
Friday, August 11, 2000

Creating a Swing

LookAndFeel for GTK themes

Author Fredrik Lagerblad

 2

Abstract

This Master’s Thesis is written as a result of my degree project at Sun Microsystems Inc., CA,
USA. The goal of the degree project was to create a Pluggable LookAndFeel package for Java’s
Swing component set that incorporates the existing GTK theme standard

To provide the ability to change the appearance, Look And Feel, of an application is becoming
more important. Most new web-based applications give the user that option, but in Java, though
possible, it has been very hard to do. By creating a new Swing LAF that incorporates the existing
GTK theme standard with its hundreds of already-made themes, a new world is opened to Java
users on all platforms. The Linux users especially benefit from this as their Java Swing
applications now can seamlessly fit in with their existing desktop and other applications.

The GTK theme standard is based on a textfile and a number of image files. The textfile dictates
how and where the images should be used, but does this in a very special format that was
initially very hard to grasp. The images, which are of the PNG format, must all be stretched to fit
the components. This stretching is quite complex and time-consuming as the images contain their
border in the original image, and must therefore be removed and stretched separately.
To avoid having to “invent-the-wheel-again” the BasicLookAndFeel was inherited, which
provided most of the common functionality of a theme. The GTK LAF package design was after
a prototype had been built set to be in three layers and would use scale and paint on-the-fly
architecture.
After testing and evaluating the package with a probing application, OptimizeIT, the
performance could be improved significantly and the package is now fully comparable with the
existing system Swing LAFs as Metal, Windows and Motif.
The next progression of the package could be to add other theme standards, perhaps the coming
XML User interface Language, XUL.

 3

Preface

This Master’s thesis presents my Degree project that was done at Sun Microsystems Inc.,
Cupertino, CA, USA. It will conclude my Master of Science in Electronic Engineering at the
Royal Institute of Engineering (KTH) in Stockholm, Sweden.
Sun Microsystems Inc. is a major hardware and software company based in Palo Alto,
California, USA, but has offices all over the world. They are the inventors and copyright owners
of the Java programming language. This project took place in Cupertino, CA, in conjunction
with the Swing Team during the time period October 1999 to March 2000.

I’d like to thank Georges Saab, my advisor at Sun, Vlad Vlassov, my advisor at KTH, and the
whole Swing Team for their indispensable help and input to the project.

 4

Abstract... 2
Preface .. 3
1. Introduction.. 6

1.1 Specification of the project..6
1.1.1 Explicit requirements for the finished package ..6

1.2 Where the project was done..6

1.3 Structure of the thesis..7

2. Background .. 7
2.1 Motivation for the project...7

2.2 Java and the Swing package ...8
2.2.1 The Java programming language..8
2.2.2 Swing..8
2.2.3 Swing’s Pluggable Look And Feel (PLAF) architecture..12

2.3 Linux and the GTK themes...18
2.3.1 Linux ..18
2.3.2 The GTK package and its themes...18

2.4 The combination of PLAF and GTK Themes ...21

3. Design of the package’s architecture .. 21
3.1 Initial and basic design goals ..21

3.2 Building a prototype ..22

3.3 Rethinking the design after code and prototype review...24

3.4 Actual design used ...25

4. Implementation .. 26
4.1 System setup and tools used..26

4.2 Implementation of the design goals..27
4.2.1 The ImageData, StyleData and ThemeData classes ...27
4.2.2 The parser ...29
4.2.3 The image matching algorithm...30
4.2.3 The GTKMapper class ...32
4.2.4 The GTKLookAndFeel convenience methods ...34
4.2.5 The painting methods in the GTKUtils ..36
4.2.6 Painting methods in the UI delegates ...37
4.2.7 Other important classes and methods ...39

4.3 Optimizations and improvements ..40

4.4 Problems encountered ...41

5. Testing and evaluation... 42
5.1 What tests and evaluation used and why...42

5.2 Performance tests and results...42
5.2.1 Caching all images versus scale-and-paint-on-the-fly..42
5.2.2 ImageData caching in the GTKLookAndFeel class ...44
5.2.3 Caching and pre-upsizing of tiled images ..45
5.2.4 Optimization of the GTKParser.readFile() method ..46

 5

5.2.5 Delays for decoding the fonts in the parser ..46

5.3 Example of usage ...46

5.4 Conclusion from the tests..48

6. Conclusion and future work .. 48
References .. 50
Appendixes.. 51

I. Code...51
com.sun.java.swing.plaf.gtk Class GTKParser ..51
com.sun.java.swing.plaf.gtk Class ImageData ...53
com.sun.java.swing.plaf.gtk Class StyleData...55
com.sun.java.swing.plaf.gtk Class ThemeData ..57
com.sun.java.swing.plaf.gtk Class GTKMapper ..58
com.sun.java.swing.plaf.gtk Class ImageDataDesc ...59
com.sun.java.swing.plaf.gtk Class GTKLookAndFeel ..60
com.sun.java.swing.plaf.gtk Class GTKUtils...63
com.sun.java.swing.plaf.gtk Class GTKIconFactory.CheckBoxMenuItemIcon..65
com.sun.java.swing.plaf.gtk Class GTKBorders.NewFocusBorder...66
com.sun.java.swing.plaf.gtk Class GTKButtonUI ...67

II. Code for the test program..70

III. Glossary..74

IV. GTK Color Representation ..75

 6

1. Introduction
1.1 Specification of the project

The ultimate goal of the project is to create a software package in the Java programming
language that will enable and incorporate the existing Linux GTK standard for using themes. To
use themes, or nowadays also sometimes referred to as skins, is a way to change the way a
computer application looks and behaves. In Swing, an all-Java graphical component package to
Java, the possibility to at runtime change the Look And Feel (LAF) has been made possible by
its Model-View-Controller architecture. So far, the only different LAFs available to developers
have been LAFs that copy the appearance and functionality of other operating systems as
Windows, Macintosh and Unix and a special Java-only LAF called Metal. Developers have been
able to develop their own custom LAFs, but it takes an experienced programmer, a lot of in-
depth knowledge of Swing and quite some time. Other languages and component frameworks,
e.g. the GNU Toolkit (GTK) on Linux, also have this theme changing possibility, where they
have made it more easy for users to develop their own themes. This has sparked many users to
create their own themes and exchange them among each other on the Internet
(http://gtk.themes.org).
The additional package to Swing that will be created in this project will enable users and
developers to take advantage of all the existing themes created for the GTK in their Java
applications written using Swing and more easier create their own new ones.

1.1.1 Explicit requirements for the finished package
• Performance and memory footprint – the performance must not differ too much from the

existing Swing LAFs. The memory footprint will probably be larger due to the many images
used in the themes. It is important to find a good balance between speed performance and the
memory usage.

• Ease of use – the package should be as easy to use as the existing LAFs. Just a few lines of
code should be enough to make use of it.

1.2 Where the project was done

This project took place at Sun Microsystems Inc., Cupertino, California, USA. I worked with the
Swing Team, the creators of the Swing package, at the Java language developing part of Sun.
The project started October 11 1999 and continued until March 17 2000.
My advisor at Sun is Georges Saab, senior software engineer, who has been working in the
Swing Team since the start, 1996.
My advisor at my school, Kungliga Tekniska Högskolan, is acting associate professor Vladimir
Vlassov <vlad@it.kth.se> at the Information Technology Institution.
The examinator of the exjobb is Professor Seif Haradi <seif@it.kth.se>.

 7

1.3 Structure of the thesis

The structure of this thesis is as follows:
This first section discussed what the goal of the project was, when and where it took place, and
what people that were engaged in it.
Section 2 will provide the background to the project, explain how the Java Swing package and
the Linux GTK themes function and how they can be used together.
Section 3 describes the design stage; discussion about the design of the architecture, building a
prototype and eventually deciding for a final design.
Section 4 describes how the implementation of the design was done, and in more depth discusses
the key classes and their function. It also describes the improvements and optimizations done.
Section 5 discusses the tests performed on the package, and what conclusions that can be drawn
from them.
Section 6 concludes the findings of the thesis and discusses what the future might bring.
Last in the thesis are the references and appendixes.

2. Background

2.1 Motivation for the project

This project, i.e. this product, is needed primarily for two reasons, to offer the booming Linux
platform and its users a more seamless integration with Java, and to offer all users of Java and
Swing, on all platforms, an easy way to use and create themes for their applications.

Linux has in the last two years risen from being a computer enthusiasts’ operating system to
becoming a broadly accepted e-commerce platform and cheap home user operating system, by
many seen as a real threat towards Microsoft Windows. Sun Microsystems also recognizes Linux
as an important computer platform and tries to offer most of its product for it. With this
integration of the existing and widely used GTK themes and Java, Linux users can now
seamlessly use Java applications with other native applications. The way that the GTK themes
are constructed enables them to be used not only for the Linux platform but also for virtually
every platform with Java applications.

The ability to change how your application looks has within the last three years become almost a
standard, at least for web centric applications. It started with the MP3 playing application
Winamp, with gave its users the ability to design their own graphical interface. This became
enormously popular and soon caught on with other developers and their applications. The
Internet was the ideal place to exchange these themes or skins. Most users now expect themeing,
which means that the developers in turn expect support for it in the language. So for Java to keep
up with the trend and keep its developers, it must provide its developers this feature. This was
partly done with Swing’s Pluggable LookAndFeel architecture, but for most developers it was
too hard and took too much time to create their own LookAndFeels.

 8

The reason that this project was chosen for me to do and not one of the Swing core members was
because the Swing Team during this time was very busy with the release of Java 2 version 1.3, a
very important bug and performance update.

2.2 Java and the Swing package

2.2.1 The Java programming language
Java is an object oriented programming language that was created by under the supervision of
James Gosling and Bill Joy during 1993 and 1994 by Sun Microsystems Inc. and released in
May 1995. It immediately created a buzz within the computer world. It was one of the first
language that was completely platform independent and its strong network support made it
perfectly suited for the then evolving Internet. People could now add interactivity to their static
web pages through the use of applets (an Internet browser embedded application which Java
provided). Soon the initial hype about the applets (and Java) settled down, and Java started to
mature into a “real” programming language that was highly suitable for creating distributed
applications. As Java also is relatively easy to learn and use, but still very versatile, and is a
schoolbook example of an object oriented programming language it became very popular at
universities and other computer teaching institutions.
With the release of Java 2 Enterprise Edition (J2EE) in 1999 Java more or less has become a de
facto standard for server side enterprise programming. Backed by most of the industry J2EE has
in a short time revolutionized the formerly complex area of business-critical server-side
programming by hiding complicated issues as transactions, persistence and security, letting the
developer focus only on the business logic.
As Java became more accepted as not only a Internet programming language but also as a serious
language for developing commercial applications more demands were put on its Graphical User
Interface (GUI) building abilities. From the start the way to build GUIs was by using the
Abstract Window Toolkit (AWT), but soon issues started to arise which could not be solved with
AWT. (These issues will be discussed in the next section) To answer the demand of the
developers and to strengthen Java’s platform Sun created a new group with the some of the
people that used to work with AWT, their task was to create a new set of pure-Java GUI
components for Java or as their mission statement says it:

“To build a set of extensible GUI components to enable developers to more rapidly develop
powerful Java front ends for commercial applications.” [Ref 1]

The team members called this project ‘Project Swing’ (by the way named by Georges Saab, my
advisor); a name that soon caught on and later was set as the official name.

2.2.2 Swing

Background
As stated above Swing is a pure Java GUI component package that was released as a part of the
Java Foundation Classes (JFC) with the Java Development Kit (JDK) 1.1 in the spring of 1997.
The JFC incorporated many features from Netscape’s Internet Foundation Classes and some

 9

design aspects from IBM’s Taligent division and Lighthouse Design[Ref 2]. The JFC consists of
five APIs: AWT, Java 2D, Accessibility, Drag and Drop and Swing.
The Swing project was initiated to resolve some of the issues that had been discovered with the
AWT package. The AWT relies on peer components; i.e. an AWT button creates a Windows
button on a Windows operating system and a Mac button on a MacOS system. This means the
AWT components can behave and look different on different platforms. This means that it can be
very hard to design the component, a list component can behave differently on different
platforms. To manage and hide these differences can be very difficult and cumbersome. Also for
the application developer the visual design can be difficult when the components slightly differ
on different platforms. The components that could be provided also had to be “the-least-
common-denominator” of the platforms supported. To overcome these shortcomings Swing was
developed as a complement, as not necessarily as substitute, for AWT. The Swing Team set
some design goals that Swing would: [Ref 1]

1. Be implemented entirely in Java to promote cross-platform consistency and easier maintenance.

2. Provide a single API capable of supporting multiple look-and-feels so that developers and end-users would
not be locked into a single look-and-feel.

3. Enable the power of model-driven programming without requiring it in the highest-level API.

4. Adhere to JavaBeansTM design principles to ensure that components behave well in IDEs and builder tools.

5. Provide compatibility with AWT APIs where there is overlapping, to leverage the AWT knowledge base and
ease porting.

The most important features that Swing provided were:

• Highly configurable lightweight components.
• Pluggable LookAndFeels.
• A variety of new components such as tables, trees, sliders, progress bars, tooltips.
• Support for JavaBeans.
• Support for Drag and Drop.
• Advanced text handling.
• Support for accessibility through the JFC Accessibility package.

Sun recommends the use of Swing components for desktop and web applications but still will
support the peer AWT components, much because Java is not only intended for use on desktop
systems. In devices as for example telephones using Java technology, which might not have a big
screen to show graphical components on, AWT’s peer methodology can be used to map an AWT
button to a telephone button.

Model-View-Controller architecture
Swing is loosely modeled after an architectural model known as Model-View-Controller (MVC).
The MVC model was invented at Xerox PARC in the 1970s and divides each component into
three elements: the model, the view and the controller. Each of the elements has its own specific
task to in the component’s functionality: (also showed in Figure 2.1)

 10

Model – the model holds and controls the state data of the component and manages
transformations on that state. A button model for example holds information about whether the
button is enabled, pressed, icons, text on the button etc. The model differs for different
components and is always independent of how the component is visualized.

View – the view is the element responsible for showing the component on the screen or other
devices, e.g. audio output, Braille display. The view queries the model about which state it is in
and then draws (or acts) it according to it.

Controller – the controller handles how the user’s input should be handled. Events as mouse
clicks, keyboard input and focus gained/lost are examples on inputs that the controller decides
what actions to take upon. The controller decides how each component will react to the event.

The MVC architecture has several advantages, the most important ones being:

• Multiple views for one model – a single model can have any number of views connected to

it, e.g. a table and a chart or both audio and screen output. If an update is made to the model
notifies all its views and lets them update themselves.

• Easy change of the component’s appearance – by simply changing the view connected with a
certain model the component can change its whole appearance at runtime without affecting
the underlying model.

Swing’s architectural model
The Swing Team started out using the MVC model, but soon discovered that this model wasn’t
the best solution. The split between the view and the controller didn’t work well because they
needed a tight coupling. [Ref 1] “for example, it was very difficult to write a generic controller
that didn't know specifics about the view”. The Swing Team solution was to collapse the view
and the controller into one UI object, known as the UI delegate. This model is referred to as
separable model architecture, see Figure 2-2.

The model passes its data
to the view for rendering.

The view determines which
events are passed to the
controller.

The controller updates
the model based on the
events received. Controller

 Model View

Figure 2-1. The communication between the elements in the MVC architecture.

 11

The model and the UI delegate main these tasks in the separable model are these:

Model
• Query internal state
• Manipulate internal state
• Add and remove event listeners
• Fire events

UI delegate
• Paint
• Return geometric information
• Handle AWT events, e.g. forward button clicks to the model

For a Swing component the model can be changed, and you can create your own one, but there is
always a default model provided with each component, e.g. JButton has the model
DefaultButtonModel by default. Each model must implement a for the component specific
interface, i.e. “promise” that it will have and support certain methods. To set a new model for the
component one simply uses the component’s setModel() method to start using it. Table 2-1
below shows some examples of Swing components and their models. Note that different
components can share the same model interface.

Table 2-1. Some Swing components and their corresponding models.
Component Model Interface
Jbutton ButtonModel
JtoggleButton ButtonModel
Jmenu ButtonModel

JcomboBox ComboBoxModel
JprogressBar BoundedRangeModel
JScrollBar BoundedRangeModel
Jtable TableModel
Jtree TreeModel
JtextArea Document

Figure 2-2. Swing’s separable model architecture.

Model

View

 Controller

UI Delegate

Component

Model

 12

In the same way a new UI delegate can be created and used. This ability is what enables Swing
to have its Pluggable LookAndFeel architecture, which will be described in detail in the next
section. Every Swing component has a corresponding UI delegate which must implement a
component specific interface. The name of the corresponding interface is got if the ‘J’ in the start
of the component is removed and ‘UI’ is added at the back. Thus the UI delegate for JButton is
ButtonUI and for JScrollBar it is ScrollBarUI. All the different UI delegates for the components
extend ComponentUI, the super class of UI delegates. It defines the basic (view) methods for
rendering the component (paint(), update()) and defining its geometrical size (
getPreferredSize(), getMinimumSize()). The controller methods are determined
by specific subinterfaces, e.g. ComboPopup. What these methods actually are supposed to do is
described more in-depth in the next section about the PLAF architecture.

Model – View interaction
When the model wants to notify its view(s) that its data or values have changed it does this
through events. Swing models use the JavaBeans Event Model to do this. Two different ways to
do this is used in Swing:

• Lightweight notification – the model sends out an event (ChangeEvent) simply saying that its

state has changed to all the interested parties. It is then their responsibility to do a callback
and find out what has changed. The primary advantage with this technique is that a single
event instance can be used for all the notifications, which is very desirable when the changes
occur often, e.g. when a scrollbar is dragged.

• Stateful notifications – the model sends out a new instance of the event describing exactly
how it has changed to each interested party. More information about the change can the
stored in the event, this is often desirable when a changed has occurred in a more complex
component where it can be hard for the receiving part distinguish exactly what has changed.
For example when a column of cells in a table change value.

The model has no knowledge about which view(s) that is displaying its data, following the MVC
architecture. The model only knows which listeners that is interested in knowing about its state
changes, these can be UI delegates or an application, and simply notifies these when something
has changed. It is the Swing component, i.e. the UI delegate, which is responsible for hooking up
the appropriate listeners with the model so that it will repaint itself whenever its state changes.

2.2.3 Swing’s Pluggable Look And Feel (PLAF) architecture
Swing’s separable model architecture provides the ability to change the look and feel of an
application at runtime, and to create your own one. This is referred to as the Pluggable
LookAndFeel (PLAF) architecture. The developers designed Swing so that if you don’t want to
use or create your own LookAndFeel (LAF) it is more or less from hidden to you. On the other
hand if you do want to create a new LAF or modify it for a component or even a whole new
LAF, they have built the PLAF architecture so that you do that without too much trouble. Just
modifying or creating a LAF for a component is quite straightforward. Creating a whole new
LAF for the whole component set takes more in-depth knowledge and not least a considerable
amount of time. The hooks are provided and there are LAF super classes, the Basic LAF, from
which you can inherit the basic functions, but it requires a sound understanding of the whole
architecture to get it right. The documentation of how to create your own LAF is maybe one of

 13

the biggest shortcomings of Swing today. But that is partly why this project was initiated, to
provide the users and developers with a simpler way to change the appearance of their
applications.

Creating a new LookAndFeel
What you basically do when you create a new LAF is to create new UI delegates for the
components and replace the default ones with these. It is not necessary to replace all the UI
delegates of the default LAF. Many methods and behaviors are alike for different LAFs, that is
why Swing has a package of abstract super classes for LAFs, the BasicLookAndFeel, where
these are collected. It is this one you extend to create your own LAF (it is not absolutely
necessary to do it but it helps a lot).

Key classes in the PLAF architecture

LookAndFeel – this is the base class of a LAF. It provides the information on what UI
delegates to use for the components, what colors, fonts etc to use and also a name and identifier
of the LAF. Custom LAF extends the abstract BasicLookAndFeel class to replace the
default properties and define new ones. The properties are stored in a hashtable, the UIDefaults
that is described below. The LookAndFeel class also provides static convenience methods for
simplifying common tasks as installing new borders, colors etc:

installBorder()
installColors()

These methods will be described more in the section about installing and uninstalling UI
delegates.

UIDefaults – this class consists of a hashtable that contains all the above-mentioned
properties, the UI delegate table and some helper methods to access and replace these. Since
every entry in a java.util.Hashtable is a java.lang.Object, this is also what you
get when do a get(String key) on the hashtable. What these helper methods do is that
they cast the object from the hashtable to another class, the class that is expected. For example:
public Color getColor(”Button.focusColor”) tries to cast the returned object
from the hashtable into a java.awt.Color object and returns it.

The UI delegate table consists of entries like these:
“ButtonUI”, “javax.swing.plaf.basic.BasicButtonUI”,
“ScrollBarUI, “javax.swing.plaf.basic.BasicScrollBarUI”

Using methods like,
public Class getUIClass(String uiClassId)
 (Where uiClassId might be “ButtonUI” for example)

the correct UI delegate class can be retrieved for each component. It is these entries you replace
to force the component to use your own custom UI delegates. E.g.:

“ButtonUI”, “com.myCompany.plaf.MyOwnButtonUI”,
“ScrollBarUI, “com.myCompany.plaf.MyOwnScrollBarUI”

 14

The properties for the LAF’s colors, fonts, borders, icons etc are stored in a similar fashion:

“Button.foreground”, “new Color(Color.red)”,
“Button.background, “new Color(Color.blue)”
“Button.font”, “new Font(“Times”, Font.PLAIN, 12)”,
“Button.border”, “new MyButtonBorder()”

A developer of a new LAF can replace existing entries or create own unique ones that can be
then be retrieved from the UI delegates’ code.

Since the UIDefaults has an ordinary hashtable the standard commands for retrieving and
inserting entries can be used:

public Object put(Object key, Object value)
public Object get(Object key)

The information in the UIDefaults hashtable can be accessed straight from the UIDefaults
class, but the proper way to access it is through the UIManager class.

UIManager – this class provides a simple interface to a variety of information about the current
LAF and for installing new ones. It is an all-static class, so all its methods are static and you
never have to instantiate it. Perhaps the its most important method is the one used for setting a
new LAF:
public void setLookAndFeel(LookAndFeel newLaf)

This sets the new LAF as the current one. It does not automatically tell all the components to
update themselves to use it, but this can easily be done with another of the UIManager’s helper
methods:
public static void updateComponentTree()

The UIManager not only handles the current LAF, but also keeps track of a few other ones as
well:

Current LAF – the currently installed and used LAF.

Cross-Platform LAF – a LAF that is not modeled after an existing native platform. By default,
this is Swing’s own Metal LAF.

System LAF – this is the LAF that emulates the current platform. On Windows it is the Windows
LAF, on Unix/Linux it is the Motif/CDE LAF.

Installed LAFs – a set of all currently installed LAFs available to an application. By default, the
Metal, Windows and Motif LAFs.

Auxiliary LAF – a set of LAFs that provide accessible support for an application, e.g. an audio
LAF. By default this set is empty.

 15

All these LAFs and set of LAFs can be retrieved and set by methods that the UIManager
provides.

As mentioned before it is through the UIManager the UIDefaults properties are accessed, and
therefore provides the same helper methods for retrieving objects, e.g.:
public static Color getColor(Object key)

What these methods do is to simply obtain the current UIDefaults and invoke the same method
on it.

Another one of the UIManager tasks is to keep track of which properties in the UIDefaults table
are actually set the user, the current LAF or if they are system defaults. This is important because
if an user sets a specific property, e.g. the font in JTextFields, using one LAF, he also expect that
setting to remain even if he changes to a new LAF. This is done my storing all user-set properties
in a special UIDefaults table called the User Defaults table. This is always checked first, then the
current LAF’s table is checked and finally the System Defaults table. There is another
implication to this, when a LAF changes how do the new UI delegate know that a property, say a
border for a JButton, it is not actually a user-set border and it can not install its new border
instead? This is solved by tagging all the LAF property objects with the tag UIResource, which
is just an empty interface. So a Color object instead is stored as a ColorUIResource object, where
the ColorUIResource is simply a class defined like this:

public class ColorUIResource extends java.awt.Color

implements UIResource { }

These ready-tagged UIResource classes exist for the most common property objects like
ColorUIResource, FontUIResource, BorderUIResource, InsetsUIResource and
DimensionUIResource.

By tagging the properties like this it is easy to check before setting a new property if the current
one is user-set or set by the current LAF. The check is to simply see if the property is a
UIResource object by using the instanceof check:

if(button.getBorder == null ||

button.getBorder() instanceof UIResource) {

button.setBorder(newBorder);
}

Installation of a UI delegate
It is important to understand how the architecture manages the installation of new UI delegates,
after that it is easier to understand the different objects’ and classes’ roles and responsibilities.
Below is a flow chart, Figure 2-2, of a JButton being installed with the Metal LAF (not every
method call is showed).

 16

• The component’s constructor method calls the updateUI(), which is a method that every

component has. It basically sets a new UI delegate like this:
public void updateUI() {

setUI((ButtonUI) UIManager.getUI(this));
}

• The getUI() method of the UIManager in turn queries the current UIDefaults for the
appropriate UI delegate.

• The UIDefaults first look up the UI Class ID for the component, e.g. “ButtonUI” for a
JButton. Then it retrieves the correct UI delegate class for that UI class ID, in our case
“MetalButtonUI”.

• It uses the UI delegate’s method createUI() for provide an instance of the class for the
component. (This can be a new, unique instance or an instance that is being reused)

• This instance is returned to the component and the updateUI() method calls setUI().
The setUI() method asks the UI delegate to install him by invoking its installUI()
method.

• The UI delegate in its installUI() method calls all the necessary installation methods,
e.g.:
installDefaults()
installListeners()
installKeyboardActions()

After the installation is through the component can now start using the UI delegate for its
painting, size geometry etc.

jb:JButton UIManager :UIDefaults MetalButtonUI

ui:MetalButtonUI

new()

getUI(jb)

getUIClassID()
getUIClassId(classID)

createUI(jb) new()

setUI(ui)

installUI(jb)
setXXX()…

AddYYYListener()…

RegisterKeyboardAction()…

updateUI()

getUI(jb)

Figure 2-2. The installation of a UI delegate.

 17

Customization of a UI delegate
When a new UI delegate for a component is to be created, the easiest way is as mentioned above
to extend the BasicLookAndFeel. It provides the basic functionality of the for all the
components’ UI delegates. Then one simply overrides the methods that need to be changed with
your own code. For example the paint() method, which handles the rendering of the
component:

public void paint(Jcomponent c, Graphics g) {

//Own code for the rendering goes here.
}

Quite often it is not desirable to completely override a super class’s method; just some extra
functionality is wanted. This occurs often in the UI delegates’ installation and uninstallation
methods installUI(), uninstallUI(), installDefaults(),
uninstallDefaults(), installListeners(), uninstallListeners() etc.
This is achieved by first calling the method’s super method and after that adding your own code:

public void installDefaults(Jcomponent c) {
 super.installDefaults(c);

 //Own code goes here.
}

Stateful or stateless UI delegate?
One important aspect to consider is if the UI delegate should create a new stateful instance for
each component or provide a single static stateless instance that all components of the same
class share. The Swing Team discovered during the development of Swing that much
performance and memory can be gained by letting the components from the same class share a
UI delegate instance. This is not true for all components though; some more complex ones like
JTree and JTable do not gain from sharing UI delegates.

If a static stateless shared instance is provided for a class it has to each time it is to be repainted
query the model for all information it needs, it can’t store any information locally. One might
think that it is needed anyway due to the MVC architecture, where the view should query the
model before rendering, but sometimes it is not needed. For example, an image has been scaled
or manipulated in a time-consuming operation to fit the component’s size and the component
rarely changes its size, caching can improve the performance significantly. Or if a listener has
been added to the model, the model updates the UI delegate automatically through an event. If
some caching is still needed in a static stateless UI delegate, there is a way to do that too. All
JComponents provide the methods:

public void putClientProperty(Object key, Object value)
public Object getClientProperty(Object key)

These methods provide access to an internal hashtable of the component. By using these methods
one can cache information that is needed repeatedly. It is important though to remember to
nullify the entries when uninstalling the UI delegate.

 18

For the stateful unique UI delegates this is not a problem. Since there is an instance of the UI
delegate for each instance of the component, one can cache as much as needed within the UI
delegate object.

2.3 Linux and the GTK themes
One can hardly have missed the ongoing hype about Linux. The whole computer industry is
trying to be in some way or other involved in Linux (or at least look like they are). During the
last two years Linux has come up as the prime contestant to threaten Microsoft’s monopoly on
the client side, and as a cheap but very versatile platform for server side systems.

2.3.1 Linux
Linux is a free UNIX clone that was initially created by Linus Torvalds, a student at the
University of Helsinki, Finland. He began working in 1991 on his own version of UNIX for the
Intel x86 platform and released version 1.0 of the kernel (the most important core of the
operating system) in 1994. Since then the kernel, and other parts, of the Linux operating system
has been in continuos development by Linus Torvalds and large number of independent
developers all over the world. Linux is protected under the Gnu Public License (GPL), which
means its source code is freely available to everyone. Companies can still charge money for their
distributions, a special version of the operating system developed by the company, as long as the
source code remains available. Today some of the most popular distributions are Red Hat,
Debian and Corel. These distributions have largely helped to ease the use of Linux. Linux, just
like UNIX, have always been considered very powerful and highly configurable but also very
hard to learn. Everything has been more or less configured by editing various text files or
entering command-line commands. With these new easier-to-use distributions a lot of work have
been put in to simplify the installation, configuration and running of the system. By providing
graphical user interfaces (GUIs) instead of the command-line interface, it is today a much more
user-friendly system. A very important part of the GUI is the Window Manager.

Window Managers
A Window Manager is responsible for handling the visual interface of the system. It displays
more or less everything you see, the desktop, the windows that applications run in and all the
control windows. It visually controls the top-level windows, not the content of them as the GTK
package do. (Described below.) Several different Window Managers are available today, the
most common and used ones being Enlightenment, KDE, AfterStep and fvwm.

2.3.2 The GTK package and its themes
The Gimp Toolkit (GTK) is a set of GUI components for the Linux platform. It originates from
the GNU Image Manipulation Project (GIMP), which was an effort from the Linux scene to
create a powerful image manipulation program, a PhotoShop clone. [Ref 3, 4] For the
development of the GIMP a new set of object-oriented and robust of GUI components were
needed, and the GTK package was created. It has since also been used been used in several other
large Linux software projects [Ref 5], e.g. the GNU Network Object Model Environment
(GNOME), and a large number of applications based on it exists today (see http://www.gtk.org).

 19

The GTK is built on top of the GNU Drawing Kit (GDK), which is basically a wrapper around
the low-level functions for accessing the underlying windowing functions of the X windows
system.
The GTK provides the ability to provide your own rendering engine for the components, also
known as a theme. With a custom rendering engine one can make the components look just like
you want them to. To create a rendering engine one needs to implement the code for the drawing
of every component. Several different ones have been developed; many emulate other existing
platforms such as Windows, Mac, BeOS or NextStep. It is a complex and time-consuming task
to create your own engine, so a Linux developer called Rasterman developed an engine that
simplified the construction of new themes. [Ref 6] His engine, called the pixmap engine, uses
images for the rendering of the components. A text file, the gtkrc-file, specifies in a lot of
statements what images to use for each component. The images that are provided with the theme
are in the Portable Network Graphic (PNG) format, a non-royalty format developed as a
substitute for the GIF image standard. The pixmap engine grew very popular because people
could now quite easy create their own themes and exchange them with each other. The main
place for exchanging these themes on the Internet is http://gtk.themes.org. There is also a third kind
of themes, plain themes, which only modify the colors of the components. They also have a
gtkrc-file, but in it there is only color assignments to different components.

The structure of the gtkrc files
The excerpt below in Figure 2-3 is from a gtkrc file and shows have a menubar should be
visualized.

The gtkrc file consists of style definitions and class-to-style mappings. Every style definition
consists of one or more image definitions (only one in the example above). After a style has been
defined it is mapped onto the component(s) that should use it. The style hierarchy is built so that

style "menubar"
{

font = "-*-verdana-medium-r-normal-*-11-*-*-*-p-*-iso8859-1"
fg[NORMAL] = "#00000f"
fg[PRELIGHT] = "#000000"
fg[ACTIVE] = "#000000"
fg[SELECTED] = "#000000"
fg[INSENSITIVE] = "#a8a8a8"
bg[NORMAL] = "#d8d8d8"
bg[PRELIGHT] = "#d8d8d8"

engine "pixmap" {
image

{
function = BOX
recolorable = TRUE
file = "menubar.png"
border = { 2, 2, 2, 2 }
stretch = TRUE

}
}

}

class "GtkMenuBar" style "menubar"

Figure 2-3. Excerpt from gtkrc file showing the menubar specification.

 20

when a component needs to be rendered it checks its style first for the property/state it is looking
for. If not found, it checks the default style which always exists.

Styles
A style dictates what images and colors to use for a component. What images to use are specified
in the image definitions, described more below. A style has an image definition for each state
that it wants the component to visually differ for. For example, a style for a button usually has
image definitions for the states: normal, pressed, rollover and disabled.
Colors and fonts can be defined in for each style. If not present in a particular style, again the
color or the font in the default style is used. The font is used for all text in the component. The
defined colors are used for various things as text colors and backgrounds. For a complete listing
of what all the color represents see Appendix IV.
A style can also inherit another style’s definition and then add its own ones. This is done by
adding an equal sign ‘=’ after the style’s name and then the name of the super style. (Compare
with Figure 2-4)

Figure 2-4. The style togglebutton inherites the style button.

Image definitions
As stated above each image definition represents a state that a component can be in. It describes
what image to use, if they can be stretched, how the border is defined, if it also has an overlay
image etc. The different tags within the image definition are described in table 2-2 below.

To identify what image that should be used at a certain state, an image matching method is used
(described more in detail in section 4.2.3).

style togglebutton = style button
{

: Definition of the style
}

Tag Example Meaning

function = FLAT_BOX State identifier
recolorable = TRUE Recoloring allowed?
state = INSENSITIVE State identifier
detail = "entry_bg" Component identifier
file = "entry2.png" Image file to use
stretch = TRUE Stretching of image allowed?
border = { 3, 3, 3, 3 } Size of the image’s border
overlay_file = "entry_overlay.png" Overlay image file to use
overlay_stretch = TRUE Stretching of overlay image allowed?
overlay_border = { 2, 2, 2, 2 } Size of the overlay image’s border
orientation = HORIZONTAL Orientation identifier

Table 2-2. The image definition tags and their meanings.

 21

State transition
How does a component know which image to use, and when? A simple example will show how
a button will change its image during a state transition.

1. A user clicks the mouse on top of the button, which is in a normal state. The windowing
system reports this to the application, which forwards it to the button.
2. The button’s controller translates the click into a button-specific action, in this case a press on
the button, and reports it to the model.
3. The model changes its state to ‘pressed’, and forces its view to update itself.
4. The view’s update method checks the model’s state and size, requests the correct image for
them and renders it.

2.4 The combination of PLAF and GTK Themes
Because the Linux GTK pixmap themes only consist of a simple text file and a number of
images, they can be read and used on other platforms as well. So by creating a new Java Swing
LAF that can read and interpret the themes, they become available to every platform for which
there exists a Java Virtual Machine. How that LAF should be design and implemented will now
discussed in the next section.

3. Design of the package’s architecture

3.1 Initial and basic design goals
The project’s initial definition was:
“To create a Swing LookAndFeel that lets the users incorporate and use themes from the
existing GTK theme standard in their Swing applications.”

The first issue was to decide which of the three different themes (plain, pixmap, and engine)
were to be supported. Quite soon, it became clear that the engine themes, because they are
entirely written in native C-code, could not easily be incorporated into the Swing architecture. So
the first design goal set was to support both the plain and the pixmap themes.

Since the essential part of a pixmap theme is the gtkrc text file, which holds most of the
information, it needs to be parsed and its information stored properly for easy and fast access.
This information is then accessed by a set of custom UI delegates, a new LAF, which knows how
to utilize it properly. Therefore, the main parts of the implementation would be to create the
parser and the UI delegates for the components.
The large number of images in the themes, usually around 60-70 in a theme, of which most
needed to be stretched to fit each component’s size, meant some sort of image caching was
probably needed for performance. So the second design goal set was to add image-caching
functionality to the LAF.
Robustness and performance are of course important design goals. To take advantage of the big
performance improvement, especially in Swing, of version 1.3 of Java, the package was to be
designed to compatible with that version.
Another issue was to try to layer the design, where the different layers would be responsible for
different tasks and provide services. Each layer uses the underlying layer’s services and provide
services to the one above. A layered design has several advantages, one of them is that a layer
can be re-implemented, to improve the performance for example, and replaced without having to

 22

change the other layers. It also makes the implementation easier, by being able to focus on one
layer at the time, in the lines along the divide-and-conquer technique.

3.2 Building a prototype

It was decided with the advisor at Sun, Georges Saab, that a prototype version of the system
should be created and then evaluated. The prototype would include a parser and a few UI
delegates for a component, along with the architecture for delegating the information from the
parser to the UI delegate. The first component that would be included in the prototype was
decided to be JScrollBar. JScrollBar was chosen because it was neither too simple nor too
complex. Other components were JButton and JTextField. The prototype also included a general
study of how the GTK components behaved on Linux when it comes to things like focus,
rollover effects etc. Figure 3-1 shows the basic functionality of the prototype system in a
sequence diagram.

The parser
At this stage in the project, I had not yet found the source code for the Linux version of the
parser, to see how it was designed. Despite the fact that Linux is famous for its free and available
source code, it was surprisingly hard to find. Not until after the prototype was finished the source
code was found. It led to that I had to try to create my own system of identifying the different
images corresponding to the different components. This system soon became very complex and
irregular since the gtkrc files are not logically structured. It soon became a big problem as all the
different image definitions had to be uniquely identified. It was good enough for the prototype,
but it would have to be redesigned later.

GTKLookAndFeel

setCurrentThemeDir
(themeDir)

put(key, value)

parseContent(content)

loadImages()

put(key, value)

gtkStretch(image, size)

paintImage(image)

paintBackground()

parse(themeDir)

Figure 3-1. Basic functionality of the prototype.

GTKParser

readFile(filename)

…..

UIManager

get(key, value)

GTKButtonUI

paint()

:GTKUtils

get(key, value)

 23

As the gtkrc files maps GTK styles onto GTK components, not Swing components, some
mapping from the GTK and the Swing components is needed. A mapping table was used for this,
an example of the table can be seen in Table 4.1.
Since the GTK and the Swing component sets do not exactly match, not all the components can
be supported. A new custom Swing component would not be supported either, if not constructed
by a combination of existing components.

Image scaling
When looking into how the images needed to be scaled, the initial impression was that it was a
quite time-consuming operation. This because of the way that they are supposed to stretched
while still keeping their border intact as explained in Figure 3-2. The reason for the detailed
description on how the images are scaled is to show how complex it is and that it became a very

central part of the project, influencing key decisions.

So caching the images for each instance of the component seemed efficient. It would consume
more processor-time at the component’s instantiation time, but improve the runtime

How to stretch a GTK theme image.

An image with 6 x 6 pixels is to be stretched
to 12 x 8 pixels.

Its border is defined as {2, 2, 1, 1}.

What its border property/definition states is
the number of pixels on each side that must
not be stretched normally. The numbers
represent the {left, right, bottom, top} pixel
row or columns. They can only be stretched
in a certain direction, i.e. the top and bottom
border can only be stretched horizontally
and the left and right border only vertically.

The “remaining” part of image in the middle
can be stretched without any considerations.

So after the image’s parts has been stretched
independently they are put into one whole
image again.

Stretching
direction

Pixel
Left border
Right border
Bottom border
Top border

Figure 3-2. How a GTK theme image is scaled.

 24

performance. When each component, or rather its UI delegate, was created, all the images for its
different states was stretched to the component’s current size and cached locally in the UI
delegate object. Only when the component was resized an update of its cached images was
necessary.

Rendering when the component has focus
[Definition of focus: A component has focus if it was the last component used. The focus can
also the transferred around the component set by using the TAB key. The component in focus
can also usually be activated by pressing the ENTER key, e.g. a button would be pressed]
By studying the original GTK components I noticed that they handle focus by painting a special
focus image around the component in focus and also decreased its size by 2 pixels on each side.
The focus image was usually shared by all components and situated in the default style. If no
focus image existed in a theme, no image was drawn and the only visual change that occurred
was the decrease of the component’s size. These slightly smaller images of the component would
also have to be cached.

Not supporting plain themes
To provide the functionality for using plain themes, i.e. themes with only color changes, code for
rendering the components without images had to be added. This could be done by taking existing
code from another LAF, e.g. the Windows LAF. An initial test whether the current theme was a
plain theme or not would decide whether to use this code or to use the pixmap theme rendering
code. It soon became clear that this approach was neither efficient nor desirable. The UI
delegates’ code would become too big and complex. There was also another way which plain
themes could be supported by Swing; the Metal LAF provides an option of creating Metal
themes that lets the user controls simple properties as colors and fonts. So a Metal theme that
parses the plain theme’s color assignments and sets those as defaults could quite easily be
implemented instead.

3.3 Rethinking the design after code and prototype review
After the prototype had been finished I had a meeting with my Sun advisor and some other
people from the Swing Team to discuss and evaluate it. The key points and decisions were:

• The parser needed to be redesigned (as already planned). By this time I had found and

studied the source code for the original Linux GTK parser and now understood the
mechanism for the parsing and the identifying of the images.

• The caching of all the images for each component was not desirable, as the number of images

that had to be held in memory would be too great. It might be feasible for an application with
a few components, but for large applications it would leave a too great memory footprint. For
some components, e.g. a JButton would for each instance of the component have to cache
seven (7) images [normal state image, rollover state image, pressed state image, focus image,
normal state with focus image, rollover state with focus image, disabled state image]. A more
scale-on-fly-painting technique would have to be used. This would eliminate the need for any
caching, but also required a fast algorithm for the painting.

 25

3.4 Actual design used

The parser’s design
Since the themes’ gtkrc files are consist of image definitions which some make up a style, and
styles then make a theme, is was natural to create an object design hierarchy as showed in Figure
3-3. An ImageData object represents every image definition. A number of ImageData objects
plus a style’s color assignments is held in a StyleData object. Finally a ThemeData object holds a

number of StyleData objects, where one of them is the default style. The ThemeData object will
after the parser has finished be stored in GTKLookAndFeel class, for easy access.

The layered on-the-fly-scaling-and-painting design
Since the UI delegates could not store all the images needed for its rendering the original images
will instead be stored in the ThemeData structure, which is accessed through the
GTKLookAndFeel class. From there all the interested parts can access the images, or rather the
ImageObjects, when they need them for the rendering. The only information the needed to fetch
an image is an identifier, i.e. a string, of which state the image is supposed to represent.
All an UI delegate has to do when it wants to be rendered with an image is to call a helper
method placed centrally in the GTKUtils class. The arguments to the rendering helper method is
what size it should be drawn, the identifier of what ImageObject to use and a reference to the UI
delegate’s drawing area. The helper method will then take care of the rest; fetching ImageObject,
check its painting properties (stretching allowed? has overlay images? etc) and then finally paint
the image. Thus the “image painting logic” will be held in the GTKUtils class, hidden from the
UI delegates.

GTKXxxUI

GTKUtils GTKLookAndFeel

ImageData

StyleData

ThemeData

GTKParser

creates and
populates

gets matching
ImageData
objects from

contains

contains

initiates

holds and gets
matching
ImageData
objects from

uses for
rendering

Figure 3-3. The GTK package’s key classes and their dependencies.

GTKMapper

uses for
mapping

uses for
mapping

uses for
mapping

 26

The “image matching logic”, which will be discussed more in the next section, will be held in the
ThemeData object, the GTKLookAndFeel class and a special mapping class called GTKMapper.
Some performance enhancing “reference caching” will be also in a helper method of the
GTKLookAndFeel class.

The layers in the design begin to seem clear, as shown in Figure 3-4: a top layer with the UI
delegates, below a layer in the GTKUtils that requests ImageObjects and renders the
components, below that the GTKLookAndFeel class which stores the theme data and obtain the
correct ImageData object and at the very bottom the parser which initially “translates” the gtkrc
file into a ThemeData object and stores it in the GTKLookAndFeel class.

4. Implementation
4.1 System setup and tools used

The systems and tools used during the project included:

Java version 1.3
As stated before the version of Java used was 1.3, also known as project Kestrel within Sun. This
version was chosen to take advantage of the great performance improvement from 1.2 to 1.3.
When I started the project version 1.3 was still in beta, but the code was more or less frozen. The
final release was made in March. This meant that the package could not be tested on a Linux-
running computer during the project, but since Java is write-once-run-anywhere it did not matter.
The developed package is can be used on other platforms as well. The work on a version 1.3 of
Java for Linux was well underway and would suitably be released roughly by the time the project
finished.

GTKParser – converts the gtkrc file into a “understandable” theme
object containing all the information and matching logic.

GTKLookAndFeel – stores the theme data object and
retrieves and caches the correct images.

GTK UI delegates – handles input and rendering delegation.
Investigate the component’s current state and uses helper
methods to render it.

GTKUtils – requests, scales and renders the images for the
components according to the ImageData objects properties.

Figure 3-4 The layers in the design and their responsibilities.

 27

Sun UltraSPARC with Solaris 7 operating system
On this workstation most of the development took place. It was a natural decision since it is the
main development platform at Sun Microsystems. Different versions of Java, editing tools and an
architecture building/compiling the project were available on the internal network. The source
code editing was mainly done in Emacs and for the compiling the Swing Team’s existing
customized make files were used.

Gateway 400 MHz PC with Windows NT and Red Hat 6.0 Linux operating systems
This workstation was used to test the implementations under a high-end Windows Java Virtual
Machine (JVM) and to use the Linux system as a reference.

Dell 133 MHz MMX laptop with Windows 95 and Red Hat 6.0 Linux operating systems
This laptop was used to test the implementations on a low-end computer using the Windows
JVM and also as a Linux reference when not in the office. Some days I worked at Sun’s drop-in
office in downtown San Francisco.
OptimizeIT
A performance test tool used for Java applications. The application shows statistics and
information about an application’s time-consuming, memory usage, number classes loaded etc. It
was used to test and optimize the package.

4.2 Implementation of the design goals

When implementing, the obvious place to start was in the lowest layer and build up from there.
In the next sections the most important classes in the package and their functionality will be
described, also starting from the lowest layer and move upwards towards the higher-level
classes. Interesting and important parts of the source code will be discussed and explained. If a
closer look into the code is needed the complete source code, or JavaDoc, is available in
Appendix I. Note that all the components’ UI delegates have not yet been implemented, a few
still remain to be done.

4.2.1 The ImageData, StyleData and ThemeData classes
As showed in Figure 3-3 the gtkrc files’ information will be stored in ImageData, StyleData and
ThemeData objects. These classes are a logical representation of the information in their
counterparts in the files and methods to access them. Below follows a detailed description of
these classes: (The complete source code can be found in Appendix 3)

The ImageData class
An ImageData object has uninitialized data members for all the properties that can exist in an
image definition in a gtkrc file. An explanation of its data members is shown in Figure 4-1.

 28

The StyleData class
This class has two main parts, the list of ImageData objects that belongs to its style and the
style’s properties, i.e. name, font and colors.
The ImageData list holds any number of ImageData objects that are defined within the style in
the gtkrc file. ImageData objects can be added to the list through the addImageData()
method and retrieved through the method getImageData(). The whole list can also be
retrieved trough the getImageDataList() method.
A style’s own properties, except from its name, are only set if they are defined within its style.
Only the default style, which is recognized by its name ‘default’, have its color values set by
default. This is done because the default style is the “end station” for searches in styles and
therefore has the default GTK settings. In the Linux GTK package these colors are built-in into
the pixmap theme engine. The class also has a data member that tracks what focus image the
style uses.

class ImageData {
public final static int LEFT = 0;
public final static int RIGHT = 1; Static definitions of a border sides.
public final static int TOP = 2;
public final static int BOTTOM = 3;

 public StyleData styleData; Reference to which style it belongs to.

public String function;
public boolean recolorable;
public String detail;
public String file;
public int[] border = {0, 0, 0, 0};
public boolean stretch;
public String overlay_file;
public int[] overlay_border = {0, 0, 0, 0}; Properties which have counterparts in the
public boolean overlay_stretch; gtkrc files. The are set to the same value
public String gap_file; as in the file, if it exists.
public int[] gap_border = {0, 0, 0, 0};

public String gap_start_file;
public int[] gap_start_border = {0, 0, 0, 0};
public String gap_end_file;
public int[] gap_end_border = {0, 0, 0, 0};

public BufferedImage image = null; The actual images to be used. They are not
public BufferedImage overlay_image = null; loaded before actually used for rendering.

//The haveFoo attributes indicates whether the Foo-attribut have been
//set by default or from an ImageData. False = default;
public String gap_side;
public boolean haveGap_side;
public String orientation;
public boolean haveOrientation; These properties also have counterparts in
public String state; the files like ones above, but also each
public boolean haveState; have an boolean indicator showing if they
public String shadow; have been set for the particular object.
public boolean haveShadow; These indicators are used in the matching
public String arrow_direction; method of the ThemeData class.
public boolean haveArrow_direction;

}

Figure 4-1. The ImageData class.

 29

The ThemeData class
The ThemeData class represents the top instance in the hierarchy and is essentially what
differentiates one GTK theme from another. It holds all StyleData and ImageData objects that
the theme consists of. It also manages the searches, or matching, of images, keeps track of the
default style and provides a helper method for inheriting styles.

It holds all the styles in a list of StyleData objects, which can be accessed with these methods:

public void addStyleData(StyleData style)
public StyleData getStyleData(int indexInList)
public StyleData getStyleData(String styleName)
public StyleData[] getStyleDataList()
public StyleData getDefaultStyle()

The class’s very important image matching method, matchThemeImage(), will be described
in the image matching algorithm section 4.2.3 below.

4.2.2 The parser
The GTKParser class contains the methods that read, parse and store the information from the
gtkrc files. By calling the method parseThemeFile(String themeDir) with the
directory of theme files as the argument, it reads the whole file into a String object. This string is
in turn passed to the method parseContent(String content) where the actual parsing
begins.
Through the use of Java’s own StringTokenizer class the whole content string is tokenized
(divided) into separate strings. The tokenization separates all parts of the initial string that is
separated by whitespace or other optional characters. After that you extract the tokens one by
one. In this case the StringTokenizer is set to divide upon the characters ‘=’, ‘\’, ‘"’ and ‘,’.
The parsing starts by identifying which one of the top-level tags come first, either a style or a
class statement. Based upon what tag it identifies it calls the next method, either
parseStyle() or parseClass(). These methods in turn tries to identify the next tag, e.g.
an image definition or color assignment, and call the appropriate method for handling that
information. There exist special parsing methods for all the different tags in the file and which
knows how to handle/decode them.The StringTokenizer object is sent along the whole time so
that each method can extract the next token if they need to. It continues like that and creates the
necessary objects for holding the information on the way until the whole content string has
ended, or if an error has occurred, it stops. Figure 4-2 below shows a sequence diagram on how
the parsing works.

 30

Since the GTK components that are listed in the gtkrc files do not have the same name as their
Swing counterparts; a mapping between them is needed to assign a style to them. This mapping
is done through the class GTKMapper, a class that holds all the mapping logic for this GTK LAF
package. As will be described in Section 4.2.3 it manages the mapping trough the use of a table
for each Swing component. So when the method parseClass() is called it in turn calls the
method setStyle(String gtkCompName, String styleName) of the GTKMapper
class to assign the style to the GTK component and automatically to its corresponding Swing
component.

4.2.3 The image matching algorithm
A very central part of the whole package is how to identify what image to use where. It is
sometimes obvious what the image definitions in the gtkrc files are meant to be, but sometimes it

GTKLookAndFeel
setCurrentThemeDir
(themeDir)

return td

parseContent(content)

new()

setStyle(compName,
 styleName)

parse(themeDir)

Figure 4-2. Description of how the parser works.

:GTKParser

readFile(filename)

…..

:GTKMapper

addImageData(id)

td:ThemeData sd:StyleData id:ImageData

parseStyle()

parseImage()
new()

new()

setXXX()

setYYY()

parseXXX()

parseYYY()

addStyleData(sd)

parseClass()

…..

….. …..

….. …..

 31

is very hard to understand which image to use. As mentioned above, when implementing the
prototype the original GTK algorithm used for matching the images had not been found. This
soon led to great difficulties in trying to unique identifying all the image definitions. When the
source code for the Linux GTK package was found and studied the technique used became clear.
A method called matchThemeImage handles the matching. Its input is an ImageDataDesc
describing the image it requests and the name of the component. The output is a matched
BufferedImage. The ImageDataDesc object is special holder object, that contains all the
properties needed to describe an image.
First of all the component’s assigned StyleData is retrieved or the default style if no style had
been assigned to it. The properties in the argument are the same that exists in the ImageData
objects. They are compared with all the style’s ImageData objects’ properties in a large if –
statement. Below the essential parts of the method are shown.

First of all, get the assigned style for the component through GTKMapper’s getStyle() method. If
no style has been assigned the default style is used.

[…]

//Get what style to use
StyleData style = null;

//Use the default style or get one by mapping on the component key.
if(compKey.equals("default")) {
style = getDefaultStyle();

}
else {
String compName = compKey.substring(0, compKey.indexOf("."));
String styleName = GTKMapper.getStyle(compName);

Style = getStyleData(styleName);

if(style == null) {
style = getDefaultStyle();

}
}

By now a style has been retrieved and a list of all its ImageData objects is fetched. This list will be iterated
through to try to find a match in the if statement.

//Get the ImageData list from the style.
ImageData[] imageList = style.getImageDataList();
ImageData currentData;
int listSize = imageList.length;

int i = 0;

while(i < listSize) {

currentData = imageList[i];

if((currentData != null) &&

(function.equals(currentData.function)) &&

(((currentData.haveState) &&
(state.equals(currentData.state))) ||
(!currentData.haveState)) &&

(((currentData.haveShadow) &&
(shadowType.equals(currentData.shadow))) ||
(!currentData.haveShadow)) &&

(((currentData.haveArrow_direction) &&
(arrowType.equals(currentData.arrow_direction))) ||
(!currentData.haveArrow_direction)) &&

 32

(((currentData.haveOrientation) &&
(orientation.equals(currentData.orientation))) ||
(!currentData.haveOrientation)) &&

(((currentData.haveGap_side) &&
(gapSide.equals(currentData.gap_side))) ||
(!currentData.haveGap_side)) &&

(((currentData.detail != null) &&
(detail.equals(currentData.detail))) ||
(currentData.detail == null))) {

return currentData;
}
i++;

}

If no matching ImageData object has been found in this style, so try the default style. If the current style already is
the default style then return null, an indicator of that there was not any matching image in this theme.

//If an image wasn't found, try the default style.
if(style.name.equals("default")) {

return null;
}
else {

return matchThemeImage(state, shadowType, detail,
arrowType, orientation, gapSide,
function, "default");

}

The if statement is essentially the whole matching algorithm. It provides a mechanism for
requesting a very special image and if does not exist still getting another image, the next best
matching image.

To know what set of properties that should be used to get a certain image one have to look into
the source code of the Linux GTK components. For example in the file gtkbutton.c one can see
in its painting function that it calls a painting function called paint_box() with some of the
properties depending on which state it is in. The method paint_box() is special method for
painting flat rectangles, e.g. button. It adds some extra properties before calling the GTK method
match_theme_image() with all the properties and then gets the correct image object. So by
looking at source code of the components one can see which properties each component and its
states are identified by.

4.2.3 The GTKMapper class
GTKMapper is a class where all the mapping logic has been placed. What I mean with mapping
logic is all predefined data that connects the Swing components with the gtk components and
their images. All matching and mapping cannot be done programmatically; sometimes it is
necessary to by hand define certain relationships. In the GTKMapper class there is two important
mapping functions, one for connecting Swing components with GTK components and styles, and
one for mapping the Swing components different states with an appropriate ImageDataDesc.

Component mapping
This mapping maps between initially Swing components and GTK components, and eventually
between Swing components and their styles. It uses a table with a row for each component and
three columns as shown in Table 4-1.

 33

Table 4-1. The table used for component mapping.
Swing component GTK component Style (Initially empty)
JButton Gtkbutton button
JRadioButton Gtkradiobutton checkradiobutton
JCheckBox Gtkcheckbutton checkradiobutton
JTextField Gtkentry entry
JPanel Gtkwindow <empty>
JComponent Gtkwidget default

The two first columns are defined “by hand” when the table is initiated, but the third column for
the styles is filled as the parser discovers and registers new style assignments in the gtkrc file.
The parser calls the method

public static void setStyle(String gtkCompName,String styleName)

which searches through the table after the GTK component name. When the correct name is
found the style name is inserted in the row’s third column. All the components will not have a
style assigned to them and their third column entry will remain empty, a sign to use the default
style instead. ‘JComponent’ and ‘gtkwidget’ are the “components” which the default style is
mapped onto. When so a Swing component’s UI needs to find what style it should use it calls the
method:

public static String getStyle(String swingCompName)

The method searches through the table after the Swing component, when it is located it retrieves
its third column entry and returns it. If the entry was empty the style ‘default’ is returned instead.

ImageDataDesc mapping
This mapping translates a certain Swing component’s state into a set of GTK image definition
properties, stored in an ImageDataDesc object, which represents that state. Table 4-2 shows a
part of the table that stores the mappings. A unique string representing the component and its
state is stored in the first column and the corresponding ImageDataDesc object in the second
column. This table is defined and constructed when the theme is created and never changed after
that. As mentioned before, the values for the ImageDataDesc is obtained by studying the source
code of the corresponding GTK component.

Table 4-2. An excerpt from the ImageDataDesc mapping table.
Swing component state Corresponding ImageDataDesc object
"Button.normal" new ImageDataDesc("normal", "out",

"button", "up", "horizontal" ,
"bottom", "box"),

"Button.rollover" new ImageDataDesc("prelight", "out",
"button", "up", "horizontal" ,
"bottom", "box")

"Button.pressed" new ImageDataDesc("active", "in",
"button", "up", "horizontal" ,
"bottom", "box")

"Button.disabled" new ImageDataDesc("insensitive", "in",
"button", "up", "horizontal" ,
"bottom", "box")

 34

The table is accessed through the method,
public static ImageDataDesc getImageDataDesc(String key)

where the argument is the component state string that is requested.

Resetting the table entries
When a new Swing GTK theme is to be installed it is important to clear the old theme’s style
mappings table first. In the GTKLookAndFeel class there is a method called
uninitialize(), which is responsible for resetting various data in a theme before it is
replaced. It takes use of GTKMapper’s method clearAllTables(), which clears all tables.
((The uninitialize() method also uses the GTKMapper method getMapKeys(), which
returns all the component-state keys from the ImageDataDesc table , to clear the UIDefaults
table from the entries in it.))

4.2.4 The GTKLookAndFeel convenience methods
The objects and methodsresponsible for the component rendering, mainly in GTKUtils, do not
access the tables and data in the GTKMapper and ThemeData classes directly. There is a layer
on top those made up of methods in the GTKLookAndFeel class. They provide an easy way to
access the theme’s data and also enhance the performance by caching some results.
The resulting ThemeData object from the parsing is stored in the GTKLookAndFeel class, but it
is only accessed through convenience methods in the GTKLookAndFeel class.

The getImageData(String compKey) method
When the rendering method, usually a helper paint method in GTKUtils, needs to get the
appropriate ImageData object to use for the rendering it calls this method. The argument to the
method is a string that identifies the component and its current state, e.g. ‘Button.normalImage’.
The component’s UI delegate has passed this key to the painting method from its own painting
method. The getImageData method is responsible for obtaining the right ImageData object based
on the key, load an unscaled version of its image and store in the object, and cache the object for
future requests.
To get the correct ImageData object the corresponding ImageDataDesc is obtained from the
GTKMapper class using the key. With the ImageDataDesc the current ThemeData object’s
matchThemeImage() method is called and the ImageData object is obtained. See the code
for this below.

ImageData imageData = null;
[…]
ImageDataDesc desc = GTKMapper.getImageDataDesc(key);
[…]
imageData = themeData.matchThemeImage(desc, key);

Every ImageData object contains the filename and a java.awt.image.BufferedImage both for its
“real” image and for its overlay image. The filename is always existent since the parser stores it
there, but the BufferedImage object is not instantiated automatically. (The overlay image
filename exists only if it existed in the image definition) It is the getImageData() method’s
responsibility to create a BufferedImage based on the filename and store it in the object. To do
this it uses a static helper method in GTKUtils, loadImage(String filename), as shown
in the code excerpt below.

 35

if(imageData != null) {

if(imageData.file != null && imageData.image == null) {
imageData.image = GTKUtils.loadImage(imageData.file);

}

//If an overlay image exists, load it too.
if(imageData.overlay_file != null && imageData.overlay_image == null) {

imageData.overlay_image = GTKUtils.loadImage(imageData.overlay_file);
}

}

To improve the performance of the matching, all the ImageData objects, or rather the references
to them, are cached once they have been used. The caching works by storing the already used
ImageData objects in a java.util.ArrayList, the imageDataList, and save their list index (position)
in the UIDefaults table. The index number is stored with the component state’s key that is used
for the identification, e.g. ‘Button.normalImage’. So the first thing that is checked every time
getImageData() is called is whether the argument key has an entry in the UIDefaults table.
If not, do the whole matching and cache it. If it has an entry, use the entry as an index to the
ImageDataList and retrieve the ImageData object directly. The code for it is shown below:

ImageData imageData = null;
Integer index = (Integer) UIManager.get(key);

//Test if already have been tried, and did not exist.
if(index != null && index.intValue() == -1) {

return null;
}

//Not cached? Then get the ImageData and cache it.
if(index == null) {

[… fetching the correct ImageData object …]
if(imageData != null) { //Add the data to the cache

//Does it already exist in the cache??
if(imageDataList.contains(imageData)) {

index = new Integer(imageDataList.indexOf(imageData));
}
else { //It is not in the cache, so load the images and cache it.

[…load the images…]

//Add it to the cache
imageDataList.add(imageData);
//Get the index of the latest addition.
index = new Integer(imageDataList.size() - 1);

}
//Save the index for fast future access.
UIManager.put(key, index);

return imageData;
}
else {

//Store an indicator of that there is no image for the key.
UIManager.put(key, new Integer(-1));
return null;

}
}

 36

else { //Retrieve and return the cached ImageData object.
return (ImageData) imageDataList.get(index.intValue());

}

When uninstalling a theme it is important to empty the cache and to remove all the UIDefaults’s
cache index entries. This is handled by the before mentioned GTKLookAndFeel class’ method
uninitialize(), which is described in Section 4.2.7.

Font and color convenience methods
The GTKLookAndFeel class also provides convenience methods for accessing the colors and
fonts for the components. These methods are though not directly accessed from the rendering
methods, but from within the UIDefaults. A part of the architecture that is inherited from the
BasicLookAndFeel is the automatic installation of colors and fonts. These installation methods
take their values from the UIDefaults table, for example the foreground color of a button is
stored in the table as ‘Button.foreground’ and the its font as ‘Button.font’. This is very
convenient, as all you have to do is to replace the entries in the table with your own color
definitions, and they are automatically installed. This is where the GTKLookAndFeel’s color and
font methods come in use, in the initial definition of the UIDefaults. For example the entry for
the foreground color of a button becomes:

"Button.foreground", getNormalForegroundColor("Button"),

There is a method like getNormalForegroundColor(String compName) for each
color that can be defined in the themes; see Appendix IV. What the methods do is to simply find
the right StyleData object for the component and then query it for the color. The font method
works in a similar way.

4.2.5 The painting methods in the GTKUtils
The GTKUtils class contains static rendering helper methods that make up painting layer, plus
some additional helper methods. The UI delegates use the rendering methods when they need to
be rendered. The methods hide the details of getting, stretching and painting the images from the
UI delegates.
The first important method is the one that loads the images from the file system:

public static BufferedImage loadImage(String filename)

It takes the filename and adds it to the current theme directory, using the static method
GTKParser.getThemeDirectory(), to get the full path to the image file. The image is
loaded by using the method Toolkit.getDefaultToolkit().getImage() and the
loading is supervised by a MediaTracker. MediaTracker is a utility class used to track the status
of media objects. Since the Toolkit’s image loading method returns a java.awt.Image object and
we need a java.awt.image.BufferedImage, for the scaling etc, we create a new BufferedImage
with the same dimensions and draw the image upon it.
There is also a slightly different version of the loading method called getScaledImage().
That method takes the component key, width and height as arguments, and returns the image in
those dimensions if the ImageData’s stretch property allows it.
The most important method in the class is the one that scales and paints the gtk images:

 37

public static void gtkPaint(JComponent c, Graphics g, String key,

boolean paintShadow,
int offX, int offY,
int w, int h)

It obtains the correct ImageData object based on the key, and based on the ImageData object’s
properties stretches, adds overlay images and paints the image. To comply with the gtk scaling,
as explained in Figure 3-2, the image is divided up in to several parts, which are all scaled and
painted individually. If the argument paintShadow equals true, a shadow image will be retrieved
and painted around the real image. The offX and offY arguments set the offset from which the
image will be painted on the graphics context g, using the width w and height h.

Another painting method is available as well, onlyBorderPaint(), which only paints the
border of an image. It is used by some border classes for their rendering.

Some components, e.g. JPanel, do not use stretching for their images, instead they use a tile of
the image. Tiling means that the original image is painted repeatedly over the area, both
vertically and horizontally, until the whole area is covered. To provide support for this a helper
method exists that creates a tiled image from the based on the image in the argument:

public static Image CreateTiledImage(JComponent c, Image oldImage, int newWidth, int newHeight)

4.2.6 Painting methods in the UI delegates
It is in the UI delegates that the rendering of the components is initiated. It is here that the
knowledge about which state the component is in exists and is used to dictate the rendering.
The UI delegate renders itself when its paint(Graphics g, JComponent c)method is
called. In the paint method the usual behavior is to query the component model to find out the
current state and then call the rendering method in GTKUtils with the arguments based on the
state. Below is an excerpt from GTKButtonUI’s paint method.

public void paint(Graphics g, JComponent c) {

AbstractButton b = (AbstractButton) c;

if(b.getModel().isEnabled()) {
if(b.getModel().isRollover() && !b.getModel().isPressed()) {

if(b.hasFocus()){ //If in focus, decrease painting size.
GTKUtils.gtkPaint(b, g,

"Button.rollover", false,
1, 1,
b.getWidth() - 2, b.getHeight() - 2);

}
else {

GTKUtils.gtkPaint(b, g,
"Button.rollover", false,
0, 0,
b.getWidth(), b.getHeight());

}
}
else { //Normal state

if(b.hasFocus()){ //If in focus, decrease painting size.

 38

GTKUtils.gtkPaint(b, g,
"Button.normal", false,
1, 1,
b.getWidth() - 2, b.getHeight() - 2);

}
else {

GTKUtils.gtkPaint(b, g,
"Button.normal", false,
0, 0,
b.getWidth(), b.getHeight());

}
}
else { //Button is disabled

GTKUtils.gtkPaint(b, g,
"Button.disabled", false,
0, 0,
b.getWidth(), b.getHeight());

}
}

Most of the other component UI delegates operate in a similar fashion although some slight
differences exist. Some UI delegates also have to at creation-time create some resources needed
in the future. For example the GTKRadioButtonUI have to create and install the icons
representing its unselected and selected state. Below are parts of its installation code shown (the
installDefaults and loadRadioIcons methods).

protected void installDefaults(AbstractButton b) {

super.installDefaults(b);

loadRadioIcons(b);

[…]
}

protected void loadRadioIcons(AbstractButton b) {
unselectedIcon = new ImageIcon(

GTKUtils.getScaledImage(getPropertyPrefix()+ "unselectedImage",
10, 10);

selectedIcon = new ImageIcon(
GTKUtils.getScaledImage(getPropertyPrefix()+ ”selectedImage",

10, 10);

b.setIcon(unselectedIcon);
b.setSelectedIcon(selectedIcon);
b.setRolloverSelectedIcon(selectedIcon);

}

Some UI delegates, like GTKPanelUI, sometimes uses a tiled image instead of a stretched one.
The tiling operation can be quite time-consuming if the original image is too small, therefore the
ready tiled image is cached. Since the GTKPanelUI is a shared static instance the image is
cached in the component’s client properties (described in section 2.2.3).

 39

4.2.7 Other important classes and methods
It not only from the UI delegates that painting is performed. In the classes GTKBorders and
GTKIconFactory classes and methods for painting borders and icons are placed.

Borders
Normally in Swing you install the border for every component, and it then paints itself. Since the
GTK images already have their borders defined within the images, there is no need for ordinary
borders. Instead the Swing borders are used for focus and shadow painting. As mentioned before,
when a GTK component has focus a special focus border image is painted around the
component. Shadow images are used by some components, e.g. textfields, to give a 3D feeling.
The shadow images, which can be “in” or “out”, are painted around the component like a border.
The FocusBorder is like an ordinary Swing border, except that it checks whether the component
has focus each time it is asked to render. If the component has focus, it fetches the component’s
focus image and paints it. If not, it does not render at all.
The ShadowBorder simply gets the component’s shadow image and renders it every time.
Because most of the components usually have the same focus image, specified in the default
style, this default ImageData object is cached for faster access.

Icons
Some icons in Swing are images that are loaded when they are needed, but some icons are drawn
programmatically. It means that each time that the icon needs to be rendered its paintIcon()
method is called and instead of using an image it draws all the lines, dots and graphic it needs.
Many of these self-rendering are centrally placed in a class called GTKIconFactory
(MetalIconFactory for the Metal LAF). In the GTK PLAF most of the images are inherited from
BasicLookAndFeel, why there is not that many inner icon classes in the GTKIconFactory. The
ones that exist are radio and checkbox icons for menuitems.

Theme-uninstalling methods
When a user of the GTK package switches GTK theme, i.e. wants to start using a new set of
GTK images, certain measures have to be taken to ensure that the previous theme is fully
uninstalled. These steps are collected in the uninitialize() method of the
GTKLookAndFeel class. This method basically does four things:

1. Calls GTKLookAndFeel.resetImageDataList() which clears the GTKLookAndFeels’s
image caching list.

2. Calls GTKBorders.resetBorders() which resets all the static ImageData objects used for
caching in the GTKBorders class.

3. Calls GTKMapper.clearAllTables() which clears all the mapping tables as described
above in section 4.2.3.

4. Removes all the caching index entries for the components in the UIDefaults table by
setting all the entries got from the method GTKMapper.getMapKeys() to null.

5. Nullifies various static references in the package to ensure that they are garbage collected
properly.

 40

4.3 Optimizations and improvements

To fulfill the requirements stated in section 1.1.1, to improve the performance and try to
minimize the memory footprint, certain improvements had to be made. These optimizations and
improvements and their impact will be described in this section and then evaluated in section 5
on tests and evaluation. Some of the optimizations were made after studying the package in work
in the testing and probing program, OptimizeIT. When studying what and how many classes that
are loaded by the package, some hints were given where bottlenecks could be found.

The first optimization step taken was when deciding on what design to use. By abandoning the
initial idea of caching each component’s different images, the memory footprint became
significantly smaller. The speed performance may have deteriorated, but hopefully not too
noticeable.
Another improvement already mentioned was the ImageData caching in the GTKLookAndFeel
class (see section 4.2.4). This caching speeds up the ImageData retrieving by not having to go
through the whole list of StyleData and ImageData objects, and try to find a match.
Some components, e.g. GTKPanelUI, use a tiled image. This tiling operation can be time-
consuming if the original image is too small. Therefore two actions are taken to improve this.
First the tiled image is cached within the component, and is only re-tiled if the component
changes its size. Second, if the original image is too small, less than 10 by 10 pixels, a new tiled
image first, 5 times bigger, is stored instead in the ImageData object. This improves the
performance of the tiling operation significantly.
As mentioned before most of the components use the same focus image, and therefore its
ImageData object is cached. This speeds up the focus painting, which is a quite frequent-
occurring operation.
When storing objects in the UIDefaults Swing gives the option of storing objects as a
ProxyLazyValue as well as storing them just as they are. This object is a sort of wrapper around
the original object. The use of these objects improves the time for loading a LookAndFeel, at the
cost of a slight performance reduction the first time they are used. They do this by not
instantiating the object or loading the class until it is actually needed. This effect will not be
tested since its gain is already proven [Ref 7].

Optimizations made after studying the package with OptimizeIT
Several performance issues were discovered when closely studying the package’s behavior with
the OptimizeIT. OptimizeIT lets you study things as: total memory used, different methods time-
consuming, number of loaded classes and the use of temporary objects. The main discoveries
were:

• When switching from a GTK theme to another, or a Swing theme like Metal, some of the

objects created by the GTK theme were not garbage collected. This led to that the memory
used by the application kept on increasing. The problem originated from that an object can
not be garbage collected if there is still a reference to it. This is a common problem when
using static references, because they can keep a reference alive even though the class is not in
use any more. So by explicitly nullifying all static references when uninitializing a theme this
problem is overcome.

• The parser created many temporary objects when parsing the gtkrc files. In almost every
parsing method new temporary objects were created to save temporary results. By instead

 41

using static objects that could be reused the number of created temporary objects decreased.

• The GTKParser.readFile() method consumed a lot of time. When studying it closer it could
be seen that it was the String operations that was the problem. A String object in Java is an
immutable object, i.e. it can not be changed. Instead it creates a new String object that
incorporates any change to it. The class StringBuffer on the other hand uses the same object
the whole time, which improves the performance but does not provide the same altering
operations as a String object do. By replacing some of the Strings used in the method with
StringBuffers the performance was improved significantly. (See section 5.2)

4.4 Problems encountered

During the implementation some problems were encountered, some solvable and some not.
One of the problems that could not be solved is due to a bug in the BasicComboBoxUI class. The
bug is that when uninstalling the UI delegate, or rather the BasicComboBoxUI that is inherited
by the GTKComboBoxUI class, a focus listener is not unregistered when the JComboBox is in
the editable state. This leads to that it fires events that have no listeners, causing a
NullPointerException to be thrown. I have reported the bug to the responsible person in the
Swing Team and for the next release 1.4, which includes a redesign of the JComboBox, it will be
fixed.
When loading the images from the file system and then trying to get their width through the
getWidth() method they sometimes returned –1. This was due to that they had not yet been
loaded completely. The problem was solved by using a MediaTracker to supervise the loading of
all images, it keeps track of all the images’ loading and does not “release” them until they are
fully loaded.
Some of the GTK components turned out not to have any corresponding Swing component, e.g.
ruler. These were not implemented to keep Swing’s component-set intact (and there was not time
for it either). A GTK component as option-menu did have an exact match, but could be
considered to be a non-editable JComboBox, and was therefore mapped upon it.
Another problem encountered was that not all components supported rollover sensitivity, i.e. you
can tot tell if the mouse pointer is within the component, and more important within certain parts
of a component. For example the thumb of a GTK scrollbar changes its overlay image when it is
in a rollover state. This can be solved by registering mouse listeners and continuously tracking
the mouse movements and compare them to the thumb’s current bounds. This has though not
been implemented yet, because there were higher priorities, but will probably be added in a
future version.
When parsing the font as stated in the gtkrc file, the java.awt.Font.decode() method is used. This
method takes a name, style and size as input argument and tries to match with an existing system
font. When doing this it has to load all the current system fonts, which turned out to be quite
time-consuming the first time it is done. This problem can not be overcome, as it is the only way
to decode the font. The exact times consumed by the font decoding operation can be seen in the
testing section 5.2. The font decoder also consumes extra memory to hold the system fonts in,
which it keeps during the rest of the Java session, adding extra to the memory footprint.

 42

5. Testing and evaluation

5.1 What tests and evaluation used and why
The tests used to evaluate the package are mainly focused on comparing the package “against
itself”. What that means is that because there is no real similar product to compare it with, the
different improvements made to the package is compared to its “unimproved state”. So the tests
described below tries to evaluate the gains of the optimizations discussed in section 4.
To test the package a simple GUI application with a set of common Swing components was
used. The code for the test application, GTKTest.java, can be seen in the source code appendix 2.

5.2 Performance tests and results

5.2.1 Caching all images versus scale-and-paint-on-the-fly
This change of design that was adopted early meant that instead of caching a component’s state
images, the scaling and painting should be on-the-fly. It is easy to see that it would result in
faster initialization and a smaller memory footprint, but probably a more time-consuming
painting. Another advantage with the new design is that if a component is resized it makes no
difference to the time used for rendering, but for using the old design all the component’s images
would have to be reloaded.

Memory footprint comparison
During this test sequence the test application was started, with the default Swing Metal theme.
Then a GTK LAF theme, using the Ganymede theme (showed on the cover), was initiated and
set as current LAF and the application memory (blue line in figure, or the lightest one if printed
using grayscale) and heap size (red line, or the darkest using grayscale) was studied. (Heap size
is the total memory allocated to the Java VM, while the memory size is the actual size used by
the application) After the theme has been fully initialized and is up and running, the memory
usage levels. Some of the memory now is held in temporary objects so to see actual memory
usage of the theme the garbage collector is forced to run. That is the last dip in the chart. So the
last level after the chart represents the applications “resting-level” with the current theme.
Figure 5-1 shows the memory usage for the “new” version, using cached images for all the
components, while Figure 5-2 shows the “new” scale and paint on-the-fly version. A significant
difference in the between the two versions’ memory usage can be seen. The old version peaks at
roughly 7400 kilobytes (kb) and then stabilizes at 6500 k, while the new one peaks and stabilizes
at 4100 kb. After the garbage collector is run the old version drops to 4000 kb and the new
version to 2400 kb. Note also the initial Metal LAF’s memory usage, roughly 1500 kb, but keep
in mind that it does not have to keep any images in memory.

Figure 5-1. Memory usage when installing a theme with the caching design.

 43

Figure 5-2. Memory usage when installing a theme with the non-caching design.

A closer look at the memory consumption is provided in Table 5-1. It shows the values for three
different themes using the different versions and also what classes make up for the biggest
memory increase. As can be seen the new version uses considerably less memory, from 25 %
using the pixmap theme to 70 % for the BeOS theme. The last column shows the classes
responsible for the largest increases. The int[] classes that makes up for the biggest increase is
due to the image storing and handling, which uses the int arrays to store all the pixels and other
info for the images in. The char[] and String classes mainly originates from the parser, the
ThemeData class’s content and the UIDefaults, which all contains many strings.
How much memory that is gained by using the new version depends somewhat on the theme
used. In the case with the BeOS theme, it uses a few images to visualize many of the
components, they share them. Less images has to be loaded and held in memory, and therefore
the big difference versus the old version which still have to load all the images although they are
the same.

Table 5-1. Memory footprint and the most increasing classes for the caching and non-caching versions.
 Caching version Non-caching version
Theme Initial

size (k)
(Metal)

Top
level (k)

Level
after gc
(k)

Top 3
increasing
classes (k)

Top
level (k)

Level
after gc
(k)

Top 3
increasing
classes (k)

Pixmap 1485 6135 4339 int[] +2559
char[] +132
String +99

4581 3264 Int[] +1623
Char[] +76
String +36

BeOS 1485 5509 3873 int[] +2079
char[] +137
String +107

3129 1677 Char[] +80
String +38
Int[] +28

Ganymede 1485 7200 4032 int[] +2116
char[] +150
String +113

3112 2435 Int[] +708
Char[] +95
String +52

Although not tested here, the new version has another advantage in that the more components an
application has, the more memory is saved, relatively. Since they all share the same ImageData
objects it does not matter how many that share them, which is not the case with the old version.

 44

Speed performance
It is obvious that the old version using the cached images will be faster than the new one. But
how much faster and is it visually noticeable? To measure this the painting method of ButtonUI
was timed using Java’s built-in time method, System.currentTimeMillis(), which
return the current time in milliseconds. So by noting the time right before and right after the paint
method, its execution time can be got. When just measuring the time for one painting, with the
possible getting and rendering of the image, the milliseconds measuring was too coarse. The first
time for both the versions was roughly 50 – 60 ms, but after that 0 (zero) ms was reported for
each painting. So too get a better picture of the times involved the paint method was forced to
paint 1000 times, and the time for that was measured. (Using the pixmap theme) The times for
the operations can be seen in Table 5-2. The multiple painting operation was repeated three times
to also compare the results after initial getting and stretching had already been done. This time is
roughly the 3rd time, after that the values leveled off.

Table 5-2. Time consumed to paint by the different versions.
Theme Caching version –

time for painting
button 100 times (ms)

Non-caching version –
time for painting button
100 times (ms)

Pixmap 1st time 220
2nd time 110
3rd time 100

1st time 1150
2nd time 880
3rd time 600

As expected the old version would be faster, due to its caching. It is about 6 six faster than the
current used version. This may seem much, but as a user it is very hard to notice any difference,
because these are already very short time periods, down in milliseconds.

5.2.2 ImageData caching in the GTKLookAndFeel class
Since all the objects that want to access the ImageData objects have to go through the
GTKLookAndFeel class to get the matching ImageData objects from the stored ThemeData, it
seemed reasonable to provide some sort of caching there. To skip the ImageData matching
mechanism when it already once has been matched for that particular component key could save
time. So as described in section 4.3 references to all the processed ImageData objects are stored
in an array and their index is stored under the component key in the UIDefaults. So for example
the image matching for a ‘Button.normalImage’ will only have to be done once, which would
save considerable time. The test was conducted using the same setup as the test above, by getting
the time before and after the GTKLookAndFeel.getImageData() method and comparing
them. Table 5-3 shows the four first (until it settled) time the method is called and the time to
execute them 50000 times. The high number of repetitions was necessary to get a comparable
value. The first value is always higher because not only has it not been cached yet (if using new
version) but also because the images have to be loaded from the file system the first time it is
used.

 45

Table 5-3. Difference in speed with and without ImageData caching.
Theme Without cache –

Time for 50 000
getImageData() calls
(ms)

With cache –
time for 50 000
getImageData() calls
(ms)

Pixmap 1st time 600
2nd time 390
3rd time 380
4th time 380

1st time 1860
2nd time 1380
3rd time 1430
4th time 1380

The caching speeds up the image matching and retrieving method getImageData 3-4 times,
which is desirable since the method is called frequently.

5.2.3 Caching and pre-upsizing of tiled images
Because tiling an image can be very time-consuming, for example using a 4*4 pixels big image
to fill a JPanel’s background a size of 600*400 pixels. To make these tiling operations more
efficient for components that often tend to be tiled and large as JPanel and JPopupMenu, caching
and pre-upsizing has been used. The pre-upsizing means that if the image is too small, e.g. 4*4
pixels, it is replaced by a larger tiled image created from the original image. The caching simply
stores the current tiled background image and uses that instead of re-tiling each time. In Table 5-
3 below the different times for painting a JPanel’s background using the pixmap and Aqua
themes are displayed. The last column represents the version used in the package.

Table 5-3. The performance gains of using pre-upsizing and caching for a JPanel’s tiled image.
Theme Without caching

Without pre-
upsizing (ms)

Without caching
With pre-
upsizing (ms)

With caching
Without pre-
upsizing (ms)

With caching
With pre-
upsizing (ms)

Pixmap 1st 660
2nd 550
3rd 550

1st 660
2nd 550
3rd 550

1st 720
2nd < 1
3rd < 1

1st 660
2nd < 1
3rd < 1

Aqua 1st 8460
2nd 7520
3rd 6810

1st 990
2nd 830
3rd 770

1st 8846
2nd < 1
3rd < 1

1st 990
2nd < 1
3rd < 1

DigiBlue 1st 710
2nd 600
3rd 600

1st 610
2nd 550
3rd 540

1st 770
2nd < 1
3rd < 1

1st 700
2nd < 1
3rd < 1

By looking at the table above it is easy to spot that the Aqua theme uses a very small original
tiling image, only 4*4 pixels, why the pre-upsizing speed the tiling up 9 times. The pixmap
theme has 256*256 pixels tiling image and the DigiBlue 128*128 pixels. These are too big to be
affected by the pre-upsizing, but as all the themes gain enormously the second it is painted. So
although it was decided before not to use image caching in this new design, a few exceptions
have to be made to fix bottlenecks, which this was.

 46

5.2.4 Optimization of the GTKParser.readFile() method
Before I started using OptimizeIT to evaluate and test the package I had been using many String
objects in the GTKParser.readFile() method. The Strings are easy to manipulate and
convenient to use, so they were the natural first choice, but OptimizeIT showed that the
readFile() methods created many temporary String objects and was very time-consuming.
After studying the class closer I realized that it was all the Strings and their initialization that was
so costly. As mentioned before, a String object can not change size or content, instead a new
String object has to be created. This proved to be very undesirable because of all the operations
on the strings in the method. By replacing some of the String object with StringBuffers objects,
which can the changed, a great deal of performance was gained. Table 5-4 shows the time for the
method to run with only String objects and with some StringBuffer objects.

Table 5-4. Testing the use of StringBuffer vs. Strings in the GTKParser.readFile() method.
Theme Only String objects – time

for readFile() method
(ms)

Using StringBuffer objects – time
for readFile() method
(ms)

Pixmap 1200 60
Aqua 770 50
DigiBlue 820 50

The time-consumed by the readFile method decreased dramatically, up towards 20 times! This
improvement has another side to it, it lowers the number of Strings used and therefore the
memory usage. OptimizeIT’s loaded classes chart showed that size of Strings created decreased
from +119 k to +90 k.

5.2.5 Delays for decoding the fonts in the parser
The decoding of what font to use through Font.decode() is a very time-consuming task, because
all the system fonts have to be loaded. This delays the initialization of the GTK LAF, but only
the first time a GTK theme is loaded. After the first time though, the systems fonts remain in
memory leading to that the following decodings are neglectable. If the application is closed and
then restarted later, sometimes the new Java VM still keeps some tracking on the previously
loaded system fonts, resulting in a faster initialization. The speeds of the parseFont()
method, with the different scenarios are as follows:

First time Java VM and the method is run 3570 ms
First time method is run in a session 1540 ms
Second time method is run during the same session < 1 ms

So the first time an application using the GTK package is started there will be a noticeable delay
due to the font decoding. Fortunately once the system fonts has been loaded the font decoding is
very fast, not even noticeable.

5.3 Example of usage
One of the explicit requirements on the package was that it should as easy to use as the other
existing LAFs. This requirement is fulfilled, as it is very simple to incorporate and use this
package into an application. First the package needs to be imported by using Java’s import
statement:

 47

import com.sun.java.swing.plaf.gtk.*;

Then set the path to the theme directory, where the GTK theme archive has been extracted. Be
sure to catch the IOException that is thrown if the directory does not exist.

try {

GTKLookAndFeel.setCurrentThemeDir(String themeDir);
}
catch {IOException e){

System.err.println(“Error while setting themeDir” + e);
}

After that set the GTK LAF to be the current one and it will be created and installed
automatically. To update all the components, use the UIManager’s convenience method.

UIManager.setLookAndFeel(“com.sun.java.swing.plaf.gtk.GTKLookAndFeel”);
UIManager.updateComponentTree(JComponent topLevelContainer);

A full source code example of a simple frame that has a button, a textfield and wants to be able
to enter a theme name (full path) and then set it by clicking the button would look like this:

import javax.swing.*;
import java.awt.event.*:
import com.sun.java.swing.plaf.gtk.*;
public class MyClass extends JFrame {

JButton button = new JButton(“Try Theme”);
JTextField textField = new JTextField(10);

public MyClass () {
//Init the frame
this.setSize(200, 200);
this.setLayout(new FlowLayout());

//Add actionlistener to the button
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
setTheme();

}});

//Add the components
this.getContentPane().add(button);
this.getContentPane().add(textField);
}

private void setTheme() {
String dirPath = textField.getText();
textField.setText(“”);

try {
GTKLookAndFeel.setCurrentThemeDir(dirPath);
UIManager.setLookAndFeel(“com.sun.java.swing.plaf.GTKLookAndFeel”);
UIManager.updateComponentTree(this);

}
catch (Exception e) {

System.err.println(“Error while setting theme:”+e);
}

 48

}

public static void main(String[] args) {
MyClass frame = new MyClass();
frame.setVisible(true);

}
}

So the behavior for using the GTK LAF package is very similar to using the existing LAFs.

5.4 Conclusion from the tests
After testing and studying the package with OptimizeIT many important issues unveiled. It gave
new insight in how the different parts of the package used memory and processor-time, and the
performance could be improved significantly. The tests showed that:

• Not caching all the components’ images, but instead fetching and scaling them on-the-fly,

reduced the memory usage up to 70 %. The speed was lower, but not noticeable to the user.

• By caching ImageData objects in the fetching phase, the time for getting the correct image

was reduced 3-4 times.

• By pre-upsizing and caching certain large images, the time for rendering was in some cases

(the Aqua theme) reduced to a fraction.

• Through the usage of StringBuffer objects instead of String objects in the readFile(), the time

used to read the file and remove unwanted character and lines was reduced up to 20 times.

• The ease-of-use of the package is satisfying, as it requires as few as two method calls to

initiate and use the GTK PLAF package.

• The bottleneck proved as expected to be the scaling and painting. It can though hopefully be

sped up with some smarter algorithm and more caches in future versions. Also the computers
nowadays get faster all the time and come with more powerful graphics card that will ease
the burden for the processor in this kind of rendering.

6. Conclusion and future work

Conclusion
I have created a GTK PLAF package that in an easy way incorporates GTK themes into Swing
applications. By improving and optimizing the package its memory footprint and performance
was improved significantly, not far from the existing Swing LAFs. The design of the package
has four layers, each responsible for certain tasks. From the bottom-up: the parsing layer, the
storing and caching layer, the painting layer and the UI delegate layer.
The most important improvements were: to skip the caching for each component and instead use
a fetch-scale-and-paint on-the-fly technique, to cache the ImageData objects in the image
fetching layer, to cache large background images and to minimize use of costly temporary
objects.

 49

These optimizations were tested against the package itself, i.e. with the optimization and without,
and drawing conclusions from that. The conclusions were that the improvements were
significant.

I have also had the chance to learn Java and Swing at the very place to do it, at Sun
Microsystems in Silicon Valley, which was a very inspiring place. Although during the initial
stages of the project, it was advancing sometimes slowly as the learning curve of Swing’s PLAF
architecture is quite steep in the beginning, but after a while as things started to get clearer it
sped up. The original time plan had to be modified initially, due to the mentioned steep learning
curve, but after that the project ran more smoothly. Some work still remains to be done, a few
more components to be added, but with the design of the whole architecture implemented it is
easily done.
After the summer’s vacation period, the Swing Team and I will decide how this package should
be released and when. It will most probably first be released through the Swing Connection
website, www.java.sun.com/products/jfc/tsc, later this autumn.

Future work
The use of user customizable applications is definitely a part of the future, and so is Java. So
therefore this combination of them a logical step that will probably be appreciated by the user
and developer community. I feel that in the future maybe other standards of themes, or skinz,
could be added to this package. By replacing the some of the layers in the design, a totally new
type of theme could be supported without affecting the UI delegates’ top layer.
Another issue is that there are to many different theme standards today, while users want a theme
to work on all his programs. A unifying theme/skin standard would be the obvious solution, and
there might be one just around the corner, XML User interface Language (XUL, pronounced
‘zool’). Recently Mozilla [Ref 8], an open-source project, announced that the next version of
Netscape, version 6, will partly be customizable through XUL files. I believe that this standard
will be important, and that an incorporation of XUL into this package could be the logical
progression. It would make this package one of the frontrunners on the themeing scene.

 50

References
1. A Swing architecture overview, Amy Fowler, 1997 [www page]
http://java.sun.com/products/jfc/tsc/articles/architecture/index.html
2. Fundamentals of Swing: Part I,
http://developer.java.sun.com/developer/onlineTraining/GUI/Swing1/shortcourse.html
3. What is Linux. [www page] http://www.linux.org/info/index.html
4. What is Linux. [www page] http://www.li.org/li/whatislinux.shtml
5. GTK Tutorial. [www page] http://www.gtk.org/cvs/gnome/ gtk+/ docs/ gtk_tut.sgml
6. GTK Theme documentation, [www page] http://gtk.themes.org/php/docs.phtml
7. Performance improvements in JDK1.3 [www page].
http://java.sun.com/j2se/1.3/docs/guide/swing/PerformanceChanges.html
8. Netscape plays catch-up with latest browser, Paul Festa, CNET News.com, August 9, 2000.
 [www page] http://news.cnet.com/news/0-1005-200-2481675.html?tag=st.ne.1002.srchres.ni

Other sources used:

Java Swing. R. Eckstein, M.Loy and Dave Wood, 1998.
Java in a Nutshell. David Flanagan, 1997.
The 'LookandFeel' Class Reference. A PLAF Lookup Guide for Swing Programmers.
[www page] http://java.sun.com/products/jfc/tsc/articles/lookandfeel_reference/index.html

 51

Appendixes
I. Code

The code showed here using JavaDoc does not show the whole package. This would take up too
much space and it not necessary since many of the UI delegates has a similar structure. Instead
the most important architectural classes and examples of UI delegates will be shown.
Further source code can be got by contacting me at weddie@home.se.

com.sun.java.swing.plaf.gtk
Class GTKParser
java.lang.Object

|
+--com.sun.java.swing.plaf.gtk.GTKParser

public class GTKParser

extends java.lang.Object

Field Summary
private static

int[]
resultBorder

private static
java.lang.String

themeDir

(package private)
java.lang.String

token

Constructor Summary
GTKParser()

Method Summary
private static

java.lang.String[]
getFontWords(java.lang.String line)
Helper methods that extract the words necessary for the decoding of the font.

protected static
java.lang.String

getThemeDirectory()
Returns the currently used theme directory.

private static
boolean

parseArrow_direction(java.util.StringTokenizer st,
ImageData data)
Stores the arrow direction property.

private static
boolean

parseBorder(java.util.StringTokenizer st, ImageData data)
Stores the border property.

private static
boolean

parseClass(java.util.StringTokenizer st, ThemeData
themedata)

 52

Handles the 'class' tag, which maps a style to a GTK component, and the ultimately a
Swing component.

private static
boolean

parseColor(java.lang.String colorKey,
java.util.StringTokenizer st, StyleData styleData)

private static
ThemeData

parseContent(java.lang.String content)
Parses the content passed in as the argument, creates new object all calls initiates the
the appropriate methods.

private static
boolean

parseDetail(java.util.StringTokenizer st, ImageData data)
Stores the detail property.

private static
boolean

parseFile(java.util.StringTokenizer st, ImageData data)
Stores the filename.

private static
boolean

parseFont(java.util.StringTokenizer st, StyleData
styleData)
Parses the font and stores it in the StyleData object. In turn calls the
java.awt.Font.decode() for extracting the correct font.

private static
boolean

parseFunction(java.util.StringTokenizer st, ImageData
data, StyleData styleData)
Stores the function.

private static
boolean

parseGap_border(java.util.StringTokenizer st, ImageData
data)
Stores the gap border property.

private static
boolean

parseGap_end_border(java.util.StringTokenizer st,
ImageData data)

private static
boolean

parseGap_end_file(java.util.StringTokenizer st, ImageData
data)
Stores the gap end file property.

private static
boolean

parseGap_file(java.util.StringTokenizer st, ImageData
data)
Stores the gap file property.

private static
boolean

parseGap_side(java.util.StringTokenizer st, ImageData
data)
Stores the gap side property.

private static
boolean

parseGap_start_border(java.util.StringTokenizer st,
ImageData data)
Stores the gap start border property.

private static
boolean

parseGap_start_file(java.util.StringTokenizer st,
ImageData data)
Stores the gap start file property.

private static
int[]

parseGeneralBorder(java.util.StringTokenizer st)
General helper method that parses and stores borders.

private static
boolean

parseImage(java.util.StringTokenizer st, StyleData
styleData)
Parses the image statements, in turn calls the appropriate methods to handle the tags
within the image statement.

private static
boolean

parseOrientation(java.util.StringTokenizer st, ImageData
data)
Stores the orientation property.

private static
boolean

parseOverlay_border(java.util.StringTokenizer st,
ImageData data)
Stores the overlay border property.

private static
boolean

parseOverlay_file(java.util.StringTokenizer st, ImageData
data)
Stores the overlay file property.

private static parseOverlay stretch(java.util.StringTokenizer st,

 53

boolean ImageData data)
Stores the overlay stretch property.

private static
boolean

parseRecolorable(java.util.StringTokenizer st, ImageData
data)
Stores the recolorable property.

private static
boolean

parseShadow(java.util.StringTokenizer st, ImageData data)
Stores the shadow property.

private static
boolean

parseState(java.util.StringTokenizer st, ImageData data)
Stores the state property.

private static
boolean

parseStretch(java.util.StringTokenizer st, ImageData
data)

private static
boolean

parseStyle(java.util.StringTokenizer st, ThemeData
themeData)
Handles the 'style' tag, creating a new style a populating it

static ThemeData parseThemeFile(java.lang.String themeDir)
parseThemeFile(String themeDir) Reads and parses the the gtkrc file in the theme's
directory, which is the argument. It returns a ThemeData object that contains the
information file the file.

private static
java.lang.String

readFile(java.lang.String file)
Reads the file in the argument, processes it to remove tab character, and returns a
String with the whole content of the file.

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class ImageData
java.lang.Object

|
+--com.sun.java.swing.plaf.gtk.ImageData

class ImageData

extends java.lang.Object
A class that stores all the properties stated in an image definition. Each property has a counterpart in the
gtkrc file.

Field Summary
java.lang.String arrow_direction

int[] border

static int BOTTOM

 54

java.lang.String detail

java.lang.String file

java.lang.String function

int[] gap_border

int[] gap_end_border

java.lang.String gap_end_file

java.lang.String gap_file

java.lang.String gap_side

int[] gap_start_border

java.lang.String gap_start_file

boolean haveArrow_direction

boolean haveGap_side

boolean haveOrientation

boolean haveShadow

boolean haveState

java.awt.image.Buff
eredImage

image

static int LEFT

java.lang.String orientation

int[] overlay_border

java.lang.String overlay_file

java.awt.image.Buff
eredImage

overlay_image

boolean overlay_stretch

boolean recolorable

static int RIGHT

java.lang.String shadow

java.lang.String state

boolean stretch

 55

StyleData styleData

static int TOP

Constructor Summary
(package private) ImageData()

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class StyleData
java.lang.Object

|
+--com.sun.java.swing.plaf.gtk.StyleData

class StyleData

extends java.lang.Object
StyleData A class that represents a GTK style, hold a number ImageData objects.

Field Summary
static int BASE_DISABLED

static int BASE_NORMAL

static int BASE_PRESSED

static int BASE_ROLLOVER

static int BASE_SELECTED

static int BG_DISABLED

static int BG_NORMAL

static int BG_PRESSED

static int BG_ROLLOVER

static int BG_SELECTED

private colorList

 56

javax.swing.plaf.Co
lorUIResource[]

static int FG_DISABLED

static int FG_NORMAL

static int FG_PRESSED

static int FG_ROLLOVER

static int FG_SELECTED

private ImageData focusImage

private
javax.swing.plaf.Fo

ntUIResource

font

java.util.ArrayList imageList

java.lang.String name

static int TEXT_DISABLED

static int TEXT_NORMAL

static int TEXT_PRESSED

static int TEXT_ROLLOVER

static int TEXT_SELECTED

private ThemeData themeData

Constructor Summary
StyleData(ThemeData themeData, java.lang.String name)
The arguments are what ThemeData object the style belongs to and what name it should have. If the name is
'default' some default settings are made.

Method Summary
void addColor(int colorIndex, javax.swing.plaf.ColorUIResource

color)
Adds a color to the style. The argument decides what color is requested. The color
code a defined in the StyleData class.

void addFont(javax.swing.plaf.FontUIResource font)
Adds a default font to the style

void addImageData(ImageData imageData)
Adds an ImageData object to the style

javax.swing.plaf.Co
lorUIResource

getColor(int colorIndex)
Returns a specific color from the style. The argument decides what color is
requested. The color code a defined in the StyleData class.

ImageData getFocusImage()
Returns the style’s focus image.

 57

javax.swing.plaf.Fo
ntUIResource

getFont()
Returns the style's font.

ImageData getImageData(int index)
Returns an ImageData object based on the index in the imageList.

ImageData[] getImageDataList()
Returns the imageList, containing the style's ImageData object.

void setFocusImage(ImageData imageData)
Set what focus image the style uses.

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class ThemeData
java.lang.Object

|
+--com.sun.java.swing.plaf.gtk.ThemeData

class ThemeData

extends java.lang.Object
Represents a GTK Theme. Contains all the StyleData object, and in turn all the ImageData objects belongning to the
theme. Also contains helper methods for accessing the contents.

Field Summary
private StyleData defaultStyle

java.util.ArrayList styleList

Constructor Summary
(package private) ThemeData()

Method Summary
void addStyleData(StyleData styleData)

Adds a StyleData object to the theme
void clearTheme()

Clears all the theme's data, i.e. the style list.
StyleData getDefaultStyle()

Returns the default style
StyleData getStyleData(int index)

 58

Returns a StyleData object based on its position in the styleList. The argument is the
index.

StyleData getStyleData(java.lang.String styleName)
Returns the style object, or the deafult one.

StyleData[] getStyleDataList()
Returns the style list

static StyleData inheretStyle(StyleData subStyle, StyleData origStyle)
Helper method that enables a style to inherit a exsiting style's properties

ImageData matchThemeImage(ImageDataDesc desc, java.lang.String key)
Returns the matching ImageData object based on the ImageDataDesc and the
component key in the arguments.

ImageData matchThemeImage(java.lang.String state, java.lang.String
shadowType, java.lang.String detail, java.lang.String
arrowType, java.lang.String orientation, java.lang.String
gapSide, java.lang.String function, java.lang.String
compKey)
Returns the matching ImageData object based on the properties and the component
key in the arguments.

void setDefaultStyle(StyleData styleData)
Add and sets the default style

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class GTKMapper
java.lang.Object

|
+--com.sun.java.swing.plaf.gtk.GTKMapper

public class GTKMapper

extends java.lang.Object
GTKMapper This class handles the mapping from the gtk components to the Swing components, and also from the
Swing components' states to the corresponding ImageDataDesc.

Author:

Fredrik Lagerblad

Field Summary
private static

java.lang.String[]
compStyleMapTable

private static
java.util.Hashtable

descMapTable

 59

private static
boolean

hasInitCompStyleMapTable

private static
boolean

hasInitDescMapTable

Constructor Summary
GTKMapper()

Method Summary
static void clearAllTables()

Clears all the tables.
static

ImageDataDesc
getImageDataDesc(java.lang.String key)
Returns the corresponding ImageDataDesc for the argument's component state key.

static
java.lang.String[]

getMapKeys()
Returns an array with all components' states key.

static
java.lang.String

getStyle(java.lang.String swingCompName)
Returns the style that is mapped to the Swing component. If no particular style has
been assigned, the default style is returned.

private static void initCompStyleMapTable()
Creates and populates the GTK component to Swing component to GTK Style
mapping table.

private static void initDescMapTable()
Creates and populates the descriptor-component state table

static void resetStyleTable()
Resets the component-to-style table.

static void setStyle(java.lang.String gtkCompName, java.lang.String
styleName)
Sets a style to correspond to a gtk component

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class ImageDataDesc
java.lang.Object

|
+--com.sun.java.swing.plaf.gtk.ImageDataDesc

class ImageDataDesc

extends java.lang.Object
This class is a holder-class for the information used to match and identify a ImageData object.

Field Summary

 60

java.lang.String arrow

java.lang.String detail

java.lang.String function

java.lang.String gap

java.lang.String orientation

java.lang.String shadow

java.lang.String state

Constructor Summary
ImageDataDesc(java.lang.String state, java.lang.String shadow,
java.lang.String detail, java.lang.String arrow, java.lang.String
orientation, java.lang.String gap, java.lang.String function)

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class GTKLookAndFeel
java.lang.Object

|
+--javax.swing.LookAndFeel

|
+--javax.swing.plaf.basic.BasicLookAndFeel

|
+--com.sun.java.swing.plaf.gtk.GTKLookAndFeel

public class GTKLookAndFeel

extends javax.swing.plaf.basic.BasicLookAndFeel
The GTK LookAndFeel contains theme specific data and helper methods for accessing the gtk images and data.

Author:

Fredrik Lagerblad

Inner Class Summary
static class GTKLookAndFeel.ProxyLazyValue

This class provides an implementation of LazyValue that can be used to delay
loading of the Class for the instance to be created.

 61

Field Summary
private static

sun.awt.AppContext
cachedAppContext

private static
ImageDataDesc

desc

private static
ImageData

imageData

private static
java.util.ArrayList

imageDataList

private static
boolean

isOnlyOneContext

private static
javax.swing.plaf.Fo

ntUIResource

smallFont

static ThemeData themeData

protected static
java.lang.String

themeDir

Fields inherited from class javax.swing.LookAndFeel
modifierKeywords

Constructor Summary
GTKLookAndFeel()

Method Summary
javax.swing.UIDefau

lts
getDefaults()

java.lang.String getDescription()

static
javax.swing.plaf.Co

lorUIResource

getDisabledBackgroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getDisabledBaseColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getDisabledForegroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getDisabledTextColor(java.lang.String key)

static
javax.swing.plaf.Fo

ntUIResource

getFont(java.lang.String key)
Helper method to get the font assigned to the component

java.lang.String getID()

static ImageData getImageData(java.lang.String key)
Returns an ImageData object based on the argument key. Uses the current theme and
the GTKMapper class to retrieve the correct object. Also load its images and cache it.

 62

static ImageData getImageData2(java.lang.String key)
This method below is used as a reference when testing perfromance

java.lang.String getName()

static
javax.swing.plaf.Co

lorUIResource

getNormalBackgroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getNormalBaseColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getNormalForegroundColor(java.lang.String key)
Color helper methods.

static
javax.swing.plaf.Co

lorUIResource

getNormalTextColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getPressedBackgroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getPressedBaseColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getPressedForegroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getPressedTextColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getRolloverBackgroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getRolloverBaseColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getRolloverForegroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getRolloverTextColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getSelectedBackgroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getSelectedBaseColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getSelectedForegroundColor(java.lang.String key)

static
javax.swing.plaf.Co

lorUIResource

getSelectedTextColor(java.lang.String key)

static
javax.swing.plaf.Fo

ntUIResource

getSubTextFont()

protected void initClassDefaults(javax.swing.UIDefaults table)

 63

Initialize the uiClassID to BasicComponentUI mapping.
protected void initComponentDefaults(javax.swing.UIDefaults table)

Load the SystemColors into the defaults table.
void initialize()

Initializes the GTK theme. Creates static resources.
boolean isNativeLookAndFeel()

boolean isSupportedLookAndFeel()

protected static

void
resetImageDataList()
Resets the ImageData list used for caching.

static void setCurrentThemeDir(java.lang.String themeDir)
Sets the current theme directory. Checks if it exists and throws and exception if not.

void uninitialize()
Unitializes the current theme. Clears and nullifies static variables.

Methods inherited from class javax.swing.plaf.basic.BasicLookAndFeel
initSystemColorDefaults, loadResourceBundle, loadSystemColors

Methods inherited from class javax.swing.LookAndFeel
, installBorder, installColors, installColorsAndFont, makeIcon,
makeKeyBindings, parseKeyStroke, toString, uninstallBorder

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class GTKUtils
java.lang.Object

|
+--com.sun.java.swing.plaf.gtk.GTKUtils

class GTKUtils

extends java.lang.Object
This class contains helper methods used by many classes. Contains the GTK painting layer, i.e. the methods that
know how to fecth, stretch and paint the GTK Images.

Author:

Fredrik Lagerblad

Field Summary
(package private)

static int
bottom

 64

protected static
javax.swing.JLabel

comp

(package private)
static int

holdA

(package private)
static int

holdB

private static
ImageData

imageData

(package private)
static int

imageHeight

(package private)
static int

imageWidth

(package private)
static int

left

(package private)
static boolean

onHold

(package private)
static int

right

protected static
java.awt.Toolkit

toolkit

(package private)
static int

top

(package private)
static

java.awt.MediaTrack
er

tracker

Constructor Summary
(package private) GTKUtils()

Method Summary
private static void _gtkPaint(javax.swing.JComponent c, java.awt.Graphics g,

java.awt.Image image, int[] border, int offX, int offY,
int w, int h, boolean paintMiddle)
Scales on the fly and paints the images. It uses the border values to paint them
correctly.

static
java.awt.Image

createTiledImage(javax.swing.JComponent c, java.awt.Image
oldImage, int newWidth, int newHeight)
Stretches, using tiling, the image oldImage to completely cover new size of
newWidth and newHeight Mostly used by GTKPanelUI for backgrounds. .
!NOTE!When the original image is small performance is bad.

static
java.awt.image.Buff

eredImage

getScaledImage(java.lang.String key, int w, int h)
Load and stretched the image to the argument dimensions if allowed by the
ImageData's stretch property.

static void gtkPaint(javax.swing.JComponent c, java.awt.Graphics g,
ImageData id, java.lang.String key, boolean paintShadow,
int offX, int offY, int w, int h)
Helper method that paints the component using the GTK Images. Check what needs
to be drawn, shadow, overlay etc and calls _gtkPaint.

static void gtkPaint(javax.swing.JComponent c, java.awt.Graphics g,
java.lang.String key, boolean paintShadow, int offX, int
offY, int w, int h)
Helper method that paints the component using the GTK Images. Gets the correct

 65

ImageData object and calls gtkPaint().
(package private)

static boolean
isLeftToRight(java.awt.Component c)

static
java.awt.image.Buff

eredImage

loadImage(java.lang.String filename)
LoadImage(Jcomponent, filename) Loads an image from the filename under control
of a MediaTracker

(package private)
static void

onlyBorderPaint(javax.swing.JComponent c,
java.awt.Graphics g, java.awt.Image image, int[] border,
int offX, int offY, int w, int h)
Scales on the fly and paints the images. This method only paints the border, not the
middle. Used by borders etc. Takes an image as argument as supposed to the next
method.

(package private)
static void

onlyBorderPaint(javax.swing.JComponent c,
java.awt.Graphics g, java.lang.String key, int offX, int
offY, int w, int h)
Scales on the fly and paints the images. It uses the border values to paint them
correctly. . It uses the border values to paint them correctly. This method only paints
the border, not the middle. Used by borders etc. Takes a component key string as
argument, and loads an image from it.

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class GTKIconFactory.CheckBoxMenuItemIcon
java.lang.Object

|
+--javax.swing.ImageIcon

|
+--com.sun.java.swing.plaf.gtk.GTKIconFactory.CheckBoxMenuItemIcon

private static class GTKIconFactory.CheckBoxMenuItemIcon

extends javax.swing.ImageIcon

implements javax.swing.plaf.UIResource

An Icon that sense the components state, selected or not, and paints itself according to that.

Field Summary
private boolean isSelected

private

java.awt.image.Buff
eredImage

selCheckImage

private int selectedHeight

 66

private int selectedWidth

private
java.awt.image.Buff

eredImage

unselCheckImage

private int unselectedHeight

private int unselectedWidth

Fields inherited from class javax.swing.ImageIcon
component, description, height, image, imageObserver, loadStatus, tracker,
width

Constructor Summary
GTKIconFactory.CheckBoxMenuItemIcon(javax.swing.JMenuItem menuItem)

Method Summary
int getIconHeight()

int getIconWidth()

void paintIcon(java.awt.Component c, java.awt.Graphics g, int

x, int y)

Methods inherited from class javax.swing.ImageIcon
, getDescription, getImage, getImageLoadStatus, getImageObserver, loadImage,
readObject, setDescription, setImage, setImageObserver, writeObject

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class GTKBorders.NewFocusBorder
java.lang.Object

|
+--javax.swing.border.AbstractBorder

|
+--com.sun.java.swing.plaf.gtk.GTKBorders.NewFocusBorder

Direct Known Subclasses:

GTKBorders.NewPlainBorder

 67

public static class GTKBorders.NewFocusBorder

extends javax.swing.border.AbstractBorder

implements javax.swing.plaf.UIResource
A focus border that only paints itself when the component has focus

Field Summary
private boolean alwaysPaint

private static

java.awt.Insets
borderInsets

private ImageData imageData

private
java.awt.Insets

insets

Constructor Summary
GTKBorders.NewFocusBorder(ImageData imageData)

Method Summary
java.awt.Insets getBorderInsets(java.awt.Component c)

void paintBorder(java.awt.Component c, java.awt.Graphics g,

int x, int y, int w, int h)

void setAlwaysPaint(boolean alwaysPaint)

Methods inherited from class javax.swing.border.AbstractBorder
getBorderInsets, getInteriorRectangle, getInteriorRectangle, isBorderOpaque

Methods inherited from class java.lang.Object
, clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

com.sun.java.swing.plaf.gtk
Class GTKButtonUI

 68

java.lang.Object
|
+--javax.swing.plaf.ComponentUI

|
+--javax.swing.plaf.ButtonUI

|
+--javax.swing.plaf.basic.BasicButtonUI

|
+--com.sun.java.swing.plaf.gtk.GTKButtonUI

Direct Known Subclasses:

GTKToggleButtonUI

public class GTKButtonUI

extends javax.swing.plaf.basic.BasicButtonUI
GTKButtonUI implementation

Author:

Fredrik Lagerblad

Field Summary
private boolean defaults_initialized

protected

java.awt.Color
disabledTextColor

protected boolean hasInitToolBarButton

protected boolean installBorder

protected boolean isToolBarButton

protected
java.awt.Color

pressedTextColor

protected
java.lang.String

propertyPrefix

protected
java.awt.Color

rolloverTextColor

protected
java.awt.Color

selectColor

protected boolean useFocusImages

Fields inherited from class javax.swing.plaf.basic.BasicButtonUI
buttonUI, defaults_initialized, defaultTextIconGap, defaultTextShiftOffset,
iconRect, propertyPrefix, shiftOffset, textRect, viewRect

Constructor Summary
GTKButtonUI()

 69

Method Summary
protected

javax.swing.plaf.ba
sic.BasicButtonList

ener

createButtonListener(javax.swing.AbstractButton b)
Creates a FocusListener which forces a repaint.

static
javax.swing.plaf.Co

mponentUI

createUI(javax.swing.JComponent c)

protected
java.awt.Color

getDisabledTextColor()

protected
java.awt.Color

getPressedTextColor()

protected
java.lang.String

getPropertyPrefix()

protected
java.awt.Color

getRolloverTextColor()

protected
java.awt.Color

getSelectColor()

private void initToolBarButton(javax.swing.AbstractButton b)
Initializes certain toolbar-button specific properties, if the button is a ToolBar button.

protected void installDefaults(javax.swing.AbstractButton b)
Install defaults as borders, textcolor, insets etc

void paint(java.awt.Graphics g, javax.swing.JComponent c)
Paints the button, queries the model for its state and delegates the painting to
GTKUtils.gtkPaint().

protected void paintButtonPressed(java.awt.Graphics g,
javax.swing.AbstractButton b)
Paints the button when its pressed.

protected void paintText(java.awt.Graphics g, javax.swing.JComponent c,
java.awt.Rectangle textRect, java.lang.String text)
PAints the button's text

protected void uninstallDefaults(javax.swing.AbstractButton b)

private void uninstallImages(javax.swing.AbstractButton b)

Methods inherited from class javax.swing.plaf.basic.BasicButtonUI
, clearTextShiftOffset, getDefaultTextIconGap, getMaximumSize,
getMinimumSize, getPreferredSize, getTextShiftOffset, installKeyboardActions,
installListeners, installUI, paintFocus, paintIcon, setTextShiftOffset,
uninstallKeyboardActions, uninstallListeners, uninstallUI

Methods inherited from class javax.swing.plaf.ComponentUI
contains, getAccessibleChild, getAccessibleChildrenCount, update

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll,
registerNatives, toString, wait, wait, wait

 70

II. Code for the test program

The tests that were used a standard GUI application with a common set of components. Some things that were tested
used the tryMethod – method, where a certain method could be timed. Other finer-grained tests had to be done
within the package.

Here is the code for the application used:

import java.io.*;
import java.awt.*;
import javax.swing.*;
import com.sun.java.swing.plaf.gtk.*;
import java.awt.event.*;

public class GTKTest extends JFrame {

//Declare components
JMenuBar menuBar;
JMenu menu1;
JMenu menu2;
JMenu submenu;
JMenuItem item1;
JMenuItem item2;
JMenuItem item3;
JMenuItem item4;
JMenuItem item5;
JMenuItem item6;

JRadioButtonMenuItem rbitem1;
JRadioButtonMenuItem rbitem2;
ButtonGroup buttonGroup;
JCheckBoxMenuItem cbitem;

JButton button1;
JTextField textField;
JComboBox comboBox;
JComboBox systemComboBox;
JToolBar toolBar;
JList list;

JRadioButton rb1;
JRadioButton rb2;
ButtonGroup buttonGroup2;
JCheckBox cb1;
JProgressBar progressBar;
JTextArea textArea;

public GTKTest() {

this.setTitle("GTK Test");
this.setSize(600, 400);
this.getContentPane().setLayout(new FlowLayout());
this.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);

}
});

//Create components
item1 = new JMenuItem("Open...");
item2 = new JMenuItem("Close");
item4 = new JMenuItem("Slussen");
item5 = new JMenuItem("Maria Torget");

submenu = new JMenu("SubMenu");
submenu.add(item4);
submenu.add(item5);

item3 = new JMenuItem("Exit");

menu1 = new JMenu("File");
menu1.add(item1);

 71

menu1.add(item2);
menu1.add(submenu);
menu1.add(item3);

item6 = new JMenuItem("Debug");

rbitem1 = new JRadioButtonMenuItem("Kiss FM");
rbitem2 = new JRadioButtonMenuItem("KJCM");

buttonGroup = new ButtonGroup();
buttonGroup.add(rbitem1);
buttonGroup.add(rbitem2);

cbitem = new JCheckBoxMenuItem("Check!");
menu2 = new JMenu("Extra");
menu2.add(item6);
menu2.add(rbitem1);
menu2.add(rbitem2);
menu2.add(cbitem);

menuBar = new JMenuBar();
menuBar.add(menu1);
menuBar.add(menu2);
this.setJMenuBar(menuBar);

button1 = new JButton("Try it!");
button1.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
tryMethod();

}
});

textField = new JTextField(10);
textField.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
JTextField source = (JTextField) e.getSource();
getAndSetLook(source.getText());
source.setText("");

}
});

//init comboBox
String[] themes = getThemes();
comboBox = new JComboBox(themes);
comboBox.setEditable(false);

comboBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
getAndSetLook((String) ((JComboBox) e.getSource()).getSelectedItem());

}});

//init system comboBox
String[] systemThemes = {"metal", "motif", "windows"};
systemComboBox = new JComboBox(systemThemes);
systemComboBox.setEditable(false);

systemComboBox.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
setSystemLook((String) ((JComboBox) e.getSource()).getSelectedItem());

}});

toolBar = new JToolBar();
toolBar = new JToolBar();

toolBar.add(new JButton("left",new ImageIcon("left.gif")));
toolBar.add(new JToolBar.Separator());
toolBar.add(new JButton("middle",new ImageIcon("middle.gif")));
toolBar.add(new JButton("right",new ImageIcon("right.gif")));

String[] listString = new String[] {"One", "Two", "Three", "Thirtytwo"};
list = new JList(listString);

rb1 = new JRadioButton("Choose...");
rb2 = new JRadioButton("...one!");

 72

buttonGroup2 = new ButtonGroup();
buttonGroup2.add(rb1);
buttonGroup2.add(rb2);
JPanel panel = new JPanel();
panel.setLayout(new GridLayout(0, 1));
panel.add(rb1);
panel.add(rb2);

cb1 = new JCheckBox("Check Mate!");

progressBar = new JProgressBar();
progressBar.setStringPainted(true);
progressBar.setValue(30);

textArea = new JTextArea(10,10);

this.getContentPane().add(button1);
this.getContentPane().add(textField);
this.getContentPane().add(comboBox);
this.getContentPane().add(systemComboBox);
this.getContentPane().add(toolBar);
this.getContentPane().add(list);
this.getContentPane().add(panel);
this.getContentPane().add(cb1);
this.getContentPane().add(progressBar);
this.getContentPane().add(new JScrollPane(textArea));

}

public void getAndSetLook(String name) {

String lnfName = "com.sun.java.swing.plaf.gtk.GTKLookAndFeel";
try{

com.sun.java.swing.plaf.gtk.GTKLookAndFeel.setCurrentThemeDir("themes/"+name);
UIManager.setLookAndFeel(lnfName);
SwingUtilities.updateComponentTreeUI(this);

}
catch (Exception e) {

System.out.println("Error creating theme: "+ e);
}

}

public void setSystemLook(String name) {
String lnfName = "";

if(name.equals("metal"))
lnfName = "javax.swing.plaf.metal.MetalLookAndFeel";

else if(name.equals("motif"))
lnfName = "com.sun.java.swing.plaf.motif.MotifLookAndFeel";

else if(name.equals("windows"))
lnfName = "com.sun.java.swing.plaf.windows.WindowsLookAndFeel";

try{
UIManager.setLookAndFeel(lnfName);
SwingUtilities.updateComponentTreeUI(this);

}
catch (Exception e) {
e.printStackTrace();

}
}

protected String[] getThemes() {
String dirName = "themes";
File dir = new File(dirName);
String[] all = dir.list();

int count = 0;
for(int i= 0; i < all.length; i++) {
if((new File(dirName + "/"+all[i])).isDirectory())

count++;
}
String[] dirNames = new String[count];

int j =0;
for(int i =0; i < all.length; i++) {
if((new File(dirName + "/"+ all[i])).isDirectory()) {

 73

dirNames[j] = all[i];
j++;

}
}
return dirNames;

}

public void tryMethod() {
long time1 = System.currentTimeMillis();
for(int i=0; i <50000; i++) {
//Use method needed to be tested stated here.
GTKLookAndFeel.getImageData("Button.normalImage");
}

System.out.println("Time:" + (System.currentTimeMillis() - time1));

}

public static void main(String[] args) {
GTKTest gtkTest = new GTKTest();
gtkTest.setVisible(true);
gtkTest.invokedStandalone = true;

}
private boolean invokedStandalone = false;

}

 74

III. Glossary

LAF Look And Feel – a front-end user interface for an application that decides the look

and the behavior.

PLAF Pluggable Look And Feel – a LAF that can be “plugged” in and replace another

LAF.

GUI Graphical User Interface – a graphical interface which represents the applications

state to the user.

AWT Abstract Window Toolkit – Java’s older GUI toolkit, using peer-to-peer

technology.

JFC Java Foundation Classes – a set of core Java APIs consisting of AWT, Swing,

Accessibility, Java 2D and Drag’n Drop.

MVC Model-View-Controller – a technique to build GUI components, which divides the
 components in three parts, model, view and controller.

GDK GNU Drawing Kit – a Linux low-level screen drawing kit.

GTK Gimp Toolkit – a set of Linux GUI components.

GIMP GNU Image Manipulation Program – a powerful image manipulation program for

Linux

PNG Portable Network Graphic – an image format developed as a free alternative to

GIF.

 75

IV. GTK Color Representation

The colors are coded by using a prefix and combining them with a state.

The prefixes

fg Used for the text color.
bg Used for backgrounds when no image exists.
base Used for backgrounds of some components with texts, e.g. textfields

and lists.
text Used for the text color of text components, e.g. textfields.

The states

NORMAL Used when the component is in a normal state.
PRELIGHT Used when the component is in a rollover state.
ACTIVE Used when the component is in an active state, e.g. a button is

pressed.
SELECTED Used when the component is in a selected state.
INSENSITIVE Used when the component is in a disabled state.

Examples

Color code Example of usage

fg[ROLLOVER] The text color of a button when the mouse is in rollover state.
bg[NORMAL] Used for the background of a panel, if no image exists for it.
base[SELECTED] The background color of a textarea when it is selected.
text[DISABLED] The text color of a textfield when it is disabled.

