]
0x000080f8 str r1,[r0,#8]
32
33 /I control register 3 (transmitter and receiver enable)
34 pPUART->UTCR3 = 0x00000003;
0x000080fc mov  r0,#3
0x00008100  Idr  r1,0x00008110 ; = #pUART
0x00008104  Idr  r1,[r1,#0]
0x00008108  str  rO,[r1,#0xc]
35 }
0x0000810c mov pc,ri4
0x00008110 dcd  0x0000aab8 ....

Listing 19. Code for pointer to struct without optimisations

The number of assembly instructions is identical, but now the compiler detects that the destination addresses arc
just small offsets to one base address (given by the pointer) and encodes the offset in the store instruction. Althougt
the value of r0 is not changed after the first assignment it is still reloaded for every access which costs two
unnecessary assembly instructions per register access. Again the last assignment uses swapped register allocation

Finally the #define version:

24 Il set up UART1 for 9600 baud with everything enabled to go
25 void define_init(void)

26

27 /I control register 0 (basic setup)

Listing 20. Code for #define without optimisations
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28 REG(UART1_BASE, UTCRQ) = 0x00000008;
0x00008114 mov  rl#8
0x00008118 mov  r0,#0x10000
0x0000811c  add  r0,r0,#0x80000000
0x00008120  str  rl,[r0,#0]
29
30 /l control register 1 & 2 (baud rate)
31 REG(UART1_BASE, UTCR1) = 0x00000000;
0x00008124 mov r1,#0
0x00008128 nop
0x0000812c  str  rl,[r0,#4]
32 REG(UART1_BASE, UTCR2) = 0x00000001;
0x00008130 mov rl,#1
0x00008134 nop
0x00008138  str  rl,[r0,#8]
33
34 /I control register 3 (transmitter and receiver enable)
35 REG(UART1_BASE, UTCR3) = 0x00000003;
0x0000813c mov rl,#3

0x00008140 nop

0x00008144  str
36

0x00008148

Listing 20. Code for #define without optimisations

rl,[r0,#0xc]

mov  pc,ri4

Perhaps due to the fact that the resulting address now is passed to the compiler as an expression the compiler
recognizes that in each of the four cases the base address is the same. It generates the required four instructions for
the first assignment, for the following three assignments it just loads the new value into register rl and stores that
value into the location given by the base address in register rO and an offset passed as an immediate value.

In this variant the destination address is generated by a MOV-instruction followed by an ADD-instruction due to
the limitations of immediate operands described in the section about the load/store instructions (See 6.2.1 “ARM
load/store Instructions®). The same result could have been produced by storing the base address as a 32-bit value in
the code after the function and loading this value with a LDR-instruction. The total amount of memory used remains
the same (two instructions or one instruction and the address value). Using the MOV/ADD-combination it always
takes exactly two instruction cycles. Using the LDR-instruction results in only one instruction to execute. The time
for this depends on whether the value is already contained in the data cache in which case there is no delay - while the
instruction is decoded and prepared for execution the value is fetched from the cache, thus saving one instruction
cycle compared to the MOV/ADD-combination. Otherwise the value has to be loaded from memory which can cause
considerable delay.

Why the compiler generates the three nop-instructions is not clear - theoretically there is no reason for them as no
pipeline stall can happen in this code (and as will be shown later in the optimized version the nops are not generated,
they are therefore not required).

6.2.3 No Register Allocation Optimization

Now the optimization level has been changed to “no register allocation optimization”.

Again the code produced for the first to variants is equal:

21 /I set up UART1 for 9600 baud with everything enabled to go
22 void const_init(void)
23
24 /I control register O (basic setup)
25 *(unsigned int *)const_UT1CRO0 = 0x00000008;
0x00008178 mov r2,#8
0x0000817¢c Idr r1,0x000081b4 ; = #const_ UT1CRO
0x00008180 mov  r0,rl

0x00008184 Idr  rl,[r1,#0]
Listing 21. Code for const declaration with “no register allocation”
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0x00008188  str  r2,[r1,#0]

26
27 Il control register 1 & 2 (baud rate)
28 *(unsigned int *)const_UT1CR1 = 0x00000000;

0x0000818c mov  rl#0
0x00008190 Idr  r2,[r0,#4]
0x00008194 str rl,[r2,#0]
29 *(unsigned int *)const_UT1CR2 = 0x00000001;
0x00008198 mov rl,#1
0x0000819c Idr r2,[r0,#8]
0x000081a0 str - rl,[r2,#0]

30
31 /I control register 3 (transmitter and receiver enable)
32 *(unsigned int *)const_UT1CR3 = 0x00000003;

0x000081a4 mov r1,#3

0x000081a8 Idr r2,[r0,#0xc]

0x000081ac str rl,[r2,#0]
33 }

Listing 21. Code for const declaration with “no register allocation”

With this setting the compiler uses a third register (r0) to hold the base address for the variables. This saves one
assembly instruction per assignment for all but the first assignment, but adds one instruction in the first assignment.
This also implies that an additional register has to be saved to the stack upon entry to the function and restored upotr
exit. Note the register allocation varies between the first and the three following assignments.

For the struct version again the only difference compared todhst /pointer version is that the offset is used in
the store-instruction instead of the load-instruction:

20 /I UART1 port address pointer declaration

21 uart* pUART = (uart*) 0x80010000; //UART1 Base Address
22

23 Il set up UART1 for 9600 baud with everything enabled to go
24 void struct_init(void)

25

26 /I control register 0 (basic setup)

27 pPUART->UTCRO = 0x00000008;

0x000080cc mov r2,#8

0x000080d0 Idr  r1,0x00008108 ; = #pUART
0x000080d4 mov  rO,rl

0x000080d8 Idr  r1,[r1,#0]

0x000080dc str r2,[r1,#0]

28
29 I/ control register 1 & 2 (baud rate)
30 pUART->UTCR1 = 0x00000000;
0x000080e0  mov  r1,#0
0x000080e4 Idr r2,[r0,#0]
0x000080e8 str rl,[r2,#4]
31 pUART->UTCR2 = 0x00000001;
0x000080ec mov r1,#1
0x000080f0  Idr  r2,[r0,#0]
0x000080f4  str  rl,[r2,#8]
32
33 /I control register 3 (transmitter and receiver enable)
34 pUART->UTCR3 = 0x00000003;
0x000080f8 mov rl,#3
0x000080fc Ildr  r2,[r0,#0]
0x00008100  str  rl,[r2,#0xc]
35 }
0x00008104 mov pc,ri4
0x00008108 dcd  0x0000aa%4 ....

Listing 22. Code for struct declaration with “no register allocation”
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In the #define  version now the nops are removed and regarding the general case the optimal code is being
produced - four instructions for the first assignment and only two for each of the following assignments and the code
uses only two registers:

24 /I set up UART1 for 9600 baud with everything enabled to go
25 void define_init(void)

26

27 /I control register 0 (basic setup)

28 REG(UART1_BASE, UTCRO) = 0x00000008;

0x0000810c mov rl,#8

0x00008110 mov r0,#0x10000
0x00008114 add r0,r0,#0x80000000
0x00008118 str rl,[r0,#0]

29
30 /I control register 1 & 2 (baud rate)
31 REG(UART1_BASE, UTCR1) = 0x00000000;

0x0000811c mov r1,#0
0x00008120 str r1,[r0,#4]
32 REG(UART1_BASE, UTCR2) = 0x00000001;
0x00008124 mov rl,#1
0x00008128 str r1,[r0,#8]

33

34 /I control register 3 (transmitter and receiver enable)

35 REG(UART1_BASE, UTCR3) = 0x00000003;
0x0000812c mov rl,#3

0x00008130 str rl,[r0,#0xc]

36

}
0x00008134 mov pc,ri4
Listing 23. Code for define declaration with “no register allocation”

In this special case though further improvement is possible. The ARM instruction set allows to read a number of
consecutivememory locations into a number of registers and to store the contents of multiple registers into
consecutivememory locations with a single instruction called load/store multip®M/STN). Using the STM
instruction the relevant part of the init function could be encoded as follows:

MOV r0, #0x10000

ADD r0, r0, #0x80000000
MOV rl, #8

MOV r2, #0

MOV r3, #1

MOV r4, #3

STMIA 1O, {r1, r2, r3, r4}

Listing 24. Optimal code for the UART init function

The appended two characteté” encode the addressing-mode “increment after”, i.e. the first address to write to
is taken from the base registe® (in this example), the following addresses are formed by incrementing the previous
address by four. Optionally the base address register can be updated. The use of this instruction implicates that all the
used registers have to be saved and afterwards be restored. As this is done via the stack and the accessed portion of
the stack in most cases will be already in the cache the performance penalty should not be too big. Saving/restoring
registers on function entry/exit usually is also done using the store/load multiple instructions.

Using the store multiple instruction here is possible, because the accessed four registers happen to be located on
consecutive memory locations. In the general case this might not be the caseSSdMbannot be used.
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6.2.4 Full Optimization

For the const and the pointer version now the unnecessary fifth instruction in the first assignment is
removed. The rest of the code is identical to the version with the option “no memory allocation optimization” set,
except that in the last assignment the registers are again swapped:

21 /I set up UART1 for 9600 baud with everything enabled to go
22 void const_init(void)

23

24 /I control register 0 (basic setup)

25 *(unsigned int *)const_UT1CRO = 0x00000008;

0x00008170 mov  r2,#8

0x00008174 Idr r0,0x000081a8 ; = #const_UT1CRO
0x00008178 Idr  r1,[r0,#0]

0x0000817c str - r2,[r1,#0]

26
27 I/ control register 1 & 2 (baud rate)
28 *(unsigned int *)const_UT1CR1 = 0x00000000;

0x00008180 mov r1,#0
0x00008184 Idr  r2,[r0,#4]
0x00008188 str rl,[r2,#0]
29 *(unsigned int *)const_UT1CR2 = 0x00000001;
0x0000818c mov rl,#1
0x00008190 Idr  r2,[r0,#8]
0x00008194  str  r1,[r2,#0]

30
31 Il control register 3 (transmitter and receiver enable)
32 *(unsigned int *)const_UT1CR3 = 0x00000003;

0x00008198 mov r1,#3

0x0000819c  Idr  rO,[r0,#0xc]

0x000081a0 str r1,[r0,#0]
33 }

Listing 25. Code for const declaration with full optimisation

For the pointer version this seems to be the optimal code, forabmest version with analysis of the constant
values it should be possible to shrink it down to the same size #ddfiee  version.

The struct version again produces the same code asotist /pointer version except for putting the offset into
the store instruction instead of the load instruction as described before.

For the#define version there isn’t any change compared to the “no register allocation optimization” setting as
this has already produced the optimal code.

6.2.5 Memory Consumption and Number of Instructions for the Different
Declaration Styles

The following table shows the memory map for the three different optimization levels (all numbers in
hexadecimal). It shows that the codesize for¢bast , pointer and struct version are the same within each of the
optimization levels whereas the codesize for#define version always is considerably smaller. In addition to the
codesize the four coding variants use different amount of data space: The pointer aodghe version use one
storage location in the read/write (RAM) and read only (ROM) data segment respectively for each register giving a
total of 16 bytes for the given example. The struct version requires one memory location in the read/write data
segment while th&#define version doesn’t use any data space.

No opt. np reg.opt. full opt.

Size Size Sjze Type N'::Lne
const 48 40 3C CODE RO C$$code from object file decl_const.o
pointer 4§ 4Q 3¢ CODE RO Cp$code from object file decl_ptr.o
struct 44 4@ 3¢ CQODE RO Cp$code from object file decl_struct.o

Table 22. Memory map
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No opt. np reg.opt. full ogt.
define 3B 2¢ 2( CODE RO Q$3$code from object file decl_define.o
const 10 10 10 DATA RO C$$constdata from object file decl_const.o
pointer 1( 4 4 DATA RW Cs$$data from object file decl_ptr.o
define 4 4 4 DATA RW C$$data from object file decl_struct.o

Table 22. Memory map

The following two tables compare the number of assembly instructions necessary for the first access and
subsequent accesses for the four different declaration styles:

_Style no opt| no reg. opt. full oft.
const| 4 5 4
pointerf 4 5 4
struct 4 5 4
define 4 4 4

Table 23. Number of instructions for first register access

_Style no optl no reg. opt. full opt
const 4 3 3
pointen 4 3 3
struct 4 3 3
define 3 2 2

Table 24. Number of instructions for subsequent register accesses

6.2.6 Example lllustrating the Necessity of Using the Volatile Keyword

The following polling function is a typical example for the kind of code that requires the variable to be declared as
volatile. It polls the UART status register until there is at least one byte available in the receiver FIFO and returns that
byte. The first macro definition results in erroneous code unless all optimization is disabled whereas the second
version always results in correct code:

/I#define REG(base,offset) (*(unsigned int*)(base+offset) // wrong !!
#define REG(base,offset) (*(volatile unsigned int*)(base+offset) // correct !!

unsigned char read_char(void)

{
int status;
do
status = REG(UART_BASE, UTSRO0); // read the UART status register
status &= 0x2; // check if bit RNE (receiver not empty) is set
while(!status)
return REG(UART_BASE, UTDR); // read the char from the FIFO and return it
}

Listing 26. Read a character from a serial port in polling mode

In the following code fragment the wrong version was used, the pointer was not cast to volatile. The compiler sees
an assignment that is independent of the loop variable and therefore places the instructions for loading the register
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outside the loop. This results in just loading the (constant) value from r0 to r2 and comparing it with zero. This in
effect creates an endless loop if the status bit is not yet set when the function is entered:

39 char read_char(void)
40 {
41 int status;
42 do
43 {
0x00008170 mov  rl1,#0x10000
0x00008174 add  r1,r1,#0x80000000
0x00008178 Idr r0,[r1,#0x1c]
0x0000817c and r0,r0,#2
44 status = REG(UART_BASE, UTSRO0); // read the UART status register
45 status &= 0x2; // check if bit RNE (receiver not empty) is set
0x00008180 mov r2,r0
46
a7 while(!status);
0x00008184 cmp r2,#0
0x00008188 beq 0x8180 ; (read_char + 0x10)
48 return REG(UART_BASE, UTDR); // read a char from the FIFO and return it
0x0000818c Idr r0,[r1,#0x14]
0x00008190 and  r0,r0,#0xff
0x00008194 mov pc,ri4
49 }

Listing 27. Erroneous code

Now the correct version was used, the instructions to load the value from the UART status register into register r0
and the and-operation is included in the loop and the code works as expected.

51 char read_char(void)

52 {

53 int status;

54 do

55 {
0x00008198 mov  rl1,#0x10000
0x0000819c add  rl,r1,#0x80000000

56 status = REG(UART_BASE, UTSRO); // read the UART status register
0x000081a0 Idr r0,[r1,#0x1c]

57 status &= 0x2; // check if bit RNE (receiver not empty) is set
0x000081a4 and r0,r0,#2

58 }

59 while(!status);
0x000081a8 cmp r0,#0
0x000081ac beq 0x81a0 ; (read_char + 0x8)

60 return REG(UART_BASE, UTDR); // read a char from the FIFO and return it
0x000081b0 Idr  r0,[r1,#0x14]
0x000081b4 and r0,r0,#0xff
0x000081b8 mov  pc,ri4

61 }

Listing 28. Correct code using volatile

6.2.7 Conclusions

Clearly theconst and the pointer versions should be avoided. Their drawbacks become even more obvious when
considering the use of multiple peripherals. For each device used one variable per peripheral register is required. Th
struct  version allows the programmer to write straight forward C-source code, provides encapsulation and it
allows switching the device by just changing the base pointer. If macros are used wittiefige  version the
source code is still easily readable and offers by far the smallest codesize. In the targeted type of applications,
involving a lot of I/O-accesses in embedded devices having very limited resources, this can save a considerable
amount of valuable memory space and execution time and therefore also power.
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7. Debugging Embedded Systems

This chapter describes some of the problems related to program development and debugging
which | faced during my work with the SmartBadge. It then presents some techniques | used
to overcome and circumvent these problems and the limitations of the environment being
used.

7.1 Description of Used Tools

During my work | used the ARM Software Development Toolkit Version 2.11 for Windows. This package
contains a project manager which integrates an editor and project management (managing source files within a
project, setting compiler options for the project, a target or single files, setting linker options,...), compiler, assembler,
linker, and a debugger.

In general the debugger is quite comfortable - it offers most of the features one expects from a modern debugger.
Some examples are:

e setting watchpoints and breakpoints (optionally with conditions)

* interleaved display, i.e. showing the C-source code and for each line of source code showing the generated
assembly code. In this mode single stepping on assembly instruction level is possible.

» display of the current CPU register values

» display of local and global variables, in the case of pointers also displaying the value at the location the pointer
points to. If the variable is a structure type it is also possible to display its member variables.

* display of memory regions
e disassembler window
e expression evaluation, can use preprocessor defines (but not macros)

* aconsole window to read and write characters from and to the target. This makes use of the semihosted C-library
which diverts standard 1/O (printf, fprintf, scan, scanf,...) from the target to the host running the debugger.

7.2 Problems Related to the ARM debugger

On the other hand there are some drawbacks which impair working with this debugger. Especially two problems
turned out to be really annoying:

* Although it is possible to save a configuration file for the debugger this contains only options for the command
line debugger, but not for the graphical user interface. In practice this means that it is possible to save breakpoints,
but not for example the entered expressions or the base address for memory windows. So after each debugger
restart one has to reenter all the expressions and open the needed memory windows.

* The debugger needs to maintain continuous communication with the target. If the target crashes or is reset the
debugger crashes and has to be killed with the Windows NT task manager.

These two problems together turned out to be very time wasting especially when working with the StrongARM
peripherals in combination with interrupts. Troubleshooting the peripherals typically requires watching a number of
peripheral registers. Using the simple method - displaying the contents in a memory window poses problems when
FIFOs are involved. If for example the memory window is set to offset 0x80010000 - the base address of UART1 - all
the registers of UART1 can conveniently be observed. But the UART data register is located between the control
registers and the status registers. On every update of the memory window all the displayed memory locations are read
which in that case means also reading the UART data register. Reading the UART data register removes the top entry
from the FIFO which then is not available for the actual program running on the target any more. Therefore the
program misses much of the data it is supposed to process.
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One solution is to use the expression evaluation window and enter only the required control and status registers
These expressions are kept over multiple debugging sessions (stopping a program and reloading / executing it), bu
not when the debugger is closed (or what happens most of the time - has to be killed). So whenever the target being
debugged crashes (which tends to happen quite often during the development process, especially if multiple interrupt:
and peripherals are used) or has to be reset to get into a defined starting state the debugger also crashes and has tc
killed. After restart all the expressions have to be reentered (including e.g. setting the display format to hex for every
single expression). Another problem is that the results of the evaluated expressions are not always updated properly i
single step mode - most of the time they are updated whenever their values change but sometimes this update onl
occurs with an explicit selection/double click on the expression.

7.3 General Problems in Debugging Embedded Systems

Apart from the problems described in the previous section - which are clearly due to a lack of functionality or are
even errors in the implementation of the debugger - there are some general limitations which are inherent to the
problem of debugging embedded systems:

* typically embedded systems have only limited means of communication (passing on the desired information to
the external world). During my work | made heavy use of the second serial port to pass information which could
not be acquired by using the debugger. On the PC side there could be a simple terminal program like Kermit or
Hyperterminal to display status messages or a specialized program -- if for example link frames, hexadecimal
data, timing information, or something similar has to be evaluated or verified.

* there are general problems in debugging interrupts: In many systems, among them the StrongARM, at least wher
using the Angel Debug Monitor (the part of the debugger which resides on the target) all other interrupts are
disabled while one interrupt is being processed. As the debugger itself uses an interrupt (for UART3) to
communicate with the target, it is not possible to execute an interrupt routine under control of the debugger
without crashing the session.

Unlike my expectations thialsoapplies to code executed via the Angel queuing mechanism (See “Extensions to
Angel” on page 16), although this code is executed in user mode with interrupts enabled. This effectively made
debugging (using the debugger functions) impossible for nearly all of the code in the IrDA project (Chapter 8. on
page 131) as most of that code is executed via the queuing mechanism as result of timer or communication events

* inherent problems when time dependant processes are to be analysed: clearly the delay introduced by single
stepping through code is not tolerable if certain actions in the target program have to occur within specified time
constraints.

7.4 Solutions

Generally one can distinguish between three methods to debug an embedded system:;

* Use a debugger if no interrupts or timing sensitive processes are involved.

* Use additional debugging code to keep track of the instruction flow or variable values, mostly output via an
additional, otherwise unused (serial) port.

* Use an oscilloscope or a logic analyzer to observe single signals or even the whole address/data bus on the
hardware level. This provides the most accurate information, but also is the most expensive solution. Depending
on the features offered by the logic analyzer the results can vary from a series of hexadecimal values representing
the values of the observed buses to assembly code output automatically generated based on the acquired bina
values if processor specific logic analyzer modules are used. In any case the use of a logic analyzer provides the
most exact information about the processor activity - especially for debugging low level code, for instance in
operating systems, this is often the only solution. However, if caches are enabled, not even a logic analyzer can
reveal all details, as much of the activity then only occurs within the chip and is not visible from outside.
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In the following | will show a few examples using method two - additional debug code - which | used during my work
with the SmartBadge.

7.4.1 Counting Variables

To verify the operation of the SIR modulation interrupt routine | used counters for each of the sections. By
transmitting a known character sequence, | could precompute the final expected values for each of the counters and
compare these with the actual values after program execution. Although this method does not reveal any information
about the sequence in which the sections were executed, it tells at least how often each section was passed and this
was often enough information to detect the initial errors.

Note: For this application the timing also was extremely important. To verify the correct timing of the software
modulation of the IR emitter | used a logic analyzer to measure and verify the output signal of the PPC pin (TXD2)
which is connected to the off-chip infrared transceiver module.

7.4.2 Writing Debug Data to a Buffer

If more information than simple counters can provide is needed, e.g. information about the sequence in which
particular parts of the code are executed, one can use a debug buffer. During program execution at the interesting
locations data is written to that buffer. At a breakpoint or before the end of the program this buffer can be output and
thus reveal the detailed program flow.

Both methods have a severe drawback: they only work if the program does not crash, i.e. they allow verification of
the program flow and thus often enable the user to detect errors. But they can't reveal any information about the
actual problem if the program crashes before the output point is reached.

The advantage of both these methods is that their overhead - especially in terms of execution time (no waiting on
devices) - is very small in comparison to the buffered output described in the next section.

7.4.3 Debug Output to a Serial Port

As serial port three is taken by the Debugger/Angel Debug Monitor | used serial port one to output additional
information. This method allows three slightly different approaches - buffered output, polled output and direct output:

For direct output the desired output byte is written directly to the UART data register. The advantage of this
method is that there is minimal overhead and the output occurs nearly immediately. The problem is of course that
debug output can be lost if the write operations occur faster than the serial port can transmit.

The code for this type of output is simply a peripheral register write (after the UART has been initialized):

#define UART1_BASE 0x80010000
#define UTDR 0x14

#define DEBUG_UART UART1_BASE

REG(DEBUG_UART, UTDR) = ch; /l output character ‘ch’ on UART 1
Listing 29. Direct debug output via a serial port

For buffered output | used a ring buffer structure and interrupt driven output. To generate debug output the desired
characters are written to the ring buffer and when this write operation is finished the serial transmit interrupt is
enabled. This method guarantees that no output is lost, but the output can be delayed - if there are other, higher
priority interrupts pending, the serial interrupt remains pending until all higher prioritized interrupts have been
executed. In the worst case the output might never happen if the frequency of higher priority interrupts is too high (or
the program crashes/does not return from an interrupt/supervisor mode with interrupts disabled).
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Listings 30 and 31 show the declarations and the code related to dealing with the ring buffer structures:

/*

*  Description:

* Declarations to manipulate ring buffers.

* The source is derived from code in ringbuff.h, but was

* modified to allow user defined buffer size and atomic access for
* concurrent use in interrupt handler and regular program code.
*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

*/

#ifndef util_ringbuf_h
#define util_ringbuf_h

#include <stdlib.h>  /* for malloc */
#include “util/util_misc.h”

/*
* the ring buffer structure
*/
typedef struct RingBuffer

volatile unsigned int size; // the size of the allocated memory region
volatile unsigned int head; // offset to current beginning of the buffer
volatile unsigned int tail; // offset to current end of the buffer
volatile UC8* data; [ pointer to the allocated memory region

} RingBuffer;

/*
* ring buffer operations as macros
* Note that these will overflow after MAXUINT characters
*
/

I/l only to be used in interrupts as it assumes exclusive access !
#define ringbuf_GetCountint(r) ( ABS( ((r)->head - (r)->tail) % (r)->size ) )

#define ringbuf_NotEmpty(r)  ( ringbuf_GetCount(r) > 0)

#define ringbuf_Empty(r) (ringbuf_GetCount(r) ==0)

#define ringbuf_Full(r) (ringbuf_GetCount(r) >= (r)->size )

#define ringbuf_GetSpace(r) ( (r)->size - ringbuf_GetCount(r) )

#define ringbuf_ReadByte(r)  ( (r)->data[((r)->tail++) % (r)->size] )
#define ringbuf_WriteByte(r, c) ( (r)->data[((r)->head++) % (r)->size] = (c) )

/I free the memory allocated to a ring buffer structure
#define ringbuf_Free(r) (free((r)->data))

Listing 30. Ring buffer declarations [file util\util_ringbuf.h]

/*

*  Description:

* Functions to manipulate ring buffers.
*

*  --Christoph Wolf

* chwolf@it.kth.se

*/

Listing 31. Ring buffer functions [file util_ringbuf.c]
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#include “util/util_ringbuf.h”
#include “util/util_interrupt.h”
#include “util/util_misc.h”

[* to check if the Angel function hooks have been initialized */
extern int misc_initialized;

/*
* Function: ringbuf_Init
* Purpose: Initialize a ringbuffer

*

* Parameters:

*  Input: buf pointer to the buffer to be initialized
* size desired size of the buffer

*

* Returns: 0 success

* -1 memory allocation failed

*

* The function tries to allocate ‘size’ bytes of space for the buffer ‘buf’
* and initializes the fields.

*/

int ringbuf_Init(RingBuffer* buf, UI32 size)

/I hook to Angel_EnterSVC() is needed in one of the functions, therefore
// initialize hook functions if that hasn’t been done yet.
if(Imisc_initialized)

{
}

// allocate the memory for the buffer and initialize the other fields
buf->data = (UC8*)malloc(size);

if(buf->data)

{

misc_InitAngelFunctions();

buf->size = size;
buf->head= 0;
buf->tail=0;
return O;

}

else
return -1;

/*

* Function: ringbuf_GetCount

* Purpose: get the number of bytes in a ring buffer
*

* Parameters:

*  Input: buf pointer to the buffer

*

*

Returns: the number of bytes in the buffer
*
* Get number of bytes that are currently in the buffer.
* As opposed to the macro ‘ringbuf_GetCountInt(r)’ which is intended
* for use in interrupt handlers only, this function disables all interrupts
* before computing the result ‘count’ in order to guarantee atomic access
* to buf->head and buf->tail which could be modified by an interrupt
* otherwise.
*/
int ringbuf_GetCount(RingBuffer* buf)

Listing 31. Ring buffer functions [file util_ringbuf.c]
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int count;

Angel_EnterSVC(); // disable interrupts

count = ABS( (buf->head - buf->tail) % buf->size );
Angel_ExitToUSR(); // enable interrupts

return count;

/*
* Function: ringbuf_WriteBuf
* Purpose: write the contents of a byte array to a ring buffer

*

* Parameters:

*  Input: buf pointer to the ring buffer to write to
* data pointer to the source array

* len number of bytes to be written

*

*

Returns: void

*

* Write ‘len’ bytes of data to the buffer ‘buf’. The caller must

* check in advance that there is enough space in the buffer, otherwise
* it will wrap around and overwrite contents at the “beginning” of the
* puffer.

*/

void ringbuf_WriteBuf(RingBuffer *buf, const UC8* data, UI32 len)

t

inti;

for(i=0;i<len;i++)

ringbuf_WriteByte(buf, *(data+i));
}
}

/*

* Function: ringbuf_WriteBufCheck

* Purpose: write the contents of a byte array to a ring buffer, check for
* sufficient space.

*

* Parameters:

*  Input: buf pointer to the ring buffer to write to
* data pointer to the source array

* len number of bytes to be written

*

*

Returns: the number of bytes actually written

*

* Write max(len, available bufferspace) bytes of data to the specified
* puffer buf. The number of bytes actually written is returned.

*/

int ringbuf_WriteBufCheck(RingBuffer *buf, const UC8* data, UI32 len)
{

inti;

len = MIN(len, ringbuf_GetSpace(buf));

for(i=0;i<len;i++)

ringbuf_WriteByte(buf, *(data+i));

return len;

/*
* Function: ringbuf_ReadBuf

Listing 31. Ring buffer functions [file util_ringbuf.c]
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* Purpose: read bytes from a ring buffer into a byte array
*

* Parameters:

*  Input: buf pointer to the ring buffer to read from
* data pointer to the destination array

* len number of bytes to be transferred

*

* Returns: void

*

* Read len bytes of data out of the specified buffer buf and write them to
* ‘data’. The caller must check in advance that the buffer contains at least
* ‘len’ bytes and must allocate the memory for data.
*/
void ringbuf_ReadBuf(RingBuffer *buf, UC8* data, UI32 len)
{

inti;

for(i=0;i<len;i++)

*(data+i) = ringbuf_ReadByte(buf);

/*

* Function: ringbuf_ReadBufCheck

* Purpose: read bytes from a ring buffer into a byte array, check for
* number of bytes

*

* Parameters:

*  Input: buf pointer to the ring buffer to read from
* data pointer to the destination array

* len number of bytes to be transferred

*

*

Returns: the number of actually read bytes
*

* Read max(len, available bytes in ‘buf’) bytes out of ‘buf’ and write them
* to ‘data’. The caller must allocate the memory for data.
* The number of actually read bytes is returned.
*/
int ringbuf_ReadBufCheck(RingBuffer *buf, UC8* data, UI32 len)
{
inti;
len = MIN(len, ringbuf_GetCount(buf));
for(i=0;i<len;i++)

*(data+i) = ringbuf_ReadByte(buf);

return len;

}
Listing 31. Ring buffer functions [file util_ringbuf.c]

The code | used for debugging is as follows, listing 32 shows the declarations and inline functions, listing 33
shows the debug functions:

/*

*  Description:

* Type declarations for debug functions and inline functions.
*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

*/

Listing 32. Debug declarations and inline functions [util\util_debug.h]

122



Debugging Embedded Systems

#ifndef util_debug_h
#define util_debug_h

#include <util/util_misc.h>
#include <util/util_ringbuf.h>
#include <util/util_serial.h>

#include <stdio.h>

I/ set the default debug level - DEBUG_LEVEL can be defined per source file

/I (must be set before including this header file)
#ifndef DEBUG_LEVEL

#define DEBUG_LEVEL 4
#endif

/I the debug buffer
extern RingBuffer debug_tx_buf;

// the UART to be used for the debug output
#define DEBUG_UART_BASE UART1_BASE
#define DEBUG_UART_INT INT_UARTL1

/*

* Function: debug_Init

* Purpose: Setup the debug UART channel.
*

* Parameters: none

* Returns: void
*

* The function installs the debug interrupt handler, initializes the debug
* transmission buffer and sets up the UART channel for 115KBaud, 8N1.

*
void debug_Init(void);

/*
* Function: debug_String

* Purpose: Output a string on the debug UART channel.

*

* Parameters:

*  Input: string The string to be output
*

*

Returns: void

*

* The function outputs the given null-terminated string on the UART channel
* specified by DEBUG_UART_BASE by writing it to the debug buffer. If the
* puffer does not contain enough space its contents will be overwritten.

* After the bytes have been written the transmit interrupt is enabled to

* start the transmission.
*/
void debug_String(char* string);

void debug_BufferHex(UC8* buf, int len);

/*
* Function: debug_PutByteDirect

* Purpose: Write a byte directly to the debug FIFO

* Parameters: ¢ the byte to output
* Returns: void

*

Listing 32. Debug declarations and inline functions [util\util_debug.h]
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* The macro writes directly to the FIFO, thus output can be lost if there

* is not enough space in the FIFO.

*

#define debug_PutByteDirect(c) REG(DEBUG_UART_BASE, UTDR) = (c)

/*

* Function: debug_PutByte

* Purpose: Write a byte to the debug buffer.

*

* Parameters: ch the byte to output

* Returns: void

*

* Write a single byte to the debug buffer, does not start the transmission.
*

__inline void debug_PutByte(UC8 ch)

ringbuf_WriteByte(&debug_tx_buf, ch);

/*

* Function: debug_PutByteHex

* Purpose: Write a byte in hexadecimal format to the debug buffer.
*

* Parameters: ch the byte to output

* Returns: void

*

* Write a single byte in hexadecimal format to the debug buffer, does not
* start the transmission.

*/

__inline void debug_PutByteHex(UC8 ch)

{
char buff4];

sprintf(buf, “%2.2x “, ch);

ringbuf_WriteByte(&debug_tx_buf, buf[0]);
ringbuf_WriteByte(&debug_tx_buf, buf[1]);
ringbuf_WriteByte(&debug_tx_buf, buf[2]);

/*

* Function: debug_PutBytePolled

* Purpose: Write a byte to the FIFO in polling mode

*

* Parameters: ch the byte to output

* Returns: void

*

* Write a single byte to the FIFO, but poll the TNF flag until there

* is at least one free position in the FIFO to make sure no output is
* |ost.

*/

#define debug_PutBytePolled(c) ser_UartPutBytePolled(DEBUG_UART_BASE, c)

/*
* Function: debug_PutByteHex

* Purpose: Write a byte in hexadecimal format to the FIFO in polling mode
*

* Parameters: ch the byte to output

*  Returns: void
*

* Write a single byte in hexadecimal format to the FIFO, but poll the TNF
Listing 32. Debug declarations and inline functions [util\util_debug.h]
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* flag until there is at least one free position in the FIFO to make sure
* no output is lost.

*/

__inline void debug_PutByteHexPolled(UC8 ch)

char buf[5];

sprintf(buf, “0x%2.2x “, ch);

debug_PutBytePolled(buf[0]);
debug_PutBytePolled(buf[1]);
debug_PutBytePolled(buf[2]);
debug_PutBytePolled(buf[3]);
debug_PutBytePolled(buf[4]);

/* Debug macros that are only compiled and executed if DEBUG_LEVEL is higher
* or equal than their first argument
*/

/I output string s if DEBUG_LEVEL is higher or equal than n
#define DEBUG(n,s) debstr ## n(s “\r”)

/I output string s with argument v if DEBUG_LEVEL is higher or equal than n
/I (like printf with one variable argument supported)

#define DEBUG_1(n,s,v) debstr_m ##n(s “\r",v)

#define debstr_m(s,v) { char buf[100]; sprintf(buf, s, v); debug_String(buf);}

/I code to achieve the conditional compilation depending on an argument
#if (DEBUG_LEVEL == 0)

#define debstrO(str) debug_String(str)

#define debstrl(str)

#define debstr2(str)

#define debstr3(str)

#define debstr4(str)

#define debstr_mO(s,v) debstr_m(s,v)
#define debstr_m1(s,v)
#define debstr_m2(s,v)
#define debstr_m3(s,v)
#define debstr_m4(s,v)

#elif (DEBUG_LEVEL == 1)
#define debstrO(str) debug_String(str)
#define debstrl(str) debug_String(str)
#define debstr2(str)
#define debstr3(str)
#define debstr4(str)

#define debstr_mO(s,v) debstr_m(s,v)
#define debstr_m1(s,v) debstr_m(s,v)
#define debstr_m2(s,v)
#define debstr_m3(s,v)
#define debstr_m4(s,v)

#elif (DEBUG_LEVEL == 2)
#define debstrO(str) debug_String(str)
#define debstrl(str) debug_String(str)
#define debstr2(str) debug_String(str)
#define debstr3(str)
#define debstr4(str)

#define debstr_mO(s,v) debstr_m(s,v)
#define debstr_m1(s,v) debstr_m(s,v)

Listing 32. Debug declarations and inline functions [util\util_debug.h]
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#define debstr_m2(s,v) debstr_m(s,v)
#define debstr_m3(s,v)
#define debstr_m4(s,v)

#elif (DEBUG_LEVEL == 3)
#define debstrO(str) debug_String(str)
#define debstrl(str) debug_String(str)
#define debstr2(str) debug_String(str)
#define debstr3(str) debug_String(str)
#define debstr4(str)

#define debstr_mO(s,v) debstr_m(s,v)
#define debstr_m1(s,v) debstr_m(s,v)
#define debstr_m2(s,v) debstr_m(s,v)
#define debstr_m3(s,v) debstr_m(s,v)
#define debstr_m4(s,v)

#else
#define debstrO(str) debug_String(str)
#define debstrl(str) debug_String(str)
#define debstr2(str) debug_String(str)
#define debstr3(str) debug_String(str)
#define debstr4(str) debug_String(str)

#define debstr_mO(s,v) debstr_m(s,v)

#define debstr_m1(s,v) debstr_m(s,v)

#define debstr_m2(s,v) debstr_m(s,v)

#define debstr_m3(s,v) debstr_m(s,v)

#define debstr_m4(s,v) debstr_m(s,v)
#endif

#define ERROR(s) debug_String(“ERROR: “ s “\r")
#define WARNING(s) debug_String("WARNING: “ s “\r")

#endif
Listing 32. Debug declarations and inline functions [util\util_debug.h]

/*

*  Description:

* Code to generate debug output on a UART channel on the Badge.
*

*

* --Christoph Wolf

* chwolf@it.kth.se

*

*/

#include <util/util_debug.h>
#include <util/util_ringbuf.h>
#include <util/util_serial.h>
#include <util/util_interrupt.h>

#include <stdio.h>
#include <string.h>

#define DEBUG_TX_BUFSIZE 4096
#define DEBUG_RX_BUFSIZE 30

Listing 33. Debug functions [util_debug.c]
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/* Global debug buffer to write debug output to */
RingBuffer debug_tx_buf;

/* for other modules to check if debug code has been set up */
int debug_initialized = FALSE;

/*
* Function: debug_UartIntHandler

* Purpose: Debug interrupt handler to output characters in the debug buffer.
*

* Parameters: Interrupt handler parameters filled in by Angel

* Returns: void
*

* The handler only handles the break conditions and the transmitter FIFO

* request. All other interrupt reasons cause the interrupt to be masked.

*/

void debug_UartIntHandler(unsigned int ident, unsigned int data, unsigned int
empty_stack)

{

inti;
int count;

if(TEST_BIT(DEBUG_UART_BASE, UTSRO, UTSRO_TFS)) // transmit FIFO request
{

/I get number of characters left in the debug buffer
count = ringbuf_GetCountInt(&debug_tx_buf);

/I at least four bytes are ready and can be written without further
Il checking
if(count>=4)

REG(DEBUG_UART_BASE, UTDR) = ringbuf_ReadByte(&debug_tx_buf);

REG(DEBUG_UART_BASE, UTDR) = ringbuf_ReadByte(&debug_tx_buf);

REG(DEBUG_UART_BASE, UTDR) = ringbuf_ReadByte(&debug_tx_buf);

REG(DEBUG_UART_BASE, UTDR) = ringbuf_ReadByte(&debug_tx_buf);
}

else

for(i=0;i<count;i++)
REG(DEBUG_UART_BASE, UTDR) = ringbuf_ReadByte(&debug_tx_buf);

/I debug output finished, disable the interrupt
SER_UART_DISABLE_TI(DEBUG_UART_BASE);
}

}else if(TEST_BIT(DEBUG_UART_BASE, UTSRO0, UTSRO_RBB)) // receiver break begin
REG(DEBUG_UART_BASE, UTSR0) &= ~UTSRO_RBB;

}else if(TEST_BIT(DEBUG_UART_BASE, UTSRO0, UTSRO_REB)) // receiver break end

) REG(DEBUG_UART_BASE, UTSRO0) &= ~UTSRO_REB;

else

INT_MASK(DEBUG_UART _INT);
}

/*
* Function: debug_Init
* Purpose: Setup the debug UART channel.

Listing 33. Debug functions [util_debug.c]
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*

* Parameters: none

* Returns: void

*

* The function installs the debug interrupt handler, initializes the debug

* transmission buffer and sets up the UART channel for 115KBaud, 8N1.
*/

void debug_Init(void)

int_InstallHandler(DEBUG_UART_INT, debug_UartintHandler);
if(ringbuf_Init(&debug_tx_buf, DEBUG_TX_BUFSIZE) == -1)

printf(“debug error: no memory for debug_tx buffer available\n”);
exit(1);
}

ser_UartInit(DEBUG_UART_BASE, SER_INIT_BAUD_115200, SER_INIT_PARITY_DIS,
SER_INIT_PARITY_ODD, SER_INIT_ONE_STOP_BIT,
SER_INIT_DATA_SIZE_8, SER_INIT_RECEIVE_INT_DIS,
SER_INIT_TRANSMIT_INT_DIS);

/I enable transmitter and unmask the first level interrupt, the transmit
I/l interrupt enable bit is set when transmission is about to start
SER_UART_ENABLE_T(DEBUG_UART_BASE);
INT_UNMASK(DEBUG_UART_INT);

debug_initialized = TRUE;

/*
* Function: debug_String
* Purpose: Output a string on the debug UART channel (interrupt driven).

*

* Parameters:
*  Input: string The string to be output
*

* Returns: void

*

* The function outputs the given null-terminated string on the UART channel
* specified by DEBUG_UART_BASE by writing it to the debug buffer. If the
* puffer does not contain enough space its contents will be overwritten.

* After the bytes have been written the transmit interrupt is enabled to

* start the transmission.

*/

void debug_String(char* string)

{

inti;
int len = strlen((char*)string);
for(i=0;i<len;i++)

ringbuf_WriteByte(&debug_tx_buf, string[i]);

}
SER_UART_ENABLE_TI(DEBUG_UART_BASE);

Listing 33. Debug functions [util_debug.c]

Especially when debugging the IrDA stack this method worked great to follow and check the program execution.
But it did not help in the cases where the program crashed at some point: due to the limited baud rate the debug output
always was far behind the actual execution point and, as a crash also stopped the debug output, | could not tell where
exactly in the code the crash had happened. As a consequence of the big amount of debug data (the debug output for

128



Debugging Embedded Systems

only establishing the IrDA-link was usually more than 600 lines) direct output could not be used because nearly all of
the directly output bytes were lost.

That's where the polled output came into play: it still outputs only single bytes like direct output but instead of

directly writing to the serial FIFO it polls the TNF (transmitter not full) flag which when set signals that there is at
least one empty position in the FIFO. As the transmit request interrupt is only enabled if there are at least four empty
positions in the FIFO this method always succeeds. As the output occurs almost immediately (at most it takes the
time to transmit one byte) and no other code in the current function will be executed before the output occurs, the fact
that a particular debug output byte is not received tells definitely that the program crashed before reaching this point.
If the crash happens within a function/interrupt routine under user control one can guard the section causing the
problem with polled debug statements and by incrementally moving the statements one can finally isolate the line
which is responsible for the crash. As this output is interleaved with the ongoing buffered output one should use
special characters which are not used in the standard debug output and therefore can be easily searched for ar
detected. Compared to the direct output, polled output is preferable in most situations, only in highly time-critical
code (where even polling for one FIFO entry to become free could disturb) direct output has to be used.

The following defines are used in the files to be debugged:

/l'in files to be debugged
#define file_name_DEBUG
#ifdef file_name_DEBUG

#define DEBUG_STRING(c) debug_String(c)
#define DEBUG_PUT_BYTE(c) debug_PutByte(c)
#define DEBUG_PUT_BYTE_HEX(c) debug_PutByteHex(c)

#else

#define DEBUG_STRING(c)
#define DEBUG_PUT_BYTE(c)
#define DEBUG_PUT_BYTE_HEX(c)

#endif
Listing 34. Defines to be put in files to support debug output

This allows to turn on/off debug output on a per-file base.

A few comments on the code:

The function ringbuf_GetCount() uses the function pair Angel EnterSVC() and
Angel_ExitToUSR() to disable/enable interrupts and therefore requires that
misc_InitAngelFunctions() (See 4.1 “Extensions to Angel“) has been executed before. If this has not
been done explicitly, this function is called fremgbuf_Init()

int_InstallHandler() andser_Uartlnit() are the functions described in Section 4.8.

| used an additiona#define part in every source file | intended to debug (See listing 34) to allow simple
inclusion/exclusion of the debug code on a per-file basis.

If interrupt driven debug output is possible - the user must remember that the output does not give absolute timing
information, but only information about the sequence of code execution. Still this was particularly useful in the
process of implementing and verifying the software timer functionality (Section 4.7, “Operating System Timers,”
on page 56), especially to verify that the Angel function calls related to serialization operated as expected.
DEBUG_PUT_BYTE()statements in each of the functions allowed a detailed trace.
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7.5 Conclusions

As long as no interrupts are involved debugging is fairly easy and allows (relatively) fast identification of errors.
As soon as interrupts come into play things becamehmore complicated. If the program terminates properly the
debugging methods described above are pretty usable and generally allow the user to get enough information to
identify any remaining problems.

If a program does not terminate or is time sensitive, one can only rely on the direct/polled debug output which can
give some hints, but frequently still leaves a lot of questions open, due to the possible loss of characters (in the case of
direct output) and the very limited amount of information (i.e. single bytes) that can be output with this method. In
some cases, especially related to timing problems/race conditions, even using polled output might not reveal the
problem if it's not possible to determine the function or the circumstances that cause the crash.
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8. IrDA Protocol Stack

Due to its high computing power the SmartBadge can do a lot of operations locally. The
range of possible applications is greatly increased if (wireless) network access can be
obtained. Basically the Badge offers two ways to achieve this, either using a PCMCIA form
factor wireless LAN card or using the infrared port. After a short introduction which
compares the two methods | will explain the IrDA protocol stack. A port of the Linux IrDA
stack to the SmartBadge, which is the main result of my work, is presented in chapter 9..

8.1 Comparison Wireless LAN - Infrared link

As mentioned in the introduction to this chapter, the SmartBadge offers two major alternatives for (wireless)
network connectivity:

* by inserting a wireless LAN (such as the Lucent Technologies IEEE 802.11b Wireless LAN) card into the
PCMCIA socket and/or

* by using the infrared transceiver connected to serial port 2

The biggest advantage of an IEEE 802.11b wireless LAN (WLAN) over infrared is the fact that it works without
direct line of sight between the Badge and the WLAN base station, thus complete freedom of movement of the Badge
is possible. Depending on the environmental conditions (wall and floor materials, electromagnetic noise,...) the range
is specified to be up to 25m in a closed office environment, 50m in a semi-open environment, and up to 160m in an
open office environment at 11Mb/s.

On the other hand, depending on the type of application, the fact that infrared communication needs direct line of
sight between the communicating devices, can also be an advantage - as this provides implicit location information.
With a WLAN one can detect that a device is within range of the base station (or another device when ad-hoc mode is
used), but no direction dependant information is available. In addition, the distance can not easily be determined (a
least not with standard device drivers). Even if the signal strength can be observed, it is hard to determine if a weak
signal results from a large distance to the base station or just a thick wall between the device and a nearby basestatiol
In the case of (non-diffuse) infrared on the other hand, if there is link connectivity, then one knows that both devices
are in the same room and are orientated towards each other. The rough distance can be estimated as there must
direct line of sight (which provides geometric limits) and if the signal strength is known, then the location can be even
further refined.

The current generation of WLAN cards supports speeds of up to 11Mb/s. Nominally this is considerably greater
than the fastest current infrared mode (4Mb/s, but a 16Mb/s mode for infrared is currently being developed), but one
has to take into account that all users in the same channel have to share this bandwidth. Whereas in the infrared ca:
the 4 Mb/s are exclusively given to one user/device (or at least only the devices which can fit into the viewable solid
angle of the IR receiver).

An additional drawback of the WLAN technology is its relatively high power consumption, although new 3.3V
technology can substantially reduce the power consumption. Even so the power needs for a PCMCIA card plus the
radio link are higher than those for the infrared transceiver. Additionally of course the amount of space needed for a
PCMCIA card is much higher than for a single infrared-transceiver.

Of course it is possible to combine the two technologies: one can use (many small, cheap) infrared beacons to
provide location information and, if no infrared access point is in sight and communication is required, then use a
WLAN card for network access.
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8.2 Overview of the IrDA Protocol Stack

The IrDA protocol stack is a set of protocols, defined by the Infrared Data Organization (http://www.irda.org).
Figure 23 gives an overview of the protocol stack:

Applications

IrTran-P|| IrObex|| IrLan || IrCom|| IrMC

Tiny Transport Protocol -
Lillse TinyTP

Ir Link Management - MUX - Ir(LMP

Ir Link Access Protocol -IrLAP

Async Serial-IR| | Sync Serial-IR | Sync-4PPM
9.600-115.2kb/s| 1.152Mb/s 4Mbl/s

Figure 23. IrDA protocol stack [16]

The stack consists of a set of mandatory protocols (shown in gray in Figure 23) and additional optional protocols.
The mandatory protocols are the following:
e IrPHY (Physical Signaling Layer), specified in [11]
* IrLAP (Link Access Protocol), specified in [12]
* IrLMP (Link Management Protocol and Information Access Service (IAS)), specified in [13]

IrPHY is equivalent to OSl layer 1 and defines the hardware specification, including signal modulation. On top of
IrPHY IrLAP defines the link layer. It is based on the HDLC- and SDLC-half duplex protocols by IBM and is
equivalent to OSlI layer 2. IrLAP provides a reliable link between two devices. Corresponding to OSI layer 3, IrLMP
is defined on top of IrLAP. It consists of the Link Management Protocol and the Information Access Service. The
Link Management Protocol is responsible for multiplexing simultaneous connections via the single IrLAP link. The
Information Access Service provides information about registered services which can be queried by remote devices.

To provide LAN access via the IrDA stack, two additional optional protocols are required - the Tiny Transport
Protocol (provides flow control on IrLMP connections with an optional Segmentation and Reassembly service) and
the IrLan Protocol (encapsulates ethernet frames to be transmitted via the IrDA stack). These are also explained in
more detail in the following sections.

The other optional protocols are:

* [rCOMM - provides COM (serial and parallel) port emulation for legacy COM applications, printing and modem
devices.

* [rOBEX - provides object exchange services similar to HTTP.
* IrTran-P - provides an image exchange protocol used in Digital Image capture devices/cameras.

* IrMC - specifications on how mobile telephony and communication devices can exchange information. This
includes phonebook, calendar, and message data.

Recently further protocols have been added, more information can be found on the IrDA homepage.

Applications have the choice to use IrLMP directly, to use IrLMP through IrTTP, or to use one of the high level
protocols built on top of I'TTP.
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8.3 The IrDA Protocols in more Detalil

8.3.1 IrDA Service Definitions

The IrDA protocols are defined in terms of services that are provided to higher layers. These services in turn are
specified by service primitives and parameters. Only the service is specified in an abstract way, rather than the mean
by which a service is provided. This type of definition makes the specification independent of any particular interface
implementation.

The following service primitives are used in the IrDA protocols:

Request Passed from an upper layer to a lower layer to invoke a service.

Indication Passed from a lower layer to an upper layer to indicate an event or to notify the upper layer of an
action initiated by the lower layer.

Response Passed from an upper layer to a lower layer to acknowledge some procedure invoked by an indication
primitive.

Confirm Passed from a lower layer to an upper layer to convey the results of a previous service request.

Figure 24 shows an example for IrLAP.

Upper Layer Upper Layer

Requesti T Confirm Response i T Indication
' IrLaP SRV |
| Layer | Layer |
I | . | i
| L _ Frame® T |
L Fames) 4

Figure 24. IrDA Service Primitives [12, p. 14]

8.3.2 IrPHY - The Physical Layer

The basic information about the physical layer, especially modulation and data rates, has already been covered ii
chapter 5. Therefore | won't go into it further here. The detailed specification is given in [11].

8.3.3 IrLAP - The Link Access Protocol

The full specification of IrLAP, including detailed specification of the state machine is given in [12].

The tasks of Ir(LAP are to do device discovery and to provide a device-to-device connection for the reliable
transmission of data. The general procedure is as follows:

If a station wants to connect to another station IrLMP requests IrLAP to starts a discovery process. During this
process all listening devices are requested to answer in responstiadiscovery frames. The result is a list of
available stations, including the (randomly chosen) device address for each station. If two or more stations happen tc
have chosen the same address the station doing the discovery has to execute an address conflict resolutic
mechanism. Then the concerned stations have to chose a new address. After discovery the ‘connect’-service is used
establish a new connection between two stations. The station which initiated the discovery will become the primary
station and control the connection. During setup various parameters such as: baud rate, maximum frame size, lin}

133



IrDA Protocol Stack

turnaround times, etc. are negotiated. After the connection has been established data can be transmitted in either
reliable or unreliable mode. Disconnect closes a connection, if a station doesn’t answer for some time (e.g. because it
has moved) the connection is closed automatically.

Ir'LAP is event-driven, events are caused by requesting services (at the upper layer boundary), arrival of data (at
the lower layer boundary) or the timeout of one of the timers. These timers are used to detect link activity (media
sense), to signal that a station has used up its time quota and has to turn around the link, retransmission timeouts, etc.

8.3.3.1 IrLAP Service Definitions

To implement this functionality, IrLAP provides two general types of services ([12], chapter 2):

¢ Connectionless Services
¢ Connection-orientated Services

The Connectionless Services are as follows:

* Discovery Services: Find devices within communication range.

* Address Conflict Services: Resolve address conflicts following a discovery operation by causing the conflicting
devices to select new (non-conflicting) device addresses.

¢ Unit Data Services: Transmit data outside of a connection. All data is broadcast and sent unreliable.

Connection Orientated Services:

* Connect Services: Establish a connection to a previously discovered station.
* Sniffing Services: Initiate a special low power connect procedure (sniffing).

* Data Services: Send data as either reliable, sequenced data (includes retransmission if necessary) or as unreliable,
expedited, unsequenced data.

e Status Services: Inform the upper layer of bad link quality and a likely disconnection if the link quality doesn’t
improve soon. The upper layer is informed about unacknowledged sent data.

* Reset Services: Cause all unacknowledged data units to be discarded and all counters and timers to be reset. Only
occurs if both ends of the connection agree.

* Disconnect Services: Terminate a logical connection and discard all outstanding data units.

8.3.3.2 IrLAP Frame Structure

Each IrLAP frame has the following format:

IrLAP Frame Payload Data

Address| Control Information
8 bits 8 hits 8*M bits

Figure 25. IrLAP frame format [12, p. 21]

* An address (A) field that identifies a secondary station connection address
* A control (C) field that specifies the function of the particular frame
* An optional information (1) field that contains the information data
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Each of these fields is a multiple of eight bits, together they are referred to as the payload data. Each IrLAP frame

is framed by fields which constitute a wrapping layer. The wrapping layer is a property of the physical layer, its use is
to mark the beginning and the end of frames and to be able to detect errors during transmission. The fields depend o
the particular physical layer being used, but in any case at least the components: start flag, frame check sequence, al
stop flag must be included.

The control field defines the function of the frame as being:

Unnumbered format (U) to establish and disconnect the data link, report procedural errors, transfer unsequenced data.
These frames are used for data link management.

Supervisory Format (S) these frames do not carry user data, but are used to acknowledge received frames, convey
ready or busy conditions and to report frame sequencing errors.

Information Transfer These frames transport user data in the | field. Besides indicating the frame format, here the

Format (l) control field (C) contains send and receive counts that are used to ensure reliable (i.e. error

free in-order delivery) communication.

[12, chapter 5] provides detailed information about the different types of frames.

Only one station at a time can transmit, the primary station has to release the link, then the secondary can transmi

for a certain maximum amount of time after which it has to release the link back to the primary.

8.3.3.3 IrLAP State Diagram

Informatio
Transfer

Connect Disconnect

Address
Conflict
Resolution

Figure 26. IrLAP state diagram [12, p. 34]

8.3.4 IrLMP - The Link Management Protocol

8.3.4.1 Architectural Components

IrLMP is specified in detail in [13]. It consists of two main components (see Figure 23):

Information Access Service (IAS): Each IrDA device has to maintain an IAS which is an information base that
allows other IrDA devices to query the local device to find out what are the provided services and how to access
them. The information base consists of a number of objects holding the information, a dedicated protocol, and a
set of operations to retrieve the stored information.

Link Management Multiplexer (LM-MUX): The LM-MUX provides services to the local LM-IAS entity, to
transport entities (like IrTTP) and to applications that directly bind to LM-MUX. While Ir(LAP provides one
(physical) reliable connection between a pair of IrDA devices, the LM-MUX provides multiple (logical) data link
connections over one IrLAP-link.
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8.3.4.2 The Link Model

The LM-MUX provides services to carry out the Link Management itself and to its service users at Link Service
Access Points (LSAPs). The LM-MUX can be in one of two modes:

When in multiplexed mode, several LSAP connections may actively use the underlying IrLAP connection.
LM-MUX relieves the client entities of the requirement to coordinate access to the single IrLAP connection.
However, it does not provide a per LSAP-connection flow control, which can cause deadlocks under certain
circumstances. These problems are solved by I'TTP (see section 8.3.5.)

When in exclusive mode just one LSAP-connection may be active on the IrLAP connection. This might be
required by some applications if special control is necessary to achieve a reduced latency or control the link
turnaround during their use of the link.

8.3.4.3 The Link Management Multiplexer

Link Management provides the following external interfaces at the upper and lower LM-MUX service boundaries
([13], section 3.1.1):

LSAP-Conn. LSAP-Conn Connectionless XID_Discovery
Endpoints Endpoints LSAP Service Access Point
LM-Mux Service LA L o ¢
Boundary L sAp LSAP

IrLAP-Connection
Endpoints

IrLAP Service w
Boundary ISAP

Figure 27. LM-MUX External Interfaces [13, p. 17]
e LM_Connect, LM_Disconnect, LM_Data and LM_UData service primitives are invoked at LSAP-connection
endpoints. These are grouped together at an LSAP.

e LM_ConnectionlessData primitives are invoked at the Connectionless LSAP. LM_ConnectionlessData.indication
primitives are delivered to all LM-MUX clients that bind to the Connectionless LSAP.

e LM_Discover and LM_Sniff primitives are invoked at the XID_Discovery Service Access Point.
e All IrLAP service primitives are invoked at an IrLAP-connection endpoint. There is one IrLAP Service Access
Point (ISAP) per station.

Within a station LSAPs are distinguished by the value of the LSAP-SEL. The LSAP-values for both ends of an
LSAP-connection are carried in the IrLMP header, thus a packet can be delivered to its correct destination.

The internal organization of the LM-MUX is shown in Figure 28:

Per station there is one Receive Demultiplexer, and one Station Control entity; while an LSAP-Connection
Control Finite State Machine (FSM) is associated with each LSAP-connection endpoint.

The LSAP-Connection Control FSM is responsible for connection and disconnection of a single
LSAP-connection endpoint with a peer LSAP-connection endpoint. During LSAP-connection establishment it
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requests the use of a suitable IrLAP link from station control. Once the IrLAP connection is available, the FSM will
try to contact the peer FSM to request a connection. If the peer FSM accepts, the connection will be established anc
data can be exchanged between the LM-MUX clients.

The Receive Demultiplexer is responsible for routing all Ir(LAP_Data.indication and IrLAP_Unitdata.indication
primitives that arrive via any of the (possibly multiple, in case there are multiple physical devices) IrLAP-connection
endpoints. The Receive Demultiplexer is also responsible for selecting a new LSAP-connection endpoint for the
delivery of incoming Connect requests.

Station control is responsible for the transmission of connectionless data (invoked at the Connectionless LSAP),
the operation of the XID_Discovery process and the associated IrLAP device address resolution, the connection anc
disconnection of Ir(LAP connections, the assignment of LSAP-connections to IrLAP-connections and the transitions
between the Exclusive and Multiplexed LM-MUX modes.

LSAP-Conn. Connectionless XID_Discovery
Endpoints LSAP Service Access Point

LM-Mux Service
Boundary

Control

Rx Demultiplexe|

IrLAP Service

IrLAP-Connection
i Boundary

Endpoint

Figure 28. Internal Multiplexer Organization [13, p.19]

Note: LSAP-Sel 0 is reserved for the IAS-Server.

8.3.4.4 Frame Format

The IrLMP specification refers to Ir(LMP frames as LM-PDUs (LM-Protocol Data Unit). These are sent as
(reliable) IrLAP data frames. Within the IrLAP data frame IrLMP uses a two byte header to encode the destination
LSAP-selector and the source LSAP-selector. These uniquely identify an LSAP connection. For IrLMP data frames
the data is sent directly following the IrLMP header. For Link Control Frames the IrLMP header is followed by an
opcode byte and parameters (whose format depends on the type of Link Control Frame as specified by the opcod
byte).

The Link Management Multiplexer is specified in full detail in [13, chapter 3].

8.3.4.5 Information Access Service

This part of the Ir(LMP protocol is specified in detail in [13, chapters 4 and 5].

When two IrDA devices establish a connection they have to follow the standard with respect to IrLAP and IrLMP.
But normally they have no a-priori knowledge about any services that might be running on top of IrLMP as these
services are optional. To solve this problem each IrDA compliant device needs to provide an Information Access
Service (IAS).
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The IAS service in a device contains information about the services provided by this IrDA device (to a remote
device) and also provides operations for local service users to query a remote IAS on another device. This allows a
client to find out the information that is necessary to use a particular service on a remote device. An example of such
configuration information is the destination LSAP-selector to which to establish a connection in order to use a
particular service.

Figure 29 shows the organization of IAS components. A Client IAP FSM is accessible through the Information
Access Service Interface, this allows a local service to query a remote IAS. The Server IAP FSM accesses the local
Information Base to handle remote requests.

Communication between a Client IAP FSM and a Server IAP FSM is defined through the Information Access
Protocol which is a command/response protocol. Similar to the well-known-ports in the TCP/UDP protocols the IAS
server is always located at LSAP selector zero. This is the only fixed LSAP selector. By this means a service on any
IrDA device can always contact a remote IAS and then, at runtime, query for the necessary information in order to
use an offered service. IAP defines one mandatory service primitive (GetValueByClass which returns a list of values
of a given attribute of all objects of a given class), a number of optional service primitives, and the frame format used
to transport the information.

Local
Registration
|
v
Information ]
Access Service InfOér;Wsélon
Interface
Information .
Access C"Egt,\}lAP Selr:vse'(/I IAP
Protocol
LM-MUX
Service
Interface

Figure 29. Internal Organization of the Information Access Service [13, p. 67]

Logically the IAS maintains a collection of objects and defines a standardized set of operations to query these
objects. Each object in the database belongs to a certain object class, identified by the class name, and has a unique
identifier, as multiple objects of the same class can exist. Information in the objects is maintained in terms of
attributes which consist of a name and a typed value. The IAS supports a fixed set of base types, but no compound
types. Values can only be written locally (local registration), only reading of remote values is supported.

An object of class “Device”, identifier 0, always must be present. It contains basic information about the device,
such as its name, which of the IAS service primitives are supported, and possibly other information.

8.3.5 IFTTP - A Flow-Control Mechanism for Use with IrLMP

IrTTP is specified in [14]. Its goal is to provide flow control in combination with IrLMP. IrLAP provides
flow-control between IrLAP entities. Adding IrLMP on top of IrLAP can introduce problems: “Reliance on IrLAP to
provide flow-control for a multiplexed channel can result in dead-locks if the consumption of data from one
multiplexed channel is dependant on data flowing in an adjacent multiplexed channel. Conversely, if inbound data on
a multiplexed channel cannot be consumed and the underlying IrLAP connection cannot be flow-controlled off due to
the possibility of deadlock, inbound data (freshly arrived or buffered) must be discarded in the event of buffer
exhaustion. Sadly this reduces the reliable delivery service provided by IrLAP to a best effort delivery service
provided by IrLMP LM-MUX (when multiple multiplexed channels are in operation).”([14], p. 1)
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Possible solutions are to have each application provide its own flow-control mechanism on top of LM-MUX to
ensure that there is always enough buffer space available for arriving data or to have each application provide a
retransmission mechanism on top of LM-MUX that is able to recover from the loss of data in the case of buffer
overflow.

The transport protocol TinyTP provides independently flow controlled transport connections, along with
segmentation and reassembly.

8.3.5.1 Tiny TP Service Primitives

Each Tiny TP Service Access Point (TTPSAP) is accessible through one and only one IrLMP LM-MUX LSAP.
Tiny TP provides the following service primitives [14, p. 2 ff.]:
TTP_Connect establish a TTP-connection between two Ir(LMP LSAPs

TTP_Disconnect reject incoming TTP connections, request to terminate a TTP connection and indicate both normal
and abnormal termination of a TTP connection

TTP_Data transmit client data (TTP Client Service Data Unit - SDU) to the peer TTP client. The service
primitive TTP_LocalFlow is used to suspend and resume the generation of the TTP_Data.indication
primitives.

TTP_UData send data unreliably and without flow control, data is not guaranteed to be delivered. The primitives

are directly mapped to the corresponding LM-UData primitives.
TTP_LocalFlow control the flow of received TTP-SDUs between the receiving TTP entity and its local service user.

8.3.5.2 I'TTP Frame Format

IFTTP uses a one byte header, followed by a field containing the user data to transmit. The header byte contains ¢
bit to signal if the user data field contains the last segment of a segmented TTP-SDU or if there are more segments t«
follow, and a 7 bit integer announcing a credit. The credit specifies the number of data-carrying Data TTP-PDUs that
are allowed to be sent in the reverse direction.

Two types of TTP-PDU (TTP protocol data unit, i.e. header plus SDU) exist:

Connect TTP-PDUs are used during connection establishment and are carried in the UserData field of LM_MUX
Connect LM-PDUSs. The credit field means “InitialCredit” here, i.e. the initial number of data-carrying Data
TTP-PDUs that may be sent in the reverse direction. The user data field contains a parameter field which at the
moment has a maximum size of 7 bytes. It is composed of two subfields, the first consisting of one byte, that specifies
the size in bytes of the second subfield. This field contains a list of 3-tuples (PI, PL, PV) where PI specifies the
parameter being carried, PL its length and PV contains the actual value. Pl and PL are both a single byte in size, the
interpretation of PV depends on the type of parameter as identified by PI. The rest of the user data field can contain uy
to 52 additional bytes of user data.

Data TTP-PDUs are carried in the UserData field of LM_MUX Data LM-PDUs. They are used for transporting
client data to a peer TTP entity. In Data TTP-PDUs the credit field has the meaning of “DeltaCredit”, i.e. the number
of additional Data TTP-PDUs that may be sent in the reverse direction.
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8.3.5.3 Operation

Figure 30 shows the used variables at one end of a TTP connection that has reached its data phase.
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Figure 30. Tiny TP SAR and Credit Flow [14, p. 9]

The operation is as follows:

When sending the client (source) invoKEBP_Data.request . TTP, segments the data block if necessary, and
puts the resulting segment(s) into the transmission qiig@rieue. If SendCredit>0, then the current value of
RemoteCredit isinserted into the TTP_PDU aeltaCredit andLM_Data.request s invoked to transmit
the generated TTP_PD$endCredit is decremented by 1. This procedure is repeated while there are segments
waiting in the transmission queue @endCredit is not zero.

If data is received, Ir(LMP invoke4 M_Data.indication to deliver the data to IrTTP. The value of
deltacredit is read and added to the current valueSeindCredit . This allows IFTTP to start transmission
again, if segments were waiting in the transmission queue. The data portion is put into the receivétx{Deeiee
andRemoteCredit is decremented by one as one more entry in the receiver queue has been filled.

The client receiving the data frames can do flow control by invokiig_LocalFlow if it is in danger of
running out of buffers, thus it can stop additional frames from being sent. Otherwise the segments waiting in the
receiver queue will be passed on to the reassembly buffer. When a frame has been reassembled, IFTTP invokes
TTP_Data.indication to deliver the frame to the client. For each segment being passed on from the receive
gueue to the reassembly buffer (thus freeing space in the gaeaélredit is incremented by one.

If SendCredit is non-zero the local TTP entity may send data which is guaranteed to be accepted by the peer
TTP. If SendCredit becomes zero, then the local entity keeps the segments queued until the remote entity has new
buffer space available which is indicated by a non-zero value of the redeitacredit

If RemoteCredit is non-zero, then the remote TTP entity is allowed to send reliable data as there is free local
bufferspace.

If AvailCredit is non-zero, then the local TTP entity has credit available that the remote entity doesn’t know
of yet. By settingdeltaCredit appropriately in the next frame that is transmitted the credit can be passed on to
the remote peer.
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If RemoteCredit reaches some configured low threshold and at the sameMuaitCredit is non-zero but
the transmission queue is empty®endCredit  is zero (both cases keep the local entity from sending Data PDUs
with an update taleltaCredit ), then the available credit can be passed on to the remote TTP entity by using a
dataless FlowData TTP-PDU.

8.3.6 LAN Access Extensions for Link Management Protocol - IFLAN

The IrDA protocols have reached wide support in industry and with the extension to FIR-mode at 4Mb/s the link
is fast enough to be used as a network interface. Ir(LAN is a protocol built on top of the IrDA stack to support the
following three modes:

* A device with an IrDA interface can access a local area network (LAN) through an infrared access point which is
attached to the network (access point mode).

* Two devices with IrDA interfaces can communicate with each other as if they were attached to a LAN (peer
mode).

* A device with an IrDA interface can access a LAN through a second device which is directly attached to a
network and also is equipped with an IrDA interface (hosted mode).

One of the explicit design goals was that the protocol should be implemented as a set of network media-level drivers,
i.e. the protocol runs as a device driver, no modification of existing (higher layer) network protocols should be neces-
sary. IrLAN is specified in [15].

8.3.6.1 Overview

IrLAN uses two channels between a protocol client and a protocol server, also called provider. The provider is

passive, it is the client’s task to detect any provider and initiate a connécligpically the whole IrDA stack is
initialized and IrLAN registers as a client. IrLMP causes IrLAP to do device discovery and if a remote device is
discovered an appropriate indication is passed on to IrLAN. IrLAN requests a query via IAS for the IrLAN object in
the remote information base. If this query is successful, i.e. the object is found which means that there is an IrLAN
provider, then IrLAN takes the value read as an LSAP for the control channel and tries to open a connection to this
LSAP which, if successful will become the IrLAN control channel. Through this control channel various link
configuration parameters are negotiated and finally a data channel is opened. After that network packets can be sel
and received via the data channel.

8.3.6.2 Frame Formats

IrLAN uses two frame formats, one for the control channel and one for the data channel. It supports 802.3
ethernet and 802.5 token ring, the data frame formats are the same as those for the native protocols on the softwar
level. For ethernet this means the standard 14 byte header plus the data portion, while the preamble and FCS ar
omitted. Once the data channel has been established all network bound traffic (inbound and outbound) will go
through this channel.

The control channel uses a client-initiated command/response protocol, each (client) request is immediately
followed by a (provider) response. The control channel format is as follows:

Each request packet consists of three subfields, a one byte Command Code, a one byte Parameter Count and an
to 1020 bytes long Parameter List. A response packet has a similar structure, the Command Code is replaced by
Result Code, the other two fields remain the same. The Parameter List is a list of quadruples (Name Length[1],
Parameter Name[1..255], Value Length[2], Value[0..1016]) of length - zero upto Parameter Count. As can be deduced
from this description the protocol is clear-text based with Name Length and Parameter Name identifying the
particular parameter and Value Length and Value giving its value.

1. Note that this is the reverse of what is desirable with respect to minimizing power consumption of the client. To minimize
power it would be preferable if access points attempted to discover clients in their vicinity.
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8.3.6.3 Commands

IrLAN defines the following commands, the sequence of their invocation is defined by the IrLAN state machine
(see [15, p. 37 ff.]):

Command Code | Command Description
0 Get Provider Information| Used by the client to determine the media type/data frame formats gnd the
IrLAN modes supported by the provider (access point, peer-to-peer, ard/or
hosted)
1 Get Media Characteristics  Used by the client to get detailed information about the media types sup-
ported by the provider
2 Open Data Channel Used by the client to get an IrLMP LSAP number on which it should ¢stab-

lish a TTP connection to the provider for the data channel

3 Close Data Channel When this command is received by the provider, it will stop sending|pack-
ets to the data channel and will also stop sending received packets or the
LAN. It is still up to the client to close the TTP connection.

4 Reconnect Data Channe Used by the client to reconnect a data channel. If the reconnectionl|is suc-
cessful (the provider returns a status of zero), the state of the data channel is
the same as when the channel was disconnected

5 Filter Configuration Used by the client to control the filtering of packets from the provider tg the
client. This command also allows the client to check the filter configuration

on the provider. Unicast and broadcast filter and a multicast filter list cap be
configured.

Table 25. IrLAN Commands [15, p. 16]

Via the Filter Configuration Command the client can request a unicast address from the provider which it can
subsequently use as its MAC address. Thus an access point typically has two MAC addresses, one for itself, and one
which it loans to the device at the other end of the IR link.

142



IrDA Implementation

9. IrDA Implementation

This chapter describes my port of the Linux-IrDA-Stack to the SmartBadge. After a short
introduction and an overview of the file layout | describe the changes that were necessary
throughout the whole source code to port from Linux to the Badge. This is followed by
sections which describe in more detail the changes necessary at the device driver level as
well as at the upper level to integrate a UDP/IP stack. These sections are of special interest
if the stack is to be ported to an operating system other than Angel. Finally | explain how to
use the stack and list known problems. The listing of a debug log is contained in Appendix
C.4.

9.1 Introduction

As network access for notebooks using the HP NetBeamlR-access points and an IrDA-network driver have
proven to work well and the Badge is equipped with an IrDA-compliant infrared transceiver, capable of both the SIR-
and the FIR-mode, Prof. Maguire suggested implementing IrDA on the Badge to give it wireless network access,
which, as previously mentioned, would greatly extend the range of possible applications and services.

After reading the relevant standards it turned out that in order to use IrLAN the complete IrDA stack -
IrLAP+asynchronous wrapper layer, Ir'LMP, IrTTP and IrLAN - have to be implemented. Further studies showed,
that the state machines, especially those in IrLAP and Ir(LMP, are quite large. As | suspected that the available time
would be too short to implement the whole stack from scratch | looked for alternatives and found an implementation
in the freely available Linux IrDA kernel driver module, written by Dag Brattli, University of Tromsg, Norway.
Initially my intention was to just get some ideas and to use small parts of the code. However, it turned out that the
various files and layers were heavily interconnected so in the end finally | decided to try to port the whole stack. After
the code to understand its structure and to find the “entry points” and the “red line through the code” | began by
porting the lower layers, i.e. the device driver and the files implementing IrLAP. This was the hardest part as | had to
figure out which parts of the complex Linux structures | could safely omit and which were necessary for the core
functionality of the protocols, as well as how to imitate special Linux kernel functionality through the use of
functions that are available under Angel. As the IrLAP device discovery procedure is the first step in establishing an
IrLAN link my first task became to make this part work properly. In the course of implementing/porting this first part
| had to solve nearly all of the problems that were a result of the different underlying operating system architectures.
The solutions | developed there subsequently proved to be usable with the higher layers. Thus, after solving these
initial problems and porting the higher layers (which already worked under Linux) the resulting stack worked as
expected. Despite this, a few subtleties remained hidden and required many hours of intensive debugging. The detalil
of this whole process are described in the subsequent sections.

9.2 File Layout

In this section | give a short overview of the source file structure of the IrDA-protocol stack. Although | took all
the files of the Linux IrDA stack and ported them to the Badge file by file some additional files needed to be added to
contain functions and declarations that are expected to be provided by the Linux kernel. Under Linux
irda_device.c provides an abstract device driver interface apdrt.c implements one specific driver (SIR
driver for serial port). However, on the Badge the serial port associated with the IR transceiver is the only possible
device, therefore the functions of these two files could safely be combined. Hence in a future release the files
irda_device.c andirport.c could be merged.
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In the following list the files are grouped by functionality:

General support code (provides Linux kernel functionality not available under Angel)

byteorder.s functions to convert between little and big endian byte order

byteorder.h

skbuff.c functions to manipulate elements of type sk_buff (central type to handle network packets)
skbuff.h

errno.h Linux error codes

coretimer.h Linux timer types and definitions (originally file /usr/include/linux/timer.h)

lock.h implementation of the Linux lock functionality

spinlock.h Linux lock functionality declarations

types.h Linux general type declarations

unaligned.h implement unaligned memory access

General IrDA related functionality

irda_timer.c timer functionality (general start_timer function, timeout callback functions)

timer.h timer functionality (declarations, timeout values, specific start timer functions as inlines)

irmod.c IrDA stack initialization and cleanup, only a few functions are left, these could be added
somewhere else

irmod.h

irgueue.c general queue and hashbin implementation

irgueue.h

irda.h (originally file /usr/include/net/irda/irda.h) general IrDA types and definitions

linux_irda.h (originally file /usr/include/linux/irda.h) general IrDA types and definitions

Device driver functionality

irda_device.c abstract device driver interface, could be mergedrpatt.c
irda_device.h

irport.c serial port device driver

irport.h

netdevice.h declarestruct device used inirport.c
crc.c SIR-mode CRC code

crc.h

wrapper.c IrDA SIR async wrapper layer
wrapper.h

IrLAP layer

irlap.c general IrLAP functionality

irlap.h

irlap_event.c IrLAP state machine implementation
irlap_event.h

irlap_frame.c Handling of IrLAP frames

irlap_frame.h

gos.c Quality of Service negotiation for IrLAP
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gos.h

IrLMP LM-MUX
irlmp.c

irlmp.h
irlmp_event.c
irlmp_event.h
irlmp_frame.c
irlmp_frame.h
discovery.c
discovery.h

IrLMP IAS
irias_object.c
irias_object.h
iriap.c

iriap.h
iriap_event.c
iriap_event.h

IrTTP
irttp.c
irttp.h

IrLAN
irlan_common.c
irlan_common.h
irlan_event.c
irlan_event.h
irlan_client.c
irlan_client.h

irlan_client_event.c

irlan_provider.c
irlan_provider.h

General IrLMP functionality
IrLMP state machines
Handling of IrLMP frames

Handling of discoveries at the IrLMP layer

Implementation of the IAS information base
IAP protocol implementation

IAP state machine

IrTTP implementation

general code that is common to both the provider and the client
set new state for client and provider state machine
implementation of the IrLAN client

client state machine
implementation of the IFLAN provider

irlan_provider_event.c provider state machine

irlan_filter.c
irlan_filter.h
irlan_eth.c
irlan_eth.h
if_ether.h

handle filter requests to the provider
ethernet network device driver interface

declares ethernet constants usétaim eth.c

IP/UDP stack (not part of the IrDA stack, Angel with IP stack compiled in is required)

ipstart.c
address.h

initialize the IP/UDP stack and get an IP address via BOOTP
ARM header defining address types used in the IP/UDP stack
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ip.h ARM IP stack types and definitions
udp.h ARM UDP stack types and definitions
socket.h ARM socket types and definitions

9.3 Changes Applied to the whole Stack, Problems in Porting

| will divide the changes to the code that were necessary to make the stack run on the SmartBadge into two

sections:

The first set of changes resulted from different compiler capabilities and some particular Linux kernel functions
that needed to be provided. These changes had to be applied throughout the whole stack ,but now are
implemented and shouldn’t cause further problems if the stack is ported to another OS on the Badge. I'll discuss
details of these aspects in the remainder of this section.

The second set of changes applies to the low level interfaces. These changes mainly concern the device driver
layer and the interface to operating system features such as memory management and especially interrupt
handling, timers, scheduling, and locking mechanisms. If the stack is ported to another operating system these
parts of the code are very likely to require adaptation again. These issues will be handled in the next section.

The first problems that | encountered was that the Linux code uses some features of the GNU C compiler that the

ARM compiler does not support. Some of these are:

Quite a number of enum declarations in the Linux code have a comma after the last defined type, e.g. they are of
the formtypedef enum {a,b,c,} d; which is not accepted by the ARM compiler and had to be changed
for each occurrence into something of the falypedef enum {a,b,c} d;

Inline declarations of functions are contained in the C-files. The ARM compiler requires inline function
declarations to be in header files. Therefore all inline functions had to be moved from the C-files to the
corresponding header files. This caused new troubles as many of the inline functions were defined as static which
was not possible when moving them to header files.

The GNU compiler supports macro definitions with a variable number of arguments such as psetf in .

This feature is used heavily for debug purposes. These macros can be used myhntike but take an
additional parameter that specifies the debug level, for exaDpRBUG(2, “Debug value: %d\n”,

val) . The preprocessor compares this first parameter with the value of a globally defined symbol
DEBUG_LEVEland generates code only if the value of this symbol is equal or greater than the given parameter.
This allows the programmer to easily adjust the amount of debug code that is generated and later executed.
Usually a value in the range 0..4 is used as an argument to the macro. The ARM compiler does not support a
variable number of arguments in macros, therefore this elegant method could not be used and instead all
occurrences oDEBUGwWith a variable number of arguments had to be commented out. Using preprocessor
commands this feature was simulated for one argument such as in the example given above. The macro is called
DEBUG _land defined in utillib/include/util_debug.h . Using this method at least single variable
values could be output during debugging. Also the GNU compiler predefines a symbol _ FUNCTION__ which
contains the name of the current function. This symbol is used in every call &@EBJGnacro to clarify the

origin of the debug messages. Unfortunately this symbol was not supported by the ARM compiler and therefore
the name of the function had to be added to all the debugging messages manually.

Throughout the code packets have to be handled. As the Linux kernel module implements a network device driver
which higher network layers can use to transmit and receive network packets, the code uses the Linux networking
specificsk_buff  structures and functions to handle all packet operations. The data field holding the actual data
to be transmitted is eahar pointer to a memory block. To facilitate access to the different fields of a packet, for
each IrDA packet type a structure is defined. The structures usually cafi@in short andint members to
describe the packet fields. In order to access the packet fieldk thaff data pointer is simply cast to a pointer

of the appropriate packet type, which then allows convenient manipulation of the fields. The problem now is that
in many cases a fixed set of header or parameter fields is followed by a variable length data field. The GNU
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compiler allows declarations of the fornetar data[0] . This effectively defines a pointer of typshar

which is automatically initialized to point to the proper location in memory. Unfortunately this elegant method is
not supported by the ARM compiler. After first spending some time to find understand the meaning of an “array
of length 0” and then spending quite a while trying to find a reasonable workaround (which at the beginning
regularly resulted in crashes) | tried to replace these statements simplghby “data[l] ". This works
because it defines a pointer to the current memory location and in (this case) it is fortunate that C does not check
array boundaries, so given the above declaration, statementslika[5] " work without problem. There is no

danger of an invalid memory access as the first element points to the correct address and further accesses simp
access memory space in gie buff  data field.

* Another problem that required quite a long time to solve was that the ARM compiler delivered in the ARM SDK
version 2.11, sometimes produces erroneous code: in (at least) two locations inittegpfileame.c , within
the functiondrlap_send_discovery_xid_frame() andirlap_send_ua_response_ frame() ,
integer assignments betweewrlar pointer and a packed structure were not translated properly, but only if the
variable being assigned had not been used before. | found the error only by chance when trying to find the reasor
for incorrect values in the discovery messages. After adding debug output to check the values before and after &
function call it suddenly worked. After some additional investigation | finally realized that adding a statement of
the form “a=a;” before the actual assignment prevented the error. The newer version of the compiler, delivered
with the ARM SDK version 2.5 doesn't have this error any longer.

The changes described so far were primarily the result of incompatibilities between the Linux GNU compiler and
the ARM compiler. In addition, | made some additional changes that are a result of the different requirements. As
already mentioned, under Linux the IrDA stack is accessed as a device driver, it looks like a physical network
interface to the higher layers. Any higher layer can bind to the stack and in turn the stack can bind to any available
(physical) device driver, e.g. drivers for different chipsets, IR dongles, both in SIR mode (where the use of serial
devices drivers easily allows you to run the IrDA stack via a serial cable) and in FIR mode. To support this
functionality some additional information is necessary to enable the binding between the different layers. This
information is mainly kept in the structures defining the various layers. In addition, in every packet passed as an
element of typesk_buf, information about the sending and receiving device instance must be kept to allow proper
routing in the network stack. On the SmartBadge this can be substantially simplified. There is only one instance of
any type of device, therefore device pointer lists kept in the various structures and device pointers as parameters tt
some functions could be removed and simply be replaced with a single global variable of this type. These changes
were applied in order to simplify the structure and to save memory. In this context | also removethtiie™ fields
that are defined in many of the structures to make sure that a pointer being assigned really points to an instance of thi
type. Some more variables that turned out not to be needed in this simplified environment were removed. It might
even be possible to remove further variables but | did not have the time to go into the code again and cross check
which variables one could safely get rid of without disturbing the stack’s operation.

A number of functions to manipulatk_buffs could also be removed as their functionality is not needed on
the SmartBadge. On the other hand some functions that are kernel functions in Linux had to be added for use with the
SmartBadge under Angel. These are mainly concerned with memory management, scheduling, and locking
mechanisms. As these might have to be adapted if the stack is ported to another OS they will be discussed in the ne»
section, along with the low level device driver. For the higher layers, except for the receive and transmit functions in
IrLAN which would also have to be adapted and are discussed in section 9.5, most of the code should be directly
portable to other systems.
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9.4 Changes at the Low-Level Interface, Porting to other
Operating Systems

The necessary changes in the low-level parts of the IrDA stack took place in the following areas:

1. memory management

2. locking mechanisms

3. timers and scheduling

4. device driver (irport.c, wrapper.c)

9.4.1 Memory Management

As the Linux IrDA stack is implemented as a Linux kernel module it uses special kernel functions for memory
management. The Linux kernel provides its own memory management. It manages a set of differently sized memory
blocks in a cache, the memory allocation routine then chooses a suitable block and returns it. Having predefined sizes
and the cache structure avoids fragmenting memory and provides high performance. As this kind of memory
management was not available on the SmartBadge under Angel, | changed all relevant function calls (mainly calls to
kmalloc() andkfree() (defined in /usr/src/linux/mm/slab.c) and some functionskbuff.c  that directly
accessed the memory pool) to use the standard library functimioc() andfree() . As far as memory
management is concerned the ported version should compile and run under any operating system that provides the
standard memory functions. In case an OS implements a different memory management it should be sufficient to
simply change all calls ahalloc() andfree() to the appropriate function.

9.4.2 Locking Mechanisms

As Linux is a multitasking system it has to provide the possibility to lock certain regions of code/memory for
exclusive use by one task and thus provides a number of mechanisms to achieve that. The kernel modules mainly use
a set of macros that are definedspinlock.h . They offer three debug levels, at level 0 (no debugging) most of
them don’t execute any actions, just a couple of them are defined to enable or disable interrupts and if necessary
save/restore the processor state flags. At higher debug levels additional checks are carried out. | only used level 0 and
thus it was enough to map the Linux functiook() and sti() (clear interrupts and set interrupts) to the
corresponding Angel function8ngel EnterSVC() and Angel_ExitToUSR() . They switch the processor
mode to CPU Supervisor Mode and back to User Mode. The functions are accessed using the mechanisms explained
in section 4.2. As these functions not only disable/enable the interrupts, but instead perform a complete mode switch
no processor flags need to be save/restored explicitly. Another set of functions, defioekllin , allows atomic
testing and setting/resetting of bits. This allows programs to lock a region for a longer time than would be possible by
executing in Supervisor Mode as this disables all interrupts. These functions are also based on
Angel_EnterSVC()  and Angel_ExitToUSR() . Again for porting to another OS it would be sufficient to
replace these two functions by the respective functions in the new OS. Depending on the implementation it might be
necessary to also implement the functicestore_flags(x) andsave_flags(x)

9.4.3 Timers and Scheduling

The IrDA stack is mainly event-driven, besides service requests by clients the events are communication events
(data arriving) and timer events. Each of the protocol layers uses a set of timers for different actions. The number of
timers required for the IrDA protocol stack is many more than the four hardware timers available on the StrongArm
processor. Therefore it is necessary to use software timers. Linux already provides these in the kernel, so | had to
implement software timers that can use the Linux timer datatgpeidt timer_list ). The solution was
presented in section 4.7.4. In order to port this code to another OS, the funostimeer_InitTimer() ,
ostimer_AddTimer() andostimer_DelTimer() have to be provided or the respective function calls have
to be replaced by equivalent calls. Also an equivalent to the var@dileer_ticks which keeps track of the
time base of the software timers has to be provided.

Furthermore the bottom-half-handler mechanism as described in section 4.7.4 has to be implemented or replaced.
All three currently implemented bottom-half-handlers are located in thepfile.c
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Note thatirlan_eth_flow_indication() in irlan_eth.c contains code to request execution of a
fourth bottom-half- handler when a device busy state has been cleared. The service is meant to schedule the highe
layers to send any packets that were buffered as a result of the busy condition. The Fusion IP/UDP stack that is
currently used doesn’t query the busy state of the device before sending, so no handler is supplied at the moment. |
this feature is to be used, then the stack has to query before sending and needs to buffer the frames if the device i
busy. When the device becomes available again, execution of the bottom-half-handler is requested through
irlan_eth_flow_indication() . The handler then has to notify the stack that it can now send the previously
buffered frames.

9.4.4 Device Driver

In this section | describe the implementation of the device diienrt.c in more detail. Basically | took the
existing Linux code and removed a few functions that turned out not to be relevant for the implementation on the
SmartBadge and replaced the bodies of most of the remaining functions with my own code, i.e. | left the interface the
same, but changed the internal implementation. The source code for thérgidelsc  , wrapper.c, and
wrapper.h is listed in Appendix C.

The code containgifdef SA1100 sections to differentiate between code for transmitting on the new Intel
StrongARM and the original StrongARM which has the SIR-transmission bug. At the time of coding | was expecting
SmartBadge 4 with the successor chip (SA1110) which doesn’t have this bug. In the meantime | received a couple of
SmartBadges equipped with the corrected Intel StrongARM. If defiadd100 means the original, buggy
StrongARM, while!SA1100 means the Intel StrongARM1100 or the StrongARM1110. The code for software
modulation is still contained in the file as | hoped to be able to do at least the initial discovery and negotiation in
software modulated SIR mode and then as soon as possible switch to FIR mode. But as described in section 5.2.2 |
turned out that in a system with a high rate of interrupts it is difficult to properly do software modulation.

Line 122 defines a constant which is used in line 397 to get around the UART TBY problem as described in
section 4.8.4.6.

In lines 161 ff. the “Quality of Service” structure is initialized with the available baud rates. It is used when setting
up the connection to negotiate the final data rate with the peer device. When doing software modulation only 9600
baud and 4 Mbaud are available. When using normal UART transmission all defined baud rates between 9600 baut
and 115200 baud for SIR as well as FIR will be supported in a final version. This version does not yet implement FIR
mode, mainly because FIR only makes sense in combination with DMA data transfers, otherwise the interrupt load
would probably be too high. | tried DMA with serial port 3, but did not succeed in making DMA work within a
reasonable amount of time. Although | now know of source code for the SmartBadge that successfully uses DMA.
Once it is determined how to configure the DMA controller, adding FIR mode for the IrDA stack should be relatively
straight forward. | have already added place-holder code in the obvious locations, thus mainly an FIR-interrupt
handler will have to be added. Since in FIR mode wrapping/unwrapping and CRC-checking are done in hardware the
FIR handler can directly deliver received data to the upper layer, without having to invoke the unstuffing process,
similarly transmit data can also be taken directly from the upper layer and transmitted without the need for executing
the stuffing code on the frame before transmission.

Line 173 ff. initializes the transmit and receive queues that hold the already mentioned sk_buffs. The size for the
device transmit and receive buffers is set, then two local buffers are allocated. I'll explain the function of these buffers
shortly.

The following functions deal with opening, closing, and starting the device. | chose to keep the Linux
terminology, although the names probably don’t always really match the functionality in my implementation, but this
allowed me to leave the interface the same and thus the higher layers did not have to be changed in terms of thei
interfacing to this code.

In line 299 the function irport_change_speed begins, it is responsible for programming UART 2 in order to
operate at the selected baudrate. As already mentioned currently only SIR mode is supported so the function only
needs to reprogram UART control register 2. Nevertheless it already contains all necessary code to deal with FIR as
well, just as soon as an interrupt handler is available.
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The next 2 functions toggle the device between transmit and receive mode. In case of

irport_sir_set_transmit_mode and a new processor not only the transmitter is enabled but also the transmit interrupt.
Thus the transmission immediately begins, i.e. the transmit buffer has to be set up before calling this function. For
software modulation mode an additional function is necessary to actually start the transmission.

Following the two mode select functions the interrupt handler for software modulated transmission is defined. For

more information see section 5.2.2.

The remaining functions are the core functions for sending and transmitting. I'll describe them in logical order,

starting with transmission:

If a packet has to be sernitlap_queue_xmit() (in irlap_frame.c ) enqueues the sk_buff holding the
data into the transmit quede_queue . Following that it requests the transmit bottom handler service by calling
ostimer_MarkBH(OSTIMER_BH_IRPORT_TRANSMIT) .

The next time a timer interrupt occurs the request is detectedirpnd_BHTransmit() (line 840) is

queued for execution. When this function is executed it first unmarks the bottom half handler request and then
checks if there is an element available in the transmit queue. If the device is not busy, the sk_buff is dequeued and
thefunction irport_hard_xmit() is called, the buffer is passed on as an argument.

irport_hard_xmit() (line 603) marks the device as busy and then copies the packet data into the device
transmit buffertx_buff | using the functionasync_wrap_skb  (in wrapper.c ) to do the framing and
stuffing. After that it callsirport_sir_set_transmit_data() which switches to transmission mode,
enables the transmit interrupt and thus starts the transmission.

The interrupt handler (line 649) detects that it is a transmit FIFO request andgails write_wakeup()

(line 553, another holdover from Linux, in order to save time by avoiding an additional function call this code
could be integrated into the interrupt handler itself). The function is executed every time a transmit interrupt
occurs and first checks, if there is any data left in the buffer. If so, it gets max(4, #bytes left in buffer) bytes and
writes these directly into the FIFO, thus transmitting them. Then it polls the “transmitter not full” flag and writes
as many additional bytes as possible. When at some time the buffer is empty it requests the transmit bottom
handler service again and switches to receive mode.

If there are packets left in the queue the process will start over, when the bottom half handler is executed the next
time.

For receiving the process begins in the interrupt handler:

When the receive FIFO has been filled to between one third and two thirds of its capacity, receive FIFO service is
requested via the interrupt.

The interrupt handler (line 649) reads as many bytes as are available and stores them in the local receive buffer
ir_ rec_buf .When itis finished it requests execution of the unwrap bottom half handler.

irport_ BHUnwrap() as usual clears the request and copies the data into the local ibutfewrap_buf

This operation is executed in supervisor mode to guarantee that it can lock the buffer. After releasing the lock by
returning to user mode, then for each byte the funetdymc_unwrap_char() is called.

async_unwrap_char() (wrapper.h ) is a wrapper that calls the appropriate function of the

unwrapping/unstuffing frame machine. The FSM functions copy each unstuffed data byte into the device receive
buffer (r_device.rx_buf ).

When a packet has been completed the appropriate state machine figtat®rinside_frame() calls
async_bump() (also inwrapper.c ) which allocates a nevwgk buff , copies the received data (from
ir_device.rx_buf ) into the sk_buff’s data buffer, and enqueues the skwbuff into the receiver queue
rx_queue |, if this is not yet full. Than it requests irport receive bottom half handler service.

irport_BHReceive() (line 872) unmarks the request and dequeues sk_buffs from the receive queue until
this is empty. Each sk_buff is passed up to the IrLAP layer by callapg driver_rcv()
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If the stack is to be ported to another system the following parts of irport potentially have to be changed, depending
on the interface the OS offers:

* Interrupt handler
* Integration of the bottom half handlers
* possibly access to the serial port

Note: the copy from ir_rec_buf to ir_unwrap_buf in irport_ BHUnwrap() is an addition to the Linux code. In Linux
asynch_unwrap_char is directly called by the interrupt handler when it has a byte to process. On the Smart-
Badge this lead to problems, my suspicion was that the unstuffing/unwrapping for some reason took too long
for an interrupt operation. | can't prove it, but after moving the unstuffing action into a callback these prob-
lems did not occur any more.

As already mentioned an FIR extension could directly pass the data olapgodriver_rcv() once a
complete frame has been received.

9.5 High-Level Interface, Integration of the IP/UDP Stack

At the upper boundary of the IrDA stack two functions are involved in the integration with the IP stack:

irlan_eth_xmit() andirlan_eth_receive() , both of them defined in the fildan_eth.c
In the IP stack the functionglan_device_read() and irlan_device_write() , both located in
irlan_device.c required some modification. The problem in combining these two stacks was that they use a

completely different memory management:

The IrDA stack uses the normal clib memory functions, malloc() andfree() . Using these functions,
memory blocks of typesk_buff are allocated, passed through the different layers, used and changed and finally
freed again. The most efficient way would have been to just pass these blocks on and up the IP stack as well. This wa
not feasible due to two main reasons:

* it would have caused a major rewrite of the stack to integrate these types into the existing structure

* the IP stack is compiled and linked with Angel, i.e. is part of the “kernel”. Angel does not provide the usual
malloc/free functions there - even if | had rewritten the functions in the IP stack to use the sk _buffs | could not
have released old or allocated new buffers. Angel and also the IP stack use a large static memory block and
implement their own memory management on top of that. This results in a model where the caller of a function, if
he passes in a buffer is returned an equivalent (possibly different) memory block in order to keep the balance.

My solution is as follows:

* write operationirlan_device_write() gets a buffer containing the data to transmit and has to return a
balance buffer to compensate for the received buffer. The function now just assigns the data buffer to the balance
buffer pointer. Then it callérlan_eth_xmit() which through an adapted interface gets the buffer and its
length. Withinirlan_eth_xmit() a newsk buff memory block is allocated and the data is copied into
it. Thesk_buff is then sent down the IrDA stacklan_device write() returns and delivers a balance
buffer which just happens to be the same one it got. When the IP stack is initialized a modified init function
(originally netstart_main() , how calledAngel_NetstartMain() ) is passed a pointer to a structure
containing the address ofan_eth_xmit() , i.e. the mechanism used to call Angel functions from outside is
now reversed (i.e., Angel is now able to call on user added functions within the kernel)

* read operation: here the case is a bit more diffigtlin_eth_receive() is called when there is new data
to deliver, i.e. it’ s purely event-driven. The IP stack on the other hand has to be polled for receiving operation.
irlan_eth_receive() takes the data out of the receivekl buff and copies it into an internal IP stack
buffer whose address it was passed during the initialization -- this is in the same structure as the pointer to
irlan_eth_xmit() . A further variable is set to the length of the received data. Then it calls the IP stack
polling functionethernet_process_one_packet() (with parameters buffer and length,) which queries
the lower layers (of the IP stack) if any packets have arrived. If so, then it processes them and passes them on t
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the appropriate higher layer callback functiethernet_process_one_packet() as being called has to
return an equivalent buffer to the callétan_eth_muxit() thus it passes in the buffer containing the new
data and in return gets another buffer which it can use for the next call.

In summary, to integrate the IrDA stack with an IP stack in IrDA only the two top-layer functions irlan_eth_xmit()

and irlan_eth_receive() have to be adapted. My solution was relatively easy to implement because it didn’t require
major changes, but is not a good solution in terms of performance as for each packet being sent and for each packet
being received the buffer has to be copied in one direction.

The main problems in the porting process were to understand the Angel and IP stack buffer management and the
fact that the IP stack is statically linked with Angel, thus for each small change in the code the whole Angel-image
had to be rebuilt and downloaded to the FLASH - and - if there is a problem, Angel may not even boot anymore.
While the IrDA stack debugging was not extremely easy, one could always get at least some information before the
program crashed. However, if there is an error in Angel one often does not get any information, which makes the
search for the error quite complicated and time consuming.

Apart from the necessary changes to make the two stacks interoperate | also changed some code in the modules
arp.c andbootp.c . Inthe arp module in functioarp_resolve() | replaced a simple counting loop to wait
between retransmission by an exponential backoff timeout based on the OS timer count register. Similarly in the
bootp module | replaced the ebsall10-specific timer code with an exponential backoff strategy again based on the
StrongARM timer count register.

9.6 UDP over the IrDA-Stack

Here, using a small example application acting as a UDP echo server on the Badge, | describe how to use the IrDA
stack together with the IP/UDP stack. First the main application is explained, then the function to initialize the IP
stack is discussed.

9.6.1 UDP Echo Server on the Badge

The following listing shows all necessary steps to set up and start the stacks and to transmit and receive UDP
packets via the socket interface:

1~

2 *  Description:

3 * Simple udp echo server demonstrating the use of UDP/IP over IrLAN

4 * via the socket interface.

5 *

6 *  The program initializes and starts both the IrDA stack and the IP

7 *  stack, requests an IP address via bootp then, sends three sample

8 *  UDP packets to a given destination address.

9 *  Afterwards it enters a loop checking for UDP datagrams sent to port
10 * 7, the echo port. Datagrams are read, print to stdout and returned
11 *  tothe sender.

12 =

13 *

14 *  --Christoph Wolf
15 * chwolf@it.kth.se
16 *

17 ¥

18

19

20 #include <stdio.h>

21 #include <string.h>

22 #include <stdlib.h>

23 #include <irda/timer.h>

24 #include <irda/irmod.h>

25 #include <util/util_interrupt.h>

Listing 35. UDP echo server on the Badge
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26 #include <util/util_serial.h>
27 #include <util/util_debug.h>

29 #include <irda/byteorder.h>
30 #include <irda/socket.h>
31 #include <irda/socket.h>

33 /I the timer channel to be used for the software timers
34 #define LIST_TIMER_CHAN 1

37 int SendUDPPacket(int sock);

38 unsigned int inet_addr(unsigned char a, unsigned char b,
39 unsigned char c,unsigned char d);

40 int ipstack_init(ip_addr client_ip, ip_addr cur_ip);

42 #define BUFLEN 512
45 int main(void)
46 {

48 I/ provide an ip address if bootp doesn't succede
49  ip_addr ip = {130,237,15,240};

50
51 inti;
52 int sock;

53 int len, ret;

54 struct sockaddr_in my_addr;
55 struct sockaddr source_addr;
56 int source_len;

57  char buf[BUFLEN];

59  printf("begin\n”);

60  fflush(stdout);

61 int_Init(); /l initialize the interrupt module

62  debug_Init(); /I initialize the debug module

63  debug_String(“\n\n\n\n\n\rmain: init\n\r");

64  misc_InitAngelFunctions(); // initialize the function pointers to
65 /I Angel functions

68  OSTIMER_DISABLE_INT_ALL; // disable all operating system timers
69 ostimer_InitListInt(LIST_TIMER_CHAN); //initialize the software
70 /I timer functionality

73 irda_init(); // start up the IrDA stack

76  if((ret=ipstack_init(ip, ip))!=0) // initialize the IP stack.

78 printf(“bootp not successful\n”);

83  // open a socket
84 if (0 > (sock = Angel_Socket(AF_INET, SOCK_DGRAM, 0)))

86 return -1;

87 }

88

89  // send some sample UDP datagrams
90 i = SendUDPPacket(sock);

Listing 35. UDP echo server on the Badge
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113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

printf(*SendUDPPacket() returned %d\n”, i);
i = SendUDPPacket(sock);
printf(*SendUDPPacket() returned %d\n”, i);
i = SendUDPPacket(sock);
printf(“SendUDPPacket() returned %d\n”, i);
fflush(stdout);

/' bind to the echo port on the local address
my_addr.sin_family = AF_INET,;
my_addr.sin_port = __constant_htons(7);
my_addr.sin_addr.s_addr = *(unsigned int*)ip;

if((ret=Angel_Bind(sock, &my_addr, sizeof(my_addr)))<0)

printf(*bind error: %d\n”, ret);
exit(1);

else

printf(“bind successful, entering loop\n”);

}

/I main program loop
while(1)

Il check if a datagram has arrived
if((len=Angel_RecvFrom(sock,buf, BUFLEN,O0,&source_addr,&source_len))> 0)
{

buf[len] = \0’;

/I print the contents of the datagram and send it back to the source
printf(“UDP: %s\n”, buf);

if((ret=Angel_SendTo(sock, buf, len, 0, &source_addr, source_len))<0)

printf(“send error: %d\n”, ret);

}
}

return O;

}

/I send a sample UDP datagram using a given socket, inet_addr is currently
/I defined in ipstart.c

int SendUDPPacket(int sock)

{

struct sockaddr _in to;
char msg|[] = “this is a sample udp packet\n”;

/*
* open the socket
*/

to.sin_family = AF_INET;
to.sin_port = __constant_htons(13);
to.sin_addr.s_addr = inet_addr(130,237,15,254); // unicast target

/I to.sin_addr.s_addr = inet_addr(255,255,255,255); // broadcast

return Angel_SendTo(sock, msg, sizeof(msg), 0, (struct sockaddr*)&to,

sizeof(to));
152 }

Listing 35. UDP echo server on the Badge
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After inclusion of the necessary header files the OS timer channel on which the software timer interrupt is to run
is defined in line 34.

Line 49 sets an IP address in case bootp fails.
After initializing the needed support code modules the IrDA stack is started in line 73 by icddlinigit()

Following that, the function to initialize the IP stack is called. This function is explained in more detail in
section 9.6.2.

After initialization and configuration of the IP stack a socket is opened and a function writes out three sample
datagrams. Note that the cast used for assigning the address toyhaddr " structure only works in little endian
mode, if the program is to be portable or to be used on a big endian system a conversion function has to be called.

Then the socket is bound to the local address and port 7 in line 104.

After successful binding an endless loop is entered which, using the socket furestidrom() constantly
checks if a datagram for the specified port has arrived. If so its contents are output to stdout and the datagram is ser
back to the source.

This simple example demonstrates all features to build more complex applications. For example it would be
straight forward now to write a program that listens on a specific port for certain commands and in response to these
streams out sensor values (the code for reading the sensor values could e.g. be taken from the HTTP server runnin
under VxWorks). Using the simple UDP command interface parameters like destination address and port, which
sensor values to transmit, update frequency, etc. could be configured dynamically.

In theory it also should be possible to stream audio data from and to the Badge. For this more testing would have
to be done regarding the number of available buffers (which at the moment is quite low). Also | found that the IR-link
is extremely sensitive to noise which is significantly increased if e.g. a microphone or a loudspeaker is attached to the
Badge. But Badge Version 4 is designed to provide a much better shielding between these components and with th
memory doubled audio applications via the IR link might get interesting.

9.6.2 The IP Stack Initialization in Detalil

This section explains the function used to start and configure the IP/UDP stack.
/*

*

Description:
Initialize the Angel IP/UDP stack after an IrLAN link has been
established by the IrDA stack. After IP stack initialization
get an IP address via BOOTP or set a static IP address (depending
on Angel configuration

Note: currently this setup does not support proper restart after
a link shutdown as the IP stack is only initialized once at
program start and this also involves setting the filters
in the access point so after a link shutdown the connection
will be reestablished but unless ipstack_init is executed
again the filters will remain disabled.

--Christoph Wolf
chwolf@it.kth.se

*O0F X X X X X X X X X X X *

*
~

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20 #include <string.h>

21 #include <stdio.h>

22

23 #include <util/util_misc.h>
24 #include <util/util_debug.h>

Listing 36. IP stack initialization code
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#include <irda/address.h>
#include <irda/netdevice.h>
#include <irda/irlan_common.h>

extern struct device irlan_dev;
extern unsigned char* irlan_recv_balance_buf;

extern unsigned char irlan_recv_buf[1600];
extern unsigned int irlan_recv_buf_count;

34 extern unsigned int irlan_recv_buf_size;

35

36 intirlan_eth_xmit(unsigned char* buff, int size);

37

38

39

40 int ipstack_init(ip_addr client_ip, ip_addr cur_ip)

41 {

42 structirlan_info_block info;

43 int ret;

44 struct irlan_cb *self;

45  char debug_buf[20];

46

47  DEBUG(4, “ipstack_init()\n");

48

49  // wait until unicast address has been received

50  while(lirlan_dev.nw_stack_init)

51 :

52

53  //initinfo block to exchange info between IrDA stack and IP/UDP stack

54

55  //transfer mac address from IrDA stack to IP/UDP stack

56  memcpy(info.hw_address, irlan_dev.dev_addr, MAC_ADDRESS_SIZE);

57

58 /I set function pointer to be called by irlan_device_write in

59 /I Angel\..\irlan_device.c

60 info.irlan_eth_xmit = (unsigned int *)irlan_eth_xmit;

61

62  // make addresses of IrDA stack receive variables known to IP/UDP

63  info.irlan_recv_buf =irlan_recv_buf;

64  info.irlan_recv_buf_count = &irlan_recv_buf_count;

65 info.irlan_recv_buf_size = &irlan_recv_buf_size;

66

67 [/l start the IP/UDP stack

68  if((ret=Angel_NetstartMain(&info))!=0)

69

70 /I fixme

71 printf(“error in Netstart\n”);

72 return ret;

73}

74

75 I/ get the balance buffer for IrDA - irlan_eth_receive

76  irlan_recv_balance_buf = info.balance_buf;

77

78 DEBUG(2, “Angel_NetstartMain() executed, IP/UDP stack initialized, now setting
filters\n”);

79

80  self = (struct irlan_cb *) irlan_dev.priv;

81 ASSERT(self I= NULL, return;);

82

83 /I both stacks initialized, open unicast filter

84  irlan_open_unicast_addr(self);

85

86  // Open broadcast filter, close multicast filter

87 irlan_set_broadcast_filter(self, TRUE);

Listing 36. IP stack initialization code
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88 irlan_set_multicast_filter(self, FALSE);
90 DEBUG(2, “unicast and broadcast enabled, multicast disabled, ready to go\n”);

92 // Ready to transfer Ethernet frames
93 irlan_dev.tbusy = 0;

95 DEBUG(2, “calling Angel_ConfigurelP()");

96 /I'IP stack is initialized, get/set IP address

97  if((ret=Angel_ConfigurelP(client_ip))!=0)
{

98
929 printf(“error in ConfigurelP\n");
100 DEBUG(1, “Angel_ConfigurelP(): bootp not successful\n”);
101 /I returnret;
102}
103

104  Angel_IPGetDeviceAddress(0, cur_ip);

105  sprintf(debug_buf, “%d.%d.%d.%d", cur_ip[0O], cur_ip[1], cur_ip[2], cur_ip[3]);
106 DEBUG_1(2, “Angel_AngelConfigurelP() executed, IP address is %s\n”,
107 debug_buf);

110 return ret;

112 return O;

115

116 // simple version of inet_addr with changed parameters to convert an IP

117 /I given as four bytes to the 32 bit address value
118 unsigned int inet_addr(unsigned char a, unsigned char b,

119 unsigned char c,unsigned char d)
120 {

121 unsigned char ip[4];

122

123  ip[0] = &;

124  ip[1] = b;

125 ip[2] =c;

126  ip[3] =d;

127  return *(unsigned int*)ip;

128 }

Listing 36. IP stack initialization code

Immediately after execution start the function enters a loop checking for a fldgrindev . This flag is set in
irlan_client.c after the loaned unicast address from the access point has been received. At that time the IP
stack is ready for initialization.

First the fields of therlan_info_block structure are set. This variable then is passed on to the actual IP
stack initialization function Angel_NetstartMain() which is an Angel function made accessible via the
standard mechanism. The passed info contains the address of the IrLAN transmit function which is to be called by the
low-level write function in the IP stack, and some pointers used to share access to a buffer where the IrLAN receive
function deposits newly arrived data and the corresponding IP-stack reading function collects it.

Upon return from the stack initialization the fialtfo.balance buf contains the pointer to a buffer that has
been allocated within the IP stack. When receiving datan_eth_receive() calls the IP stack function
ethernet_process_one_packet (accessed through the pointengel EthernetProcessOnePacket )
to get the packet read and processed. This function expects to be given a buffer and in turn returns an unused buffe
soirlan_eth_receive() passes in the pointer fofo.balance_buf and gets the new buffer back in the
same variable, so that it can directly be used again during the next call.
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Then the unicast and broadcast filters are opened, while the multicast filters are set to closed. At that time it is safe
to request IP configuration via a call fingel_ConfigurelP() , again a function pointer to an internal Angel
function. The function expects an IP address to configure the IP stack with, in case bootp is disabled or does not
succeed, in which case the supplied IP address will be set.

Finally the current IP address is read Bygel IPGetDeviceAddress() and returned to the user as a
pointer in the call tapstack_init() . By reading the return value the caller also can check if a bootp or user
supplied IP address was set.

After return from the function the IP stack is ready for use.

A problem is that currently the IP stack is configured only once at program start. While this works fine as long as
the IrDA link is established only once this works fine. But if the link is disrupted IrDA will reconnect but as the IP
stack initialization is only done at program start, therefore the filters (which are off by default) won't be opened by
the access point and no ethernet packets can be sent or received. If the stack has to be capable of dealing with
interrupted and resumed connections opening the filters has to be triggered by the IrDA stack upon establishment of a
connection. Actually this was the original setup but it turned out that executing the bootp request with its potentially
very long timeout (exponential backoff) spent in a busy loop would crash the IrDA stack because the necessary turn
around packets couldn’'t be generated any more. Therefore the code was moved to the main program where it can
easily be interrupted. The solution will have to be to trigger the IP stack initialization in the IrDA stack but execute it
in its own callback. Then the long timeout shouldn’t be a problem.

9.7 Current State, Known Problems, Improvements

The current state of the project is as follows

The implementation provides a working IrDA stack including IrLAN. Available baudrates range from 9600 to
115200 baud, preparations have been done for adding FIR support. IrLAN is integrated with the Fusion IP/UDP stack
which has been changed to interact with the IrDA stack and is compiled into Angel. The IP/UDP stack offers the
basic socket functionality, direct access to the UDP functions can be gained by exporting the functions via the
mechanism described in section 4.1.1. The IP stack uses BOOTP to request an IP-address at boottime, if BOOTP fails
a usersupplied address is configured.

Note: The IrDA stack is a full implementation, containing not only client but also provider functionality. Due to
time limits | could not test it but in theory not only access point mode between a Badge and an AccessPoint works but
also peer mode between two Badges should work or at least it should be possible to make it run with not too high
effort.

Known problems:

At the moment no severe problems are known, basic sending and receiving of UDP datagrams works fine, but |
did not have enough time to carry out intensive tests to check behaviour, memory needs and speed under heavy load.
There seems to be a little problem with reestablishing the link after a disruption - sometimes it happens that the debug
output seems to indicate a connection while the access point does not show a proper link. After disrupting once again
normally the connection is properly established.

In Linux the IrDA stack is implemented as a kernel module but controlled by a user space program called
irmanager. As this concept is not available on the Badge | tried to integrate the irmanager actions directly into the
stack. Possibly the problem with link close-down and reestablishment is located there, the irmanager events are
involved in shutting down a connection.

A second issue is that at the moment the IP stack is initialized by the main program after the IrDA stack has been
set up and set a flag indicating a connection. So after link shut down the IP stack currently is not reinitialized.
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Possible improvements, further work:

The solution works, but is far from being optimal. In the given amount of time | managed to provide a working
platform but the code could be heavily optimized. The code has been ported to the Badge under Angel but the Linux
structure has been widely kept, as the stress was on getting a working platform first, so the code should be changed ¢
few as possible. Now starting with this working implementation it could be refined step by step by removing further
code that is not needed on the Badge. In this context a minimal version could be built (without provider functionality)
to minimize the memory needs. Also some functions could be integrated into one the other to avoid having too many
layers of function-calls which costs performance on this type of processor as it potentially breaks the pipeline.

Another issue is the interface between the IrDA stack and the IP stack. As described before the memory
management is completely different and thus an inefficient interface results. Better integration of the two stacks might
improve its performance.

159



Conclusions and Further Work

10. Conclusions and Further Work

In this chapter | will present my conclusions and give a few ideas for further work.

After an introduction to the underlying hardware platform and the available operating systems | examined a few
of the units provided by the StrongARM microprocessor in more detail. The work in these topics resulted in a small
library that allows easy use of the most important units such as serial I/O, general purpose /O, interrupts, timers. It
also contains functions and declarations to aid in the debugging process and to access internal Angel functions which
are not directly accessible otherwise. This was an important base for the further work that relied heavily on the
possibility to queue time consuming tasks in interrupt handlers for later execution.

| further did some tests concerning the code generation, the influence of the caches and upper bounds on the
toggling frequency for 1/0-pins and discussed various methods of debugging embedded systems. One chapter deals
with the possibility to do infrared transmission using software modulation instead of the erroneous hardware
modulation unit in the original StrongARM processor. Using the results from the earlier work concerning the caches
| could show that basically it is possible to do modulation under software control at 9600 baud. It turned out though
that under heavy interrupt load as in the case of the IrDA protocols software modulated transmission was not reliable.

The main part of my work was to implement the IrDA protocol stack on the Badge. The result is a port of the
Linux IrDA kernel module to the Badge. | have integrated the IrDA stack with the Fusion IP/UDP stack which now
allows to acquire an IP address at boottime using the BOOTP protocol and following the setup to send and receive
UDP packets using the socket interface. The chapter describing my implementation also describes which parts have
to be looked at in particular if the stack has to be ported to another operating system on the Badge.

In discussions with my advisor Prof. Gerald Maguire and during my work various ideas for additional tasks
turned up. Due to lack of time some of them could not be done in the scope of this work. | will present a few of them
in the following lines:

e Section 4.5.3, “Maximum Toggling Frequency of GPIO and PPC Pins,” on page 50:

It would be interesting to investigate if the difference in execution time between the standalone SRAM and the
Angel SRAM version actually is related to the MMU. This could be examined by building a standalone version
that enables the MMU.

* In section 4.6.2 the trimming of the RTC clock was discussed. While this involves a manual trimming one could
imagine a setup to allow automatic trimming of the RTC clock. This could be done by feeding a know frequency
at one of the GPIO pins and on another pin feeding back the signal output at GP1027 which is the internal clock
rate. Using interrupt driven edge detection one could count the transitions and by comparing them could
automatically compute the trim factor. By extending the measurement time the precision can easily be made as
high as necessary to have full precision as offered by the limited precision trim factor.

* In Section 4.8.4.6 | talked about detecting the end of a transmission: The PPC contains a register that controls and
monitors the pin state (PPSR). This register can be read at any time, even if the pin is under control of a
peripheral. Thus it should be possible to monitor the activity on the transmit pin to detect the end of the
transmission instead of waiting in a fixed loop.

* Angel supports debugging via Ethernet. Now with the IrDA stack running this could be used to do debugging via
FIR as soon as FIR is supported. Apart from the FIR driver this would only require one more file (arm_ether.c
which maps the between the network stack and the Angel device driver framework). This would allow to do the
debugging, especially downloading of files, at a much higher rate than is currently possible using the serial link.

* |twould be interesting to carry out measurements on the CPU load overhead that the IrDA protocols impose. This
could be done by running in a loop and counting how often the loop is executed in a certain time (measured using
the OS timer count register). By comparing that to a setup without running the IrDA protocols one can deduct a
lower bound caused by the continuos receiver-ready messages that have to be exchanged. By then starting to send
network packets one can measure the overhead caused by passing through all the layers and statemachines.

160



Conclusions and Further Work

| have not had the time to calculate the memory requirements - the linker map could be used to calculate the size
for the different targets and the different IrDA layers.

In the case of IrLAN transporting only IP traffic the question arose if IrTTP really is necessary. Only one channel
is use, therefore deadlocks shouldn’t be a problem. As far as packet loss is concerned, if a UDP application need:
reliable transmission it has to implement its own protocol anyway. And the case of segmentation can be solved by
setting the MTU of the IP stack. So it might be possible to remove IrTTP and just fake the packets in order to have
the access point, which of course requires IFrTTP compliant packets accept them. But locally a complete layer
could be saved which should increase the performance.

More testing should be done with the IrDA implementation and as already mentioned by refining the base code it
should be possible to shrink the size. Also it should be tested how the stack behaves under heavy load and how it:
behaviour is influenced by the amount of buffers (which are currently set to a very small number in order to save
memory). Moreover | just took the link configuration values (Ir(LAP) as set in Linux. One could experiment if
changing the turn-around-times, window size, etc. can improve the performance.
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Acronyms and Abbreviations

4PPM
ADC
APCS
CODEC
DAA
DMA
DRAM
FIFO
FIR
FLASH-RAM
FSM
GPIO
HDLC
IAP

IAS

P

IC

IrDA
I'LAN
Ir'LAP
IrLMP
IrPHY
IrTTP
ISAP
LM-MUX
LSAP
LSAP-Sel
LSB
MAC
MMU
MSB
PCMCIA
PDU
PPC
RISC
RTC
SDLC
SDRAM
SDU

Four-position pulse modulation
Analog-Digital-Converter

ARM Procedure Call Standard
Coder/decoder

Data access arrangement

Direct Memory Access

Dynamic random access memory
First-In-First-Out

Fast Infrared Mode

Electrically alterable read-only memory
Finite State Machine

General Purpose Input/Output
High-Level Data Link Control
Information Access Protocol
Information Access Service
Internet Protocol

Instruction Cache

Infrared Data Association

Infrared LAN

Infrared Link Access Protocol
Infrared Link Management Protocol
Infrared Physical Layer

Infrared Tiny Transport Protocol
IrLAP Service Access Point
Link Management Multiplexer

Link Service Access Point

Link Service Access Point Selector
Least significant bit/byte

Media Access Control

Memory Management Unit

Most significant bit/byte

Personal computer memory card interface adapter
Protocol Data Unit

Peripheral Pin Controller

Reduced Instruction Set Computer
Real Time Clock

Synchronous Data Link Control
Synchronous DRAM

Service Data Unit
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Acronyms and Abbreviations

SIR
SRAM
TSAP
TTPSAP
UART
ubpP
USB
XID

Hewlett-Packard Serial Infrared Standard
Static random access memory

IFTTP Service Access Point

IFTTP Service Access Point

Universal Asynchronous Receiver/Transmitter
User Datagram Protocol

Universal Serial Bus
Exchange Station Identification
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Appendix A. Infrared support code

This chapter contains the listings for the source code related to infrared communication as
described in Chapter 5. "Infrared Communication”. The code is split into three files, a
common header file (util_ir.h) and two C-files, containing the functions to support SIR-mode
(both software modulation and UART based, util_sir.c) and FIR-mode (util_fir.c).

A.1 The Header File, Containing Constants and Macros

To keep the listing short only the pure function prototypes are printed here while the corresponding descriptions

have been removed. They are contained in the headettifilér.h though and they are included in the listings of
the two C-files in the following sections.

/*

*  Description:

* Type declarations and defines for use with the infrared code.

*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

#ifndef util_ir_h
#define util_ir_h

#include <util/util_misc.h>

#include <util/util_gpio.h>

#include <util/util_ppc.h>

#include <util/util_ringbuf.h>

#ifndef SIR_UART_TRANSMISSION

#include <util/util_ostimer.h>
#endif

#define IR_UART_BASE UART2_BASE /* UART (Infrared port low speed) base */
#define HSSP_BASE 0x80040060 /* HSSP (Infrared port high speed) base */

/* HSSP (High speed infrared) register offsets from base address */

#define HSCRO 0x00 /* HSSP Control Register 0 */

#define HSCR1 0x04 /* HSSP Control Register 1 */

#define HSDR 0x0C /* HSSP Data Register */

#define HSSRO 0x14 [* HSSP Status Register 0 */

#define HSSR1 0x18 [* HSSP Status Register 1 */

#define HSCR2 0x28 [* HSSP Control Register 2 (located */
/*in PPC address space ! =/

[* complete address 0x9006 0028) */

[* HSSP control register 0 bits */

#define HSCRO_ITR 1 /* IrDA transmission rate */

#define HSCRO_LBM 2 /* Loopback Mode */

#define HSCRO_TUS 4 /* Transmit FIFO Underrun Select */
#define HSCRO_TXE 8 /* Transmit Enable*/

#define HSCRO_RXE 16 /* Receive Enable */

#define HSCRO_RIE 32 /* Receive FIFO Interrupt Enable */

Listing 37. Constants, macros and function prototypes for IR on the SmartBadge
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#define HSCRO_TIE 64 /* Transmit FIFO Interrupt Enable */
#define HSCRO_AME 128 /* Address Match Enable */

[* HSSP control register 2 bits */
#define HSCR2_TXP 4 /* Transmit Pin Polarity Select */
#define HSCR2_RXP 8 /* Receive Pin Polarity Select */

[* HSSP status register 0 bits */

#define HSSRO_EIF 1 /* Errorin FIFO */

#define HSSRO_TUR 2 /* Transmit FIFO Underrun*/
#define HSSRO_RAB 4 /[* Receiver Abort */

#define HSSRO_TFS 8 /* Transmit FIFO Service Request */
#define HSSRO_RFS 16 /* Receive FIFO Service Request */
#define HSSRO_FRE 32 /* Framing Error */

[* HSSP status register 1 bits */

#define HSSR1_RSY 1 /* Receiver Synchronized Flag */
#define HSSR1_TBY 2 /[* Transmitter Busy Flag*/
#define HSSR1_RNE 4 /* Receive FIFO not empty */
#define HSSR1_TNF 8 /* Transmit FIFO not full */
#define HSSR1_EOF 16 /* End of Frame */

#define HSSR1_CRE 32 /* CRC Error */

#define HSSR1_ROR 64 /* Receive FIFO Overrun */

/* GPIO 26 used as mode select for IrDA transceiver */
#define IRSD GPIO26

/ *kkkkkkkk * * * *kkk * * * *kkkkkkkk x/

* macros related to serial port 2 */
/ /

[* select HP-SIR modulation (UART) or 4PPM modulation (HSSP) / including

* setting of the mode pin for the transceiver.

*/

#define IR_SEL_SIR REG(HSSP_BASE,HSCRO0) &= ~0x1; \
GPIO_SET_OUTPUT(IRSD);GPIO_CLEAR_PIN(IRSD)

#define IR_SEL_FIR  REG(HSSP_BASE,HSCRO) |= 0x1; \
GPIO_SET_OUTPUT(IRSD);GPIO_SET_PIN(IRSD)

[* set the polarity of the TxD2, RxD2 pins to true (non-inverted) or inverted */

/* Note: HSSP and UART must be disabled (TXE=RXE=0) when changing the state

* of these bits !!!

* Note: FIR mode on the Badge only seems to work if RXD2 is inverted !!

*/

#define IR_SET_POLARITY_TXD2_TRUE  (REG(PPC_BASE, HSCR2) |= BIT18)
#define IR_SET_POLARITY_TXD2_INVERTED (REG(PPC_BASE, HSCR2) &= ~BIT18)
#define IR_SET_POLARITY_RXD2_TRUE (REG(PPC_BASE, HSCR2) |= BIT19)
#define IR_SET_POLARITY_RXD2_INVERTED (REG(PPC_BASE, HSCR2) &= ~BIT19)

/ /
I* macros related to serial port 2 UART mode */

[rH* * * * * * * * /

/* SER_UART_IRDA_SIR_*ABLE always enables low power mode, and dis/enables
the SIR mode of serial port 2 (SIR or normal UART modulation) */

I/ before changing the bits in UTCRA4, transmitter and receiver !
Listing 37. Constants, macros and function prototypes for IR on the SmartBadge
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/I have to be disabled !
#define IR_UART SIR_ENABLE (REG(UART2 BASE,UTCR4) = 0x3)
#define IR_UART_SIR_DISABLE (REG(UART2_BASE,UTCR4) = 0x2)

[x* * * * * * * * /

I* macros related to serial port 2 HSSP mode *

* *kkkkkkkk * *kkk * * *kkkkk x/

/* (disable UART 2), en/disable HSSP transmitter and/or receiver
* (use 1/0 as arguments)
*/
#define IR_HSSP_EN(txd, rxd) \
(REG(HSSP_BASE,HSCRO) =1 | (txd)<<3 | (rxd)<<4)

/* completely shutdown the HSSP and give TxD2-,RxD2-control to the PPC if
* UARTZ2 is not enabled.

*/

#define IR_HSSP_SHUTDOWN (REG(HSSP_BASE, HSCRO) = 0x0)

/* set the address match value in control register 1 */
#define IR_HSSP_SET_ADDRESS(addr) (REG(HSSP_BASE,HSCR1) = addr)

/* en-/disable HSSP loopback */
#define IR_HSSP_ENABLE_LOOPBACK (REG(HSSP_BASE,HSCRO) |= HSCRO_LBM)
#define IR_HSSP_DISABLE_LOOPBACK (REG(HSSP_BASE,HSCRO0) &= ~HSCRO_LBM)

[* set transmitter underrun behaviour (end frame regularly/abort frame) */
#define IR_HSSP_TUS_ABORT (REG(HSSP_BASE,HSCRO) |- HSCRO_TUS)
#define IR_HSSP_TUS_END (REG(HSSP_BASE,HSCRO0) &= ~HSCRO_TUS)

/* enable receiver and/or transmitter */

#define IR_HSSP_ENABLE_R (REG(HSSP_BASE,HSCRO0) |= HSCRO_RXE)

#define IR_HSSP_ENABLE_T (REG(HSSP_BASE,HSCRO0) |= HSCRO_TXE)

#define IR_HSSP_ENABLE_TR (REG(HSSP_BASE,HSCRO) |= (HSCRO_RXE | HSCRO_TXE))

/* disable HSSP receiver and/or transmitter */

#define IR_HSSP_DISABLE_R REG(HSSP_BASE,HSCRO0) &= ~HSCR0O_RXE

#define IR_HSSP_DISABLE_T REG(HSSP_BASE,HSCRO0) &= ~HSCRO_TXE

#define IR_HSSP_DISABLE_TR REG(HSSP_BASE,HSCRO0) &= ~(HSCRO_RXE | HSCRO_TXE)

/* enable HSSP receiver and/or transmitter interrupt */

#define IR_HSSP_ENABLE_RI (REG(HSSP_BASE,HSCRO) |= HSCRO_RIE)

#define IR_HSSP_ENABLE_TI (REG(HSSP_BASE,HSCRO) |= HSCRO_TIE)

#define IR_HSSP_ENABLE_TRI (REG(HSSP_BASE,HSCRO) |= (HSCRO_RIE | HSCRO_TIE))

/* disable HSSP receiver and/or transmitter interrupt */

#define IR_HSSP_DISABLE_RI (REG(HSSP_BASE,HSCRO0) &= ~HSCRO_RIE)

#define IR_HSSP_DISABLE_TI (REG(HSSP_BASE,HSCRO0) &= ~HSCRO_TIE)

#define IR_HSSP_DISABLE_TRI (REG(HSSP_BASE,HSCRO0) &= ~(HSCRO_RIE | HSCRO_TIE))

/* en-/disable HSSP address match functionality */
#define IR_HSSP_ENABLE_ADDR_MATCH (REG(HSSP_BASE,HSCRO) |= HSCRO_AME)
#define IR_HSSP_DISABLE_ADDR_MATCH (REG(HSSP_BASE,HSCRO0) &= ~HSCRO_AME)

#define IR_HSSP_SET_ADDR_MATCH(amv) (REG(HSSP_BASE, HSCR1) = (amv))
#define IR_HSSP_GET_ADDR_MATCH  (REG(HSSP_BASE, HSCR1))

/* macros to clear sticky status bits in status register 0 */

#define IR_HSSP_CLEAR_STATUS_BITS_ALL (REG(HSSP_BASE, HSSRO) = OxFF)
#define IR_HSSP_CLEAR_STATUS_BITS_TUR (REG(HSSP_BASE, HSSRO0) = BIT1)
#define IR_HSSP_CLEAR_STATUS_BITS_RAB (REG(HSSP_BASE, HSSRO0) = BIT2)
#define IR_HSSP_CLEAR_STATUS_BITS_FRE (REG(HSSP_BASE, HSSRO0) = BIT5)

Listing 37. Constants, macros and function prototypes for IR on the SmartBadge
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[* macros for querying the status flags in status register 1 */

#define IR_HSSP_REC_SYNC_Q (REG(HSSP_BASE,HSSR1) & HSSR1_RSY)

#define IR_HSSP_TRANSM_BUSY_Q (REG(HSSP_BASE,HSSR1) & HSSR1_TBY)
#define IR_HSSP_REC_NOT_EMPTY_Q (REG(HSSP_BASE,HSSR1) & HSSR1_RNE)
#define IR_HSSP_TRANSM_NOT_FULL_Q (REG(HSSP_BASE,HSSR1) & HSSR1_TNF)
#define IR_HSSP_EOF_Q (REG(HSSP_BASE,HSSR1) & HSSR1_EOF)

#define IR_HSSP_CRC_ERROR_Q (REG(HSSP_BASE,HSSR1) & HSSR1_CRE)
#define IR_HSSP_REC_OVERRUN_Q (REG(HSSP_BASE,HSSR1) & HSSR1_ROR)

[* read/write a byte directly from/to HSSP data register */
#define IR_HSSP_PUT_BYTE_DIRECT(ch) (REG(HSSP_BASE,HSDR) = ch)
#define IR_HSSP_GET_BYTE_DIRECT (REG(HSSP_BASE,HSDR))

/ *kkkkkkkk * * * * *kkk * * * *kkkkkkkk x/

* FIR function prototypes */
/ /

void fir_Init(BOOL receive_int_en, BOOL transm_int_en, BOOL addr_match_en,
UC8 addr_match_val);

[* constants to be used as parameters for fir_Init */
#define HSSP_INIT_RECEIVE_INT_DIS 0
#define HSSP_INIT_RECEIVE_INT_EN 1

#define HSSP_INIT_TRANSMIT_INT_DIS 0
#define HSSP_INIT_TRANSMIT_INT_EN 1

#define HSSP_INIT_ADDR_MATCH_DIS 0
#define HSSP_INIT_ADDR_MATCH_EN 1

void fir_PutBytePolled(unsigned char ch);
unsigned char fir_GetBytePolled(void);

[rH* * * * * * * * * * /

I* general SIR declarations and functions */

[FRExFkkkkkkk Kkkkkkkkkkkkkkkkkkk xxxxxx/

void sir_Init(int );

void sir_SetReceiveMode(void);

void sir_SetTransmitMode(void);

int sir_EnqueueTransmData(UC8* data, UC8 length);
void sir_EnqueueTransmByte(UC8 byte);

int ir_SirQueueDataMultiple(UC8 val, int count);
BOOL sir_NewReceiveData_Q(void);

int sir_GetReceiveCount(void);

int sir_GetReceiveData(UC8* data, int len);

[rH* * * * * * * * * /

/* UART SIR declarations and functions */

Kkkkkkkkk Kkkkkkkkkkkkkkkkkkk xxxxxx/

/*

* delay to allow transmitter busy flag to be set after start of
* transmission.

*/

#define SIR_TRANSM_BUSY_DELAY 200

void sir_RestartTransmUART (void);

Listing 37. Constants, macros and function prototypes for IR on the SmartBadge
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/ * *kkkkkkkk * * * * *kkk * * * *kkkkk x/

/*  declarations and functions related to SIR software modulation */
/

extern RingBuffer sir_transmit_buf;
extern RingBuffer sir_receive_buf;
extern RingBuffer sir_sw_debug_buf;

#define IR_OSM_FACTOR 24
#define SIR_OSTIMER_CHANNEL OSTIMER_CHANNEL_3

#define RX_BUF_SIZE 12

#define FIRST_PERIOD 0
#define SECOND_PERIOD 1

#define SIR_TRANSMIT_BUF_SIZE 2000
#define SIR_RECEIVE_BUF_SIZE 2000
#define SIR_SW_DEBUG_BUF_SIZE 2000

void sir_TransmitDataSW(void);
BOOL sir_SWTransmitting_Q(void);
void sir_PrintDebugBuf(void);

#endif
Listing 37. Constants, macros and function prototypes for IR on the SmartBadge

A.2 Implementation of the SIR-Functions

*  Description:

* Code to support infrared communication in SIR mode on the Badge.
* SIR operation can be changed between software modulation and

* use of the serial port 2 UART on newer revisions of the SA-1100

* by commenting/uncommenting the symbol SIR_UART_TRANSMISSION. When
* code in this file is used it has to be made sure that util_sir.c

* is compiled with the right setting for the intended use. Otherwise

* the results are unpredictable !

*

*

*

*

*

--Christoph Wolf
chwolf@it.kth.se

/*

* configuration (do software or hardware transmission, enable software
* modulation counters, enable debug output into a ringbuffer during

* software modulation).

* An option is enabled if the symbol is defined and disabled if the

* symbol definition is commented out.

*/

#define SIR_UART_TRANSMISSION

/#define SIR_DEBUG_SOFTWARE_SIR

/l#define SIR_SW_DEBUG_BUF

#include <stdio.h>
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#include <util/util_ir.h>
#include <util/util_ppc.h>
#include <util/util_serial.h>
#include <util/util_interrupt.h>
#include <util/util_misc.h>
#include <util/util_ostimer.h>
#include <util/util_ringbuf.h>
#include <util/util_debug.h>

/* external variables to check if certain modules have been initialized */
extern int misc_initialized,;
extern int debug_initialized,;

[* The SIR interrupt handler */
void sir_IntHandler(unsigned int ident, unsigned int data,
unsigned int empty_stack);

[* Switch on or off debug output */
#ifdef SIR_DEBUG_SOFTWARE_SIR
#define DEBUG_STRING(c) debug_String(c)
#define DEBUG_PUT_BYTE(c) debug_PutByte(c)
#define DEBUG_PUT_BYTE_DIRECT(c) SER_UART_PUT_BYTE_DIRECT(DEBUG_UART_BASE, c)
#define DEBUG_PUT_BYTE_HEX(c) debug_PutByteHex(c)
#else
#define DEBUG_STRING(c)
#define DEBUG_PUT_BYTE(c)
#define DEBUG_PUT_BYTE_DIRECT(c)
#define DEBUG_PUT_BYTE_HEX(c)
#endif

[* Buffer to contain debug output from the software modulation function
to allow an exact trace of the executed sequence.

*/

#ifdef SIR_SW_DEBUG_BUF
RingBuffer sir_sw_debug_buf;

#endif

[* The SIR transmission and receive buffers */
RingBuffer sir_transmit_buf;

RingBuffer sir_receive_buf;

int sir_transmit_buf_size = SIR_TRANSMIT_BUF_SIZE;
int sir_receive_buf_size = SIR_RECEIVE_BUF_SIZE;

BOOL sir_new_receive_data;

[* Debug counter variables for software modulation */
#ifdef SIR_DEBUG_SOFTWARE_SIR

int sir_int_total = 0;

int sir_int_restart = 0;

int sir_int_3=0;

int sir_int_16=0;

int sir_int_13=0;

int sir_int_mask=0;
#endif

/*
* Function: sir_Init

* Purpose: Initialize serial port 2 for SIR mode
*
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* Parameters:

*  Input: baudrate the desired baudrate, if in UART mode

* ostimer_channel the timer channel to be used if in software
* modulation mode

*

*

Returns: void

*
* The behaviour of this function is determined by the symbol SIR_UART_TRANSMISSION.
* If it is defined, the function initializes serial port 2 UART to use the
* given baudrate and does all other necessary setup.
* If the symbol is not defined the function sets up everything for software
* modulation.
*/
#ifdef SIR_UART_TRANSMISSION // use UART for SIR transmission

void sir_Init(int baudrate)

#else

/I default initialization of global software modulation variables

int sir_ostimer_channel = SIR_OSTIMER_CHANNEL; // timer channel to use
int sir_ostimer_int = INT_OSTIMER_0 + SIR_OSTIMER_CHANNEL;

volatile BOOL sir_sw_transmitting = FALSE;

/I the interrupt handler for software modulation transmission.
void sir_SWTransmitintHandler(unsigned int ident, unsigned int data,
unsigned int empty_stack);

void sir_Init(int ostimer_channel) // use software modulation for transmission
#endif
{ . .
/I Allocate memory for the transmit and receive buffers and for the
/I software modulation debug buffer, if debug is enabled.
sir_transmit_buf.data = (unsigned char*) malloc(sir_transmit_buf_size);
if(sir_transmit_buf.data)
{
sir_transmit_buf.size = sir_transmit_buf_size;

}

else

printf(“not enough memory for ir transmit buffer\n”);
exit(1);

sir_receive_buf.data = (unsigned char*) malloc(sir_receive_buf_size);
if(sir_receive_buf.data)

{

sir_receive_buf.size = sir_receive_buf_size;

}

else

printf(“not enough memory for ir receive buffer\n”);
exit(1);

#ifdef SIR_SW_DEBUG_BUF
sir_sw_debug_buf.data = (unsigned char*) malloc(SIR_SW_DEBUG_BUF_SIZE);
if(sir_sw_debug_buf.data)

sir_sw_debug_buf.size = SIR_SW_DEBUG_BUF_SIZE;
}

else

printf(“not enough memory for debug buffer\n”);
exit(1);
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#endif

/I to make sure, shutdown HSSP unit
REG(HSSP_BASE, HSCRO) = 0;

/' just to make sure, in case FIR mode has been used before
IR_SET_POLARITY_RXD2_TRUE;

/I set SIR mode for serial port 2 and set the mode pin accordingly
IR_SEL_SIR;
IR_UART_SIR_ENABLE;

#ifdef SIR_UART_TRANSMISSION

/I setup the UART for the given baudrate and the required frame

/I format

ser_UartInit(IR_UART_BASE, baudrate, SER_INIT_PARITY_DIS,
SER_INIT_PARITY_ODD, SER_INIT_ONE_STOP_BIT,
SER_INIT_DATA_SIZE_8, SER_INIT_RECEIVE_INT_EN,
SER_INIT_TRANSMIT_INT_DIS);

#else
/I install software modulation code
PPC_SET_OUTPUT(TXD2);
sir_ostimer_channel = ostimer_channel;
OSTIMER_ENABLE_INT(sir_ostimer_channel);
sir_ostimer_int = INT_OSTIMER_O+sir_ostimer_channel;
int_InstallHandler(sir_ostimer_int, sir_SWTransmitintHandler);

if('misc_initialized)

misc_InitAngelFunctions();

}

/I seems to be necessary for proper function
misc_SysDisableWriteBuffer();

/I setup the UART for 9600 baud receive operation

ser_Uartinit(IR_UART_BASE, SER_INIT_BAUD_9600, SER_INIT_PARITY_DIS,
SER_INIT_PARITY_ODD, SER_INIT_ONE_STOP_BIT,
SER_INIT_DATA_SIZE_8, SER_INIT_RECEIVE_INT_EN,
SER_INIT_TRANSMIT_INT_DIS);

#endif
/I install the interrupt handler for the UART
int_InstallHandler(INT_UART?2, sir_IntHandler);

if('debug_initialized)

debug_Init();

return;

/I the code for software modulation
#ifndef SIR_UART_TRANSMISSION

volatile static unsigned char sir_sw_current_byte;

volatile static unsigned int sir_sw_state = FIRST_PERIOD;
static int sir_sw_bit_count=10;

/*

* Function: sir_SWTransmitintHandler
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Purpose: Do software modulation to provide SIR transmission

*
*
* Parameters:
*  Input: interrupt handler parameters suppplied by Angel
*
*

Returns: void

* This is an interrupt handler for one of the ostimer channels. When the timer

* match first occurs after unmasking the interrupt the handler tries to read a

* byte out of the SIR transmission ring buffer. This byte then is transmitted

* by modulating the TXD2 pin under PPC control according to the SIR standard.

* This is continued until the transmit buffer is empty, in which case the

* interrupt is masked.

*/

void sir_SWTransmitintHandler(unsigned int ident, unsigned int data, unsigned int
empty_stack)

#ifdef SIR_DEBUG_SOFTWARE_SIR
sir_int_total++;
#endif

[* last byte finished, get new byte */
if(sir_sw_hit_count>=10 && ringbuf_GetCountInt(&sir_transmit_buf)>0)
{
sir_sw_current_byte = ringbuf_ReadByte(&sir_transmit_buf);
DEBUG_PUT_BYTE_DIRECT(sir_sw_current_byte);

sir_sw_bit_count=0;
sir_sw_state = FIRST_PERIOD;

#ifdef SIR_DEBUG_SOFTWARE_SIR
sir_int_restart++;
#endif

#ifdef SIR_SW_DEBUG_BUF
ringbuf_WriteByte(&sir_sw_debug_buf, ‘r);
#endif
}

if(sir_sw_state==FIRST_PERIOD)

/I start bit or zero data bit -> generate 3/16th pulse
if(sir_sw_bit_count==0 ||
(I(sir_sw_current_byte & 1<<(sir_sw_bit_count-1)) && sir_sw_bit_count
<=8) )
{
OSTIMER_INC_MATCH_REG(sir_ostimer_channel, IR_OSM_FACTOR*3);

/Il set pin high
PPC_SET_PIN(TXD2);

sir_sw_state = SECOND_PERIOD;

#ifdef SIR_DEBUG_SOFTWARE_SIR
sir_int_3++;

#endif

#ifdef SIR_SW_DEBUG_BUF
ringbuf_WriteByte(&sir_sw_debug_buf, ‘H’);

#endif

else // data bitis 1 -> zero period or it is the stop bit

if(sir_sw_bit_count == 9)
{ /l'longer pause after last bit
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OSTIMER_INC_MATCH_REG(sir_ostimer_channel, IR_OSM_FACTOR*48);
}

else

OSTIMER_INC_MATCH_REG(sir_ostimer_channel, IR_OSM_FACTOR*16);
}

Sir_sw_bit_count++;

#ifdef SIR_DEBUG_SOFTWARE_SIR
sir_int_16++;
#endif
#ifdef SIR_SW_DEBUG_BUF
ringbuf_WriteByte(&sir_sw_debug_buf, ‘0);
#endif
}

}
else // state SECOND_PERIOD
{
/1 13/16th low time
OSTIMER_INC_MATCH_REG(sir_ostimer_channel, IR_OSM_FACTOR*13);

/I set the pin low
PPC_CLEAR_PIN(TXD2);
sir_sw_state = FIRST_PERIOD;
sir_sw_bit_count++;

#ifdef SIR_DEBUG_SOFTWARE_SIR
Sir_int_13++;

#endif

#ifdef SIR_SW_DEBUG_BUF
ringbuf_WriteByte(&sir_sw_debug_buf, ‘L’);

#endif

/I clear the interrupt request flag
OSTIMER_RESET_INT(sir_ostimer_channel);

Il byte finished and transfer of buffer finished, disable interrupt */
if(sir_sw_bit_count>=10 && ringbuf_GetCountInt(&sir_transmit_buf)==0)

INT_MASK(sir_ostimer_int);
sir_sw_transmitting=FALSE;

#ifdef SIR_DEBUG_SOFTWARE_SIR
sir_int_mask++;

#endif

#ifdef SIR_SW_DEBUG_BUF
ringbuf_WriteByte(&sir_sw_debug_buf, ‘m’);

#endif

/*
* Function: sir_SWTransmitting_Q
* Purpose: check if the software modulation based transmission is finished
*
Parameters:
Input: none

*
*
*
* Returns: A boolean value telling, if the transmission is still going on
* or has been finished.

*/

BOOL sir_SWTransmitting_Q(void)

{
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return sir_sw_transmitting;

}
#endif /* SIR_UART_TRANSMISSION */

/*

* Function: sir_IntHandler

* Purpose: The general SIR interrupt handler.
* Parameters:

*  Input: Interrupt handler arguments supplied by Angel.

* Returns: void

*

* This handler stores received bytes into the receive ringbuffer and

* takes bytes out of the transmit ringbuffer to transmit them. When

* the transmit buffer is empty the transmit engine is shutdown.

* Note: the code related to transmission is only compiled if the

* symbol SIR_UART_TRANSMISSION is defined, otherwise no transmit

* interrupt should occur. If it does, the interrupt will be shutdown.

*/

void sir_IntHandler(unsigned int ident, unsigned int data, unsigned int empty_stack)

if(TEST_BIT(IR_UART_BASE, UTSRO0, UTSRO_RFS)) // receiver fifo request

ringbuf_WriteByte(&sir_receive_buf, REG(IR_UART_BASE, UTDR));
ringbuf_WriteByte(&sir_receive_buf, REG(IR_UART_BASE, UTDR));
ringbuf_WriteByte(&sir_receive_buf, REG(IR_UART_BASE, UTDR));
ringbuf_WriteByte(&sir_receive_buf, REG(IR_UART_BASE, UTDR));
DEBUG_PUT_BYTE(r);

sir_new_receive_data = TRUE;

}

else if(TEST_BIT(IR_UART_BASE, UTSRO, UTSR0_RID)) // receiver idle
{
do

ringbuf_WriteByte(&sir_receive_buf, REG(IR_UART_BASE, UTDR));
DEBUG_PUT_BYTE(Y);

}
while(SER_UART_REC_NOT_EMPTY_Q(IR_UART_BASE));
SER_UART_CLEAR_STATUS_BITS_RID(IR_UART_ BASE);

sir_new_receive_data = TRUE;

}
else if(TEST_BIT(IR_UART_BASE, UTSRO0, UTSRO_RBB)) // receiver break begin

SER_UART_CLEAR_STATUS_BITS_RBB(IR_UART_BASE);
}
else if(TEST_BIT(IR_UART_BASE, UTSRO0, UTSRO_REB)) // receiver break end

SER_UART_CLEAR_STATUS_BITS_REB(IR_UART_BASE);
}

else
#ifdef SIR_UART_TRANSMISSION
if(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_TFS)) // transmit fifo request
int i, count;

DEBUG_PUT_BYTE('t);
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/I get number of characters left in the transmit buffer
count = ringbuf_GetCountInt(&sir_transmit_buf);

/I at least four bytes are ready and can be written without further
/I checking
if(count>=4)

REG(IR_UART_BASE, UTDR) = ringbuf_ReadByte(&sir_transmit_buf);

REG(IR_UART_BASE, UTDR) = ringbuf_ReadByte(&sir_transmit_buf);

REG(IR_UART_BASE, UTDR) = ringbuf_ReadByte(&sir_transmit_buf);

REG(IR_UART_BASE, UTDR) = ringbuf_ReadByte(&sir_transmit_buf);
}

else

for(i=0;i<count;i++)
REG(IR_UART_BASE, UTDR) = ringbuf_ReadByte(&sir_transmit_buf);

/I output finished, disable the interrupt
SER_UART_DISABLE_TI(IR_UART_BASE);
}
}

#else

INT_MASK(INT_UART2); // should not happen
debug_String("ERROR: unexpected transmit interrupt occurred, “
“ serial port 2 interrupt shut down.”);

}
#endif
}

/*

* Function: sir_NewReceiveData__

* Purpose: Check if new data has been received.
*

* Parameters:

*  Input: none

*

* Returns: BOOL indicating whether new data has been received or not

*

* This function can be used to check if new received data is available in the
* receive ringbuffer.

*/

BOOL sir_NewReceiveData_Q(void)

{

}

return sir_new_receive_data;

/*

* Function: sir_SetReceiveMode

* Purpose: Set the SIR port to receive mode.
*
* Parameters:

*  Input: none

*

* Returns: void

*

* |f UART transmission is configured the function first waits for any ongoing

* transmission to be finished. Then the transmitter interrupt and the transmit

* unit are disabled.

* In every case the receive FIFO is emptied to remove any reflected data from
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* the transmit operation, then the status bits are cleared, and receive
* interrupt and receiver are enabled.

*/

void sir_SetReceiveMode(void)

UC8 dummy;

#ifdef SIR_UART_TRANSMISSION

{
int delay;

/I wait until transmission is finished. Not necessary if
/I software modulation is used

/I UART TBY flag not immediately set after transmitter enable.
for(delay=0;delay<SIR_TRANSM_BUSY_DELAY;delay++);

}
while (SER_UART_TRANSM_BUSY_Q(IR_UART_BASE))
{

}

/Il disable transmitter and transmitter interrupt

SER_UART_DISABLE_T(IR_UART_BASE);

SER_UART_DISABLE_TI(IR_UART_BASE);
#endif

/I make sure receiver FIFO doesn’t contain any reflected data
while(SER_UART_REC_NOT_EMPTY_Q(IR_UART_BASE))
{

dummy = REG(IR_UART_BASE, UTDR);
}

/I clear status bits and then enable receiver interrupt and receiver
SER_UART_CLEAR_STATUS_BITS_ALL(IR_UART_BASE);
SER_UART_ENABLE_RI(IR_UART_BASE);
SER_UART_ENABLE_R(IR_UART_BASE);

/*

* Function: sir_SetTransmitMode

* Purpose: Set the SIR port to transmit mode.
*

* Parameters:

*  Input: none

*

*

Returns: void
*
* First any remaining bytes in the FIFO are read and written to the receive
* puffer, then receiver and receiver interrupt are disabled.
* If UART transmission is configured the function then enables the transmit
* interrupt and the transmit unit, otherwise it just clears the TXD2 pin.
*/
void sir_SetTransmitMode(void)

{

/I read any bytes left in the receiver FIFO
I/l should cause an interrupt but for some reason doesn'’t do always
while(SER_UART_REC_NOT_EMPTY_Q(IR_UART_BASE))

ringbuf_WriteByte(&sir_receive_buf, REG(IR_UART_BASE, UTDR));
}

/I disable receiver and receiver interrupt
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SER_UART_DISABLE_R(IR_UART_BASE);
SER_UART_DISABLE_RI(IR_UART_BASE);

#ifdef SIR_UART_TRANSMISSION
/I clear status bits and then enable transmit interrupt and transmitter
SER_UART_CLEAR_STATUS_BITS_ALL(IR_UART_BASE);
SER_UART_ENABLE_TI(IR_UART_BASE);
SER_UART_ENABLE_T(IR_UART_BASE);

#else
Il reset to zero before transmitting
PPC_CLEAR_PIN(TXD2);

#endif

}

/*

* Function: sir_RestartTransmUART

* Purpose: Restart SIR transmission using the UART.
*

* Parameters:

*  Input: none

*

*

Returns: void
*
* The function restarts the SIR transmission, but doesn’t change any other
* setting or mode, i.e., it can be used to restart a transmission when new
* data has become available and no mode change has been done before.
* Note: this function only works for UART transmission mode !!
*/
void sir_RestartTransmUART (void)

SER_UART_ENABLE_TI(IR_UART_BASE);
}

/*

* Function: sir_EnqueueTransmData

* Purpose: Write data to the SIR transmission buffer.

*

* Parameters:

* Input: data pointer to the data to be written to the transmit buffer.
* length length of the buffer to be written.
*
*

Returns: int  the number of actually written bytes.

*
* The function first checks the available space in the ringbuffer and then
* transfers as many bytes as possible from the given buffer to the transmit
* ringbuffer. It returns the number of actually written bytes which can be less
* then the supplied value if the transmit buffer doesn’t have enough free
* space.
*/
int sir_EnqueueTransmData(UC8* data, UC8 length)
{

int i=0;

int avail;

uCs cur;

avail = ringbuf_GetSpace(&sir_transmit_buf);
while(i<length && i<avail)

cur = *(data+i++);
ringbuf_WriteByte(&sir_transmit_buf, cur);
}

return i;

}
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/*
* Function: sir_EnqueueTransmByte
* Purpose: Write a single byte to the SIR transmission buffer.
*
* Parameters:
*  Input: ch byte to be written to the buffer
*
* Returns:int  the number of actually written bytes.
*
* The function writes the given byte to the transmit buffer. Currently for
* speed reasons it does no check of the available buffer space.
*
/
void sir_EnqueueTransmByte(UC8 ch)

ringbuf_WriteByte(&sir_transmit_buf, ch);
return;

}

/*

* Function: sir_EnqueueTransmByteMultiple

* Purpose: Write a byte to the SIR transmission buffer multiple times.
*

* Parameters:

* Input: val  the byte to write

* count how oft the byte is to be written

*

*

Returns: int  the number of actually written bytes.

*
* The function first checks the available space in the ringbuffer and then
* tries to write the given byte the given number of times to the transmit
* ringbuffer. It returns the number of actually written bytes which can be
* less then the supplied value if the transmit buffer doesn’'t have enough free
* space.
*/
int sir_EnqueueTransmByteMultiple(UC8 val, int count)
t

int i=0;

int avail = ringbuf_GetSpace(&sir_transmit_buf);

while(i< avail && i< count)

ringbuf_WriteByte(&sir_transmit_buf, val);
i++;

}

return i;

/*

* Function: sir_TrasnmitDataSW/(void)

* Purpose: Start the transmission using software modulation
*

* Parameters:

*  Input: none

*

*

Returns: void
*
* The function sets a short timeout for the timer match register and then
* unmasks the timer interrupt chosen for the software modulation to start
* the transmission after the set timeout.
* Note: This function can only be used for software modulation transmission !
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*/
#ifndef SIR_UART_TRANSMISSION
void sir_TransmitDataSW/(void)

{
[* start transmission */
if(Isir_sw_transmitting)
{
sir_sw_transmitting = TRUE;
OSTIMER_INC_MATCH_REG(sir_ostimer_channel, 40);
INT_UNMASK(sir_ostimer_int);
}
}
#endif
/*

* Function: sir_GetReceiveCount

* Purpose: Get the number of bytes available in the receive buffer.
*

* Parameters:

*  Input: none

*

* Returns:int  the number of available bytes.

*

* The function resets the flag indicating newly received data and then
* returns the number of bytes currently in the receive ringbuffer.

*/

int sir_GetReceiveCount(void)

{

sir_new_receive_data = FALSE;

return ringbuf_GetCount(&sir_receive_buf);
}
/*

* Function: sir_GetReceiveData

* Purpose: Read the data from the receive buffer

*

* Parameters:

Input: len  the number of bytes to read from the receive buffer.

*
*
*  Input/Output:

* data a pointer into a buffer to receive the bytes
*

*

Returns: int  the number of actually read bytes.

*

* The function reads the given number of bytes from the receive ringbuffer

* and stores them in the supplied buffer. This buffer must have enough space
* to receive all read bytes. The function returns the number of bytes read.

*/

int sir_GetReceiveData(UC8* data, int len)

t
inti;
for(i=0;i<len;i++)
*(data+i) = ringbuf_ReadByte(&sir_receive_buf);
}
return i;
}
/*

* Function: sir_PrintDebugBuf
* Purpose: Write the contents of the software modulation debug buffer to
* stdout.
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*

* Parameters:
*  Input: none
*

* Returns: void

*

* The function reads the contents of the software modulation debug buffer and
* prints them to stdout byte by byte. When all bytes have been written, stdout
* is flushed to make sure the bytes are actually sent.

*/

void sir_PrintDebugBuf(void)

{
#ifdef SIR_SW_DEBUG_BUF

int len, i;
UC8 ch;

len = ringbuf_GetCount(&sir_sw_debug_buf);
for(i=0;i<len;i++)

ch=ringbuf_ReadByte(&sir_sw_debug_buf);
putchar(ch);

}
fflush(stdout);
#endif

}
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A.3 Implementation of the FIR-Functions

Description:
Code to support infrared communication in FIR mode on the Badge.
Right now only an initialization function and two functions for
polled transmitting and sending are implemented, functions for
interrupt driven sending and transmitting, and mode changes can
easily be added in analogy to the SIR code.

--Christoph Wolf
chwolf@it.kth.se

#include <util/util_misc.h>
#include <util/util_ir.h>

/*

* Function: fir_Init

* Purpose: Initialize serial port 2 for FIR mode

*

* Parameters:

*  Input: receive_int_en en-/disable the receive interrupt request
* transm_int_en en-/disable the transmit interrupt request
* addr_match_en en-/disable address match functionality
* addr_match_val the address match value

*

*

Returns: void
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*

* The function initializes all control registers of the HSSP, clears

* the sticky status bits, but doesn not yet enable the receiver and

* transmitter.

* TUS is set to 0 by default, thus transmit FIFO underruns cause the frame

* to be finished. This can easily be changed by calling the according macros.

* See the constants defined in util_ir.h to be passed as parameters.

* Note: the function sets the RXD2 pin polarity to inverted to make FIR work

* on the Badge. This has to be considered when later using the PPC

* or the UART.

*/

void fir_Init(BOOL receive_int_en, BOOL transm_int_en, BOOL addr_match_en,
UC8 addr_match_val)

{

IR_HSSP_SHUTDOWN;

I/ for some reason FIR on the Badge requires the RXD2 pin to be operated
/I in inverted mode
IR_SET_POLARITY_RXD2_INVERTED;

/Il set the mode pin for FIR
GPIO_SET_OUTPUT(IRSD);
GPIO_SET_PIN(IRSD);

IR_HSSP_SET_ADDR_MATCH(addr_match_val);

IR_HSSP_CLEAR_STATUS_BITS_ALL:

REG(HSSP_BASE, HSCRO) = Ox1 | receive_int_en << 5 | transm_int_en << 6 |
addr_match_en << 7;

/*

* Function: fir_GetBytePolled

* Purpose: Read a byte from serial port 2 in FIR mode (polling).
*

* Parameters:

*  Input: none

*

* Returns: the byte read from the HSSP receive FIFO

*

* The function waits in a busy loop until there is a byte available in the

* HSSP receive FIFO as indicated by the flag RNE in status register 1. When
* a byte is available it is read and returned.

*/

unsigned char fir_GetBytePolled(void)

while(lIR_HSSP_REC_NOT_EMPTY_Q)

return IR_HSSP_GET_BYTE_DIRECT;
}

/*

* Function: fir_PutBytePolled

* Purpose: Write a byte to serial port 2 in FIR mode (polled).
*
* Parameters:

*  Input: ch the byte to be written

*

* Returns: void

*

* The function waits in a busy loop until there is free space in the

* HSSP transmit FIFO as indicated by the flag TNF in status register 1. When
* at least one entry is free the byte is written to the FIFO.
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*/
void fir_PutBytePolled(unsigned char ch)

while(lIR_HSSP_TRANSM_NOT_FULL_Q)

IR_HSSP_PUT_BYTE_DIRECT(ch);
}
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Appendix B. Example Programs

This chapter presents a few example programs that are meant to clarify the use of some of
the definitions, macros and functions that | described in Chapter 4. "Using some of the
Peripherals” and Chapter 5. "Infrared Communication”. The files containing the code
presented in these two chapters have been compiled into a library which has been linked to
the files presented in the following sections. An exception is the file util_sir.c (SIR mode
infrared communication) as this can be configured to support sofware modulation or UART
transmission and therefore has to be recompiled for each application.

B.1 GPIO and PPC - Maximum Frequency Pin Toggling

B.1.1 Standalone Version

Description:

The program toggles a GPIO / PPC pin to find the highest
possible toggling frequency.

If GPIO is defined, the GPIO pin is used, otherwise the PPC
pin (TXD2 - the IR TXD).

Defining PPC_OPT causes an optimized loop for the PPC toggling
to be used, as opposed to the compiler generated version.

It uses an assembler function local_pos() to get the current
location in the code and provides a function to relocate the
toggling loop in the memory space from FLASH to SRAM (If
RELOCATE is defined).

This version is a standalone version and uses init.s to
initialize the processor.

Performance depends on if the instruction cache is enabled in
init.s or not.

--Christoph Wolf

chwolf@it.kth.se

#include <util/util_gpio.h>
#include <util/util_ppc.h>
#include <string.h>

/I configuration settings

/* use GPIO or PPC */
/l#define GPIO

[* use compiler generated or optimized PPC loop */
#define PPC_OPT

[* do relocation (FLASH->SRAM) or not (execute out of FLASH) */
#define RELOCATE

/* which GPIO pin to use */
#define GPIO_PIN GPIO6
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/* the location where in SRAM to relocate the toggle loop */
#define RAM_BASE 0x08001000

I/l return the current position in the code
extern int local_pos(void);

/* this function copies a number of bytes from an offset given by the

* argument pos to a new memory location given by rambase and branches
* there by modifying the stack

*/

void copy(int rambase, int pos)

memcpy((unsigned char*)rambase, (unsigned char*)pos, 200);

/I get the starting address of the code to execute and write that
/l address into the stack position which upon exiting the function
/l'is restored into the PC

/I the offset of 8 is caused by

_asm

mov  rl4, RAM_BASE
str rl4, [rl3, #+8]
}
}

int main(void)

{

int pos;

#ifdef GPIO
/l make GPIO pin 6 an output
GPIO_SET_OUTPUT(GPIO_PIN);
GPIO_CLEAR_PIN(GPIO_PIN);

#else
/I enable TXD2 as PPC output
PPC_SET_OUTPUT(TXD2);
PPC_CLEAR_PIN(TXD2);

#endif

#ifdef RELOCATE
/I relocate the toggle loop to SRAM

/I get the current location in the code
pos = local_pos();

/[copy the toggling loop to a different location and branch there
copy(RAM_BASE, pos+16);
#endif

while(1)

{
#ifdef GPIO
/ toggle the GPIO pin
GPIO_SET_PIN(GPIO_PIN);
GPIO_CLEAR_PIN(GPIO_PIN);
#else
// toggle the PPC pin

#ifdef PPC_OPT
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/I optimized version of the loop

/I first load r0 with the address of the PPC pin state register,
I/l then in the loop set/clear the bit for TXD2

__asm

MOV  r0,#0x60000
ADD  r0,r0,#0x90000004

loop:
Idr r2, [rO, #0]
orr r2, r2, #0x4000
strr2, [r0, #0]

Idr r2, [rO, #0]
bic r2, r2, #0x4000
strr2, [r0, #0]
b loop
}

#else
PPC_SET_PIN(TXD2);
PPC_CLEAR_PIN(TXDZ2);
#endif // PPC_OPT

#endif // GPIO

}
}
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B.1.2 Angel Version

/*

*  Description:

* The program toggles a GPIO/PPC pin to find the highest

* possible toggling frequency.

* If GPIO is defined, the GPIO pin is used, otherwise the PPC

* pin (TXD2 - the IR TXD).

* Relocation doesn't make much sense here (compare the standalone
* version).

* In this version the cache can be en-/disabled by un-/commenting

* the define NO_CACHE.

* Defining PPC_OPT causes an optimized loop for the PPC toggling
* to be used, as opposed to the compiler generated version.

*

*

*  --Christoph Wolf

*

chwolf@it.kth.se

#include <util/util_gpio.h>
#include <util/util_ppc.h>

#include <util/util_misc.h>
#include <string.h>

/I configuration settings

* use GPIO or PPC */
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/I#define GPIO

/* enable or disable instruction cache */
/l#define NO_CACHE

/* use compiler generated or optimized PPC loop */

#define PPC_OPT

/* which GPIO pin to use */
#define GPIO_PIN GPIO6

int main(void)

misc_InitAngelFunctions();

#ifdef NO_CACHE
misc_SysDisablelCache();
telse
misc_SysEnablelCache();
#endif

#ifdef GPIO
/I make the defined GPIO pin an output
GPIO_SET_OUTPUT(GPIO_PIN);
GPIO_CLEAR_PIN(GPIO_PIN);

#else
/I enable TXD2 as PPC output
PPC_SET_OUTPUT(TXD2);
PPC_CLEAR_PIN(TXD2);

#endif

/ the toggle loop
while(1)

{
#ifdef GPIO
/ toggle the GPIO pin
GPIO_SET_PIN(GPIO_PIN);
GPIO_CLEAR_PIN(GPIO_PIN);
#else
// toggle the PPC pin

#ifdef PPC_OPT

/I optimized version of the loop

/I first load r0 with the address of the PPC pin state register,
/l then in the loop set/clear the bit for TXD2

__asm

MOV  r0,#0x60000
ADD  r0,r0,#0x90000004

loop:
Idr r2, [rO, #0]
orr r2, r2, #0x4000
strr2, [r0, #0]

Idr r2, [rO, #0]
bic r2, r2, #0x4000
strr2, [r0, #0]
b loop
}
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#else
PPC_SET_PIN(TXD2);
PPC_CLEAR_PIN(TXDZ2);
#endif // PPC_OPT

#endif // GPIO

}
}
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B.2 GPIO - Interrupt Latency

This program was described in interrupt section 4.3.4 - note that the results are not reproducible due to changes in
the library done after the measurements (see section 4.3.4.1)

*  Description:

* Test code for exploring gpio interrupts on the Badge.

* The code configures GPIO pin 3 (and 6 for test purposes) as

* outputs and another one, currently pin 2, as an input with edge

* detection on rising edges. Then it sets pin 3 (which has to be

* connected to the input pin) to generate a rising edge. The time

* difference between this and the interrupt handler being executed
* is measured using the OS Timer Count Register. This is done 15
* times in a loop and can be executed with caches dis- or enabled
* and with printf-statements within the loop which severely affects

* the effectivity of the caches (#define WITH_PRINTF)

*

*

*

*

*

--Christoph Wolf
chwolf@it.kth.se

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include <util/util_gpio.h>
#include <util/util_interrupt.h>
#include <util/util_ostimer.h>

volatile int int_flag = 0O;

volatile UI32 stop;

#define INT_PIN GPIO2

#define INT_CHANNEL INT_GPIO2

/I Configuration

I/l choose the desired combination of caches by
/I commenting/uncommenting the defines
/I#define |_CACHE_ENABLED

/I#define D_CACHE_ENABLED

Il use or don’t use printf in the measurement loop
#define WITH_PRINTF
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/I optionally output the interrupt handler table
Il#define DEBUG_INT_TABLE

/I get the current count of the OS Timer Count Register, clear the interrupt
/I request flag and set a status variable to signal the end of the measurement

void GPIO_IntHandler(unsigned int ident, unsigned int data,
unsigned int empty_stack)
{

stop = OSTIMER_GET_COUNT,;
if(ident>=2 && ident <= 9)

GPIO_CLEAR_EDGE_STATUS(1<<ident);
}

else

/l only GPIO 2 to 9 freely available, no other GPIO interrupt should

/I occur
INT_MASK(ident);
}

int_flag = 1; // measurement finished

int main(void){

UlI32 start;

int diff;

UI32 results[20];
inti,j=0;

misc_InitAngelFunctions(); // necessary for cache en-/disable

Il setup the desired combination of caches
#ifdef |_CACHE_ENABLED

misc_SysEnablelCache();

printf(“\nInstruction cache enabled, “);
else

misc_SysDisablelCache();

printf(“\nInstruction cache disabled, “);
#endif

#ifdef D_CACHE_ENABLED
misc_SysEnableDCache();
printf(“Data cache enabled\n\n”);

telse
misc_SysDisableDCache();
printf(“Data cache disabled\n\n");

#endif

#ifdef DEBUG_INT_TABLE
int_PrintHandlerTable();
#endif

int_InstallHandler(INT_CHANNEL, GPIO_IntHandler);

#ifdef DEBUG_INT_TABLE
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printf(*Handler for interrupt GPIO is at 0x%X\n",(int)(GPIO_IntHandler));
int_PrintHandlerTable();
#endif

GPIO_CLEAR_EDGE_STATUS_ALL; // clear the GEDR bits
GPIO_SET_OUTPUT(GPIO3 | GPIOS); // pin 3,6 as output
GPIO_CLEAR_PIN(GPIO3 | GPIOS); // clear pin 3,6

GPIO_SET_INPUT(INT_PIN); // interrupt pin as input

/I clear the GEDR bit int pin,3, 6 after clearing pin 3 and 6,
/I just to make sure
GPIO_CLEAR_EDGE_STATUS(INT_PIN | GPIO3 | GPIO6);

GPIO_ENABLE_RISING_EDGE(INT_PIN); // rising edge detect for the int pin

// not really necessary, but to make sure that there are no problems
/I with wrap around
OSTIMER_SET_COUNT(0);

INT_UNMASK(INT_CHANNEL);

I/l actual measurement loop
for(i=0;i<15;i++)

#ifdef WITH_PRINTF
printf(“Set GPIO pin 3 to cause a rising edge on the int pin\n”);
#endif

start = OSTIMER_GET_COUNT,;
GPIO_SET_PIN(GPIO3);
while(lint_flag)

diff = stop - start;
int_flag = 0;

#ifdef WITH_PRINTF
printf(“GPIO Interrupt occured.\n”);
printf(“Interrupt delay: %d ticks = %fs\n\n”, diff, diff / 3686400.0);
telse
results[i] = diff;
#endif
GPIO_CLEAR_PIN(GPIO3);
GPIO_CLEAR_EDGE_STATUS(INT_PIN);

/l wait a little bit (a more elegant way would be to use a timer...)
for(j=0;j<500000;j++);

}
#ifndef WITH_PRINTF

I/l output the results
for(i=0;i<15;i++)

printf(“Interrupt delay: %u ticks = %fs\n\n”, resultsi],
results[i] / 3686400.0);

#endif

/I clear up
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INT_MASK(INT_CHANNEL);
GPIO_DISABLE_RISING_EDGE(INT_PIN);

return (0);
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B.3 Real Time Clock Example

*  Description:

* Test code for exploring interrupts BIT 30 & 31 on the Badge.

* This code is derived from the original OneHertz program done

* by Prof. G. Q. Maguire and Mat C. Hans. My version uses the

* macros and functions provided in my support code and corrects
* an error within the original code ( resetting the interrupt

* status flags AL and HZ was done using code of the form

* “status_register |= flag_to_reset” which resets all flags, not

* only the intended one !)

* The program configures the real time clock and installs an

* interrupt handler which increments a counter every second. This
* is detected by the main program and a message is output each
* time. In addition the alarm is set to 5 sec and resets the

* counter to O when it goes off.
*

*

*

*

*

*

*

*

*

*

*

*

*

Note the difference between the one- and the two-handler version:

When the alarm occurs, both interrupt bits are set !

RTC_Handler: first the one hz interrupt is serviced,
incrementing the counter, then the alarm interrupt is serviced
which resets the counter. This is detected by the main loop
and “counter 0” is output once.

Two handlers: the alarm int has higher priority, thus is serviced
first -> counter reset. Then, before the main loop has a chance
to detect that, the one hz int is serviced, incrementing the
counter -> the “counter 0" state is lost.

--Christoph Wolf
chwolf@it.kth.se

#include <stdio.h>

#include <util/util_interrupt.h>
#include <util/util_realtime.h>

I/l separate int handlers for one hertz and alarm or one combined handler
/l#define TWO_INTHANDLER
#undef TWO_INTHANDLER

volatile int counter = 0, bitset = -1;

#ifdef TWO_INTHANDLER

/*

* Interrupt handler for One Hz. VERY IMPORTANT: reset HZ bit
*

void OneHZ_IntHandler(unsigned int ident, unsigned int data, unsigned int empty_stack)

{
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if (REALTIME_GET_STATUS_ONE_HZ)
{
Il reset the interrupt flag and increment the counter
REALTIME_CLEAR_ONE_HZ_INT;
counter++;
bitset = REALTIME_HZ;

}

else

/l shouldn’t be here... remove RTC interrupts
bitset = -2;
REALTIME_DISABLE_ONE_HZ_INT;
}
}

/*

* Interrupt handler for alarm. VERY IMPORTANT: reset AL bit

*/

void Alarm_IntHandler(unsigned int ident, unsigned int data, unsigned int empty_stack)

if (REALTIME_GET_STATUS_ALARM)

{
Il reset the interrupt flag and reset the counter to 0
REALTIME_CLEAR_ALARM_INT;

counter=0;

bitset = REALTIME_AL;
}
else

// shouldn’t be here... remove RTC interrupts
bitset = -3;
REALTIME_DISABLE_ALARM_INT;

}
}

telse

/*

* Interrupt handler for alarm and Hz

*/

void RTC_IntHandler(unsigned int ident, unsigned int data, unsigned int empty_stack)

if(REALTIME_GET_STATUS_ONE_HZ || REALTIME_GET_STATUS_ALARM)
if (REALTIME_GET_STATUS_ONE_HZ)
REALTIME_CLEAR_ONE_HZ_INT;
counter++;

bitset = REALTIME_HZ;
}

if (REALTIME_GET_STATUS_ALARM)

REALTIME_CLEAR_ALARM_INT;

counter = 0;
bitset = REALTIME_AL;
}
}
else
{

/l shouldn’t be here... remove RTC interrupts
bitset = -4;
REALTIME_RESET_FLAGS;
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#endif

int main(void)
int Ilcount = counter;

fprintf(stdout, “\n\nStart of program which explores RTC interrupts\n”);
fflush(stdout);

fprintf(stdout, “\nExamine the list of interrupt handlers\n”);

fprintf(stdout,™* Original interrupt function handler array:\n");
int_PrintHandlerTable();

#ifdef TWO_INTHANDLER
fprintf(stdout,”\n\nRedirect RTC interrupts:\n”);
fprintf(stdout,”BIT30: OneHZ handler 0x%X\n",(int)(&OneHZ_IntHandler));
fprintf(stdout,”BIT31: Alarm handler 0x%X\n”,(int)(&Alarm_IntHandler));

int_InstallHandler(30, &OneHZ_IntHandler);
int_InstallHandler(31, &Alarm_IntHandler);

telse
fprintf(stdout,"\n\nRedirect RTC interrupts:\n”);
fprintf(stdout,”BIT30: RTC handler 0x%X\n”,(int)(&RTC_IntHandler));
fprintf(stdout,”BIT31: RTC handler 0x%X\n",(int)(&RTC_IntHandler));

int_InstallHandler(30, &RTC_IntHandler);
int_InstallHandler(31, &RTC_IntHandler);

#endif

fprintf(stdout,”\n\n** Modified interrupt function handler array:\n");
int_PrintHandlerTable();

fprintf(stdout, “\n\nCurrent state:\n");

fprintf(stdout,”RTSR = 0x%X, *RTTR = 0x%X, *RCNR = 0x%X, “
“*RTAR = 0x%X, counter %d, bitset = %d\n”, REALTIME_GET_STATUS,
REG(REALTIME_BASE, RTTR), REALTIME_GET_COUNT,
REALTIME_GET_ALARM, counter, bitset);

fprintf(stdout,”\nSetting up RTC and enabling interrupts\n”);
fflush(stdout);

/I The RTTR is programmed by the user to select the frequency of the “1 Hz"
/I clock. If this register is not programmed and left at it's reset value

/I (all zeros) then the “1 Hz” clock will actually be running at 32 768 Hz.
REALTIME_SET_TRIM(0x7FFF, 0);

/I the RTC incorporates a 32 bit alarm register (RTAR). The RTAR

/ may be programmed with a value to be compared against the counter.
/I On each rising edge of the 1 hz clock, the counter is incremented

/I and then compared to the RTAR. If the values match, then a status

/ bit is set. This status bit is also routed to the interrupt controller
REALTIME_INC_ALARM(5); // interrupt in 5 seconds

Il reset the flags and enable the two interrupts
REALTIME_RESET_FLAGS;
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REALTIME_ENABLE_ONE_HZ_ALARM_INT;

fprintf(stdout,”RTSR = 0x%X, *RTTR = 0x%X, *RCNR = 0x%X, “
“*RTAR = 0x%X, counter %d, bitset = %d\n”", REALTIME_GET_STATUS,
REG(REALTIME_BASE, RTTR), REALTIME_GET_COUNT,
REALTIME_GET_ALARM, counter, bitset);

fprintf(stdout,”\nEntering loop...\n");fflush(stdout);
for (;;)
{

if (lcount!=counter)

{
fprintf(stdout,”"RECEIVED irq *RCNR 0x%2X, counter %d, bitset = %d\n”,

REALTIME_GET_COUNT, counter, bitset);
Icount = counter;
bitset = 0;

#if 1
if (counter>10)

/I stop the interrupts, and break
REALTIME_RESET_FLAGS;

1 *(unsigned int *)RTSR = 0x0; //[SET_HZ | SET_AL,;
break;

}
#endif

}
}

fprintf(stdout,”end of program\n”);
return (0);
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B.4 OS Timer Examples

B.4.1 Basic Use of the Macros - Timer Controlled Pin Toggling

/*
Description:
Test code for exploring the operating system timers on the Badge.
The main loop reads a value from the serial port UART 1 to set
the increment for the OS timer. The OS interrupt routine then
toggles a GPIO 6 pin with a frequency depending on this timeout.

set to 115200 baud, 8N1.

--Christoph Wolf

*
*
*
*
*
*
* In the current configuration the terminal program needs to be
*
*
*
*
* chwolf@it.kth.se

*
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*/
#include <stdio.h>

#include <ctype.h>
#include <string.h>

#include <util/util_serial.h>
#include <util/util_interrupt.h>
#include <util/util_misc.h>
#include <util/util_ostimer.h>
#include <util/util_gpio.h>

#define BUF_SIZE 20

I/l the GPIO pin to toggle
#define TOGGLE_PIN GPIO6
int inc;

int int_count=0;

/I ostimer interrupt handler

void OSTIMERO_IntHandler(unsigned int ident, unsigned int data,

unsigned int empty_stack)

{

static unsigned int state=0;

/I set the increment for the match register

OSTIMER_INC_MATCH_REG(OSTIMER_CHANNEL_O0, inc);

/I depending on the current state set or clear the pin
if(state)

GPIO_CLEAR_PIN(TOGGLE_PIN);
state=0;

}

else

GPIO_SET_PIN(TOGGLE_PIN);
state=1;

}

/I clear the interrupt status flag
OSTIMER_RESET_INT(OSTIMER_CHANNEL_O0);

int main(void){

unsigned char ch;

unsigned char buf[BUF_SIZE];
unsigned int bufcount = 0O;
unsigned int new_val;

/I install the ostimer handler and enable the interrupt
OSTIMER_ENABLE_INT(OSTIMER_CHANNEL_0);

int_InstallHandler(INT_OSTIMER_0O, OSTIMERO_IntHandler);

/I enable TOGGLE_PIN as output
GPIO_SET_OUTPUT(TOGGLE_PIN);
GPIO_CLEAR_PIN(TOGGLE_PIN);
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/l set up UARTL to read the timer values

ser_Uartinit(UART1_BASE, SER_INIT_BAUD_115200, SER_INIT_PARITY_DIS,
SER_INIT_PARITY_ODD, SER_INIT_ONE_STOP_BIT,
SER_INIT_DATA_SIZE_8, SER_INIT_RECEIVE_INT_DIS,
SER_INIT_TRANSMIT_INT_DIS);

SER_UART_ENABLE_TR(UART1_BASE);

printf(\nUsage: set up your terminal program for 115200 baud, 8N1.\n");
printf(* Then enter decimal integer values to be used as OS Timer “
“timeouts.\n");
printf(* Space or enter after the value commit it “
“(characters other than digits are ignored).\n\n");

while(1)

ch=ser_UartGetBytePolled(UART1_BASE);
ser_UartPutBytePolled(UART1_BASE, ch);

if(isspace(ch) && bufcount>0)
{

new_val = atoi((char*)buf);
memset(buf, 0x0, BUF_SIZE);
bufcount=0;

printf(“new increment: %i\n”, new_val);
inc = new_val;

OSTIMER_INC_MATCH_REG(OSTIMER_CHANNEL_0, inc);
INT_UNMASK(INT_OSTIMER_0);

}
else if(isdigit(ch))

buf[bufcount++] = ch;

}

return (0);

}
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B.4.2 Use of the Software Timer Functions

/*

*  Description:

* Demo code to show the use of the OS Timer functions.

* First two timers are initialized and then started, the first

* to go off every second, the second one to go off every half
* second. After five seconds the first timer is removed and

* lateron reinserted when the second timer has expired a certain
* number of times.

* Finally the programm waits 5 seconds and then outputs the
* contents of the debug buffer to check the timer sequence.

*

*

*

*

*

*

Note: the stdout output does not always show the correct sequence
(1-2-2-1-2-2-1-2-2... sometimes something like
2-2-1-2-1-2-2-2-1-2-1-2-2 ... can occur). This depends on
where the checking loop is when the timer goes off. The
debug buffer which is output at the end of the program
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--Christoph Wolf
chwolf@it.kth.se

* X X X X X

*
~

#include <stdlib.h>
#include <stdio.h>

#include “util/util_ostimer.h”
#include “util/util_serial.h”

/I timeouts and which OS Timer channels to use
#define TIMER_1 TIMEOUT 1*SEC

#define TIMER_2_TIMEOUT  1*SEC/2

#define LIST_CHANNEL OSTIMER_CHANNEL_O
#define WAIT_CHANNEL OSTIMER_CHANNEL 1

/I to collect debug output during timer callback execution

/I (callbacks are queued functions and therefore can’t be debugged
// using the debugger)

RingBuffer DebugBuf;

/I timer callbacks and variables to be set in the callbacks
void timer_1_expired(unsigned long data);

void timer_2_expired(unsigned long data);

int counter = 0;

int counter2 = 0;

/I required for setting the new timeout

extern long ostimer_ticks;
/lextern int ostimer_blocked;

/I the two timers
struct timer_list timer_1;
struct timer_list timer_2;

/I start the given timer with specified timeout and callback function
void start_timer( struct timer_list *ptimer, int timeout, int data,
TIMER_CALLBACK callback)
{
ostimer_DelTimer( ptimer);

ptimer->data = (unsigned long) data;
ptimer->function = callback;

ptimer->expires = ostimer_ticks + timeout;

ostimer_AddTimer( ptimer);

/I wrapper to start timer 1
void start_timer_1(int timeout)

start_timer( &timer_1, timeout, (unsigned long) 0,
timer_1_expired);

I/l wrapper to start timer 2
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void start_timer_2(int timeout)
{
start_timer( &timer_2, timeout, (unsigned long) 0,
timer_2_expired);

/I callback function to be executed when timer 1 expires
/I just increment the counter and restart the timer
void timer_1_expired(unsigned long data)
{
ringbuf_WriteByte(&DebugBuf, ‘1');
counter++;
start_timer_1(TIMER_1_TIMEOUT);
ringbuf_WriteByte(&DebugBuf, ‘2');

/I callback function to be executed when timer 2 expires
Il just increment the counter and restart the timer
void timer_2_expired(unsigned long data)
{
ringbuf_WriteByte(&DebugBuf, *-');
counter2++;
start_timer_2(TIMER_2_TIMEOUT);
ringbuf_WriteByte(&DebugBuf, ‘|’);

int main(void)
{
int Ilcount=0;
int lcount2=0;
int tol, to2;
unsigned char* buf;
BOOL cond = FALSE;

tol = to2 = FALSE;

// not required as executed by ringbuf_Init() and ostimer_InitListint
/I anyway, but just to remind that it should be put at the beginning
/I of application programs if there is a chance that they use any of
// the Angel hooks.

misc_InitAngelFunctions();

if(ringbuf_Init(&DebugBuf, 2000) == -1)

{
printf(“Error: not enough memory for debug buffer\n”);
exit(1);

}

ringbuf_WriteByte(&DebugBuf, i');
printf(“init\n”);

/I init the software timer data structures
ostimer_InitListint(LIST_CHANNEL);
ostimer_InitTimer(&timer_1);
ostimer_InitTimer(&timer_2);

[/ init a default timer for later use
if(ostimer_InitChannelDefault(WAIT_CHANNEL, FALSE) ==-1)

printf(“Error: timer channel already used.”);
exit(1);

Listing 45. Software timers

198



Example Programs

/I start the two timers
start_timer_1(TIMER_1_TIMEOUT);
start_timer_2(TIMER_2_TIMEOUT);

while( 'tol || 'to2)

}

printf(“Now 5 seconds delay, then exit.\n");
ostimer_WaitTime(WAIT_CHANNEL, 5, ‘s’, &cond);

if(lcount != counter)

{

Icount = counter;
printf(“timer_1 gone off\n”);
fflush(stdout);

if(counter == b)

ostimer_DelTimer(&timer_1);
printf(“timer_1 deleted\n”);
tol = TRUE;

if(counter == 10)

ostimer_DelTimer(&timer_1);
printf(“timer_1 deleted\n”);
tol = TRUE;

}

if(lcount2 != counter2)

{

}

Icount2 = counter2;
printf(“timer_2 gone off\n”);
fflush(stdout);
if(counter2== 15)

start_timer_1(TIMER_1_TIMEOUT);

printf(“timer_1 reinserted\n”);
tol = FALSE;

}
if(counter2== 20)

ostimer_DelTimer(&timer_2);
printf(“timer_2 deleted\n”);
to2 = TRUE;

}

/l clean up

ostimer_RemoveChannel(WAIT_CHANNEL);
ostimer_RemoveChannel(LIST_CHANNEL);

ostimer_DelTimer(&timer_1);
ostimer_DelTimer(&timer_2);

printf(\nExit, contents of the debug buffer:\n");

buf = (unsigned char*)malloc(2000);
if(buf)

tol = ringbuf_GetCount(&DebugBuf);
ringbuf_ReadBuf(&DebugBuf, buf, tol);

Listing 45. Software timers
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buf[tol] = 0x0;
printf(“\n%s\n”, buf);
}

else
printf(“no buffer”);

Listing 45. Software timers

B.5 Serial Communication Example (UART)

B.5.1 Echo

Description:
Simple echo program to demonstrate usage of the SA-1100
UARTS.

--Christoph Wolf
chwolf@it.kth.se

#include <stdlib.h>
#include <stdio.h>
#include <util/util_serial.h>

int main(void)
char text[] = “\n\rBegin echo operation.\n\r”;

// output to stdout
printf(*\ninitializing UART 1\n");

/I initalize the UART ...

ser_Uartlnit(UART1_BASE, SER_INIT_BAUD_115200, SER_INIT_PARITY_DIS,
SER_INIT_PARITY_ODD, SER_INIT_ONE_STOP_BIT,
SER_INIT_DATA_SIZE_8, SER_INIT_RECEIVE_INT_DIS,
SER_INIT_TRANSMIT_INT_DIS);

/I ... and enable transmitter and receiver
SER_UART_ENABLE_TR(UART1_BASE);

[/l output startup message on UART 1
ser_UartPutStringPolled(UART1_BASE, (UC8*)text);

while (1)
unsigned char ch;

ch = ser_UartGetBytePolled(UART1_BASE);
ser_UartPutBytePolled(UART1_BASE, ch);
}
}

Listing 46. Basic echo program
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B.6 IR SIR-Mode Examples

B.6.1 SIR Receiver in Polled Mode

/*
Description:
Basic example code for exploring the IRDA port on the Badge.
Receiver part in slow infrared mode, bytes received via the
infrared port are sent out on UART 1.
For receiving UART 2 is simply polled.

with the symbol SIR_UART_TRANSMISSION defined !

*
*
*
*
* Note: the program expects the file util_ir.c to be compiled
*
*
*  --Christoph Wolf

* chwolf@it.kth.se

*

*/

#include <util/util_serial.h>
#include <util/util_ir.h>

int main(void)

unsigned char ch;

/I setup serial port 2 in 9600 baud SIR mode
sir_Init(SER_INIT_BAUD_9600);
SER_UART_ENABLE_R(IR_UART_BASE);

Il setup serial port 1 as 115kb UART and enable the transmitter
ser_UartInitDefault(UART1_BASE, SER_INIT_BAUD_115200);
SER_UART_ENABLE_T(UART1_BASE);

ser_UartPutStringPolled(UART1_BASE, (UC8*)"begin \n\r");
while(1)
{

/l read a character from serial port 2 in polling mode
ch=ser_UartGetBytePolled(IR_UART_BASE);

/I SIR frames with no pulses are decoded as all ones,
// don’t print them

if(ch==0xff)

{

ser_UartPutBytePolled(UART1_BASE, ~");
}

else

/I write the character out to UART 1
ser_UartPutBytePolled(UART1_BASE, ch);

}
}

return (0);

Listing 47. SIR-receiver in polled mode
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B.6.2 SIR Receiver in Interrupt Mode

/*

*  Description:

* Basic example code for exploring the IRDA port on the Badge.
* The program initializes serial port 2 for 9600 baud SIR mode,
* then reads characters from the port in interrupt mode and

* prints them to stdout using printf.

*

* Note: the program expects the file util_ir.c to be compiled

* with the symbol SIR_UART_TRANSMISSION defined !!
*

*

*  --Christoph Wolf

* chwolf@it.kth.se

*

*/

#include <string.h>
#include <util/util_serial.h>
#include <util/util_ir.h>
#include <util/util_misc.h>

#define BUFLEN 100

int main(void)

{
char readbuf[BUFLEN];

int count;

// initialize serial port 2 as 9600 baud UART using UART mode
sir_Init(SER_INIT_BAUD_9600);

// enable the UART2 interrupt and switch to receive mode
INT_UNMASK(INT_UART2);
sir_SetReceiveMode();

while(1)

/I wait for data on serial port 2
while(!sir_NewReceiveData_Q())

/I get the number of bytes in the receive buffer
count = sir_GetReceiveCount();

while(count>0)

memset(readbuf, 0x0, BUFLEN);
count -= sir_GetReceiveData((UC8*)readbuf, MIN(BUFLEN, count));
printf(readbuf);
fflush(stdout);
}
}

}
Listing 48. SIR-receiver in interrupt mode
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B.6.3 SIR Transmitter Using UART2 in Polled Mode

Description:
Basic example code for exploring the IRDA port on the Badge.
The program initializes serial port 2 for 9600 baud SIR mode
and transmits five lines consisting of the characters A-Z in
polling mode.

*
*
*
*
*
*
* Note: the program expects the file util_ir.c to be compiled

* with the symbol SIR_UART_TRANSMISSION defined and works
* only on Badges with the revised StrongARM (i.e. without

* the SIR bug of the original StrongARM) !!

*

*

*

*

*

--Christoph Wolf
chwolf@it.kth.se

#include <util/util_serial.h>
#include <util/util_ir.h>

int main(void)
{
char ch;
int i=0;

/I initialize serial port 2 as 9600 baud UART using SIR modulation
sir_Init(SER_INIT_BAUD_9600);
SER_UART_ENABLE_T(IR_UART_BASE);

while(i++<5)

{
ch="A’;
while(ch<="Z")

ser_UartPutBytePolled(IR_UART_BASE, ch++);

}
ser_UartPutBytePolled(IR_UART_BASE, 0x0a);
ser_UartPutBytePolled(IR_UART_BASE, 0x0d);

}
Listing 49. SIR-transmitter using the SA-1100 UART in polled mode

B.6.4 SIR Transmitter Using UART2 in Interrupt Mode

/*

*  Description:

* Basic example code for exploring the IRDA port on the Badge.
* The program initializes serial port 2 for 9600 baud SIR mode

* and transmits five lines consisting of the characters A-Z in

* interrupt mode.

*

*

*

Note: the program expects the file util_ir.c to be compiled
with the symbol SIR_UART_TRANSMISSION defined and works

Listing 50. SIR-transmitter using the SA-1100 UART in interrupt mode
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* 0% X X X X X

*/

only on Badges with the revised StrongARM (i.e. without
the SIR bug of the original StrongARM) !!

--Christoph Wolf
chwolf@it.kth.se

#include <string.h>
#include <util/util_serial.h>
#include <util/util_ir.h>

int main(void)

}

char string[] = “example transmission of a string.\n”;

[ initialize serial port 2 as 9600 baud UART using UART mode
sir_Init(SER_INIT_BAUD_9600);

/I unmask serial port 2 interrupt and switch to transmit mode
INT_UNMASK(INT_UART?2);
sir_SetTransmitMode();

while(i++<5)

}

ch="A’;

/[ write the bytes to the transmit buffer ...
while(ch<="Z")

sir_EnqueueTransmByte(ch++);

sir_EnqueueTransmByte(0x0a);
sir_EngqueueTransmByte(0x0d);

/I ... and start transmission
sir_RestartTransmUART();

sir_EnqueueTransmData((UC8*)string, strlen(string));
sir_RestartTransmUART();

Listing 50. SIR-transmitter using the SA-1100 UART in interrupt mode

B.6.5 SIR Operation Using Software Modulation for Transmission

/*

*
*
*
*
*
*
*
*
*
*

Description:
Test code for exploring the IRDA port on the Badge.
This program outputs the characters A-Z in a loop
using SIR mode. As the on-chip SIR-mode modulator is buggy
the program does software modulation using the os timer
instead.

Note: it expects the file util_ir.c to be compiled with
the flag SIR_UART_TRANSMISSION NOT defined ! (i.e.
the #define statement has to be commented out)

Listing 51. SIR-transmitter using software modulation
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--Christoph Wolf
chwolf@it.kth.se

*  F * X %

*/
#include <stdlib.h>

#include <util/util_serial.h>
#include <util/util_ir.h>
#include <util/util_debug.h>

int main(void) {
char ch;
inti,j=0;

misc_InitAngelFunctions();
debug_Init();

/I init serial port 2 as 9600b UART
sir_Init(SIR_OSTIMER_CHANNEL);

/I set port to transmission mode
sir_SetTransmitMode();

while(j++<20)

ch="A’;
while(ch<="Z")

if(ringbuf_GetSpace(&sir_transmit_buf))

sir_EnqueueTransmByte(ch++);

}
}

// add a CR/LF combination
if(ringbuf_GetSpace(&sir_transmit_buf))

sir_EnqueueTransmByte(0xa);
}
if(ringbuf_GetSpace(&sir_transmit_buf))

sir_EnqueueTransmByte(0xd);

}

/* start transmission */
sir_TransmitDataSW();

/*

* After transmission has started, no new bytes should be written
* to the ring buffer. If this is done, the buffer contains still

* valid data, all the bytes read-in in the SIR modulation routine

* are correct, but transmission gets out of synchronization.

* | was not able to determine the reason, a workaround is to wait
* until transmission has finished before writing new data to the

* puffer.

*/

while(sir_SWTransmitting_Q())

sir_PrintDebugBuf();

}
}

Listing 51. SIR-transmitter using software modulation
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B.7 IR FIR-Mode Examples

B.7.1 FIR Receiver in Polled Mode

Description:
Simple example code for exploring the FIR mode on the Badge.
The program reads bytes from serial port 2 in FIR mode and
echos them on UART1.

--Christoph Wolf
chwolf@it.kth.se

#include <util/util_serial.h>
#include <util/util_misc.h>
#include <util/util_ir.h>

int main(void){

}

UCs8 ch;

I/ set up serial port 2 in HSSP mode, interrupts disabled,

// address matching enabled for address Oxfe

fir_Init(HSSP_INIT_RECEIVE_INT_DIS, HSSP_INIT_TRANSMIT_INT_DIS,
HSSP_INIT_ADDR_MATCH_EN, 0xfe);

IR_HSSP_ENABLE_R;

/I set up serial port 1 as 115kb UART
ser_UartinitDefaultf(UART1_BASE, SER_INIT_BAUD_115200);
SER_UART_ENABLE_T(UART1_BASE);

while(1)
{

ch=fir_GetBytePolled();
if(ch!=0xff && ch!=0xfe) // don’t print address (has to be adjusted if
/I different address is used)
ser_UartPutBytePolled(UART1_BASE, ch);
}
}

return O;

Listing 52. FIR-receiver in polled mode

B.7.2 FIR Transmitter in Polled Mode

/

*

*
*
*
*
*
*

Description:
Simple example code for exploring the FIR mode on the Badge.
The program sends sequences of 8 characters via serial port 2
in FIR mode. After eight sequences a CR/LF pair is sent.
Varying the first byte allows to experiment with the address
match functionality.

Listing 53. FIR-transmitter in polled mode
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In this setup the TUS flag is cleared, hence a transmit FIFO
underrun causes the current frame to be finished.

--Christoph Wolf
chwolf@it.kth.se

* 0% X X X X X

*/
#include <util/util_ir.h>
int main(void){

inti;
int c=0;

/I init serial port 2 in FIR mode with receive and transmit interrupts,

/I and address match functionality disabled

fir_Init(HSSP_INIT_RECEIVE_INT_DIS, HSSP_INIT_TRANSMIT_INT_DIS,
HSSP_INIT_ADDR_MATCH_DIS, 0);

/l send groups of eight characters, after eight groups add CR/LF
/I and take a short pause
while(1)

C++;
IR_HSSP_ENABLE_T;

/I IR_HSSP_PUT_BYTE_DIRECT(0Oxef); // unicast address
IR_HSSP_PUT_BYTE_DIRECT(0xff); // broadcast address
IR_HSSP_PUT_BYTE_DIRECT(‘A");
IR_HSSP_PUT_BYTE_DIRECT('B");
IR_HSSP_PUT_BYTE_DIRECT('C);
IR_HSSP_PUT_BYTE_DIRECT('D");
IR_HSSP_PUT_BYTE_DIRECT('E");
IR_HSSP_PUT_BYTE_DIRECT('F);
IR_HSSP_PUT_BYTE_DIRECT('G");
IR_HSSP_PUT_BYTE_DIRECT('H);
if(c==8)

{

IR_HSSP_PUT_BYTE_DIRECT(0xa);
IR_HSSP_PUT_BYTE_DIRECT(Oxd);
c=0;

}

i=0;

while(i<50000)
i++;

IR_HSSP_DISABLE_T;
i=0;

while(i<50000000)
i++;

}

Listing 53. FIR-transmitter in polled mode
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Appendix C. IrDA

This chapter contains the source code of the device driver files irport.c, wrapper.h and
wrapper.c for the IrDA stack as described in section 9.4.4. and a sample debug log that
shows the events and actions taking place when the IrDA stack is initialized and a
connection to an infrared access point is established.

C.1 Implementation of irport.c

~
*
*
*
*
*
*
*
k
k
*

*

* Filename:  irport.c

*Version: 1.0

* Description: Half duplex serial port SIR driver for IrDA.
* Status:  Experimental.

* Author: Dag Brattli <dagh@cs.uit.no>

* Created at:  Sun Aug 3 13:49:59 1997

* Modified at: Tue Jun 1 10:02:42 1999

10 * Modified by: Dag Brattli <dagb@cs.uit.no>

11 * Sources: serial.c by Linus Torvalds

OCO~NOUIT WN P

12 *

13 * Copyright (c) 1997, 1998, 1999 Dag Brattli, All Rights Reserved.
14 *

15 * This program is free software; you can redistribute it and/or

16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of

18 * the License, or (at your option) any later version.

19 *

20 * This program is distributed in the hope that it will be useful,

21 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 * GNU General Public License for more details.

24 *

25 * You should have received a copy of the GNU General Public License
26 * along with this program; if not, write to the Free Software

27 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,

28 * MA02111-1307 USA

29 *

30 * Thisdriver is ment to be a small half duplex serial driver to be

31 * used for IR-chipsets that has a UART (16550) compatibility mode.
32 * Eventually it will replace irtty, because of irtty has some

33 * problems that is hard to get around when we don’t have control
34 * over the serial driver. This driver may also be used by FIR

35 * drivers to handle SIR mode for them.

36 *

37 *

38 * Modified by: Christoph Wolf <chwolf@it.kth.se> for the

39 * SmartBadge IrDA-Project, Nov. 2000

40 *

41 *

42 /

43

44 /] SA1100 must be defined if the original (digital) SA1100 is used to get
45 /] the alternative SIR transmitting functionality (software modulation)
46 /f#define SA1100

49 #include <stdlib.h>
Listing 54. Listing of irport.c
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112
113
114

#include <stdio.h>
#include <string.h>
#include <irda/errno.h>

#include <irda/spinlock.h>
#include <util/util_misc.h>
#include <util/util_interrupt.h>
#include <util/util_serial.h>
#include <util/util_ir.h>
#include <util/util_ppc.h>
#include <util/util_ostimer.h>
#include <util/util_debug.h>

#include <irda/irda.h>
#include <irda/wrapper.h>
#include <irda/irport.h>
#include <irda/irlap_frame.h>

//#define DEBUG_IRPORT
#ifdef DEBUG_IRPORT
#define DEBUG_STRING(c) debug_String(c)
#define DEBUG_PUT_BYTE(c) debug_PutByte(c)
#define DEBUG_PUT_BYTE_HEX(c) debug_PutByteHex(c)
#define DEBUG_PUT_BYTE_DIRECT(c) debug_PutByteDirect(c)
#define DEBUG_PUT_BYTE_POLLED(c) debug_PutBytePolled(c)
#else
#define DEBUG_STRING(c)
#define DEBUG_PUT_BYTE(c)
#define DEBUG_PUT_BYTE_HEX(c)
#define DEBUG_PUT_BYTE_DIRECT(c)
#define DEBUG_PUT_BYTE_POLLED(c)
#endif

#define IO_EXTENT 8
static unsigned int qos_mtt_bits = 0x03;

/I the only ir device
struct irda_device *ir_dev;

/I queue of sk_buffs to transmit
struct sk_buff_head tx_queue;

/I queue taking received frames
struct sk_buff_head rx_queue;
int rx_queue_max_len;

I/ buffers to store received bytes and
// bytes to be unwrapped

#define IR_REC_BUF_SIZE 2200
volatile static int ir_rec_count = 0;
static UCS8 *ir_rec_buf;

static UC8 *ir_unwrap_buf;

/I code to get around the SA1100 SIR-bug
#ifdef SA1100
RingBuffer irport_tx_buf;

intirport_ir_tx_buf_size=IRPORT_TRANSM_BUFSIZE; //SIR transmit buffer size

// timer channel to be used by the SIR transmission
int irport_sir_ostimer_channel = OSTIMER_CHANNEL_3;
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115 int irport_sir_ostimer_int; // interrupt for the SIR transmission
116 BOOL irport_sir_transmitting = FALSE; // transmitting

117

118  static volatile unsigned char ir_ch; // current char being transmitted
119  static volatile unsigned int ir_state = FIRST_PERIOD; // transm. state
120 static volatile int bit_count=10;

121

122 intirport_sir_init(int ostimer_channel);

123  #define IRPORT_SIR_INIT irport_sir_init(irport_sir_ostimer_channel)
124

125 #else

126  #define TRANSM_BUSY_DELAY 300 // allow UART TBY flag to be set
127  intirport_sir_init(void);

128  #define IRPORT_SIR_INIT irport_sir_init()

129  __inline void irport_write_wakeup(void);

130 #endif

131

132 // toggle between receiver and transmitter mode

133 __inline void irport_sir_set_receive_mode(void);

134 __inline void irport_sir_set_transmit_mode(void);

135

136

137

138 static int irport_net_open(void);

139 static int irport_net_close(void);

140 static int irport_raw_write(__u8 *buf, int len);

141

142

143

144 int irport_open(void)

145 {

146  DEBUG(4, “irport_open()\n");

147

148 * Allocate new instance of the driver

149 */

150 ir_dev = (struct irda_device*)malloc(sizeof(struct irda_device));
151  if (ir_dev == NULL) {

152 ERROR(“IrDA-irport_open: Can't allocate memory for “

153 “IrDA control block!\n");

154 return -ENOMEM;

155

156  memset(ir_dev, 0, sizeof(struct irda_device));

157

158  /* Initialize QoS for this device */

159  irda_init_max_qos_capabilies(&ir_dev->qos);

160

161  // activate the bottom half service

162  ostimer_SetBHActive();

163

164 #ifdef SA1100 // only software modulation with 9600, FIR not yet implemented
165 ir_dev->qos.baud_rate.bits = IR_9600; //|IR_4000000;

166 #else // all modes, but FIR not yet implemented

167  ir_dev->qos.baud_rate.bits = IR_9600|IR_19200|IR_38400|IR_57600|
168 IR_115200; //| IR_4000000;

169 #endif

170

171

172 /linit the receiver and transmitter queues and buffers
173/l and the minimum link turnaround time

174  ir_dev->qos.min_turn_time.bits = qos_mtt_bits;

175 irda_gos_bits_to_value(&ir_dev->qos);

176

177  skb_queue_head_init(&tx_queue);

178  skb_queue_head_init(&rx_queue);

179
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180 ir_dev->rx_buff.truesize = 4000;
181  ir_dev->tx_buff.truesize = 4000;
182

183

184 I*

185 * Allocate receiver interrupt buffer
186 */

187  ir_rec_buf = (UC8*)malloc(IR_REC_BUF_SIZE);
188  if (ir_rec_buf == NULL) {

189 ERROR(“IrDA-irport_open: Can'’t allocate memory for “
190 “receiver interrupt buffer'\n”);
191 return -ENOMEM;

192}

193

194 [*

195 * Allocate unwrap buffer

196 */

197  ir_unwrap_buf = (UC8*)malloc(IR_REC_BUF_SIZE);
198  if (ir_unwrap_buf == NULL) {

199 ERROR(“IrDA-irport_open: Can't allocate memory for “
200 “unwrap buffer\n”);

201 return -ENOMEM;

202 }

203

204  /* Open the IrDA device */

205 irda_device_open();

206

207  irda_device_setup();

208 irport_net_open();

209

210 return O;

211 }

212

213 intirport_close(void)

214 {

215 ASSERT(ir_dev != NULL, return -1;);
216

217  ostimer_SetBHInactive();

218

219  irda_device_close();

220

221  free(ir_dev);

222

223  return O;

224 }

225

226

227 I*

228 * Function irport_net_open (dev)
229 */

230 static int irport_net_open(void)

231 {

232 /l'init the irport, install the interrupt handlers,...
233  IRPORT_SIR_INIT;

234

235

236  /* Ready to play! */

237 ir_dev->tbusy = 0;

238 ir_dev->start =1,

239

240 return O;

241 }

242

243

244 [*
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245 * Function irport_net_close (ir_dev)

246 */

247 static int irport_net_close(void)

248 {

249  /* Stop device */

250 ir_dev->tbusy = 1;

251 ir_dev->start = 0;

252

253  irport_stop();

254

255  return O;

256 }

257

258

259 void irport_start(void)

260 {

261  unsigned long flags;

262

263  spin_lock_irgsave(&ir_dev->lock, flags);
264

265  irport_stop();

266

267  [*Initialize UART */

268

269 /I [* Turn on interrups */

270  IR_HSSP_ENABLE_TRI;

271 #ifdef SA1100 // for old SA1100 only receiver interupt,
272 /I transmission by software modulation
273  SER_UART_ENABLE_RI(IR_UART_BASE);
274 #else

275  SER_UART_ENABLE_TRI(IR_UART_BASE);
276 #endif

277

278  spin_unlock_irgrestore(&ir_dev->lock, flags);
279 }

280

281 void irport_stop(void)

282 {

283  unsigned long flags;

284

285  spin_lock_irgsave(&ir_dev->lock, flags);
286

287  /* shutdown serial port 2 */

288 IR_HSSP_SHUTDOWN;

289 SER_UART_SHUTDOWN(IR_UART_BASE);
290

291  spin_unlock_irgrestore(&ir_dev->lock, flags);
292 }

293

294 void irport_sir_int_handler(unsigned int ident, unsigned int data,
295 unsigned int empty_stack);
296

297 [*

298 * Function irport_change_speed (ir_dev, speed)
299 *

300 * Setspeed of IrDA port to specified baudrate
301 *

302 ¥/

303 void irport_change_speed(int speed)

304 {

305 unsigned long flags;

306

307 ASSERT(ir_dev != NULL, return;);

308

309 /* Update accounting for new speed */
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310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374

spin_lock_irgsave(&ir_dev->lock, flags);
if(speed < 4000000)
{
DEBUG_1(4, “irport_change_speed SIR, %d baud\n”, speed);
/I turn off all FIR related functions
REG(HSSP_BASE, HSCRO) = 0;
/I IR-transceiver mode
IR_SEL_SIR; // select sir mode for SA1100 and transceiver
#ifdef SA1100
if(speed == 9600)
PPC_SET_OUTPUT(TXD2); /I settxd2 (SIR transmit) to output
PPC_CLEAR_PIN(TXD2); //and clear it
}
else
ERROR(“only 9600 baud supported with SA1100 SIR\n");
#else
REG(IR_UART_BASE, UTCR3) = 0x00000000;  // shutdown UART
SER_UART_CLEAR_STATUS_BITS_ALL(IR_UART_BASE); // clear any status bits
switch(speed)
case 19200: REG(IR_UART_BASE, UTCR2) = 0x0000000B;
break;
case 38400: REG(IR_UART_BASE, UTCR2) = 0x00000005;
break;
case 57600: REG(IR_UART_BASE, UTCR2) = 0x00000003;
break;
case 115200: REG(IR_UART_BASE, UTCR2) = 0x00000001;
break;
// 9600 baud as default
default: REG(IR_UART_BASE, UTCR2) = 0x00000017;
break;
}
#endif // SA1100

)
1

}

int_InstallHandler(IR_UART_INT, irport_sir_int_handler);

else

{

DEBUG(4, “irport_change_speed FIR\n");

REG(IR_UART_BASE, UTCR3) = 0x00000000;  // shutdown UART
IR_SEL_FIR;

IR_HSSP_EN(1,1);

FIR mode is not yet implemented

int_InstallHandler(IR_UART_INT, irport_fir_int_handler);
DEBUG_STRING(“FIR not yet implemented\n\r");

printf(“FIR not yet implemented, exit\n”);

exit(1);

[* Turn on interrups */
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375 ir_dev->io.baudrate = speed,;

376

377  spin_unlock_irgrestore(&ir_dev->lock, flags);

378 }

379

380

381 // set sir to receive mode

382 __inline void irport_sir_set_receive_mode(void)

383 {

384 UC8 dummy;

385

386 #ifndef SA1100

387 {

388 int delay;

389

390 [/ wait until transmission is finished. Not necessary if the
391 /I software modulation is used

392

393 /I UART TBY flag not immediately set after transmitter enable.
394 Il We poll the TBY flag to see when we are finished with the
395 /I transmission and can switch to receiver mode. If bit is
396 /I queried immediately after starting the transmission it might
397 // not yet be set and thus we immediately switch to receiver
398 / mode and loose complete transmission. SA1100 bug ?
399 // Shouldn’t be a problem here as some code should have been
400 /I executed in between, but just to make sure

401 for(delay=0;delay<TRANSM_BUSY_DELAY;delay++);

402 }

403  while (SER_UART_TRANSM_BUSY_Q(IR_UART_BASE))
404 {

405 ;

406 }

407

408  // disable transmitter and transmitter interrupt

409 SER_UART_DISABLE_T(IR_UART_BASE);

410 SER_UART_DISABLE_TI(IR_UART_BASE);

411 #endif

412

413 /I make sure receiver FIFO doesn’t contain any reflected data
414  while(SER_UART_REC_NOT_EMPTY_Q(IR_UART_BASE))
415 {

416 dummy = REG(IR_UART_BASE, UTDR);

417 '}

418

419  /l clear status bits and then enable receiver interrupt and receiver
420 SER_UART_CLEAR_STATUS_BITS_ALL(IR_UART_BASE);
421  SER_UART_ENABLE_RI(IR_UART_BASE);

422  SER_UART_ENABLE_R(IR_UART_BASE);

423

424 }

425

426

427 |l set sir to transmit mode

428 __inline void irport_sir_set_transmit_mode(void)

429 {

430 /I read any bytes left in the receiver FIFO

431 /I should cause int but for some reason doesn’t do always
432  while(SER_UART_REC_NOT_EMPTY_Q(IR_UART_BASE))
433 {

434 async_unwrap_char(ir_dev, REG(IR_UART_BASE, UTDR));
435 }

436

437  /l disable receiver and receiver interrupt

438 SER_UART_DISABLE_R(IR_UART_BASE);

439 SER_UART_DISABLE_RI(IR_UART_BASE);
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440

441

442 |/ clear status bits and then enable transmit interrupt and transmitter
443

444  SER_UART_CLEAR_STATUS_BITS_ALL(IR_UART_BASE);
445 #ifndef SA1100

446  SER_UART_ENABLE_TI(IR_UART_BASE);

447 #endif

448  SER_UART_ENABLE_T(IR_UART_BASE);

449 }

450

451

452

453 #ifdef SA1100

454

455

456 extern volatile int ostimer_blocked:;

457 extern intirlap_last_discovery;

458

459

460 // start transmission via software modulation

461 void irport_sir_transmit_data(void)

462 {

463 [/ start transmission if not already transmitting

464  if(lirport_sir_transmitting)

465

466 I/l block software timer callbacks to ensure proper transmission
467 ostimer_blocked = TRUE;

468 irport_sir_transmitting = TRUE;

469 DEBUG_STRING(“irport start transm.\n\r");

470

471

472 OSTIMER_INC_MATCH_REG(irport_sir_ostimer_channel, 40);
473 INT_UNMASK(irport_sir_ostimer_int);

474

475 1}

476  else

477 |

478 DEBUG_STRING(“irport transm. busy\n\r");

479 1}

480 }

481

482

483

484 void ir_SirTransmitintHandler(unsigned int ident, unsigned int data,
485 unsigned int empty_stack)

486 {

487

488 [/ last byte finished, get new byte

489  if(bit_count>=10 && ir_dev->tx_buff.len>0)

490

491 ir_ch = *(ir_dev->tx_buff.data++);

492 ir_dev->tx_buff.len--;

493 bit_count=0;

494 }

495

496  if(ir_state==FIRST_PERIOD)

497  {

498 if(bit_count==0 ||

499 (I(ir_ch & 1<<(bit_count-1)) && bit_count <=8) )
500 {

501 /I for 0-bit 3/16 high period

502 OSTIMER_INC_MATCH_REG(irport_sir_ostimer_channel,IR_OSM_FACTOR*3);
503

504 PPC_SET_PIN(TXD2);
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505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
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539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

}

ir_state = SECOND_PERIOD; // we need a 13/16 low period

else // data bitis 1 -> zero period or it is the stop bit

/1 16/16 low period
OSTIMER_INC_MATCH_REG(irport_sir_ostimer_channel,
IR_OSM_FACTOR*16);
bit_count++;
}
}
else
{
// 13/16 low period as second half
OSTIMER_INC_MATCH_REG(irport_sir_ostimer_channel, IR_OSM_FACTOR*13);

PPC_CLEAR_PIN(TXD2);
ir_state = FIRST_PERIOD;
bit_count++;

}
OSTIMER_RESET_INT(irport_sir_ostimer_channel);

/I byte finished and transfer of buffer finished, disable interrupt
if(bit_count>=10 && ir_dev->tx_buff.len==0)
{

INT_MASK(irport_sir_ostimer_int);
irport_sir_set_receive_mode();
irport_sir_transmitting=FALSE;
INT_UNMASK(INT_OSTIMER_0+1);

/I get new frame or shut down
ostimer_MarkBH(OSTIMER_BH_IRPORT_TRANSMIT);

ir_dev->tbusy = 0; // Unlock
ostimer_blocked = FALSE; // unblock software timer callbacks
DEBUG_STRING(“irport unlocked\n\r");

}

#else

extern volatile int ostimer_blocked;

/*

* Function irport_write_wakeup (tty)
*

*
*

*

*/

{

Called by the interrupt when there’s room for more data. If we have
more packets to send, we send them here.

inline void irport_write_wakeup(void)
int i;
int actual = O;

ASSERT(ir_dev != NULL, return;);

/I Finished with frame?
if (ir_dev->tx_buff.len > 0) {

/I Write data left in transmit buffer, if transmit request int
/I four bytes can be written to the fifo without check
for(i=0;i<4 && actual < ir_dev->tx_buff.len; i++)
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570 {

571 REG(IR_UART_BASE, UTDR) = ir_dev->tx_buff.data[actual++];
572 }

573

574 /I if transmitter not yet full fill it up

575 while( TEST_BIT(IR_UART_BASE, UTSR1, UTSR1_TNF) &&
576 actual < ir_dev->tx_buff.len)

577 {

578 REG(IR_UART_BASE, UTDR) = ir_dev->tx_buff.data[actual++];
579 }

580

581 ir_dev->tx_buff.data += actual;

582 ir_dev->tx_buff.len -= actual;

583

584

585 /I buffer empty

586 }else{

587

588 char deb_buf[50];

589

590 irport_sir_set_receive_mode();

591

592 /I Schedule network layer, so we can get some more frames
593 ostimer_MarkBH(OSTIMER_BH_IRPORT_TRANSMIT);
594

595 /I Now serial buffer is almost free & we can start

596 /I transmission of another packet

597 ir_dev->tbusy = 0; // Unlock

598

599 ostimer_blocked = FALSE;

600 }

601 }

602

603 #endif // #ifdef SA1100

604

605

606 /*

607 * Function irport_hard_xmit (void)

608 *

609 * Transmits the current frame until FIFO is full, then
610 * waits until the next transmitt interrupt, and continues until the
611 * frame is transmited.

612 */

613 intirport_hard_xmit(struct sk_buff *skb)
614 {

615  unsigned long flags;

616

617 ASSERT(ir_dev != NULL, return 0;);
618

619  spin_lock_irgsave(&ir_dev->lock, flags);
620

621 ir_dev->tbusy = TRUE;

622

623  /* Init tx buffer */

624  ir_dev->tx_buff.data = ir_dev->tx_buff.head;

625

626  /* Copy skb to tx_buff while wrapping, stuffing and making CRC */
627  ir_dev->tx_buff.len = async_wrap_skb(skb, ir_dev->tx_buff.data,
628 ir_dev->tx_buff.truesize);

629

630 /* Turn on transmit interrupt to start transmission. */

631  irport_sir_set_transmit_mode();

632

633 #ifdef SA1100

634  irport_sir_transmit_data();
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635 #endif

636

637  spin_unlock_irgrestore(&ir_dev->lock, flags);
638

639  kfree_skb(skb);

640

641 return O;

642 }

643

644

645

646

647 I*

648 * Function irport_interrupt (irq, dev_id, regs)
649 *

650 * Interrupt handler for SIR mode

651 */

652

653 void irport_sir_int_handler(unsigned int ident, unsigned int data,
654 unsigned int empty_stack)
655 {

656 char ch;

657  UCS8 utsr0;

658 inti;

659

660

661

662 if(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_RFS)) /I receiver fifo request
663

664 {

665 Il put received bytes into irport receiver buffer, can be unstuffed
666 /I later in the bottom half handler

667 ir_rec_buf[ir_rec_count++] = REG(IR_UART_BASE, UTDR);
668 ir_rec_buf[ir_rec_count++] = REG(IR_UART_BASE, UTDR);
669 ir_rec_buf[ir_rec_count++] = REG(IR_UART_BASE, UTDR);
670 ir_rec_buf[ir_rec_count++] = REG(IR_UART_BASE, UTDR);
671

672 while(SER_UART_REC_NOT_EMPTY_Q(IR_UART_BASE))
673 {

674 ir_rec_buf[ir_rec_count++] = REG(IR_UART_BASE, UTDR);
675 }

676 ostimer_MarkBH(OSTIMER_BH_IRPORT_UNWRAP);

677

678 }

679

680 else if(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_RID)) // receiver idle
681 {

682 do

683

684 ir_rec_buf[ir_rec_count++] = REG(IR_UART_BASE, UTDR);
685 }

686 while(SER_UART_REC_NOT_EMPTY_Q(IR_UART_BASE));
687 ostimer_MarkBH(OSTIMER_BH_IRPORT_UNWRAP);

688 SER_UART_CLEAR_STATUS_BITS_RID(IR_UART_BASE);
689 }

690

691  // transmit interrupt request
692  if(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_TFS))

693 {

694 #ifdef SA1100

695 INT_MASK(IR_UART_INT);
696 #else

697  irport_write_wakeup();

698 #endif

699 }
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700

701  if(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_RBB)) // receiver break begin
702 {

703 SER_UART_CLEAR_STATUS_BITS_RBB(IR_UART_BASE);
704}

705

706  if(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_REB)) // receiver break end
707

708 SER_UART_CLEAR_STATUS_BITS_REB(IR_UART_BASE);

709 }

710

711 /I don't care, will be detected in the CRC check

712 if(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_EIF)) // error in frame
713

714 do

715 {

716 ir_rec_buf[ir_rec_count++] = REG(IR_UART_BASE, UTDR);

717 }

718 while(TEST_BIT(IR_UART_BASE, UTSRO, UTSRO_EIF));

719 ostimer_MarkBH(OSTIMER_BH_IRPORT_UNWRAP);

720 }

721

722

723 utsrO = REG(IR_UART_BASE, UTSRO0); // find reason for int request
724 if(utsrO ) /I shouldn’'t be set anymore, otherwise error
725

726 INT_MASK(IR_UART_INT);

727}

728

729 }

730

731

732 [* initialize uart2 as infrared port in serial mode

733 */

734 #ifdef SA1100

735 intirport_sir_init(int ostimer_channel)

736 #else

737  intirport_sir_init(void)

738 #endif

739

740 {

741

742  DEBUG(4, “irport_sir_init()\n");
743

744  REG(HSSP_BASE, HSCRO) = 0;
745

746  REG(IR_UART_BASE, UTCR3) = 0x00000000;  // shutdown UART

747  SER_UART_CLEAR_STATUS_BITS_ALL(IR_UART_BASE); /I clear any status bits
748 REG(IR_UART_BASE, UTCRO) = 0x00000008;  // 8N1

749  REG(IR_UART_BASE, UTCR1) = 0x00000000;  // 9600 baud

750 REG(IR_UART_BASE, UTCR2) = 0x00000017;  // 9600 baud

751

752 IR_UART_SIR_ENABLE; // activate SIR modulation for UART2

753

754 |/ IR-transceiver mode

755 IR_SEL_SIR; // select sir mode for SA1100 and transceiver

756

757 #ifdef SA1100

758  irport_tx_buf.data = (unsigned char*) malloc(IRPORT_TRANSM_BUFSIZE);
759  if(irport_tx_buf.data)

760 {

761 irport_tx_buf.size = IRPORT_TRANSM_BUFSIZE;
762}

763 else

764 |
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765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
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790
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793
794
795
796
797
798
799
800
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802
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804
805
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807
808
809
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811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

printf(“not enough memory for ir transmit buffer\n”);
exit(1);
}

PPC_SET_OUTPUT(TXD2); /I settxd2 (SIR transmit) to output
PPC_CLEAR_PIN(TXD2); //and clear it

irport_sir_ostimer_channel = ostimer_channel;
OSTIMER_ENABLE_INT(irport_sir_ostimer_channel);
irport_sir_ostimer_int = INT_OSTIMER_O+irport_sir_ostimer_channel;
int_InstallHandler(irport_sir_ostimer_int, ir_SirTransmitintHandler);

/I sofware modulation doesn’t work otherwise
misc_SysDisableWriteBuffer();

#endif

int_InstallHandler(IR_UART_INT, irport_sir_int_handler);
INT_UNMASK(IR_UART_INT);

return O;

}

/*
* Function irport_wait_until_sent (ir_dev)

*

*  Delay execution until finished transmitting
*

*/
void irport_wait_until_sent(void)

{
/I FIXME maybe something like yield

#ifdef SA1100
while (irport_sir_transmitting)

#else

{
int delay;

/I UART TBY flag not immediately set after transmitter enable.
/I Shouldn't be a problem here as some code should have been
/I executed in between, but just to make sure
for(delay=0;delay<TRANSM_BUSY_DELAY;delay++);

/* Wait until Tx FIFO is empty */
while (SER_UART_TRANSM_BUSY_Q(IR_UART_BASE))

{

#endif

}

/*
* Function irport_is_receiving (ir_dev)
*

* Returns true if we are currently receiving data

*
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830 */

831 intirport_is_receiving(void)

832 {

833 return (ir_dev->rx_buff.state = OUTSIDE_FRAME);

834 }

835

836

837

838 /*

839 * bottom half handler for transmission

840 *if device (i.e. port) is not busy and transmission queue is not
841 * empty take out a buffer and pass it to irport_hard_xmit for
842 * transmission

843 */

844 void irport_BHTransmit(void)

845 {

846  struct sk_buff* tx_skb;

847

848 /Il reset the request

849  ostimer_UnmarkBH(OSTIMER_BH_IRPORT_TRANSMIT);
850

851  /lif there is a packet to transmit

852  if(tx_queue.qlen>0)

853 {

854

855 if(lir_dev->tbusy)

856

857 /I get the sk_buff and pass it to the transmission routine
858 tx_skb = skb_dequeue(&tx_queue);

859 irport_hard_xmit(tx_skb);

860 }

861 else

862

863 /I when transmission is finished the int handler marks
864 /I the bottom half handler again for the next packet
865 }

866 }

867

868 }

869

870

871 [*

872 * Bottom half receive function.

873 * Take queued skbs out of the receiver queue and pass them to the
874 *irlap receive function.

875 */

876 void irport_BHReceive(void)

877 {

878  struct sk_buff* rx_skb;

879

880  ostimer_UnmarkBH(OSTIMER_BH_IRPORT_RECEIVE);
881

882  while(rx_queue.glen>0)

883

884 rx_skb = skb_dequeue(&rx_queue);

885 irlap_driver_rcv(rx_skb);

886 }

887

888

889 }

890

891

892 /*

893 * Bottom half unwrap function.

894 * copy received bytes from ir_rec_buf to ir_unwrap_buf to avoid
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895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916

* plocking interrupts for a longer time. Unwrapping then can be
* done in user mode while the interrupt can receive the next
* pytes.
*/
void irport_BHUnwrap(void)
L
inti;
int len;
ostimer_UnmarkBH(OSTIMER_BH_IRPORT_UNWRAP);

Angel_EnterSVC();

memcpy(ir_unwrap_buf, ir_rec_buf, ir_rec_count);
len =ir_rec_count;

ir_rec_count=0;

Angel_ExitToUSR();

for(i=0;i<len;i++)

async_unwrap_char(ir_dev, ir_unwrap_buf]i]);

}
}
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31
32
33
34

I’ * * * *

*

* Filename:  wrapper.h

* Version: 1.2

* Description: IrDA SIR async wrapper layer
* Status: Experimental.

* Author: Dag Brattli <dagb@cs.uit.no>

* Created at: Mon Aug 4 20:40:53 1997

* Modified at: Mon May 3 09:02:36 1999

* Modified by: Dag Brattli <dagbh@cs.uit.no>
*

Copyright (c) 1998-1999 Dag Brattli <dagb@cs.uit.no>,
All Rights Reserved.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version.

Neither Dag Brattli nor University of Tromsg admit liability nor
provide warranty for any of this software. This material is
provided “AS-IS” and at no charge.

Modified by: Christoph Wolf <chwolf@it.kth.se> for the
SmartBadge IrDA-Project, Nov. 2000

E N I I I S R T T I T . S N N

#ifndef WRAPPER_H
#define WRAPPER_H

#include <irda/types.h>
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#include <irda/skbuff.h>
#include <irda/irda_device.h>

#define BOF 0xcO /* Beginning of frame */
#define XBOF Oxff

#define IRDA_EOF 0xcl /* End of frame */
#define CE 0x7d /* Control escape */

#define STA BOF /* Start flag */
#define STO IRDA_EOF /* End flag */

#define IRDA_TRANS 0x20 /* Asynchronous transparency modifier */

[* States for receving a frame in async mode */
enum {

OUTSIDE_FRAME,

BEGIN_FRAME,

LINK_ESCAPE,

INSIDE_FRAME

kh

/* Proto definitions */

int async_wrap_skb(struct sk_buff *skb, _ u8 *tx_buff, int buffsize);

J*

: Function async_unwrap (skb)

* Parse and de-stuff frame received from the IrDA-port

)

extern void (*async_wrap_state[])(struct irda_device *idev, __u8 byte);

inline void async_unwrap_char(struct irda_device *idev, __u8 byte)

(*async_wrap_state[idev->rx_buff.state]) (idev, byte);

#endif
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C.3 Implementation of wrapper.c

1
2
3
4
5
6
7

/*********************************************************************

*

* Filename:  wrapper.c

* Version: 1.2

* Description: IrDA SIR async wrapper layer
* Status: Experimental.

* Author: Dag Brattli <dagb@cs.uit.no>

* Created at: Mon Aug 4 20:40:53 1997

* Modified at: Fri May 28 20:30:24 1999

* Modified by: Dag Brattli <dagb@cs.uit.no>
*

Copyright (c) 1998-1999 Dag Brattli <dagb@cs.uit.no>,
All Rights Reserved.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of

* 0% X X X X
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the License, or (at your option) any later version.

Neither Dag Brattli nor University of Tromsg admit liability nor
provide warranty for any of this software. This material is
provided “AS-IS” and at no charge.

Modified by: Christoph Wolf <chwolf@it.kth.se> for the
SmartBadge IrDA-Project, Nov. 2000

E I I I S T

#include <irda/skbuff.h>
#include <string.h>

#include <irda/irda.h>
#include <irda/crc.h>
#include <irda/irlap.h>
#include <irdal/irlap_frame.h>
#include <irda/irda_device.h>
#include <irda/netdevice.h>
#include <irda/wrapper.h>

#include <util/util_ostimer.h>
#include <util/util_debug.h>

static inline int stuff_byte(__u8 byte, __ u8 *buf);

static void state_outside_frame(struct irda_device *idev, __u8 byte);
static void state_begin_frame(struct irda_device *idev, __u8 byte);
static void state_link_escape(struct irda_device *idev, __u8 byte);
static void state_inside_frame(struct irda_device *idev, __u8 byte);

extern struct sk_buff_head rx_queue;
extern int rx_queue_max_len;
extern int rx_queue_new_data;

void (*async_wrap_state[])(struct irda_device *idev, _ u8 byte) =
{

state_outside_frame,

state_begin_frame,

state_link_escape,

state_inside_frame,

k

/*
* Function async_wrap (skb, *tx_buff)
*

* Makes a new buffer with wrapping and stuffing, should check that
* we don't get tx buffer overflow.

*

int async_wrap_skb(struct sk_buff *skb, _ u8 *tx_buff, int buffsize)

inti;
int n;
int xbofs;
union {
__ul6 value;
__u8 bytes[2];
} fcs;

/* Initialize variables */
fcs.value = INIT_FCS;
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83 n=0;
84
85 if (skb->len >2048) {
86 DEBUG_1(0, “async_wrap_skb(): Warning size=%d of sk_buff to big'\n”,
87 (int) skb->len);
88 return O;
89 }
90
91 [/
92 * Send XBOF’s for required min. turn time and for the negotiated
93 * additional XBOFS
94 */
95  xbofs = ((struct irlap_skb_cb *)(skb->cb))->xbofs;
96
97 memset(tx_buff+n, XBOF, xbofs);
98 n += xbofs;
99
100  /* Start of packet character BOF */
101  tx_buff[n++] = BOF;
102
103  /* Insert frame and calc CRC */
104  for (i=0; i < skb->len; i++) {
105 I*
106 * Check for the possibility of tx buffer overflow. We use
107 * pufsize-5 since the maximum number of bytes that can be
108 * transmitted after this point is 5.
109 */
110 ASSERT(n < (buffsize-5), return n;);
111
112 n += stuff_byte(skb->datali], tx_buff+n);
113 fcs.value = irda_fcs(fcs.value, skb->datali]);
114 }
115
116  /*Insert CRC in little endian format (LSB first) */
117  fcs.value = ~fcs.value;
118 #ifdef __ LITTLE_ENDIAN
119  n += stuff_byte(fcs.bytes[0], tx_buff+n);
120 n +=stuff_byte(fcs.bytes[1], tx_buff+n);
121 #else
122 #ifdef __BIG_ENDIAN
123 n += stuff_byte(fcs.bytes[1], tx_buff+n);
124 n += stuff_byte(fcs.bytes[0], tx_buff+n);
125  #else
126 #error neither __LITTLE_ENDIAN nor __BIG_ENDIAN defined
127  #endif
128 #endif
129  tx_buff[n++] = IRDA_EOF;
130
131 return n;
132 }
133
134 [*
135 * Function async_bump (idev)
136 *
137 * Got a frame, make a copy of it, and pass it up the stack!
138 *
139 #/
140 static inline void async_bump(struct irda_device *idev, __u8 *buf, int len)
141 {
142 struct sk_buff *skb;
143
144  skb = dev_alloc_skb(len+1);
145  if (Iskb) {
146 return;
147  }
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148

149  /* Align IP header to 20 bytes */

150  skb_reserve(skb, 1);

151

152 [* Copy data without CRC */

153  memcpy(skb_put(skb, len-2), buf, len-2);

154

155 f*

156 * Feed it to IrLAP layer

157 */

158

159  if(rx_queue.glen <= rx_queue_max_len)

160

161 skb_queue_tail(&rx_queue, skb);

162 ostimer_MarkBH(OSTIMER_BH_IRPORT_RECEIVE);
163 }

164 }

165

166 /*

167 * Function stuff_byte (byte, buf)

168 *

169 * Byte stuff one single byte and put the result in buffer pointed to by
170 * buf. The buffer must at all times be able to have two bytes inserted.
171 *

172 *

173 static inline int stuff_byte(__u8 byte, __ u8 *buf)
174 {

175  switch (byte) {

176 case BOF: /* FALLTHROUGH */

177  case IRDA_EOF: /* FALLTHROUGH */

178 case CE:

179 [* Insert transparently coded */

180 buf[0] = CE; /* Send link escape */
181 buf[1] = byte"lRDA_TRANS; /* Complement bit 5 */
182 return 2;

183 /* break; */

184  default:

185 /* Non-special value, no transparency required */
186 buf[0] = byte;

187 return 1;

188 [* break; */

189 }

190 }

191

192

193 /*

194 * Function state_outside_frame (idev, byte)
195 *

196 *

197 *

198 */

199 static void state_outside_frame(struct irda_device *idev, __u8 byte)
200 {

201  switch (byte) {

202 case BOF:

203 idev->rx_buff.state = BEGIN_FRAME;

204 idev->rx_buff.in_frame = TRUE;

205 break;

206  case XBOF:

207 /* idev->xbofs++; */

208 break;

209 case IRDA_EOF:

210 irda_device_set_media_busy(TRUE);

211 break;

212  default:
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213 break;

214}

215 }

216

217 [*

218 * Function state_begin_frame (idev, byte)
219 *

220 * Begin of frame detected

221 *

222 *

223 static void state_begin_frame(struct irda_device *idev, __u8 byte)
224 {

225  switch (byte) {

226  case BOF:

227 /* Continue */

228 break;

229 case CE:

230 /* Stuffed byte */

231 idev->rx_buff.state = LINK_ESCAPE;
232

233 /* Time to initialize receive buffer */

234 idev->rx_buff.data = idev->rx_buff.head;
235 idev->rx_buff.len = 0;

236 break;

237 case IRDA_EOF:

238 /* Abort frame */

239 idev->rx_buff.state = OUTSIDE_FRAME;
240 break;

241  default:

242 /* Time to initialize receive buffer */

243 idev->rx_buff.data = idev->rx_buff.head;
244 idev->rx_buff.len = 0;

245

246 idev->rx_buff.datafidev->rx_buff.len++] = byte;
247

248 idev->rx_buff.fcs = irda_fcs(INIT_FCS, byte);
249 idev->rx_bhuff.state = INSIDE_FRAME;
250 break;

251 }

252 }

253

254 [*

255 * Function state_link_escape (idev, byte)

256 *

257 *

258 *

259 */

260 static void state_link_escape(struct irda_device *idev, __u8 byte)
261 {

262  switch (byte) {

263 case BOF: /* New frame? */

264 idev->rx_buff.state = BEGIN_FRAME;
265 irda_device_set_media_busy(TRUE);
266 break;

267 case CE:

268 DEBUG(4, “WARNING: state_link_escape() State not defined\n”);
269 break;

270 case IRDA_EOF: /* Abort frame */

271 idev->rx_buff.state = OUTSIDE_FRAME;
272 break;

273  default:

274 I*

275 * Stuffed char, complement bit 5 of byte
276 * following CE, IrLAP p.114

277 */
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278 byte "= IRDA_TRANS;

279 if (idev->rx_buff.len < idev->rx_buff.truesize) {

280 idev->rx_buff.data[idev->rx_buff.len++] = byte;

281 idev->rx_buff.fcs = irda_fcs(idev->rx_buff.fcs, byte);
282 idev->rx_buff.state = INSIDE_FRAME;

283 }else {

284 DEBUG(1, “state_link_escape(), Rx buffer overflow, aborting\n”);
285 idev->rx_buff.state = OUTSIDE_FRAME;

286 }

287 break;

288 }

289 }

290

291 [*

292 * Function state_inside_frame (idev, byte)

293 *

294 * Handle bytes received within a frame

295 *

296 */

297 static void state_inside_frame(struct irda_device *idev, __ u8 byte)
298 {

299

300  switch (byte) {
301 case BOF: /* New frame? */

302 idev->rx_buff.state = BEGIN_FRAME;

303 irda_device_set_media_busy(TRUE);

304 break;

305 case CE: /* Stuffed char */

306 idev->rx_buff.state = LINK_ESCAPE;

307 break;

308 case IRDA_EOF: /* End of frame */

309 idev->rx_buff.state = OUTSIDE_FRAME;

310 idev->rx_buff.in_frame = FALSE;

311

312 [* Test FCS and deliver frame if it's good */
313 if (idev->rx_buff.fcs == GOOD_FCS) {

314 async_bump(idev, idev->rx_buff.data,

315 idev->rx_buff.len);

316 }else {

317 /* Wrong CRC, discard frame! */

318 irda_device_set_media_busy(TRUE);

319

320 DEBUG_STRING(“wrong CRC\n\r");

321

322 }

323 break;

324  default: /* Must be the next byte of the frame */
325 if (idev->rx_buff.len < idev->rx_buff.truesize) {
326 idev->rx_buff.dataidev->rx_buff.len++] = byte;
327 idev->rx_buff.fcs = irda_fcs(idev->rx_buff.fcs, byte);
328 }else {

329 DEBUG(1, “state_inside_frame(), Rx buffer overflow, aborting\n”);
330 idev->rx_buff.state = OUTSIDE_FRAME;
331 }

332 break;

333

334

335 }
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C.4 Debug Log Connection Establishment

This section lists the debug log for establishing an IrLAN connection between the SmartBadge and an HP
Netbeam IR access point. At the end of the log the IrLAN link has been set up and is ready for data transmissions. If
there are no data packets to be transmitted, the Ir(LAP layer constantly exchanges receiver ready messages with i
peer to signal the link turnaround. If network packets have to be transmitted in either direction, they are encapsulatec

into info frames which can be sent until the link turnaround time has expired.

main: init

irlmp_init()

irlap_init()

irport_open()

irda_device_set_media_busy(FALSE)

irlap_open()

next LAP state = LAP_OFFLINE

Get saddr = 68579752

irlap_apply_default_connection_parameters()

irlap_change_speed(), setting speed to 9600

irport_change_speed SIR, 9600 baud

next LAP state = LAP_NDM

irlmp_register_link(), Registered IrLAP, saddr = 68579752

ilmp_next_lap_state(), LMP LAP = LAP_STANDBY

irport_sir_init()

iriap_init()

irlmp_register_service(), hints = 0005

irias_new_object(Device)

irias_add_string_attrib()

irias_add_string_attrib: name=DeviceName,
value=Badge

irias_add_attrib()

irias_insert_object()

iriap_open(), mode=IrlAS srv

irlmp_open_lIsap(), slsap_sel=00

irlmp_slsap_inuse()

irlmp_slsap_inuse: is free

irlmp_next_lIsap_state(), LMP LSAP = LSAP_DISCONNECTED

iriap_open(), source LSAP sel=00

iriap_next_client_state(): IAP Client=S_DISCONNECT

iriap_next_call_state(): IAP Call=S_MAKE_CALL

iriap_next_server_state(): IAP Server=R_DISCONNECT

iriap_next_r_connect_state(): R_WAITING

irttpIRLAN_IDLE

irlan_provider_open_ctrl_tsap()

irttp_open_tsap()

irlmp_open_lIsap(), slsap_sel=ff

irlmp_slsap_inuse()

irlmp_slsap_inuse: is free

irlmp_find_free_slsap(), next free Isap_sel=10

ilmp_next_Isap_state(), LMP LSAP = LSAP_DISCONNECTED

irttp_open_tsap(), stsap_sel=10

irias_new_object(IrLAN)

irias_add_integer_attrib()

irias_add_attrib()

irias_insert_object()

irias_new_object(PnP)

irias_add_string_attrib()

irias_add_string_attrib: name=Name,
value=Badge

irias_add_attrib()

irias_add_string_attrib()

irias_add_string_attrib: name=DevicelD,
value=HWP19F0

irias_add_attrib()

irias_add_integer_attrib()
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irias_add_attrib()
irias_add_string_attrib()
irias_add_string_attrib: name=Comp#02,
value=PNP8389
irias_add_attrib()
irias_add_string_attrib()
irias_add_string_attrib: name=Manufacturer,
value=Badge-IrDA Project
irias_add_attrib()
irias_insert_object()
irlmp_discovery_request(), nslots=0
irlmp_discovery_request() discovery already running, so we just return the old discov-
ery log!
irlmp_discovery_confirm()
ipstack_init()
IrLMP, discovery timer expired!
irlmp_do_discovery(6)
irlmp_expire_discoveries()
ilmp_do_lap_event(), EVENT = LM_LAP_DISCOVERY_REQUEST,
STATE = LAP_STANDBY
irlmp_state_standby()
irlap_discovery_request(), nslots = 6
irlap_do_event(), event = DISCOVERY_REQUEST,
state = LAP_NDM
irlap_state_ndm()
irlap_send_discovery_xid_frame()
s=0
S=6
command=1
next LAP state = LAP_QUERY
irda timer: Slot timer expired!
timer count: 1761952705
irlap_do_event(), event = SLOT_TIMER_EXPIRED,
state = LAP_QUERY
lap_ev slot timer exp
irlap_send_discovery_xid_frame()
s=1
S=6
command=1
next LAP state = LAP_QUERY
irda timer: Slot timer expired!
timer count: 1762263679
irlap_do_event(), event = SLOT_TIMER_EXPIRED,
state = LAP_QUERY
lap_ev slot timer exp
irlap_send_discovery_xid_frame()
s=2
S=6
command=1
next LAP state = LAP_QUERY
irda timer: Slot timer expired!
timer count: 1762574551
irlap_do_event(), event = SLOT_TIMER_EXPIRED,
state = LAP_QUERY
lap_ev slot timer exp
irlap_send_discovery_xid_frame()
s=3
S=6
command=1
next LAP state = LAP_QUERY
irda timer: Slot timer expired!
timer count: 1762885652
irlap_do_event(), event = SLOT_TIMER_EXPIRED,
state = LAP_QUERY
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lap_ev slot timer exp
irlap_send_discovery_xid_frame()
s=4
S=6
command=1
next LAP state = LAP_QUERY
irlap_recv_discovery_xid_rsp()
irlap_recv_discovery_xid_rsp(), daddr=000cc000,
saddr=68579752
info="HP NetBeamIR'.
irlap_do_event(), event = RECV_DISCOVERY_XID_RSP,
state = LAP_QUERY
irlap_state_query(), discovery response received, daddr=000cc000
next LAP state = LAP_QUERY
irda timer: Slot timer expired!
timer count: 1763197485
irlap_do_event(), event = SLOT_TIMER_EXPIRED,
state = LAP_QUERY
lap_ev slot timer exp
irlap_send_discovery_xid_frame()
s=5
S=6
command=1
next LAP state = LAP_QUERY
irda timer: Slot timer expired!
timer count: 1763508766
irlap_do_event(), event = SLOT_TIMER_EXPIRED,
state = LAP_QUERY
lap_ev slot timer exp
lap_ev sending final slot
irlap_send_discovery_xid_frame()
s=255
S=6
command=1
lap_fr queue final
next LAP state = LAP_NDM
irlap discovery confirm
irda_device_set_media_busy(FALSE)
irlmp_link_discovery_confirm()
irlmp_add_discovery_log()
irlmp_do_lap_event(), EVENT = LM_LAP_DISCOVERY_CONFIRM,
STATE = LAP_STANDBY
irlmp_state_standby()
irlmp_discovery_confirm()
irlmp_notify_client()
discovery->daddr = 0x000cc000
irlan_client_discovery_indication()
irlan_client_discovery_indication(), starting new instance!
irlan_open(), register
irlan_open: switching states to IRLAN_IDLE
irlan_next_client_state(), IRLAN_IDLE
irlan_next_provider_state(), IRLAN_IDLE
irlan_register_netdev()
irlan_eth_init()
irlan_eth_init(): simulate irmanager EVENT_IRLAN_START
irmanager_notify(), event EVENT_IRLAN_START
irlan_eth_open()
irlan_client_wakeup()
irlan_client_open_ctrl_tsap()
irlan_client_open_ctrl_tsap: before irttp_open_tsap
irttp_open_tsap()
irlmp_open_lIsap(), slsap_sel=ff
irlmp_slsap_inuse()
ilmp_slsap_inuse: is free
irlmp_find_free_slsap(), next free Isap_sel=11
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irlmp_next_Isap_state(), LMP LSAP = LSAP_DISCONNECTED
irttp_open_tsap(), stsap_sel=11
irlan_open_data_tsap()
irttp_open_tsap()
irlmp_open_lIsap(), slsap_sel=ff
irlmp_slsap_inuse()
irlmp_slsap_inuse: is free
irlmp_find_free_slsap(), next free Isap_sel=12
irlmp_next_Isap_state(), LMP LSAP = LSAP_DISCONNECTED
irttp_open_tsap(), stsap_sel=12
irlan_client_state_idle()
iriap_getvaluebyclass_request()
iriap_open(), mode=IrlAS cli
irlmp_open_lIsap(), slsap_sel=ff
irlmp_slsap_inuse()
irlmp_slsap_inuse: is free
irlmp_find_free_slsap(), next free Isap_sel=13
irlmp_next_Isap_state(), LMP LSAP = LSAP_DISCONNECTED
iriap_open(), source LSAP sel=13
iriap_next_client_state(): IAP Client=S_DISCONNECT
iriap_next_call_state(): IAP Call=S_MAKE_CALL
iriap_next_server_state(): IAP Server=R_DISCONNECT
iriap_next_r_connect_state(): R_WAITING
(iriap_event) state_s_disconnect()
iriap_next_client_state(): IAP Client=S_CONNECTING
irlmp_connect_request(), slsap_sel=13
disap_sel=00
irlmp_do_Isap_event(), EVENT = LM_CONNECT_REQUEST,
STATE = LSAP_DISCONNECTED
slsap_sel = 13
irlmp_state_disconnected()
irlmp_state_disconnected(), LM_CONNECT_REQUEST
irlmp_next_Isap_state(), LMP LSAP = LSAP_SETUP_PEND
irlmp_do_lap_event(), EVENT = LM_LAP_CONNECT_REQUEST,
STATE = LAP_STANDBY
irlmp_state_standby()
irlmp_state_standby() LS_CONNECT_REQUEST
irlap_connect_request(), daddr=0x000cc000
irlap_do_event(), event = CONNECT_REQUEST,
state = LAP_NDM
irlap_state_ndm()
irlap_send_snrm_frame()
next LAP state = LAP_SETUP
irlmp_next_lap_state(), LMP LAP = LAP_U_CONNECT
irlan_next_client_state(), IRLAN_QUERY
irlan_start_watchdog_timer()
irlan_client_start_kick_timer()
irlan_start_watchdog_timer()
UA rsp frame received!
irlap_recv_ua_frame()
irlap_do_event(), event = RECV_UA_RSP,
state = LAP_SETUP
irlap_state_setup()
irlap_initiate_connection_state()
irda_qos_negotiate()
Setting BAUD_RATE to 115200 bps.
Setting DATA_SIZE to 2048 bytes
Setting WINDOW_SIZE to 7
Setting XBOFS to 1
Setting MAX_TURN_TIME to 500 ms.
Setting MIN_TURN_TIME to 1000 usecs.
Setting LINK_DISC to 12 secs.
irlap_apply_connection_parameters()
irlap_change_speed(), setting speed to 115200
irport_change_speed SIR, 115200 baud
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Setting window_bytes = 5760
Setting N1 =6
Setting N2 = 24
next LAP state = LAP_NRM_P
irlap_connect_confirm()
irlmp_link_connect_confirm()
irlmp_do_lap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LAP_U_CONNECT
irlmp_state_u_connect(), event=LM_LAP_CONNECT_CONFIRM
irlmp_next_lap_state(), LMP LAP = LAP_ACTIVE
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_SETUP_PEND
slsap_sel = 13
irlmp_state_setup_pend()
irlmp_send_Icf_pdu()
irlmp_next_lIsap_state(), LMP LSAP = LSAP_SETUP
irda timer: Final timer expired!
irlap_do_event(), event = FINAL_TIMER_EXPIRED,
state = LAP_NRM_P
irlap_send_rr_frame()
irlap_state_nrm_p: FINAL_TIMER_EXPIRED: retry_count=1
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
ilmp_do_Isap_event(), EVENT = LM_CONNECT_CONFIRM,
STATE = LSAP_SETUP
slsap_sel = 13
irlmp_state_setup()
irlmp_next_lsap_state(), LMP LSAP = LSAP_DATA_TRANSFER_READY
irlmp_connect_confirm()
irlmp_connect_confirm(), max_seg_size=2046
irlmp_connect_confirm(), max_header_size=4
iriap_connect_confirm()
ilmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel = 13
irlmp_state_dtr()
irlap_do_event(), event = SEND_|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
iriap_next_call_state(): IAP Call=S_OUTSTANDING
iriap_next_client_state(): IAP Client=S_CALL
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irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
iriap_data_indication()
iriap_data_indication() Got ack frame!
IrLMP GetValueByClass
iriap_getvaluebyclass_confirm(), len=1
iriap_getvaluebyclass_confirm(), Value type =1
iriap_getvaluebyclass_confirm(), Isap=1
iriap_disconnect_request()
irlmp_disconnect_request()
irlmp_do_Isap_event(), EVENT = LM_DISCONNECT_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel = 13
irlmp_state_dtr()
irlmp_send_Icf_pdu()
irlap_do_event(), event = SEND_|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlmp_next_Isap_state(), LMP LSAP = LSAP_DISCONNECTED
irlmp_state_dtr(), trying to close Ir(LAP
ilmp_do_lap_event(), EVENT = LM_LAP_DISCONNECT_REQUEST,
STATE = LAP_ACTIVE
irlmp_state_active()
irlmp_state_active(), LM_LAP_DISCONNECT_REQUEST, start idle timer
irlan_client_get_value_confirm()
irlan_client_state_query()
irttp_connect_request(), max_sdu_size=1518
irlmp_connect_request(), slsap_sel=11
disap_sel=01
irlmp_do_Isap_event(), EVENT = LM_CONNECT_REQUEST,
STATE = LSAP_DISCONNECTED
slsap_sel = 11
irlmp_state_disconnected()
irlmp_state_disconnected(), LM_CONNECT_REQUEST
irlmp_next_lIsap_state(), LMP LSAP = LSAP_SETUP_PEND
irlmp_do_lap_event(), EVENT = LM_LAP_CONNECT_REQUEST,
STATE = LAP_ACTIVE
irlmp_state_active()
irlmp_state_active(), LM_LAP_CONNECT_REQUEST
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_SETUP_PEND
slsap_sel =11
irlmp_state_setup_pend()
irlmp_send_Icf_pdu()
irlmp_next_Isap_state(), LMP LSAP = LSAP_SETUP
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_DISCONNECTED
slsap_sel =13
irlmp_state_disconnected()
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irlmp_state_disconnected(), Unknown event 13
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_DISCONNECTED
slsap_sel = 12
irlmp_state_disconnected()
irlmp_state_disconnected(), Unknown event 13
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_DISCONNECTED
slsap_sel =00
irlmp_state_disconnected()
irlmp_state_disconnected(), Unknown event 13
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_DISCONNECTED
slsap_sel = 10
irlmp_state_disconnected()
irlmp_state_disconnected(), Unknown event 13
irlan_next_client_state(), IRLAN_CONN
iriap_send_ack()
iriap_next_call_state(): IAP Call=S_WAIT_FOR_CALL
iriap_close()
__irlmp_close_lIsap()
__iriap_close()
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
ilmp_do_Isap_event(), EVENT = LM_CONNECT_CONFIRM,
STATE = LSAP_SETUP
slsap_sel =11
irlmp_state_setup()
irlmp_next_Isap_state(), LMP LSAP = LSAP_DATA_TRANSFER_READY
irlmp_connect_confirm()
irlmp_connect_confirm(), max_seg_size=2046
irlmp_connect_confirm(), max_header_size=4
irttp_connect_confirm()
IrTTP, Negotiated BAUD_RATE: 3e
IrTTP, Negotiated BAUD_RATE: 115200 bps.
irttp_connect_confirm(), Initial send_credit=1
irttp_connect_confirm(), RxMaxSduSize=1518
irlan_client_ctrl_connect_confirm()
irlan_client_state_conn()
irlan_get_provider_info()
irlan_ctrl_data_request()
irlan_ctrl_data_request() running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
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irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel = 11
irlmp_state_dtr()
irlap_do_event(), event = SEND_|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlan_next_client_state(), IRLAN_INFO
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_I_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_client_ctrl_data_indication()
irlan_client_state_info()
irlan_client_parse_response() skb->len=29
irlan_client_parse_response(), got 2 parameters
irlan_extract_param()
Parameter: MEDIA
Value: 802.3
irlan_check_response_param(), parm=MEDIA
irlan_extract_param()
Parameter: IRLAN_VER
Value:
irlan_check_response_param(), parm=IRLAN_VER
IrLAN version 1
i
irlan_next_client_state(), IRLAN_MEDIA
irlan_get_media_char()
irlan_ctrl_data_request()
irlan_ctrl_data_request() running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
Trying to lock already locked variable!
irlan_ctrl_data_request: error value=-16
irlan_client_ctrl_data_indication running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =11
irlmp_state_dtr()
irlap_do_event(), event = SEND_|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
IrLMP, discovery timer expired!
irlmp_do_discovery(6)
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
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irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_client_ctrl_data_indication()
irlan_client_state_media()
irlan_client_parse_response() skb->len=104
irlan_client_parse_response(), got 5 parameters
irlan_extract_param()
Parameter: FILTER_TYPE
Value: DIRECTED
irlan_check_response_param(), parm=FILTER_TYPE
irlan_extract_param()
Parameter: FILTER_TYPE
Value: BROADCAST
irlan_check_response_param(), parm=FILTER_TYPE
irlan_extract_param()
Parameter: FILTER_TYPE
Value: MULTICAST
irlan_check_response_param(), parm=FILTER_TYPE
irlan_extract_param()
Parameter: ACCESS_TYPE
Value: DIRECT
irlan_check_response_param(), parm=ACCESS_TYPE
irlan_extract_param()
Parameter: MAX_FRAME
Value: n
irlan_check_response_param(), parm=MAX_FRAME
irlan_check_response_param(), max frame=1518
irlan_open_data_channel()
irlan_ctrl_data_request()
irlan_ctrl_data_request() running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
Trying to lock already locked variable!
irlan_ctrl_data_request: error value=-16
irlan_next_client_state(), IRLAN_OPEN
irlan_client_ctrl_data_indication running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =11
irlmp_state_dtr()
irlap_do_event(), event = SEND_I_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlmp_do_lap_event(), EVENT = LM_LAP_IDLE_TIMEOUT,
STATE = LAP_ACTIVE
irlmp_state_active()
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irlmp_state_active(), IDLE_TIMEOUT, Isaps!=0
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_I_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_client_ctrl_data_indication()
irlan_client_state_open()
irlan_client_parse_response() skb->len=39
irlan_client_parse_response(), got 2 parameters
irlan_extract_param()
Parameter: DATA_CHAN
Value:
irlan_check_response_param(), parm=DATA_CHAN
Data TSAP =02
irlan_extract_param()
Parameter: RECONNECT_KEY
Value:
irlan_check_response_param(), parm=RECONNECT_KEY
Got reconnect key:
irttp_connect_request(), max_sdu_size=1518
irlmp_connect_request(), slsap_sel=12
disap_sel=02
irlmp_do_Isap_event(), EVENT = LM_CONNECT_REQUEST,
STATE = LSAP_DISCONNECTED
slsap_sel =12
irlmp_state_disconnected()
irlmp_state_disconnected(), LM_CONNECT_REQUEST
irlmp_next_Isap_state(), LMP LSAP = LSAP_SETUP_PEND
irlmp_do_lap_event(), EVENT = LM_LAP_CONNECT_REQUEST,
STATE = LAP_ACTIVE
irlmp_state_active()
irlmp_state_active(), LM_LAP_CONNECT_REQUEST
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_SETUP_PEND
slsap_sel = 12
irlmp_state_setup_pend()
irlmp_send_Icf_pdu()
irlap_do_event(), event = SEND_|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlmp_next_Isap_state(), LMP LSAP = LSAP_SETUP
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =11
irlmp_state_dtr()
irlmp_state_dtr(), Unknown event 13
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_DISCONNECTED
slsap_sel = 00
irlmp_state_disconnected()
irlmp_state_disconnected(), Unknown event 13
irlmp_do_Isap_event(), EVENT = LM_LAP_CONNECT_CONFIRM,
STATE = LSAP_DISCONNECTED
slsap_sel =10
irlmp_state_disconnected()
irlmp_state_disconnected(), Unknown event 13
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irlan_next_client_state(), IRLAN_DATA
irlan_client_ctrl_data_indication running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_todo_expired()
irttp queues run
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlmp_do_Isap_event(), EVENT = LM_CONNECT_CONFIRM,
STATE = LSAP_SETUP
slsap_sel = 12
irlmp_state_setup()
irlmp_next_lsap_state(), LMP LSAP = LSAP_DATA_TRANSFER_READY
irlmp_connect_confirm()
irlmp_connect_confirm(), max_seg_size=2046
irlmp_connect_confirm(), max_header_size=4
irttp_connect_confirm()
IrTTP, Negotiated BAUD_RATE: 3e
IFTTP, Negotiated BAUD_RATE: 115200 bps.
irttp_connect_confirm(), Initial send_credit=12
irttp_connect_confirm(), RxMaxSduSize=1518
irlan_connect_confirm()
IrLAN, We are now connected!
irlan_get_unicast_addr()
irlan_ctrl_data_request()
irlan_ctrl_data_request() running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =11
irlmp_state_dtr()
irlap_do_event(), event = SEND_I_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
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next LAP state = LAP_XMIT_P
irlan_client_ctrl_data_indication()
irlan_client_state_data()

irlan_client_parse_response() skb->len=55
irlan_client_parse_response(), got 3 parameters
irlan_extract_param()

Parameter: FILTER_MODE

Value: NONE

irlan_check_response_param(), parm=FILTER_MODE
irlan_extract_param()

Parameter: MAX_ENTRY

Value:

irlan_check_response_param(), parm=MAX_ENTRY
irlan_extract_param()

Parameter: FILTER_ENTRY

Value:

irlan_check_response_param(), parm=FILTER_ENTRY
Got ethernet address (FILTER_ENTRY).

irlan_client_ctrl_data_indication running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_todo_expired()
irttp queues run
Angel_NetstartMain() executed, IP/UDP stack initialized, now setting filters
irlan_open_unicast_addr()
irlan_ctrl_data_request()
irlan_ctrl_data_request() running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =11
irlmp_state_dtr()
irlap_do_event(), event = SEND_I|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlan_s~et_b>roadcast@#$_filter(), status=TRUE
irlan_ctrl_data_request()
irlan_ctrl_data_request() running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
Trying to lock already locked variable!
irlan_ctrl_data_request: error value=-16
irlan_set_multicast_filter(), status=FALSE
irlan_ctrl_data_request()
irlan_ctrl_data_request() running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
Trying to lock already locked variable!
irlan_ctrl_data_request: error value=-16
unicast and broadcast enabled, multicast disabled, ready to go
irla~>n_eth_xmit() called, size=342
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =12
irlmp_state_dtr()
irlan_eth_xmit() packet sent.
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I_CMD
irlap_send_i_frame()
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next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,

state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_client_ctrl_data_indication()
irlan_client_state_data()
irlan_client_parse_response() skb->len=2
irlan_client_parse_response(), got 0 parameters
irlan_client_ctrl_data_indication running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,

STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =11

irlmp_state_dtr()
irlap_do_event(), event = SEND_I_CMD,

state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_I_RSP,

state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_eth_receive()

Angel_AngelConfigurelP() executed, IP address is 130.237.15.251

irlan_eth_xmit() called, size=42
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel = 12
irlmp_state_dtr()
irlap_do_event(), event = SEND_I_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlan_eth_xmit() packet sent.
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_client_ctrl_data_indication()
irlan_client_state_data()
irlan_client_parse_response() skb->len=2
irlan_client_parse_response(), got 0 parameters
irlan_client_ctrl_data_indication running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =11
irlmp_state_dtr()
irlap_do_event(), event = SEND_I_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
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irlap_recv_i_frame()
irlap_do_event(), event = RECV_I_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_eth_receive()
irlan_eth_xmit() called, size=71
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel = 12
irlmp_state_dtr()
irlap_do_event(), event = SEND_|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlan_eth_xmit() packet sent.
irlap_recv_i_frame()
irlap_do_event(), event = RECV_|_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlan_client_ctrl_data_indication()
irlan_client_state_data()
irlan_client_parse_response() skb->len=2
irlan_client_parse_response(), got 0 parameters
irlan_client_ctrl_data_indication running irlan_run_ctrl_tx_queue
irlan_run_ctrl_tx_queue()
irttp_todo_expired()
irttp queues run
irlan_eth_xmit() called, size=71
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =12
irlmp_state_dtr()
irlap_do_event(), event = SEND_|_CMD,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I|_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlan_eth_xmit() packet sent.
irlan_eth_xmit() called, size=71
irttp_data_request()
irlmp_do_Isap_event(), EVENT = LM_DATA_REQUEST,
STATE = LSAP_DATA_TRANSFER_READY
slsap_sel =12
irlmp_state_dtr()
irlan_eth_xmit() packet sent.
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_state_xmit_p(), event=SEND_I_CMD
irlap_send_i_frame()
next LAP state = LAP_NRM_P
irlap_recv_i_frame()
irlap_do_event(), event = RECV_I_RSP,
state = LAP_NRM_P
irlap_validate_ns_received(), as expected!
irlap_validate_nr_received(), as expected!
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next LAP state = LAP_XMIT_P
IrLMP, discovery timer expired!
irlmp_do_discovery(6)
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P
irlap_recv_rr_frame()
irlap_do_event(), event = RECV_RR_RSP,
state = LAP_NRM_P
irlap_validate_nr_received(), as expected!
next LAP state = LAP_XMIT_P
irlap_do_event(), event = POLL_TIMER_EXPIRED,
state = LAP_XMIT_P
irlap_state_xmit_p(), event=POLL_TIMER_EXPIRED
irlap_send_rr_frame()
next LAP state = LAP_NRM_P

Listing 57. Debug log of connection establishment

243



	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Listings
	1.� Introduction
	2.� Basic Architectures
	2.1 SmartBadge 3
	2.2 Description of the StrongARM SA-1100 Microcontroller
	2.2.1 Instruction Cache
	2.2.2 Data Caches
	2.2.2.1 Main Data Cache
	2.2.2.2 Mini Data Cache
	2.2.2.3 Detailed Operation with Respect to the C and B Bits
	2.2.2.4 Data Cache Flush

	2.2.3 Write Buffer
	2.2.4 Read Buffer
	2.2.5 Memory Management Unit (MMU)

	2.3 Peripheral Devices in the StrongARM Architecture
	2.4 SmartBadge 4

	3.� Operating Systems for the Badge
	3.1 Angel
	3.1.1 Introduction
	3.1.2 Angel C Library Support, Semihosted Operations
	3.1.3 Communications Architecture for Angel
	3.1.4 Serialization and CPU Modes
	3.1.5 Summary

	3.2 VxWorks
	3.3 E-Kernel

	4.� Using some of the Peripherals
	4.1 Extensions to Angel
	4.1.1 Description of the Changes Applied to Angel
	4.1.2 Rebuilding Angel for the Badge

	4.2 Support code
	4.3 Interrupts
	4.3.1 Register Description
	4.3.1.1 Interrupt Controller Pending Register (ICPR)
	4.3.1.2 Interrupt Controller IRQ Pending Register (ICIP) and FIQ Pending Register (ICFP)
	4.3.1.3 Interrupt Controller Mask Register (ICMR)
	4.3.1.4 Interrupt Controller Level Register (ICLR)
	4.3.1.5 Interrupt Controller Control Register (ICCR)

	4.3.2 Interrupt handling under Angel
	4.3.3 Interrupt Controller Declarations and Functions
	4.3.4 Interrupt Latency under Angel
	4.3.4.1 Conclusions


	4.4 General Purpose I/O Controller (GPIO)
	4.4.1 Register Description
	4.4.1.1 GPIO Pin Level Register (GPLR)
	4.4.1.2 GPIO Pin Direction Register (GPDR)
	4.4.1.3 GPIO Output Set Register (GPSR) and Output Clear Register (GPCR)
	4.4.1.4 GPIO Rising Edge Detect Register (GRER) and Falling Edge Detect Register (GFER)
	4.4.1.5 GPIO Edge Detect Status Register (GEDR)
	4.4.1.6 GPIO Alternate Function Register (GAFR)

	4.4.2 GPIO Declarations

	4.5 Peripheral Pin Controller (PPC)
	4.5.1 Register Description
	4.5.1.1 PPC Pin Direction Register (PPDR)
	4.5.1.2 PPC Pin State Register (PPSR)
	4.5.1.3 PPC Pin Assignment Register (PPAR)
	4.5.1.4 PPC Sleep Mode Pin Direction Register (PSDR)
	4.5.1.5 PPC Pin Flag Register (PPFR)

	4.5.2 PPC declarations
	4.5.3 Maximum Toggling Frequency of GPIO and PPC Pins

	4.6 Real Time Clock
	4.6.1 Register Description
	4.6.1.1 RTC Counter Register (RCNR)
	4.6.1.2 RTC Alarm Register (RTAR)
	4.6.1.3 RTC Status Register (RTSR)
	4.6.1.4 RTC Trim Register (RTTR)

	4.6.2 RTC Trim Procedure
	4.6.3 Real Time Clock Declarations

	4.7 Operating System Timers
	4.7.1 Register Description
	4.7.1.1 OS Timer Count Register (OSCR)
	4.7.1.2 OS Timer Match Registers 0-3 (OSMR[0], OSMR[1], OSMR[2], OSMR[3])
	4.7.1.3 OS Timer Watchdog Enable Register (OWER)
	4.7.1.4 OS Timer Status Register (OSSR)
	4.7.1.5 OS Timer Interrupt Enable Register (OIER)

	4.7.2 Watchdog Timer
	4.7.3 OS Timer Declarations and Functions
	4.7.4 Software Timer Implementation

	4.8 UARTs
	4.8.1 Receive Operation
	4.8.2 Transmit Operation
	4.8.3 FIFOs
	4.8.4 Register Description
	4.8.4.1 UART Control Register 0 (UTCR0)
	4.8.4.2 UART Control Register 1 and 2 (UTCR1 and UTCR2)
	4.8.4.3 UART Control Register 3 (UTCR3)
	4.8.4.4 UART Data Register (UTDR)
	4.8.4.5 UART Status Register 0 (UTSR0)
	4.8.4.6 UART Status Register 1 (UTSR1)

	4.8.5 UART Declarations and Functions


	5.� Infrared Communication
	5.1 Hardware Modifications to the SmartBadge
	5.1.1 Modifications to Observe Communication via a Logic Analyzer
	5.1.2 Modifications to Allow SIR Mode

	5.2 SIR Mode
	5.2.1 SIR Using Normal UART Operation on Revised SA-1100
	5.2.1.1 UART Control Register 4 (UTCR4)
	5.2.1.2 Serial Port 2 Configuration for SIR Mode

	5.2.2 SIR via Software Modulation

	5.3 FIR Mode
	5.3.1 Infrared High-Speed Modulation
	5.3.2 HSSP Frame Format
	5.3.2.1 Address Field
	5.3.2.2 Control Field
	5.3.2.3 Data Field
	5.3.2.4 CRC Field

	5.3.3 Baud Rate Generation
	5.3.4 Receive Operation
	5.3.5 Transmit Operation
	5.3.6 Transmit and Receive FIFOs
	5.3.7 HSSP Register Description
	5.3.7.1 HSSP Control Register 0 (HSCR0)
	5.3.7.2 HSSP Control Register 1 (HSCR1)
	5.3.7.3 HSSP Control Register 2 (HSCR2)
	5.3.7.4 HSSP Data Register (HSDR)
	5.3.7.5 HSSP Status Register (HSSR0)
	5.3.7.6 HSSP Status Register 1 (HSSR1)


	5.4 Support Code for Infrared Communication
	5.5 Setup to Debug Infrared Communication

	6.� Accessing Peripherals, Code Generation with the ARM Compiler
	6.1 Methods of Accessing the Peripherals’ Registers
	6.1.1 Declaration as const unsigned int
	6.1.2 Declaration as Pointer
	6.1.3 Declaration as Structure
	6.1.4 Use of #define

	6.2 Code Produced by the Compiler
	6.2.1 ARM load/store Instructions
	6.2.2 Code Examples for the Initialization Function with no Optimizations Enabled
	6.2.3 No Register Allocation Optimization
	6.2.4 Full Optimization
	6.2.5 Memory Consumption and Number of Instructions for the Different Declaration Styles
	6.2.6 Example Illustrating the Necessity of Using the Volatile Keyword
	6.2.7 Conclusions


	7.� Debugging Embedded Systems
	7.1 Description of Used Tools
	7.2 Problems Related to the ARM debugger
	7.3 General Problems in Debugging Embedded Systems
	7.4 Solutions
	7.4.1 Counting Variables
	7.4.2 Writing Debug Data to a Buffer
	7.4.3 Debug Output to a Serial Port

	7.5 Conclusions

	8.� IrDA Protocol Stack
	8.1 Comparison Wireless LAN - Infrared link
	8.2 Overview of the IrDA Protocol Stack
	8.3 The IrDA Protocols in more Detail
	8.3.1 IrDA Service Definitions
	8.3.2 IrPHY - The Physical Layer
	8.3.3 IrLAP - The Link Access Protocol
	8.3.3.1 IrLAP Service Definitions
	8.3.3.2 IrLAP Frame Structure
	8.3.3.3 IrLAP State Diagram

	8.3.4 IrLMP - The Link Management Protocol
	8.3.4.1 Architectural Components
	8.3.4.2 The Link Model
	8.3.4.3 The Link Management Multiplexer
	8.3.4.4 Frame Format
	8.3.4.5 Information Access Service

	8.3.5 IrTTP - A Flow-Control Mechanism for Use with IrLMP
	8.3.5.1 Tiny TP Service Primitives
	8.3.5.2 IrTTP Frame Format
	8.3.5.3 Operation

	8.3.6 LAN Access Extensions for Link Management Protocol - IrLAN
	8.3.6.1 Overview
	8.3.6.2 Frame Formats
	8.3.6.3 Commands



	9.� IrDA Implementation
	9.1 Introduction
	9.2 File Layout
	9.3 Changes Applied to the whole Stack, Problems in Porting
	9.4 Changes at the Low-Level Interface, Porting to other Operating Systems
	9.4.1 Memory Management
	9.4.2 Locking Mechanisms
	9.4.3 Timers and Scheduling
	9.4.4 Device Driver

	9.5 High-Level Interface, Integration of the IP/UDP Stack
	9.6 UDP over the IrDA-Stack
	9.6.1 UDP Echo Server on the Badge
	9.6.2 The IP Stack Initialization in Detail

	9.7 Current State, Known Problems, Improvements

	10.� Conclusions and Further Work
	References
	Acronyms and Abbreviations
	Appendix A. Infrared support code
	A.1 The Header File, Containing Constants and Macros
	A.2 Implementation of the SIR-Functions
	A.3 Implementation of the FIR-Functions

	Appendix B. Example Programs
	B.1 GPIO and PPC - Maximum Frequency Pin Toggling
	B.1.1 Standalone Version
	B.1.2 Angel Version

	B.2 GPIO - Interrupt Latency
	B.3 Real Time Clock Example
	B.4 OS Timer Examples
	B.4.1 Basic Use of the Macros - Timer Controlled Pin Toggling
	B.4.2 Use of the Software Timer Functions

	B.5 Serial Communication Example (UART)
	B.5.1 Echo

	B.6 IR SIR-Mode Examples
	B.6.1 SIR Receiver in Polled Mode
	B.6.2 SIR Receiver in Interrupt Mode
	B.6.3 SIR Transmitter Using UART2 in Polled Mode
	B.6.4 SIR Transmitter Using UART2 in Interrupt Mode
	B.6.5 SIR Operation Using Software Modulation for Transmission

	B.7 IR FIR-Mode Examples
	B.7.1 FIR Receiver in Polled Mode
	B.7.2 FIR Transmitter in Polled Mode


	Appendix C. IrDA
	C.1 Implementation of irport.c
	C.2 Implementation of wrapper.h
	C.3 Implementation of wrapper.c
	C.4 Debug Log Connection Establishment


