
Last modified: 99-06-24 1(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Automated Testing of
SNMP Controlled

Equipment

by Martin Gunnarsson

a Master’s project report
at KTH Department of Teleinformatics,

performed at Ericsson Telecom AB

Last modified: 99-06-24 2(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Abstract

This report describes the work I have performed during my Master’s project at Erics-
son Telecom AB, Älvsjö. The purpose of the project, entitled “Automated Testing of
SNMP Controlled Equipment”, has been to investigate the possibilities of performing
automated tests on network devices using SNMP (Simple Network Management Pro-
tocol). The particular device of interest was the AXD301, an ATM switch developed
by Ericsson Telecom. The tasks included the design of a testing methodology, i.e. a
model of an SNMP testing platform, and the implementation of a test tool prototype.

The first part of the report provides the reader with a theoretical background to net-
work management in general, and the SNMP framework in particular. I also briefly
describe testing procedures and automated testing issues. The second part describes
the actual work I have done. A model for automated SNMP testing is presented, as
well as an implementation of a SNMP test tool prototype.

Last modified: 99-06-24 3(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Contents

1. Project description 5
1.1 Problem definition 5

1.2 Goals 5

2. Network management 6

2.1 Network management basics 6

2.2 Network management areas 7

2.3 Network management protocols 10

3. SNMP 11
3.1 Architecture 11

3.2 SMI and MIBs 11

3.3 The SNMP protocol 14

3.4 Proxy agents 19

3.5 Security aspects 20

4. SNMPv2 21
4.1 SMI extensions 21

4.2 Protocol extensions 22

4.3 SNMP / SNMPv2 coexistence 25

5. SNMPv3 26

6. Existing test tools 27
7.1 SNMP Test Suite 27

7.2 SNMP Tester 28

7.3 SimpleTester 28

7. System under test 29
7.1 AXD301 Switching System 29

7.2 SWS 31

7.3 Testing 31

8. Automated testing 34
8.1 Testing terminology 34

8.2 Thing to consider when automating tests 35

9. Model of an SNMP test tool 37
9.1 Task and requirements 37

9.2 Conceptual model 38

9.3 Components 39

9.4 Example setup 40

9.5 Test execution 41

9.6 Test case specification language 44

Last modified: 99-06-24 4(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

9.7 Test result log 49

9.8 Test execution flowchart 50

10. Implementation 53
10.1 Choice of programming language and development tools53

10.2 Implementation description 54

10.3 Differences between model and implementation 56

11. Conclusions and future work 57
11.1 Design properties 57

11.2 Future extensions 58

11.3 Evaluation of model and implementation 59

Appendix A - Test case specification language syntax 61

Appendix B - A quick guide to the SNMP Test Tool 64

Acronyms 75
References 78

Last modified: 99-06-24 5(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

1. Project description

This project was done at the Datacom Networks & IP Services unit at Ericsson Tele-
com in Älvsjö. The System Switches department is concerned with the development
of software and hardware for ATM switches and IP switching equipment. The pur-
pose of the project was to investigate the possibilities of performing automated tests
of network units equipped with SNMP agents. The primary system to test was the
Ericsson AXD301 ATM switching system.

1.1 Problem definition

Today it is possible to test the AXD301 using an SNMP interface, but this requires the
engagement of a human operator. A software based tool that allows for automation of
these tests and is able to compare the expected results to the actual ones, would cer-
tainly speed up the testing process. As for now, any modification of the system
requires the same tests to be run once more, a tedious task that takes several weeks.
Many of these tests should be suitable for automation, reducing the testing time to a
few days.

Several of the tests requires certain kinds of stimuli being injected into the system. For
example, one might want to study the performance of the system under pressure, gen-
erating simulated traffic while using SNMP to monitor the system. Other possible
stimuli could be things like accessing the system through a device processor interface,
configuring the hardware in order to generate alarms which, if the system behaves as
expected, should be sent as trap messages via SNMP.

1.2 Goals

The primary goals of this project was to:

• Develop a test methodology for automated SNMP testing.
• Implement a prototype of an automated SNMP test tool.

The focus of the project should be at the first of these two parts.

The test methodology and the prototype should support automated tests on a system
under test through an SNMP interface, while concurrently generating different kinds
of stimuli. Also, functionality for evaluating the test results, based on expected results,
should be provided.

An important part in the design of the test methodology was the specification of the
tests. A command language should be presented, describing variables to be monitored
and configured, stimuli to provide and what result to expect.

Last modified: 99-06-24 6(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

2. Network management

2.1 Network management basics

The International Organization for Standardisation (ISO) defines five major functional
areas of network management (see [1] and [13]):

• Fault management: Detection, isolation and correction of faults in network
components.

• Accounting management: Administrating charging for use of managed
objects.

• Configuration management: Maintaining relationships between network
components and administrating initializing and shut-down of parts or
entire network.

• Performance management: Monitoring net performance in terms of utili-
zation, throughputs etc., and adjusting network resources to improve net-
work performance.

• Security management: Administrating network access, encryption keys
and information protection as well as logs.

Basically, the tasks of a network management system can be divided into two parts:
network monitoring and network control. Each of these parts can be applied to the
areas listed above, as will be described in the subsequent section. Before moving on
though, a couple of concepts need to be introduced.

Fig. 2.1: Typical network management model

Fig. 2.1 shows a conceptual model of a network entity being managed and an entity
managing it. The managed entity is equipped with an agent function (hereby referred
to as the agent) and a number of objects being managed. The managing entity has a
corresponding manager function (hereby referred to as themanager) and an applica-

Management

function
Agent

Managed

network management

Managing device Managed device

application

Manager

objects

functionCommunication through a

protocol (e.g. SNMP)

Last modified: 99-06-24 7(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

tion using the manager for monitoring and controlling of the managed network enti-
ties.

The information to be monitored by a manager can be categorized as follows [1]:

• Static: characteristic data for network entities (for instance, the MAC
address of a router’s interface).

• Dynamic: information on the state of a system (for instance, that a board is
being initialized).

• Statistical: information on what has happened to a system during a certain
time interval (for instance, the average number of packets transmitted by
an interface).

Information to be monitored can be supplied to the manager in one of two ways. A
manager can produce an explicit request for information from an agent residing on a
network entity, a technique calledpolling. Usingevent reporting, an agent can initiate
contact with the manager to send information, for instance when an unusual event or a
fault has occurred. Either one of these techniques is applicable and they can be com-
bined. Which one to use depends on the type of application, as well as factors such as
demand for low management traffic, demand for reliability and robustness.

2.2 Network management areas

Fault management

The primary requirements for a fault management system is detection and reporting of
faults, as well as maintaining logs of errors and unusual events. Especially in the case
of a polling-based system, logs are essential sources of information to the manager. In
the case of systems where agents provides fault information to the manager through
event reporting, it is important to have reasonable high thresholds for fault definition.
If the criteria for fault reporting are too generous, this can result in overloading the
network with fault reports.

Another desirable functionality of a fault management system is the ability to antici-
pate faults. This can be achieved by setting thresholds for certain measured values at
the agents, and generate a fault report when these thresholds are exceeded or fallen
below.

After a fault has been detected, the manager should have means of isolating (i.e.
deciding which part of the network is responsible for the fault) and diagnosing the
fault.

Accounting management

The area of accounting management primarily covers measuring the usage (and com-

Last modified: 99-06-24 8(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

puting the cost of usage) of network resources per user. Especially in the case of a
public service system, there is a need for managing the billing of users. Examples of
resources being used are:

• Communication facilities (such as lines and networks)
• Computer hardware
• Software
• Services

The accounting information collected can be things such as user identity, number of
packets sent, resources used, etc.

Configuration management

The major responsibilities of configuration management is initializing, maintaining
and shutting down components of a system or a subsystem, in short “setting up the
network”. It should implement the ability to perform on-line modification of network
resources, without having to take the entire network down.

Configuration management is also used as the reactive part of other management
functions. For example, if a fault is detected using fault management, configuration
management can be used to configure the network in order to bypass the troublesome
part of the network.

Primary functions included in configuration management are:

• Define configuration information for network resources.
• Set / modify attribute values.
• Define / modify relationships between network entities.
• Initialize / terminate network operations.
• Examine values and relationships.

Performance management

One of the key functionality areas of network managing is that of performance man-
agement. By using indicators that measures the performance of a network, a manager
can monitor and control the managed system by taking appropriate actions, using con-
figuration management.

Indicators can be classified into two groups. Service-oriented indicators are used to
confirm that the services levels that users expect are kept. Efficiency-oriented indica-
tors are used to measure at what cost these services are provided. Primary indicators
in the two categories are:

Last modified: 99-06-24 9(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

One possible problem of having agents residing in network devices gather informa-
tion continuously is the amount of processing required at the node. On a shared net-
work this can be avoided by using an external monitor whose sole (or major) function
is to monitor the traffic on the network.

Another consideration on information gathering is whether exhaustive or statistical
measurement is to be applied. If the traffic load is heavy, measuring every packet sent
and received might prove an infeasible task for an agent. By obtaining statistical sam-
ples, it is possible to estimate the actual value of an indicator.

Security management

The functionality of security management can be divided into three separate groups:

• Maintaining security information.
• Access control.
• Encryption control.

The first part is concerned with monitoring and configuring data such as security keys
and access right information at the agents. Another important task is that of keeping
track of activity (and attempted activity) on the network.

The goal of access control is to prevent resources such as security codes, routing
information, etc. from being accessed by unauthorized users. It is important to protect
network resources from being damaged, either intentionally or unintentionally.

Within the concept of encryption control lies encryption of communication between
manager and agents, as well as encryption at other entities on the network. Adminis-
tration of encryption algorithms and distribution of encryption keys also falls into this
category.

Availability (service-oriented)

Response time (service-oriented)

Accuracy (i.e. error frequency) (service-oriented)

Throughput (efficiency-oriented)

Utilization (efficiency-oriented)

Last modified: 99-06-24 10(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

2.3 Network management protocols

Until the late 1970s there were no actual network management protocols available.
The most useful tool for monitoring networks was ICMP (Internet Control Message
Protocol), a protocol that can be used with all IP-systems. The primary function of
ICMP, as far as network managers are concerned, is theecho/ echo-reply messages,
which can be used to test communication between network entities.

A more powerful means of network management was achieved with PING (Packet
Internet Groper), a program that uses ICMP plus some options in the IP-header. PING
supplies methods to:

• Test communication with nodes on a networks.
• Test communication with a network.
• Verify functionality of nodes on a network.
• Measure round-trip times.
• Measure loss of datagrams.

These basic management tools proved quite useful at the time, but they required oper-
ations from skilled network managers to provide the wanted functionality. As the tre-
mendous growth of the Internet started in the late 1980s, it was apparent that the task
of managing the interconnected networks with these tools simply was not feasible.
The need for a capable and standardized protocol, not requiring expert network man-
agers in the current extent, was growing. Three possible solutions was developed:

• CMOT (CMIP over TCP/IP) was the ISO standard for network manage-
ment.

• HEMS (High-Level Entity Management System) was a generalization of
an early management protocol - HMP (Host Monitoring Protocol).

• SNMP (Simple Network Management Protocol) was based on another
early protocol - SGMP (Simple Gateway Monitoring Protocol).

Of these three, CMOT was chosen by the IAB (Internet Architecture Board) to be the
long-term solution, as a transition to the OSI-based protocols was expected shortly.
As a short-term solution, SNMP was chosen. It was not a more capable protocol than
HEMS, but it was simple and the IAB saw no reason to put too much work into a solu-
tion that was supposed to be temporary.

However, CMOT never had the chance to replace SNMP. After SNMP was introduced
to the network community, it was quickly established as the de facto standard.

Last modified: 99-06-24 11(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

3. SNMP

3.1 Architecture

Within the conceptual model of network management for TCP/IP networks, four
basic components can be identified:

• Management station
• Management agent
• Management Information Base (MIB)
• Network management protocol

A management station (referred to as ‘manager’) is responsible for monitoring, con-
figuring and controlling a number of nodes on a network, each equipped with a man-
agement agent (referred to as ‘agent’). Typical entities that may be equipped with
agents are bridges, hosts, routers and hubs. Basically any node on a network can be
supervised by a manager through an agent, either residing on the node or acting
remotely as a proxy (see section 3.4).

A MIB is a collection of objects representing resources of the node where the agent
resides. Every message sent from the manager to the agent results in reading or con-
figuring an object in the MIB. The MIB does not necessarily contain the information
of interest. It should rather be thought of as a logical representation of the informa-
tion. How a request for monitoring/configuration of an object in the MIB is handled in
order to actually affect the resource is not stated in the SNMP specification, it is an
implementation issue.

The manager and the agent communicates through a network management protocol,
enabling the manager to access objects in the agent’s MIBs. In TCP/IP networks the
standard protocol is SNMP. SNMP is an application-level protocol, using UDP as its
underlying transport protocol. Note that the SNMP protocol, as described in [7], is not
restricted to UDP as its transport protocol, although most (if not all) implementation
uses UDP.

When referring to SNMP one often means the combination of these four components
described above, rather then just the communication protocol. While the protocol
itself is rather simple and straight-forward, the SNMP architecture as a whole is quite
complex.

3.2 SMI and MIBs

The MIB (Management Information Base) is the standardized data structure, not only
for SNMP, but for TCP/IP network management in general. It is a hierarchical struc-
ture, with each leaf being an object of interest to a manager. The data structure should

Last modified: 99-06-24 12(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

not be thought of as an object-oriented structure, since there is no inheritance in the
tree. Rather, it is a logical grouping of related objects, where each node that is not a
leaf describes the category of its underlying nodes. Since simplicity is an important
issue only very basic data structures can be stored in a MIB. To be more precise: sca-
lars and columnar objects consisting of scalars. Columnar objects, which allows more
than one instance of the object itself, have to be grouped in conceptual tables (see Fig.
3.1).

Fig. 3.1: To the left, a single instanced scalar object. To the right, a conceptual table
consisting of columnar objects. One instance of each columnar object constitutes a

row.

To uniquely identify a row in a conceptual table, one ore more columnar objects are
carefully chosen to be indices of the table. More on identifying objects in subsection
3.2.1.

To make the concept of network management with MIBs functionable, two things
need to be considered:

• The information structure for certain resources should be uniform within a
system, i.e. objects describing the same information should have a stan-
dard representation on all network entities. This is accomplished by using
standardized MIBs on all agents residing on nodes of similar types, hold-
ing the same type of information. Also, the manager needs to be aware of
the structure of these MIBs.

• The data representation, i.e. the MIB structure, must be standardized.

The second point is addressed in [6] in which a structure of management information
(SMI) is defined. The SMI describes a standardized detailed representation of MIBs,
including syntax and techniques for object definition. The notation used to represent
objects according to SMI is the Abstract Syntax Notation One (ASN.1).

Due to the complexity of the ASN.1 notation (and thus the formal SMI definition), I
will not address the issue of representation of management information in this report.

columnar object

row

scalar object

Last modified: 99-06-24 13(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

That subject would require a separate report of its own. Note though that this in no
way is an unimportant part of the area. On the contrary, it is indeed essential to anyone
who wishes to understand MIB representation and construction in detail.

3.2.1 Object Identifiers

Each object within the SNMP management framework is identified with anobject
identifier (OID), which is a sequence of non-negative integers. One could think of the
information supplied in a MIB as instances of objects (or variables) that can be
viewed and configured with SNMP operations, identifying them by their OIDs. The
OID itself describes the path to follow in the MIB to reach the leaf representing the
object.

By registering the OID of an object one can make sure that that OID can never be reg-
istered for some other object. Also, the characteristics of the registered object can
never be changed, and it can never be removed.

This might all seem a bit confusing, but an illustration of the tree structure generated
by the OID scheme might clarify matters. The OID strategy was developed by ISO
and CCITT (now ITU), which explains the structure of the top of the OID tree:

Fig. 3.2: A subset of the top levels of the OID tree.

root

ccitt (0) iso (1) joint-iso-ccitt (2)

org (3)

dod (6)

internet (1)

mgmt (2) experimental(3) private (4)
snmpv2 (6)

enterprises (1)

Last modified: 99-06-24 14(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

There are only three values at the top level (0, 1 and 2), corresponding to the three cat-
egories ccitt, iso and joint-iso-ccitt. In the figure the path down tomgmt (with OID
1.3.6.1.2) is shown. Undermgmt lies the primary area for SNMP management infor-
mation, i.e. the standardized MIBs. Underprivate (OID 1.3.6.1.4) one can register
private MIBs by asking IANA (Internet Assigned Numbers Authority) for anenter-
prise identifier. This is suitable for vendors who need to implement specific MIBs for
their products.

Any single instance of a scalar object has an OID consisting of the OID of the object
appended by the suffix ‘0’. An instance of a columnar object has an OID consisting of
the OID of that object appended by the concatenated values of the indices for the con-
ceptual table to which the object belongs. To exemplify this, consider the following
two cases:

• The scalar object classsysLocation has the OID 1.3.6.1.2.1.1.6. The single
instance ofsysLocation then has the OID 1.3.6.1.2.1.1.6.0.

• The columnar object classifSpeed has the OID 1.3.6.1.2.1.2.2.1.5. The
conceptual table in whichifSpeed resides has only one integer-valued
index. An instance ofifSpeed then has the OID 1.3.6.1.2.1.1.5.n, where n
is the single index (if two integer-valued indices had been used the OID
would be in the form of 1.3.6.1.2.1.1.5.n.m).

3.3 The SNMP protocol

As mentioned in a previous section, the SNMP as a protocol is just as simple as you
would suspect judging by its name. There are only three basic messages being sent
between manager and agent:

• GET - retrieves the value of an object in an agent MIB.
• SET - configures the value of an object in an agent MIB.
• TRAP - enables the agent to alert a manager of an event.

The SET and GET messages are sent by the manager and are always followed by a
responding message from the agent. The TRAP message is sent by the agent to the
manager and is the agent’s only means of initiating contact with the manager. These
messages are designed to support a management strategy calledtrap-directed polling.
In a large network with many agents, having a monitoring manager polling the agents
with GET messages results in an unnecessary amount of management traffic. Instead,
by performing thorough pollings with long time intervals, such as once per day, and
having the agents send TRAP messages as a result of unusual events, the traffic load
can be greatly reduced. This strategy also reduces time-consuming processing both at
the agents and at the manager. Notice that the SET / GET messages always spawn a
response message from the agent, while a TRAP being sent to a manager will not
result in a response.

Last modified: 99-06-24 15(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

The SNMP messages enables the manager to monitor as well as configure resources
on the entities on which the agents reside. There are however a number of things a
manager cannot do within the SNMP framework:

• It is not possible to change the structure of a MIB by adding or deleting
objects in it. Only already existing objects can be modified.

• Only leaf objects are accessible to the manager, i.e. a table or a row of a
table cannot be inspected in one atomic action.

• It is not possible to issue action commands to the agent.

The last of these restrictions can be solved implicitly by using an object instance in
the MIB as a trigger. To invoke an action the manager can, for instance, set the value
of a flag or set the value of an object representing a timer. This method is calledaction
invocation.

3.3.1 SNMP messages

In Fig. 3.3 the general format of an SNMP message is shown. The size of SNMP mes-
sages is not defined and is limited only by the packet size of the underlying transport
protocol (i.e. UDP).

Fig. 3.3: General format of SNMP messages

• Version is the SNMP version used (SNMPv1, SNMPv2, SNMPv3).
• Community is the community name, a string acting as a simple kind of

password to authenticate the message (see section 3.5).
• SNMP PDU is the protocol data unit containing the actual SNMP opera-

tion - one of GetRequest, GetNextRequest, SetRequest, GetResponse and
Trap.

Any request PDU sent to an agent will result in a response PDU, while a trap PDU
sent to a manager will be left without confirmation. The sequences of the different
kinds of SNMP PDU exchange between manager and agent are shown in Fig. 3.4.

Version Community SNMP PDU

Last modified: 99-06-24 16(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Fig. 3.4: SNMP PDU exchange sequences

The formats of all request PDUs sent from manager to agent are uniform:

Fig. 3.5: Format of SNMP GetRequest, GetNextRequest and SetRequest PDUs. The

‘error-status’ and ‘error-index’ fields are set to 0.

• PDU type: GetRequest / GetNextRequest / SetRequest
• request-id: message identifier
• error-status: set to 0
• error-index: set to 0
• variable-bindings: list of object instances whose values to retrieve / set

The request-id which is included in all SNMP request messages is used to distinguish-
ing between different requests. The SNMP application can use the request-id to corre-
late incoming responses with outstanding request. It is also useful to detect duplicated
messages.

The format of the GetResponse PDU is identical to those of the request PDUs, but
allows for error information to be included:

Fig. 3.6: Format of SNMP GetResponse PDU

GetRequest PDU

A GetRequest PDU is sent by a manager in order to retrieve the value of one or more
variables (object instances) from an agent.

When the agent receives the PDU it tries to find the object instances listed invariable-

Request PDU

GetResponse PDU Trap PDU

M
a
n
a
g
e
r

A
M
a
n
a
g
e
r

g
e
n
t

A
g
e
n
t

error-
status

error-
index variable-bindingsrequest-idPDU type

error-
status

error-
index variable-bindingsrequest-idPDU type

Last modified: 99-06-24 17(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

bindings and retrieve their values, and then spawns a GetResponse PDU. The format
of a GetResponse PDU is identical to that of a GetRequest PDU but withPDU type
GetResponse PDU. If the agent is able to retrieve the requested value thevariable-
bindings of the returned GetResponse PDU includes a value for each of the object
instances, and theerror-status anderror-index fields are set to 0.

If the operation is unsuccessful, the responding GetResponse PDU has theerror-index
set to the index invariable-bindings of the variable that caused the error, and error-
status set to one of the following:

• noSuchName: the supplied object in thevariable-bindings does not
match any object identifier in the agent’s MIB.

• tooBig : the size of the generated GetResponse PDU exceeds a local lim-
itation.

• genErr : the agent is not able to retrieve the value for a requested object
for some other reason.

Note that a GetRequest is an atomic operation, i.e. either all requested values are
retrieved, or none. If at least one value of the requested object instances cannot be
retrieved, the returnedvariable-bindings will be empty.

GetNextRequest PDU

The GetNextRequest PDU is identical to the GetRequest PDU with one exception:
while the GetRequestvariable-bindings lists the OIDs of the object instances to be
retrieved, the GetNextRequestvariable-bindings lists the OIDs of the objectsprior in
lexicographical orderto the ones to be retrieved. What this means is most easily
shown with an example:

Suppose that the columnar objectifMtu, with OID 1.3.6.1.2.1.2.2.1.4, has
instances with sequential OIDs in the range ofifMtu.1 ... ifMtu.4. A GetNex-
tRequest PDU with the first requested variable invariable-bindings being
ifMtu.2 will generate a GetResponse PDU with the OIDifMtu.3 as the first vari-
able in thevariable-bindings together with the retrieved value ofifMtu.3.

If the third requested variable isifMtu.4, the third variable and it’s value in the
respondingvariable-bindings will be the next object instance in lexicographical
order. In this case it is 1.3.6.1.2.1.2.2.1.5.1 orifSpeed.1, which is the instance of

Last modified: 99-06-24 18(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

ifSpeed at the first row of the conceptual table (see Fig. 3.7).

Fig. 3.7: A subset of the standardized MIB ‘mib-2’. To the left, a scalar object ‘ifNum-
bers’ with a single instance. To the right, a conceptual table ‘ifTable’, consisting of a

number of columnar objects, each with four instances.

If the GetNextRequest included theifNumber.0 scalar object instance, the correspond-
ing returned variable would beifIndex.1. Note that only scalar and columnar objects
are accessible outside the MIB. Therefore theifTable and ifEntry nodes will be
skipped when finding the next object instance in lexicographical order afterifNumber.

This illustrates the usefulness of the GetNextRequest PDU. It enables the manager to
dynamically explore the structure of the MIB view, without any prior knowledge, a
technique calledMIB walking. It also enables efficient retrieval of tables, even in the
case where the number of rows are unknown. Note the GetNextRequest PDU, just as
the GetRequest PDU, is an atomic operation.

SetRequest PDU

This request PDU is used by the manager to configure the values of object instances in
the MIB view. The format is identical to that of the GetRequest and GetNextRequest
PDUs, but thevariable-bindings also includes a value for each supplied variable.

The SetRequest operation is atomic: either all of the object instances are updated, or
none are. If the latter is the case, the returned GetResponse PDU has theerror-status
and error-index fields set. The types of error are the same as for the GetResponse
PDU produced by a GetRequest, but with one addition:

• badValue : the object instance is supplied with an inconsistent value (e.g.
bad type or length).

If the operation is successful, the returnedvariable-bindings will be identical to the

interfaces (1.3.6.1.2.1.2)

ifNumber (1) ifTable (2)

ifEntry (1)

ifIndex (1) ifDescr (2) ifType (3) ifMtu (4) ifSpeed (5)

Last modified: 99-06-24 19(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

one in the SetRequest PDU.

The SetRequest can also be used to create new rows in conceptual tables, though the
SNMP definition [8] does not state that this functionality has to be implemented. If
implemented, the agent would create the necessary instances (a new instance for
every columnar object in the row) when it receives a variable name in the variable-
bindings that does not match any OID. If not all object values in the new row are sup-
plied in the SetRequest PDU, default values are used.

Trap PDU

Trap PDUs are sent from agents to one or more managers to report significant events.
The format of the PDU differs from the request type PDUs:

Fig. 3.8: Format of SNMP Trap PDU

• PDU type: Trap
• enterprise: type of object (network entity) generating the trap
• agent-addr: address of the object generating the trap
• generic-trap: generic trap type
• specific-trap: specific trap code
• time-stamp: time elapsed between the last (re)initialization of the network

entity and the generation of the trap

Thegeneric-trap field specifies one of seven predefined trap types: coldStart, warm-
Start, linkDown, linkUp, authenticationFailure, egpNeighborLoss (signifies that an
EGP neighbour for whom the sending protocol entity was an EGP peer has been
marked down) and enterpriseSpecific.

If generic-trap = enterpriseSpecific an event has occurred that is specific to
the enterprise. Thespecific-trap field contains the specific code for that event.

3.4 Proxy agents

To manage a network with the aid of SNMP, all the managed devices must support a
common underlying protocol suite (typically IP / UDP). Now, some devices do not
support the TCP/IP suite for some reason. Other devices might very well support
TCP/IP but be to small to accommodate application entities such as an SNMP agent
and a MIB.

To still be able to manage these type of devices through SNMP, aproxy agent can be
used. A proxy agent is an SNMP agent that acts on behalf of one or more network

PDU type enterprise
agent-

addr

generic-

trap

specific-

trap
timestamp variable-bindings

Last modified: 99-06-24 20(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

devices. It has to support both SNMP (to communicate with the manager) and some
device-specific means of communication. Fig. 3.9 illustrates the use of a proxy agent:

Fig. 3.9: Typical model of a proxy agent, showing the network management entities in
the three interacting devices.

3.5 Security aspects

The definition of SNMP does not contain any major explicit security policies. There
are some basic means of authentication and access control to the agent MIBs, but no
secure network management environment is defined. That is an issue for higher-level
applications. The basic concept that should be mentioned in this section is that of a
community.

An SNMP community is created and controlled by the agent and describes a relation-
ship between the agent and a manager in the form of:

• Authentication: Each community has acommunity name, a string supplied
by the agent that is used in every SNMP message to identify the commu-
nity.

• Access control: Each community has a correspondingMIB view which is a
subset of a MIB, thus describing which part of the MIB that should be
accessible to the manager. In addition a SNMP access mode is defined for
each community. The access mode can be one of READ-ONLY and
READ-WRITE and defines the overriding access restrictions to the objects
within the MIB view.

Remember that an agent may be administered by more than one manager, which
explains the need for different communities within the scope of one agent.

Manager process

SNMP

UDP

IP

Network layer

Mapping function

Agent
process

SNMP

UDP

IP

NW layer NW layer

Protocol
architecture
used by
proxied
device

Management process

Protocol architecture
used by proxied

device

Network layer

Management station

Proxy agent

Proxied device

Last modified: 99-06-24 21(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Of course, this strategy does not present a convincing security functionality. For
instance, a message being sent from a manager to an agent containing a community
string could easily be picked up by an eaves-dropper. The community name could
then be re-used in any new SNMP message by the malicious source. Thus, the need
for encryption at a higher level is apparent. However, it is not a concern for the SNMP
standard.

4. SNMPv2

SNMP is at this time a rather old management framework, and although it is still suf-
ficient for many systems it has a number of deficiencies, as listed in [1]:

• It is not suitable for very large networks, because of the performance limi-
tation of polling.

• It has no functionality for retrieving large amounts of data, such as an
entire table.

• Traps are unacknowledged.
• It has no real means of authentication.
• It does not support explicit action invocation.
• It does not support manager-to-manager communication.

With SNMPv2 some, but not all, of these weaknesses are addressed. For example,
retrieval of large amounts of data can be done with a new PDU - the GetBulkRequest
PDU. However, such an important issue as that of authentication is not a part in
SNMPv2, as one would wish. Instead, that functionality together with other security-
related issues is supposed to be included in the third version of SNMP.

Three primary areas of improvement can be identified when comparing SNMPv2 with
the original SNMP framework (which to avoid confusion will be referred to as
SNMPv1 from now on). It is the structure of management information (SMI), the pro-
tocol operations and the new concept of manager-manager communications.

4.1 SMI extensions

Of the additions of functionalities in the SMI for SNMPv2, the two most important to
this report are: row creation / deletion and the concept of augmentation.

Row creation and deletion

Row creation by manager is not explicitly included in the SNMPv1 definition,
although it is not prohibited. With SNMPv2, however, new functionalities are defined
in order to facilitate manager control over conceptual tables in an agent MIB. All

Last modified: 99-06-24 22(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

tables must explicitly state whether they support row creation / deletion by a manager
or not. This is done by adding a new column, calledstatus column, to the table. When
a manager is to create a new row, the first thing to do would typically be to confirm
that the row to create doesn’t already exist by sending one of the possible GET PDUs
(e.g. GetRequest). After that the typical way of creating the row is:

• Send a SetRequest PDU supplying values for those objects that don’t have
default values, setting the status column tocreateAndGo .

• If the operation is successful the agent changes the status column value to
active and a GetResponse PDU is returned to the manager. If the agent
fails to create the row for some reason an error code is set in the returned
GetResponse PDU.

If the original SetRequest PDU doesn’t supply values for all variables needed, the
agent creates the new row but sets the status column tonotReady , making the row
inaccessible for value retrieval. If the manager at a later point supplies the missing
values the agent will set the status column tonotInService , and will not activate
the row until the manager explicitly sets the column value toactive .

In order to delete a row the manager sets the status column value of that row to
destroy .

Augmentation

When designing an enterprise-specific MIB for a SNMP-enabled product, a vendor
might want to use the tables contained in the standard MIBs but extend them with
additional columns. In SNMPv1 there was no way this could be done without rewrit-
ing the table definition (which isn’t allowed for a registered MIB) or defining an entire
new table, containing the columns of the original table. None of these approaches
seemed very practical and this problem has been addressed in SNMPv2.

SNMPv2 provides a method for extending the number of columns in a conceptual
table without having to alter the definition of the table. This is done by using concep-
tual row augmentation. By creating a new table that, instead of using indexing
objects, usesaugmenting objects, one can connect the rows in this table to rows in the
original table. The result of this operation, as seen by the manager, is that the original
table has been extended with additional columns. Note that every row in the original
conceptual table must have exactly one corresponding row in the new augmenting
table.

4.2 Protocol extensions

In SNMPv1 two major types of management communication are defined: manager-to-
agent (consisting of requests) and agent-to-manager (traps). In SNMPv2 a new type is
added - manager-to-manager communication. This type of communication is accom-

Last modified: 99-06-24 23(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

plished with the new InformRequest PDU, which is described below.

The PDUs used by SNMPv1 are kept in the definition of SNMPv2, but with some
changes. In addition, three new PDUs are introduced: GetBulkRequest, InformRe-
quest and Report.

GetRequest PDU

The GetRequest operation has undergone a small but significant change. In SNMPv1,
the operation is atomic, i.e. if one of the values cannot be retrieved, then no values are
returned. In SNMPv2 this operation is no longer atomic, every value that can be
retrieved by the agent are included in the response to the manager. Those variables
that cannot be identified by the agent are paired with an exception identifier in the
returnedvariable-bindings.If a variable cannot be retrieved for some other reason the
responding PDU haserror-status set togenErr .

This new feature has big effect on the amount of management traffic on the network
as well as the amount of processing at manager and agent nodes.

GetNextRequest PDU

Just like GetRequest the GetNextRequest PDU of SNMPv2 is no longer atomic, but
retrieves the value of as many variables as possible. If there is no lexicographic suc-
cessor to a specified variable the value in thevariable-bindings in the GetResponse
PDU will beendOfMibView .

GetBulkRequest PDU

The modifications of the GetRequest and GetNextRequest PDUs in SNMPv2 contrib-
utes to reduced amount of network management traffic and processing. These factors
are even more reduced with the new GetBulkRequest PDU. GetBulkRequest is simi-
lar to GetNextRequest in that it specifies the object instances prior in lexicographical
order to those to be retrieved. But where GetNextRequest retrieves only a single
immediate successor, GetBulkRequest enables retrieval of multiple successors.

Fig. 3.10: Format of SNMPv2 GetBulkRequest PDU

• PDU type: GetBulkRequest
• request-id: message identifier
• non-repeaters: number of variables invariables-bindings for which only a

single successor is to be returned

PDU type request-id
non-

repeaters

max-

repetitions
variable-bindings

Last modified: 99-06-24 24(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• max-repetitions: number of successors to be returned for the remaining
variables invariable-bindings

• variable-bindings: list of object instances whose successor(s) value(s) to
retrieve

Thus, for the firstnon-repeaters number of variables invariable-bindings, only a sin-
gle variable name / value pair will be submitted in the respondingvariable-bindings.
For the rest of the variables,max-repetitions number of pairs will be submitted. The
number of returned pairs may be smaller than requested if:

• The size of the encapsulating message for the GetResponse PDU exceeds
some size limitation.

• Some subsequent name / value pair has the valueendOfMibView.
• The agent terminates the processing of the GetBulkRequest because of

overload and returns a partial result.

SetRequest PDU

Just as in SNMPv1, the SNMPv2 SetRequest PDU is atomic - either all the variables
are set, or none Actually, the only thing that differs between the two versions is
response handling. The set of possible values for theerror-status in the GetResponse
PDU is in SNMPv2:

• noAccess : variable is not accessible
• notWritable : variable cannot be created or modified
• wrongType : value of wrong type supplied
• wrongLength : value of inconsistent length supplied
• wrongEncoding : value contains inconsistent ASN.1 encoding
• wrongValue : value cannot be assigned to variable
• noCreation : variable doesn’t exist and cannot be created
• inconsistentName : variable doesn’t exist and cannot be created

under the present circumstances
• inconsistentValue : value cannot be assigned to variable under the

present circumstances
• resourceUnavailable : value assignment requires allocation of a

resource that is currently unavailable
• genErr : failure for other reason

SNMPv2-Trap-PDU

This PDU is very similar to the SNMPv1 Trap PDU. It is used in the same way, but
has a different format. To simplify processing this PDU has the same format as the
other SNMPv2 PDUs, with the exception of GetBulkRequest.

The first name / value pairs in the variable-bindings in SNMPv2-Trap-PDU contains:

Last modified: 99-06-24 25(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• sysUpTime.0 (the time since the network management portion of the sys-
tem was last reinitialized)

• snmpTrapOID.0 (trap identifier)
• variables names / values describing the event
• additional variables included by the agent

InformRequest-PDU

The InformRequest-PDUs are sent between managers, on behalf of the overlaying
applications, in order to provide management information on a MIB view that is
remote to the manager receiving the message. The format of the PDU is identical to
the other SNMPv2 PDUs, with the exception of GetBulkRequest.

A successfully received InformRequest-PDU is passed on to the destination applica-
tion, and a GetResponse PDU is returned withrequest-id andvariable-bindings fields
identical to those in the received InformRequest-PDU, and theerror-status field set to
noError .

If the incoming InformRequest-PDU size exceeds some limitation, the returned
GetResponse PDU will have an emptyvariable-bindings field anderror-status set to
tooBig .

Report-PDU

In the SNMPv2 specification, a PDU called Report-PDU is included. However, no
semantics or usage is yet defined for this PDU.

4.3 SNMP / SNMPv2 coexistence

When the SNMPv2 framework evolved, it was designed to be an extension av the
original SNMPv1, thus making the transition to the newer version smoother. To avoid
the difficulties of a absolute transition, strategies that allows coexistence between
SNMPv1 and SNMPv2 entities are possible. The differences to be considered in such
a strategy can be divided into two categories:

• Management information
• Protocol operations

Management information

The SMI for SNMPv2 is almost a proper superset of the SMI for SNPMv1, making
MIBs defined in the SNMPv1 SMI rather easy to integrate in a SNMPv2 environment.
To achieve interoperability, [10] lists a number of changes that need to be done in
object definitions, trap definitions, compliance definitions and capabilities definitions.
However, this will not be discussed in this report.

Last modified: 99-06-24 26(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Protocol operations

The protocol operations in SNMPv1 and SNMPv2 are very similar. The only major
difference is the addition of the GetBulkRequest and InformRequest PDUs in the later
version. In [13] two important issues in a coexistence strategy are mentioned, which
are explained in some detail in [1]:

• By using an SNMPv2 entity acting as aproxy agent between an SNMPv2
manager and an SNMPv1 agent, interoperability can be achieved. The
PDUs sent from one of the entities to the other will be mapped to a suit-
able PDU compliant with the version of the receiving entity.

• One other possibility is to use abilingual manager that is capable of com-
municating with SNMPv1 as well as SNMPv2, depending on which agent
to communicate with.

5. SNMPv3

When SNMPv2 was presented it was incomplete in the sense that it didn’t meet its
original security related design goals. These functionalities, which will be addressed
in the definition of the SNMPv3 framework [12], can be categorized as follows:

• Authentication: origin identification, message integrity and some aspects
of replay protection.

• Privacy: confidentiality.
• Authorization and access control.
• Suitable remote configuration and administration capabilities for these fea-

tures.

The third version of the SNMP framework will be derived from the previous versions,
just like SNMPv2 was derived from SNMPv1.

The work of defining SNMPv3 is a procedure in progress. So far six RFCs have been
presented, and the SNMPv3 Working Group is currently working on additional ones.
The goal of the Working Group is to provide the documents (RFCs) necessary to pro-
vide a SNMPv3 standard, but they are not there yet.

Last modified: 99-06-24 27(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

6. Existing test tools

As SNMP has come to be the most wide-spread management framework on a contin-
uously growing market, a large number of SNMP related software products, both
commercial and public, have become available. Most of these products are SNMP
management applications, designed to provide a means of administrating your net-
work.

The kind of applications I am interested in for my work are, not surprisingly, applica-
tions used for SNMP testing. Of course, any management application where the user
can send request PDUs to an agent of choice and then receive a response, can be used
for manual testing. Applications specifically designed for some sort of automated
SNMP testing are much more difficult to find.

I have found three commercial products designed for automated SNMP testing:

• “SNMP Test Suite” from InterWorking Labs
• “SNMP Tester” from Duet Technologies
• “SimpleTester” from Simplesoft

All of these products are capable of performing automated tests of both SNMPv1 and
SNMPv2 agents. Since I have only been able to obtain a demo of one of these test
tools (the “SNMP Test Suite”), I will in the following sections describe and compare
the products according to their respective specification sheets. This survey should
however prove useful for my future work, providing insight in what to expect from an
SNMP test tool.

Note that the purpose of these tools is to test the implementation of the SNMP agents
residing on the remote network entities, rather than testing the actual network entities
using their SNMP agents. Thus, these commercial tools do not directly apply to this
project, where the SNMP agent can be considered tested and reliable. It might how-
ever be possible to extend these tools to use them for the type of testing required
within the scope of the project.

6.1 SNMP Test Suite

The SNMP Test Suite (revision 5.0) is a product developed by the California-based
company InterWorking Labs. The tool, that can test standard MIBs as well as private
ones, is used to:

• Verify correct lexicographical ordering.
• Test protocol compliance.
• Test error / exception handling.

Last modified: 99-06-24 28(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• Test boundary conditions.

The tests are written as Tcl/Tk scripts, enabling the user to modify the tests to suit par-
ticular needs. There is a Developer’s Guide available for interested customers.

The SNMP Test Suite is available for Solaris 2.4 and 2.5, HP/UX, Win95 and WinNT.

6.2 SNMP Tester

SNMP Tester from Duet Technologies (San Jose, California) can be used to test:

• Protocol compliance.
• MIBs (lexicographical ordering, access control, boundary control, etc.).
• Conformance testing (by checking agent responses and traps).

The tool can be used to test both standard and private MIBs, and can be used either in
interactive or batch mode (for automatic testing). Also included in the tool is a MIB
browser.

Just like the SNMP Test Suite, the SNMP Tester uses Tcl/Tk as a basis for tests,
which allows for user defined test designs.

The SNMP Tester is available for Solaris 2.5.

6.3 SimpleTester

The last of the three tools is the SimpleTester, a product from Simplesoft, a Califor-
nia-based company. The tool tests agents for:

• Protocol compliance.
• MIB syntax errors.
• MIB compliance.

The data sheet of the product also states that it includes

“a command script generation and script execution capability that can
be used for load testing, regression testing and user customizing”

The SimpleTester is available for Win95 and WinNT.

Last modified: 99-06-24 29(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

7. System under test

In this chapter I will provide a brief description of the system that, primarily, should
be the subject of test using an automated SNMP test tool - the AXD301 ATM switch-
ing system. In section 7.1 the functionalities and structure of the system will be dis-
cussed in brief. section 7.2 will address the subsystem developed by the department
where this project is being done - the Switching Subsystem (SWS). The last section,
7.3, will address the current testing procedures and the extent of test automatization.

7.1 AXD301 switching system

The AXD301 is an ATM switching system, designed for different types of traffic
(voice, data) on large networks. The switch scales from 10 GBit/s up to (and beyond)
160 GBit/s, making it useful in backbone networks, as well as in edge applications.
The system supports charging based on both usage and duration, for both sides of the
connection.

Management traffic between the AXD301 and remote operations management centres
(OMCs) is carried inband by IP over ATM. There are three basic means of manage-
ment:

• SNMP (for network management, both standardized MIBs and specific
Ericsson MIBs are supported).

• FTP (for transfer of call details from a single system to a billing gateway
system).

• HTTP / FTP (for element management, provided by a built-in web server -
the AXD301 management system (AMS).

For installation and maintenance purposes, the AMS can be accessed at location, by
connecting a work station to function as a local craft terminal (LCT):

Last modified: 99-06-24 30(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Fig. 7.1: Model of AXD301 management communication.

The two management interfaces for system monitoring / configuration - SNMP and
AMS - allows access to the same MIBs:

Fig. 7.2: Model of MIB access with two different protocols. The MIB instrumentation
functions are used to map the objects in the MIBs to the actual system resources.

The AXD301 implementation is divided into five different subsystems, each devel-
oped and maintained separately:

• CPS - provides the basic execution environment with a database and sup-
port for load, start, restart, dual processor operation and failover/takeback.

• SWS - provides the basic ATM cell switching functions and the equipment
management functions.

• ATS - provides call and connection control functions.

Last modified: 99-06-24 31(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• OMS - gives support for a number of OMS (Operations, Administration,
and Maintenance) functions such as alarm, logs, software management
and charging support.

• AVS - provides interfaces between the AXD301 and the AXE system.

The department where this project is being done is responsible for the SWS imple-
mentation, which will be described in the following section.

7.2 SWS

The SWS (Switching Subsystem) provides the ATM switching fabric and the associ-
ated software (operation / maintenance / connection handling) of the AXD301. The
subsystem also includes equipment management and device processor support blocks.
However, the major blocks of interest in the SWS (interesting for automated testing
within this project) are:

• Equipment Management (EQM) - provides the equipment management
MIB for the switch fabric. Allows for monitoring and configuration of the
boards installed in the AXD301.

• Fault Management (FTM) - handles alarm coordination for the switch fab-
ric functions.

• Performance Management (PRM) - handles collection of performance
data and allows for configuration of the performance measurements.

• Network Synchronization (NSY) - provides timing for traffic on the egress
traffic links.

• Connection Handling (CNH) - manages connections through the switch
fabric by allocating and releasing hardware resources.

Each of these blocks are subjects ofregression testing, which will be discussed in the
following section. Regression testing is a type of testing performed on a system after
each iteration of development, in order to ensure that the system hasn’t regressed in
terms of functionality since the last iteration.

7.3 Testing

Software testing is performed at every stage of the process of development, from test-
ing small code modules to testing the entire AXD301 system. To illustrate this, con-
sider the following test hierarchy:

• Module testing - a programmer tests his/hers Erlang or C module by using
test tools and stubs for other modules.

• Block testing - a block, consisting of several modules, is tested with test
tools, stubs and debugging tools.

Last modified: 99-06-24 32(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• Subsystem testing in a simulated environment - a subsystem, consisting of
several blocks, is tested by using simulated device processors, debugging
tools and stubs for other subsystems.

• SSIT (Subsystem Integration and Test) - a subsystem is tested with real
hardware. Other subsystems are often available, in the cases where they’re
not, stubs are used.

• SIT (System Integration and Test) - the entire system is updated by com-
bining the different subsystem. Some regression testing is done.

• Function testing (FT) - exhaustive testing stage, where various functions
are tested (Normally the main part of a function is implemented in one
block).

• System testing - the system is tested for capacity, robustness, etc.

The major testing stage in this hierarchy is the function testing. In this stage, every
block in the SWS are tested using test specifications. Examples of tests for the basic
SWS software blocks may be:

• EQM - test that hardware devices (e.g. boards and links) can be blocked /
deblocked, that parameters can be read and written, etc.

• FTM - generate abnormal traffic over the system and verify that the correct
alarms are generated.

• PRM - generate traffic over the system and verify that various (perfor-
mance measuring) counters are set to the correct values.

• NSY - the synchronization uses two clocks, having a master / slave rela-
tionship (the slave setting its time to the master’s). Force a restart and ver-
ify that the clock that was master before restart still is.

• CNH - make certain VC connections and verify that they are properly
reserved.

Current extent of automated testing

Today, some of the test cases in the SWS subsystem have already been automated
(perhaps as much as 25%). These tests do not use the standard interfaces AMS and
SNMP. Instead, the system is accessed ‘from the inside’ by accessing the MIB func-
tions directly and using an interface to the device processors to configure the hard-
ware (something that would normally require human interaction). A model of the
setup for these SWS autotests is shown in Fig. 7.4.

Last modified: 99-06-24 33(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Fig. 7.4: Current autotesting procedure in the SWS subsystem. The shaded area marks
the system under test (the AXD301). In the model the system is divided into three

parts: the control processor software (CP-SW), the device processor software (DP-
SW) and the hardware (HW). In this model the test tool also controls an external

device, a traffic generator, to introduce stimuli to the system.

The reason that the present autotesting is performed in this manner is the lack of good
test tools and also that the focus has been on testing the SWS subsystem only. If one
would want to perform tests on the whole system using one of the standard manage-
ment interfaces, AMS might not prove a suitable interface for autotesting, because of
the graphical user interface. However, one should be able to use ordinary SNMP mes-
sages in an automated fashion, in order to perform tests on the system.

The goal of this project is to investigate the possibilities of using the SNMP interface
to access the system with an automated test tool, and hopefully increasing the amount
of automation in the testing process. Of course, there will always be tests that cannot
be automated. For example, some tests require boards to be physically removed from
the AXD301 rack, something that must be done by a human.

HW

DP-SW

CP-SW
AMS

(Netscape) MIB

AMS
HTTP

Oper.
interface

SNMP
Browser

Oper.
interface

SNMP
agent

UDP/IP

Test
code

RPC

Traffic

generator

Last modified: 99-06-24 34(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

8. Automated testing

This chapter will address the basics of automated testing procedures; common testing
concepts, test selection for automation process and desirable properties of an auto-
mated testing platform.

8.1 Testing terminology

Before moving on to test automation issues there are some testing procedure terms,
frequently used in the rest of this report, that need to be introduced. They have rather
obvious meanings, but I will address and describe them briefly anyway.

Test cases

A test case (often referred to simply as a ‘test’) is the key testing entity - a single test
used to confirm a certain expected behaviour of a system. The general steps to process
in an individual test case are the following:

1. Set up and confirm preconditions.

2. Perform some actions.

3. Confirm postconditions.

Steps 1 - 2 defines the actual test by first defining a test case specific state to reach by
stating a set of preconditions to be fulfilled and then performing some actions. In the
last step, the expected outcome is compared to that resulting from step 2.

The last two steps can be executed repeatedly. For example, one might want to define
a test case where functions are called sequentially and the return values compared to
the expected ones.

Test suites

Test cases are grouped together in test suites, based on the function area they are used
to test. For example, Equipment Management (EQM) test cases are defined in a sepa-
rate test suite, Fault Management (FTM) test cases in another, and so on.

Test execution

With test execution I mean performing a defined set of test cases from one or more
test suites, in a defined order and under certain conditions.

Last modified: 99-06-24 35(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

8.2 Things to consider when automating tests

When performing a transition of testing from manually performed tests to tests run-
ning on an automated platform, there are a few things to consider. Both the issue of
which test cases to automate and the issue of how to design an automated testing envi-
ronment are worth considering. In this section I will address these issues, and try to
pin-point the different problems and desirable properties when automating tests.

This section is based on documents written by people with experience of testing and
test automation.

Which tests to automate

A common mistake is to try to automate the entire testing process, just for the sake of
automating. Even if 100% of the tests could be automated (indeed an unlikely sce-
nario), the work of automating these tests would probably be much more time con-
suming than to just settle for a reasonable part of the tests [15][21].

The process of automating, running and documenting a test takes longer than per-
forming the test manually, the estimations are often set to 10 times longer [22]. There-
fore, one should settle for automating only those test cases that are to be run 10 times
or more. A preferable approach is to start with those groups of tests whose automation
result in an obvious time gain, and settle for that, at least for the time being [14]. One
should resist the temptation to automate tests just because they are suitable for auto-
mation. Instead, one should consider the total time gain of automating a particular
group of tests.

Automated test tool design

Listed below are a number of issues to consider when designing an automated testing
framework, some of them included in [19].

1. First of all, one should recognize that a test tool is a software system itself.
The more advanced you try to make it, the less reliable it turns out to be as
the number of bugs tend to increase. A safe strategy is to start off with a
small test tool, providing only the functions necessary to automate the first
set of tests.

2. Try to make a reasonably general test tool. It should not have to be re-
coded when extending the existing set of tests or for any small modifica-
tion of the system under test. Also, it is generally not a good idea to auto-
mate testing of a system that is not stable, i.e. a system that is still under
development.

3. Tests included in a test suite should be able to run individually and in arbi-

Last modified: 99-06-24 36(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

trary order, independent of each other. Therefore, it is important to con-
sider how to reach the preconditional state of a test case before running it.
For each test case there should be a clearly defined start state for the test
platform, for example described by a set of global variables defined out-
side the definition of the test cases.

4. Design a test case specification language abstract enough not to discour-
age users without extensive programming background, but at the same
time powerful and general enough to serve its purpose. One might con-
sider having several layers of abstraction in the testing platform: an easy-
to-read/-write instruction language (possibly enterprise specific) that is
automatically translated into a more complex language that the test execu-
tion part of the test tool is able to interpret. Still, the user of a test tool
probably needs some sort of programming experience to compose new test
cases.

5. When a test case fails or some other error occurs, the test tool should be
able to return to a “safe state” from where the test execution can continue.
The failure of a test case should not result in abortion of the entire test exe-
cution, something that can be achieved with a solid exception / error han-
dling strategy.

6. When constructing an automated test tool itwill have bugs, but there is one
bug in particular one wants to avoid - the so calledfalse positive[16]. This
means that a test case is reported successful when it really has failed. Bugs
that causes the test execution to abort or that gives a false negative is much
less dangerous, since these kind of bugs can be observed and isolated. A
common cause of the false positive is a faulty exception handler that
catches exceptions that shouldn’t have been caught and then doesn’t proc-
ess these exceptions correctly.

7. Allow for pausing, single-stepping and resuming the test execution. Step-
ping through a test case at slow speed can be very useful when debugging.

8. Produce the test result logs in a format readable by humans, but at the
same time possible to read by machine if there is, or might be, a need for
that.

Last modified: 99-06-24 37(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

9. Model of an SNMP test tool

In this chapter I will propose a methodology for automated testing, using SNMP as a
standard interface to the system under test. The methodology should be defined
detailed enough to base an implementation of an SNMP test tool on. I will start by
addressing the requirements of such a methodology and a corresponding implementa-
tion. In the rest of the chapter, a model of a test tool will be outlined, and a test case
specification language will be defined.

9.1 Task and requirements

As mentioned in the beginning of this report, the goals of the project was to:

• Describe a methodology for automated testing, using SNMP as an inter-
face. This includes defining the components needed in such a testing plat-
form (and describe how they interact), the control flow during test
execution and a test case specification language in which to describe test
cases to automate.

• Implement a prototype based on this methodology. The prototype should
be able to operate on an actual piece of equipment having a residing
SNMP agent (e.g. an AXD301 switch).

To be more specific, the functionality requirements that a testing platform based on
the methodology should meet are:

At test case level

• Retrieve MIB variable values from remote agent and compare these values
to expected ones.

• Set MIB variable values at remote agent.
• Receive SNMP traps and store information on them, in order to compare

them to expected traps.
• Control external devices and control the system under test using other

interfaces than SNMP.

At test execution level

• Allow execution of multiple successive test cases (in arbitrary order and
from multiple test suites). An error occurring while executing a single test
case should not affect the execution of the rest of the test cases. This
implies a robust exception handling strategy.

• Logging of test execution results.
• Execute same test cases with different configuration.

Last modified: 99-06-24 38(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

At global level

• Capability of interpreting test cases stored in a suitable test case specifica-
tion language.

• Allow testing of SNMP agents at arbitrary IP address, UDP port and trap
UDP port.

Also, an implementation of an SNMP test tool should provide a graphical user inter-
face.

9.2 Conceptual model

When designing the SNMP test tool model, my objective was to present a design that
was general in the sense that it should be totally enterprise independent and suitable to
test any SNMP controlled equipment, and extensible in the sense that it would have a
clear and natural structure of separate modules. Illustrated at a high level, a concep-
tual model of the design is shown in Fig. 9.1:

Fig. 9.1: SNMP test tool model.

This test tool model consists of three separate parts, where each underlying part is
independent of the overlaying ones. These are:

• SNMP Manager - A network management entity providing an SNMP
interface to overlaying components.

• Test Tool Engine (TTE)- The major part of the test tool, providing func-
tionality for test case interpretation, communicating with the system
under test (SUT) via the SNMP manager and inducing stimuli using exter-
nal access functions.

Test Tool
Engine

SNMP
Manager

GUI

Operator

test suite

external access
function

SUT

test file

SNMP

Last modified: 99-06-24 39(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• GUI - A graphical interface to the test tool. The tool should also be able to
run from command line.

For each type of logical device that might be used to introduce stimuli to the SUT or
for any other action using external interfaces or devices, one or more external access
functions (EAF) should be provided. References to these EAFs should be included in
the test cases where they are needed.

9.3 Components

SNMP Manager

The task of the SNMP manager is to offer full SNMP functionality for the commonly
used versions SNMPv1 and SNMPv2c. It should provide the TTE with the ability to
set up SNMP sessions with agents residing on arbitrary IP addresses / UDP ports and
to handle the usual SNMP operations (GET, SET and TRAP). These operations
should, in order to keep the test tool and the test case specifications simple, be syn-
chronous. This means that when an SNMP message has been sent by the manager, it
halts until a response is received or a timeout occurs. The SNMP Manager should also
supply the test tool with more complex functionality based on these basic SNMP
operations. For example, it is desirable to have means of confirming values of MIB
variables, i.e. compare the values to expected ones.

A simple but satisfying trap handling strategy is to time-stamp all incoming traps and
collect them in a buffer, which the TTE can read from and clear. Using this method,
incoming traps can be examined by the TTE at any time, not necessarily at the time of
arrival.

It is worth mentioning that by keeping the SNMP Manager in a separate module, one
will have an SNMP managing entity that can be used with any SNMP application, not
just an SNMP test tool.

Test Tool Engine (TTE)

The TTE is the part of the model that handles the actual test execution. It receives
input in the form of a test file, where a test case execution order is defined. It parses
and interprets the test cases used and performs the operations required. The outcome
is interpreted and logged. The TTE uses the underlying SNMP manager for all com-
munication that is not directed to external devices or to the SUT using a different
interface. These means of communication are controlled through EAFs, which will be
described in some detail in section 9.5.

Graphical User Interface (GUI)

It is possible, and probably useful, to extend the test tool with a GUI rather than run-
ning the tool from command line. How this GUI should be designed will not be

Last modified: 99-06-24 40(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

addressed in this chapter. However, a minimum of features to expect from such a GUI
is:

• Ability to display (and possibly edit) test suites.
• Quick and easy ways of changing preferences (IP address, UDP port, etc.).
• Ability to present test execution results to the user.

9.4 Example setup

Fig. 9.2: Automated testing of the AXD301.

Fig. 9.2 illustrates how a test tool based on the model could be used to test the
AXD301 switch. A major difference, when compared to the testing strategy used in
Fig. 7.2, is that the main interface to the system is a well-defined management inter-
face (SNMP over UDP/IP). Not all operations can be performed using this interface
however. One might still want to use direct access to the device processors in order to,
for instance, check the status of certain LEDs on the boards in the switch.

In the illustration above, two different kinds of stimuli are provided:

HW

DP-SW

CP-SW

MIB

SNMP
agent

UDP/IP

RPC

Traffic

generator

SNMP
Test Tool

RSH

Last modified: 99-06-24 41(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• Traffic generation (e.g. a HP75000) by remote shell invocation.
• DP access (through the DPCI+) by remote procedure call.

The way these entities are controlled by the test tool should be handled by (at least
two) EAFs.

9.5 Test execution

In this section I will try to illustrate the process of a test execution, what the input to a
test tool should be, and what output is to be expected. In short, this is what happens:

- A test file is executed.

- One or more test suites are included, for each test suite:

- Parse the test suite.

- Load each test case.

- Each test case in the test file is executed in order.

- The result of the test case execution is logged.

Test files

The expected input to the TTE is a test file that describes which test cases in which
test suites should be run and in what order they should be run. For example, study this
simple test file:

include “myTestsuite.ts”

myTest1
myTest2
for (i := 0 , i < 10 , i := i + 1) {

myTest3
myTest4

}

The test file starts by including a test suite, containing definitions of at least the test
cases namedmyTest1, myTest2, myTest3 andmyTest4. Next, test casesmyTest1 and
myTest2 are run sequentially. ThemyTest3 andmyTest4 test cases are run in a loop,
increasing the variablei . This illustrates how the test cases can use global variables
(in this casei) that are set and altered in the test file.

The result of running a test file will be saved in a log file, having a default name if not
explicitly stated otherwise. To the log file name, the date and time of test execution
will be concatinated.

Last modified: 99-06-24 42(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

The syntax of test files will not be discussed in this report, and the above code seg-
ment should be considered merely an example of what the contents of a test file might
look like. I leave it to the implementors to construct test files in a suitable format,
depending on choice of implementation languages and tools. However, a test file must
allow for invocation of test cases defined in test suites, and declaration and initializa-
tion of global variables to use in these test cases.

Test cases

The test cases definitions are stored in test suite files, either separate or grouped
together in the same file. These test suites must be included in the test files that makes
use of any test case defined in them. A test case definition has the format:

testcase <name> <body>

For example:

testcase exampleTest1

external trafficGen generateSomeTraffic {1 0 500}
snmp_set someAdmState.0 blocked
confirm someOpState.0 disabled

end

The above test case starts with a stimuli inducing statement, in this case an external
device is used to generate traffic over the SUT. After that, a certain MIB variable is set
and the value of another is compared to an expected value. The execution of the test
case is illustrated in Fig. 9.3:

Last modified: 99-06-24 43(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Fig. 9.3: Successful execution of the exampleTest1 test case:

1. external trafficGen generateSomeTraffic {1 0 500}

2. snmp_set someAdmState.0 blocked

3. confirm someOpState.0 disabled

The only other statements allowed in a test suite are the

include_mib <mibfile> and

include_eaf <EAF-file>

statements, which are used to declare which MIBs and EAFs that are used by the test
cases defined in the file.

The test case specification language syntax will be described in the next section, and a
formal BNF definition can be found in Appendix A.

External Access Functions (EAFs)

External Access Functions are mapping functions to the stimuli inducing devices used
in the various test cases. These functions should be collected in one file per logical
device. For example, in test caseexampleTest1 above, there must be a file named
“trafficGen.eaf“ containing a mapping functiongenerateSomeTraffic . The file
“trafficGen.eaf” could have the following appearance:

TTEEAF

Traffic

SUT
SNMP

Manager

Generator

1

3 2

OK OK

OK

rsh “generate...”

OK

set {{1.3.6...} INT 2}

get {1.3.6...}

{1.3.6... INT 2}

{1.3.6... INT 9}

Last modified: 99-06-24 44(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

EAF generateSomeTraffic {arg1, arg2, arg3} {<BODY>}

EAF generateBitErrors {arg1, arg2} {<BODY>}

...

The purpose of EAFs is to keep enterprise-specific code / components separate from
the general components that constitute the test tool. How these EAFs are imple-
mented, if there is a need for that at all, is totally dependent on the implementation
and will not be defined in this report. The important thing for a particular implementa-
tion is to have a well-defined way of invoking these functions from within test cases,
and to receive possible return values.

9.6 Test case specification language

A typical test case would begin by assuming some preconditions and verifying those
that can be verified. Then, if these preconditions are met, some kind of stimuli is to be
introduced to the system. After the stimuli has been applied, certain conditions should
be fulfilled.

A test case specification language suitable for this kind of test tool should require at
least these commands:

snmp_get OID

snmp_getnext OID

snmp_set OID Value

confirm OID Value Timeout

confirm OID Min_value Max_value Timeout

confirm_ne OID Value Timeout

confirm_trap Traptype Timeout

clear_trap_buffer

external Device EAF Args

Last modified: 99-06-24 45(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Table 9.1: Basic commands of the test case specification language

snmp_get
snmp_getnext
snmp_set

These commands are used to manipulate the SUT using
the SNMP interface.snmp_get should return the value
of the object instance defined by the provided OID
(object identifier) if successful,snmp_getnext should
return the next OID in lexicographical order. If the execu-
tion of any of these commands is unsuccessful an excep-
tion is raised which, if not caught, will cause the test case
to abort.

confirm
confirm_ne

These set of commands are used to compare expected
MIB variable values to the actual ones.confirm /3
expects the valueValue of the object instance described
by OID, confirm /4 expects the value to be in the inter-
val defined by (Min_value, Max_value) and
confirm_ne expects anythingbut Value. The last argu-
ment to these commands,Timeout, defines the maximum
time in msecs to wait for the value of the OID to be set to
the expected one. The test tool could, for instance, poll
the variable at regular time intervals, until the timeout is
exceeded or the variable is set to the expected value.
These commands will raise an exception if not success-
ful.

confirm_trap
clear_trap_buffer

All incoming traps are collected in a trap buffer, which is
cleared at the start of each test case. The buffer can also
be explicitly cleared in a test case using the command
clear_trap_buffer . confirm_trap checks
whether a trap of typeTraptype has been received or is
received withinTimeout msecs. If not, an exception is
raised.

external The external command is used to access logical
devices other than the SUT, or to access the SUT through
other interfaces than SNMP. When invokingexternal ,
the file containing the corresponding EAFs should
already have been included in the file containing the test
case definitions. The test tool will try to map the function
EAF of the logical deviceDevice to a previously included
EAF, and then invoke that EAF with argumentsArgs. If
successful,external will return the result of executing
that EAF with the provided arguments. If unsuccessful,
an exception will be raised.

Last modified: 99-06-24 46(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Example:

The AXD301 can have a number of different boards plugged in, in different slots
in different subracks. By blocking these boards, they should be disabled. A very
simple test case to verify this could look something like this:

testcase block_board_test
snmp_set piuAdmState.$subrack.$slot blocked
confirm piuOpState.$subrack.$slot disabled 8000

end

In this test case, a board identified by its position ($slot in $subrack) is blocked
using an SNMP operation. Next, we want to confirm that the board is really dis-
abled. If we cannot confirm this within 8 seconds, or if the SNMP GET opera-
tion should have already failed, the test case should fail.

In addition to these basic commands, the test case specification language should be
extended with the following functionalities:

• Local variable assignment and comparison - a common procedure is to
compare the value of an object instance at different times, to see whether it
has changed. To do this we need to be able to store values.

• Conditional statements - in a test case, one could wish to continue the test
in different manners depending on, for example, the value of a variable.

• Exception handling - the commands described above will, in case of fail-
ure, raise an exception which will cause the test case execution to halt. If
these exception can be caught, the commands can be used in conditional
statements by returning true (if successful) or false. Example of usage:
if (try_expr (confirm myOID “Hello” 500)) ...

• The ability to abort test cases, explicitly stating whether they were suc-
cessful or not, by using specialsuccess andfail commands. The use
of any of these command would abort the test case execution and continue
with the test suite. Iffail is invoked, the test case would abort with an
exception, as with any ordinary failure.

• Creating and deleting entire rows in conceptual tables.

• In some test cases, it is of interest to compare the contents of an entire
table before and after some sequence of actions. To simplify this proce-
dure, the language could be extended with asnmp_gettable (OID)

Last modified: 99-06-24 47(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

command, together with commands for manipulating retrieved tables.

• Explicit logging, enabling log print-outs of informative strings and vari-
able dumps from within the test cases.

To allow for these extensions in functionality, the following commands should be
added to the test case specification language:

set VarName Value

if Boolean Statements end

try_expr Statement

succeed

fail

snmp_createrow TableOID Indices Values

snmp_deleterow TableOID Indices

snmp_gettable TableOID

snmp_table_diff Table1 Table2

snmp_table_find Table Row

snmp_table_size Table

log String

set Assigns Value to variable nameVarName. Data type
issues will not be addressed here, one can assume that the
only allowable data type is a string of arbitrary length.

if EvaluatesStatements only if Boolean evaluates totrue .

try_expr If Statement raises an exception, it is caught andtrue is
returned, otherwise a value different fromtrue is
returned.

succeed
fail

Both commands aborts the test case. In the case ofsuc-
ceed a normal abortion is performed. In the case offail an
exception is raised.

Last modified: 99-06-24 48(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Table 9.2: Additional commands to the test case specification language

Example:

testcase find_matching_rows
set table (snmp_gettable piuTable)
set matching_rows (snmp_table_find

$table
{? ? ? 1 ? enabled ? ? ? ?})

set number_of_matching_rows

snmp_createrow Creates a new row in table identified byTableOID. The
new row will have indices as stated in the listIndices, and
will have the entries stated in the listValues. In the list of
Values, a ‘?’ marks an undefined value, which implies
that a default value should be supplied for that columnar
object instance.

snmp_deleterow Deletes the row in tableTableOID with indices as stated
in the listIndices.

snmp_gettable This command tries to retrieve the contents of the table
specified byTableOID. If the object identifier isn’t that of
a table, or if the table cannot be retrieved for some other
reason, an exception is raised. The representation of the
returned table contents should be a collection (e.g. list) of
rows.

snmp_table_diff Given two tables,Table1 and Table2, in the format
returned bysnmp_gettable , this commands returns a
new table consisting only of those rows that exists in
Table1 but not inTable2.

snmp_table_find This command returns all rows inTable that matches
Row. If values for all elements inRow are specified, a
table consisting of one or zero rows should be returned.
Otherwise, a table of all matching rows is returned.

snmp_table_size Returns the number of rows inTable.

log This command is the test case writer’s only means of con-
trolling the output to the test result log. It can be used for
simple string output only, but should be able to handle
more complex cases such as

log (snmp_get myTable.1.3.2).

This example statement should print the return value
from snmp_get to the log.

Last modified: 99-06-24 49(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

(snmp_table_size $matching_rows)
if ($number_of_matching_rows = 0) fail end

end

9.7 Test result log

The log file created while running a test file is the only feedback given to the user of
the test tool, at least if no GUI is being used. Into the log the order and result of the
test cases are written, along with any exceptions and user-forced entries. A test case is
considered successful if no uncaught exceptions are raised during execution. If an
exception is raised, the test case is aborted and considered a failure, after which exe-
cution of the next test case commences.

This is an example of a log file created by running the test file defined in file “myTest-
file.tf”, executing the test casesmyTest1, myTest2, myTest3 andmyTest4, in that order:

Last modified: 99-06-24 50(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Fig. 9.3: Example of a test execution log file

In this example themyTest1 andmyTest4 were considered successful, whilemyTest2
andmyTest3 failed for some reason (two different types of exceptions was raised). In
test casemyTest4 the log command has been used to print a string to the log.

9.8 Test execution flowchart

Below is a simplified flow chart, describing the evaluation process when executing a
test file. Not included in the chart are among other things:

TEST EXECUTION LOG FOR FILE “myTestfile.tf”

Date: 1998-12-24

Starting test case myTest1 at 13:35:01

Finishing test case myTest1 at 13:36:16

Starting test case myTest2 at 13:36:16

could not confirm “1.3.6.1.4.1.193.14.1.2.4.6.1.1.6.1.4 == enabled, value
set to disabled

in “confirm piuOpstate.$subrack.$slot enabled 5000”

Test case myTest2 failed at 13:36:23

Starting test case myTest3 at 13:36:23

no matching function for external

in “external DP change_mep {1, 0, 1}”

Test case myTest3 failed at 13:36:24

Starting test case myTest4 at 13:36:24

This is a line produced with the ‘log’ command. /Martin

Finishing test case myTest4 at 13:36:48

4 test cases run

2 successful

2 failed

Last modified: 99-06-24 51(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

• Log handling, except for the explicit “log” command.
• Errors, exceptions and abnormal abortions.
• Nested commands, such as log (snmp_get ...).

Last modified: 99-06-24 52(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Fig. 9.4: Test execution flow chart

Parse Test File Parse Test Suite

Parse EAF file

Execute Test Case

Execute EAF

External Device

SNMP ManagerTrap Buffer

SUT

START

EOF

“include”

Done / Success / Fail

EOF

“external” Done GET / SET / ConfirmDone

Write to log

“log”

Done

Run TC

Load Test Case

Load MIB

“testcase”

“include_mib”

“include_eaf”

Done

Done

EOF

Load EAF

“EAF”
Done

Last modified: 99-06-24 53(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

10. Implementation

10.1 Choice of programming language and development tools

When it was time to start working on the implementation, I had a rather clear picture
of the model, its components, the way they were supposed to interact and the func-
tionality that was expected. The choice of programming language and development
tools to use was mine completely, but I had certain demands that needed to be met:

• I wanted a package / library that could handle SNMP communication at a
low level, providing some sort of API. The idea of coding SNMP frame
and UDP handling did not appeal to me and, as it turned out, there was no
need for me to do that.

• The development tools had to provide means of building a decent graphi-
cal user interface.

• The tools would have to be available for the platform in use, namely
Solaris 2.5.1.

SNMP packages are available for most common programming languages and plat-
forms, but after performing some brief research, providing me with an overview of the
publicly available tools, I ended up with three main implementation alternatives:

• C - using, for instance, the CMU SNMP library.
• Tcl/Tk - using a network management extension for Tcl called Scotty.
• Erlang - using the SNMP agent/management components included in the

Erlang Open Telecom Platform (OTP).

My experience with the last two programming languages was limited, to say the least,
but they still appeared to me to be the most interesting implementation alternatives.
The reason for this was partly that I knew that their respective SNMP packages were
functionable and used. In the end I chose to implement the tool in Tcl/Tk, due to sev-
eral reasons:

• The syntax of Tcl/Tk is easy to learn, code, and read, as is the case with
many script languages. It is also suitable to write test cases using a simple
script language directly, rather than having to build a parser and inter-
preter.

• The Erlang OTP SNMP agent part is well used and can be considered
robust. This, however, might not apply to the SNMP manager part, which
has been intended to be used mainly to test agent implementation. Besides,
the OTP SNMP manager lacks direct support for synchronous SNMP
communication.

The advantage with an Erlang solution over a Tcl/Tk solution would be that Erlang is

Last modified: 99-06-24 54(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

well used within the department, implying a wide-spread knowledge. Also, most of
the already existing code is written in Erlang. Another thing that might prove a disad-
vantage with a script language solution is speed of execution. However, for this partic-
ular application, there are no performance demands of that kind. One can assume that
it is the processing in the SUT and the SNMP communication that are the time con-
suming factors, not the test tool itself.

Using Tcl/Tk, the test tool model presented in Fig. 9.1 was implemented as illustrated
in the figure below:

Fig. 10.1: Implementation of the model, using Tcl/Tk

10.2 Implementation description

The prototype I implemented was rather strictly based on the model I have outlined in
chapter 9. The modulation is the same, as well as the functionality. The only major
difference is the use of the test case specification language. There is no interpreter for
that exact syntax in the implementation. Instead, the test cases are written in ordinary
Tcl code. This does not imply as big syntactical changes as one might suspect, for
more information on how to compose test cases for the implemented test tool, read the
corresponding section in Appendix B.

The implementation is a fully-functionable test tool, to be used to test any unit
equipped with an SNMP agent and being identified by an IP address. When it comes
to portability of the test tool, Tcl/Tk implementations are available for most common
platforms. However, the SNMP Manager is implemented using the Scotty Tcl exten-
sion, an extension guaranteed to work only on the major UNIX platforms (SunOS,
Solaris, HP-UX, AIX, etc.). The Scotty package can be compiled for use on Windows
NT systems, but it cannot be expected to behave without problems. Personally, I have
only tried the implementation on the platform I have used during development - Sola-
ris 2.5.

GUI
(Tcl/Tk)

Test Tool
Engine
(Tcl)

SNMP
Manager

(Tcl/Scotty)

Last modified: 99-06-24 55(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

The SNMP versions supported by the test tool is SNMPv1 and SNMPv2, since these
are the versions supported by Scotty (in Scotty v.2.1.10).

10.2.1 SNMP Interface module

The SNMP interface module is a collection of Tcl procedures providing the user with
an extended set of SNMP operations. These procedures, in turn, uses the Scotty pack-
age for basic SNMP operations such as GET and SET. This module is not in any way
aware of the application using it, and is therefore not restricted to use with the SNMP
test tool.

This module handles all the SNMP commands used in the test case description lan-
guage, all implemented as Tcl procedures:snmp_get, snmp_getnext, snmp_set,
confirm, confirm_ne, confirm_trap , clear_trap_buffer, snmp_gettable,
snmp_table diff, snmp_table find, snmp_table size, snmp_createrow and
snmp_deleterow. Thelog andstimuli commands are implemented in the TTE mod-
ule.

10.2.2 TTE module

This module constitutes the ‘kernel’ of the test tool and handles test suite interpreta-
tion, test execution and logging. Only the test suites are interpreted to verify syntacti-
cal correctness - both test case bodies and test files are written and treated as ordinary
Tcl scripts. A procedureRunTests executes a test file given as argument and stores
the result to a log file, having a default name if not stated otherwise. For example, exe-
cuting a test file named “myTestfile.tf” would create a log file named “myTest-
file.log.1998-12-24-15:01:26”, the file name suffix of course depending on the time of
execution.

The only procedure supposed to be used directly by the user is thette procedure. It
takes as argument the path to a test file and a number of switches, configuring the
SNMP session. Configurable values are:

• agent IP address
• agent UDP port
• TRAP UDP port
• SNMP version
• read and write community string
• log file name

For more information on how to use the test tool without a GUI, see Appendix B.

10.2.3 GUI module

To make the test tool more easy-to-use I extended it with a simple GUI, a task that I

Last modified: 99-06-24 56(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

am sure was worth the effort. Having a tool that allows you to view / edit test files and
test suites, configure settings with a few mouse clicks, to run a test file and have the
resulting log displayed immediately on-screen is indeed comfortable. The only proce-
dure a user should use from the GUI module is therunTTEGUI procedure. It starts
up the test tool environment and reads the user’s personal settings which are stored to
file the first time he / she uses the tool. When executing tests, theRunTests procedure
of the TTE module is invoked.

The test tool GUI mode is documented in some detail in Appendix B.

10.3 Differences between model and implementation

The model described in the previous chapter illustrates my suggestion of a tool used
to perform automated testing on any entity equipped with an SNMP agent. The imple-
mented prototype does not however follow this model completely, at least regarding
the test case specification language. When implementing in Tcl/Tk, I chose to extend
the language with new procedures, rather than constructing a parser / interpreter for
the command language described in Appendix A. The syntactical deviations are not
that extensive, but the consequences are considerable; since the test cases are written
using extended Tcl code, the test case composer can use all the functionality that the
language offers and even extend the language with new procedures to be used in the
test cases. The commands defined in Appendix A all have corresponding procedures
in the Tcl implementation, the only major difference being that the commandsucceed
is replaced by Tcl’sreturn command.

One extension to the original model should be worth mentioning: in the test suite files
the statement

source sourcefile

is allowed, beside the ones described in the model. This statements makes use of Tcl’s
built-in source command, which reads and executes the contents of a Tcl file. This
way, the test suite composer can store often used routines in help procedures in sepa-
rate files.

Included in the implementation is the concept of EAF handling, something that really
wasn’t necessary. Since the implementation has been extended to include Tcl’ssource
command, any Tcl code file can be sourced, including files defining procedures that
enables communication over other interfaces than SNMP.

Last modified: 99-06-24 57(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

11. Conclusions and future work

11.1 Design properties

In section 8.2 a number of issues to consider when designing this kind of automated
test tool were discussed. In this section I will view my test tool model with that list of
desirable properties in mind, by discussing each of these issues in order and point out
to what extent they have been integrated in my model / implementation.

1. I don’t think I have made the implementation too large and complex,
though several procedures in the SNMP interface module are used only in
a small subset of the tests I have composed. Using a script language with a
reasonable simple syntax should contribute to easy-to-read code and thus
further reduce the risk of bugs.

2. The model has been designed to be general, and the implementation is
based on that model. Though implemented with a particular target system
in mind, all enterprise-specific information is stored separate from the test
tool, either in test files / suites or in external access functions.

3. The test execution strategy in my model allows execution of arbitrary test
cases, in arbitrary order and from different test suites. It is however up to
the test case composer to include initialization and preconditional testing
in order to enable the test case to be run in different states. This functional-
ity is not included in the test tool.

4. The test case specification language defined in Appendix A is not very
simple, and the Tcl extension used in the implementation is definitely not.
On the other hand, the language could not have been abstracted to a level
that much higher, without losing functionality. The fact that the test cases
are composed directly in Tcl syntax implies that greater programming
skills are required, but also that the user is provided with a more powerful
test case description platform.
One might consider building an enterprise-specific test case editor, gener-

ating Tcl code, but that would be out of the scope for this project.

5. In the implementation, any exception occurring while running a particular
test case will be caught and will cause that test case to abort. Execution
will then commence at test file level, i.e. the next test case will be exe-
cuted.

6. One cannot guarantee that the problem with false positives has been com-
pletely avoided. The best one can do is to run exhaustive tests on the
implementation and study the source code, especially the parts concerning
exception handling.

7. Pausing, aborting and resuming functionality is included in the implemen-
tation, but on a higher level. Each test case is executed as an atomic opera-
tion, and a user request for pause or abortion will not be addressed until
the current test case execution has finished. The reason for this is that in

Last modified: 99-06-24 58(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

the implementation, each test case is represented as a Tcl procedure. When
running a test case, that procedure is invoked, and control will not be
turned over to the test tool until the test case execution is completed.

8. As for now, the test tool generates a log file with a reasonably well-defined
format. It is clearly human readable and should without difficulties be
readable by machine as well.

11.2 Future extensions

The implementation, as for now, is a fully functionable tool for testing of SNMP con-
trolled equipment. But if it was to be used in a full scale testing environment, one
might consider adding a number of functionality extensions and putting some effort
into making it into a truly robust, powerful test platform. Possible future extensions
could be:

• Test case debugging - Upon detecting a failure while executing a test case,
one might want to insert break points in the test case code, causing test
execution to halt at these points. By continuing test execution step-by-step
(i.e. line-by-line) the failure can hopefully be pin-pointed within short.
With the current implementation, the test case code is simply extended Tcl
code, and the test cases are executed as Tcl procedures. This means that
whatever debugging means seem necessary, they have to be provided by
the Tcl kernel.

There are a number of Tcl debugging extensions available that can be
used with a Tcl application by recompiling the Tcl/Tk shell, linking the
debugger library. The most common one, written by Don Libes, is very
similar to well-known debuggers such as gdb, and should be fairly easy to
integrate with the test tool.

• Test case composer tool - With the current implementation, a test case
composer would need at least some basic skills in Tcl programming, and
probably a somewhat solid programming background. By allowing the
users to compose test cases at a higher layer of abstraction, the tool might
prove accessible to more people than just those with extensive program-
ming experience. One could have an enterprise-specific test case composer
tool, hiding the low-level Tcl syntax while at the same time offering high-
level enterprise-specific commands. This would mean a less general test-
ing platform, and also a less powerful one, but it would make it easier to
construct test cases and probably reduce the risk of user-inflicted errors.

• On-line help - Adding an built-in help / tutorial is something I haven’t
found time for during this project. Of course, it would not be hard to
implement this feature.

• Building a library of enterprise-specific help procedures - Much of the Tcl
code used in test cases are identical for several test cases within a suite, or

Last modified: 99-06-24 59(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

in different suites. By neatly packaging this code in procedures grouped
together in files, it would be easier to add new test cases and test suites
later on. The test case codes tend to be shorter and easier to read / write,
and the risk of user-inflicted errors are reduced.

For instance, one could have a help procedure library with:

• One file per functional testing area (Equipment Management,
Fault Management, etc.).

• One file per external device or interface to access (Traffic Gener-
ators, Device Processors, etc.).

• Files with general, commonly used procedures.

11.3 Evaluation of model and implementation

At the end of this project there are three questions regarding the work I have done that
I might ask myself:

• Are the goals of the project fulfilled?
• Is the model / implementation suitable for general SNMP testing?
• Is it suitable for the primary system?

In this section I will try to answer these questions in order.

Are the goals of the project fulfilled?

The goals of the project was to develop a methodology for automated SNMP testing,
including a command language, and to implement a prototype. The fact that the proto-
type, built on this methodology and basically implementing the command language,
works, indicates that the methodology serves its purpose. At the time I’m writing this,
the work of automating the major part of a test suite for regression testing with my
implementation is undertaken. This implies that the implementation was successful as
well.

Is the model / implementation suitable for general SNMP testing?

I have tried to construct a model and implementation that should be able to use with
different types of SNMP controlled entities. I have however performed my work with
a particular network device in mind and all my testing during development have been
done with this system. Thus, there is a risk that I have made my model / implementa-
tion less general than I had hoped for.

Is it suitable for the primary system?

As mentioned above, my goal has been to develop a general tool, not one that is
adapted to be used exclusively with Ericsson’s AXD301 ATM switch. To test this par-
ticular system, one might have wished for a more custom-made tool. For example, the

Last modified: 99-06-24 60(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

test case specification language could have been enterprise-specific, including com-
mands for blocking cards, generating traffic over the system, etc.

Last modified: 99-06-24 61(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Appendix A
Test case specification language syntax

The formal syntax of the test case specification language can be defined using EBNF
(Extended Backus Naur Form):

testcase ::= testcase atom

test_statements

end

test_statements ::= test_statement

 [test_statements]

test_statement ::= set atom value |

if_statement |

snmp_statement |

snmp_table_statement |

external_statement |

log log_statement { log_statement } |

try_expr test_statement |

succeed |

fail

if_statement ::= if boolean_expression

test_statements

end

snmp_statement ::= snmp_get oid |

snmp_getnext oid |

snmp_gettable oid |

snmp_set oid value |

snmp_createrow oid list row |

snmp_deleterow oid list |

confirm oid value timeout |

confirm oid value value timeout |

confirm_ne oid value timeout |

Last modified: 99-06-24 62(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

clear_trap_buffer |

confirm_trap value timeout

snmp_table_statement ::= snmp_table_diff table table

snmp_table_find table row

snmp_table_size table

external_statement ::= external atom atom
“(“[atom{ atom }]”)”

log_statement ::= string |

“(“ snmp_statement ”)” |

“(“ snmp_table_statement ”)” |

“(“ external_statement ”)” |

var

boolean_expression ::= comparable op comparable |

try_expr test_statement |

not “(“ boolean_expression ”)” |

“(“ boolean_expression”)” and “(“ boolean_expression”)” |

“(“ boolean_expression”)” or “(“ boolean_expression”)” |

comparable ::= var | string | integer | oid |

snmp_get oid |

snmp_getnext oid |

snmp_table_size table |

external_statement

table ::= “(“snmp_gettable oid ”)” |

“(“snmp_table_diff table table ”)” |

“(snmp_table_find table row ”)” |

var

row ::= “(“ value { value }”)” | var

oid ::= identifier {“.” identifier }

Last modified: 99-06-24 63(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

identifier ::= digit { digit } |

var |

atom

op ::= “<“ | “>” | ==

var ::= “$” atom

atom ::= letter { letter | digit }

list ::= “(“ listelement { listelement }”)”

listelement ::= var | integer | string | oid | atom

value ::= { any_character }

integer ::= “1”|”2”|”3”|”4”|”5”|”6”|”7”|”8”|”9”{ digit }

string ::= ““"{ any_character }””"

timeout ::= integer | infinite

Last modified: 99-06-24 64(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Appendix B
A quick guide to the SNMP Test Tool

Requirements

In order to run the SNMP Test Tool, you will need the following:

• A Tcl/Tk interpreter
• The Scotty Tcl extension
• An SNMP equipped network entity to test. Both this entity and the host

from which the test tool is run need to be assigned IP addresses.

The executable Tcl scripts that you will need are in three separate files, though
included in the same Tcl package (snmpTestTool):

• “snmpInterface.tcl” (SNMP interface procedures)
• “tte.tcl” (Test Tool Engine procedures)
• “gui.tcl” (Graphical User Interface procedures)

Also, the TCLLIBPATH environment variable should include the path where the
snmpTestTool package is located.

Writing test suites and test files

Test cases

A test case has the format

testcasename {

statement

statement

...

}

where eachstatement is a Tcl statement, either a Tcl kernel command or a command /
procedure call from any extension package, including the SNMP Test Tool proce-
dures. These are:

Last modified: 99-06-24 65(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Ex: % snmp_get 1.3.6.1.4.1.193.14.1.2.4.5.2.1.6.1.1

enabled

% snmp_get emTable.1.6.1.1

enabled

% snmp_getnext emTable.1.6.1.1

1.3.6.1.4.1.193.14.1.2.4.5.2.1.6.1.4

% snmp_set emTable.1.5.1.1 blocked

1

%

snmp_getoid
Retrieves the value of a MIB variable.

oid - Object identifier in the format {n1.n2...nN}

snmp_getnextoid
Retrieves the OID of the next MIB variable in lexicographical order.

oid - Object identifier in the format {n1.n2...nN}

snmp_setoid value
Sets the value of a MIB variable.

oid - Object identifier in the format {n1.n2...nN}

value - New value of object instance

Last modified: 99-06-24 66(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Ex: % confirm emTable 1.5.1.1 blocked 5000

1

% confirm emTable 1.5.1.1 blocked

1

% confirm_ne emTable.1.5.1.1 blocked

Could not confirm "emTable.1.5.1.1 != blocked"

%

confirm oid value (timeout)
Confirms expected values of one or more MIB variables.

oid - Object identifier in the format {n1.n2...nN} (or list of OID’s).

value - Expected value of MIB object instance (or list of values).

timeout - Maximum time (in msecs) to wait for values to change to ’values’

confirm oid min_value max_value timeout
Confirms that the value of a MIB variable is in a defined interval.

oid - Object identifier in the format {n1.n2...nN}

minValue - minimum expected value of MIB object instance

maxValue - maximum expected value of MIB object instance

timeout - Maximum time (in msecs) to wait for value to change to ’value’

confirm_ne oid value (timeout)
Confirms that the value of a MIB variable differs from a specified value.

oid - Object identifier in the format {n1.n2...nN}

value - unwanted value of MIB object instance

timeout - Maximum time (in msecs) to wait for value to change to other than
’value’

clear_trap_queue
Clears the TRAP queue.

confirm_trap trapType (timeout)
Confirms that a number of traps of a certain type are received. Note that the trap
buffer should be emptied by the user at appropriate times.

trapTypes - Types of expected TRAPs.

timeout - Maximum time (in msecs) to wait for incoming TRAPs that matches
the expected ones.

Last modified: 99-06-24 67(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Ex: % clear_trap_queue

% confirm_trap eqmEtAlarm

Could not confirm trap eqmEtAlarm

%

Ex: % external HP75000 generateSomeTraffic {1 4000 3}

%

Ex: % snmp_createrow nsyNodeTable {1} {? new ? ? ? createAndGo}

1

% snmp_deleterow nsyNodeTable {1}

1

%

external device function arguments
Invokes an external access function and returns the result.

device - Name of logical device the EAF operates on.

function - a external access function (EAF)

arguments - List of arguments to the EAF

snmp_createrowtableOID indices row
Creates a new conceptual row in a MIB table. In the row to create a ’?’ indicates
that no value is specified for that particular variable. Instead, a default value
should be provided by the SNMP agent.

tableOid - Object identifier of a conceptual table

indices - list of indices of the new row to create

row - list of values for the new row

snmp_deleterowtableOID indices
Deletes a conceptual row from a MIB table.

tableOid - Object identifier of a conceptual table

indices - list of indices of row to delete

Last modified: 99-06-24 68(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Ex: % snmp_gettable emTable

{1 1 cp {} deblocked enabled 1 active}
{1 4 et34 newEm blocked disabled 1 active}
{1 19 cp {} deblocked faultyDependent 1 active}

% snmp_getcolumnnames emTable

emSubrackId emSlotNo emType emUserLabel emAdmState
emOpState emDpLmList emRowStatus

%

Ex: % snmp_table diff [snmp_gettable emTable] $oldEmTable

{1 4 et34 newEm blocked disabled 1 active}

% snmp_table find [snmp_gettable emTable] {1 ? cp ? ? ? ? ?}

{1 1 cp {} deblocked enabled 1 active}
{1 19 cp {} deblocked faultyDependent 1 active}

snmp_gettabletableOID
Retrieves a conceptual MIB table. The returned table will be a list of conceptual
rows, where each row is represented as a list of values.

tableOid - Object identifier of the table

snmp_getcolumnnamestableOID
Returns a list of the names of all columnar objects in a table.

tableOid - Object identifier of the table

snmp_table diff table1 table2
Compares two tables (typically retrieved with ’snmp_gettable’) and returns the a
new table consisting of the rows intable1 that are not intable2.

table1 - first table

table2 - second table

snmp_table findtable row
Matches a row to a table (typically retrieved by snmp_gettable) and returns a new
table consisting of all rows in the table that matches the input row. A ’?’ element
in the input row matches any value.

table - a table

row - a list of values

snmp_table sizetable
Returns the number of rows in a table (typically retrieved by snmp_gettable).

table - a table

Last modified: 99-06-24 69(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

% snmp_table size [snmp_gettable emTable]

3

%

Ex: % log “This string will be printed to log”

1

% log “This is a MIB table dump: [snmp_gettable emTable]”

1

%

Note:

The four different commands used to confirm MIB variables and incoming traps all
take an argument stating the maximum time to wait for the expected result before a
timeout occurs and an exception is raised. Until this time limit is reached or the
expected value / trap can be confirmed, the test tool polls the variable / trap queue at
regular time intervals. These intervals are controlled by a global Tcl variable -time-
outInterval. By setting the value of this variable (default is 2000, unit is msecs), you
can control the polling frequency.

Test suites

A test suite is a stand-alone file containing a number of test case definitions along
with MIB, EAF and Tcl source file inclusion statements. Test suite files, which are
parsed by the test tool when included by a test file, have four allowed statements:

mib mibFile

include_eafeafFile

sourceTclSourceFile

testcasename body

log string

Last modified: 99-06-24 70(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Example of a simple test suite, stored to file “myTestSuite.ts”:

###

myTestSuite.ts

#

Example of a test suite. These two tests creates and renames,

a synchronization node.

###

mib “mibs/Axd301Comm-OMS.mib”

mib “mibs/Axd301Nsy-SWS.mib”

mib “mibs/Axd301Eqm-SWS.mib”

include_eaf “eafs/HP75000.eaf”

source “helpProcedures.tcl”

Testcase 119

#

Create a node

#

testcase SWS-NS-119 {

 # Precondition - No synchronization nodes or references exists

 if {[snmp_table size [snmp_gettable nsyNodeTable]] != 0} fail

 if {[snmp_table size [snmp_gettable nsyTrafficalRefTable]] != 0} fail

 if {[snmp_table size [snmp_gettable nsyDedicatedRefTable]] != 0} fail

 # Action - create a new synchronization node

 log "Creating new node..."

 snmp_createrow nsyNodeTable {1} {? newNode ? ? ? createAndGo}

 # Postconditions - confirm correct mode and operational state

 log "Confirming mode and operational state..."

 confirm nsyNodeTable.1.3.1 freerunning

 confirm nsyNodeTable.1.5.1 disabled

 # Postcondition - confirm incoming trap, should be received within 5 seconds

 log "Confirming trap..."

 confirm_trap nsySynchNodeNotWorkingAlarm 5000

}

Testcase 120

#

Rename a node

Last modified: 99-06-24 71(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

#

testcase SWS-NS-120 {

 # Action - rename the synchronization node

 log "Renaming node..."

 set old_name [snmp_get nsyNodeTable.1.2.1]

 snmp_set nsyNodeTable.1.2.1 $old_nameextended

 # Postcondition - confirm name change

 log "Confirming name change..."

 confirm nsyNodeTable.1.2.1 $old_nameextended

}

Test files

A single test file is the input given to the test tool. It describes a sequence of test cases
to execute and under which conditions (by setting variables / parameters) to execute
them. While test case definitions and test suites remain static over longer time periods,
test files can be subject of changes from one test run to another. Test files are written
in pure Tcl code, extended with two types of procedures:

include testSuiteFile

testCase

Example of a small test file:

###

This test file runs a small number of tests from two

different test suites.

###

include myTestSuite.ts

include anotherTestSuite.ts

Create a node

SWS-NSY-119

Rename the node

SWS-NSY-120

Run a number of equipment tests for boards in different slots

for {set slot 2} {$slot < 18} {incr slot} {

SWS-EQM-211

Last modified: 99-06-24 72(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

SWS-EQM-301

SWS-EQM-089

}

Starting the test tool

The test tool can be started either with or without the GUI. In any case, you will have
to start up a Tcl or Tk shell first.

Without GUI

This command line mode has no features not included in the GUI version, and will
only be discussed briefly in this chapter. However, a short introduction might be suita-
ble.

• Start the Tcl shell:
system> tclsh8.0

• Add the SNMP Test Tool package:
% package require snmpTestTool

• Run the procedure named tte, if you don’t supply any arguments a syntax
description will be displayed:
% tte
Usage: tte [switches] <file>

-l <logfile> - write test results to
specified logfile

-ip <IP address> - SNMP agent IP address
-udp <UDP port> - SNMP agent UDP port
-tudp <UDP port> - SNMP TRAP port
-v <SNMP version> - SNMP version,

either SNMPv1 or SNMPv2c
-c <community> - read community string
-wc <community> - write community string
-a <testcases> - abort after a number of

failed test cases
%

If you, for instance, would want to test a system identified by IP address
130.100.180.111, having an SNMP agent residing at port 4012 with the test sequence
listed in file “mytests.tf”, you would type:

% tte -ip 130.100.180.111 -udp 4012 mytests.tf

Last modified: 99-06-24 73(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

All switches except for agent IP address has default values which are set to:

log file: <input_filename>.log

agent UDP port: 161

TRAP UDP port: 162

SNMP version: SNMPv2c

read community: public

write community: public

In GUI mode

• Start the wish shell:
system> wish8.0

• Add the SNMP Test Tool package:
% package require snmpTestTool

• Start the application:
% runTTEGUI <testfile>

The SNMP Test Tool environment will now appear on screen, allowing you to open
and edit test files and test suites, setting your personal preferences and, of course, run
tests.

ChooseOpen from theFile menu to open a test file. Once loaded, the test file will be
displayed in the text editor, allowing you to edit the contents.

Fig. B.1: SNMP Test Tool main window

Last modified: 99-06-24 74(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Configuring preferences

The GUI provides you with a quick and easy way to inspect and configure testing set-
tings. The first time you start the tool in graphical mode, a file .ttecfg is created in
your home directory. This file stores information on all user specific settings and is
updated every time the you change a preference.

To configure preferences, choosePreferences from theTest menu. A new window
will appear:

Fig. B.2: Preferences window

Change the preferences of interest and clickOK . The updated preferences will now
be saved to the personal configuration file.

Running tests

Once a test file is open and you are satisfied with your preferences, you can start the
test execution by choosingRun from theTest menu. Note that it is the contents of the
text editor that will be executed. Thus, if you have edited the test file you don’t have to
save it before running.

When the test execution starts, a log window will appear. The contents of this window
will be identical to that of the log file saved to disk. Using the buttons at the bottom of
the window you have the possibility to pause, resume and abort the execution. If you
choose to pause or abort, the test tool will finish executing the current test case before
halting.

Last modified: 99-06-24 75(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Fig. B.3: Log window

Note:

A convenient way to create an executable application for the SNMP Test Tool on
UNIX platforms is to use shell scripts:

#!/usr/local/tclsh8.0

package require snmpTestTool

tte $argv

and

#!/usr/local/wish8.0

package require snmpTestTool

runTTEGUI $argv

respectively.

Last modified: 99-06-24 76(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

Acronyms

AMS AXD301 Management System

ASN.1 Abstract Syntax Notation One

ATM Asynchronous Transfer Mode

CCITT International Telegraph and Telephone Consultative Committee

CMIP Common Management Information Protocol

CMOT CMIP over TCP/IP

CNH Connection Handling

CP Control Processor

DP Device Processor

DPCI+ Device Processor Control Interface +

EAF External Access Function

EGP Exterior Gateway Protocol

EQM Equipment Management

FTM Fault Management

GUI Graphical User Interface

HEMS High-Level Entity Management System

HMP Host Monitoring Protocol

IAB Internet Architecture Board

ICMP Internet Control Message Protocol

ITU International Telecommunication Union

IP Internet Protocol

MAC Medium Access Control

MIB Management Information Base

NSY Network Synchronization

OID Object Identifier

OSI Open Systems Interconnection

PING Packet Internet Groper

PDU Protocol Data Unit

PRM Performance Management

RPC Remote Procedure Call

RSH Remote Shell

SGMP Simple Gateway Monitoring Protocol

SMI Structure of Management Information

Last modified: 99-06-24 77(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

SNMP Simple Network Management Protocol

SUT System Under Test

SWS Switching Subsystem

TCP Transmission Control Protocol

TTE Test Tool Engine

UDP User Datagram Protocol

VC Virtual Channel

Last modified: 99-06-24 78(78)
Document: Automated Testing of SNMP Controlled Equipment - report Version: 1.0
Filereference: report.fm
Project: Automated Testing of SNMP Controlled Equipment Author: Martin Gunnarsson

References

[1] Stallings, William,SNMP, SNMPv2 and RMON: practical network management
2nd ed. 1996, Addison-Wesley Pub Co

[2] Perkins, D., McGinns, E.,Understanding SNMP MIBs 1997, Prentice Hall

[3] Black, Uyless,Network Management Standards / the OSI, SNMP and CMOL pro-
tocols 1992, McGraw Hill Text

[4] Harnedy, Sean,Total SNMP: Exploring the Simple Network Management Proto-
col 2nd ed. 1998, Prentice Hall

[5] Feit, Sidnie,SNMP: A Guide to Network Management 1995, McGraw Hill Text

[6] Rose, M., McCloghrie, K., “Structure and Identification of Management Informa-
tion for TCP/IP-based Internets”, RFC 1155, may 1990

[7] Case, J., Fedor, M., Schoffstall, M., Davin, J., “The Simple Network Management
Protocol”, RFC 1157, May 1990

[8] Rose, M., McCloghrie, K., “Concise MIB Definitions”, RFC 1212, March 1991

[9] Case, J., McCloghrie, K., Rose, M., Waldbusser, S., "Protocol Operations for Ver-
sion 2 of the Simple Network Management Protocol (SNMPv2)", RFC 1905, Jan-
uary 1996

[10] Case, J., McCloghrie, K., Rose, M., Waldbusser, S., "Coexistence between Ver-
sion 1 and Version 2 of the Internet-standard Network Management Framework",
RFC 1908, January 1996.

[11] Waldbusser, S., "Remote Network Monitoring Management Information Base",
RFC 1757, February 1995

[12] Case, J., Mundy, R., Partain, D., Stewart, B., “Introduction to Version 3 of the
Internet-standard Network Management Framework”, Internet draft, July 1998

[13] “Network Management Basics”, http://www.cisco.com/univercd/cc/td/doc/cis-
intwk/ito_doc/55018.htm, Cisco Systemc Inc., 1995

[14] Zallar, Kerry, “Automated Software Testing - A Perspective”, http://
www.crl.com./~zallar/autotest.html

[15] “Automatic test suite generation”, http://www.bonnell.com/mbi/isac/
autogen.html, Mount Bonnell Inc., 1998

[16] Pettichord, Bret, “Success with Test Automation”, http://www.io.com/~wazmo/
succpap.htm, 1996

[17] Powers, Mike, “Styles for Making Test Automation Work”, http://
www.stlabs.com/testnet/docs/auto_style.htm, ST Labs Inc., 1997

[18] Kaner, Cem, “Improving the Maintainability of Automated Test Suites”, http://
www.kaner.com/lawst1.htm, 1997

[19] Bach, James, “Useful Features of a Test Automation System”, http://
www.stlabs.com/testnet/docs/TPFEAT.HTM, ST Labs Inc., 1996

[20] Bach, James, “Test Automation Snake Oil”, http://www.stlabs.com/testnet/docs/
snakeoil.HTM, ST Labs Inc., 1996

[21] Marick, Brian, “Classic Testing Mistakes”, http://www.stlabs.com/marick/Clas-
sic/MISTAKES.html, ST Labs Inc., 1997

[22] Hancock, James, “When to Automate Testing”, http://www.stlabs.com/testnet/
docs/jimauto.htm, ST Labs Inc., 1998

[23] Ousterhout, John K.,Tcl and the Tk Toolkit 1994, Addison-Wesley Pub Co

[24] Johnson, Ray, “Tcl Style Guide”, Sun Microsystems Inc., August 1997

