[image: image1.png]KunaL
TEKNISKA

Royal Institute of Technology

Department of Teleinformatics
[image: image2.png]

[image: image3.png]

University of Crete

Department of Computer Science
[image: image4.png]

ESCAPE:

Expert system development through code generation

By Georgios Kalfopoulos

Stockholm, Sweden

August 2000

Table of contents

ivTable of contents

Table of figures
vi
Acknowledgements
vii
Abstract
ix
1. Introduction
10
1.1. Expert systems basics
11
1.1.1. Definition of an expert system
11
1.1.2. Characteristics of an expert system
12
1.1.3. Fundamental notions in expert systems development
13
1.2. Typical components of an expert system
13
1.2.1. The knowledge base
14
1.2.2. The working memory
15
1.2.3. The inference engine
15
1.2.4. The explanation facility
16
1.2.5. The user interface
17
1.3. Developing an expert system
17
1.3.1. The development process
17
1.3.2. Programming languages
19
1.3.3. Expert system shells
19
1.3.4. Blackboard expert systems
20
1.3.5. Conclusion
21
1.4. ESCAPE
22
1.4.1. Overview of ESCAPE
22
1.4.2. A solution to all problems?
22
1.4.3. Beyond the basics
23
1.4.4. The prototype
23
2. Method
25
2.1. Overall architecture
25
2.1.1. The user interface
25
2.1.2. The database
26
2.1.3. The builder
27
2.2. A possible implementation
28
2.2.1. Restrictions and limitations
28
2.2.2. The user interface
28
2.2.3. The database
33
2.2.4. The builder
34
2.2.5. Prolog code issues
34
3. Testing procedures
34
3.1. Goal and expectations
34
3.2. Test specifications
34
3.2.1. Overview of tests
34
3.2.2. Backward chaining tests
34
3.2.3. Forward chaining tests
34
3.2.4. Flexibility tests
34
4. Results
34
4.1. Overall impression
34
4.2. Specific issues
34
5. Discussion
34
6. Future work
34
7. Annotated bibliography
34

Table of figures

Figure 1. Typical expert system components 5

Figure 2. Forward chaining 7

Figure 3. Backward chaining 7

Figure 4. The development process 9

29Figure 5. The user selects her choice through radio buttons. She can either accept the choice or cancel.

Figure 6. A previous selection is incompatible with the forward chaining inference engine. The form code detects the incompatibility and forward chaining is disabled.
29
Figure 7. The user types in the attributes and selects the appropriate modifiers.
30
Figure 8. The user selects from a drop-down box the attribute and its value and constructs a rule.
30
Figure 9. The summary form. There is no type of explanations selected.
31
Figure 10. The main form. The "Construct Explanation Facility" button is disabled because the user has not selected a type of explanations.
32
Figure 11. The inference engine selection form in normal mode.
32
Figure 12. The building process 27

Figure 13. The shell code builder 29

Acknowledgements

This project was conducted and finished at the Royal Institute of Technology in Sweden (KTH), Department of Teleinformatics, as part of my exchange program studies, ERASMUS. Hence, I would like to take the chance and thank everyone who helped during the course of work.

First and foremost, I would like to thank my academic supervisor Thomas Sjöland and my examiner Professor Seif Haridi for supporting the existence of the project even though it was not funded and was based on nothing more than a good idea. In fact, both Thomas Sjöland and Professor Seif Haridi had helped a lot in transforming my idea into a concrete project. Their suggestions were of great value to me and helped me look at the big picture whenever I was lost deep into details. This help was a good motivator to keep me going with the project especially during the hard phases.

I would also like to thank my contact person in Sweden, Ingeborg Löfgren, for fixing all administrative details for this project.

A lot of appreciation and thanks I send to my contact person in the University of Crete in Greece, to Dr. Evangelos Markatos for all the help.

In the end, I would like to thank all my friends and family for their support, help and understanding.

I hope I can return the support to all someday.

Abstract

Expert systems are a special type of software that attempts to simulate a human expert’s problem-solving abilities. Expert systems differ from conventional software programs and are usually constructed using different techniques.

This report introduces expert systems, their components and presents the traditional ways of expert system development. It then introduces a new way of constructing expert systems, ESCAPE.

ESCAPE is a code generator. Its user selects expert system components and constructs the knowledge base and ESCAPE generates the appropriate code.

A prototype was developed in Visual Basic, which uses Prolog for the output code. The test results were encouraging enough to justify further research on the field.

1. Introduction

Ever since the beginning of history, mankind has been constantly seeking to alleviate the burden caused by some specific problems. This lead in the creation of tools, which then evolved into better and more complex tools, which then turned into fully automatic machines and computers.

Ever since the beginning of computing history, people have been trying to solve some of their problems through the use of computers. This lead to the creation of algorithms, which then evolved into programs.

Unfortunately, the problems handled by these programs do not include the harder ones, those that do not have an algorithmic solution. These are the problems that are commonly solved by a specialist, who uses his experience and his knowledge on the problems’ domain. A solution to such a problem involves some non-trivial and non-fixed application of rules-of-thumb or heuristics.

In order to handle this type of problems among others, the field of artificial intelligence and the sub-field of expert systems were created. Expert systems are an attempt to simulate the problem-solving process and to codify the knowledge possessed by the experts.

Expert systems are a relatively young science dating only back to 1965 when the development of DENDRAL began. For the next twenty or so years a lot of experimental expert systems were developed mostly for research purposes. The goal in the beginning was to find and develop intelligent programming techniques.

Around 1985 the technology became mature enough to be accepted by the industry. The number of deployed expert systems reached sky-high numbers within less than a decade, from around 50 during 1985 to a massive 12.500 during 1992 [Durk94]. One of the reasons for this high number was the appearance of expert system shells, which made development easy by abstracting over an existing expert system and in essence replacing only its knowledge base.

During the last decade, expert system research focused on blackboard systems that could handle larger problems and on different and more advanced techniques of reasoning. Nowadays, expert systems are considered perhaps the best example of modern applied artificial intelligence.

ESCAPE, the subject of this report, is a software tool that aims to become an expert system production environment. Its purpose is to make expert system development as easy as, but much more flexible than, using a shell. Also, ESCAPE tries to accommodate for other aspects of development, which are not directly associated with the final expert system product.

This section continues with a small introduction on expert systems and their components, a discussion on why developing them is a difficult process and what solutions have been proposed, and finishes with a description of the ESCAPE tool.

1.1. Expert systems basics

Here follows a small introduction on expert systems. First, a definition is attempted and then the characteristics of an expert system are discussed. Finally, some of the fundamental notions involved in expert system development are explained. Understanding what is expected from this technology helps in realizing that expert system development differs from standard software development. The contents of this section are largely based on information from [Jack98].

1.1.1. Definition of an expert system

In real life someone is considered an expert if she possesses knowledge on a specific domain and can use this knowledge to solve problems that most other people (i.e. non-experts) cannot handle. An expert system is a computer program designed to model the problem-solving ability of a human expert [Durk94].

This implies that an expert system must also possess knowledge. A plain algorithm, no matter how sophisticated, is not sufficient. Following the same steps every time does not always solve problems. If it did, there would not be a need for an expert in the first place.

The knowledge should also be focused on a specific domain, i.e. the problems’ domain. Knowledge is not a simple collection of numbers and names. Knowledge should be organized the same way it is stored in an expert’s mind. Relative pieces of knowledge should bring each other to focus.

Finally, this knowledge should be able to solve problems. Knowing everything there is to know around diseases, infections and medicines does not make anyone a doctor. An expert system should therefore apply its knowledge in a proper way to solve the problem at hand.

All of the above ideas, when put together, bring us to the following, more functional, definition of an expert system, taken from [Jack98].
An expert system is a computer program that represents and reasons with knowledge of some specialist subject with a view to solving problems or giving advice.

The above definition indicates that an expert system is an eccentric piece of software. It is true that expert systems have some specific characteristics of their own. These characteristics will be presented next.

1.1.2. Characteristics of an expert system

All expert systems share some common traits. These special traits group expert systems together into their own category of software and distinguish expert system programming from conventional programming.

An expert system simulates human reasoning about a problem domain. The effort is on emulating the expert’s problem-solving abilities. This means that when the expert system is faced with a problem, it should try and solve it the same way the expert would. Furthermore, since the expert system relies on the power of modern processors it is generally expected to perform faster than, or at least as fast as, the expert on the same task, in order to be considered successful. The use of human reasoning is also related with the next characteristic.

Expert systems reason over representations of human knowledge. This knowledge is usually expressed in a special language and is kept separate from the part of the system that performs the reasoning. These distinct components are called knowledge base and inference engine (see the typical components section (1.2.) in this report). This distinction also makes expert systems reusable, by replacing the knowledge base and keeping the rest of the system intact. This is the principle used by many earlier expert system shells.

Expert systems use heuristic or approximate methods to solve the problem at hand. These methods, unlike the algorithmic solutions one can find on conventional programs, are not guaranteed to succeed. On the other hand, expert systems only simulate experts who also use heuristic methods. A heuristic is in essence a rule of thumb about how to solve problems in a particular domain. It is approximate since it does not require perfect data and can therefore produce an output with varying degrees of certainty. For example, depending on how certain one is that the input she provides is correct, the result can be 100% certain (if the input is 100% certain) or less (if the input is less than 100% certain). The final result’s certainty is calculated through mathematical formulae that combine the certainties of the input data.

Because of this problem-solving approach, if someone is to accept the conclusions or recommendations of an expert system, the expert system must be able to explain and justify how it reached its results to her. The user of the system must be convinced that the system’s reasoning is correct before following its advice.

In summary, an expert system encodes domain-specific knowledge in some field and uses this knowledge to solve problems. Conventional programs on the other hand use relatively domain-independent methods, originating from the field of computer science or mathematics. The point is that the power of expert systems lies in the knowledge they contain.

The above discussion indicates that emphasis on specific points during expert system development is required. The key notions behind expert system development will be discussed next.

1.1.3. Fundamental notions in expert systems development

In the previous sections it was noted that expert systems reason with human knowledge and provide explanations about their results. It is interesting enough that this sentence contains all the important topics that should be considered during development.

An expert system is as good as the knowledge it contains. This means that the knowledge engineer, i.e. the expert system developer, must strive to encode in the system as much knowledge as possible. The transfer and transformation of potential problem-solving expertise from some knowledge source to a program is known as knowledge acquisition. This process must be completed by the knowledge engineer and is inherently a difficult one.

The knowledge acquired must then be represented through the use of a specific representation language. Knowledge representation is also a hard task because the initial knowledge was acquired in bits and pieces. The relations between these pieces must be uncovered, specified and organized and then a suitable representation scheme must be used for encoding.

Furthermore, in order to reason efficiently with the encoded knowledge, some controlling scheme is required. Reasoning control can be as simple as an exhaustive search through the knowledge. Of course on the other hand, it can be as complicated as using an explicit set of rules to guide the reasoning, known as meta-rules. Other techniques are also used, like dividing the knowledge into different parts and allowing only one part to be active at any single moment, or assigning priorities as to which piece of knowledge should be used first.

Finally, explaining the solutions is important not only in order to convince the final user, but also during development. Explanations form a way to look into the system. They show which parts of the knowledge are applied and how. By monitoring explanations the knowledge engineer can pinpoint weaknesses of the system and attempt to acquire more knowledge regarding the problematic areas.

Not surprisingly, all of these notions correspond to specific and distinct components of an expert system. These components, which form the core of an expert system, will be presented next.

1.2. Typical components of an expert system

An expert system typically consists of five separate components. These are the knowledge base, the inference engine, the working memory, the explanation facility and the user interface. Each of these components, shown in the next figure, will be discussed next.

1.2.1. The knowledge base

The knowledge base is the most frequently changed and updated component of an expert system. It stores all the knowledge needed to handle problems on a specific domain. Since this knowledge increases with time, the knowledge base requires frequent updates and is the main target of the maintenance process.

The knowledge base contains different types of knowledge and is therefore divided into parts. Knowledge is usually divided into structural, procedural and control (if necessary) knowledge. These types are explained next.

Structural knowledge contains information about the domain objects and their properties. It is sometimes referred to as domain knowledge. In the domain of medicine for example, symptoms, organisms, infections and medicaments are some of the domain’s objects. Efficiency and contradictions could be some of the medicaments’ properties. Structural knowledge is usually represented in the form of attribute-value pairs, frames, etc.

Procedural knowledge or problem-solving knowledge relies on structural knowledge and describes the different relations between the domain’s objects. Different combinations of objects, their properties and relations form the problem, whereas other combinations form the solution. Procedural knowledge encodes the transition from a problem combination to a solution combination. Solving a problem can be seen as finding a path between the problem and the solution combination. Procedural knowledge is usually encoded in the form of rules. Related rules are usually grouped in rulesets.

Sometimes procedural knowledge can become too large to handle. In such cases control knowledge must be added to help guide the search for the path. Control knowledge can be embedded in the procedural knowledge in the form of rule priorities or can be completely separate rules (meta-rules). Occasionally control knowledge is embodied in the inference engine component.

The knowledge base holds knowledge in an abstract form. When a specific problem is at hand only the relevant knowledge is called from the knowledge base. More information on knowledge representation schemes and knowledge classification can be found in [Jack98] and [Durk94].

Specific knowledge or a particular problem case is not stored in the knowledge base but in the working memory. A description of the working memory component follows.

1.2.2. The working memory

The knowledge base can be considered as the long-term memory of the expert, the memory that holds general knowledge about the domain as well as problem-solving techniques. The working memory is the short-term memory, the memory that holds knowledge specific to a problem at hand and is reinitialized each time a new problem is given to the system.
The working memory initially holds a description of the problem in terms of domain objects and properties. During the problem-solving process relations between these objects are uncovered and intermediate results are also stored in the working memory. Finally, the working memory will contain the solution (if it can be found) of the problem. In more sophisticated systems the working memory plays the role of a blackboard that can be used for communication between different parts of the system.

The working memory and the knowledge base are the knowledge storage-related components. The process by which this knowledge is manipulated and applied to the problem case is handled by the inference engine component, which is described next.

1.2.3. The inference engine

The inference engine is responsible for combining the knowledge stored in the knowledge base and the problem case stored in the working memory. The inference engine guides the search from the problem case to its solution, applying the necessary knowledge from the knowledge base as needed.

The inference engine in essence checks the knowledge base for rules whose premises or conditions match the contents of the working memory. If a relevant rule is found its results are added to the working memory and the process starts over. When there are no more rules that match, the process stops. If a solution has been found it is at this point located in the working memory.

There are two fundamental ways to search for a solution. One is to start from the data and find the solution. This is called data-driven or forward-chaining inference (figure 2). The other is to form a hypothesis for a solution and attempt to prove it by searching for relevant data. This is called goal-driven or backward-chaining inference (figure 3).

The inference engine is responsible for the reasoning process. This implies that control techniques, whatever those may be, are also applied in this component. An inference engine can become a very complicated component, if a lot of different controlling schemes are used.

In summary, the inference engine reasons over the knowledge contained in other parts of the system. The reasoning process is presented through the explanation facility component, which is described next.

1.2.4. The explanation facility

The explanation facility is the component that provides insight to the reasoning process. The developer can see which parts of the knowledge are applied and how. The final user of the system can be convinced that the system’s reasoning is correct.

An explanation component can trace which rules were used to acquire a result. If an explanation of how the result was reached is required, the explanation facility can provide this trace as justification. This process can uncover insufficient or incorrect knowledge.

Sometimes a user may wish to know why a specific question is asked. At that point the explanation facility is responsible for providing the current rule being examined. More advanced components can explain the current line of reasoning that is being followed instead.

In summary, this component is useful to the developer as a sort of debugger and to the user as proof that the system is acting rationally.

The final component to be examined is the user interface, the only part of the system that the user sees and the one that combines and controls the rest.

1.2.5. The user interface

All software products must take into consideration the final user if they hope to become successful. Expert systems are not any different. The user interface will determine if the product will be used or abandoned.

The user interface should allow the user to start the consultation with the system and enter the problem case data. It should also allow the user to exit the system.

The same interface is responsible for allowing the user to ask how a result was obtained or why a question was asked or to provide answers to the system’s questions. The explanation is also given through the same interface.

User interface design should be an important aspect during the development of an expert system. A good user interface would be informative, never leaving its user in the dark, complete in its functions and consistent in the way the information is presented to the user.

Building an expert system is a difficult and iterative process. A knowledge engineer must build and combine each of the above components. This process is described in the next section, along with the different development tools and techniques used to complete it.

1.3. Developing an expert system

In this section a description of the development process will be presented and then the different solutions for developing an expert system will be analyzed. All the findings of this discussion will be summarized in the end.

1.3.1. The development process

Developing an expert system is an incremental process. First, a small prototype is built and then its knowledge is incremented in an iterative way. The initial knowledge is broadened or deepened until the system reaches an acceptable performance. The development process is demonstrated in the next figure.

The knowledge engineer must first assess the problem. If the problem is considered feasible, then a statement of requirements is created and the development process continues.

The knowledge engineer is responsible for collecting the knowledge. Most knowledge engineers consider the process of acquiring the necessary knowledge the hardest part of expert system development. After the initial knowledge is acquired, it is organized and a representation scheme is chosen. At this point the knowledge base can be built, and the knowledge must be documented. This is the beginning of the design process.

After a few interviews with the expert, the knowledge engineer, by monitoring how the expert is thinking and how she applies her knowledge to solve the problem at hand, is in position to determine which inference technique to use. At this point, the knowledge engineer can build the inference engine. This is also the time to start building the explanation facility and the user interface. This phase completes the design process.

Then, the initial system must be tested. The results of these tests will show where the knowledge is weak. Further interviews with the expert will be focused on gaining more knowledge, which must then be encoded, documented and tested, and the development process continues this way until the results are satisfying enough. If the acquired knowledge is entirely new, then the system’s knowledge is broadened. If it is supplemental to existing knowledge, then the system’s knowledge is deepened.

Finally the expert system is documented and the maintenance process begins, possibly adding new knowledge and restarting the development cycle.

The knowledge engineer can use a number of tools to help him develop the different parts of the system. She can build them using a programming language, an expert system shell or blackboard technology. Each of these tools is discussed next.

1.3.2. Programming languages

In the beginning of expert system history, there was only one way to build an expert system. It had to be programmed with a programming language like C/C++ or Prolog or Lisp or other artificial intelligence programming languages. Programming an expert system is a difficult process but has some very attractive advantages over other methods.

A programming language provides a very high degree of flexibility. Since the expert system has to be programmed from the beginning, the programmer can in essence include whatever feature is necessary. The programmer can also fine-tune the different components if needed in order to increase the overall performance.

A program built using one of the previously mentioned programming languages, as well as others like Java for example, is usually portable. One can build the code in one platform and compile it in another. Compilers for the most common, and some not so common, programming languages are available for most environments.

On the other hand, in order to use this solution one must be a really good programmer and have a thorough understanding of the language in use. This means that either the knowledge engineer must be an experienced programmer or that she must team up with one.

Furthermore, there is still a problem, the scalability issue. Hand coding the knowledge base is already hard enough. Making the knowledge base larger and requiring explicit control knowledge adds to the overall complexity of the system.

Programming languages provide the flexibility and portability needed but sacrifice ease of use and do not solve the scalability problem. Using a programming language to build an expert system is an interesting topic though to which this report will return later. Programming an expert system is only one solution available to a knowledge engineer today. A much more convenient method, using an expert system shell, is described next.

1.3.3. Expert system shells

One way to develop an expert system is to change the knowledge base of an existing one. This idea lead to the creation of expert system shells. A shell is in essence an expert system without a knowledge base.

A shell uses a fixed inference engine and explanation facility. The user interface is usually configurable to some extent. The knowledge engineer is expected to provide the knowledge base in some specific representation language and the expert system is complete. Ease of use is the main advantage of expert system shells.

One can easily understand that fixing a part of the system reduces the overall flexibility. For this reason, a number of different expert system shells with different configurations in the inference engine and knowledge representation schemes have been developed. More advanced shells realizing this problem have provided for alternative choices as far as the inference engine and the knowledge representation scheme are concerned.

Unfortunately, flexibility is not the only problem associated with shells. Another one is the final system’s portability. A shell may exist in one environment but not in another. This means that an expert system built with this shell is only usable in the shell’s specific environment.

Moreover, there are scalability problems. Handling a large problem requires a large knowledge base. A large knowledge base in turn requires good control in order for the overall system to perform efficiently. This usually means encoding explicit control knowledge in the system, which makes the development a harder problem.

The solution to some of the above problems is the use of a blackboard expert system. This option is presented next.

1.3.4. Blackboard expert systems

Blackboard expert systems were created in the last decade to solve the flexibility and scalability problems of expert system shells. They have been very successful in handling larger problems due to the way they function.

A blackboard expert system is based on the divide-and-conquer technique. Instead of having one expert system with a large and complicated knowledge base that needs to be explicitly controlled, the idea is to have a set of smaller expert systems that share the working memory (the blackboard) so that they can communicate.

In practice, by dividing the knowledge required, fairly large problems have been solved. Also all control can be encoded in a separate control expert system that communicates through the blackboard with the rest.

Unfortunately, although this solution maintains the ease of use and solves both the flexibility and scalability problems of expert system shells, it is not portable. Blackboards are still just advanced shells and shells may exist in one environment and not in others.

Blackboard expert systems are a step for the better but not a final solution to the problem of developing an expert system. A summary of the above discussion follows to indicate the main points presented.

1.3.5. Conclusion

Building an expert system is a difficult process. One must uncover, structure and document the necessary knowledge and then encode it in a program. Flexibility, scalability and portability issues must also be taken into consideration during development.

Using an expert system shell during development causes problems with all these issues but is easy to use.

Using a high-level language fixes the flexibility and portability issues but reduces ease of use. Furthermore, scalability remains a problem with hand-coded knowledge.

Using a blackboard system takes care of the scalability, flexibility and ease of use problems but does not handle portability.

It is obvious that a better solution is necessary, mainly one that handles all of the problems and remains easy to use. This is the solution that ESCAPE attempts to provide. The next section provides a description of ESCAPE.

1.4. ESCAPE

This section will explain what ESCAPE is, what is its vision, how it provides a solution to the problems previously discussed and will introduce the prototype which was built for this report.

1.4.1. Overview of ESCAPE

ESCAPE stands for Expert System Computer Assisted Production Environment. ESCAPE is a software tool aimed at knowledge engineers. Its purpose is to facilitate the creation of expert systems, without sacrificing anything in the process.

ESCAPE allows its user to select all the different parts of an expert system and configure them. Then, based on these selections, it guides the process of building the knowledge base of the system. Finally, it translates all this work to source code of a programming language that the user will choose.

In essence, ESCAPE is an expert system generator that allows someone to program an expert system without learning the specifics of a programming language.

The following section describes how the above process solves the usual problems by combining the ease of use of expert system shells with the power of a programming language.

 More detailed information can be found on the next part of this report, which describes ESCAPE’s architecture.

1.4.2. A solution to all problems?

Previously in this report, it was mentioned that a good expert system tool must be concerned with ease of use, flexibility, scalability and portability. This section demonstrates how ESCAPE handles all these aspects.

ESCAPE presents to its user a graphical interface that allows her to select from a set of choices the parts that she needs. After these selections she can further trim and configure the different parts to get the exact result she needs. Through this interface both ease of use and flexibility are assured.

Scalability can be handled through blackboard systems. The user can select to use blackboard technology. This only means that the user will build another overall control system that will work on top of the expert systems that form the body of the blackboard system. The difficulties of the implementation of the common working memory, as well as any other implementation detail for that matter, are hidden from the user.

Finally, since the output of ESCAPE is source code of a programming language, there is no portability problem either. The source code can be compiled on any platform as long as there is a compiler for that language on the specific platform, which is not a problem for most modern languages.

ESCAPE provides the facet of an expert system shell but relies on the power of programming. The user gets all the ease of use and flexibility she wishes while ESCAPE makes sure she also gets portability.

A suspicious reader at this point will probably be wondering if there is a catch behind all this. Actually there is. In order for this technology to be effective, there is a subtle requirement that the different parts of an expert system can be implemented generically and independently from each other. Fortunately this is possible with a penalty in performance. More details can be found in the architecture part of this report.

The next section describes some more advanced features of ESCAPE. There is more in expert system development than coding the system.

1.4.3. Beyond the basics

As in any software development project the construction phase is only a part of a bigger picture. Documentation and maintenance are the other two, which are equally, if not more, important. Expert system development is no different from this point of view.

One of the hardest parts of expert system development is the knowledge acquisition process. It is inherently hard to discover the knowledge used by an expert on some domain. Learning through induction and examples is a well-known solution that has been applied to this problem but never quite integrated with the rest of the process. ESCAPE’s vision is to surround the basic development process with external tools and wizards in an integrated environment.

Another aspect rarely treated by any expert system development tool is the documentation of the knowledge, which is a key aspect for successful maintenance. Documenting the knowledge requires building flowcharts of the reasoning used, inference networks that show the relationship between different rules of the system, as well as cognitive maps that link the domain objects. Most of these documents can be created automatically through careful examination of the knowledge contained in the system, knowledge already available to ESCAPE.

Finally, knowledge can be automatically inspected for inconsistencies, a feature that is extremely useful when the knowledge base is large. Detecting rules that have the same premises but different actions is a matter of simple parsing.

These features would take ESCAPE one step further on what could be called an integrated development environment for expert systems.

The next section introduces the prototype that was developed for this report and describes its limitations and choices made during development.

1.4.4. The prototype

For the purposes of this report a small prototype of ESCAPE was developed. This prototype is very limited with respect to what it can do. Its main purpose was to demonstrate that ESCAPE is a possible solution. Furthermore, it must be noted here that the prototype was developed in less than three months.

The prototype cannot build blackboard systems. It can generate plain backward or forward chaining expert systems. It was tested only with small-sized knowledge bases of less than 35 rules. Furthermore, it uses only attribute-value pairs as the domain knowledge representation scheme.

Explanations are provided and implemented as an optional feature and consist of plain traces of the rules that have fired during the inference process. Both “why” and “how” type of explanations are provided.

The user interface choices are limited to plain text input, plus yes/no confirmations for the backward chaining system.

None of the advanced features like knowledge validation or documentation building are present either.

The next part of this report describes the general architecture of ESCAPE as well as the design details of the prototype. Further implementation details for the prototype, as well as an exact presentation of what kind of expert systems it can generate, are also given.

2. Method

It was noted previously that there is a need for an easy and flexible way to develop portable and scalable expert systems. It was also suggested that a possible solution would be a blackboard system source code generator. This part of the report will provide a description of the general architecture that lies behind such a solution, as well as a detailed description of a limited prototype.

2.1. Overall architecture

The general architecture behind ESCAPE can be divided into two main parts, the core and the additional features. The prototype focuses only on the core, or actually one way of building this core.

The core consists of the user interface, the database that stores the information about the expert system being built and the builder that transforms this information into source code.

Additional features are the documentation features, the knowledge validation process or the induction process. These features can be attached or integrated to components of the core like the user interface or even work independently in cooperation with the database for example.

This report is concerned mainly with the core of ESCAPE. Additional features can be designed and attached in the future. Some hints as to where in the core additional features can be integrated are also given.

2.1.1. The user interface

The user interface of ESCAPE will get all input from the user and will also present summaries for the major phases of expert system development. The user interface is also the main point from which any additional (and external to the process of construction) features and applications like a knowledge dictionary or report builder will be launched.

There are two types of input in ESCAPE, which can divide the process of developing an expert system into two distinct phases. First, the user must select the different components of the expert system and then construct the knowledge base and the user interface specific to the expert system.

First comes the selection phase, during which the user decides and selects among different types of inference engines, domain and procedural knowledge representation schemes and types of expert system user interface. Often an expert system requires an explanation facility, which should also be decided during this phase.

So, during the selection phase, the user should decide between different types of inference engines and perhaps configure some specific features within the engine. This could mean a selection between a forward chaining engine and a backward chaining one and then a finer configuration of them, or a selection between engines specifically designed for a special type of problem or domain like a diagnosis engine.

Then, she should decide about the type of knowledge representation, both domain and procedural, that best suits her problem. This means a choice between standard representation schemes like attribute-value pairs, rules etc. and special types of representation that may be required for a special type of inference engine.

Finally, the user should choose the type of user interface the expert system will utilize. This decision involves choices between graphical and textual interfaces as well as a more thorough understanding of how the inference process works, what type of input this process may request and how to help the user provide this input. For example the expert system with a backward chaining inference engine can provide a special type of question where the user replies only with “yes” or “no” (referred to as “yes/no confirmations” in the rest of this report). On the other hand a forward chaining expert system may ask questions that require the user to type in the answer (referred to as “plain text input” in the rest of this report) or select it from a menu of possible answers that the system can deal with.

The previous choices are the necessary ones to create a working expert system. More than often though, there will be a need to decide about a form of explanation that the expert system must provide to its users. The most usual type of explanation involves a question from the user about how a result was reached or why a question is asked. The knowledge engineer using ESCAPE can select the appropriate type of explanation provided it is compatible with the rest of his choices. For example, a forward chaining system cannot support a trace of rules as the reply to a why question, simply because no rules are being used when collecting data.

Moreover, sometimes there is a need to integrate the final system with preexisting software and databases, so there is a need to decide about other communication components as well.

Then, the user is ready to construct the expert system specifics. During the construction phase the user inputs the domain knowledge, uses the resulting knowledge base to build the procedural knowledge and adds any other information needed for creating the user interface, the explanation facility and anything else that requires additional trimming.

The domain knowledge input depends on the knowledge representation scheme. In general though, this kind of input could either be typed in by the user or read in from a file, in a specific, for the representation scheme, format. Of course, these implementations are not mutually exclusive and can coexist.

The procedural knowledge depends on the domain knowledge. In order to build this part of the knowledge base the domain knowledge base must be ready. Input can be given by the user through a selection of appropriate configurations of the domain knowledge or by an automatic process of induction from example cases.

Finally, the user must add the specific questions the expert system will ask its users and perhaps modify the possible answers if necessary (for example if a menu representation is requested, the difference choices must be listed and perhaps re-ordered and numbered). Also other additional information may be necessary such as an explanation of the procedural knowledge that can be presented to the user of the expert system upon request.

The above discussion does not necessarily impose a specific order of steps that must be followed strictly by the user of ESCAPE. It does not even mean that the selection phase must be complete before the user can proceed with constructing the knowledge base and configuring the user interface, although this is the suggested way.

The only requirement is that before configuring a component, the appropriate selection must be made. This means that in order to build the domain knowledge base, the domain knowledge representation scheme must be selected. In any case if specific restrictions come into play, the appropriate controls on ESCAPE can be disabled.

Naturally, all this information must be stored somewhere. This is the role of the database component, which is described next.

2.1.2. The database

All the input from the user as well as the code that will be generated from the builder and any other information necessary for ESCAPE must be stored somewhere. A database is required to provide access to all this information.

This database is required to store different kinds of information that will be used in different ways. The database must keep internal to ESCAPE information about its functionality, the design decisions the user made, the domain knowledge base, the procedural knowledge base, user interface information and any additional information as required by other components of ESCAPE as well as the code processed by the builder.

ESCAPE must keep a set of internal variables to temporarily store knowledge base related user input as well as information about its own state, the user’s previous decisions that affect the rest of the development process etc. Some of this information is temporary like the user input, which will eventually be stored in the knowledge base, whereas other parts are permanent like the design decisions the user made.

The domain knowledge base, the procedural knowledge base and the user interface information all share the need to be stored permanently in a file but also in the working memory of ESCAPE in order to be used by the builder. This part of the database along with the design decisions can be stored in a project file that will allow the user to rebuild the expert system at any time. This file will be the “source” code for the expert system.

Finally, the builder component must store and manipulate the code in memory before it is ready to write it out. This code is also stored in the database.

All this discussion does not imply the use of a database product, it does not even require that all the variables and different parts are stored in one place or one module. It is only meant as a guideline to what must be stored and used by ESCAPE.

The builder, which is the component responsible for output of the final code in a programming language, must also use all this information. This component, or actually one way to implement it, is described next.

2.1.3. The builder

After the user has designed the expert system components and has provided a knowledge base, the builder must take all this information and make a source file that can be compiled. This is the heart of ESCAPE, the component that does all the hard work.

The builder must communicate with the database to check the design decisions about which components are present. Then, it must find the relevant source code files along with details on how they affect each other and bind them together. Then, it must translate all knowledge base related user input into an appropriate format and add it to the rest of the code. Finally, it must write out the complete code to a file.

The design decisions indicate which components are present and what is their type. For instance, an inference engine should always be present but whether it is a forward or a backward chaining one or something completely different is a type decision. Each component type should have its own source file as well as a changes’ file with commands that indicate to the builder what changes must be made to other components’ source if they are present. The builder reads in the code and uses the commands to make any necessary modifications.

After this part is finished, the result is an expert system shell without a knowledge base. The builder must next translate the knowledge base relevant part of the database into a form usable by the shell that was created previously. The knowledge base will typically contain the procedural knowledge as well as interface details about questions, explanations etc.

Finally, when the code is ready, the builder will write it out to a file. The resulting file should be ready for compilation.

In essence, what the builder is doing is a simple idea of combining pre-made code into a working solution. To demonstrate this technique a prototype was made, which is described in detail next.

2.2. A possible implementation

In this section of the report the reader will find a detailed presentation of a possible implementation of the ESCAPE architecture.

The prototype was created using Visual Basic 6.0 and it produces expert system source code in Prolog. Visual Basic was used because of its powerful string manipulation capabilities and easy user interface construction, as well as the very handy feature of being both an interpreted and a compiled language. Prolog was used because it is possible to easily produce complicated code, such as an inference engine component and because it has been traditionally one of the most suitable languages for expert system building due to its internal expert-system-like workings.

This implementation was created in less than three months, so inevitably some shortcuts were taken and some components are either missing or limited. These limitations are described next.

2.2.1. Restrictions and limitations

Specifically, the most major limitation is the “core input”. In order to save debugging and testing time, the builder does not read in the source code of every component. Instead, it uses a core expert system, which can be refined if explanations are needed. A core backward chaining expert system consists of the engine and a “yes/no confirmations” type of user interface. A core forward chaining expert system consists of the inference engine and a plain text input type of user interface.

The main functions of the builder are not affected by this change. The builder still reads in code and changes it if necessary. What has been shortened is the number of iterations of this process (read code – change code) in order to get the final working expert system code.

This prototype does not save project files. This means that an expert system must be designed and built in one run. The user cannot build an expert system incrementally.

The prototype does not have any optional components. It cannot be used to build documentation and does not include knowledge validation of any kind. Furthermore, it does not support procedural knowledge building through induction.

The only types of inference engine supported are backward and forward chaining. The only domain knowledge representation scheme is “attribute-value pairs” and the only procedural knowledge scheme is “rules”. Explanation facilities are considered an option with a default value of “no explanations” and optional values of “how/trace” and “how/trace & why/trace”. Finally, it should be noted that the prototype was meant to produce classification expert systems and was only tested with such systems.

Keeping all these limitations in mind is important for the understanding of the implementation details of the prototype, which are described next.

2.2.2. The user interface

The user interface consists mainly of two sets of forms. One set handles the design input and the other handles the knowledge base input. Each form is autonomous and contains all the code needed for it to operate.

The design set communicates with the design part of the database directly. The user makes a choice through radio buttons. Then she either verifies it or cancels it through command buttons (figure 5). If it is verified, it is stored in the database. If a choice depends on or interacts with a previous one then the form retrieves the relevant information from the database (figure 6). Each form handles only one choice. That means that there is one form to handle inference engine selection, one form to handle domain knowledge representation scheme, etc.

[image: image5.png]

Figure Fel! Okänt växelargument.. The user selects her choice through radio buttons. She can either accept the choice or cancel.
[image: image6.png]oo

Figure Fel! Okänt växelargument.. A previous selection is incompatible with the forward chaining inference engine. The form code detects the incompatibility and forward chaining is disabled.
Design decisions about the expert system’s different parts can be done independently from each other. If the user wishes to decide about the inference engine part first and then about the domain knowledge representation scheme, she is free to do so. Of course the other way around is also possible.

The knowledge base set communicates with the knowledge part of the database directly. The user types in the information (figure 7) or selects it from drop-down boxes (figure 8). She can then add it to the database. In case of an error she can delete the change. While building the procedural knowledge base, the user interface and optionally the explanations, there is a need to access the domain knowledge base, so the relevant part of the database is retrieved. Each form in the set handles one type of input. This means that there is one form to handle attribute input and another to handle value input.

[image: image7.png]Knowledge Construction

ESCAPE

Corfigure attibutes

element
 Goal Configure
Valies
I Muttivalued Add
I Askabl
e Back

classification
group

:

Figure Fel! Okänt växelargument.. The user types in the attributes and selects the appropriate modifiers.

[image: image8.png]ESCAPE - Procedural Knowledge Construction

Canfigure rules

IF: [classification | | EQUALS <] AND
EQUALS AND
—! nonmetal
~|EquaLs <] AND
~]EQUALS =
THEN: Back
~]EQUALS =
o Add

Figure Fel! Okänt växelargument.. The user selects from a drop-down box the attribute and its value and constructs a rule.
The knowledge base construction depends on the design decisions. It cannot be initiated before a domain knowledge representation scheme is selected. Procedural knowledge construction similarly requires a procedural knowledge representation scheme to be selected. Furthermore, it requires that the domain knowledge construction has proceeded enough (at least one attribute with at least one value must be stored in the database before a rule can be built). Similar restrictions are in effect for user interface construction and explanations construction. User interface construction requires a relative design choice as well as a goal attribute and an askable one to be stored in the database. Explanations’ construction requires again the relative design decision and at least one rule, the one to be explained, to be stored in the database.

There is also a summary screen (figure 9) that can provide information about the currently selected features of the expert system. Finally, all the forms are controlled from a main form (figure 10) that provides access to the rest and allows the user to exit the application. In this form, the relative buttons that display the rest of the forms are disabled and enabled according to the user’s choices. For example the domain knowledge construction button remains disabled until a domain knowledge representation scheme has been selected. This form contains a menu that allows the user to select between normal (figure 11) and advanced modes. The only difference in this prototype is that the advanced mode lacks the explanation text boxes and is therefore more compact.

[image: image9.png]ey

e

Figure Fel! Okänt växelargument.. The summary form. There is no type of explanations selected.
[image: image10.png]

Figure Fel! Okänt växelargument.. The main form. The "Construct Explanation Facility" button is disabled because the user has not selected a type of explanations.
[image: image11.png]

Figure Fel! Okänt växelargument.. The inference engine selection form in normal mode.
2.2.3. The database

The database in the prototype is implemented using a very simple scheme. Everything that must be stored in the database has an autonomous module that provides full storage support. So there is one storage module for the design decisions, one for attribute-value pairs, one for rules, one for explanations, one for yes/no confirmations, one for plain text input, one for the final report, one for the knowledge base code and one for the expert system shell code. Furthermore, all the global constants used in the prototype are stored in a separate module.

All the modules have similar interfaces. The similarities are due to the way the modules store their data. All data are stored as strings, which are made out of smaller strings by concatenation. All the strings have fixed length values. If the string is not full, then it is filled with spaces until it reaches its specified length.

Tables are used to hold the strings in memory. Each table has a limit, which specifies the maximum number of entries and is accompanied by a usage table of booleans, which indicates for each position whether it is occupied or not. When a new string needs to be stored a function returns the first empty position in the table. The actual number of strings stored in the table is kept in a separate variable. All the limits are stored as global constants so that they can be easily changed if needed.

Each module has an initialization process called at startup. This makes sure that all entries in the usage table are set to false and that the strings’ tables are filled with ‘&’, used throughout this prototype as the “invalid” sign. Also the current number of stored strings is set to 0.

Each storage module gets the appropriate concatenated string as input. The output is the concatenated string or its sub-strings or a set of these in the form of a table, depending on what is needed.

The design storage stores the design decisions. Each design decision is represented by a string which has two parts, a feature part and type part. For example a design decision about a forward chaining inference engine would create a feature part of “inference engine” and a type part of “forward chaining”.

The attribute-value pairs’ storage stores an attribute along with its modifiers (multivalued, askable, goal) and its values. The name of the attribute is stored, followed by three characters (a choice between Y and N) that indicate if a modifier is active. Finally the names of the values are added to the end of the string. This storage has an additional table that keeps track of how many values each attribute has. It also has additional functions that return the goal attribute, the values of an attribute given the attribute name, and whether an askable attribute is stored in the database.

The rules’ storage module holds together all the rules of the expert system. Each rule consists of an ID, an attribute-value pair (i.e. an attribute name followed by a value name) that forms the action part of the rule and the preconditions, which are also stored as attribute-value pairs. This storage also has an additional table that keeps track of how many preconditions each rule has.

The explanations’ storage module stores the explanations that will be presented to the user upon request. Each explanation begins with the ID of the rule it explains, followed by the prompt of the explanation. This same explanation will be presented if the user asks either a why or a how question.

The yes/no confirmations’ storage module holds the questions that the backward chaining expert system will ask the user. Each question begins with an attribute-value pair, followed by a prompt for the question. Each attribute that has an askable modifier should be paired with each of its values and for each pair there should be a question. The question should be phrased in such a way that the expert-system user can reply with either a “yes” or a “no”.

The plain text input storage module holds the questions that the, either forward or backward chaining, expert system will ask. Each question begins with the attribute name, followed by a prompt for the question. Each attribute with an askable identifier should have a corresponding question. The question should be phrased in such a way that the expert-system user can reply with a value of the attribute.

The final report storage is somewhat different than the others. It does not need a table of strings. It consists of three strings. One will be presented to the user if the expert system fails to find a solution to the problem and the other two if it does find a solution.

Finally, the code storage consists of two parts. The shell code storage that holds the expert system shell code and the knowledge base code storage which holds the knowledge base, the questions, the goal and results reporting parts of the specific expert system in construction. Both modules hold lines of code. These modules hold the final code, as it will be written on the Prolog source file.

The expert system shell code is stored separately because it is subject to changes due to the presence of additional features. The knowledge base code is built once and does not get modified after it is created. All this code is generated by the builder component, which is described next.

2.2.4. The builder

The builder component is responsible for a number of things among which is the input and manipulation of the shell code and the transformation of the appropriate database parts into the knowledge base of the final system.

The builder is divided into two main modules. One of them handles the knowledge base and the other the shell code. There is also a support module, which is responsible for input and output operations, i.e. reading, writing and appending information to and from files.

The builder is called from the main form. Specifically, first the knowledge base builder is called and then the shell code builder. Then, the knowledge base is retrieved from the storage and written out to a file. Finally, the shell code is retrieved from the storage and appended to that file. This process is demonstrated in the next figure.

The knowledge base contains information about the procedural knowledge (rules), the domain knowledge (attributes) and the user interface (questions and explanations). The knowledge base builder therefore, has functions that retrieve and manipulate all the necessary strings from the database. All the functions trim any redundant spaces contained in the strings to save space.

The function that builds the rules retrieves and stores all the rule strings in a table. It then extracts from the strings the information one piece at a time. It first extracts the ID of the rule, then the preconditions and finally the action. Since all of the above have fixed lengths, extraction is a fairly simple process of getting a specific number of characters starting from a specific character inside the string. The rules are stored in the following format: rule(id,lhs([av(attribute,value),…]),rhs(av(attribute,value))) where id is the rule ID, lhs([]) is the list of preconditions and rhs() is the action.

The function that scans the attributes in the domain knowledge part of the database works in a similar way. It retrieves all the attributes and then checks if any of them has a multivalued modifier. For each such attribute found, a line is added to the knowledge that reports this fact: multivalued(attribute).

The functions that handle the questions require an additional check. In Prolog the ‘ character must be escaped or doubled when used in strings. So these functions call an additional check function that doubles any ‘ found inside the prompt of the question. This function is also used to check the final report as well as the explanations.

There is one function that builds the questions for the yes/no confirmations type of user interface and another for the plain text input type. The format for the yes/no confirmations type of question is askable(av(attribute,value),’prompt’) and for the plain text input type of question askable(av(attribute,_),’prompt’). The prompt’s length is restricted to one printable line.

The explanation’s prompt on the other hand does not come with this restriction. So the explanations’ building function must further process the prompt to break it into lines. This task is also assigned to a separate function. The format for the explanations is explanation(id,[‘line of prompt’,…]), where id is the id of the rule being explained and ‘line of prompt’ is one line of the explanation’s prompt.

Finally, the goal attribute and the final report prompts are retrieved from the database. Then, the necessary code that will guide the search towards the goal is added to the knowledge base and combined with the code that displays the final report.

The shell code builder cooperates with the design decisions storage. It first checks what type of inference engine was selected and reads in the appropriate core code.

If the backward chaining inference engine was selected there is a further check for the type of user interface. If plain text input is selected, further changes are needed to the code. The changes are then read in from a file and applied before checking for further needed modifications.

After the core has been stored in the database, the builder checks for the presence of an explanation choice. If one is found, the appropriate file, according to the type of chosen explanation facility, is accessed and the changes described in it are applied.

There are two types of modifications available. A line of code can be removed or added after another one. Correspondingly, there is a #REMOVE and an #ADDAFTER directive. The format of the changes’ file is fairly simple. One line contains the directive and the next one contains the line to be removed or the one after which the addition will be made. In the case of #ADDAFTER there is another line following that one, which is the line to be added.

The builder reads the first line of the file and interprets the command. If it is a #REMOVE command, it calls a removal function and passes the second line as an argument. It then reads the next line. If it is an #ADDAFTER command, it calls an addition function and passes the next two lines as arguments. This process continues until the end of the changes’ file.

Both the removal and the addition function retrieve the shell code, make the appropriate change and store it back. Both functions call another one that finds the appropriate line. This function returns the position in the table where the line is or 0 if the line does not exist. If it does not exist, the directive is skipped and the next one is executed. This way all changes, for both core files, can be added in the same changes’ file and depending on which core file is loaded, only the relevant changes are done. After the line is found, it is either removed or another one is added after it.

The removal function copies all the lines of code until the one to be removed in a separate table. It bypasses that one and then continues to copy the rest. Then, the table is passed back to the storage to update all changes.

The addition function copies all the lines of code, until the one before which the addition must be made, in a separate table ad then inserts the added line. Finally, it completes the table with the rest of the code. Then, the table is passed back to the storage to update all changes. The following figure demonstrates the workings of the shell code builder.

This section finishes with some notes regarding the Prolog code that is generated by ESCAPE.

2.2.5. Prolog code issues

It was mentioned previously in this report that the builder combines pre-written pieces of Prolog code into an expert system. In order for these pieces to be combined, they must be clearly separated. This means that before going into the process of designing and constructing the prototype, a completely modular expert system had to be coded in Prolog. In fact this was probably the hardest part of the project.

At first two expert systems were created, which were then modularized and broken into parts. The first sample consisted of a backward chaining inference engine, an explanation facility and a “yes/no confirmations” type of user interface. The second sample consisted of a forward chaining inference engine, an explanation facility and a plain text input type of user interface. Both of the samples were tested against SICStus Prolog 3.7.1 and Amzi! Logic Explorer in order to make sure that generic code was used and to ensure portability. From these samples, after removing the explanation facility, the core code was created. The explanation facility was then converted into two changes’ files.

Keeping the explanations facility separate from the inference engine required a sacrifice in performance. The inference engine could be a lot faster if it had been integrated with the explanation facility. Unfortunately, this integration would make the changes’ files far too complicated and so it had to be avoided in order for the prototype to be completed in time.

On the other hand performance in an expert system relies mainly on the knowledge base of the system. The more well organized the knowledge base, the faster the system will be in providing an answer. In any case performance measurements were off-limits for this project, due to the small size of the knowledge bases used during testing.

After the prototype was completed it had to be tested. The testing procedures along with their results can be found in the next two sections. A discussion follows and explains the results and future work section concludes this report.

3. Testing procedures

This section describes the tests that the prototype has undergone. First the goal and expectations for these tests are analyzed and then the actual procedures are described.

3.1. Goal and expectations

The goal for ESCAPE was to be easy to use and still be able to create flexible, portable and scalable expert systems. It would be natural to test for all this aspects on the prototype as well.

Unfortunately, as it was previously mentioned, scalability requires use of blackboard systems. The prototype cannot build blackboard systems; thus scalability could not be tested.

Ease of use can only be partly tested because the prototype cannot save project files. This requires an expert system to be built in one run, i.e. all the components must be decided, the knowledge base must be entered and the final system must be generated without the ability to save intermediate work. Furthermore, ease of use cannot be tested without the help of additional users and time. Since the latter was unavailable, reporting on ease of use is based solely on the author’s optimistic impressions.

On the other hand, portability can be generally guaranteed by the fact that no proprietary extensions to the Prolog language were used during creation of the input code, i.e. all code was written in generic Prolog. Therefore, the code generated from the prototype was expected to run flawlessly on any system with a Prolog interpreter or compiler.

The prototype was originally designed to create backward chaining expert systems with “yes/no confirmations” type of interface and either without explanations or with “how/trace and why/trace” type of explanations. It was also designed to build expert systems with a forward chaining inference engine and plain text input type of interface without explanations or with only “how/trace” type of explanations. The prototype was required to produce each of these four configurations.

In the end, to test for flexibility it was decided that plain text input would be added to the backward chaining expert systems as well as “how/trace only” type of explanations. This decision resulted in another four types of expert systems. The expectation was that these additions should be as easy as adding two files with changes (one for the plain text input and one for the “how/trace” type of explanations) and a few lines of code in the builder component to test for the relative design choices.

3.2. Test specifications

Three sets of tests were performed. One was meant to test for backward chaining systems’ functionality, another for forward chaining ones and the last for flexibility. An overview of these tests is given and then specific information on each test is presented.

3.2.1. Overview of tests

The first set uses a bird identification knowledge base taken from [Merr89]. During this test a backward chaining system with “yes/no confirmations” type of interface and without explanations was created. The same test was performed with the addition of “how/trace and why/trace” type of explanations. The purpose of these tests was mainly to make sure that rule chaining is functioning well, since for the flexibility test only a chain of one rule would be used.

The second set uses a knowledge base for chemical elements’ identification. During this test a forward chaining system with plain text input type of user interface and without explanations was created. The same test was performed with the addition of “how/trace” type of explanations. The purpose of these tests was once again mainly to make sure that rule chaining is functioning properly.

The third set uses a reduction of the second set’s knowledge base. During this test all eight types of expert systems were created. This test was meant to check how flexible the prototype is and how easily a user can switch components like the inference engine.

All tests were repeated four times randomizing the questions asked to the final expert system. Furthermore, the order between design decisions (i.e. inference engine type, user interface type, etc.) was changed each time. Finally, the order between knowledge base components (i.e. rules, explanations, etc.) construction was also changed every time.

The final prolog code was tested each time both with SICStus Prolog 3.7.1and with Amzi! Logic Explorer to verify portability. As it was previously mentioned the prototype cannot save project files, so during testing both listeners and the prototype had to be running. Apart from a minor strain in resources (because Amzi! is running in a 286 16-bit emulation mode), no problems were encountered.

A description of each test follows next. Each test comes with a set of tables that describe the knowledge bases in detail. Questions and explanations are not included in these tables. Instead, examples are given. The final report clauses are also given for completeness.

3.2.2. Backward chaining tests

The attributes with their modifiers are presented on the next table.

Attribute name
Goal
Multivalued
Askable

bill

(

bird
(

color

(
(

eats

(
(

family

feed

(

feet

(

flight

(

flight_profile

(

head

(

live

(

neck

(

nostrils

(

order

size

(

tail

(

throat

(

voice

(
(

wings

(

The next table contains the values for each of the attributes.

Attribute Name
Values

bill
hooked, flat, sharp_hooked, short

bird
laysan_albatross, black_footed_albatross, fulmar, whistling_swan, trumpeter_swan, snow_goose, mallard, pintail, turkey_vulture, california_condor, sparrow_hawk, peregrine_falcon, great_crested_flycatcher, ash_throated_flycatcher, barn_swallow, cliff_swallow, purple_martin

color
white, dark, mottled_brown

eats
birds, insects, flying_insects, meat

family
albatross, swan, goose, duck, vulture, falcon, flycatcher, swallow

feed
on_water_surface, scavange

feet
webbed, curved_talons, one_long_backward_toe

flight
ponderous, powerful, agile, flap_glide

flight_profile
v_shaped, flat

head
large, green

live
at_sea

neck
long

nostrils
external_tubular

order
tubenose, waterfowl, falconiforms, passerformes

size
large, medium, plump

tail
narrow_at_tip, forked, square, long_rusty

throat
white

voice
short_whistle, quack, loud_trumpeting, muffled_musical_whistle

wings
long_narrow, long_pointed, broad

An example is given as to the format of the questions. For the pair live/at_sea, the question was “Does the bird live at sea?” Similarly easy to answer questions were filled for the rest of the pairs.

The next table displays the rules that were used with this expert system.

Rule Id
Preconditions
Result

Attribute
Value
Attribute
Value

1
nostrils

live

bill
external_tubular

at_sea

hooked
order
tubenose

2
feet

bill
webbed

flat
order
waterfowl

3
eats

feet

bill
meat

curved_talons

sharp_hooked
order
falconiforms

4
feet
one_long_

backward_toe
order
passerformes

5
order

size

wings
tubenose

large

long_narrow
family
albatross

6
order

neck

color

flight
waterfowl

long

white

ponderous
family
swan

7
order

size

flight
waterfowl

plump

powerful
family
goose

8
order

feed

flight
waterfowl

on_water_surface

agile
family
duck

9
order

feed

wings
falconiforms

scavange

broad
family
vulture

10
order

wings

head

tail
falconiforms

long_pointed

large

narrow_at_tip
family
falcon

11
order

bill

eats
passerformes

flat

flying_insects
family
flycatcher

12
order

wings

tail

bill
passerformes

long_pointed

forked

short
family
swallow

The table is continued on the next page.

Rule Id
Preconditions
Result

Attribute
Value
Attribute
Value

13
family

color
albatross

white
bird
laysan_

albatross

14
family

color
albatross

dark
bird
black_

footed_

albatross

15
order

size

flight
tubenose

medium

flap_glide
bird
fulmar

16
family

voice
swan

muffled_musical_

whistle
bird
whistling_

swan

17
family

voice
swan

loud_trumpeting
bird
trumpeter_

swan

18
family

color
goose

white
bird
snow_goose

19
family

voice

head
duck

quack

green
bird
mallard

20
family

voice

color
duck

quack

mottled_brown
bird
mallard

21
family

voice
duck

short_whistle
bird
pintail

22
family

flight_

profile
vulture

v_shaped
bird
turkey_

vulture

23
family

flight_

profile
vulture

flat
bird
california_

condor

24
family

eats
falcon

insects
bird
sparrow_

hawk

25
family

eats
falcon

birds
bird
peregrine_

falcon

26
family

tail
flycatcher

long_rusty
bird
great_crested_

flycatcher

27
family

throat
flycatcher

white
bird
ash_throated_

flycatcher

28
family

tail
swallow

forked
bird
barn_swallow

29
family

tail
swallow

square
bird
cliff_swallow

30
family

color
swallow

dark
bird
purple_martin

The explanation facility contained explanations along the line of the following example for rule 1. “If the bird’s nostrils are external and tubular, its bill is hooked and it lives at sea, then the bird is of the tubenose order.”

The failure report was “The bird could not be identified.” while the success report was “The bird was identified as a”. The value of the attribute bird was then appended to the success report.

3.2.3. Forward chaining tests

The attributes with their modifiers are presented on the next table.

Attribute name
Goal
Multivalued
Askable

atomic_number

classification

(

element

group

(

state

(

The next table contains the values for each of the attributes.

Attribute Name
Values

atomic_number
1, 2, 3, 4, 5, 13, 21, 31, 43, 54, 55, 58, 61, 80

classification
metal, nonmetal

element
hydrogen, helium, lithium, beryllium, boron, aluminum, scandium, gallium, technetium, xenon, cesium, cerium, promethium, mercury

group
other, halogen, alkaline, alkaline_earth, transition_element, inner_transition_element,

state
gas, solid, liquid, synthetically_prepared

An example is given as to the format of the questions. For the attribute state, the question was “What is the element’s state?” Similar questions were filled for the rest of the attributes.

The next table displays the rules that were used with this expert system.

Rule Id
Preconditions
Result

Attribute
Value
Attribute
Value

1
state

group

classification
gas

other

nonmetal
element
hydrogen

2
state

group

classification
gas

halogen

nonmetal
element
helium

3
state

group

classification
solid

alkaline

metal
element
lithium

4
state

group

classification
solid

alkaline_earth

metal
element
beryllium

5
state

group

classification
solid

other

nonmetal
element
boron

6
state

group

classification
solid

other

metal
element
aluminum

7
state

group

classification
solid

transition_element

metal
element
scandium

8
state

group

classification
liquid

other

nonmetal
element
gallium

9
state

group

classification
synthetically_prepared

transition_element

nonmetal
element
technetium

10
state

group

classification
solid

halogen

nonmetal
element
xenon

11
state

group

classification
liquid

alkaline

metal
element
cesium

12
state

group

classification
solid

inner_transition_element

metal
element
cerium

13
state

group

classification
synthetically_prepared

inner_transition_element
element
promethium

14
state

group

classification
liquid

transition_element

metal
element
mercury

The table is continued on the next page.

Rule Id
Preconditions
Result

Attribute
Value
Attribute
Value

15
element
hydrogen
atomic_number
1

16
element
helium
atomic_number
2

17
element
lithium
atomic_number
3

18
element
beryllium
atomic_number
4

19
element
boron
atomic_number
5

20
element
aluminum
atomic_number
13

21
element
scandium
atomic_number
21

22
element
gallium
atomic_number
31

23
element
technetium
atomic_number
43

24
element
xenon
atomic_number
54

25
element
cesium
atomic_number
55

26
element
cerium
atomic_number
58

27
element
promethium
atomic_number
61

28
element
mercury
atomic_number
80

The explanation facility contained explanations along the line of the following example for rule 1. “If the element is in a gas state, it is classified as a nonmetal element and doesn’t belong to any of the known groups, then it is hydrogen.”

The failure report was “The element’s atomic number could not be identified.” while the success report was “The element’s atomic number was”. The value of the attribute atomic_number was then appended to the success report.

3.2.4. Flexibility tests

The flexibility tests used the same knowledge base as the forward chaining tests without the rules 15-28 and the atomic_number attribute. The success and failure reports were also changed to report on the element. The failure report became “The element could not be identified.” and the success report became “The element is”. The value of the attribute element was then appended to the success report.

 The results of all tests can be found on the next section.

4. Results

This section presents the results of the tests described in the previous section. First the overall impression is given and then some specific problems and issues that were raised during testing are described.

4.1. Overall impression

Both functionality tests were generally successful. With the exception of a minor issue, which was quickly corrected, the prototype managed to build both backward and forward chaining systems with and without explanations that functioned as expected.

The flexibility test uncovered a somewhat bigger problem. On the other hand, with the help of the prototype all eight types of expert systems were generated in less than 20 minutes, practically all of which were devoted to the design and the knowledge base construction processes.

It was found out that changing the inference engine or switching between different types of explanation did not require any changes to the knowledge base, exactly as expected.

The overall feeling on ease of use, at least as far as the author is concerned, was positive. The interface of the prototype is quite self-explanatory and the explanations and instructions provided in the normal mode should clear up any confusion.

The general goal of the prototype, i.e. to demonstrate that ESCAPE is a possibility, was accomplished. More details about the different problems encountered follow on the next section.

4.2. Specific issues

The very first test was unsuccessful. A backward chaining system without any explanations was generated but the prolog parser reported errors while loading the source file. The error was due to a neglected detail. In Prolog strings are enclosed in single quotes. If the string itself contains a single quote it must be escaped or doubled. This error was easily corrected by creating a function that parses any string that will be printed by the final expert system and doubles any quotation marks found. This function was called each time a string of any kind (question, explanation or report) had to be stored in the database.

That first test was then run again successfully. The second test, which required the addition of an explanation facility, also failed, revealing a very interesting problem. The builder removed the first line that matched its search criteria. The same problem was detected when adding a line. The addition always happened after the first line that matched the search criteria. There was a need for a better solution, since changes must not always happen at the first line that matches.

This problem could have been solved in two ways. One was to extend the builder and the directives so that they include a counter and/or a component identifier. This way one could specify that the change was to happen after the second instance of the line in the inference engine component for example. The other was to make each line unique, so that the builder would not have to be changed. This second solution was preferred because it required changes only in the resource files, i.e. the core and changes’ files.

This solution on the other hand requires that after the changes are applied, each line should still be unique, otherwise further changes will run into the same problem. Removing a line does not affect the uniqueness of the rest. On the other hand adding a line causes a problem.

In the same changes’ file it is easy to make sure that the lines are different from each other and different from the core. To make them globally unique though, one must check all the changes’ files and make sure there are no inconsistencies, i.e. that all lines in all changes’ files and the core are different from each other.

Although this sounds a difficult process, it is actually a fairly easy one. The problem is in detecting lines of code that are identical. The solution lies in using an external string comparison program that is able to search for a string in multiple files (plain Unix grep is adequate).

Running such a program on the core input files and the changes’ files revealed that the only repeating lines are those containing very common predicates, like nl, ! or fail. Moving these predicates so that they don’t occupy a line of their own fixed the problem. For example:

retrexpl:-

 fired(ID),

 explanation(ID,Prompt),

 nl,

 writelist(Prompt),

 nl,

 fail.

was replaced with:

retrexpl:-

 fired(ID),

 explanation(ID,Prompt),

 nl,writelist(Prompt),nl,fail.

If there is a need to add something between nl and writelist(Prompt) for example, one can remove the line and a new one after explanation(ID,Prompt), with the following changes’ file.

#REMOVE

 nl,writelist(Prompt),nl,fail.

#ADDAFTER

 explanation(ID,Prompt),

 nl,some_new_predicate,writelist(Prompt),nl,fail.

After the changes had been made the test was rerun and this time completed with full success. The forward chaining tests did not reveal any new problems either. The flexibility tests though uncovered what is perhaps the greatest disadvantage of manipulating and changing code, a disadvantage suspected from the beginning.

For the flexibility tests it was decided that a new kind of backward chaining system should be created. This type required plain text input type of questions and was the first time that complete changes to the core code were tried (explanations’ changes just added new code, they did not replace old code).

It was fairly easy to create a new changes’ file and all that had to be added to the prototype was four lines of code to check for the new feature and apply the changes. These new changes were applied before the explanations’ changes. After these modifications, all tests were completed successfully.

At that point it was obvious that possibly every new feature would have to take into consideration all the rest, in order to record all the necessary changes. Although the builder was created in a way to ignore changes it cannot apply (so that all the changes can be concentrated in one file), this doesn’t help reduce the maintenance effort required to keep the changes’ files up to date.

For example when the plain text input interface changes’ file was created, consideration had to be given to the code of a backward chaining system without explanations, with “how/trace” type of explanations and with “how/trace and why/trace” type of explanations. For one change, three sets of code had to be examined, although the modifications were the same for all three cases. The point is that the more features are added to ESCAPE, the more complex the process of maintaining the changes’ files becomes, because the more code has to be examined.

There is not an easy solution to this problem. Understanding the nature of the modifications that take place while building the shell will help. What is actually happening is not a general addition or removal of code. Either a full component or an interface to a component is changed each time. The latter causes the problem.

If changes to the interfaces are allowed, each new component must be verified in all possible configurations to make sure that all the necessary changes were recorded and that the user ends up with a functional expert system.

If the interfaces between the components can be standardized, then adding a new inference engine, for example, would only require the removal of the old inference engine and the addition of new code. There is no need to check the rest of the code. Since the interfaces would be fixed, the new inference engine would cooperate with the rest of the system without problems. This would greatly reduce the maintenance effort. Further research is required to establish whether standardizing the interfaces is possible or not.

A general summary of what was achieved from this project follows on the next section.

5. Discussion

The goal for ESCAPE was to be able to create flexible, portable and scalable expert systems while still being easy to use. In order to prove that ESCAPE is possible, a prototype was created. The prototype was tested for functionality, flexibility, portability and ease of use.

The results and the conclusion from the prototype were encouraging. The prototype was able to produce all types of expert systems it was intended to. Furthermore, additional types of expert systems were added with little effort.

On the other hand, the most significant problem that emerged from this project, although it does not have any impact on the small-scale prototype, has created a question regarding the feasibility of ESCAPE as a large-scale project. A possible solution was presented and awaits further research.

Another issue with generating code with the method this prototype uses is that if someone requires the final code to be in another language, she must provide another set of changes’ files. For each different output language an additional set of files must be made and maintained. Although this is possible, it is probably not the best solution.

An interesting idea would be to create a language that describes expert systems. This way the user interface of ESCAPE would create a program in this language, which will be used by the builder component. As far as the user of ESCAPE is concerned nothing has changed, she sees and uses the same interface.

The builder could then take this program and transform it to an intermediate language, closer to a standard programming language. Then for the final output another component could transform the intermediate language to the source code. This way, support for a new language would require the creation of the appropriate translation component, which could be easily attached to the rest of ESCAPE. Furthermore, any additional features for an expert system could be implemented by expanding the expert system description language and the builder that translates this language to the intermediate one.

Further research towards this direction is required before it can be considered a candidate solution. Other future work is presented in the following final section of this report.

6. Future work

Apart from researching a more compiler-like approach to the problem of generating code there are a few more guidelines as to where future efforts may be concentrated.

There is a need to complete the main features of expert systems, for example add frames. Then one could perhaps explore the possibility of adding some more advanced features such as case-based reasoning and truth maintenance or fuzzy logic. An induction algorithm could be added as well.

Knowledge checking and automatic documentation features could be added and furthermore, a knowledge-reordering scheme could be added to improve rule performance when attribute-value pairs are used. An interesting idea one could explore is the possibility to automatically degrade from a powerful knowledge representation scheme like frames to a lesser one like attribute-value pairs.

Of course all basic features like saving project files should be added as well as a more suitable interface, which would allow for multiple projects to be opened at the same time.

It is worthwhile to point out here that adding new features can make expert system creation a complicated choice; the more choices one has, the more confused she gets. So another possible addition would be some sort of wizard that can automatically create basic expert systems with minimum input from the user. Of course tutorials and extensive help files should be added as well.

Another interesting idea would be to port this application to Java and run it over the Web as an applet. All source files would be on the server and the final code could be copy-pasted from the applet window to avoid security issues. This also facilitates future upgrades because all modifications can be done in the server files. The user would only download the updated applet.

This is probably only a fraction of possible extensions and modifications to ESCAPE. No doubt there are more that were not mentioned in this report.

7. <big>Annotated bibliography</big>

This section presents the material that was used during the development of this project, along with a small description as to why the interested user may find them useful.

· [Bowe91] Bowen, Kenneth A. 1991.
Prolog and Expert Systems.
McGraw-Hill.
ISBN 0-070-06731-7.

This book is divided into two parts. The first is an introduction to Prolog and the second applies the knowledge gained in the first into expert systems programming. In all, if you are looking for a quick insight into the subject of Prolog combined with expert systems this is a fine book. It does not require previous knowledge of either subjects.

· [Brat90] Bratko, Ivan. 1990.
Prolog Programming for Artificial Intelligence (2nd ed.).
Addison Wesley.
ISBN 0-201-41606-9.

This is perhaps one of the best textbooks on Prolog. The first part is about Prolog basics whilst the second is a presentation of a set of advanced techniques used in Artificial Intelligence. There is a separate chapter on expert systems. If anyone is doing AI programming in Prolog should at least have a look at this book, and probably to the next one also.

· [Covi97] Covington, Michael A., Nute, Donald., Vellino, Andre. 1997.
Prolog Programming in Depth.
Prentice Hall.
ISBN 0-131-38645-X.

This is another textbook on Prolog. It can be used as an alternative to the above. It uses a similar division in parts. There are two chapters on expert systems. In practice both books are good and a programmer in Prolog should probably have both. If you are looking for a thorough introduction in Prolog any of the two will do.

· [Durk94] Durkin, John. 1994.
Expert Systems Design and Development.
Macmillan Publishing Company (Prentice Hall).
ISBN 0-023-30970-9.

If you are into expert systems in general this book is a must-have. There is a full and complete explanation of the expert system development cycle plus a lot of details on specific expert system designs and a list of successfully deployed expert systems in the appendixes. In all an excellent guide to the process of building an expert system.

· [Jack89] Jackson, Peter., Reichgelt, Han., Van Harmelen, Frank. 1989.
Logic-Based Knowledge Representation.
MIT Press.
ISBN 0-262-10038-X.

This book describes an open and flexible architecture for building expert systems called Socrates. This is a highly technical book that can be quite hard to read, but does address a lot of aspects of expert system's building including efficiency by means of partial evaluation.

· [Jack98] Jackson, Peter. 1998.
Introduction to Expert Systems (3rd ed.).
Addison Wesley.
ISBN 0-201-87686-8.

This book is exactly what its title suggests, an introduction to expert system technology. There are descriptions of rule-based, frame-based, blackboard and case reasoning expert systems along with examples and references to relevant projects. If you are new to expert systems this is the place to start.

· [McCo93] McConnell, Steve. 1993.
Code Complete.
Microsoft Press.
ISBN 1-556-15484-4.

This a book about code construction. I found it extremely useful and have learned quite a lot about the difference between good and bad, readable and unreadable code. I would recommend it to any programmer. It refers to all those tricky parts that they never teach you in class.

· [Merr89] Merritt, Dennis. 1989.
Building Expert Systems in Prolog.
Springer Compass International (Springer-Verlag).
ISBN 0-387-97016-9 (New York) or 3-540-97016-9 (Berlin).

This book is a good complement for [Bowe91] above. It is a more thorough approach and is targeted to those that are already knowledgeable about Prolog. If you are to choose between the two and can already program in Prolog this is the one to get.

· [Myer79] Myers, Glenford J. 1979.
The Art of Software Testing.
John Wiley & Sons.
ISBN 0-471-04328-1.

Despite of its age this book remains a very decent guide to software testing. It can be used as an introduction to software testing and for small projects this may be the only knowledge on testing that one may need. In all if you can see through its errors and old-fashioned examples it can be extremely beneficial.

· [Rick98] Ricketts, Ian W. 1998.
Managing Your Software Project <small>A Student's Guide</small>.
Springer.
ISBN 3-540-76046-6.

This book was used throughout the project and was quite helpful I must admit. It is short and to the point and worth the two or three hours that the reader must spend on it. I admit that project management comes with experience but it doesn't hurt to read something about it in advance.

· [Russ95] Russell, Stuart., Norvig, Peter. 1995.
Artificial Intelligence: A Modern Approach.
Prentice Hall.
ISBN 0-131-03805-2

This is probably the best introductory book on Artificial Intelligence that I have seen. It covers all aspects at a reasonable level including expert systems and decision theory. Code listings from the book can be found on the book's homepage above.

· [Walk90] Walker, Andrian., McCord, Michael., Sowa, John F., Wilson, Walter G. 1990.
Knowledge systems and Prolog: developing expert, database and natural language systems (2nd ed.)
Addison Wesley.
ISBN 0-201-52424-4.

This book goes one step further than [Bowe91] and [Merr89] giving information on how to integrate expert system technology with databases and natural language processing. Unfortunately the notation used in the book is not the standard one which makes it somewhat hard to read. On the other hand there is a lot of information on programming style and techniques one should use when coding in Prolog. A very good book if you can read through it.
User Interface

Inference

Engine

Explanation

Facility

Working

Memory

Knowledge

Base

Figure � SEQ Figure * Αραβικά �Fel! Okänt växelargument.�. Typical expert system components.

Subgoals

Rules

Goal

Conclusion

Rules

Data

Figure � SEQ Figure * Αραβικά �Fel! Okänt växelargument.�. Forward chaining.

Figure � SEQ Figure * Αραβικά �Fel! Okänt växelargument.�. Backward chaining.

Assessment

Knowledge

Acquisition

Design

Testing

Documentation

Maintenance

Figure � SEQ Figure * Αραβικά �Fel! Okänt växelargument.�. The development process.

Figure � SEQ Figure * Αραβικά �Fel! Okänt växelargument.�. The building process.

Build the knowledge base

Build the shell code

Write the knowledge base

Append the shell code

Figure � SEQ Figure * Αραβικά �Fel! Okänt växelargument.�. The shell code builder.

Read the shell code from the code storage

Read a change from the changes’ file

Apply the change to the shell code

Store the changed code in the code storage

iii

