

Supervisor:
Torbjörn Ryeng and Peter Monthan
Corus Technologies AB
Birger Jarlsgatan 20, 11434 Stockholm
Email: try@corus.se
 pmo@corus.se

Examiner and Supervisor:
Gerald Maguire
KTH Teleinformatics
Electrum 204, 16440 Kista
Email: maguire@it.kth.se

MASTER OF SCIENCE THESIS

XML to RDBMS

By

Magnus Karlsson
(mka@corus.se)

Stockholm, September 2000

 XML to RDBMS Magnus Karlsson
2000-09-29

Abstract

The Extensible Markup Language (XML) becomes more and more widespread as
nearly all major players on the market today have accepted XML as an industry
standard for exchanging information between server based products. Thus thousands
of XML dialects have emerged since XML 1.0 became a W3C recommendation in
February 1998.
Corus Technologies AB has developed a server-based product called Corus/ALS©
(Application Linking System) that makes it possible to connect client systems with
different data representations to each other. A relational database model for each of
the client systems is created and the translation from one data representation to
another is done with stored procedures in the database.
This thesis introduces a solution for how to store and retrieve XML documents in a
Relational Database Management System (RDBMS) from any of the XML dialects
that has emerged since XML 1.0 became a W3C recommendation.
After a XML document has been stored in the database in a normalized way, the
stored procedures in the Corus/ALS© database can be used to transform it to another
XML dialect (or another format supported by the Corus/ALS© system). This will
make it possible to translate any XML document to any other XML format.
An XML interpreter was implemented and this implementation verified the theories in
this thesis.

 XML to RDBMS Magnus Karlsson
2000-09-29

i

Table of contents

1 INTRODUCTION ..1

1.1 BACKGROUND ...1
1.2 PURPOSE ...1
1.3 CONSTRAINTS..2
1.4 STRUCTURE OF THE REPORT ...2

2 XML BASICS ...3

2.1 XML 1.0...3
2.1.1 XML 1.0 structure ...4
2.1.2 XML 1.0 DTD ...5

2.2 XML SCHEMA ..8
2.3 DOM ..11

2.3.1 DOM Level 1 ..11
2.3.2 DOM Level 2 ..12

2.4 SAX ...13
2.4.1 SAX v1.0 ...13
2.4.2 SAX v2.0 ...14

2.5 XSL..14
2.5.1 XSL Transformations (XSLT) ..15
2.5.2 XML Path Language (Xpath) ..17

2.6 NAMESPACES IN XML ...18
2.7 XML PARSERS ..19

3 THE XML INTERPRETER ..20

3.1 THE DESIGN OF THE INTERPRETER ..20
3.2 THE METADATA XML FORMAT ...23

3.2.1 Choosing parser interface...27
3.2.2 Making an extensible implementation with DOM27
3.2.3 Importing metadata...27
3.2.4 Exporting metadata...28

3.3 THE IMPORT/EXPORT XML FORMAT...28
3.3.1 Choosing parser interface...30
3.3.2 Making an extensible implementation with SAX30
3.3.3 Importing data ..31
3.3.4 Exporting data ..32

3.4 FINDING THE STRUCTURE OF A FOREIGN XML DIALECT33
3.4.1 Using the DTD to find the structure ..33
3.4.2 Mapping a XML dialect to a database structure33

3.5 TRANSFORMING FOREIGN XML DIALECTS..34
3.5.1 Namespaces in external XML documents...34
3.5.2 Choosing a design pattern...35
3.5.3 Relations between data in the internal XML format...........................36

 XML to RDBMS Magnus Karlsson
2000-09-29

ii

3.5.4 The import XSL document ...37
3.5.4.1 The Style Sheet ...37
3.5.4.2 Creating the Style Sheet ..40

3.5.5 The export XSL document..40
3.5.5.1 The Stylesheet...40
3.5.5.2 Creating the Stylesheet ..43

3.6 XML DOCUMENTS WITH CYCLIC REDUNDANCY ..43
3.6.1 Cyclic elements as element content..43
3.6.2 Introducing a finite depth..44
3.6.3 Cyclic database model design ...44
3.6.4 Choosing a method for cyclic XML dialects.......................................45

3.7 PUTTING IT TOGETHER ...45

4 EVALUATION...46

5 CONCLUSION...47

6 FUTURE WORK ...48

REFERENCES...49

APPENDIX A: ACRONYMS AND ABBREVIATIONS51

APPENDIX B: THE COMPLETE CODE..52

 XML to RDBMS Magnus Karlsson
2000-09-29

1

1 Introduction

1.1 Background

Corus Technologies AB has developed a system called Corus/ALS© (Application
Linking system). The purpose of Corus/ALS© is to make information exchange
possible between almost any kind of computer products over a computer network.
This is commonly called application integration or Enterprise Application Integration
(EAI).

Different applications that need to share information can have different internal data
representation, different communications mechanisms and even lack the possibility to
communicate. These are problems that the Corus/ALS© system is designed to solve.
Since many of the new server products on the market today uses the Extensible
Markup Language (XML) to exchange information with other servers there is also a
need for Corus/ALS© to be able to understand XML and translate any XML dialect
into another known format, EDI, another XML dialect or maybe putting the data
directly into a Relational Database Management System (RDBMS).

1.2 Purpose

At the heart of Corus ALS is an Oracle RDBMS and the systems that shall be linked
to each other are described in this RDBMS by database tables, columns, etc. The
actual translation of data from one system’s data representation to another is done in
the RDBMS with stored procedures. This makes it possible to integrate different
systems with each other no matter what kind of format they use to exchange
information with as long as there is a way of getting the data into the Corus ALS
RDBMS.
The purpose of the thesis is therefore to investigate if there is a way to interpret and
analyze any kind of XML document and make an intelligent decision of what kind of
RDBMS data model should be created in the Corus/ALS© RDBMS for that XML
dialect. A method to put subsequent messages of this type into the data model that
was created should also be a result of analyzing the XML document. The result will
therefore be a method to understand and integrate any of the thousands of XML
dialects/formats that exist today.
If it is possible to analyse XML documents in this way then the purpose is to design
and construct a XML interpreter that is capable of analyzing a XML Document Type
Definition (DTD) and creating a Relational database model for that DTD.
Furthermore, the interpreter must be able to store XML documents into that model as
well as extract database information as XML documents.

 XML to RDBMS Magnus Karlsson
2000-09-29

2

1.3 Constraints

1 The interpreter shall be configurable from information in a database repository or
a XML document.

2 Using the XML document’s DTD at hand together with the configuration
information, the interpreter shall be able to create a relational data model capable
of storing all information in the XML document.

3 The interpreter shall, after the relevant model is created, be able to parse XML
documents and store data in the database as well as retrieve data from the
database and render a XML document.

4 The interpreter shall be able to handle the scenarios of creation, change, and
deletion of data in the database.

5 The current W3C work on XML schemas shall be regarded in implementation of
the interpreter and definition of configuration info.

6 The coding language should be java and any user interface should be accessible
from a web browser.

1.4 Structure of the report

Chapter 2 gives a brief introduction to the W3C XML standards that have emerged
over the years.

Chapter 3 discusses the implementation of the interpreter and the theories that it is
built upon.

Chapter 4 discusses the design issues and the choices made to accomplish the
requirements that were put up before the work began.

Chapter 5 concludes the work that has been done.

Chapter 6 addresses future improvements.

 XML to RDBMS Magnus Karlsson
2000-09-29

3

2 XML Basics

2.1 XML 1.0

Back in 1996 the W3C started the work on XML. This work resulted in XML 1.0
wich became a W3C recommendation in February 1998 [1]. It is upon this W3C
recommendation that most of the XML enabled applications of today is built.
XML 1.0 has its origins in the specifications of the Standard General Markup
Language (SGML) language and this is a part of its widespread popularity.
XML is a self-describing language that uses a simple standard way of delimiting text
data. The delimiters, or “tags”, are called elements and elements can have attributes
that further describe the data they contain. Elements in turn can contain both data and
other elements, making it simple to describe metadata along with actual data when
creating a XML message. Figure 2-1 shows a hypothetical XML 1.0 message that
could be used by an e-business application. The message contains both elements,
nested elements and elements with attributes. A XML document is said to be well-
formed if it conforms to the rules of the XML 1.0 recommendation.

<?xml version="1.0" encoding="UTF-8"
standalone="no" ?>
<!DOCTYPE Orders SYSTEM “Order.dtd“>
<Orders>

<Order>
<!-- The order header summarizes the order -->
<OrderHeader date="20000509" id="00003037">

<Price currency="SEK">
<Amount>9724.0</Amount>
<VAT>2806.0</VAT>
<Discount>0.0</Discount>

</Price>
<User id="2183" />

</OrderHeader>
<OrderItem quantity="1">

<ItemDetail id="194" />
<Price currency="SEK">

<Amount>24.0</Amount>
<VAT>6.0</VAT>
<Discount>0.0</Discount>

</Price>
</OrderItem>
<OrderItem quantity="1">

<ItemDetail id="191" />
<Price currency="SEK">

<Amount>9700.0</Amount>
<VAT>2800.0</VAT>
<Discount>0.0</Discount>

</Price>
</OrderItem>

</Order>
</Orders>
Figure 2-1 A XML 1.0 message with tags and attributes

Attribute value

Attribute name

End tag

Start tag

Empty-element tag

Data

Document Element

Nested tag
(a child of the <Price> tag)

XML Declaration

Document Type Declaration

Comment

 XML to RDBMS Magnus Karlsson
2000-09-29

4

Naturally there will be a need to communicate the structure of a XML document to
another party, as well as communicating the document itself, so that the other party
can interpret documents properly. XML 1.0 [1] provides this kind of mechanism as a
part of the specification through the use of a Document Type Definition (DTD). The
DTD describes the vocabulary of a certain XML dialect. Thus, if a DTD exists, the
parser will know what element follows another element and what attributes a certain
element may have. Figure 2-2 shows the DTD of the hypothetical XML document in
Figure 2-1.

<!ENTITY % currency_qualifier
 "(USD | EUR | GBP | FRF | SEK)" "USD" >
<!ELEMENT Orders (Order*)>
<!ELEMENT Order (OrderHeader,OrderItem+)>
<!ELEMENT OrderHeader (Pr ice,User)>
<!ATTLIST OrderHeader date CDATA #REQUIRED>
<!ATTLIST OrderHeader id CDATA #REQUIRED>
<!ELEMENT Price (Amount,VAT,Discount)>
<!ATTLIST Price currency
 %currency_qualifier; #REQUIRED>
<!ELEMENT User EMPTY>
<!ATTLIST User id CDAT A #REQUIRED>
<!ELEMENT Amount (#PCDATA)>
<!ELEMENT VAT (#PCDATA)>
<!ELEMENT Discount (#PCDATA)>
<!ELEMENT OrderItem (ItemDetail,Price)>
<!ATTLIST OrderItem quantity CDATA #REQUIRED>
<!ELEMENT ItemDetail EMPTY>
<!ATTLIST ItemDetail id CDATA #REQUIRED>

Figure 2-2 A XML 1.0 DTD with element, attribute and entity declarations

A document is said to be valid if it conforms to a certain DTD.

2.1.1 XML 1.0 structure
As seen in Figure 2-1 a XML message consists of several tags and some of them are
even compulsory according to the specification.
The first part of the document is called the prolog. The prolog consists of the XML
Declaration and the Document Type Declaration.
The XML Declaration, which is compulsory in every XML document, has three
attributes defined by the XML 1.0 specification:

?? version – must be “1.0”. This attribute is compulsory.
?? encoding – a legal character encoding such as “UTF-8” or “UTF-16”. This

attribute is optional.
?? standalone – is either “yes” or “no” and tells the parser if this XML document

must be compared to an external DTD or not. This attribute is optional and if
left out the implied value is “no”.

The Document Type Declaration is optional and will follow the XML Declaration if it
exists. If it exists, then it contains an internal subset of the DTD or refers to an

Element declaration

Attribute declaration

Entity declaration

Using an entity

Element content

Cardinality operator

Order operator

Default attribute value

Attribute type

Content model

 XML to RDBMS Magnus Karlsson
2000-09-29

5

external subset of the DTD. The Document Type Declaration in Figure 2-1 for
example, refer to a DTD that’s named “Order.dtd” and can be found in the same
directory as the XML document itself since no absolute path is used. It is however
possible to use a URL to refer to a DTD as well.
After the prolog comes the body of the XML document. The body contains the tags of
this particular XML dialect. The first element in the body is the Document Element
and this element will in turn contain all other elements of this document. Elements
that are immediate children of another element are nested elements of that element
and thus are all elements in a XML document except for the Document Element
nested elements.
Each element can also have attributes. An attribute consists of an attribute name and
an attribute value and an element can only have one instance of an attribute name.
An element that does not contain any information at all is called an empty element
and consists only of an Empty-element tag and possibly a set of attributes. If an
element has content, it will be found between the element’s start tag and end tag. The
content of an element can be other elements or data or a mix of both data and
elements.

2.1.2 XML 1.0 DTD
The DTD is a part of every valid XML document. A DTD can be used by any
validating parser to examine if a valid XML document conforms to the DTD it refers
to.
Figure 2-2 shows the DTD of the valid XML document in Figure 2-1.
The DTD in Figure 2-2 consists of three out of four possible constructs. The possible
constructs are:

ELEMENT a declaration of an element.
ATTLIST a declaration of an attribute.
ENTITY a declaration of some reusable content.
NOTATION a declaration of some external content not meant to be parsed. And a

reference to the application that handles the content.

The content of an element falls into one of four categories: empty, element, mixed, and
any. Figure 2-3 shows examples of element declarations that belong to the different
categories.
If an element is declared to be empty the element cannot contain elements or data. If
the element’s content is declared to be of the any type, the element can contain any
data or any elements in any order at all. Since declaring the content of an element to
be of the any type doesn’t say anything about the content of the element to the parser,
it is rarely used.
An element is declared to be of element or mixed type by the use of a content model,
see Figure 2-2. A content model is a set of parentheses that includes child element
names, operators, and the #PCDATA keyword.
If the content model starts with the #PCDATA keyword, the element’s content is
considered to be mixed according to the XML 1.0 specification [1]. Figure 2-3 has an
example of an element declaration with a mixed element content indicating that the
element can contain a mixture of data and <Price> elements.

 XML to RDBMS Magnus Karlsson
2000-09-29

6

If the content model starts with a child element name the element content is of the
element type. An element with this kind of content model cannot contain any data,
only other elements.

Element Declaration Element content

<!ELEMENT EmptyElement EMPTY>

<!ELEMENT AnyInformation ANY>

<!ELEMENT FruitBasket (Apples,Bananas,Grapes)>

<!ELEMENT MixedInformation (#PCDATA | Price)>

Empty

Any

Element

Mixed

Figure 2-3 An example of element declarations for different element content

In the content model the child element names are separated by an order operator.
There are two possible types of order operators; the comma operator “,” and the pipe
operator “|”. The comma operator describes a strict sequence of elements whereas the
pipe operator describes a choice of elements. Figure 2-3 shows an example of the use
of both a comma operator and a pipe operator.
Content models may themselves be nested to allow more complex structures, as seen
in Figure 2-4.

<!ELEMENT BigFruitBasket (Apples,(Bananas | Grapes))>

Figure 2-4 A nested content model

It is also possible to describe cardinality, i.e. how many child elements of a certain
type that is permitted. Cardinality is described thru the use of cardinality operators
next to the child element names or next to a content model, as seen in Figure 2-5.

<!ELEMENT BigFruitBasket (Apples?,(Bananas | Grapes)+)>

Figure 2-5 The use of cardinality operators

There are three different cardinality operators that can be used; the optional operator
“?”, the zero or more operator “*” and the one or more operator “+”. The optional
operator is used when a child element or a content model is optional. The zero or
more operator is used when a child element or a content model can appear zero or
more times and the one or more operator is used when a child element or a content
model can appear one or more times.

All the attributes that belong to an element are declared through one or more attribute
declarations. An attribute declaration starts with the ATTLIST keyword followed by
the name of the element the attribute belongs to, followed by zero or more attribute
definitions as can be seen in Figure 2-6. Each attribute definition consists of the name
of the attribute, its type, and a default declaration.

 XML to RDBMS Magnus Karlsson
2000-09-29

7

<!ATTLIST OrderItem quantity CDATA #REQUIRED>

Figure 2-6 An attribute declaration

There are a number of different attribute types that can be used such as: CDATA, ID,
IDREF, IDREFS, ENTITY, ENTITIES, NMTOKEN, NMTOKENS and
NOTATION. These different attributes types all imply some sort of restriction of the
value an attribute can have. It is also possible to restrict the values of an attribute to a
certain series of values. The different attribute types are further described in Figure
2-8.
The default declaration is used to tell whether or not the attribute must occur and if it
has a default value. There are four possible combinations for the default declaration as
shown in Figure 2-7.

Default declaration Description

#REQUIRED

#IMPLIED

#FIXED plus default value

Default value

The attribute mu st appear on every
element it’s declared for.

The occurrence of the attribute is
optional for the element it’s declared
for.

The value of the attribute must always
be the default value supplied.

The value of the attribute will be the
default value suppl ied if no other
value is explicitly supplied.

Figure 2-7 The four possible default declarations

Attribute definition Element name

Attribute name Default declaration

Attribute type

 XML to RDBMS Magnus Karlsson
2000-09-29

8

Attribute type Description

CDATA

ID

IDREF

IDREFS

ENTITY

ENTITIES

NMTOKEN

NMTOKENS

NOTATION

[Enumerated value]

Character data. The value of the attribute is
a string of any length.

A unique value. The value of the attribute
must be unique amongst all other attributes
of the ID type in the document. The attribute
must also be declared #IMPLIED or #REQUIRED.

A reference to an element that has an ID
attribute with the same value as this IDREF
attribute.

A series of references, separated by white
space, to elements that have an ID attribute
with the same value as one of the valu es in
this series.

The value of the attribute will be taken from
a predefined entity declared somewhere else
in the DTD.

The value of the attribute will be taken from
several predefined entities and the entities
will be separated by white space.

A NMTOKEN is one or more NameChar characters
as defined in section 2.3 of the XML 1.0
specification [1]. The parser will delete
leading and trailing space for this type of
attribute.

A series of NMTOKEN, separated by white
space. The parser will delete sequences of
space.

A NOTATION attribute is used to refer to an
external handler to handle data that the XML
parser cannot deal with, for example binary
data. The actual NOTATION declaration will be
found elsewhere in the DTD and it wi ll refer
to the external application that will handle
the content.

A series of predefined values separated by
the pipe symbol (|), which are acceptable as
values for the attribute.

Figure 2-8 The different attribute types

2.2 XML Schema

As XML 1.0 became accepted and widespread, developers stared to realize it could be
improved in some areas. A strong typing, the ability to validate a document across

 XML to RDBMS Magnus Karlsson
2000-09-29

9

multiple namespaces and the use of XML syntax in the DTD were a few of the
improvements that seemed obvious.
The DTD in XML 1.0 that we have seen earlier (in section 2.1.2 for example is
written) in a syntax called Extended Backus Naur Form (EBNF). Since EBNF has a
flat structure, unlike the hierarchical structure of XML, it can be difficult to
understand and parse. The Document Object Model (DOM) for example cannot be
used to parse the DTD because of this flat structure. If the DTD had been written in
XML itself the DOM familiar to every developer experienced in XML could be used
to parse the DTD.
Since XML 1.0 became a W3C recommendation before the work on XML
namespaces began, namespaces cannot be used in the DTD itself. This means that a
DTD cannot be created by using parts of other DTD’s.
One of the greatest disadvantages of the XML 1.0 DTD is probably that it does not
support data types. The data in a XML document will be treated as text by the parser
leaving it up to the programmer to convert the text to other data types where suitable.
This is not a big problem if the XML dialect that is used is well known to the
application but if there is a need to exchange information amongst applications with
different XML dialects, it could pose a problem since there is no way of knowing how
to convert data from one XML dialect to another just by looking at the DTD.
Another disadvantage with the DTD in XML 1.0 is that it doesn’t allow inheritance. A
DTD cannot inherit declarations from another DTD.
Thus there is a need for a new XML standard. The new standard that W3C is
currently developing is called XML Schema. W3C has published the specifications
for the latest working draft of XML Schema on its website. The working draft is
divided in three documents, XML Schema Part 0: Primer [5], XML Schema Part 1:
Structures [6], and XML Schema Part 2: Datatypes [7].
Since XML Schema is still under development, I will not delve into the details of how
it is built up, although Figure 2-9 shows an example of a XSD (XML Schema
Definition language), the equivalent of an XML 1.0 DTD, which can be used to create
the XML document in Figure 2-1. As can be seen in Figure 2-9, the XSD itself is
defined an XML markup and can thus be parsed by a DOM parser that understands
the XML Schema definition. Data types are extensively used in the example as well.

 XML to RDBMS Magnus Karlsson
2000-09-29

10

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSche ma">

 <xsd:element name="Orders" type="OrdersType"/>

 <xsd:complexType name="OrdersType">
 <xsd:element name="Order" minOccurs="0" maxOccurs="unbounded">
 <xsd:complexType>
 <xsd:element name="OrderHeader" type="OrderHeaderType"/>
 <xsd:element name="OrderItem" type="OrderItemType"
maxOccurs="unbounded"/>
 </xsd:complexType>
 </xsd:element>
 </xsd:complexType>

 <xsd:complexType name="OrderHeaderType">
 <xsd:attribute name="date" type="xsd:date">
 <xsd:attribu te name="id" type="xsd:int">
 <xsd:element name="Price" type="PriceType"/>
 <xsd:element name="User">
 <xsd:attribute name="id">
 <xsd:simpleType base="xsd:positiveInteger">
 <xsd:maxExclusive value="9999"/>
 </xsd:simpleT ype>
 </xsd:attribute>
 </xsd:element>
 </xsd:complexType>

 <xsd:complexType name="OrderItemType">
 <xsd:attribute name="quantity" type="xsd:positiveInteger"/>
 <xsd:element name="ItemDetail">
 <xsd:attribute name="id">
 <xsd:s impleType base="xsd:positiveInteger">
 <xsd:maxExclusive value="9999"/>
 </xsd:simpleType>
 </xsd:attribute>
 </xsd:element>
 <xsd:element name="Price" type="PriceType"/>
 </xsd:complexType>

 <xsd:complexType name="PriceType ">
 <xsd:attribute name="currency" type="CurrencyType" value=”USD”/>
 <xsd:element name="Amount" type="xsd:decimal"/>
 <xsd:element name="VAT" type="xsd:decimal"/>
 <xsd:element name="Discount" type="xsd:decimal"/>
 </xsd:complexType>

 <xsd:simpleType name="CurrencyType" base="xsd:string">
 <xsd:enumeration value="USD"/>
 <xsd:enumeration value="EUR"/>
 <xsd:enumeration value="GBP"/>
 <xsd:enumeration value="FRF"/>
 <xsd:enumeration value="SEK"/>
 </xsd:simpleType>

</xsd:sche ma>
Figure 2-9 The XSD of the XML document in Figure 2-1

Data types are a
part of the XML
Schema definition

It is possible to
limit the range of a
data type

This is the Document
Element of this XSD. All
other elements are children
of this element

 XML to RDBMS Magnus Karlsson
2000-09-29

11

2.3 DOM

The Document Object Model (DOM) is a programming interface that can be used by
programs and scripts to read and manipulate XML documents. The DOM interface is
defined by the W3C but the W3C has not made an implementation of the interface
itself. The actual implementation of the DOM interface is left up to the companies
that are interested. Since the work of W3C has such an impact on the Internet
community almost every company that has made a XML parser has implemented the
DOM interface. Companies and organizations such as Microsoft, IBM, Oracle and the
Apache Software Foundation have all made implementations of the DOM interfaces.
When DOM is used to manipulate a XML document it builds a tree representation of
the XML document in memory. The nodes of the tree can then be read, changed or
deleted. When a parser has created the DOM tree it gives the caller a handle or a
pointer to the root node. The root node represents the Document Element. All other
nodes in the tree will be children, grand children etc. to the root element. The tree is
traversed through methods in the DOM interface that can get the children of any node
that the program happens to have a pointer to.
Element, element content, attributes and text are all nodes in the DOM tree although
of different node types.

2.3.1 DOM Level 1
The fist version of the Document Object Model, DOM Level 1[11], became a W3C
Recommendation in October 1998. DOM Level 1 defines the following node types:

Document The entire XML document.
DocumentFragment A portion of a XML document.
DocumentType An interface to the list of entities that are defined for the

document.
EntityReference The reference to an entity. Can be used to create a reference

to an entity as well.
Element An element in the XML document.
Attr An attribute in the XML document.
ProcessingInstruction A processing instruction in the XML document.
Comment A comment in the XML document.
Text Text in the XML document.
CDATASection Text that would be regarded as markup if not declared as

CDATA.
Entity An entity in the XML document.
Notation A notation declared in the DTD.

Nodes of a certain type can have nodes of other types as children. The structure that is
outlined in the specification is described in Figure 2-10.

 XML to RDBMS Magnus Karlsson
2000-09-29

12

Node type Child node types

Document

DocumentFragment

DocumentType

EntityReference

Element

Attr

ProcessingInstruction

Comment

Text

CDATASection

Entity

Notation

Element, ProcessingInstruction, Comment, and
DocumentType

Element, ProcessingInstruction, Comment, Text,
CDATASection, and EntityReference

no children

Element, ProcessingInstruction, Comment, Text,
CDATASection, and EntityReference

Element, ProcessingInstruction, Comment, Text,
CDATASection, and EntityReference

Text and EntityReference

no children

no children

no children

no children

Element, ProcessingInstruction, Comment, Text,
CDATASection, and EntityReference

No children

Figure 2-10 The hierarchy of the node types in the DOM tree

As can be seen, all different declarations in the XML 1.0 DTD have their counterparts
in the DOM tree, which was the intention when DOM Level 1 was created.

2.3.2 DOM Level 2
When the DOM Level 1 specification was created, Namespaces and style sheets did
not exist, so now that both Namespaces and style sheets have reached W3C
recommendation, a new version of the Document Object Model is needed. The new
version is called DOM Level 2 [12] and has at the time of writing the status of
Candidate Recommendation. A Candidate Recommendation is the last stage before an
actual Recommendation. It means that W3C is waiting for other parties to do
implementations of the interfaces and return with technical feedback before deciding
if the specification is complete enough to become a W3C Recommendation.

 XML to RDBMS Magnus Karlsson
2000-09-29

13

The DOM Level 2 specification builds upon the DOM Level 1 specification so all
interfaces from the DOM Level 1 specification still exist in the new DOM Level 2
specification. DOM Level 2 adds the following to the old specification:

?? Support for Namespaces so that existing namespaces can be interrogated and
new namespaces created.

?? Support for style sheets so that style sheets can be queried and manipulated
through a separate object model.

?? A built in event model that makes it possible to register event handlers for
events caused by user interaction, logical events or events caused by a
modification of the structure of the document.

?? A range interface that makes it possible to refer to a set of nodes as a range.
?? An interface for filtering and traversing a document’s content.

2.4 SAX

The Simple API for XML (SAX) is a programming interface which can be used by
programs and scripts to read XML documents. SAX cannot be used to create a XML
document, like the DOM interface.
SAX is an event-based interface that can be implemented by a XML parser. A XML
parser that has implemented the SAX interface will notify the application with a
stream of parsing events as it reads the XML document. A parsing event is for
example a notification to the program that the parser encountered the start tag of a
certain element. The parser will not build an in memory representation of the
document so it will be up to the application to buffer data or build its own in memory
representation of the data that the parser reads if there is a need to go back to a
previous element.
The obvious benefits of an event-based interface are speed and memory efficiency
since the parser doesn’t need to build an in memory representation of the document.
This also means that the SAX interface can be used to parse files of any size. If
however an application that uses the SAX interface builds its own in memory
representation of the entire document it might be just as inefficient as if a DOM
interface would have been used.

2.4.1 SAX v1.0
The first version of SAX, SAX v1.0 [13], was released in May 1998. The work was
lead by David Megginson and all of the discussions took place on the public mailing
list XML-DEV. Today the SAX interface is supported by virtually every Java XML
parser.
When using a SAX v1.0 parser, an application registers itself as the receiver of the
parsing events from the parser. The application then implements code to take care of
different events from the parser. The events that a SAX parser can send to an
application are shown in Figure 2-11.

 XML to RDBMS Magnus Karlsson
2000-09-29

14

Event Passed parameters

Start of the document

End of the document

Start of an element

End of an element

Character data

White space separating elements

A processing instruction

No parameters passed

No parameters passed

The element name and all the attributes

The element name

A character array with the content of an element

A character array with the spaces, tabs and
newlines

A target name and arbitrary character data

Figure 2-11 The type of events that a SAX v1.0 parser can send to an application

2.4.2 SAX v2.0
The SAX v2.0 interface [14] was created to address some of the limitations that the
SAX v1.0 interface has. The limitations that have been addressed is support for
namespaces, support for parsing the DTD and the addition of interfaces for access to
the boundaries of internal entities, the boundaries of CDATA sections and the
existence of comments.
The specification was released in its final version in May 2000 and at the time of
writing only three parsers have implemented the full specification according to the
official SAX v2.0 web page [14]. The three parsers are:
The Apache Software Foundation’s Xerces Java Parser, David Brownell’s SAX2
XML Utilities and Michael Kay’s SAXON.

2.5 XSL

The Extensible Stylesheet Language [8] (XSL) is an XML based language for
expressing style sheets. XSL style sheets can be used to transform a XML document
into another XML document.
During the development of XSL it became clear that the language consisted of two
parts: one part describing the vocabulary or the XML dialect used and one part
describing the structural transformation, in which element are selected. The two
specifications are: the Extensible Stylesheet Language [8] (XSL) describing the XML
vocabulary used and the XSL Transformation [2] (XSLT) specification describing the
transformation language.
As the work proceded, it was recognized that there was a need for a way of selecting
parts of a document. At the same time the W3C was developing the XML Pointer
language (XPointer) to be used for linking from one document to another and they

 XML to RDBMS Magnus Karlsson
2000-09-29

15

also needed this functionality. Thus the two comities joined forces and defined a new
language: the XML Path Language [4] (Xpath) describing a way of addressing a part
of a document.
The XSL language is still under development but the two sub standards XSLT and
Xpath reached W3C recommendation in November 1999. XSL has wonderful
facilities for achieving high-quality typographical output but in this thesis we are
more interested in transforming XML documents. XSLT can in fact also be used to
generate formatted output since it can be used to generate HTML and Cascading Style
Sheet [10] (CSS or CSS2) output.

2.5.1 XSL Transformations (XSLT)
XSL Transformations [2] (XSLT) reached the status of W3C recommendation in
November 1999. It is a tool for transforming XML documents.
XML Namespaces are considered to be an essential part of the XSLT language and
this is taken into consideration for all XML documents that are transformed.
When XSLT is used to transform a XML document, a XSLT processor is used. The
XSLT processor builds an internal model called a tree for the source document and
the style sheet and uses the style sheet tree to transform the source tree into a result
tree. The result tree is then be used to create the result document. The output can be
xml, html, or text.
The XSLT style sheet uses XML tags from the XSLT Namespace to give instructions
to the XSLT processor. XML tags from any other Namespace will not be regarded as
instructions to the XSLT processor and will be copied to the result document.
The XSLT Namespace is declared in the root element of the style sheet and the
declaration looks like this: xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”.
Thus will all tags that start with “xsl:” will be regarded as instructions to the XSLT
processor.
One of the most used XSLT instructions is the template rule. A template rule is
expressed in the style sheet as an <xsl:template> element with a match attribute. The
value of the match attribute is a pattern. The pattern determines which of the nodes in
the source tree the template rule matches. For example, the pattern “/” matches the
root node “Order/OrderHeader” matches the <OrderHeader> element which is the
child of the <Order> element. It is pattern like this one that the Xpath language is
used for.
When the XSLT processor parses the source document it will start with the root
element and look for a corresponding XSLT template rule in the style sheet document.
If this template rule is found, the XSLT instructions in this template rule will be
carried out. A template rule can contain XSLT elements that will make the XSLT
processor call template rules for the child elements to the element in focus in the
source document and in this manner the source document can be traversed and the
right output created using several template rules.
The different XSLT elements that can be used in a style sheet are:

<xsl:template> The template rule.
<xsl:apply-templates> Used to call one or several template rules.
<xsl:call-template> Used to call a single template rule.
<xsl:stylesheet> The root element of the style sheet.

 XML to RDBMS Magnus Karlsson
2000-09-29

16

<xsl:include> Used to include the content of a style sheet into
another style sheet.

<xsl:import> Used in the same way as the <xsl:include> element but
the definitions in the imported style sheet will be used
in preference to those that already exist.

<xsl:value-of> Writes the string value of an expression to the result
tree.

<xsl:attribute> Creates an attribute to an element.
<xsl:element> Creates an element.
<xsl:comment> Creates a comment.
<xsl:processing-instruction> Creates a processing instruction.
<xsl:text> Creates literal text.
<xsl:variable> Declares a local or global variable that can be used by

the XSLT processor.
<xsl:param> Declares a parameter that can be used to pass a data.
<xsl:with-param> Used to set the value of a <xsl:param>.
<xsl:copy> Copies the current node in the source document to the

current output destination.
<xsl:copy-of> As <xsl:copy> but copies all descendant nodes to.
<xsl:if> As any ordinary if statement but in XSLT.
<xsl:choose> Works like a switch statement.
<xsl:when> The condition to be tested inside a <xsl:choose>

element.
<xsl:otherwise> Used if all <xsl:when> conditions failed inside a

<xsl:choose> element.
<xsl:for-each> Selects a set of nodes and performs the same

processing for all of them.
<xsl:sort> Used to specify the order in which nodes are selected

by the <xsl:apply-templates> or <xsl:for-each>.
<xsl:number> Used to allocate a sequential number or to format a

number for output.
<xsl:output> Used to control the format of the output from the

XSLT processor.

An example of a style sheet that can be used to transform the XML document in
Figure 2-1 into the very simple XML document in Figure 2-13 is shown in Figure
2-12.

 XML to RDBMS Magnus Karlsson
2000-09-29

17

<xsl:template match="/">
 <Credits>
 </xsl:apply -templates>
 </Credits>
</xsl:template>

<xsl:template match="Orders">
 </xsl:apply -templates>
</xsl:template>

<xsl:template match="Orders">
 </xsl:apply -templates>
</xsl:template>

<xsl:template match="Order">
 </xsl:apply -templates>
</xsl:template>

<xsl:template match="OrderHeader">
 <Credit>
 <xsl:attribute name="customerid">
 <xsl:value -of select="User/@id"/>
 </xsl:attribute>
 <Withdrawal>
 <xsl:attribute name="currency">
 <xsl:value -of select="Price/@currency"/>
 </xsl:attribute>
 <xsl:value -of select="Price/Amount"/>
 </Withdrawal>
 </Credit>
</xsl:template>
Figure 2-12 A sample XSLT style sheet

<Credits>
 <Credit customerid="2183">
 <Withdrawal currency="SEK">9724.0</Withdrawal>
 </Credit>
</Credits>
Figure 2-13 The output from the style sheet in Figure 2-12

2.5.2 XML Path Language (Xpath)
The XML Path Language [4] (Xpath) reached the status of W3C recommendation at
the same time as the XSLT language in November 1999. The primary purpose of
Xpath is to address parts of a XML document. Basic facilities for manipulation of
strings, numbers and booleans are also a part of the Xpath language.
Nodes in a XML document can be addressed using a location path. The location path
starts with an axis. The axis is used to define the type of node that should be selected.
An example of the use of an axis is “child::para”, where “child” is the axis used and
“para” is the element that will be selected. There is also an abbreviated way of using a
location path where axis can be omitted. The abbreviated form when using the
“child::” axis is simply to omit it the axis declaration.

Construct to call a new
template rule

Construct to create an
attribute

Xpath expression to get
an attribute from the
source document

Xpath expression to get the
element content of an element
in the source document

Output tag created
explicitly in the style
sheet

 XML to RDBMS Magnus Karlsson
2000-09-29

18

The following axis’s can be used:

ancestor Selects all the nodes that are ancestors to the currently selected

node, with the parent as the first node and the document root as
the last node.

ancestor-or-self Same as the ancestor axis but with the currently selected node
as the first node.

attribute Selects all the attributes of the currently selected node.
child Selects all the children of the currently selected node.
descendant Selects all children, children’s children etc. from the currently

selected node and downwards.
descendant-of-self Same as the descendant axis but with the addition of the

currently selected node as the first node.
following Selects all nodes that follow the currently selected node in the

document.
following-sibling Selects all nodes that has the same parent as the currently

selected node and is following the current node in the
document.

namespace Select all namespace nodes that are in use by the currently
selected node.

parent Selects the parent node to the currently selected node.
preceding Selects all nodes that precede the currently selected node in the

document.
preceding-sibling Selects all nodes that has the same parent as the currently

selected node and are preceding the current node in the
document.

self Selects the currently selected node.

The most commonly used way of selecting nodes are by using the abbreviated form
though.
Location paths can also be either relative or absolute. A relative location path simply
means that nodes are selected by giving the position of the nodes relative to the node
that is currently selected while an absolute path means the position of a node relative
to the document root. For example: “//Orders/Order/OrderHeader” is an example of
an absolute location path in abbreviated form that selects the OrderHeader element.

2.6 Namespaces in XML

Namespaces in XML reach the status of W3C recommendation in January of 1999.
XML Namespaces were created for the purpose of solving the problems with
ambiguity and name collisions that existed with XML 1.0 if multiple DTD’s were to
be used for the same XML dialect. The problems arise when different DTD’s have
different declarations for the same constructs. If, for example an element was declared
as empty by one DTD and another DTD declared it to have children these two
declarations would be in contradiction to each other and it would be impossible to
know which one of the two declarations that should be used. The solution to the
problem is to group all elements and attributes declared in the same DTD together and

 XML to RDBMS Magnus Karlsson
2000-09-29

19

then tell the elements and attributes apart by looking at what group they belong to. A
group or collection is identified by a namespace declaration that uses a Uniform
Resource Identifier (URI) to give the resource a unique name. There are two ways of
using the URI when declaring a namespace, either by using an urn or a HTTP
location:
xmlns=”http://www.corus.se/xml/sales/sales.dtd”
xmlns=”urn:corus-sales-stock-stockdefs”
“xmlns” is a reserved word from the Namespace recommendation and cannot be used
for any other purposes.
A XML document can be declared to have a default namespace and if it has a default
namespace all elements and attributes that doesn’t have a qualified name will be part
of that namespace. An alias is provided for a namespace declaration to make it
possible to refer to it using the qualified name. Here are the two previous declarations
with an alias:
xmlns:sales=”http://www.corus.se/xml/sales/sales.dtd”
xmlns:stock=”urn:corus-sales-stock-stockdefs”
These two namespace aliases can then be used by their qualified name:
<stock:item sales:price=”10”>

2.7 XML Parsers

No one knows how many different XML parsers exist but a qualified guess would be
more than 50. A list of about 40 of them can be found at
http://www.xmlsoftware.com/parsers/.
The question of which parser to choose depends on what environment it will run
under, what XML interfaces it implements and what kind of support the different
vendors can give. One of the most interesting parsers today is the one developed
under the Apache XML Project, an open source initiative that can be found at
http://www.apache.org. The Apache XML Project XML parser, called Xerces, is
based on the Suns Crimson parser that Sun has given to the Apache XML Project.
Xerces is available in both Java and C++ and has support for both DOM Level 1 and
Level 2 and SAX version 2. The Xerces parser is also attractive because it supports 24
different character encodings.
If an Oracle database is used then it could be interesting to use the Oracle parser
implementations. The Oracle parsers has implemented the DOM Level 1 and SAX
version 1 interfaces and has support for 15 different character encodings. The Oracle
parsers exist in Java, C, C++, and PL/SQL.

 XML to RDBMS Magnus Karlsson
2000-09-29

20

3 The XML Interpreter
This chapter discusses how the XML interpreter was designed to fulfill the predefined
requirements.
The actual implementation utilizes the Oracle XML Developer’s kit (XDK) for Java,
which can be freely obtained from Oracle. The Oracle XDK contains a XML parser
and a XSLT processor that is used in the implementation.
I chose the Oracle parser because Oracle has implemened the Java Runtime
Environment (jre) into the actual database and is planning to implement a servlet
engine into the actual database in its next version. Since the Corus/ALS© system uses
an Oracle database this could potentially mean significant performance gains.
The XML Schema is still a working draft and many of the XML parsers doesn’t
support XML Schema, even the ones that do are in early alpha versions which only
support subsets of different versions of the working draft. Because of this, the
decision fell upon XML 1.0 for the actual implementation of the interpreter. Thus,
when the working draft reaches the recommendation stage, a new version of the
interpreter will need to be implemented.

3.1 The design of the interpreter

The design goals of the interpreter were:

?? The interpreter should be configurable from information in a database
repository or a XML document.

?? Using the XML document’s DTD, the interpreter should be able to create a
relational data model capable of storing all information in the XML document.

?? After the relevant model is created, the interpreter should be able to parse
XML documents and store data in the database as well as retrieve data from
the database and render a XML document.

?? The interpreter should be able to handle the scenarios of creation, changes, and
deletion of data in the database.

?? The coding language should be java and any user interface should be
accessible from a web browser.

These goals implie a design of the interpreter where the interpreter first parses a XML
document’s DTD and from that DTD generates one or several configuration files that
could be used later to:

?? Create the relational data model that would be able to store all future XML
documents of that type.

?? Take the XML document, and all future XML documents of this type, and put
its data into the data model.

?? Extract data from the relational data model and recreate a XML document of
that type.

 XML to RDBMS Magnus Karlsson
2000-09-29

21

To be able to create the relational data model from a configuration file a special
metadata XML format was created. This metadata XML dialect is further discussed in
section 3.2.
When it comes to storing the XML document in the database model that has been
created there are a number of different approaches that can be used. They all share
common communication mechanisms and by knowing either where the XML
document is sent or fetched from or by parsing the root tags of the XML document, it
is possible to find out which database model should be used.

One approach is to have the interpreter examine the structure of each XML document
it encounters and compare it to the database model at hand and have the interpreter
make decisions of what data it should put into what column and table in the database
model. However this approach fails on a number of points. First of all it is very
inefficient since the XML document’s structure needs to be examined every time
there is a new XML document to parse. Secondly it may be impossible for the
interpreter to know what data in the XML document should be put into a certain
database column since column names are decided by the user. Thus a more
sophisticated approach is needed.

If the interpreter was to create a description of how the mapping of data in the XML
document to the relational database model was done when creating the database
model, then that description could be used when an instance of a XML document was
to be inserted into the database model. The description must contain information of
how the XML document should be divided during the parsing to be able to put data
from different parts of the XML document into different database tables, how the
elements in the XML document map to the columns in the tables and what relations
exist between the different database tables and how they should be created. This
means that the interpreter will be very complicated and advanced in order to be able
to parse any XML dialect using the description discussed and this means that
performance could be a problem. Performance and maintenance of the interpreter are
essential if the interpreter is going to be a part of the Corus/ALS© system since it must
be able to parse documents from tens or even hundreds of sources at once.
A different approach that could meet the demands was thus desirable.

After examining the work done by the W3C in the area of transforming XML
documents [2], literature from Wrox on XSLT [16], and also the work done by
Microsoft in their BizTalk server (that can be downloaded for free in a beta version
from www.biztalk.org) a new approach surfaced.
The selected approach uses XSL Transformations to convert a XML document of a
certain dialect into a XML document that conforms to a XML format that is natively
used by the Corus/ALS© system. When inserting data from the native XML format
into the Corus/ALS© database there is no need for a description file because the native
XML format is self- describing and contains all necessary information itself. The
connection to the database from this internal XML format can thus be hard coded and
will be very fast and small in size. The conversion from the external XML format to
the internal XML document and vice versa is described in two XSL documents in the

 XML to RDBMS Magnus Karlsson
2000-09-29

22

XSL programming language, see section 2.5. The parser that does the actual
conversion can be obtained from a variety of vendors and in nearly any programming
language such as Java, PL/SQL, C, etc. Since all the parsers in fact are
implementations of the XSLT interfaces that the W3C has defined [2], it is possible to
performance test each one of them and then make a decision as to which one of them
to use.
There are in fact competitors to the Corus/ALS© system, like the Microsoft BizTalk
server, that uses XSL Transformations to convert all the way from one XML format
to another. But since XSL Transformations are not optimal for string conversions and
mathematical operations as discussed by Michael Kay in XSLT Programmer’s
Reference [16], most existing products (including the BizTalk server) use
workarounds to achieve performance in these areas. The BizTalk server, for example,
uses the Microsoft XML processor (MSXML) that can understand a XSL document
mixed with Visual Basic code to handle what Microsoft thinks that the XSL language
is not optimal for. This means that Microsoft has in fact bent the rules for the XSL
Transformation language set up by the W3C and makes it impossible to use the XSL
documents created by any other parser.
Since the Corus/ALS© system has all the functionality needed for string conversions,
mathematical operation, etc. implemented as stored procedures in the database there is
no need to do these operations in the XSL processor and they can thus be used in the
most optimized way. Figure 3-1 shows the way the interpreter works.

 XML to RDBMS Magnus Karlsson
2000-09-29

23

1. The interpreter captures the DTD through the reference in the XML document.
2. Using the DTD the metadata XML document is created and used to create the relational

database model in the Corus database.
3. Using the DTD the interpreter is able to create two XSL documents. One for

transforming a XML document to the internal XML format and one for transforming an
internal XML document to the external format.

4. Now the XSL Parser can use the two XSL documents to do the transformations.
5. When a internal XML document has been created by the parser the data can be inserted

into the database directly since the internal XML format refers to the correct relational
database model.

Figure 3-1 From XML to a DB via the interpreter

3.2 The Metadata XML format

When the interpreter analyses the DTD of a new XML document it needs a way of
describing the relational database model that needs to be created. If there is a need to
deploy the solution on some other platform there is a need for an extensible format
that is not platform dependent. The decision therefore fell on a metadata XML format
that could be easily exchanged between databases and platforms. As shown in Figure
3-1, the interpreter will create the metadata XML document that will be used for
creating the relational database model. This metadata XML format must be able to
create all the necessary tables, columns and keys that is part of the database model.
The general idea was that this XML format could be used not only for the purpose of
creating a relational database model for a XML format but also to tell the Corus/ALS©
system the internal structure of the client systems it was connected to. Furthermore
the metadata XML format could eventually be used for recreating the entire inner
structure of the Corus/ALS© system, making it possible to move the implementation
to another database, though this is outside the scope of this thesis. Figure 3-2 shows

5

Interpreter

Output
XSL

Input
XSL

XSL Parser

Corus DB

Meta-
data
XML

XML

DTD

Internal
XML

1

3

2

4

 XML to RDBMS Magnus Karlsson
2000-09-29

24

the proposed DTD of the metadata XML format and Figure 3-3 shows a sample
document that could be used for creating a relational database model.

<!ELEMENT DatabaseSchema (DatabaseTable*,Sequence*)>
<!ELEMENT DatabaseTable (Columns,Keys,Indexes)?>
<!ATTLIST D atabaseTable Name CDATA #REQUIRED>
<!ATTLIST DatabaseTable TableSchema CDATA #REQUIRED>
<!ELEMENT Columns (Column*)>
<!ELEMENT Column EMPTY>
<!ATTLIST Column Name CDATA #REQUIRED>
<!ATTLIST Column DataType CDATA #REQUIRED>
<!ATTLIST Column DataTypeName CDA TA #REQUIRED>
<!ATTLIST Column Size CDATA #REQUIRED>
<!ATTLIST Column DecimalDigits CDATA #REQUIRED>
<!ATTLIST Column Nullable CDATA #REQUIRED>
<!ELEMENT Keys (PrimaryKey?,ForeignKey*)>
<!ELEMENT PrimaryKey (PrimaryKeyColumn+)>
<!ATTLIST PrimaryKey Name CD ATA #REQUIRED>
<!ELEMENT PrimaryKeyColumn EMPTY>
<!ATTLIST PrimaryKeyColumn Name CDATA #REQUIRED>
<!ATTLIST PrimaryKeyColumn Order CDATA #REQUIRED>
<!ELEMENT ForeignKey (ForeignKeyColumn+)>
<!ATTLIST ForeignKey Name CDATA #REQUIRED>
<!ELEMENT ForeignKeyCol umn EMPTY>
<!ATTLIST ForeignKeyColumn Name CDATA #REQUIRED>
<!ATTLIST ForeignKeyColumn ReferencedSchema CDATA #REQUIRED>
<!ATTLIST ForeignKeyColumn ReferencedTable CDATA #REQUIRED>
<!ATTLIST ForeignKeyColumn ReferencedColumn CDATA #REQUIRED>
<!ATTLIST Fore ignKeyColumn Order CDATA #REQUIRED>
<!ELEMENT Indexes (Index*)>
<!ELEMENT Index (IndexColumn+)>
<!ATTLIST Index Name CDATA #REQUIRED>
<!ATTLIST Index Unique CDATA #REQUIRED>
<!ELEMENT IndexColumn EMPTY>
<!ATTLIST IndexColumn Name CDATA #REQUIRED>
<!ATTLIST IndexColumn Sequence CDATA #REQUIRED>
<!ATTLIST IndexColumn Order CDATA #REQUIRED>
<!ELEMENT Sequence EMPTY>
<!ATTLIST Sequence Schema CDATA #REQUIRED>
<!ATTLIST Sequence Name CDATA #REQUIRED>

Figure 3-2 The DTD for the metadata XML format

 XML to RDBMS Magnus Karlsson
2000-09-29

25

<DatabaseSchema>
 <DatabaseTable Name="EMP" TableSchema="SYSTER">
 <Columns>
 <Column Name="EMPNO" DataType="3" DataTypeName="NUMBER" Size="4"
DecimalDigits="0" Nullable="NO" />
 <Column Name="ENAME" DataType="12" DataTypeName="VARCHAR2" Size="10"
DecimalDigits="0" Nullable="YES" />
 <Column Name="JOB" DataType="12" DataTypeName="VARCHAR2" Size="9"
DecimalDigits="0" Nullable="YES" />
 <Column Name="MGR" DataType="3" DataTypeName="NUMBER" Size="4"
DecimalDigits="0" Nullable="YES" />
 <Column Name="HIREDATE" DataType="93" DataTypeName="DATE" Size="7"
DecimalDigits="0" Nullable="YES" />
 <Column Name="SAL" DataType="3" DataTypeName="NUMBER" Size="7"
DecimalDigits="2" Nullable="YES" />
 <Column Name="COMM" DataType="3" DataTypeName="NUMBER" Size="7"
DecimalDigits="2" Nullable="YES" />
 <Column Name="DEPTNO" DataType="3" DataTypeName="NUMBER" Size="2"
DecimalDigits="0" Nullable="YES" />
 </Columns>
 <Keys>
 <PrimaryKey Name="PK_EMP">
 <PrimaryKeyColumn Name="EMPNO" Order="1" />
 </PrimaryKey>
 <ForeignKey Name="FK_DEPTNO">
 <ForeignKeyColumn Name="DEPTNO" ReferencedSchema="SYSTER"
ReferencedTable="DEPT" ReferencedColumn="DEPTNO" Order="1" />
 </ForeignKey>
 </Keys>
 <Indexes>
 <Index Name="PK_EMP" Unique="YES">
 <IndexColumn Name="EMPNO" Sequence="" Order="1" />
 </Index>
 </Indexes>
 </DatabaseTable>
 <Sequence Schema="SYSTER" Name="xm_EMP_seq" />
</DatabaseSchema>

Figure 3-3 An example of a metadata XML document

The metadata XML format is not intended to replace SQL but will be able to create
the relational database models that is needed to take care of the XML documents that
needs to be imported. The metadata format will not for example be able to create
stored procedures and since different databases use different scripting languages for
stored procedures it is not possible to describe them in a common way either.
For a person that is familiar with relational databases the metadata format should be
quite strait forward. Each table is delimited by <DatabaseTable> tags and inside these
tags there are three categories of tags:

<Columns> used to group the columns together.
<Keys> used to group the primary and foreign keys together.
<Indexes> used to group the indexes together.

 XML to RDBMS Magnus Karlsson
2000-09-29

26

The <Columns> tag holds all the columns, which are defined by the attributes in each
<Column> tag. The attributes are:

Name The name of the column to create.
DataType The Java SQL data type. This is the way that JDBC describes the

data type of the column in a platform independent manner.
DataTypeName The platform dependent data type name. Unfortunately not all of

the jdbc drivers can understand the internal data types of a database
properly, which makes it necessary to have this attribute.

Size The size in bytes that the column should have in the database.
DecimalDigits The number of decimal digits the column should possess. This only

makes sense if the format is of the NUMBER type.
Nullable Indicates if the column should be null able or not.

The <Keys> tag holds the <PrimaryKey> tag and zero or more <ForeignKey> tags.
The name of the primary key can be found in the Name attribute of the <PrimaryKey>
tag and the <PrimaryKey> tag in turn holds the <PrimaryKeyColumn> tag, which has
a Name attribute that is the name of the primary key column and a order attribute that
states the order of the columns of the primary key if there are more than one column.
Likewise has the <ForeignKey> a Name attribute for the name of the foreign key and
the <ForeignKey> tag holds the <ForeignKeyColumn> tag, which has the following
attributes:

Name The name of the column that has a foreign key constraint.
ReferencedSchema The schema that the foreign column belongs to.
ReferencedTable The table that the foreign column belongs to.
ReferencedColumn The name of the foreign column.
Order The order of the columns of the foreign key if there is more

than one column in the foreign key.

The <Indexes> tag holds <Index> tags for all indexes belonging to the table. Each
<Index> tag has a Name attribute for its name and a Unique attribute to indicate if the
index is unique or not. Furthermore the <Index> tag holds the <IndexColumn> tag for
the columns that are part of the index. The <IndexColumn> tag has a Name attribute
for the name of the column and a Sequence attribute for indicating if the index should
be sorted in any other way than the default way and a Order attribute for the order of
the columns within the index.
It is also possible to create sequences with the help of a <Sequence> tag, which is a
necessity as will be discussed later in section 3.3. The <Sequence> tag has a Name
attribute for it’s name and a Schema attribute for the schema the sequence will be
created for.

 XML to RDBMS Magnus Karlsson
2000-09-29

27

3.2.1 Choosing parser interface
There are essentially two different parser interfaces that are used today; the SAX
interface [13] and the DOM interface [11]. They are both discussed in section 2.4 and
in section 2.3. When using DOM the parser reads the entire XML document into
memory and after that it is possible to manipulate the document. When using the SAX
interface on the other hand, the parser reads the content of each element and when
moving on to the next element it garbage collects the previous element, making SAX
both fast and memory efficient. In this case however the data is limited and there
might be a reason to show the user a graphical representation of the relational data
model that will be created so the user can make changes before it is finally created.
Thus the obvious choice is DOM since it builds an in memory representation of the
XML document which can easily be mapped to a graphical user interface. As
discussed in section 2.3 the DOM Level 1 implementation will do just fine for our
interpreter since DOM Level 1 contains the necessary functionality for manipulating
XML 1.0 documents.

3.2.2 Making an extensible implementation with DOM
It is also of great importance to make the implementation of the metadata XML
format as extensible as possible if it turns out that it will be used later not only for the
interpreter but also for describing more complex database structures as would be
necessary if an entire Corus/ALS© repository containing stored procedures, views,
and other more platform dependent structures would be described using the metadata
format.
Though it would be possible to parse through the entire XML document with a single
class, it would make it nearly impossible for someone else to read the code and
understand what’s going on. Two different approaches are discussed below, one for
creating a relational database model from a metadata document and one for creating a
metadata document from a relational database model.

3.2.3 Importing metadata
When creating a relational database model from the metadata document the DOM
parser will read the entire document into memory. Instead of having all the logic in
one giant class, the approach is instead to have one class for each type of element.
Each class will then create one or several instances of the classes that will handle the
sub elements of the current element and pass the sub elements along to the new
classes. This will make the implementation very extensible and easy to follow since
all that is needed to be able to handle new elements is the addition of new classes that
handle the new elements and a few lines of code to instantiate and call the new
classes. A JDBC call will then be executed for each table to create that table. See
Appendix B: The complete code, for the code.

 XML to RDBMS Magnus Karlsson
2000-09-29

28

3.2.4 Exporting metadata
It is also possible to create a metadata document from an existing relational database
model so that it can be exported to another database. As when importing data there is
one class for each element that shall be created. The classes also inherit from an
implementation of the org.w3c.dom.Element class called XMLElement that was made
by Oracle. By extending the XMLElement class the classes themselves can be treated
as XML elements. Thus will each class instantiate the subsequent classes and append
them as children to itself. This should allow anyone who later wants to expand the
metadata format to do this without having to change much of the old code. See
Appendix B: The complete code, for the code.

3.3 The import/export XML format

As mentioned earlier, there was a need for an internal XML data format. After the
relational database model has been created this internal XML format will be used to
import and export data into and from the database model. The internal data format
could also, in the future, be used to transfer data directly from one database to
another. Since it could also be used for this purpose the overhead should be kept to a
minimum.
Figure 3-4 shows the DTD for the internal XML format. Again this format is not
intended to replace SQL, but is instead created solely for the purpose to be able to
import or export data to and from the relational database models created by the
metadata XML format. However, the thought is that it should be possible to extend
this format in the future so that it could be used for other purposes as well.

<!ELEMENT data (transaction*)>
<!ELEMENT transaction (insert|update|delete)*>
<!ELEMENT insert (ref,row)>
<!ELEMENT update (ref,row,condition)>
<!ELEMENT delete (ref,row,condition)>
<!ELEMENT ref EMPTY>
<!ATTLIST ref schema CDATA #REQUIRED>
<!ATTLIST ref table CDATA #REQUIRED>
<!ATTLIST ref id ID #REQUIRED>
<!ATTLIST ref refid " -1">
<!ELEMENT row (d*)>
<!ELEMENT d #PCDATA>
<!ATTLIST d col CDATA #REQUIRED>
<!ELEMENT condition #PCDATA>

Figure 3-4 The DTD of the internal XML format

Figure 3-5 shows an example of a message conforming to the DTD in Figure 3-4.

 XML to RDBMS Magnus Karlsson
2000-09-29

29

<data>
 <transaction>
 <insert>
 <ref schema="SCOTT" table="TPA" id="ID8" refid="-1" />
 <row>
 <d col="TPAName">OBIStandard</d>
 <d col="Protocol">OBI</d>
 </row>
 </insert>
 <insert>
 <ref schema="SCOTT" table="Member" id="ID49" refid="ID8" />
 <row>
 <d col="MemberId">777777777777777</d>
 <d col="IdCodeType">ZZ</d>
 <d col="Partyname">LargeCo</d>
 </row>
 </insert>
 <insert>
 <ref schema="SCOTT" table="Address" id="ID60" refid="ID49" />
 <row>
 <d col="AddressType">location</d>
 <d col="City">SmallTown</d>
 <d col="State">NY</d>
 <d col="Zip">10000</d>
 <d col="Country">USA</d>
 </row>
 </insert>
 </transaction>
</data>

Figure 3-5 An example of an internal XML document

When storing a XML message into a relational database model only the <insert> tag
will be used. The explanation for this is that the communication mechanism will be
responsible for checking if there are new messages to fetch. If a new message exists it
will be stored in its entirety into the database. Thus the <update> and <delete> tags
will never be used when storing XML documents in the database. If a XML dialect is
encountered in the future which like the internal XML format actually tells whether
the information that is sent should be regarded as an insert, update or delete to the
existing information an approach, which involves the use of the <update> and
<delete> tags might be worth looking into but this is outside the scope of this thesis.
Because the <update> and <delete> tags will not be used for storing XML messages I
will not give an in depth discussion of how they are used in this thesis.
As can be seen in the DTD in Figure 3-4, the root element is the <data> element. The
<data> element can contain zero or more <transaction> elements which in turn can
contain zero or more <insert>, <update> and <delete> elements.
The <insert> element indicates that there is data to be inserted into a database table.
The table to insert the data into is pointed out by the <ref> element, which is a child
element of the <insert> element.
The <ref> element has four attributes: schema, table, id and refid. The schema and
table attributes are self- explanatory, pointing out the database schema in which the
database table exists and where the data should be inserted. However the id and refid
attributes need a little more explanation.

 XML to RDBMS Magnus Karlsson
2000-09-29

30

The id attribute of the <ref> element is of the ID attribute type. This means that no
other <ref> element in the entire XML document can have an id attribute with the
same value. The purpose of this is to separate rows of the same table.
The refid attribute is then used to refer to rows of data in other tables so that relations
between data in the XML document can be described. Thus the value of the refid
attribute will either be the value of an existing id attribute or, according to the DTD,
the value “-1” to indicate that there is no relation to data in an other table.
A XML document will normally be broken into several database tables, as discussed
in section 3.4, and the different parts of the original XML document are kept together
by the id and refid attributes. Even though the id and idref attributes resembles the use
of primary and foreign keys in a database, their values only have a meaning in the
context of the XML document. Thus, the interpreter will need to handle the
representation of the relations in the database when importing and exporting data as
described in section 3.3.3 and in section 3.3.4.
Each <insert> element also contains a <row> element, which in turn contains zero or
more <d> elements. It’s the <d> elements that contain the data to be inserted into the
database table. A <d> element has a ‘col’ attribute that refers to the column the data
should be put in.

3.3.1 Choosing parser interface
As mentioned earlier there are essentially two different parser interfaces that are used
today: the SAX interface and the DOM interface. They were both discussed in section
2.4 and in section 2.3. When using DOM, the parser reads the entire XML document
into memory and after that it is possible to manipulate the document. When using the
SAX interface on the other hand, the parser reads the content of each element and
when moving on to the next element it garbage collects the previous element, making
SAX both fast and memory efficient. In this case, where the data size can be almost
unlimited and there is no user manipulation required, SAX is the ideal choice. It
doesn’t matter that SAX v1.0 has no way of parsing the DTD since the DTD is
already well known because the documents that we will parse are of our own internal
XML format.

3.3.2 Making an extensible implementation with SAX
It is even more important to think through an implementation made with SAX than
one made with DOM. The reason for this is that SAX uses just a few events to
indicate the beginning of an element, the end of an element, the attributes of an
element and the data of an element. For a more thorough explanation of SAX see
section 2.4. The class that implements the SAX event handler interface will thus be
responsible for taking care of the processing of all elements that are encountered and
the event handling methods of that class will do a number of unrelated tasks.
An approach to solve this problem using a design pattern is presented in Professional
XML [15]. The two methods presented are a filter pattern and a rule-based pattern.
A filter design pattern is constructed by creating a number of classes that will each
handle specific parts of the document to be parsed. The classes are then connected
together by letting all the classes both handle events and passing the events to the next

 XML to RDBMS Magnus Karlsson
2000-09-29

31

class in the chain of classes. This pattern is sometimes called a pipeline pattern
because the sections of a pipeline can resemble the stages of processing.
A rule-based pattern on the other hand uses a switch that looks at the events and then
makes a decision of which actions should be taken. In this case the switch is a class
that makes decisions based on the element types and then invokes the right event
handling class for that element.
Both of these design patterns result in fast processing and easily maintainable code
but if a new element type is introduced the rule-based design pattern is preferable
since the only addition to the old code is to register a new element handler in the
switch class.

3.3.3 Importing data
When taking data from the internal XML format and storing it in the relational model
the decision fell on the rule-based design pattern because of the possibility that the
internal XML format will be extended in the future.
First the XML document is parsed quickly and the id and refid attributes are examined
to determine the relations between the data to be inserted. After the relations are
determined the document is parsed again and the data is inserted into the tables.
In the relational database model each table will contain a column called ID that is the
primary key to uniquely identify the rows. The value of the ID column is taken from a
database sequence when each row is created. There will be one database sequence for
every ID column. Furthermore, there will be a IDREF column to relate rows of
different tables with each other. Every IDREF value will thus be equal to one ID
value in the related table. The IDREF column is however absent in the topmost table
since the rows of this table will not have a relation to another table.
During the first parsing through the XML document the values of the ID and IDREF
columns is determined by getting the next value from the database sequences so when
the document is parsed through again all the rows can be created with the right ID and
IDREF values. For the sake of clarity the process is also shown in Figure 3-6.
The values of the id and refid attributes are used for keeping the relation between the
data in the XML document and should not be confused with the values of the ID and
IDREF columns. Since the values of the id and refid attributes are only unique within
one single XML document, they cannot be used when inserting the data into the
database tables.

 XML to RDBMS Magnus Karlsson
2000-09-29

32

Figure 3-6 The relation between id and refid attributes and the ID and IDREF columns

The code can be found in Appendix B: The complete code.

3.3.4 Exporting data
When recreating a XML document, the first step will be to create an internal XML
document and then use XSLT to convert it to the final XML format, see Figure 3-1.
The internal XML document will be recreated from the relational database model for
that XML format. Each relational database model will have a top- table that is used
for storing the root element and possibly some more element of the XML document,
see section 3.4. When recreating the internal XML document from the relational
database model, the correct row of the top- table must first be found. Since the
interpreter knows the relations between the tables in the relational database model, it
will be able to get the right rows in the other tables by comparing the value of the
IDREF column in each of these tables to the value of the ID column of the table it has
a relation to, as can be seen in Figure 3-6.
The relations between the data must also be maintained in the internal XML format.
This can be achieved by letting the interpreter create an internal index for the id
attributes. If the interpreter keeps track of the id attributes used so far it will also be
able to create refid attributes that refer to the id attributes in the same way that
relations are maintained in the database.

<insert>
 <ref schema="SCOTT" table="TPA"
id="ID8" refid="-1" />
 <row>
 <d col="TPAName">OBIStd</d>
 <d col="Protocol">OBI</d>
 </row>
</insert>
<insert>
 <ref schema="SCOTT" table="Member"
id="ID49" refid="ID8" />
 <row>
 <d col="MemberId">7777777</d>
 <d col="IdCode">ZZ</d>
 <d col="Name">LargeCo</d>
 </row>
</insert>

ID
TPANAME
PROTOCOL

ID
IDREF
MEMBERID
IDCODE
NAME

Database
sequence

Table: TPA

Database
sequence

One to
many

relation

Table: MEMBER

 XML to RDBMS Magnus Karlsson
2000-09-29

33

3.4 Finding the structure of a foreign XML dialect

Before the XSL documents that will do the transformation to the internal XML format
can be created, the DTD of the external XML format needs to be examined. The DTD
describes all combinations of messages that can possibly be created for that XML
dialect. The DTD is therefore necessary to be able to create the XSL documents and a
relational database structure that can take care of all possible messages. Since a XML
document doesn’t need to have a DTD, the interpreter should be fed a DTD when
setting up the environment but when the environment has been created, the DTD
should not be needed any more.
The W3C has defined an interface for DOM Level 1 to make it possible to parse the
underlying DTD as well as the XML document itself. Using this interface, the
interpreter should be able to build an internal representation of the structure of the
XML dialect.

3.4.1 Using the DTD to find the structure
When using the interfaces from W3C to parse the DTD it is possible to get an
understanding of the following:

?? What elements are possible as child elements of other elements?
?? Must an element appear at all? Will it appear zero or one time (?), one or more

times (+) or zero or more times (*)?
?? What attribute type does the attributes have?
?? Does the attributes have any default values?

Using this information the interpreter will be able to create the relational database
model to handle all possible messages for this XML dialect.

3.4.2 Mapping a XML dialect to a database structure
A XML document can only have one root element according to the W3C XML 1.0
specification [1]. This element is commonly known as the documents element. The
document element in turn can have zero or more child elements. All the elements in
the XML document except the document element can be declared to appear zero or
more times, one or more times etc. as described above in section 3.4.1. This kind of
structure resembles the structure in a database where a table can have a one to many
relation to other tables. The proposed solution for storing the XML document is
therefore to create new tables for each element and its children whenever an element
declaration that states that the element can occur more than once is found. This
solution also means that all the XML documents will be stored in a normalized way in
the database. The names of the tables and of the columns can be generated
automatically by the interpreter or chosen by a user through a GUI (graphical user
interface) since the XSL processor will use the XSL documents to map to the right
tables and columns, as described in section 3.5.
The XSL documents also describe how to rebuild the relation between the elements in
the XML document, i.e. one element is the child of an other element, from the internal

 XML to RDBMS Magnus Karlsson
2000-09-29

34

XML format. Thus, there is no reason to maintain the relations between the original
elements of the XML document in the relational database mode.
The result is a number of tables, as many as there are elements that can appear more
than ones, with columns that will contain the attribute content and the element
content.
Since data types are not part of the XML 1.0 standard, there is no way the interpreter
can know how large an element actually is and what the ideal format in the database
should be. This could however be implemented by letting the user set it himself in a
GUI. The interpreter can however use a default size and type in the database though
there is now way of knowing if it will work or not. The default value was chosen to a
string of 200 bytes after having tested approximately 30 XML documents from 10
different XML dialects. However, by setting the type and value manually by a user,
the size and speed of the database model can be greatly improved. Though this might
sound like a great disadvantage it is not the case because almost every standard
protocol that uses XML 1.0 states the type and size of the data that will be sent in
their specifications.
The recommendation is not to use the standard size and type that the interpreter uses
but to specify the types and sizes for every attribute and element to get maximum
performance.
When the XML Schema specification becomes a recommendation and the interpreter
is adapted to handle this specification as well, the user will not have to specify any
data types and size because this is be done in the XSD, the equivalent of a DTD for
XML Schema. So the interpreter will be even more automatic when used with XML
Schema documents in the future. The operation of the interpreter will however not
change much, so the adaptation of the interpreter to handle this should be fairly easy.

3.5 Transforming foreign XML dialects

When the relational database model has been created, the creation of the two XSL
documents remain. These two documents will be used by the XSL processor (also
called the XSL parser) to transform an external XML document to the internal XML
format and vice versa, as can be seen in Figure 3-1.
The names of the tables and columns are explicitly defined in the XSL documents by
the interpreter during the creation of the relational database model and the creation of
the XSL documents. This ensures that the translation between the two formats is a
matter of copying data from one element to another and it will make the process very
fast.

3.5.1 Namespaces in external XML documents
Nearly a year after XML 1.0 became a W3C recommendation a standard called
Namespaces in XML became a W3C recommendation. A XML namespace is used to
organize names into distinct sets and avoid name collisions. With the use of XML
namespaces it is possible to have elements and attributes with the same name but with
different properties and usages.
Namespaces are however not meaningful in the relational database model since name
collisions are avoided by storing data into different tables using different column

 XML to RDBMS Magnus Karlsson
2000-09-29

35

names. The namespaces can therefore be removed in the process of creating the
internal XML document by the XSL processor and recreated by the XSL processor
when creating the external XML document.

3.5.2 Choosing a design pattern
XSL Transformations is a functional programming language with origins from LISP
languages. This means that XSLT is pure recursive language and this imposes some
restrictions on the possible design patterns that can be used when creating a XSLT
document. As stated in XSLT Programmer’s Reference [16] most XSLT documents
fall into four design patterns:

?? Fill-in-the-blanks style sheets.
?? Navigational style sheets.
?? Rule-based style sheets.
?? Computational style sheets.

There are of course also XSLT documents that fall into more than one of these design
patterns at the same time.
A fill-in-the-blanks style sheet is an output oriented style sheet where the output tags
are simply written by the author of the document and variable data is inserted by the
addition of extra XSL tags inside the output tags. All tags are created at the encounter
of the document element and data from other elements than the document element is
found using a absolute path from the root of the document down to that element.
A navigational style sheet is also essentially an output oriented style sheet but with
variables, subroutines and possibly constructs as keys, parameters and sorting. Thus it
looks like a conventional procedural program, though variables in XSLT are a bit
awkward because they cannot be changed after they have been instantiated.
A rule-based style sheet on the other hand is not output oriented at all. It uses XSL
constructs to catch events from the XSL processor so that each element can be
handled differently. A rule-based style sheet will therefore make minimal assumption
about the structure of either the input document or the output document it will just
make a decision of what to output when encountering a certain input element.
The computational style sheet is somewhat more complex that the other three design
patterns. It is used when elements in the input document doesn’t correspond directly
to elements in the output document. For example, when the content of an element
needs to be split up between several elements in the output document or when the
contents of several elements in the input document needs to be concatenated and
inserted as the content of one element in the output document. As mentioned earlier
XSLT is a functional programming language and as a functional programming
language it doesn’t have assignment statements or variables, instead functions and the
output from those are the only way of manipulating data.
The transformation that the XSL processor has to do between the external XML
format and the internal XML format is a matter of mapping input elements content
and attributes to output element content and attributes. Thus there is no need for a
computational style sheet. The complexity of the external XML format can however
be extensive so keeping track of relative paths to underlying elements, as with the

 XML to RDBMS Magnus Karlsson
2000-09-29

36

output oriented style sheets, is not very attractive. The decision falls therefore on the
rule-based style sheet.

3.5.3 Relations between data in the internal XML format
The internal XML format is likely to be very different to the external XML format
because it retains the relations between the data with the use of id and refid attributes
as described in section 3.3, while the external XML format has a natural relation
between elements due to the fact that elements have child elements. The hierarchical
structure of the two documents is therefore also likely to be different.
The relations between the data in the internal XML format are very easy to obtain
when exporting data because the interpreter itself will create the internal XML
document and thus be responsible for maintaining the relations. However when
importing documents, the XSL processor must be able to maintain the relations
between the data because the XSL processor is responsible for creating the internal
XML documents. Luckily the XSLT Version 1.0 standard from W3C [2] states that
all nodes of the input document must have a unique id and that the id of every node
must be obtainable through the ‘generate-id()’ XSL function. The id and refid
attributes in the output document can then be obtained by using the ‘generate-id()’
function directly in the process of creating the output document. In the relational
database model new tables are created for each element that can occur more than once
so the id attributes will naturally be set to the id of those elements. The XSL processor
can then find the refid attributes by referring to the elements that the id attributes was
obtained from. The process of obtaining the id and refid attributes is shown in Figure
3-7.

 XML to RDBMS Magnus Karlsson
2000-09-29

37

Figure 3-7 The transformation from the external XML document to the internal XML format

3.5.4 The import XSL document
When the XSL processor creates the internal XML document it will create new
<insert> elements for each row to insert into a table in the database. Each row to be
inserted into a table is constructed from element content and attributes in the external
XML document. When the interpreter examined the DTD of the external XML format
it created a database model where new tables were created when the DTD indicated
that an element could occur more than once. Thus the XSL processor will need to
create new <insert> elements each time it encounters an element that can occur more
than once. Only when a <insert> element and its child elements are created can the
XSL processor continue to process the XSL constructs for the child elements that will
create the next <insert> element.

3.5.4.1 The Style Sheet
The proposed style sheet that is created by the interpreter and used by the XSL
processor is a combination of a rule- based style sheet and a navigational style sheet.

3. The id of
elements that can
occur more than
once is used to
uniquely identify
the rows to be
inserted

<element1>
 <element2 att2="att" >
 <element3>data</element3>
 <element4>
 <element5 att5="att">
 <element6>data</element6>
 </element5>
 </element4>
 <element4>
 <element5 att5="att">
 <element6>data</element6>
 </element5>
 </element4>
 <element7>
 <element8 att8="att">
 <element9>data</element9>
 </element8>
 </element7>
 </element2>
</element1>

<insert>
 <ref schema="XX" table="X1"
id="id1" refid="-1" />
 <row>
 <d col="att2">att</d>
 <d col="element3">data</d>
 <d col="att8">att</d>
 <d col="element9">data</d>
 </row>
</insert>
<insert>
 <ref schema="XX" table="X2"
id="id4" refid="id1" />
 <row>
 <d col="att5">att</d>
 <d col="element6">data</d>
 </row>
</insert>
<insert>
 <ref schema="XX" table="X2"
id="id9" refid="id1" />
 <row>
 <d col="att5">att</d>
 <d col="element6">data</d>
 </row>
</insert>

id1
id2
id3
id4
id5
id6

id9
id10
id11

id14
id15
id16

Import
XSL

XSL processor

1. The XSL
processor gives
all elements an id

4. The refid
attribute is used
to relate data
from different
rows and tables

2. If an element can
occur more than once
(according to the
DTD) an other
database table is used

 XML to RDBMS Magnus Karlsson
2000-09-29

38

Since every <insert> element and its child elements needs to be created before
moving on they all have to be created when the XSL processor encounters the first
element of a new row. The XSL processor must therefore refer to the other elements
that belong to the same row relatively to the position of the element it is currently
processing. This is the reason that the style sheet cannot be a pure rule- based style
sheet.
When the XSL processor is finished with creating the <insert> element and its child
elements, the XSL constructs that belongs to any new elements that are the first ones
of a new row will be called and so on.
The XSL processor will need to handle elements of the same type differently
depending on the context of these elements in the original XML document. The
reason for this is that the same type of element can be encountered in different parts of
the same document and the <insert> elements that are created can refer to different
database tables. The XSL constructs that the XSL processor uses when it encounters a
new element are called templates and by giving the templates a mode attribute it is
possible to decide which of the templates that should be used depending on the
template that was used last. Using mode attributes is one way of deciding exactly in
what way a XML document should be processed as explained further in XSLT
Programmer’s Reference [16]. Another popular way is to use parameters to pass
variables between the templates and then use <xsl:if>- statements to process the
variables and decide what to do. The decision fell on mode attributes because it will
result in faster processing because the XSL processor will not have to make any
decisions at all to decide what to output. All it has to do is to follow the path that is
outlined by using the mode attributes. The downside of choosing mode attributes is
that the XSL document could be more difficult to create by the interpreter.
Figure 3-8 shows an example of a part of a XSL document that passes element ids
between templates to maintain the relation between the data, templates with mode
attributes and relative paths to get the contents of elements and attributes.

 XML to RDBMS Magnus Karlsson
2000-09-29

39

<xsl:template match="Member" mode="mode5">
 <xsl:param name="refid" select=" -1"/>
 <xsl:variable nam e="id" select="generate -id()"/>
 <insert>
 <ref schema="SCOTT" table="xm_Member">
 <xsl:attribute name="id">
 <xsl:value -of select="$id"/>
 </xsl:attribute>
 <xsl:attribute name="refid">
 <xsl:value -of select="$refid"/>
 </xsl:attribute>
 </ref>
 <row>
 <d col="xm_MemberId">
 <xsl:value -of select="./@MemberId"/>
 </d>
 <d col="xm_IdCodeType">
 <xsl:value -of select="./@IdCodeType"/>
 </d>
 <d col="xm_Partyname">
 <xsl:value-of select="./PartyName/@Partyname"/>
 </d>
 <d col="xm_PartyName1">
 <xsl:value -of select="./PartyName"/>
 </d>
 <d col="xm_CompanyTelephone">
 <xsl:value -of select="./CompanyTelephone"/>
 </d>
 </row>
 </insert>
 <xsl:apply -templates select="Address" mode="mode6">
 <xsl:with -param name="refid" select="$id"/>
 </xsl:apply -templates>
</xsl:template>
<xsl:template match="Address" mode="mode6">
 <xsl:param name="refid" select=" -1"/>
 <xsl:variab le name="id" select="generate -id()"/>
 <insert>
 <ref schema="SCOTT" table="xm_Address">
 <xsl:attribute name="id">
 <xsl:value -of select="$id"/>
 </xsl:attribute>
 <xsl:attribute name="refid">
 <xsl:value -of select="$ref id"/>
 </xsl:attribute>
 </ref>
 <row>
 <d col="xm_AddressType">
 <xsl:value -of select="./AddressType"/>
 </d>
 <d col="xm_City">
 <xsl:value -of select="./City"/>
 </d>
 <d col="xm_State">
 <xsl:va lue-of select="./State"/>
 </d>
 <d col="xm_Zip">
 <xsl:value -of select="./Zip"/>
 </d>
 <d col="xm_Country">
 <xsl:value -of select="./Country"/>
 </d>
 </row>
 </insert>
 <xsl:apply -templates select="AddressLine " mode="mode7">
 <xsl:with -param name="refid" select="$id"/>
 </xsl:apply -templates>
</xsl:template>

Figure 3-8 An example of an import XSL document

The content and the
attributes of all
elements that belong
to this table are
referred to by their
relative path
id is the unique id of
this element

refid passes an id from another template
id is the unique id of this element

The id and refid attributes
that are created maintains
the relations between the
rows that are inserted

The next template is called with
the id of the current one as an
argument and a mode attribute.

The mode attribute is used to
distinguish between templates
that handles elements with the
same name but processes them
differently

An attribute is referred to by the
relative path and an ‘@’- sign

Element content is referred to by
the relative path only

Attributes in the output document are created
using the <xsl:attribute> construct with the
value of the attribute as an argument

 XML to RDBMS Magnus Karlsson
2000-09-29

40

3.5.4.2 Creating the Style Sheet
The interpreter is responsible for creating the import and export XSL documents when
it is examining the DTD of a new XML dialect. When the XSL documents are
created, any XSL processor will be able use the XSL documents to do the necessary
transformations, no matter if the XSL processor is implemented in C, Java or
PL/SQL. This is one of the strengths of using XSL to transform the documents.
To be able to create the XSL documents the interpreter will have to build an internal
model for both the export XSL document and the import XSL document, since the
XSL documents are completely different. The models must be able to answer the
following questions:

?? Should each attribute of an element map to an attribute or should it map to an
elements content of the output document?

?? Should each elements content map to an attribute or to element content in the
output document?

?? What elements and attributes will be a part of the same row of a database
table?

?? How do the database rows relate to each other?
?? Where in the XSL document, or at the encounter of what element, should the

output elements be created?

Before the XSL models are created, a model for the relational XML document is
created. This model has all the information needed about the database tables that are
going to be used and can thus be used later when the two XSL models are created.

3.5.5 The export XSL document
When the XSL processor creates the external XML document it will look for a
<transaction> element and then start to extract data from the underlying <insert>
elements and copy that data into the new output elements.
Each <insert> element represents a row of a table in the database. The relations
between the <insert> elements are describing the natural relations that exist in the
external XML format where elements are children of other elements as described in
section 3.5.3. The XSL processor can recreate the hierarchical order of the elements
simply by following all paths of correlated id and refid attributes from the document
element and down.
All the output elements will have to be created by the XSL processor on the encounter
of the <transaction> element since data from different <insert> elements can map to
sub elements of other elements. Furthermore it is essential that an element has not
been closed if a sub element is to be created.

3.5.5.1 The Stylesheet
The proposed style sheet that is created by the interpreter and used by the XSL
processor is a navigational style sheet. The reason for this is that the hierarchy of the
internal XML document is always known and all the output elements are created at
the encounter of the <transaction> element. The style sheet will however be quite

 XML to RDBMS Magnus Karlsson
2000-09-29

41

complex to be able to recreate the hierarchical external XML document from the more
flat internal XML document.
First the <insert> element that contains the data to recreate the document element and
the topmost elements of the output document is found and the output elements are
created. Then the id attribute of this <insert> element is used to find an <insert>
element with a refid attribute that matches the id attribute. This newly found <insert>
element is then used to create sub elements to the appropriate output element that was
created from the former <insert> element. This goes on until all output elements has
been recreated. An example of a style sheet that could be created by the XSL
processor can be found in Figure 3-9. The output from the XSL processor using this
style sheet would resemble the XML document in Figure 3-10, where xxx means data
from the relational database model.

 XML to RDBMS Magnus Karlsson
2000-09-29

42

<xsl:template match="transaction">
 <xsl:for-each select="insert[./ref/@schema='SCOTT' and
./ref/@table='XM_TPA']">
 <xsl:variable name="XM_TPA" select="."/>
 <TPA>
 <TPAInfo>
 <TPAName>
 <xsl:value -of select="./row/d[@col='XM_TPANAME']"/>
 </TPAName>
 <TPAType>
 <Protocol>
 <xsl:value -of select="./row/d[@col='XM_PROTOCOL']"/>
 </Protocol>
 <Version>
 <xsl:value -of select="./row/d [@col='XM_VERSION']"/>
 </Version>
 <Type>
 <xsl:value -of select="./row/d[@col='XM_TYPE']"/>
 </Type>
 </TPAType>
 <Role>
 <xsl:for -each select="../insert[./ref/@schema='SCOTT' and
./ref/@table='XM _ROLEDEFN' and ./ref/@refid=$XM_TPA/ref/@id]">
 <xsl:variable name="XM_ROLEDEFN" select="."/>
 <RoleDefn>
 <RoleName>
 <xsl:value -of select="./row/d[@col='XM_ROLENAME']"/>
 </RoleName>
 <RolePlayer>
 <xsl:value -of select="./row/d[@col='XM_ROLEPLAYER']"/>
 </RolePlayer>
 </RoleDefn>
 </xsl:for -each>
 </Role>
 <Participants>
 <xsl:for -each select="../insert[./ref/@schema='SCOTT' and
./ref/@table='XM_MEMBER ' and ./ref/@refid=$XM_TPA/ref/@id]">
 <xsl:variable name="XM_MEMBER" select="."/>
 <Member>
 <xsl:attribute name="MemberId">
 <xsl:value -of select="./row/d[@col='XM_MEMBERID']"/>
 </xsl:attribute>
 <xsl:at tribute name="IdCodeType">
 <xsl:value -of select="./row/d[@col='XM_IDCODETYPE']"/>
 </xsl:attribute>
 <PartyName>
 <xsl:attribute name="Partyname">
 <xsl:value -of select="./row/d[@col='XM_PARTYNAME']"/>
 </xsl:attribute>
 <xsl:value -of select="./row/d[@col='XM_PARTYNAME1']"/>
 </PartyName>
 <CompanyTelephone>
 <xsl:value -of select="./row/d[@col='XM_COMPANYTELEPHONE']"/>
 </CompanyTelephone>
 </Memb er>
 </xsl:for -each>
 </Participants>
 </TPAInfo>
 </TPA>
 </xsl:for -each>
</xsl:template>

Figure 3-9 An example of an export XSL document

The <insert> element
that maps to the
document element must
first be found

The output elements
are created
Element content from
the input elements are
copied to the output
elements

Sub elements are
created from other
database tables, i.e.
other <insert> elements

Variable needed to
be able to refer back
to this insert element

Element content is
created this way

Attributes are
created with the
xsl:attribute
construct

The output elements
and the for-each
constructs are closed

for-each constructs
are used to refer to
other input
elements

 XML to RDBMS Magnus Karlsson
2000-09-29

43

<TPA>
 <TPAInfo>
 <TPAName>xxx</TPAName>
 <TPAType>
 <Protocol>xxx</Protocol>
 <Version>xxx</Version>
 <Type>xxx</Type>
 </TPAType>
 <Role>
 <RoleDefn>
 <RoleName>xxx</RoleName>
 <RolePlayer>xxx</RolePlayer>
 </RoleDefn>
 </Role>
 <Participants>
 <Member MemberId="xxx" IdCodeType="xxx">
 <PartyName Partyname="xxx">xxx</PartyName>
 <CompanyTelephone>xxx</CompanyTelephone>
 </Member>
 </Participants>
 </TPAInfo>
</TPA>
Figure 3-10 The output from a transformation done with the previous style sheet

3.5.5.2 Creating the Stylesheet
As stated in section 3.5.4.2, the interpreter will create an internal model for the two
XSL documents. These models are then used to create the documents.
Before the XSL models are created a model for the relational XML document is
created. This model has all the information needed about the database tables that are
going to be used and can thus be used later when the two XSL models are created. If a
graphical user interface is created it can be used to manipulate the names and types of
the tables and columns for the relational model and this will reflect in the two XSL
models as well.

3.6 XML documents with cyclic redundancy

A XML document is said to have a cyclic redundancy if its DTD states that an
element of a certain type can have children or grand children of the same element
type. This implies that a XML document conforming to the DTD can have an infinite
depth. Documents with cyclic redundancy thus have to be treated differently than
XML documents without cyclic redundancy.
There are a number of ways to store a document with cyclic redundancy in the
database, some of them being more or less naïve. Three methods are discussed here:
treating cyclic elements as element content, introducing a finite depth and cyclic
database model design.

3.6.1 Cyclic elements as element content
The simplest way of storing XML documents that conform to a DTD with cyclic
redundancy is to create a database model that stores all cyclic elements and their sub
elements in a single column with all the tags intact. This means that the documents
will be treated as if they weren’t cyclic at all.

 XML to RDBMS Magnus Karlsson
2000-09-29

44

The disadvantage of this method is that there is no simple way of extracting data from
elements that are cyclic. This method should thus only be used when there is no need
to use the data that appears in the cyclic elements and is therefore of limited use.
An example of a document with cyclic data that might not be interesting is a
document that stores a complete document of the same type as one of its sub
elements. The sub document might for example be used to follow a conversation and
the interest lays in the new data, not the old.

3.6.2 Introducing a finite depth
A DTD can be used to describe cyclic redundancy as described earlier but there is no
way to limit the depth of reoccurring elements. Thus a DTD cannot be used to
describe a document format where a certain element can contain a sub element of the
same type but that sub element will not contain another sub element of the same type.
A creator of a XML dialect that will be used in this way can however describe this in
the specification of the format. When one knows that the depth is not unlimited it is
possible to treat the XML documents in the same way as a document that is not cyclic
at all. This could then be set in a graphical user interface.

3.6.3 Cyclic database model design
The most sophisticated approach would be to create a database model that can hold
cyclic XML document. A way of doing this is to have three database tables, a table
for document information, a table for element information and references and a table
for attributes. A simple example of this database design is shown in Figure 3-11.

Figure 3-11 A cyclic database model design

ID
IDREF
ELEMENTNAME
CONTENT

ELEMENTID
ATTRIBUTENAME
ATTRIBUTETYPE

DOCUMENTID
DOCUMENTNAME
ELEMENTID

1

1

1 0-8

 XML to RDBMS Magnus Karlsson
2000-09-29

45

Even if both cyclic and non-cyclic documents could be stored in a cyclic database
model it poses problems. The problems arise when PL/SQL is going to be used to
translate between different database models. Stored procedures, database triggers etc.
will have to be a lot more sophisticated and if there is a need to translate to a database
model that resembles a client system database model it will surely not be built in the
same way.

3.6.4 Choosing a method for cyclic XML dialects
Even though it is tempting to store all XML documents in a cyclic database model, it
poses a lot of problems that will not exist if a non-cyclic database model is used. After
having examined the 122 different XML dialects that the Open Applications Group
has posted on its website it, turned out that none of these XML dialects were cyclic.
Open Applications Group is one of the biggest organizations for creating XML
dialects in the world and has currently 66 members including IBM, Oracle, SAP
Microsoft, etc. This means that there is a relevant reason to treat the few cyclic XML
dialect that exists in a separate way.
Also when using the Corus/ALS© system to connect client systems a model of the
client system is built inside the Corus/ALS© database. The database models that
resemble the connected client systems are almost inevitably structured in an ordinary
relational structure and the simplest way to integrate between the formats is when
they resemble each other.
Even if a cyclic XML dialect is encountered, the interpreter can still handle it by
introducing a finite depth as described in section 3.6.2. It is only in cases where it is
impossible to choose a depth that will never be exceeded that the cyclic database
model is needed. By using different database models for client systems that use the
same XML format the possibility that a depth can be found increases even more.
Microsoft, one of the industry leaders, has introduced a depth attribute for cyclic
XML dialects in its BizTalk server to get rid of the finite cyclic redundancy problems.
The maximum depth in the BizTalk framework is set to seven cyclic occurrences of
the same element type. There are currently around 500 XML dialects that have been
adapted to work with the BizTalk framework.

3.7 Putting it together

The construction of the interpreter is the first step to integrate this functionality into
the Corus/ALS© product. Before the interpreter can be used with the Corus/ALS©
product, the database models that the interpreter creates must be created in the
metadata format that the Corus/ALS© system uses in its repository. The repository
will then be used to maintain and created the database models as with all other
integrations that are made with the Corus/ALS© system. There must also be a way for
the Corus/ALS© system to maintain and use the XSL files that are created by the
interpreter and the best way to do this is probably to store the XSL documents in the
repository and load them directly from a table.

 XML to RDBMS Magnus Karlsson
2000-09-29

46

The Corus/ALS© system will also be responsible for the transport mechanisms
involved and for feeding documents through the XSL processor with the appropriate
XSL documents.
When the Corus/ALS© system is adapted to use the interpreter integrations to and
from different XML dialects will be possible and the powerful functionality in the
Corus/ALS© system to transform, log and migrate data in a transactional way can be
fully utilized.

4 Evaluation
The purpose of the thesis was to determine if it was possible to find a way to examine
a XML document and its DTD and create a relational database model to hold
documents of that type. After having created the relational database model there
should be a way of quickly store and retrieve documents from the relational database
model. The solution must be easily extensible and the environment should be set up
from a repository or a XML document.
The proposed solution accomplishes all the requirements and relies heavily on the
standards outlined by W3C making it platform and vendor independent. This section
gives a brief discussion of the design issues and the choices that has been made to be
able to accomplish this.
First three different approaches to build the interpreter were discussed.
The first approach discussed was to let the interpreter compare all XML documents it
received to their DTD’s and use the DTD’s to make decisions on what relational
database model to use. The second approach was to create configuration files that the
interpreter could use to make a decision of what relational database model to use. The
last approach that was discussed was to use XSLT to transform all documents to an
internal format that directly described what relational database model to use and how
to put the data into that model.
The decision fell on the approach where XSLT was used to transform all documents
into an internal XML format because it would make the interpreter very small, fast
and maintainable. No decisions need to be made by the interpreter during operation
because the connections to the database are hard coded into the XSL documents that
are used by the XSL processor during the transformation process from the external
XML document to the internal XML format and vice versa. The XSL processor can
also be replaced at anytime if a faster XSL processor is encountered because all the
XSL processors build on the W3C XSLT recommendation.
When setting up the environment the W3C Document Object Model (DOM) was used
to create models for the transformation documents and the relational database model.
This means that a graphical user interface can be constructed at a later point to let a
user decide the schema, table names, column names, and data types for the relational
database model.
When parsing the output from the XSL processor the Simple API for XML (SAX)
was used because it is faster and more memory efficient, than the Document Object
Model (DOM). A rule based design pattern was used to make the actual
implementation fast and easily maintainable.

 XML to RDBMS Magnus Karlsson
2000-09-29

47

It is in the XSL transformation where most of the work is done and it is essential that
they are as efficient as possible. For this reason a lot of emphasis were put on the
design patterns used in the XSL documents. The most effective design pattern for the
import XSL document turned out to be a combination of a rule based style sheet and a
navigational style sheet. The most effective design pattern for the export XSL
document turned out to be a navigational style sheet because the internal XML
documents have a determined hierarchy.
Both the import and export XSL transformations are of a pure “copy and paste” nature
since all string and mathematical operations will be conducted in the relational
database using stored procedures. This is another reason why the transformations will
be extremely fast, because this is the kind of transformations that the XSLT language
was created for.
Cyclic XML dialects will have to be treated differently than ordinary XML dialects
because there is no way of knowing how deep the hierarchy of a cyclic XML dialect
will extend. The proposed solution is to let the user decide how deep a cyclic element
will extend. This is the same way that Microsoft’s BizTalk server handles cyclic XML
dialects.

5 Conclusion
An interpreter that works along the lines described earlier was implemented. The
implementation shows that it is quite feasible to construct a configurable interpreter
that can create a relational database model and both store and retrieve XML
documents from that relational database model. The interpreter does not take XML
namespaces into account because it is out of scope for this thesis and a fairly
straightforward matter of implementing that can be left as something to do before
making a commercial version of the interpreter.
The implementation shows the strength of the W3C XSL transformations language
and is believed to be both fast and easily maintainable due to an in depth look at the
use of DOM, SAX and different design patterns.
There are however a few details that would have to be sorted out before product
deployment would be possible.
The intention is that the interpreter is going to be a part of the Corus/ALS© system.
The Corus/ALS© system uses a repository where all transformations and internal
relational database models are described in metadata format. If the interpreter is going
to be used by the Corus/ALS© system it must first be manageable from the same
graphical user interface as the Corus/ALS© system uses. Secondly all configuration
documents that the interpreter produces must be maintained through the Corus/ALS©
repository and the relational database models must not be created directly from XML
documents but instead from the repository. Last but not least the communication
mechanisms of the Corus/ALS© system needs to be adapted to be able to poll for new
XML documents and feed them to the interpreter.

 XML to RDBMS Magnus Karlsson
2000-09-29

48

6 Future work
Before the interpreter can be used it has to be adjusted to work with the Corus/ALS©
graphical user interface and it’s repository. Furthermore should the interpreter take
XML namespaces into account so that the two XSL transformations removes and
recreates the namespaces that might be used in the external XML documents.
When the XML Schema becomes a W3C recommendation the interpreter will have to
be extended to be able to interpret XML Schema documents as well and this will
mean that the interpreter will become even more automated since the XML Schema
describes the data types that are used, which is not possible with XML 1.0.

 XML to RDBMS Magnus Karlsson
2000-09-29

49

References

[1] Tim Bray, Jean Paoli and C. M. Sperberg-McQueen. 1998. Extensible Markup
Language (XML) 1.0. REC-xml-19980210. Online. W3C. Available:
http://www.w3.org/TR/REC-xml 20 September 2000.

[2] James Clark. 1999. XSL Transformations (XSLT) Version 1.0. REC-xslt-
19991116. Online. W3C. Available: http://www.w3.org/TR/xslt 20 September
2000.

[3] Tim Bray, Dave Hollander, Andrew Layman. 1999. Namespaces in XML.
REC-xml-names-19990114. Online. W3C. Available:
http://www.w3.org/TR/REC-xml-names 20 September 2000.

[4] James Clark and Steve DeRose. 1999. XML Path Language (Xpath) Version
1.0. REC-xpath-19991116. Online. W3C. Available:
http://www.w3.org/TR/xpath 20 September 2000.

[5] David C. Fallside. 2000. XML Schema Part 0: Primer. WD-xmlschema-0-
20000407. Online. W3C. Available: http://www.w3.org/TR/xmlschema-0 20
September 2000.

[6] Henry S Thompson, David Beech, Murray Maloney and Noah Mendelsohn.
2000. XML Schema Part 1: Structures. WD-xmlschema-1-20000407. Online.
W3C. Available: http://www.w3.org/TR/xmlschema-1 20 September 2000.

[7] Paul V. Biron and Ashok Malhotra. 2000. XML Schema Part 2: Datatypes.
WD-xmlschema-2-20000407. Online. W3C. Available:
http://www.w3.org/TR/xmlschema-2 20 September 2000.

[8] Sharon Adler, Anders Berglund, Jeff Caruso, Stephen Deach, Paul Grosso,
Eduardo Gutentag, Alex Milowski, Scott Parnell, Jeremy Richman and Steve
Zilles. 2000. Extensible Stylesheet Language (XSL) Version 1.0. WD-xsl-
20000327. Online. W3C. Available: http://www.w3.org/TR/xsl 20 September
2000.

[9] James Clark. 2000. Associating Style Sheets with XML documents Version
1.0. REC-xml-stylesheet-19990629. Online. W3C. Available:
http://www.w3.org/TR/xml-stylesheet 20 September 2000.

[10] Bert Bos, Håkon Wium Lie, Chris Lilley and Ian Jacobs. 1998. Cascading
Style Sheets, Level 2 CSS2 Specification. REC-CSS2-19980512. Online.
W3C. Available: http://www.w3.org/TR/REC-CSS2 20 September 2000.

[11] Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Ian Jacobs,
Arnaud Le Hors, Gavin Nicol, Jonathan Robie, Robert Sutor, Chris Wilson
and Lauren Wood. 1998. Document Object Model (DOM) Level 1
Specification. REC-DOM-Level-1-19981001. Online. W3C. Available:
http://www.w3.org/TR/REC-DOM-Level-1 20 September 2000.

 XML to RDBMS Magnus Karlsson
2000-09-29

50

[12] Lauren Wood, Arnaud Le Hors, Vidur Apparao, Laurence Cable, Mike
Champion, Mark Davis, Joe Kesselman, Philippe Le Hégaret, Tom Pixley,
Jonathan Robie, Peter Sharpe and Chris Wilson. 2000. Document Object
Model (DOM) Level 2 Specification. CR-DOM-Level-2-20000510. Online.
W3C. Available: http://www.w3.org/TR/DOM-Level-2 20 September 2000.

[13] David Megginson. 1998. SAX 1.0: The Simple API for XML. Online.
Megginson Technologies. Available:
http://www.megginson.com/SAX/SAX1/index.html 20 September 2000.

[14] David Megginson. 2000. SAX 2.0 The Simple API for XML. Online.
Megginson Technologies. Available:
http://www.megginson.com/SAX/index.html 20 September 2000.

[15] Didier Martin, Mark Birbeck, Michael Kay, Brian Loesgen, Jon Pinnock,
Steven Livingston, Peter Stark, Kevin Williams, Richard Anderson, Stephen
Mohr, David Baliles, Bruce Peat and Nikola Ozu. 2000. Professional XML.
ISBN 1-861003-11-0, Birmingham UK: Wrox Press Ltd.

[16] Michael Kay. 2000. XSLT Programmer’s Reference. ISBN 1-861003-12-9,
Birmingham UK: Wrox Press Ltd.

[17] Bob DuCharme. 1999. XML The Annotated Specification. ISBN 0-13-
082676-6, NJ USA: Prentice Hall PTR.

[18] Michael Leventhal, David Lewis and Matthew Fuchs. 1998. Designing XML
Internet Applications. ISBN 0-13-616822-1, NJ USA: Prentice Hall PTR.

 XML to RDBMS Magnus Karlsson
2000-09-29

51

Appendix A: Acronyms and Abbreviations

ALS Application Linking System
EAI Enterprise Application Integration
XML Extensible Markup Language
EDI Electronic Data Interchange
RDBMS Relational Database Management System
W3C World Wide Web Consortium
SGML Standard General Markup Language
DTD Document Type Definition
EBNF Extended Backus Naur Form
DOM Document Object Model
SAX Simple API for Extensible Markup Language
XSL Extensible Stylesheet Language
XSLT XSL Transformation
XPointer XML Pointer language
Xpath XML Path Language
HTML Hypertext Markup Language
CSS Cascading Style Sheet
URI Uniform Resource Identifier
URL Uniform Resource Locators
HTTP Hypertext Transfer Protocol
SQL Structured Query Language
JDBC Java Database Connectivity

 XML to RDBMS Magnus Karlsson
2000-09-29

52

Appendix B: The complete code

This section has been left out completely and is for Corus internal use only.

