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Abstract

Lately there has been vast improvement of bandwidth in networks. New
technologies like wavelength division multiplexing and gigabit routers are
moving the frontline of broadband communication. As motivation for these
new innovations, the customers' presumed demand for video applications
over the Internet is often mentioned.

The goal of this thesis has been to write a video streamer for
pre-recorded data that could provide high bitrate output without demanding
expensive equipment. This streamer could then be used to demonstrate the
advantages of new network features like bandwidth reservation.

A streamer should preferably send the data smoothly in small blocks frequently
rather than larger blocks with longer time in between. One of the difficulties in
shaping the data output in this way is the limitation in time granularity that is
experienced when running several processes on a single CPU.

Another difficulty is in handling the jitter and delay that inevitable
appear when sending data over shared media. Furthermore, the client must
display the video at the correct rate.

In consideration of these problems, a working client - streamer pair for
uncompressed and H.263 coded video has been implemented. The streamer can
deliver up to 10 Mbps to several clients, and it handles delay by buffering
data at the receiver. The video is accessed via a web page.
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1 Introduction

1.1 Background

Today Telia Research has a need for applications to demonstrate different
capabilities of its network, such as resource reservation. Video is one
application that can be used to show the potential advantages in this regard.

There are commercial video-streaming products available today, using
dedicated hardware solutions, but they are expensive and difficult to modify for
different tasks. There are also software-based streaming products, like Real
Video, aimed at the consumer market. Real Video makes it possible to
compress video (with degradation in quality) to such low bit rates that it is
possible to transfer it via modem. Though Real Video is inexpensive, it is not
capable of sending high quality video at Mb/s rates.

1.2 Purpose

The aim of this thesis is to develop a working client/streamer pair. The
streamer application should run on a standard PC. When receiving requests, it
streams the contents at high speed via UDP (user datagram protocol).
Furthermore, the streamer should be able to compensate for the conditions of
the shared media i.e. jitter and delay, and avoid sending the traffic in bursts.
The streamer should also be able to handle several concurrent clients. The
client should request, receive and display the contents. The system should be
easy to modify to meet future demands.

1.3 Delimitations

1. The streamer need not support every video format without modification. It
is primarily intended to present a working solution.

2. The streamer and client parts need not handle the problem that packets
might arrive out of order when transferred over long distances.

3. The streamer will only handle constant bit rate video.
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1.4 Structure of the report

Chapter 2 gives a brief introduction to some of the aspects that need to be
considered when transferring digital video over packet-switched networks.

Chapter 3 discusses some of the problems with making a streamer and how
they have been handled in this thesis.

Chapter 4 shows the experimental setup, the choice of video coding technique,
streaming format, and the rate control mechanism.

Chapter 5 presents and discusses what has been accomplished and the results.

Chapter 6 presents additional measurements and analyzes.

Chapter 7 gives the conclusions and addresses future improvements.
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2 Background to digital video and streaming

This chapter gives a brief introduction to digital video and some of the aspects
that need to be considered when transferring digital video over packet-switched
networks.

2.1 Video compression

The main purpose of compression is to reduce the size of video files in order to
save bandwidth and storage space. Video takes up huge amounts of space. The
television standard PAL1 for example would need a bit rate of 216 Mbps (25
frames per second, 864 x 625 luminance2 samples, 429 x 525 x 2 chrominance
samples, 8 bits per sample resulting in a bit rate 25 x 8 x ((864 x 625) + (432 x
625 x 2)) = 216 Mbps) [22]. For a video studio this can be handled, but it is too
much for transmission over public networks.

2.1.1 Lossy and lossless compression

There are two types of compression: lossy and lossless compression. The
lossless compression removes statistically redundant information. The process
is reversible and compression ratios of up to about 1:3 can be achieved. To
compress the data even more, lossy compression has to be used. Ratios of over
1:20 is possible, at the price of reduced quality. The lossy compression
removes the subjectively redundant information. This process destroys some of
the data and is therefore not reversible. Lossless compression is almost
exclusively used for medical and scientific purposes where distortion of the
images can not be tolerated.

2.1.2 Forward error correction (FEC)

A drawback of removing most of the redundant information, is that compressed
video is very sensitive to losses and errors. One way to improve the quality
when there are frequent losses and errors is to use forward error correction
(FEC).

With FEC, extra information is added by coding to support corrections of
errors or losses. The amount that can be corrected depends on how much extra
information that has been

                                                       
1 PAL (Phase Alternation Line television format) is the color television standard that is
common in Europe.
2 Since the eye has a higher sensitivity to light than color, the video has a higher resolution in
light (luminance) samples than in color (chrominance) samples.
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FEC might be good for reducing the loss rate, but the addition of redundant
information means that more packets needs to be transmitted. The extra packets
might in fact increase the congestion in the network and thus cause even more
packet loss (if the stream represents a relatively large part of the traffic on a
link).

2.2 Video coding techniques

There are several different coding techniques for digital video. Some of the
most used standards are: MPEG1 (ISO/IEC 11172) and MPEG2 (ISO/IEC
13818), H.261 and H.263 (ITU-T).

2.2.1 MPEG1

The MPEG1 standard was developed for coding video at a bitrate of about 1.5
Mbps. It was developed for video-CD and CD-i media. Recommended image
size is 360 x 240 pixels, and at the bitrate of 1.5 Mbps the quality is
comparable to VHS.

An MPEG video sequence is divided into a group of pictures (GOP). There are
three different types of coded pictures/frames in a GOP (see Fig. 1):

• I pictures (intracoded frames) are self-contained frames which act as
reference for inter-coded P and B frames.

• P pictures (forward-predicted frames) are encoded using motion prediction
from previous I or P pictures. The prediction error together with the motion
vector are encoded.

• B pictures (bidirectionally-predicted frames) are encoded by using
interpolated motion prediction between a previous I or P picture and a
following I or P picture.

Fig. 1 GOP
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With MPEG at least two or three frames have to be buffered at the destination
in order to decode, given the interframe dependencies.

Techniques that are used to compress the I pictures are:
• Frequency based transform – discrete cosine transform (DCT) converts the

color and brightness signals into frequency coefficients. The DCT is a
lossless process that makes it easier to compress the signal.

• Quantization, results in lossy compression where it is possible to specify
how much information that can be acceptably lost from the visable
information. The image parts that are important to the human eye are
represented more precisely while irrelevant information is represented with
less precision.

• Huffman coding, which is a lossless compression that uses code tables
based on statistics of the encoded data.

2.2.2 MPEG2

The MPEG2 standard was developed to meet demands for high quality video
coding. It is similar to MPEG1 but has a greater collection of coding
techniques. One example of improvements is that MPEG2 handles interlaced
video (like the scanning pattern for television) better than MPEG1, which was
developed for progressive (non-interlaced) video. For applications that use
broadcast quality like DVD, streams of 4 to 6 Mbps are usually used. A
proposed MPEG3 standard intended for high-definition television (HDTV)
with bitrates of up to 40 Mbps, was merged into the MPEG2 standard at the
beginning of the standardization work.

2.2.3 H.261

The H.261 standard is for a real-time coding with low delay. It has been
developed for videoconferences and video telephony via integrated services
digital network (ISDN). The coding algorithm allows transmission-rates in
multiples (1-30) of 64 kbps. The image size is based on the CIF-format
(Common Intermediate Format) (see Fig. 2) that has a resolution of 352 x 288
pixels. When transmitting over low bandwidth links like an ISDN channel
(ISDN supports two channels of 64 kbps each) and analog modem, quarter CIF
(QCIF) with a resolution of 176 x 144 is often used instead of CIF to get a
better frame rate.

The basic idea of the algorithm is to divide each picture into macro blocks of
16 x 16 pixels, and try to find similarities between consecutive images, in order
to reduce the information. Motion prediction is used to find out how parts in
the image move.

4CIF 704x576 QCIF 352x288 QCIF 176x144 SQCIF 128x96

Fig. 2 Common intermediate format
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2.2.4 H.263

The H.263 standard is an enhancement of H.261. It was developed to support
the V.34 modem standard. Many improvements have been done to support the
low bit rate of V.34 (28.8 kbps). Better motion compensation: a part of a
predicted block is allowed to be outside the picture, advanced prediction mode
and PB frames mode. PB is a P and a B frame coded as one unit (cf. MPEG
coding). H.263 also supports a new format for low bandwidth applications,
sub-QCIF (128 x 96) which has half as many pixels as QCIF. For higher
resolution, there are new optional standards, 4CIF and 16CIF with resolutions
of 704 x 576 and 1408 x 1152 pixels.

2.3 Layered coding

Layered coding is used to divide a video into bitstreams of different
importance. First there is a base layer which only offer a rudimentary quality,
then there are several add-on layers that increase the quality and in some cases
the resolution. The advantage of using layered coding is that the base layer can
be sent with high priority and the add-on layers with best effort. This means
that the client will be guaranteed to get an image of basic quality and a better
image if the resources allow it. When there are clients with different amounts
of available bandwidth, they can receive as many layers as they can handle.
When the network is congested the sender can chose to send only a few layers.

The drawback with layered coding is that it increases the complexity in
encoding, decoding and transmission. It might also reduce the degree of
compression due to the extra information that is needed to define the different
layers.

2.4 Error concealment

Error concealment techniques in the decoder can reduce the impact of a lost
packet.  The more advanced the technique is, the better the result will be.

A common way to conceal a lost part in an image is to use a spatially or
temporally adjacent area. If a whole frame is lost, there are several ways to
handle it (See Fig. 3). The easiest way (Alt. 1) is to skip the lost frame and
pretend that it was never there. A better way (Alt. 2) might be to show the
previous frame once more. The most advanced way (Alt. 3) is to keep the most
recent frames in a buffer. The receiver shows a couple of frames before and
after a loss longer times to cover the missing piece of the signal.
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    Alt 1. Skip frame

    Alt 2. Replace
                frame

    Alt 3. Stretch
              neighbours

                  t

Lost

Lost

Lost

Fig. 3 Handling of frame loss

2.5 Jitter

Jitter can be explained as the difference between consecutive packets’
transmission delays. Depending on how a video stream is multiplexed with
other traffic, delays will appear and the jitter will thereby increase.

By smoothing the output from a server, induced jitter can be reduced. This can
be done either by having a previously smoothed video file (constant bit rate
CBR) or by using buffering to send a variable bit rate (VBR) coded file as
CBR.

To accommodate the impact of jitter, a buffer can be used at the client side.
The purpose of the buffer is to store at least the amount of data that is required
to compensate for the expected jitter magnitude. A drawback with the buffer is
that it introduces a delay at the receiver. The delay might be disturbing if the
communication is two ways but has no particular drawback if the
communication is one way.

2.6 Problems with VBR

One problem that appears when coding video is that the bitrate required to
represent different frames varies heavily depending on the content. This kind of
behavior is called VBR. When transmitting data on networks, it is preferable to
have a constant bitrate because sudden peaks may overflow buffers and cause
packet loss.

There are several techniques to handle the VBR behavior, some of them are
presented under sections 2.7 Smoothing techniques and 2.8 Rate control.
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2.7 Smoothing techniques

Smoothing is a way to reduce the variations in bitrate. There are several ways
to smooth a videostream:

• Temporal multiplexing: using one buffer per stream to smooth the output
can reduce the peak bandwidth requirements at the price of introduced
jitter.

• By statistically multiplexing several independent streams together, we get a
bandwidth demand that converges towards a normal distribution. This kind
of smoothing introduces no delay.

• By using a work-ahead buffer1 ([15], [17]), the variability can be reduced
by introducing a delay (considering non real time content). There has to be
enough buffer space in the receiver to regain the timing for the decoder.

In [15] and [17] the authors have worked on and evaluated work-ahead
smoothing techniques that reduce the rate variability when transmitting stored
video from a server to a client across the network. The problem they have
focused on, is how to transmit a video as smooth as possible to a client with a
fixed buffer without starvation or overflow. The solution to this problem is to
schedule the transmission so that the variance and peak rate are minimized.

The scheduler has an algorithm that uses the frame sizes of the movie and the
receiver’s buffer size as inputs. The algorithm divides the movie in different
segments by looking at the required bitrate for the frames. Each segment is
then transmitted with a constant bitrate corresponding to the segments’
average. With a VBR video as source, the peak rate and the standard deviation
can be reduced by 70 to 80% using this technique (with a buffer of only 1 MB
and for a video stream of 1.25 Mbps).

 Bitrate

          Time

Fig. 4 Bitrate allocation over time

                                                       
1 A work-ahead buffer works like the buffer that was discussed under section 2.5 but in this
case it stores much more data to accommodate variations in the movie bitrate as well as the
jitter.
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When one segment is being transmitted, the bandwidth is renegotiated for the
next segment as early as possible (depending on the buffer capacity), in order
to meet the coming demand (see Fig. 4). By prefetching a part of the next
segment in advance, the bandwidth demands of the next segment can be
reduced. A network manager keeps track of the network resources so that they
are not overbooked.

The authors of [15] try to increase the bandwidth in smaller steps than the
authors of [17]. The advantage is that it is more likely to get a little bit extra
bandwidth from the network manager than a huge amount. The drawback with
small increases is the amount of overhead. Therefore, all bandwidth
negotiations are done in advance and the schedule is approved before the
transmission starts.

If an increase in bandwidth is denied the sender has to dynamically decrease
the quantiztation level to reduce the bitrate, choose another path, or allocate
more buffer space in the client.

To cope with transmission jitter the algorithm must not empty or fill the buffer
totally. A high- and low- watermark is calculated to handle early packets and
the worst expected delay. If the jitter characteristics are known, it is possible to
set the watermarks optimally and achieve better performance.

Network performance basically depends on peak-rate and burst characteristics.
Therefore these smooth streams generated by scheduling and prefetching ought
to consume less resources.

The authors of [15] have made a comparison of the use of smooth streams on
two different kinds of network services, deterministic guaranteed service and
renegotiated constant bitrate (RCBR).

Deterministic guaranteed service increases the performance by using temporal
multiplexing. Statistical multiplexing is not allowed because of the strict
quality guarantees. The advantage of deterministically guaranteed service is
that the performance is guaranteed, but at the cost of added delay (due to the
temporal multiplexing) and potentially low utilization.

RCBR is like constant bitrate (CBR) but with functionality for bandwidth
renegotiation. RCBR does not use temporal multiplexing, performance is
increased by using statistical multiplexing of network resources via a
bandwidth renegotiation mechanism. The advantages with RCBR are low delay
and potentially high utilization, the drawbacks are renegotiation overhead and
lack of deterministic guarantees. When using RCBR together with the
scheduling algorithm, capacity is reserved to handle the peak in each interval.
For every new interval, the bandwidth is renegotiated.
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2.8 Rate control

Bolot and Turletti (among many others) have worked on rate control
mechanisms [11]. Rate control (see Fig. 5) is useful for two different things, to
send a VBR video stream on a CBR channel and/or to adapt to congestion in
the network. The main idea is to decrease the quality for the more complex
scenes and increase it for the less complex ones to achieve a constant bitrate, or
to adapt to congestion

There are different ways to adjust the output rate from an encoder. The rate can
be reduced by decreasing the sampling rate, increasing the quantization step
size, or by increasing the movement detection threshold. By changing these
parameters in the opposite way the rate is increased. Common for all these
techniques is that a reduction in bitrate implies a reduction in quality.

Rate
Control

Encoder Buffer ChannelVideo
input

Fig. 5 Rate controler

2.9 New protocols for real-time traffic

During mid nineties and forward, several new protocols have been designed to
support the transfer of real-time video.

The real-time stream transfer protocol (RSTP) offers client-server transfer
functions for transmitting audio or video. The main idea with RSTP is to adopt
the transfer rate to the conditions in the network. The video stream is first
divided into cyclic timeslots. Depending on the situations in the network, the
server and in the client, the data rate can be adjusted.

Real-time transport protocol (RTP) consists of two different protocols, the RTP
that transports the payload data over UDP and the real-time transfer control
protocol (RTCP), that is used to report traffic conditions from the clients to the
server. Functions that are supported by RTP are loss detection for quality
estimation and rate adaptation, sequencing of data, intra- and intermedia
synchronization, source identification, and basic membership information.



15

The protocols use two different channels and the transmission is best effort.
Using best effort may result in packets being lost, without retransmission
(because UDP is used). All members on the RTCP-channel send regular reports
about how much data they have sent (if any) and how well the data on the
RTP-channel is being received. If certain amount of these messages get lost,
the RTCP sees this lack of feedback as an indication of general packet-loss.
When this accurs, RTCP request the sender to adapt its transmission-rate to
avoid further packet-loss.

The resource reservation protocol (RSVP) makes it possible for applications to
reserve resources along the path from the source to the destinations. RSVP has
to be implemented in each router on the way, and in the end system. The end
system reserves bandwidth and buffer space in each router passed from source
to destination. In this way, a certain QoS1 can be guaranteed. Both unicast and
multicast delivery of data is supported by RSVP.

2.10 Traffic shaping

When sending stored video, it is desirable to do it smoothly and not all at once.
The reasons are that:

1. Bursty transmission could congest the network.
2. A very large buffer would be needed to be able to see it.
3. In many cases, the capacity is low and it would take a lot of time to first

download the video and then view it.

The solution to all these problems is to send the file in the same rate that is
needed to view it. A way to accomplish this is to use traffic shaping

Shaping the traffic can save a lot of bandwidth, especially when the sources are
bursty. However, this is done at the expense of increased delay, and the
shaping is therefore limited by how much delay that is tolerable.

2.10.1 Leaky bucket

A common way to limit the burst size and transmission rate is to use the leaky
bucket algorithm. The leaky bucket algorithm consists of two parts (see
Fig. 6), a token pool of size N and tokens. Tokens are generated at a fixed rate
of R tokens per seconds and are stored in the pool.

                                                       
1 QoS – Quality of service is a concept used to describe properties like throughput, delay and
priority for a network service.
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Leaky bucket scheme
   Arriving    Buffer                  Departing
   packets                  packets

    Dropped
    packets

           Token
           pool

      Arriving Tokens
      at rate R

SERVER

Fig. 6 Leaky bucket

The token pool cannot contain more than N tokens. When a packet departs, it
consumes one token. If there are no tokens left in the pool the packet is queued.
If the queue is full, the packet is lost. With a pool size of N = 1, the packet
transmission rate becomes equal to R.

There are two ways to save buffer space: either to increase the pool size N or to
increase the token generation rate R. But to smooth out bursts, the pool size
must not be too large and it is thus better to increase R.
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3 Discussion of problems related to streaming of video

This discussion addresses problems with streaming of data: jitter, delay, clock
synchronization, sending rate, process scheduling and the clients’ capacity.

3.1 Dealing with jitter and delay

A common problem when sending data over a medium shared with other traffic
is the introduction of jitter and delay on the way from the sender to the
receiver. The jitter is due to bursts of traffic from other sources and is hard to
avoid. Delay is introduced at bottlenecks like congested routers and by
propagation.

The solution is (as described in 2.5) to have a buffer that removes the jitter and
congestion control to minimize delays.

3.2 The issue of clock synchronization

There are two issues regarding synchronization that generally cause trouble:

• Synchronization time between sender and receiver clocks.
• The variation in time due to fluctuations in the server clock frequency.

Dedicated MPEG decoder set-top boxes, connected to a TV, are very sensitive
to jitter in the data flow because it limits the possibility to phase lock on to the
signal. NTSC1, for example, needs a long-term signal drift of less than 0.1
Hz/s.

The clock that a computer relies on is by no means 100% accurate, but can
have deviations of hundreds of ppm.

If the deviation that might occur in the server clock frequency can be anend,
and proves to be approximately constant, then it can be compensated for. The
most common solution though, is to use additional hardware offering greater
clock accuracy. In this case the client application extracts the correct frame rate
from information in the bit stream so there is no problem with clock
synchronization.

                                                       
1 NTSC – National Television Standard Committee is a standard for color television in USA
and other countries.
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3.3 Sending at the correct rate

To stream data at the correct rate might be a problem. If the server sends faster
than the viewer can display (due to lack of computing resources or when the
client’s viewing frame rate differs from the server’s), a buffer overrun will
occur in the client. On the other hand, if the server sends to slowly, the viewer
has to make pauses intermittently.

The solution to this is to keep the receiver buffer at a reasonable level. This is
implemented in the following way:

If the buffer starts to get empty, the client sends a message to the server to
boost the sending rate. When the buffer reaches a safer level, the client asks the
server to send at normal rate again.

If the client is temporary loaded with other work or for some reason doesn’t
have enough computing power to display at the given rate, it replays at a lower
rate and buffers the incoming data. When the buffer starts to fill, the client
sends a message to the server to lower the sending rate. If the buffer reaches a
critical level, the client sends a halt message to the server and requests more
data first when the buffer becomes empty.

3.4 Sending smoothly

Another difficulty with video streaming is to send a smooth stream of packets
i.e. small packets often rather than large chunks more rarely.  This problem can
be solved to large extent by using dedicated hardware that forwards the packets
in an even distribution over time. But without dedicated hardware, there are
limitations in granularity from the shortest time a sending process can execute
– 10 ms (see further in 3.5). In reality, a process can only get a timeslot for the
CPU every 20 or 30 ms.

3.5 Scheduling contention

In UNIX, several processes can run concurrently. To accomplish this, a
scheduler must divide the CPU time between the processes (since only one at a
time can occupy the CPU). This usually causes a competition between the
processes for CPU time, which is referred to as scheduling contention.
Commonly the scheduling has a resolution of 10 ms time slices1 (for example
on an Intel processor system). Due to this fact, it is not possible to get a very
good granularity in the scheduling.

                                                       
1 A time slice is the shortest time interval that a process is granted to run uninterrupted.
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There are some tricks though: if a process has finished its work before its time
slice has ended, it can force a context switch1 by calling sleep.

To ensure that important processes like the kernel2 get the time it needs, there
are different levels of priority. If a process with high priority has work to do, it
will preempt a process with lower priority. When processes with similar
priority are running or waiting to run, the priority of the running processes is
reduced for each time slice and a context switch will eventually occur.

For each time slice, the scheduler checks which process to run next. The choice
of time slice length is a balance between being able to handle external events
quickly enough and not to waste all time on scheduling, since each context
switch takes about 0.1 ms.

3.6 Client capacity

One of the difficulties on the receiver side is that the replay of compressed
video with a rate of several Mbps needs a lot of computing power. A standard
PC (200 MHZ Pentium 64 MB) can hardly handle more then 1.5 Mbps of
H.263 coded video (CIF, 8 fps) and a better PC maybe 3.2 Mbps with 12.5 fps.
Most of the process time is consumed to decode each frame. The required
computing power increases with the frame rate at constant bit rate. If
uncompressed video is received, less computing power is needed and greater
bit rates can be handled. But sending uncompressed video wastes a lot of
bandwidth though - 3.1 Mbps of uncompressed video has about the same
quality as 400 kbps of H.263 coded video. It is useful though to see how high
bit rates that the receiver can manage (tests have shown that 6.2 Mbps of
uncompressed video present no problem for a standard PC).

                                                       
1 Context switch occurs when the operating system stops one process and starts running
another. A context switch is often caused by to external events like data being available on a
device.
2 The kernel is the most essential part in operating systems, responsible for resource allocation,
low-level hardware interfaces, security etc.
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4 Methods

The video server is software based and written in portable C-code that can run
on a standard PC, with Mbps performance. By not relying on hardware
solutions, the product becomes cost effective, flexible and easier to modify.

The video files are accessed via a web interface. It uses header files with
description of where the video is located as well as necessary data to stream
and view it.

In order to view video files, there is also a receiver part needed, which buffers
and decodes the incoming data. The receiver handles uncompressed video and
the H.263-coding format. The server, though, is not restricted to any format.

4.1 Experimental setup

The experimental setup (see Fig. 7) consists of a server1 and “The SnifferTM”
traffic analyzer connected to the common network via an Ethernet hub. Two
clients2 were also connected to the common network. Since both the clients and
the server were connected to a switch, they did not have to compete with other
computers for the bandwidth. The server, clients and analyzer were all
equipped with 10 Mbps Ethernet cards.

The traffic analyzer was used to measure the inter-arrival times for each packet
from and to the server, and the traffic load.

Several trials of each test were done and representative results were selected
for presentation.

                                                       
1 A 180 MHz Pentium Pro 64MB running Linux (RedHat 5.1).
2 A 200 MHz Pentium MMX PC with 64 MB RAM, running Windows NT (4.0) and a 400
MHz Pentium II PC with 128 MB RAM, running Windows 98.
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4.2 Video format

The video format that was used in this application is H.263 and uncompressed
video. This format was chosen because:

1. H.263 is suitable for this kind of application since it can recover from loss
of data.

2. Source code for a viewer was available for modification to fit the client.

3. An H.263 encoder was also available, which allowed different resolutions,
frame rates and bit rates to be produced.

The CIF format (352 x 288) was chosen for the tests and frame rates of 8.3,
12.5 and 25 frames per second was coded in bitstreams 200 to 3200 kbps. The
frame rates 8.3 and 12.5 might seem odd but origintes from the fact that the
movie had 25 fps and when capturing every other frame, the output is 12.5 fps
and for every third, the output is 25/3 which is appr. 8.3 fps.

Since only a short part of a movie was available as uncompressed video (90 sec
corresponding to 450 MB), the server was set to loop through the source file.

The server is by no means restricted to send H.263 and uncompressed video
but it might need modifications if there are specific needs for a particular
format.

Ethernet HUB

Server

Traffic analyzer

Client 2

LAN switch

Common Network
       10Mbps

Client 1
Fig. 7 Experimental setup
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4.3 Sending with UDP

UDP is used to send the video because it is the only protocol (of TCP and
UDP) that may send at a fixed rate even under high network loads and
contending streams. TCP uses a mechanism called multiplicative decrease
congestion avoidance – which means that when a packet is lost the sending rate
halves. TCP would unavoidably lower its bit rate under congestion and the
receiver could not view the video at the correct frame rate or would have to
make pauses now and then to fill its buffer.

In shared networks, you can take advantage of TCP’s back off and get a larger
share of the bandwidth if you send via UDP.  On the other hand, UDP gives no
guarantees that all of the data will reach its destination. Therefore the viewer
has a loss–recovery mechanism to make use of the data that comes through.
H.263 have such a mechanism.

One might think that TCP could be used in conjunction with a receiver buffer
to handle the decrease in rate under congestion. But when sending at high bit
rates, it is hard to compensate longer fluctuations because it would require a
huge buffer. Therefore, almost every video streaming application uses UDP.

4.4 Rate control mechanism

The rate control mechanism that handles the rate and shape of the streaming is
located both in the client and in the server.

4.4.1 Server side

When the rate control mechanism gets a new job it assumes a timeslot every
20ms. Furthermore it gets the MTU as input, either as a parameter when the
server is started or from a predefined value: 1500 bytes is the standard size
MTU used on most networks which leaves (1500 -20 for IP header -14 for
UDP header) 1476 bytes available for payload.

The next step is to calculate how many packets that need to be sent during each
timeslot. If the timeslots occurs every 20 ms and rate is 409600 Bps and the
available payload is 1476 byte we end up with (409600 * 0.02 / 1476) = 5.55.
Since it is not possible to send 5.55 packets, the algorithm decides to send 6
packets per timeslot with a payload size of  (1476 * 5.55 / 6 =) 1365 bytes. The
alternative approach would be to send a different amount of packets each
timeslot.
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The scheduling works such that a process starts at a certain time and sends the
amount of packets it is supposed to (6 in the example above) and calls sleep
when done. During the time when the process is inactive, other processes can
execute.

If the 20 ms assumption proves to be wrong or if the CPU is busy with other
processes during some of the timeslots, actions has to be taken. As a reference,
the process keeps track of how much data has been sent as well as for how long
it has been sending, and consequently how much data that should have been
sent. The getttimeofday1 function is used to get an instantaneous estimation of
how much data that should have been sent for the moment.

If the two amounts of data differs by more than 0.1 s times the bitrate then
more or less packets are sent in each of following timeslot until the problem is
corrected. To avoid conflicts with the other sending processes these corrections
are averaged out over time.

One might think that in a system with several concurrent sending processes
there should be a variation in how often a process gets a slot. Thorough tests
have shown though that this is not the case. Each process gets to run almost
every 20 ms. One idea of where the 20 ms originates from is that it might have
been inherited from older days when the computers used the power frequency
to control the timing.

                                                       
1 Gettimeofday is a function that returns the current time of the system clock with microsecond
resolution.
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4.4.2 Client side

The client is involved in the rate control in the way that it forwards requests
about the bit rate to the server.

There are four states in which the server can stream data to the client:

Normal The server sends at the same rate as the coded bit rate.
Slow The server sends slower – set to 70% of normal rate.
Boost The server sends faster – set to 120% of normal rate.
Halt The server halts and waits for a new command from the client.

The following rules are set up to handle the client buffer:

If more than 85 % in buffer Send Halt
If more than 30 % in buffer And current state halt Wait
If less than 30 % in buffer And current state halt Send Slow
If more than 75 % in buffer Send Slow
If more than 2 s of video in b. And current state boost Send Normal
If less than 1 s of video in b. Send Boost
If less than 1.25 s of video in b. And current state slow Send Normal

The buffer size is set to 2 MB and consequently it can handle different amounts
of video (max 5 s for a 3.2 Mbps stream and up to 80 s for a 200 kbps stream).
The aim is to have at least 1s of content available in the buffer and still space to
store an incoming burst of data.
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5 Presentation and discussion of results

5.1 The application

The video streamer application consists of two parts: the server and the client.

The server part handles requests from several clients and streams the requested
data at the same rate as the video was coded for.

On the client side, an application has been written to work as an interface
between the server and a viewer. It sends requests to the server, receives data,
buffer and forward the incoming data to a viewer.

The server runs in a UNIX environment (in this case Linux) and is
programmed in C to make it portable and platform independent. The client
(also written in C) is built for personal computers running Microsoft Windows
.

The user interface is a web page where the user clicks on the video stream that
he or she wants to access. The link on the web page points to a header file that
contains necessary information to establish a connection to the video stream
server.

See figure 8 for an overview of the system.
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Fig. 8 Overview
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5.2 How the receiver/client part works

When a user clicks on a link to a video header file on the web server, the
browser retrieves that file. The file extension of the header file is associated
with the receiver program, which is started and gets the downloaded header
filename as input. The header file contains information about the server that
has the file: the actual filename, the video format, the coded bit rate of the file
etc. The client program then allocates a local port1, and sends a request to the
server address and port indicated in the header file. The request consists of the
video filename and the bitrate. The client then waits for the server to begin
streaming the requested file on the same local port as it sent the request on. The
client then waits for about 1.5s before it starts to display the video. This is done
to fill the buffer with at least 1s of video to handle jitter and delay.

A feature with the displayer in the client is that it is possible to expand the
visible image fourfold. This feature adds 25 to 40% to the CPU load that the
client already causes.

See scenario (Fig. 9) for the course of events.

                                                       
1 The TCP/IP protocols use ports (also referred to as sockets) to distinguish among multiple
destinations on a computer with a certain address. TCP/IP identify the ports by using small
integer numbers (usually 1-65536). An application is almost free to chose the port number it
wants to be associated with, but some are reserved for common services like email, ftp and
telnet.
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Fig. 9 Scenario of a video stream session

The user clicks on a video link
on a web page. The browser
downloads the file and opens the
associated program - our client,
and passes the file as an
argument. The client then
interprets the file and sends a
request for the video to the
server mentioned in the file

The server starts a
sending process that
opens the requested
file and sends it to
the client at the
requested rate.The client puts the first packets

(corresponding to approx. 1.5
sec) in the buffer and then starts
to view the video.

There are delays and the buffer
reaches a low level (less than
1s). The client asks the server to
send faster. The sender receives

the message and
increases the
sending  rate.

Bufferstate reaches full (75%).
The client asks the server to
send at normal rate.

The sender receives
the message and
sends at normal rate

Client Server*

Send request

The movie is received and the
client terminates as soon as it
has showed what was left in the
buffer.

The movie has been
delivered and the
sending process
terminates.

* When the server receives a request, it starts a new process that
handles the client. Then it continues to listen for new clients. In
this figure the server line represents the server receiving the
request and the sender doing the rest of the actions.
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The receiver has an independent thread1 that receives the incoming data and
puts it into a buffer. The receiver thread runs at high priority to minimize the
possibility that packets are lost if the socket’s receive buffer gets full. If the
buffer is becoming full, a message is sent to slow down the sending rate, and if
the buffer state reaches a critical level, a halt message is sent. As soon as there
is enough space in the buffer a “start send” message is issued to the server.

If the buffer tends to empty, the client sends a request to get a higher rate from
the server.

5.3 How the sender/server part works

The server waits for requests on a certain port that is specified at startup (see
Fig. 10). When a request arrives, the server starts a new process that handles
the request while the other process waits for further requests. The new process
interprets the request and starts sending the requested file at the requested rate
to the client that sent the request. The address and port issued request identify
the client.

If the receiver/client stops to receive packets (the user quits the application for
example), an error condition2 occurs and the sending process stops to send and
terminates. The sending process also listens for messages from the client.
Messages could be to slow down, halt, increase the rate etc.

Fig. 10 Server overview

                                                       
1 Threads are in large extent similar to running several processes on a single CPU. The main
idea is that you want to let several processes run concurrently.
2 When the client stops to receive packets, the client computer sends an ICMP (Internet control
management protocol) message to the server computer that asks it to stop sending. As a
consequence of this message the server computer shuts down the port it sends on. Then the
sending process will receive a “port unreachable” error when it tries to send and quits
streaming.

Server waits
for requests

Start a new process that handles the
request and wait for new requests

Start to send the
requested file to the client

Terminate
when file
transmission
is done or if
the client stops
to receive.

Handle requests
from the client

Incoming
request
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5.4 Performance

The implementation of the video server offers a time granularity of 20 ms per
stream, but with three concurrent streams for example, two can run on even
and one on odd tenths of milliseconds (see Fig. 11). Hence a 3.15 Mbps stream
would send 8 kB of data every 20 ms distributed over 8 UDP packets of 1 kB.

See Appendix A for the values from a measurement of a run with two 3.15
Mbps and one 1.6 Mbps stream

The server (running on an average PC – Pentium Pro 180 MHz, 64 MB) is
capable of handling up to 10 Mbps (due to network configuration constrains
using 10 Mbps Ethernet) without any degradation in performance. Tests have
been done with three concurrent streams of 3.15 Mbps each.

The server CPU utilization when running this test was less than 5% why one
can say that CPU power is not a concern. One might be tempted to use the free
capacity for something else, but then, the sending performance might be
reduced severely because the sending processes would not get their sending
time-slot as frequently as needed.

What is more important than a fast CPU to achieve high performance is a disk
drive that is capable of delivering several concurrent streams under a prolonged

16:25:04.66

16:25:04.67

16:25:04.68

16:25:04.69

16:25:04.70

In every other timeslot there are two
processes that send every 20ms. And in
the other there is only one. Every
process can also send different
amounts of data.

8x1024 Bytes

4x1024 Bytes

16:25:04.66

Fig. 11 Example of the scheduling of two 3.15Mbps and one 1.6Mbps stream
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time. In this case a simple IDE-drive1 has been used, but if one wants to serve
many clients, ultra-SCSI22 drives are preferred.

If one is to provide a video on demand server, many disk drives are required to
store the movies. Hence the load on each disk drive would be less than in the
single case (if not all customers want to see the same movie at the same time).

What is also very important, is that the video files is not fragmented on the
disk. As files are created and deleted in the file system, the free space becomes
split into smaller non-contiguous blocks. When a large file is saved on a system
where the free space is split into several small blocks, the file cannot be stored
in one piece, but becomes scattered across the file system. Later, when the file
is accessed, the file system has to seek for the parts to retrieve the data. The
seek time degrades the performance.

The solution to fragmented files is to use defragmentation software that rebuild
the file structure and consolidates the fragmented files into contiguous blocks.

                                                       
1 IDE – Integrated Drive Electronics, is an interface used to connect internal storage devices to
the computer’s bus. One IDE interface can handle two devices, one of them referred to as
Master runs with priority and the other is referred to as Slave.
2 SCSI – Small Computer System Interface, is an interface used to connect devices like hard-
drives, CD-ROM, printers, scanners etc. to one single adapter card on the computer’s bus.
Ultra-SCSI2 is an extension of SCSI that allows a higher throughput rate (40 MBps compared
to 5 MBps for SCSI). Besides the ability to connect up to seven accessories in a chain – both
internal and external, SCSI devices also consume less CPU-time compared to IDE-devices.
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6 Measurements under load

In order to get a better view of the client-sever capabilities in a network with
heavy background traffic, a new experimental setup was established. Although
several measurements series have been carried out, only one will be presented
here because the behavior was quite similar.

In the new setup, a traffic simulation application - Chariot from Ganymede,
was used to generate background traffic. A network monitor and analyzer,
NetVCR from Niksun was used instead of the previous monitor “The Sniffer”.
To get a better understanding of the new setup the NetVCR monitor and the
Chariot software is discussed briefly.

6.1 NetVCR network monitor

The NetVCR network monitor is an instrument developed by Niksun Inc. for
passive monitoring, analysis and management. The fact that the instrument is
passive means that it does not affect the network that it measures in any way.
When a measurement is carried out, the instrument is connected to a point in
the network where the interesting traffic passes. A typical choice of point is an
aggregation point like a hub, switch or router. In the switch and router case the
instrument is connected to a port that mirrors the traffic on the other ports to be
able to see all the traffic.

The NetVCR monitor is based on a portable high performance PC (see Fig. 12)
running FreeBSD UNIX. As standard configuration the monitor has two fast
Ethernet network interfaces for measurement and one interface for remote
control of the device.

At the beginning of a measurement, all data (the complete packets) are stored
in the monitor, but when the storage space becomes full, the monitor discards
the complete packets of the oldest data and revert to storing only the statistics
about the packets.

To make it easy to access the instrument remotely from virtually any platform,
the graphical user interface is built up as a web page and the instrument runs a
web server to provide the content. Since the instrument stores packets from
networks that it monitors, a firewall is built in to prevent unwanted access of
the data. The most secure way though to operate the system is to disconnect the
remote control interface.

Fig. 12 NetVCR network monitor
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The statistics that the monitor collects can be presented in many ways. First of
all the time interval of interest is entered (monitoring can occur for several
weeks or months). Next the monitor shows the link level statistics – how much
of the traffic that is represented by each link protocol  (IP, ARP etc) as well as
a graph of bit and packet rate over time. Another list shows the destination and
source of the traffic. At this stage it is possible to follow the tree like structure
of the statistics in many ways by clicking on a certain protocol or host.
Example of a sequence might be: IP > UDP > host 131.115.159.214 which will
display all the UDP traffic from host 131.115.159.214 under the chosen time
interval in a two graphs – bits vs. time and packets vs. time.
Logical expressions can be entered to do more advanced filter functions.

6.2 Chariot

Chariot is a traffic simulation application from Ganymede Software Inc. It
consists of a console application and several node applications. The application
is used to test network equipment and software by generating real traffic
between its nodes. Each node runs on its own computer and traffic is generated
between pairs of nodes or by multicast. All configurations are done from the
console application, which also collects statistics about the simulation. Chariot
uses scripts to describe each traffic type like telnet, http text and NetMeeting.

6.3 Measurement setup

First a traffic mix was set up in Chariot consisting of:

Traffic type: Protocol:
Http text transfer TCP
Http gif transfer TCP
File transfer TCP
NetMeeting UDP
POP3 TCP
Telnet TCP

The test network (see Fig. 13) consisted of five computers and a monitor
connected to each other via a hub.
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Hub

Video Client +
Chariot Node

Video Client +
Chariot Node

Chariot Node

Video Server

Video Client +
Chariot node +
Chariot console

NetVCR Monitor

Fig. 13 Measurement test network

Three of the computers (running windows) acted as clients for the video and all
computers except the server acted as nodes for Chariot. The test sequence
begun by first starting the background load from the Chariot console, then five
clients were started, one at a time at the 3 windows computers. The background
load was about 8 Mbps (see Fig. 14) before the clients started to retrieve its
data. Of the 8 Mbps, the file transfer represented the largest part.

Fig. 14 Measurement of Chariot output (bits / time)

When the streaming of video started the background load went down to an
average of 2.1 Mbps according to Chariots own analysis with peaks above 8
Mbps (see Fig. 15).
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Fig. 15 Chariot throughput

The five data streams were divided so that the computer running the Chariot
client received 1.6 Mbps while the other two received 1.6 Mbps + 400 kbps
and 1.6 Mbps + 200 kbps. In (Fig. 16) the total amount of data is represented
by the top line while the bars represent the video data from the server. The top
picture shows bytes / time and the bottom picture shows packets / time.
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Fig. 16 Measurement of Chariot and video traffic

As said earlier the measurement started with only the Chariot traffic and the
bottom graph in the picture above shows that the Chariot traffic is pushed back.
Since most of the Chariot generated traffic consists of TCP, it lowers its
sending rate when it meets the UDP video traffic. Had the Chariot traffic mix
contained more UDP traffic the video streams would have faced more
resistance. During the end of the measurement, the Chariot traffic was turned
of and consequently the top line that represents video and Chariot traffic goes
down.

The high peak (15 Mbps) two thirds away in the diagram was rejected as a flaw
in the instruments plotting routine. It disappeared when the peak area was
enlarged.

The longer fluctuations in the diagrams above are due to decreases in the
clients receive rate. As mentioned earlier the client asks the server to slow
down when it can’t display fast enough. One explanation as to why the clients
lay behind might be that the Chariot program and the traffic it produces also
loads the client CPU.
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In the end of the graph the clients are turned of one at a time.

In Fig. 17 each client’s traffic is plotted and compared to the total amount of
video traffic.

Fig. 17 Client traffic compared to all clients’ traffic
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With NetVCR it is possible to zoom in time and Fig. 18 shows a close-up of
the packets to the five clients. The six bars at about 1400 bytes are to two 1.6
Mbps clients, the two long bars are also to a 1.6 Mbps that receives at reduced
rate. The bar at 1050 bytes is to the 400 kbps client and the shortest bar is to
the 200 kbps client.

Fig. 18 Close-up of streams

The data corresponding to the bars in Fig. 18 above is represented in the table
below:

Time Source addr. Port nr Dest. addr. Port nr Prot Payload
17:30:16.638258 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.639407 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.640555 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.641703 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.642851 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.644000 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.647675 131.115.159.214.1300 > 131.115.157.185.4865: udp 512
17:30:16.648878 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.650081 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.650956 131.115.159.214.1299 > 131.115.157.165.1990: udp 1024
17:30:16.658265 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.659413 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.660561 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.661710 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.662858 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.664006 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.667989 131.115.159.214.1299 > 131.115.157.165.1990: udp 1024
17:30:16.669192 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.670395 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.670861 131.115.159.214.1300 > 131.115.157.185.4865: udp 512
17:30:16.678258 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.679406 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.680554 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.681703 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
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17:30:16.682851 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.684000 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.687567 131.115.159.214.1300 > 131.115.157.185.4865: udp 512
17:30:16.688769 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.689972 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.690847 131.115.159.214.1299 > 131.115.157.165.1990: udp 1024
17:30:16.698274 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.699422 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.700570 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.701718 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.702867 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.704015 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.708025 131.115.159.214.1299 > 131.115.157.165.1990: udp 1024
17:30:16.709227 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.710566 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.711144 131.115.159.214.1300 > 131.115.157.185.4865: udp 512
17:30:16.718317 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.719466 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.720613 131.115.159.214.1296 > 131.115.157.185.4858: udp 1365
17:30:16.723125 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.724405 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.725667 131.115.159.214.1297 > 131.115.158.198.2858: udp 1365
17:30:16.727570 131.115.159.214.1300 > 131.115.157.185.4865: udp 512
17:30:16.728772 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.729975 131.115.159.214.1298 > 131.115.157.165.1989: udp 1433
17:30:16.730856 131.115.159.214.1299 > 131.115.157.165.1990: udp 1024

In the destination column above, each client computer is identified by its
address and the port numbers identify each client.

6.4 Comments

The hard part of this measurement has been to quantify how well the video
streaming works. On average, each client had a couple of failures each minute
due to lost data. In approximately half of these failures, it resulted in a visible
flaw – minor part (about 16x16 pixels) of the picture in wrong color for
example. Depending on the application this might be acceptable or not. Some
of the clients had to request a temporary increase in the data rate (2-3 times) to
cover the lost data during a 10-minute period.

Although this experimental setup tried to simulate a real network, it is a
cumbersome goal to fulfill. What is missing in this test is the delay that occurs
in routers on a large network. With high delays the regulating algorithm in the
server and client would be facing a tougher job.

In the beginning of the tests, the Chariot traffic and the video traffic
accidentally mixed with the traffic on the Telia Research LAN. This proved to
cause a constantly lit collision LED on the hub and more losses than the
client’s decoder could correct - the image quality became really poor. But then
again this is not the typical situation in a common network.
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7 Conclusions

The server and client that was built in this thesis shows that it is possible to
deliver 10 Mbps of data shared by several streams from a standard PC. The
system has proved to work well with background traffic.

The data for each stream is delivered every 20 ms. Due to the 10 ms constrains
in the scheduling, it is difficult to get a much better solution with several
streams without using additional hardware.

7.1 Future improvements and additions

In order to get a better shape of the traffic coming out of the server, the data
could be better interleaved. Today, every process sends the packets that are
needed in its timeslot. With a single process that handles the transmission of all
the streams, you could output one packet at a time from each stream in contrast
to the current concept where 8 packets are sent in a row from each stream. This
new sending mechanism would also put less pressure on the receiver, which
then gets packets in a more time-distributed way. There has not been enough
time to implement this though, but it is an interesting idea to continue with.

By using a viewer that utilizes the computing power in today’s graphic cards
and the abilities in the processors multimedia instructions i.e. MMX1 in Intel
and 3DNOW2 in AMD processors, higher frame rates could be handled with a
common PC.

Another solution is to use a hardware decoder. An MPEG2 decoder card for
example would let a common PC decode and view MPEG2 coded video at full
rate. Additional hardware would bring higher costs for the client though and
the concept would become more hardware dependent.

An interesting project would be to make the server recognize different video
formats and adopt the sending rate according to this instead of relying on the
info in the header file.

It would also be interesting to test the server in a 100 Mbps or Gigabit Ethernet
environment network to get a better view of its capabilities.

                                                       
1 MMX is an acronym for Matrix Math eXtensions is a set of 57 extra instructions in Intel’s
newer processor families. The extra instructions are used to perform parallel operations on a
matrix of data. This makes it possible to speed up the process of coding/decoding video.
2 3DNOW is a similar approach from AMD which is implemented in their processor families.
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9 Abbreviations

CBR Constant Bit Rate
CODEC Encoder/Decoder
CBR Constant Bit Rate
CRC Cyclic Redundancy Check
FEC Forward Error Correction
H.261 Video coding standard
H.263 Video coding standard
IDE Integrated Drive Electronics
IEC International Electrotechnical Commission
IP Internet Protocol
ISDN Integrated Services Digital Network
ISO International Organization for Standardization
ITU International Telecommunication Union
MPEG Moving Pictures Expert Group
MPEG2 Generic video coding standard
MMX Matrix Math eXtensions
MTU Maximum Transmission Unit
QoS Quality of Service
PAL Phase Alternation Line (television format)
RCBR Renegotiated Constant Bitrate
RSTP Real-time Stream Transport Protocol
RSVP Resource Reservation Protocol
RTP Real-time Transport Protocol
RTCP Real-time Control Transfer Protocol
SCSI Small Computer System Interface
TCP Transmission Control Protocol
TDM Time Division Multiplexing
UDP User Datagram Protocol
VBR Variable Bit Rate
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Appendix A

Fig. 20 presents a dump of data from the traffic analyzer “The Sniffer” of three
streams from the video streamer. The average load on the network before the
test was below 1% = 100kbps with shorter peaks of 10-30%.

The first column represents the relative time, that was inserted as a reference
instead of the real time, since it was easier to use.

The “Delta T” might seem miscalculated compared to the relative time scale,
but this is not the case. The mismatch is due to limitations in number of visible
decimals in “The Sniffer”.

Stream “1” of 3200kbps was sent to one computer, two streams – “2” of
3200kbps and “3” of 1600kbps were sent to another computer.

The “Length” column represent the packet size with UDP header (8 bytes),
payload is 1024 bytes. If we include the IP header of 20 bytes, the packet size
increases to 1052 bytes. But this is not enough, the packet is sent over Ethernet,
which add its own header called DLC of 14 bytes. Of the 14 bytes, 2*6 bytes is
used for the source and destination Ethernet addresses and 2 bytes for the
Ethertype which in this case is IP. Finally we end up with the total packet size
of 1066 bytes (see figure 19).

Consequently we have an overhead of 42 bytes, which is 4% of the total packet
size when using a 1024 bytes payload. The overhead decreases the usable
bandwidth from 10Mbps to 9.6Mbps.

Fig. 19 Ethernet packet

The maximum transmission unit (MTU) (consisting of payload + UDP and IP
headers) is usually set to 1500 bytes but might be as low as 576 on certain
networks. A packet that is larger than the MTU on a certain network will get
fragmented.  It is usually desired to avoid fragmentation therefore it is better
not to send packets larger than the smallest allowed MTU on the path from the
sender to the receiver. If it is known in advance what the MTU is in the
environment where the server will run, it can be set when the server is started.
If nothing is entered the server assumes the MTU to be 1500 bytes.

Fig. 20 below presents the three different streams and their different send time.

DLC           IP header    UDP        Payload
14 bytes     20 bytes       8 bytes    1024 bytes
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As can be seen in the table, each stream sends every 20ms.

Rel. Time [s] Delta. T [s] Stream Length [B]
0.0000 0.0000 1 1032
0.0009 0.0009 1 1032
0.0018 0.0009 1 1032
0.0027 0.0009 1 1032
0.0035 0.0009 1 1032
0.0044 0.0009 1 1032
0.0053 0.0009 1 1032
0.0062 0.0009 1 1032
0.0070 0.0009 2 1032
0.0079 0.0009 2 1032
0.0088 0.0009 2 1032
0.0096 0.0009 2 1032
0.0105 0.0009 2 1032
0.0114 0.0009 2 1032
0.0123 0.0009 2 1032
0.0131 0.0009 2 1032
0.0140 0.0009 3 1032
0.0149 0.0009 3 1032
0.0158 0.0009 3 1032
0.0166 0.0009 3 1032
0.0200 0.0034 1 1032
0.0209 0.0009 1 1032
0.0218 0.0009 1 1032
0.0227 0.0009 1 1032
0.0235 0.0009 1 1032
0.0244 0.0009 1 1032
0.0253 0.0009 1 1032
0.0261 0.0009 1 1032
0.0270 0.0009 2 1032
0.0279 0.0009 2 1032
0.0288 0.0009 2 1032
0.0297 0.0009 2 1032
0.0305 0.0009 2 1032
0.0314 0.0009 2 1032
0.0323 0.0009 2 1032
0.0331 0.0009 2 1032
0.0340 0.0009 3 1032
0.0349 0.0009 3 1032
0.0358 0.0009 3 1032
0.0366 0.0009 3 1032
0.0400 0.0034 1 1032

Fig. 20 Dump of 3 concurrent streams, 1 and 2 are 3200kbps,  3 is 1600kbps
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The heights 1, 2 and 3 (in Fig. 14) represent the three different streams. The
empty “slots” between 0.0166 - 0.200 and 0.0366 - 0.0400 are due to the fact
that one of the streams only send at half the maximum rate (when using three
concurrent streams of 3200kbps each).
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Appendix B

The header file is used to describe the video (type, rate, and name), where it is
located (address) and how to access it (port number). The header file has the
suffix vhf (video header format) which is used to associate the file to the client
application in the Microsoft Windows environment.

Structure of the header file:

#Header file for streaming video
FILE=jur400cif25.263
PORT=6563
SERVER=131.115.157.234
RATE=3200
TYPE=0
#End of file

FILE is the filename of the video file on the server.
PORT is the port number to which the server is listening for requests
SERVER is the IP address of the server
RATE is the desired rate (in kbps) for sending the data - set to the same rate as
the video was coded to.
TYPE specifies which type of video it is, in this case 0 = 263 and 1 =
uncompressed.


