
GUI For Managing the Equipment In An ATM Switch System8 January 1998 1

GUI For Managing the Equipment In An
ATM Switch System

Mikael Wallin

GUI For Managing the Equipment In An ATM Switch System8 January 1998 2

Contents

1.0 Introduction 4

2.0 Switch Hardware 6

2.1 Cabinet 6

2.2 Subrack 7

2.3 Plug-In Units 8

2.4 Types of AXD 301 Boards 9

2.5 Equipment Modules 10

3.0 EQM MIB 13

3.1 Equipment Management MIB 13

3.1.1 The subrack table 13

3.1.2 The slot table 13

3.1.3 The SC EM table 14

3.1.4 The EM table 14

3.2 Equipment Interfaces MIB 14

3.2.1 The ifTable 14

3.2.2 The ifIndexToPhysTable 15

3.3 The EQM Block Functionality 15

3.3.1 Eqm PIU Module 15

3.3.2 Eqm EM Module 15

4.0 Problem Definition 17

4.1 Present Equipment Management Interface 17

4.2 Detailed Requirements 18

5.0 The Architecture Of The Application 20

5.1 Design 21

5.1.1 Network Interface Module 21

5.1.2 Project Specific Module 22

GUI For Managing the Equipment In An ATM Switch System8 January 1998 3

5.1.3 User Interface Module 23

5.2 The Protocol of the Application 24

5.2.1 Request Messages 24

5.2.2 Reply messages 25

6.0 Implementation 26

6.1 Server Implementation 26

6.2 The Graphical User Interface 28

6.3 Sources of Events 33

6.4 User’s Guide 34

7.0 Conclusions and Improvements 37

7.1 Future Features 37

8.0 Abbrivations 38

9.0 References 39

10.0 Appendix A Constructor & Method Index 40

GUI For Managing the Equipment In An ATM Switch System8 January 1998 4

1.0 Introduction

This master thesis was performed at Ericsson Telecom AB, a unit of Ericsson that
develop ATM switches. The purpose of the thesis was to design and implement a
GraphicalUserInterface(GUI) for managingtheequipment(i.e.subracksandboards)
in a ATM switch. Included in the task was to implement a server application to access
the Management Information Base (MIB) for the equipment of the ATM switch.

The equipment management area is concerned with the control of the physical hard-
ware rather than any of the traffic that goes through the system. The equipment man-
agement functions are used to control the hardware and those parts of the system that
are directly related to it.

Todaythereexistssoftwareto locally controltheswitchvia apuretextualWWW inter-
face.An operatorcanuseaportablecomputerthatsupportsastandardwebbrowserto
perform equipment management. The portable computer is connected to the ethernet
connector of the ATM switch, and can thereby control the switch through http-based
communication.

Thewebbrowseron thecomputercommunicateswith a “local managementserver” in
the switch which will answer to management requests. The data in the responses is
either html/images-files stored in the file system or html-code generated within the
ATM switch. These html pages are created using scripts designed in erlang and con-
tains the managed data. All the information that is displayed to the operator is fetched
from the management information base (MIB) in the ATM switch.

An operator using WWW interface has to step through many pages to perform all the
different actions on the hardware. It is not even possible to view the equipment as
graphical objects, which is the main motivation for this thesis. Implementing a GUI
will also reduce the large amount of different menus in the user interface.

The idea for the user interface is to use the facility to create custom GUI components
with Java and use some layout manager to put them on the screen. Each GUI compo-
nent describes one physical hardware unit.

This report covers the following studies:

• Erlangprogramminglanguage.Theserversideshouldbeimplementedin Erlangfor
real-time requirements.

• Open Telecom Platform (OTP), the development environment at Ericsson Telecom.

• Java programming language for object oriented design of the GUI.

• ATM switch hardware architecture.

• ATM switch software architecture.

The remainder of the report is structured as follows:

GUI For Managing the Equipment In An ATM Switch System8 January 1998 5

Chapter 2 of the report is a description of the hardware in the switch. It also describes
the meaning of the tasks that an operator can perform on the hardware.

Chapter3 describesthetablesin theMIB usedfor handlingthehardwareandthelinks
on the PIU’s.

Further, the present interface to control the switch hardware is described in chapter 4.
A detailed list of the requirements of this project is also given in this chapter.

Chapter5 presentstheclient-serverarchitectureof theapplication.Thefunctionalityof
the Erlang modules that is implemented to interact with the management resources is
also described. The Java components that is implemented for the GUI is presented. At
the end of the chapter the protocol used to send messages between the Java client and
the Erlang server is described.

The implementation of the Erlang server and the Java client is described in chapter 6.
This chapter also describe how to operate the interface.

Chapter 7 concludes the report.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 6

2.0 Switch Hardware

AXD 301 switching system hardware consists of these main components [4]:

• Cabinets for housing equipment subracks and external power equipment

• Subracks for housing (circuit) boards

• Boards for realising the switch functionality.

2.1 Cabinet

AXD 301 switching system hardware is installed in a switching cabinet, as shown in
Fig.1. The cabinet contains a Power Distribution Unit (PDU) for regulating the power
supply to the boards installed in the equipment subracks.

Fig.1. AXD 301 Switching System Cabinet (Front view).

FAN

A
T

A
TC
P

A
T

S
C

A
T

A
T

A
T

C
P

S
C

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

1 2 3 20191817161514131211104 5 6 7 8 9

FAN

A
T

A
TC
P

A
T

S
C

A
T

A
T

A
T

C
P

S
C

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

1 2 3 20191817161514131211104 5 6 7 8 9

Power Distribution Unit

Equipment
Subracks

GUI For Managing the Equipment In An ATM Switch System8 January 1998 7

2.2 Subrack

A switchis madeupof variousboardsstoredin asubrack.Fig.2.shows thefront view
of a fully equipped 10 Gbit/s switch. The boards labelled AT in this figure are the
Asynchronous Transfer Mode (ATM) Termination Boards.

Fig.2. 10 Gbit/s switch (front view)

There is a backplane in the switch (shown as the dotted line down the side of Fig.2.),
whichmeansthatthereis onesetof boardsaccssiblefrom thefront of theswitch,anda
different set of boards accessible through the back (see Fig.3.).

Fig.3. 10 Gbit/s Switch (back view).

FAN

A
T

A
TC
P

A
T

S
C

A
T

A
T

A
T

C
P

S
C

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

A
T

1 2 3 20191817161514131211104 5 6 7 8 9

Minimum Configuration

C
B

-E
T

C
B

-E
T

C
LK

C
B

-E
T

C
P

-I
O

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
LK

C
P

-I
O

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
B

-E
T

C
B

-E
T

12320 19 18 17 16 15 14 13 12 11 10 456789

Minimum Configuration

GUI For Managing the Equipment In An ATM Switch System8 January 1998 8

2.3 Plug-In Units

Theindividualboardsin thesystemareknown asPlug-inUnits(PIUs).PIU is thelevel
you deal with when you are repairing or testing the system.

It is possible to test the boards if they are currently blocked. This generates an event
which shows the details of the test. The boards accessible from the back of the switch
are called the Connection Boards (CBs). Fig.4.shows what this would look like if you
could take a slice through the switch. At the front of the switch you have the larger of
the two boards, and at the back you have the connection board and all of the cabling.

Fig.4. Side view of boards in the switch.

On the front of each board there are three Light Emitting Diodes (LEDs), as shown in
Fig.6. Each LED is of a different colour to help you to distinguish the meanings. The
meanings are constant for all the boards in the switch.

Fig.5. Position of LEDs on the boards.

Front Back

Backplane LEDs

LEDs

PIU

GUI For Managing the Equipment In An ATM Switch System8 January 1998 9

TheredLED lightsupwhenthereis analarmonthisboard(thefirst LED from thetop
in thefigure).ThegreenLED lightsupwhentheboard’s internal(5 volt) powersource
is working (the LED in at the bottom).

The most important LED is the yellow (in the middle) one. This one is lit when the
boardis blocked,indicatingthattheboardcanberemoved.WhenthisLED is OFF, the
board has not been blocked and so should not be removed from the subrack.

2.4 Types of AXD 301 Boards

There are various types of boards that can be included in the Switch. These are
described inTABLE 1. The switch must have Control Processors (CPs) and Switch
Cores (SCs) boards. In addition there may be one ABR and two Clock (CLK) boards.
The rest of the boards are AT (ATM Exchange Termination) boards of different types.
Fig.2. and Fig.3. also shows the basic minimum configuration of boards that are
required to realise the switching functionality of the AXD 301.

The boards are usually identified by labels which contain a barcode and the name of
theboard.Theseidentitiesareshownin Fig.1.,Fig.2.,Fig.3.andtheIdentitycolumnin
TABLE 1.

Identity Name Description

SC Switch
Core (SC)
board

The SC board provides functionality for the space switching
of ATM cells. Because the switch core has a redundant plane,
each subrack must be equipped with two SC boards.

CLK Clock
(CLK)
board

The CLK board provides switch timing and synchronisation
functionality. The board is equipped with four dedicated syn-
chronisation inlets to support the network synchronisation
functionality. For redundancy reasons, each subrack must be
equipped with two CLK boards.

CP Control
Processor
(CP)
board

The CP board provides the switch with a Central Processing
Unit (CPU). For redundancy reasons, each subrack must be
equipped with two CP boards.

CP-IO CP Input
Output
(IO) board

Provides and input/output logic between devices and the CPs
CPU, and IO control between the CPs CPU and its harddisk.
The board also provides customer and support equipment
alarm inlets. For redundancy reasons, each subrack must be
equipped with two CP-IO boards.

AT ATM Ter-
mination
board

The AT board terminates the switch redundancy, and man-
ages ATM cell buffering.

TABLE 1. Board Types in the AXD 301 Switching System

GUI For Managing the Equipment In An ATM Switch System8 January 1998 10

2.5 Equipment Modules

Although the individual physical PIUs are the basic level when you are testing or
repairing the system, when you are performing any other task, the basic level is the
Equipment Module (EM).

An EM is a logical construct - that is, it does not really exist as a physical entity. How-
ever, the EM allows you to group the following boards together, and treat the whole
EM as a single object:

• An ET-CB and AT, that can be treated as a single ET EM.

• A CP-IO and CP, that can be treated as a single CP EM.

• Two CLK PIUs and two SC PIUs, that can be treated as a single SC EM.

• A ABR-CB and AT, that can be treated as a single ABR EM.

Being able to treat an EM as a single object means that whenever you use that EM for
configuration, fault localization, etcetera, the functions will be carried out automati-
cally on all the PIUs within the EM. This also means that all management operations
otherthanthebasicrepairandtestingof physicalPIUs,arecarriedouton logical repre-
sentationsof PIUswithin theEM. Theonly PIU identitythathasanymeaningfor these
management operations is the logical PIU identity belonging to an EM.Fig.6. shows
you the different physical and logical views of the system.

Thephysicalview showshow two PIUsareconnectedvia thebackplane,andthateach
PIU has its own set of Light Emitting Diodes (LEDs). Each pair of PIUs fits into one
slot in the subrack. In the logical view, the following types of EM are shown:

• The Exchange Termination (ET) EM. Each slot in an ET EM is occupied by two
PIUs. The AT board is placed in the front slot and the ET-CB is placed in the back
slot.

• The Control Processor EMs are made up of a single slot with a CP-IO board and a
CP board. The Control Processors are linked to the closest ET EMs.

• TheSwitchCore(SC)EM. This is madeupof two slotspersubrack.Eachslot con-
sists of a CLK board and an SC board.

CB_ET Exchange
Termina-
tion Con-
nection
Board
(ET-CB)

The ET-CBs provide different line exchange termination func-
tionalities depending on the physical ATM interfaces being
supported, such as 34 Mbps PDH and 155 Mpbs SDH. Each
ET-CB provides one or more ports for connecting physical
links.

CB_ABR Available
Bit Rate
server
Connec-
tion Board
(ABR-CB

The ABR-CB manages the ABR service in the switch. Only
one ABR-CB may be installed in a subrack.

Identity Name Description

TABLE 1. Board Types in the AXD 301 Switching System

GUI For Managing the Equipment In An ATM Switch System8 January 1998 11

• The ABR EM. This is made up of two slots per subrack. Each slot consists of a
ABR-CB and an AT board.

Fig.6. The different views of the system.

The ET-CBs provide different line exchange termination functionalities depending on
the types of physical interfaces being supported. Each ET-CB provide one or more

P
hy

si
ca

l v
ie

w
Lo

gi
ca

l v
ie

w

Backplane LEDs

ConnectorsLEDs

S
lo

t

Sl
ot

S
lo

t

subrackSubrack

C
PB

PI
U

C
P

P
IU

 C
B

-C
P

 P
IU

 C
P

-I
O

 P
IU

A
T

B
PI

U
AT P

IU

E
T-

C
B

 P
IU

CP-
EM
CP-
EM ET-

EM
ET-
EM

SC-
EM
SC-
EM

S
C

AT AT C
PC
P

AT AT AT AT AT AT AT AT AT AT AT ATAT S
C

AT

PIU
PIU

CB

PIU

S
lo

t

A
T

B
PI

U
AT P

IU

A
B

R
-C

B
 P

IU

S
lo

t
A

T
B

PI
U

S
C

P
IU

C
LK

 P
IU

S
lo

t

A
T

B
PI

U
S

C
P

IU

C
LK

 P
IU

ET-
EM
ABR-
EM

GUI For Managing the Equipment In An ATM Switch System8 January 1998 12

ports for connecting physical links. You can create ET EMs based on different physical
interface types, such as:

• 155 Mbps electrical

• 155 Mbps optical

• 34 Mbps

• 622 Mbps optical

When the Equipment Module is created, information about the EM is stored in the EM
table (see Section 3.1.4). Because the EM is a logical (rather than a physical) construct,
it only really exists as entries in tables.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 13

3.0 EQM MIB

This chapter describes the Management Information Bases used for handling the
equipment of the ATM switch.

Information about the equipment that makes up the system is held in various database
lists. The management block contain several tables forming a Management Informa-
tion Base (MIB).

There exists two Management Information Bases in the AXD 301 switch system, one
for handling the PIUs and EMs (equipment management MIB) and one for handling
the interfaces, i.e. the links on the ET-CBs. Information from the MIBs can be fetched
through a set of instrumentation functions, an OTP-SNMP Agent interface.

3.1 Equipment Management MIB

It is throughtheinterfaceto thisMIB possibleto create,block,deblock,deleteandtest
the EMs and PIUs in the system. Some of the tables are described in [6] are listed
below.

3.1.1 The subrack table

Thereareoneor two rowsin this table,onefor eachsubrackin thesystem.Therowsin
this tablearecreatedasaresultof createor increaseSCEM. An entryof thetablecon-
tains information a bout a subrack such as.

• subrackId. Identifier of a certain subrack.

• subrackUserLabel. A user friendly subrack name.

• subrackPos. The subrack position in the cabinet.

3.1.2 The slot table

This table contains one row for each slot in the system. There exists twenty slots for
each row in the subrack table. A row in this table is identified by both the subrack Id
and the slot number. An entry in this table contains information about a slot in the sub-
rack:

• slotSubrackId. A reference to the associated subrack.

• slotNo. Identifies the slot position within the subrack.

• slotSide. The value of this object identifies the subrack side of the slot.

• slotState. This object can have four different values: usedOccupied (4) means that
theslot is usedby anEquipmentmoduleandequipedwith HW, unusedOccupied(3)
means that the slot is not used by any Equipment module but there is HW inserted,
usedEmpty (2) means that the slot is used but there are no HW inserted and
unusedEmpty (1) means that the slot is not used by any Equipment module and no
HW is inserted.

• slotEm.Thisvaluetogetherwith theslotSubrackIdidentifiestheEquipmentmodule
that uses this slot.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 14

• slotExpPiutype. The type of Plug-In Unit expected to use this slot.

3.1.3 The SC EM table

This table contains only one row describing the Equipment module ScEm. It holds
information about:

• ScEmType.Thetypeof theswitchcore.WhentheEquipmentmoduleis createdthis
valuedecideshow many Plug-InUnits thatwill becreatedandin whichslotsin the
subracks they must be placed.

• scEmAdmState. The adminastrative state of the SC EM.

• scEmOpState. The operational state of the SC EM.

• scEmActivePlane. Indicates which plane is active, plane A or plane B.

• scEmActivePlaneMode. Indicates the plane selection mode, recommended or
forced.

• scEmIncrease. Used to increase the switch from 10G to 20G. It also indicates the
state of the increase activity.

3.1.4 The EM table

TheEmtableincludesinformationaboutall EM:sexcepttheSCEM. Thereis onerow
in thetablefor eachEM. Whenarow is createdthecorrespondingrowsin thepiu table
are created automatically for the PIU:s belonging to the EM. This table holds informa-
tion about:

• emSubrackId. The id of the subrack this EM belongs to.

• emSlotNo. The value of this object together with emSubrackId uniquely identifies
the equipment module. The value should normally be the slot number of the first
plug-in unit in this EM.

• emType.Thetypeof theequipmentmodule.Whentheequipmentmoduleis created
the value decides how many plug-in units will be created and in which slots they
may be placed.

• emAdmState. The adminastrative state of the EM.

• emOpState. The operational of the EM.

3.2 Equipment Interfaces MIB

The interface to this MIB makes it possible to perform block, deblock and test opera-
tions on the links in the system. There are two tables of interest in this MIB [7].

3.2.1 The ifTable

The ifTable contains standard information for all managed interfaces at a node. The
rowsin thistablearecreatedautomaticallywhenarow in theemTableis created,if this
EM consistof PIU(s)thathavelinks.TherowsaredeletedwhenthecorrespondingEM
is deleted. Some useful entries in this table are:

GUI For Managing the Equipment In An ATM Switch System8 January 1998 15

• ifIndex. A unique value for each interface.

• ifName. The textual name of the interface.

• ifAdminStatus. The administrative state of the link.

• ifOperStatus. The operational state of the link.

3.2.2 The ifIndexToPhysTable

This table specifies the Subrack, Equipment Module and Plug-In unit slot number for
each sublayer. Following entries are needed to

• ifIndexToPhysSubrackId. A reference to the associated subrack.

• ifIndexToPhysEmSlotNo. The slot number for the Plug-In unit that this link belong
to.

• ifIndexToPhysEmPhy. The number of the physical link (on this specific EM).

3.3 The EQM Block Functionality

The functionality of the EQM block is implemented in Erlang Modules.

3.3.1 Eqm PIU Module

A PIU is a general term for the hardware units which are placed in a subrack. Within
the subrack the PIU is placed in one equipment slot. This module contains one server
for eachPIU in thesystem.ThePIU server representsonePIU in thesubrack.Oncom-
mands from the operator it is possible to:

• deblock a PIU server which then loads and starts the device processor on the real
PIU. Thereafter it informs other software functions that the PIU is deblocked.

• block a PIU server which then stops the device processor on the real PIU and
informs other software functions that the PIU is blocked.

• block a link on a ET-PIU server which then calls the device processor on the real
PIU and thereby blocks the link in the hardware. Thereafter it informs other soft-
ware functions that the link is blocked.

• deblock a link on a ET-PIU server which then calls the device processor on the real
PIU and thereby deblocks the link in the hardware. Thereafter it informs other soft-
ware functions that the link is blocked.

3.3.2 Eqm EM Module

An EM is the basic unit for configuration and extension of hardware resources and its
related software resources. It consists of one or more Plug-in units. This module con-
tains one server that is representing all EM:s in the system. On commands from the
operator it is possible to:

• create an EM which then creates its PIU servers.

• deblock an EM which then deblocks its PIU servers.

• block an EM which then blocks its PIU servers.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 16

• delete an EM which then deletes its PIU An EM is the basic unit for configuration
and extension of
servers.

The ET and CP EM:s only have one PIU and the SC EM can have two PIU:s for a 10
Gbps configuration and four PIU:s for a 20 Gbps configuration.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 17

4.0 Problem Definition

Thischapterdescribesthepresentinterfaceto controlthehardwareof theATM switch.
This will finally motivate the idea to make a GUI written in Java. A detailed list of the
requirements of the GUI is given at the end of the chapter.

4.1 Present Equipment Management Interface

The equipment management functional area are split into three main areas: Create,
Open and Delete (Fig.7.).

The Create operation menu provides a single operation menu title that allows you to
performthemanagementoperationto createanew EM. Youselecttheoperationmenu
title Delete - Equipment Modules to delete an EM. This opens a data list form which
displays each EM that is configured to the AXD 301 system. In the Open operations
menuyoucanperformmanagementoperationsonaPIU, EM or aLink. Youselectthe
operation menu titlePlug-In Units to perform block, deblock or test on a PIU. This
opensadatalist form whichdisplaysatableof all thePIUsconfiguredto theAXD 301
switching system. Each row in the table summarises an individual PIU.

Fig.7. The equipment management configuration screen of the present control system.

You can access an individual PIU by selecting a table row icon. This opens a new data
entry form where you can perform the desired management operation. If the PIU is a
ET-CB, you can also select a hypertext linked value which shows a data entry of the
links on the specific PIU. To perform any management operations on a link, you have
to select a table row icon to open a new data entry form. From here you can perform

GUI For Managing the Equipment In An ATM Switch System8 January 1998 18

block, deblock and test on a single link. Operations corresponding to EMs are per-
formed in similar way by selecting theOpen - Equipment Modules menu title. All the
html pages are created using scripts designed in Erlang. The Erlang application will
function as a CGI script.

The problem with this interface is that it takes several steps through Erlang generated
html pages to perform any management operations on the equipment. There exists
someshort-cutsthroughthemenusystem,but it still requiresa lot of patientto wait for
the pages to show up. It is possible to view the plug-in units and the links graphically
but you can not perform any management operations on them.

Using Java to write the client would be very helpful. Java comes with an extensive set
of classes,arrangedin packages,thatyoucanusein yourprograms.For example,Java
providesclassesthatcreategraphicaluserinterfacecomponents(thejava.awt package)
andclassesto controlthelayoutof componentswithin theircontainerobjects.Javaalso
provide classes to keep track of user and window system events (java.awt.event pack-
age).Theseargumentsstronglymotivateaclientwrittenin Javato view andoperatethe
equipment of the ATM switch.

4.2 Detailed Requirements

Here follows a detailed list with the requirements of what actions the operator should
be able to perform through the graphical user interface.

• An operator should be able to perform the management operations create, delete,
block, deblock and test on an individual plug-in unit, equipment module or link.

• Keep track of the Administrative and Operative states of the equipment and display
both to the operator.

• Operate the LEDs on every PIU in order to indicate the blocking state and if there
are any alarms on the physical PIU.

• It must be possible to view both the front PIUs and back PIUs of the subrack.

• The interface must be automatically updated to display some dynamic data.

• It should be possible to get a logical view of the subrack where you can view and
operate the EMs as graphical objects.

• The GUI should be as user friendly as possible.

In orderto solvetherequirementsgiven,theremustbesomeserverprocessesto handle
the requests from the client. These processes should be implemented in Erlang. The
Erlang programs must provide functionality to:

• Receive requests from the GUI client and identify them.

• Provide functionality to create, delete, block, deblock and test on the hardware on
request from the client.

• Interact with the hardware. Scanning the eqmMi and eqmIfMi for PIUs, EMs and
Links and identify them.

• Send data to the java client to update the GUI.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 19

The application should also be easily expanded in the future, both in terms of new
equipment as well as for more program functionality.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 20

5.0 The Architecture Of The Application

ThischapterdescribestheErlangmodulesandJavaclassesthatis implementedto fulfil
the requirements from chapter 4. The protocol designed to communicate between the
client and server is also described.

Theapplicationis acombinationof aclientor afront endportionthatinteractswith the
user and a server or back end portion that interact with the information resources
within the AXD301 system. The front end is implemented in Java and the back end
portion is implemented in Erlang. The client and the server processes interact through
message passing mechanisms. The basic idea of the interaction between the client and
the server is shown in Fig.8.

Fig.8.The Client Server Interaction.

The arrows in the figure has following meanings:

1. A user performs a management operation on a specific equipment unit through the
user interface.

2. The Java client sends the requested operation to the Erlang server with necessary
information to identify the equipment unit.

3. The Erlang server identifies the incoming request to call the appropriate instrumen-
tal function to a MIB.

4. The outcome of the operation is returned from the MIB. This will indicate if the
requested action was successful or not.

 Java Client

 Erlang Server

Equipment Management

 Operator

1.

2.

3. 4.

5.

Graphical User Interface

JDK / Java

OTP / Erlang

GUI For Managing the Equipment In An ATM Switch System8 January 1998 21

5. A reply is sent back to the operator. If the action was successful the reply includes
new datato updatetheinterface.Otherwisethereply includesamessageto indicate
what went wrong.

The client runs in a thread that handles incoming network traffic. It acts as a dispatch
for incomingpackets.It decodesthepacketandcallstheappropriatecodeto handlethe
packet. Messages coming from the server can be treated just like any other event. The
messages sent between the server and the client is an asynchronous operation so the
client and the server will not wait for the message to either arrive at the destination or
to be received. All message passing on the server side is synchronous, which means
that the server must fully handle a request before it can receive another one.

5.1 Design

Most networked applications can be broken down into three basic modules [3]:

• Thenetwork interfacemodule,thatsupportsthesocketcommunicationbetweenthe
client and the server.

• Application specific module, which provides functionality to perform all client
requested operations.

• The user interface module, a set of java components that the user can interact with.

In orderfor theseobjectsto work asawhole,they musthavewell-definedinterrelation-
ships.Theuserinterfacecodeshouldexcel in handlinguserinterfaceissuesandshould
pass on any other actions to an appropriate program component.

5.1.1 Network Interface Module

This module integrate the Java and Erlang programming languages. In OTP there
already exist an Erlang application which makes it possible for a Java Applet to com-
municate with an Erlang program. This application is called Jive [2]. Communication
between the Client and Server is socket based and both Java and Erlang has Jive pack-
ages that hide the socket communication from our other code. Fig.9. shows the Jive
architecture.

Fig.9.The Jive Architecture.

Browser

 Jive

Erlang

 Server

 Jive

 Java

 Applet

In
te

rn
et

GUI For Managing the Equipment In An ATM Switch System8 January 1998 22

Before using any of the functionality in the Jive application a Jive server, which han-
dles the interaction between Java and Erlang, has to be started. The Jive server listens
to apre-definedsocketport throughwhereit cansendandreceivemessages.It actslike
a message passer between the Java client and our Erlang code. Each message sent
between the client and the Jive server contains one byte to describe the message type,
and each message have a routine that knows how to parse the data. By using Jive, the
Java client can communicate with Erlang through three mechanisms:

• Spawn new Erlang processes.

• Do Erlang apply on functions.

• Send messages to Erlang processes.

TheJavasidealsocontainswrapperclassesfor eachErlangvariabletype:integer, float,
string, list, tuple, atom and pid. Once we have the underlying network model, we can
start to design the client and the application specific server. Generally, they will have
complementarymethods.Whenoneproducesamessage,theotherknowshow to parse
it.

5.1.2 Project Specific Module

The core of the application is the Equipment management MIBs that contain all infor-
mationabouttheequipmentof theATM switch.Both theclientandserverneedaccess
to this information.OntheClientside,theinformationabouttheequipmentis savedin
memory, which will be updated within a certain interval.

The project specific module are designed in three Erlang modules:

• eqmGuiServer

• handleRequest

• submitRequest

Theintermodulecommunicationis shown in Fig.10. Fig.10.ThejiveServer listensto a
predefined socket port. When new data is received, the message is parsed to identify
the different messages that can be sent to the jive server, i.e. spawn, apply or send.

All ‘send’messagesaredeliveredto theeqmGuiServer in ourapplicationspecificmod-
ule. The eqmGuiServer receives all application specific requests:

• Get management data, which is used to fetch information from the MIB.

• Setmanagementdata,asaresultto acreate,delete,block,deblockor testcommand
on a piece of equipment in the system.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 23

Fig.10. Inter-module calls on the server side

TheeqmGuiServer is justareceiving processthatparseincomingmessagesandinvoke
methods in the handleRequest module to perform the requested action. All requests to
get management data are handled by the handleRequest module. All other requests to
set management data due to a management operation is handled by the submitRequest
module. The MIB, which holds the managed data, is called via the instrumental func-
tions.

5.1.3 User Interface Module

At its best,designingauserinterfacecanbeaneasytaskusingsometool to graphically
lay out all your GUI components. At its worst, it involves laying out the design by
hand. Screen layout in Java is accomplished by placing items on the screen by using
some layout manager. Typically a combination of the layout managers provided with
Java will accomplish what you want.

TheGUI startswith onemainscreenthatdisplaysthefront of thesubrackwith thecur-
rently configured plug-in units. From this screen, the user can choose from tasks such
asblock,deblockandtestonaplug-inunit. It shouldalsobepossibleto view theback
of thesubrackondemandfrom theoperator. Whenthebackof thesubrackis shown, it
is possible to perform management operations on the connection boards and the links
on every ET CB.

From the main menu, the user can open a new window that shows the logical view of
the subrack. This window is a separate frame that displays the switch core and the cre-
ated EMs of the system. It is from this menu possible to perform management opera-
tions such as create, delete, block and deblock of a EM.

To represent the EMs and the physical hardware of the switch, the following classes
have to be implemented:

• Subrack, which is the placeholder of the plug-in units.

• EM, which represents an equipment module.

• PIU, which represents a physical plug-in unit and is the place holder of the links in
case of a ET CB.

eqmGuiServer

handleRequest submitRequest

jiveServer

Network

Application
Module

Instrumental
Functions

 MIB MIBModule

GUI For Managing the Equipment In An ATM Switch System8 January 1998 24

• Link, which represents a link on a ET CB.

TheEM, PIU andLink is implementedascustomcomponents,whichmakesit possible
to draw custom graphics on them and to receive input events from the user.

5.2 The Protocol of the Application

This section describes the protocol used to pass messages between the eqmGuiServer
and the jive server (Fig.10.).

In Erlang the only form of communication between processes is by message passing
[1]. A message is sent to another process by the primitive ‘!’ (send):

Pid ! Message

Pid is the identifier of the Erlang process to whichmessage is sent. A message can be
any valid Erlang term. Messages sent from the client are called request messages and
messages sent from the server are called reply messages.

5.2.1 Request Messages

The request messages are those received by the eqmGuiServer. They are sent encapsu-
lated within the Erlang variable type tuple of size 3:

{Request, Resource, Method}

The different fields are described below.

Request. TheRequestis anatomthatidentifiesthetypeof theequipment,i.e.aplug-in
unit, an equipment module or a link. The possible values for the atom in the Request
field are:

• change_piu.Thisrequestmeansthattheservershouldperformthemethodspecified
in the method identifier field upon the plug-in unit identified in resource identifier
field.

• change_em. The change EM request means that the server should perform the
method specified in the method identifier field upon the equipment module identi-
fied in the resource identifier field.

• change_link. This request makes the server to perform a management operation
specified in the method identification field upon the link identified in the resource
identifier field.

• get.Thegetrequestis usedto fetchinformationfrom theMIBs. Thisrequestis used
to automatically update the user interface.

Method. The method field contain an atom that identifies the management operation
thatshouldbeperformedonapieceof equipment.Thedifferentvaluesin thisfield are:

• create.Thismethodis usedto createtheequipmentmodulespecifiedin theresource
field. It is only used together with a change EM request.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 25

• delete.Thedeletemethodis usedtogetherwith thechangeEM requestto deletethe
equipment module specified in the resource field.

• block. The block method can be used together with any of the change requests. It
makes the server to perform a block operation on the PIU, EM or Link specified in
the resource field.

• deblock. This method is identical to the block method except it performs a deblock
operation on the EM, PIU or Link.

• test. This method is used together with the change PIU or change Link requests to
perform a test operation on the equipment specified in the resource field.

Resource. This field identifies exactly the piece of equipment to be controlled. It con-
tains a List with the following information:

• SubId. This is an integer that makes a reference to a subrack.

• SlotNo. SlotNo is an integer between 1-20. It is used together with the SubId and
Side to identify a slot in the subrack.

• EmNo. The EmNo is an integer that identifies an EM.

• Side. This is an integer that identifies the side of the subrack. If the integer is equal
to 1, the referred side is front and if the integer is equal to 2 the referred side is the
back of the subrack.

• EmType. An integer that specifies the type of an EM.

• Name. This Parameter is a string that gives a user friendly name to an equipment
module. It is only meaningful together with a create operation.

5.2.2 Reply messages

After receiving and interpreting a request message, the server replies. The replies look
like this:

{send, Receiver, Message}

send is anatomthattells theJiveserver to forwardthecontentsof theMessagefield to
the Java client.Receiver is an integer that identify the Java object that should receive
the message.Message is a List of variable size. Two types of reply messages:

Update. The update response is used by the server after a successful management
operation or after theget request. the message include information from the tables in
the MIBs that is used to update the user interface.

Textmessage. This makes the client to display a window with a specified textstring.
The textmessages are used as a reason phrase of a previously request failure.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 26

6.0 Implementation

This chapter describes the implementation of the application specific module or the
server and the Java classes implemented for the front end. A manual for the GUI is
given at the end of the chapter.

6.1 Server Implementation

The server part consists of three Erlang modules:

• eqmGuiServer. This module receives the requests from the client.

• handleRequest. The handleRequest validates the incomming messages to check if
requestedactionis permitted.It providesfunctionalityto fetchinformationfrom the
tables in the MIBs.

• submitRequest. This module is invoked when a management operation has passed
the validation algorithm in the handleRequest module.

6.1.1 eqmGuiServer

The jive module is as we already mentioned implemented in the OTP system. Before
using any functionality in the jive module a jive server has to be started. This is per-
formed by the init function in our eqmGuiServer:

init(Port) ->

 jive:start(Port),

 jive:allow({guiServer,start,2}).

Port contains the socket port that the jive server should listen to. The jive server is
started in the next line of the code and makes it thereby possible to perform Erlang
apply on functions and to send messages to an Erlang process. To prevent security
problems it is only possible to access functions which are explicitly declared by the
Erlangside.This is doneby theallow call in thelastrow of thecodeabove.Thecall to
this functioncontaina tuplewhichnamesthemodule,thefunctionandthearity of the
function that the client is allowed to access. This means that the client is allowed to
spawn function start in the Erlang module eqmGuiServer. The init() function is only
called once, when the server process is started for the first time. The start method is
spawned by the Java client when the user visits the html-page with the Applet. The
code for the start function look like this:

start(Receiver, PidId) ->

Pid = jive:get_pid(PidId),

receiver(Receiver, Pid).

Receiver is an integer which specifies the Java object that should receive replies from
the server. When the client connects to the Jive server, the server starts an Erlang proc-
esswhichallowstheJiveserver to sendmessagesto it. TheJavaclientknowsthisproc-

GUI For Managing the Equipment In An ATM Switch System8 January 1998 27

ess as the self process [2]. The PidId is an integer that identifies the Java client that
should receive the information sent from the server. In the second row of the code the
actualPidof theErlangprocessassociatedwith thePidId is returned.Thereceive func-
tion is called with Receiver and Pid as parameters. This will initiate a server loop.

The eqmGuiSever is our application specific server which is a very simple loop. It
receives the requests from the operator through the Jive server. It runs continuously
waiting for requests from the client. Here is the code for the main server loop:

receiver(Receiver, Pid) ->

 receive

 {Request, Resource, Method} ->

 Result = handlerequest:handle_request(Request, Resource, Method),

 Pid ! {send, Receiver, Result};

 Other ->

receiver(Receiver, Pid)

end.

TheeqmGuiServerprocesshasits own mailboxandall messageswhicharesentto the
processarestoredin themailboxin thesameorderasthey arrive.Thereceive primitive
is used to receive messages. In the above, {Request, Resource, Method} is a pattern,
actuallyanErlangtupleof sizethree,whicharematchedagainstthemessagesthatare
in the process’s mailbox. The pattern is used to parse the message. When a matching
messageis found,themessageis selected,removedfrom themailboxandthenanother
process, handleRequest, is called to handle the corresponding action. The variables in
thepatternis atfirst unboundbut becomesboundwhena tupleof sizethreeis selected
from the mail box. Any messages which are in the mailbox and are not selected by
receive remains in the mailbox and will be matched against the next receive. The last
clause in thereceive has the unbound variableOther as its message pattern. This will
match any message which are not matched by the first clause. Here we ignore the mes-
sage and continue by waiting for the next message. This is the standard technique for
dealing with unknown messages:receive them to get them out of the mailbox.

6.1.2 handleRequest

The handleRequest module is invoked to perform all application specific requests. It
has one function that is called by the eqmGuiServer to handle the requests:

handle_request(Request, Resource, Method) ->

Result=apply(handleRequest, Request, [Resource, Method]).

The Request parameter is an atom. This atom names the function that is to handle the
requestedaction.Resourceis alist whichidentifiesapieceof equipmentandMethodis
an atom that specifies what to do with the Resource, i.e. block or deblock. apply is a

GUI For Managing the Equipment In An ATM Switch System8 January 1998 28

BIF which apply the function Request in the module handleRequest to the argument
list [Resource, Method]. The handleRequest module defines following management
functions to handle all requests:

change_piu. This function is invoked to handle all management operations on each
plug-inunit. It checkstheadministrativeandoperationalstatesof thePIU to validateif
it still is in correct state. It should for example not be possible to perform a block oper-
ation on an already blocked PIU.

change_em. The change_em function is invoked to perform management operations
on an equipment module. The state of the EM is checked to validate the operation.

change_link. Called to perform a management operation on a link.

get. The get function is called to fetch information from the MIBs. The data is sent to
the Java client to update the interface.

Each management operation that is correct is finally used to set new values in a MIB
table. The submitRequest module defines functions to change a table due to a manage-
ment operation.

The Result from the apply call is returned to the eqmGuiServer which sends it to the
client. The reply is either new data to update the GUI or an error message.

6.2 The Graphical User Interface

In thissection,weonly show thehighlightsof theuserinterfacecode.Themostimpor-
tant classes of the GUI is examined in more detail. The components that is imple-
mented to describe the equipment of the ATM switch works in a similar way, so we
only describe the implementation of the PIU class.

Fig.11. shows the class hierarchy on the client side. It shows that the GUI components
all inherit the Panel class and implement the ActionListener interface from the Java
API package [8]. Panel is a container that does not have its own window - it is con-
tained within some other container. The arrows in the figure shows the relations
between the container components. The main container is the EqmGuiClient which
holds contain the Subrack, PIU and Link components. The EM component is added to
a separate frame.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 29

Fig.11. The class hierarchy of the Java client.

6.2.1 The EqmGuiClient class

The EqmGuiClient class is the main container of all the GUI components. It is a sub-
classof theEAppletclassfrom thejivepackage.TheEAppletoverridestheinit method
in theAppletclass.Thismethodis calledin theconstructorof theEqmGuiClientto ini-
tialize the Jive client. This will take care of the connection with the server. The Jive
packagealsoprovidetheEReceive interfacewhichmustbeimplementedby eachclass
which want to receive messages from the Erlang server. One method has to be imple-
mented from the EReceive interface:

public void receive(EVar var) {

EVar evars[] = ((EList)var).value();

EqmGuiClient

Subrack

PIU

Link

EM

Panel

EReceive EApplet Applet

ActionListener

jive.erlang java.applet

java.awt java.awt.event

GUI Components

KEY CLASSCLASS

INTERFACE

ABSTRACT CLASS

extends

implements

contains

GUI For Managing the Equipment In An ATM Switch System8 January 1998 30

String guard = ((ESting)evars[0]).value();

if(guard.equals(“textmessage”))

// display textmessage in a window

if(guard.equals(“update”))

// update all GUI components

}

The receive method is invoked whenever some data are to be received from the eqm-
GuiServer. It is called with the message as parameter when the Erlang side wants to
communicate with the object. EVar is an abstract class that is a superclass of all other
Erlangwrapperclasses.Thevarparametershouldbeof theErlangvariabletypelist, if
following the instructions of the protocol. In line two of the code above, the whole
message is parsed into an array of EVar objects. The first position in the array should
contain an EString object identifying the type of the message. The EString object is
convertedinto aJavastringwhich is usedin theif-statementsto call theright function-
ality for handling the rest of the message. The first if statement is matched when the
serverhasa textmessagefor theEqmGuiClient.A window is thenshown with themes-
sage.Thishappenswhenanerrorhasoccurreddueto amanagementoperation,andthe
server replies with an errormessage. The second if-statement is called as a reply to a
successful management operation or as a reply to an update request. All custom com-
ponents that represents the equipment of the ATM switch is then updated.

The EqmGuiClient defines methods that makes it possible for other Java objects to
communicatewith theErlangside.For example,changePiu()is apublicmethodthatis
used to send a block, deblock or test request to the Erlang server.

The constructor of the EqmGuiClient loads all images used by the interface. It uses a
MediaTracker to fully load the images before they are displayed.

6.2.2 The Subrack class

TheSubrackclassis thecontainerof thePIU components.It usesonePanelto arrange
the PIUs corresponding to the front of the subrack and another Panel to arrange the
PIUscorrespondingto thebackof thesubrack.ThePanelsusesaFlowLayoutmanager
to layout the PIU components within the Panels. The Subrack then uses a CardLayout
manager to make just one Panel visible at a time:

 setLayout(new CardLayout());

 add((Component)frontPanel_,”FRONT”);

 add((Component)backPanel_,”BACK”);

ThefrontPanel_andthebackPanel_parametersis thePanelobjectswith all of thefront
andbackPIUsof thesubrack.“FRONT” and“BACK” arestringsidentifiersassociated
to thePanelsandusedfor fastrandomaccessof thePanels.TheSubrackdefinesapub-
lic method that makes it possible to flip between the back and front of the Subrack:

GUI For Managing the Equipment In An ATM Switch System8 January 1998 31

public void show(String side) {

((CardLayout)getLayout()).show(this,side);

}

This method is called with the desired side to be displayed as a parameter.

6.2.3 Creating a Custom Component

Three custom components are implemented to describe the switch hardware. They all
inherits the Panel class which enables it to draw custom graphics on the Panel and to
trap input events from the user.

The most important method of any custom component is the paint() method, which
actually draws the component. The paint method in the PIU class look like this:

public void paint(Graphics g) {

g.setColor(Color.white);

g.fillRect(0, 0, getSize().width, getSize().height);

if(!slotState.equals(“unusedEmpty”))

// Draw images based on the type of the physical plug-in unit.

else

// Fill rectangle with color representing an empty slot.

}

Thefirst thingthathappensin thepaintmethodis thatthewholesizeof thecomponent
is filled with whitecolor. ThereexistsonePIU objectfor everyslotpositionin thesub-
rack whether the slot contains a physical plug-in unit or not. This is what the first if
does,decidewhetherthePIU objectrepresentsaslot to whichaphysicalplug-inunit is
inserted.slotStateis aprivatememberthatcontainsastringwith thecurrentstateof the
slot(3.1.2).If thereis somehardwareinsertedinto theslot,aPIU typespecificimageis
drawn onthescreen.TheLEDsof thePIU is alsodrawn. Theelse-clauseis matchedif
the slot is empty which just fills the rectangle with a dark color representing an empty
slot. The slotState variable is also used to decide whether the plug-in unit has to be
repaintedor not.To avoid necessaryprocessingtimeto repaintacomponentthathasn’t
changedsincethelasttime it waspainted,thecurrentslotStateandthelastslotStateof
the PIU object are compared. This decides if the component must be repainted or not:
If the slot state has changed and the new state indicates that a physical plug-in unit is
removedor insertedinto theslot,thePIU componentmustberepainted.Thiswill make
the GUI to be updated much quicker and avoid flickering images during a update pro-
cedure.

Like all custom components it has to override the getPreferredSize() and the getMini-
mumSize() methods to display itself on the screen. All PIUs are of equal size.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 32

Another important method in the PIU class is setPiuType(). This method take care of
creating and adding the links to the PIU container in case of CB ET. A code fragment
for this method is given below:

public void setPiuType(String piuType) {

piuType_ = piuType;

if(piuType_.equals("ET155-S1.1 back")) {

if(links_ == null) {

links_ = new Link[4];

links_[0] = new Link(sLinkImages_,subrackId_,slotNo_,0,eqmGui_);

links_[1] = new Link(sLinkImages_,subrackId_,slotNo_,1,eqmGui_);

links_[2] = new Link(sLinkImages_,subrackId_,slotNo_,2,eqmGui_);

links_[3] = new Link(sLinkImages_,subrackId_,slotNo_,3,eqmGui_);

addLinks();

}

}

// One if statement for every possible CB ET.

else

if(links_ != null) {

removeAll():

links_ = null;

}

}

Thereis oneif statementfor everypossibletypeCB ET. In theexamplethePIU typeis
a “ET155-S1.1 back” which has four optical links. The second if-statement checks if
the links already exists which means that the Link components are already laid out on
the PIU container. In case this is a new PIU object the Links are created and stored in
an array of Links. addLinks() is called to layout the Links. The PIU container uses the
GridBagLayout manager to organize the link components as realistic as possible. The
elsestatementis matchedif therearenophysicalplug-inunit in theslotor if thePIU is
a SC PIU or a CP-IO PIU. The link components are then removed and the array with
thelinks aresetto null. TheLink componentsarethereforecreatedanddeleteddynam-
ically.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 33

6.3 Sources of Events

All of the custom components interact with the user in the same way. They are all con-
tainers with their own popupmenu added to them. The popup menus has one menu-
iteam for every possible action you can perform on the component. Below is a code
fragment from the constructor of the PIU class:

pm = new PopupMenu(“Slot - “ + Integer.toString(getSlotNo()));

add(pm);

blockPiu_ = new MenuItem(“block PIU”);

blockPiu_.addActionListener(this);

pm.add(blockPiu_);

// one menuitem for ecah operation you can perform on the component

The first line creates the pop-up menu with a title. The title shows the slotposition of
thePIU objectyoucanoperatethroughthemenu.Thenext line addsthepop-upmenu
to thePIU component.A menuitemto performablockoperationis createdin thethird
line andthePIU is addedastheactionlistenerfor thismenuitem.Themenuitemis then
added to the pop-up menu. Whenever the pop-up menu is shown and the “block PIU”
menu choice is selected, an action event is delivered to the parent of the pop-up menu.
In this case the PIU component.

The enableEvents() method is invoked to have a specified event delivered to the com-
ponent regardless of whether or not a listener is registered. Each component also
implementtheActionListenerinterfaceto beableto receivetheactioncommandsfrom
the menuitems.

6.3.1 Handling Events

Theuserinteractwith theGUI throughmouseoperations.TheprocessMouseEvent()is
calledby thesystemwhentheuserpressesamousebuttonor movesit over thecompo-
nent. The code for this process is given below:

public void processMouseEvent(MouseEvent e) {

if(e.isPopupTrigger())

pm.show(e.getX(), e.getY());

}

Theif statementcheckswhetherthiseventis thepopup-menutriggereventfor theplat-
form. Thenext line showsthepopupmenuat thex,y positionrelative theorigin compo-
nent. All other mouse events are ignored by the component.

menus take care of displaying themselves, but attaching behaviour to menu items is
something you must handle yourself. The first order of business is to identify which

GUI For Managing the Equipment In An ATM Switch System8 January 1998 34

menu item has been selected, and then to go about the implementing the functionality
associated with the menu item. To identify which menu item that was selected we sim-
ply implement the actionPerformed method from ActionListener interface for receiv-
ing actionevents.Wheneveranactioneventoccursonamenuitem,anActionEventis
dispatchedto theGUI component.Thecodefor handlingactioneventsin thePIU class
is described below:

public void actionPerformed(ActionEvent e) {

String command = e.getActionCommand();

if(command.equals("block PIU")) {

eqmGuiClient_.changePiu(getSubrackId(),getSlotNo(),

 getEmNo(),getSide(),"block");

return;

}

 . . .

The menu item that fired the action event is identified by the getActionCommand().
commandis thenusedin asequenceof if statements.Thereis oneif statementfor each
menu item. The code shows the case when a block operation is performed on a PIU
object.An instanceof theEqmGuiClientis thenusedto call thepublicmethodchange-
Piu() together with necessary information to identify the physical hardware of the
switch. The EqmGuiClient take care of processing the operation to the server side.

6.4 User’s Guide

Using the program is fairly simple. After the program is stared, the client connects to
theserver. Theserverreturninformationfrom thetablesin theMIBs andtheclient lays
out its GUI components for the first time. Fig.12. shows the back view of the subrack
with its currently configured plug-in units. The figure shows the CLK boards (slot 1
and20)of theswitchandaET-CB of type155Mbpselectrical(slot4). TheET-CB has
4 links.

Thebackview enablesmanagementoperationson thePIUson thebackof thesubrack
and the Links on every CB ET. To operate the PIUs on the front of the subrack you
haveto pressthebuttonlabelled“Front”. Thisflips thesubrackaroundandthePIUson
the front of the subrack is shown.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 35

Fig.12. Back view of the subrack.

6.4.1 Inspecting and Modifying the Plug-In Units

SelectthePIU youwantto operateby pressingtheright mousebuttononit. Thisbrings
forward a pop-up menu that allows you to:

• Block thePIU if it is currentlyunblockedby selectingthe“block PIU” menuoption.

• Unblock the PIU if it is currently unblocked by selecting “deblock PIU” menu
option.

• Test the PIU by selecting the “test PIU” menu option. The PIU has to be block in
order to enable this operation.

• InspectthePIU by selectingthe“Info” menuoption.Thisbringsforwardawindow
with the information about the plug-in unit.

6.4.2 Inspecting and Modifying the Links on a Plug-In Unit

Select the rear view of the subrack (Fig.12.). Select the Link you want to operate by
pressingtheright mousebuttonontheLink. Thisshowsthepop-upmenuwhichmakes
it possible to:

• Block the Link if it is currently unblocked.

• Deblock the Link if it is currently blocked.

• Test the Link.

6.4.3 Creating an Equipment Module

Presstheright mousebuttonoutsidethesubrackandselectthe“EM view” option.This
bringsforwardawindow (Fig.13.)with thecurrentlyconfiguredequipmentmodulesof
the system.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 36

Fig.13. The EM view

ThedarkfieldsindicatetheEMsyoucancreateandthewhitefieldsindicatethataEM
is already created. The only EM present in the figure is the SC EM.

Select the EM you want to create by pressing the right mouse button to visualize the
pop-upmenuandselect“createEM”. Thisbringsforwardthewindow shown in figure
(Fig.14.).

Fig.14. Create EM window

YouselecttheEM youwantto createfrom thepull down menuin theupperleft corner
of the window. You can also give the EM a user friendly name. To send the request to
the server, press the submit button. To cancel the operation press cancel.

6.4.4 Inspecting and Modifying Equipment Modules

You can perform a management operation on an individual EM from the EM window
(Fig.13.). Press the right mouse button on the EM you want to operate to visualize the
pop-up menu. This allows you to:

• Block an equipment module that is currently unblocked by selecting the “block
EM” menu choice.

• Unblock an EM whose adminastrative state is currently blocked by selecting the
“deblock EM” menu choice.

• Delete an EM that is currently blocked.

• Inspect an EM by selecting the “info” menu choice. This brings forward a new win-
dow that displays information about the EM.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 37

7.0 Conclusions and Improvements

All the requirements from the problem definition are fulfilled. The application works
well and respond fast to user actions once it is initialized. By demonstration it takes
longer time to start the Applet then to bring forward the main screen of the present
CGI/Erlang user interface. After loaded, however, the Java interface is just about real-
time to perform a management operation.

As stated in the problem definition the cgi interface required menu steps through
Erlang generated html pages to perform any management operations. This is accom-
plishedwith only threedifferentmenusin theJava interface;onewindow makesit pos-
sible to view and operate the PIUs on the front and back of the subrack, and another
window enables operation and monitoring of the equipment modules in the system.

Sinceapagein thehtml-interfaceis createddynamicallyit requiresthatthewholepage
is fully reloaded every time you visit it. The Java Applet on the other hand only loads
the images to be drawn upon the GUI components once. After that, the only data
passed between the applet and the server is new information about the switch hard-
ware. This saves you considerable web server load.

7.1 Future Features

There are some future features that can be implemented compared to the present user
interface:

• Perform an increase operation on the subrack, i.e. to upgrade 10 Gbps switch to
20Gbps.

• Modifying aEM nameor PIU nameby assigninganew valueto theNameattribute.
The name attribute can only be set at creation of an equipment module.

• Doublecheckuseroperations.To preventaccidentaloperationsit is desiredto have
a check window that asks for an acknowledgement of the requested operation and
disables any other actions before the window is closed.

• Make a better error handling that tell the user more exactly what went wrong and
what to do about it.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 38

8.0 Abbrivations

API Application Programming Interface

ATB ATM Termination Board

ATM Asynchronous Transfer Mode

CB Connection Board

CGI Common Gateway Interface

CP Control Processor

EM Equipment Module

EQM Equipment Management

ET Exchange Termination

GUI Graphical User Interface

JDK Java Development Kit

LCT Local Craft Terminal

LED Light Emitting Diode

MIB Management Information Base

OTP Open Telecom Platform

PID Process Identifier

PIU Plug-In Unit

SC Switch Core

SNMP Simple Network Management Protocol

GUI For Managing the Equipment In An ATM Switch System8 January 1998 39

9.0 References

[1] Armstrong,J.,Virding, R.,Wikström,C. andWilliams, M., 1996, ConcurrentPro
grammingin ERLANG:707-750,ISBN 0-13-508301-X,UK: PrenticeHall Interna-
tional Limited.

[2] Grebenö,J.,Nygren,K., 1997,JiveApplication(JIVE), http://otp.ericsson.se/prod-
uct/otp_unix_r2d/lib/jive-1.0/doc/javadoc/Package-jive.erlang.html.

[3] Thomas,M.D., Patel,P.R.,Hudson,A.D. andBall JR.,D.A., 1996,JavaProgram-
mingfor theInternet, ISBN 1.56604-355-7,US:VentanaCommunicationsGroup,
Inc.

[4] 4/15513-CNA 12165,EquipmentManagement- AXD301ATM SwitchingSystem,
Ericsson Telecom AB 1997.

 [5] 1/155 17-CRA 120 03, 1997,Function Specification - Equipment Management,
Ericsson Telecom AB.

 [6] 4/196 03-CRA 120 03,Axd301Eqm-SWS.mib,Ericsson Telecom AB.

 [7] 6/196 03-CRA 120 03,Axd301EqmIf-SWS.mib,Ericsson Telecom AB.

 [8] Package Index, http://java.sun.com/products/jdk/1.1/docs/api/packages.html.

GUI For Managing the Equipment In An ATM Switch System8 January 1998 40

10.0 Appendix A Constructor & Method Index

