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Abstract

The process model is a keystone in server architectures. With process models we mean
how and when operating system processes are created, managed and terminated at ap-
plication level. A fine-grained number of processes provide fault isolation and concurrent
service of incoming requests. However, fine-grained processes often lead to deteriorated
performance at the same time as concurrency also can be attained through multithreading
or asynchronous I/O.

In this thesis, some selected process models are analyzed and evaluated for usage in
telecom systems. Modern telecom systems have requirements on real-time performance for
multimedia service and constant availability for emergency calls. It is shown that models
with few and long-lived processes perform better in terms of capacity and latency, but that
the difference is fairly low on the telecom server platform TSP.

Processmodeller för högpresterande telekomsystem
Examensarbete

Sammanfattning

Processmodellen är en fundamental byggsten i serverarkitekturer. Med processmodeller
menar vi hur och när operativsystemsprocesser skapas, hanteras och termineras på applika-
tionsnivå. Många och små processer innebär en liten feldomän och semiparallell hantering
av inkommande förfrågningar till servern. Men många och små processer leder också of-
ta till försämrad prestanda samtidigt som samma nivå av parallellitet kan uppnås genom
multitrådning eller asynkron I/O.

I detta examensarbete analyseras och utvärderas några utvalda processmodeller med
avseende på prestanda och tillämpbarhet på telekomsystem. Moderna telekomsystem mås-
te klara av multimediatjänster med realtidsprestanda och konstant tillgänglighet för nöd-
samtal. Det visas att modeller med få och långlivade processer presterar bäst, men att
skillnaderna är tämligen små på telekomplattformen TSP.
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Chapter 1

Introduction

Telecom systems of today are more and more built on software, with fewer features
implemented in specialized hardware. This means much higher requirements on
software architectural issues, to ensure cost efficient solutions capable of handling
huge amounts of subscribers and traffic on clusters consisting of commercial off-
the-shelf processors. In response to the merger of the cellular infrastructure with
the packet-switched Internet, a framework called the IP Multimedia Subsystem is
defined in the third generation of mobile systems [40]. The framework is designed
as a network of loosely coupled components. Proxy servers take a central role, since
they route messages between mobile end users. By having end-to-end messages
passing through several nodes in the core network, latency is at the risk to increase.
Signaling, which used to be based on numbers, is replaced by text-based protocols
such as SIP, which puts performance even more in focus.

These changes result in high performance requirements on network products,
while traditional requirements such as robustness at the same time should be main-
tained. Server architectural issues are of highest importance.

1.1 Goal

The goal of this Master’s thesis is to study and evaluate how process models in a
SIP proxy server affect performance, robustness, and complexity. The assumption
is that a process model with long-lived processes performs better than a process
model which restarts its processes. The analysis should result in a recommendation
on the best way forward for a converged network product by Ericsson, henceforth
referred to as “the product”.

1.2 Scope

The thesis scope is limited to solutions on server process models, which means that
product functionality and other technical issues related to functionality are excluded

1



2 CHAPTER 1. INTRODUCTION

from the thesis. The measurements are restricted to the telecom server platform
TSP. Improvements of TSP itself are not considered.

1.3 Comparison to Related Work

There are in particular two differences between this work and much related work.
This work is based on TSP whereas most other research projects as well as com-
mercially developed servers assume Unix like behavior of the operating system.
Process creation costs are high on Unix, thus giving strong motivations for imple-
menting pooling architectures (described in Section 4.3). It is not obvious that
TSP’s characteristics lead to the same conclusions. The other important difference
is the availability requirements. This server is intended for telecommunications. The
availability requirements in telecom are far higher than in ordinary data communi-
cations, due to the fact that telecom networks serve as emergency infrastructure.
This requirement affects architectural design choices.

1.4 Overview of Document

Chapter 1 presents a longer problem statement as well as the goal and scope of the
thesis. Chapter 2 introduces the Session Initiation Protocol, which is the applica-
tion protocol that this proxy server (the product) operates on. Chapter 3 is on the
IP Multimedia Subsystem, which define the framework and the usage context of
the product. Chapter 4 is an essential chapter about server architectures, present-
ing the process modeling problem and examining different approaches to process
modeling. Chapter 5 describes a server platform, specialized for the telecom envi-
ronment, called the Telecom Server Platform. Chapter 6 discusses solutions to the
process modeling problem and presents tests on prototypes. Chapter 7 analyzes
results from the tests and draws conclusions about the relative performance of the
process models. Chapter 8 summarizes analytical and experimental conclusions,
and gives a recommendation on ways forward for the product. Appendix A contains
abbreviations that are used in the document. Appendices C, D and E contain test
data.



Chapter 2

Session Initiation Protocol

This chapter, as well as the following chapters, presumes elementary knowledge of
data communications, for example the layers in the Internet model and fundamental
concepts like client/server architectures. For the reader lacking this background,
Forouzan [2] gives a good introduction to data communications and the TCP/IP
protocol suite.

Client/server architecture denotes a paradigm, where clients send request mes-
sages to servers and servers respond with response messages. Servers and clients
are entities in a network. In this thesis, the most important network entity is the
proxy server, or the proxy in short form. A proxy is both a server and client. It is
defined by Internet Engineering Task Force [39] as “an intermediary program that
acts as both a server and a client for the purpose of making requests on behalf of
other clients”.

Servers and clients operate on protocols in the application layer. The Session
Initiation Protocol (SIP) is a protocol in the application layer. SIP has its origins
in the Internet community and is developed by the Internet standards body, the
Internet Engineering Task Force (IETF) [39]. The TCP/IP protocols, as well as
other so called Internet protocols, are standardized by the IETF, which assures
consistent design goals, reuse of components and interoperability between different
protocols and network layers. RFC 3261 [3] is the specification document of SIP.
Besides RFC 3261 there are a number of extensions to SIP defined in other RFCs
or Internet drafts.

SIP can operate over several different transport protocols. SIP has been chosen
as the session control protocol for the IMS domain of 3G [1]. IMS is described in
Chapter 3.

2.1 Functionality

SIP is designed to establish, modify and terminate multimedia sessions with one
or more participants. Typically in this context a multimedia session is a telephone
call, but SIP is independent of the type of multimedia session. The media are de-

3



4 CHAPTER 2. SESSION INITIATION PROTOCOL

termined by a session description protocol such as the Session Description Protocol
(SDP) [4]. The purpose of SIP is to deliver the session description to the right
user(s) at their current location. Possible multimedia sessions apart from audio
calls are videoconferences, shared whiteboards, gaming sessions et cetera.

SIP supports five aspects of session establishment and handling [3]:

• User location: determination of which end system to communicate with;

• User capabilities: determination of the media and media parameters;

• User availability: determination of the willingness of the called party to engage
in the invited session;

• Call setup: establishment of call parameters at both the called and the calling
party;

• Call handling: termination and transfer of calls.

SIP can invite parties to both unicast and multicast sessions and the initiator
does not need to be part of the session to which it is inviting. Both persons and
machines can participate. Sessions can be modified whenever the users want, i.e.
media and participants can be added to an existing session by delivering new session
descriptions.

2.1.1 User Moblity

SIP must support a mechanism to locate and identify the called party in order to
deliver a session description. A session protocol that is designed for telecom purposes
must also allow user mobility in the localization mechanism. User mobility means
seamless movement between different networks during and between sessions without
changing identity, interrupting the session or losing the localization ability.

The IP-address is not enough for user identification because of two reasons:
First, an IP host is not the same as user identification, since an IP host can be
used by more than one user and a user can move between different computers and
networks. Second, an IP address is related to a specific network and is not designed
to be mobile.

The user identification defined in SIP is called SIP Uniform Resource Identifier
(SIP URI). URI is a general concept defined in [5] for referencing anything that has
identity. The SIP URI format resembles a mailto URI [12], which has the format
user@host. The user part is a user name or a telephone number. The host part is
a domain name or a numeric network address. Additionally, SIP URIs can contain
a number of parameters, separated by semi-colons. Figure 2.1 shows two examples
of SIP URIs belonging to a user called Anna Nilsson. Let us say that the first URI
in the example is defined to be her Public URI (the Public URI is also referred to
as the Address of Record (AoR) [3]). The Public URI points to a domain with a
location service that can map her Public URI to another URI (see the paragraph



2.2. SIP ENTITIES 5

about location service on page 6). It could for example be mapped to her university
URI or cellular URI depending on where she is and how she wants to communicate.
All addresses can easily be distilled into the single Public URI, which she can print
on her business card.

sip:anna.nilsson@domain.com

sip:anna@kth.se; transport=tcp

Figure 2.1. Examples of SIP URIs

2.2 SIP Entities

A network architecture supporting SIP communication requires a set of entities for
routing purposes. These network entities can be viewed as logical functions and not
necessarily identifiable as physical nodes. It is not unusual that one physical entity
behaves as several logical entities. This is typically true for complex servers, whose
behavior depends on the particular situation. Putting “SIP” in front of a network
entity name (e.g. SIP server) emphasizes that the network entity specifically is
capable of handling the SIP protocol.

A server is “any network element that receives requests in order to service them
and sends back responses to those requests” [3]. The response accepts, rejects or
redirects the request. A SIP server receives SIP requests and returns SIP responses.
Server is a general term, which among others covers proxy servers, user agent servers,
redirect servers, and registrars.

A client is “any network element that sends SIP requests and receives SIP re-
sponses” [3]. User agent clients and proxy servers are clients.

A user agent (UA) is an endpoint, that is an application that interacts with
the user. Sessions are typically established between user agents. The calling user
agent —behaving in this situation as a client— initiates the SIP request. The called
user agent —behaving in this situation as a server— contacts the user when a SIP
request is received and returns a SIP response on behalf of the user.

A proxy server is “an intermediary program that acts as both a server and a
client for the purpose of making requests on behalf of other clients” [3]. In other
words, it receives a SIP message from a user agent or from another proxy and routes
it toward its destination. A proxy interprets, and, if necessary, modifies a request
message before forwarding it.

A redirect server is a server that accepts a SIP request, maps the address into
zero or more new addresses and redirects the client to these addresses with a redi-
rection response message (see categorization of response messages in Table 2.2 on
page 7). A redirection server does not forward SIP requests, as a proxy server does,
and it is not an endpoint as a user agent is.

A registrar is a server that registers a user’s location. It accepts SIP REGISTER
messages from users and updates its domain’s location server with the user’s current
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location. The registrar functionality is usually co-located with a proxy or a redirect
server and acts as a front-end to the location server.

A location server offers information about a callee’s possible location(s). Loca-
tion servers are not SIP entities because they do not communicate using SIP. Hence,
they are usually co-located with a registrar. Since it is not a SIP entity, it is clearer
in a SIP context to talk about a location service instead of a location server. Proxy
and redirect servers use the location service.

2.3 Protocol Format

The SIP protocol is text-based and SIP messages are human readable. The benefits
of text-based protocols are ease of understanding, ease of debugging and ease of
implementation. The messages do not have to be interpreted by a network analyzer
tool for human understanding. The drawback is inefficient use of bandwidth; it
yields longer messages than its binary encoded counterparts.

HTTP [25] is a well-known text-based predecessor to SIP. The SIP message
format is based on HTTP. Both SIP and HTTP employ a request/response model.
Clients send requests and servers send back responses. A message consists of a start-
line, one or more header fields, an empty line indicating the end of the headers and
an optional message-body (see general description in Figure 2.2 and actual examples
in Appendix C). The start line is referred to as the request line for a request message
and the status line for a response message. Apart from the start line the formats
are the same for a request and a response message.

Generic-message = start line

*message-header

carriage-return line-feed

[ message-body ]

Figure 2.2. SIP message format described in Augmented Backus-Naur form

The request line of a request message begins with a method name, followed by
a Request-URI and the protocol version (SIP/2.0). The method name specifies the
type of request. Table 2.1 on page 7 lists all currently defined method names and
their meanings.

The start line of a response message is called the status line, which consists of
the protocol version, a 3-digit status code and a textual explanation to the status
code. Figure 2.3 on page 7 shows an example of a status line. The status code is
categorized into six different groups, each starting with a new number. Table 2.2
on page 7 lists and describes the categories.
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Method name Meaning

ACK Acknowledge the establishment of a session
BYE Terminate a session
CANCEL Cancel a pending request
INFO Transport PSTN telephony signaling or other application

layer information
INVITE Establish a session
NOTIFY Notify the user agent about a particular event
OPTIONS Query a server about its capabilities
PRACK Acknowledge the reception of a provisional response
PUBLISH Upload event state information to a server
REGISTER Map a Public URI with the current location of the user
SUBSCRIBE Request notification about a particular event
UPDATE Modify some characteristics of a session (like a repeated

INVITE but it has no impact on the dialog state)
MESSAGE Carry an instant message (stand alone in contrast to the

session model)
REFER Instruct the recipient to request a resource

Table 2.1. All the defined SIP request methods (by August 11, 2005) [39]. IN-
VITE, ACK, OPTIONS, BYE, CANCEL and REGISTER are core SIP methods [3].
INFO [13], PRACK [14], SUBSCRIBE and NOTIFY [15], UPDATE [16], MES-
SAGE [17], REFER [18], PUBLISH [19] belong to SIP extensions.

SIP/2.0 180 Ringing

Figure 2.3. Example of a status-line in a provisional response

Status code range Category Meaning

100-199 Provisional Indicates progress with request, but is not
a final response

200-299 Success Action successfully received, understood
and accepted

300-399 Redirection Further action needs to be taken by callee
to complete the request

400-499 Client error Bad syntax in request or request cannot
be fulfilled at this server

500-599 Server error Apparently valid request but server failure
600-699 Global failure Request cannot be fulfilled at any server

Table 2.2. Status code categories [3]. The status codes are used in SIP response
messages.
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2.3.1 Header Fields

Header fields follow the start line for both requests and responses. Some fields are
mandatory and some are optional. A header field consists of the header’s name, a
colon and the value. Some header types can occur in several entries or in one entry
with the values comma separated. The mandatory and most important header fields
are To, From, Cseq, Call-ID, Max-Forwards and Via. Section 2.4.2 on page 11
covers the three headers Contact, Record-Route and Route. A full list of SIP
headers is given in Appendix B on page 61.

The To header (see such a header in Figure 2.4) contains the destination address
of the request. Proxy servers on the path to the destination do not utilize this field.
The purpose is solely for human usage and end filtering based on recipient address.
The tag parameter is a random identification number used to distinguish between
different user agents with the same URI.

To: Thomas A. Watson <sip:Thomas.Watson@bell.com>;tag=1232

Figure 2.4. Example of a header field

The From header contains the originator address of the request. The purpose is
the same as for the To header.

The Call-ID header uniquely identifies a particular SIP message exchange.
Call-ID in registration messages is interpreted differently. All registrations from
a user agent client should have the same Call-ID in order to detect the arrival of
unordered REGISTER request.

The CSeq (Command Sequence) header contains a sequence number and the
method name of the request, for example CSeq: 3211 INVITE. The CSeq value
identifies a request with its response. It enables ordering of the messages within a
single call (the call is identified by the Call-ID).

The Max-Forwards header sets the maximum number of hops that a request can
transit. Each proxy it passes will decrement the value by one. If the Max-Forwards

value reaches zero before the request reaches its destination, it will be rejected with
a 483 Too Many Hops error response.

The Via header field registers the user agent client (UAC) and all the traversed
proxies. The first Via value —the value of the UAC— identify the location where
the response is to be sent. The other Via entries are used to ensure that the response
traverses the same proxies as the request did but in the opposite direction. Routing
loops can also be detected with the Via field.

2.3.2 Message Body

The message body is transmitted end to end, which means that the proxies do not
need to parse the body. This property makes the message body uninteresting in
this thesis. Nota bene, if the message body is encrypted, then the proxies cannot
interpret the message body even if they wanted to.
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The message body is separated from the header fields by an empty line. A SIP
message can carry any type of body due to MIME encoding [7, 8, 9, 10, 11].

2.4 Message Flow

The reader should now be familiar with the fundamentals of the protocol format as
well as the routing entities in a SIP network. With the basics in place it is time to
introduce transactions and dialogs. They describe how SIP messages are combined
and processed in practice to achieve various results.

2.4.1 Transaction

The general message exchange pattern in SIP is a request message from one user
agent to another user agent, followed by a response message in the other direction.
The request/response exchange is called a transaction and is identified by having
the same CSeq header value in all messages. A transaction is terminated by a final
response but it can have several provisional responses in between.

The most important transaction is the INVITE transaction. The INVITE trans-
action is used to initiate sessions. The flow chart in Figure 2.5 assumes that a person
A wants to call a person B:

Figure 2.5. INVITE-ACK transaction

• First, A’s UA sends an INVITE request to B (1).

• This message is proxied to B’s UA (2).



10 CHAPTER 2. SESSION INITIATION PROTOCOL

• B’s UA responds with a 180 Ringing message (3-4), which is a provisional
response.

• After B has accepted the call, B’s UA sends the final response 200 OK (5).

• Finally, A sends an ACK request (7) to B in order to acknowledge the final
response.

• The call session is established; A and B can talk.

There are some things to notice in this transaction. The 180 Ringing response is
provisional, which means that the transaction still is unfinished. But the 200 OK
message is a final response and, according to the definition of a transaction, the
transaction is completed. Why is there an ACK request followed by no response?
The reason to the ACK request is that the INVITE-ACK sequence is a special case of
a transaction. This so called three-way handshake is defined to be two transactions,
where the ACK request constitutes a transaction of its own but always follows an
INVITE transaction. Normally a client expects a fast response from a server on a
request. But an INVITE response can take some time due to natural limitations;
it takes time for a person to answer the phone, especially if he is doing something
else. The ACK ensures the callee that the caller still is on the line.

The BYE transaction terminates a session. The transaction, which is illustrated
in Figure 2.6, is also a good example of a normal transaction:

• The BYE transaction begins with a BYE request (1-2).

• A successful session termination ends with a 200 OK response (3-4).

Figure 2.6. BYE transaction
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2.4.2 Dialog

The INVITE-ACK transaction and the BYE transaction are related to each other,
because both are needed to fulfill a session instance. The first transaction creates
a session and the second terminates the session. A session instance is uniquely
identified by the combination of the To, From and Call-ID values. It is referred to
as a dialog (in early RFCs referred to as a call leg [3]). Except from the headers
mentioned in Section 2.3.1 on page 8 there are especially three header fields that
are interesting within a dialog: Contact, Record-Route and Route. The Contact

header field is employed in the callee’s response message to inform the caller of a
direct route to the callee. While the Via header field tells the callee where to send
the response, the Contact header informs the caller where to send future requests.
When a dialog is established, all messages within a dialog follow the same path and
it can, if desired, be direct communication from user agent to user agent, since all
information needed for this purpose is contained in the Via and Contact headers.
But a proxy might want to stay in the signaling path during the dialog in order to
fulfill various control and route mechanisms. In order to stay in the signaling path,
there is a header field called Record-Route, which the proxy inserts with its own
address as value. The user agent carries out the routing directive by inserting the
header Route with the proxy address as value in subsequent requests.





Chapter 3

IP Multimedia Subsystem

The IP Multimedia Subsystem (IMS) is an initiative to merge the cellular infras-
tructure with the Internet protocols. The motivation of IMS, a standardization by
3GPP [1], is to provide methods for charging, integration of different services, and
quality of service. IMS entities use SIP for communication. SIP identification is a
subset of IMS identification.

3.1 Motivation

The cellular world reached two billion users worldwide on the 17th of September in
2005 [41]. The second generation of mobile networks (2G) covers virtually all parts
of the world where people live and services include telephone calls and simple text
messages (SMS). 2G terminals can act as a modem to transmit IP packets over a
circuit, which allows a limited access to the Internet services.

In the third generation of mobile networks (3G) there are two domains: the
circuit-switched domain and the packet-switched domain. The circuit-switched do-
main is an evolution of 2G, optimized for voice and video transport. The packet-
switched domain use native packet-switched technologies to perform data commu-
nications, which enables an Internet access with much higher bandwidth than the
access in 2G.

But what is the motivation of IMS? The vision of the IMS is to offer Internet
services using ubiquitous cellular technologies, i.e. cellular access available every-
where to web, email, instant messaging, presence, shared whiteboards, VoIP (Voice
over IP), videoconferencing et cetera; real-time multimedia services provided across
roaming boundaries and different access technologies. IMS is designed to be a ro-
bust system merging the Internet protocols with the cellular world. However, in the
packet-switched domain of 3G everything on the Internet can be accessed without
the need of introducing IMS. Still there are reasons for developing IMS. Camarillo
and García-Martín [27] mention three reasons: charging, integration of different
services and quality of service (QoS).

13
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3.1.1 Charging

The Internet architecture lacks a good charging mechanism for services, except
that operators can charge for a connection without the possibility of separating
different types of data. With IMS, operators can charge differently depending on
the content and follow the business model they prefer. Application vendors get
built-in mechanisms for charging.

3.1.2 Integrated Services

IMS defines standard interfaces based on IETF protocols to service developers. Ser-
vices using these components can interoperate and be integrated to new services. A
voice application and a video application can be combined into a videoconferencing
tool and an application can use presence information to enhance the functionality.
Furthermore, a subscriber will be able to execute his services in foreign networks
and not only in the home network.

3.1.3 Quality of Service

The packet-switched domain provides best effort quality because it relies on the
Internet infrastructure. In contrast, the 2G mobile networks offer QoS and allocated
resources for a call. An objective of IMS is to offer QoS over IP and allow the
operators to differentiate their services offer instead of only selling a bit pipe to
Internet independent of the data type.

3.2 Standardization

The standardization of 3G is a collaborative effort between different standardization
bodies. The IETF provides the foundation for IMS, which is the protocol specifica-
tions of the so called Internet protocols. The 3rd Generation Partnership Project
(3GPP) specifies IMS, the architectural framework [40].

According to Camarillo and Garcia-Martin [27] the IMS framework has been
designed to meet the following requirements:

• Support for establishing IP Multimedia Sessions.

• Support for a mechanism to negotiate Quality of Service

• Support for interworking the Internet and circuit-switched networks.

• Support for roaming.

• Support for strong control imposed by the operator with respect to the services
delivered to the end-user.

• Support for rapid service creation without a standardization process.
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• Support for access technology independence

To understand IMS you both need to understand the underlying protocols (such
as SIP) and the integrating architectural framework.

3.3 Architecture

There are several important protocols that form the basis of the IMS architec-
ture. SIP is the session control protocol. Authentication, Authorization, and Ac-
counting (AAA) are performed by a protocol called Diameter [20] (its predecessor
RADIUS [21] is widely used today when a user connects to his/her Internet Ser-
vice Provider). Other important protocols in IMS are H.248 [22], RTP (Real-Time
Transport Protocol) [23], RTPC (RTP Control Protocol) [23], and COPS (Common
Open Policy Service) [24].

The cellular infrastructure can be categorized into home and visited networks.
A user is in the home network, when he is within the area covered by his operator’s
infrastructure. When he leaves the area, for example he goes abroad or leaves the
town, then he either will not be able to use the phone at all or he will enter a visited
network where another operator provides the infrastructure. The latter alternative
is organized by a roaming agreement between the operators; the user is a “paying
visitor” in the network.

A network can also be divided into access networks and core network. The
access network can for example be WLAN, ADSL or radio link. IMS is supposed
to be independent of the access technology. The user connects to the core network
through the access network using an IMS terminal, referred to as User Equipment
(UE). IMS implements a SIP infrastructure and from SIPs perspective the UE is
perceived as a SIP UA.

IMS follows a server/client approach and there are several entities in the core net-
work. 3GPP does not specify any network nodes in the IMS architecture. Rather it
specifies functions that are accessed through standardized interfaces. Functions can
be implemented as separate nodes, but not necessarily. The earlier mentioned con-
verged network product by Ericsson (the product) is an example of a function/node
in the architecture. Here follows a brief description of some IMS entities:

3.3.1 Control/Session Call Function

The Control/Session Call Function (CSCF) is one of the most essential functions
in IMS. It is from SIP perspective basically a SIP proxy and a SIP registrar. CSCF
is divided into three logical nodes: the Proxy-CSCF (P-CSCF), the Interrogating-
CSCF (I-CSCF), and the Serving-CSCF (S-CSCF). The P-CSCF is the public
interface to an IMS network. One of the main functions of the S-CSCF is to provide
SIP routing services. The I-CSCF is a lightweight SIP proxy server, whose main
task is to find the right S-CSCF.
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3.3.2 Home Subscriber Server

The Home Subscriber Server (HSS) is a user database. It contains persistent user
information and is used for example by the CSCF to retrieve information. Data
include location information, security information, user profile information and the
S-CSCF allocated to a particular user.

If the network contains more than one HSS, then you need a function called
SLF (Subscriber Location Function). SLF is simply a database that maps a user’s
address to the HSS where the user’s information is stored. The HSS and the SLF
are not SIP entities and communicate via the Diameter protocol. It corresponds to
the Location Server described in Section 2.2 on page 6.

3.3.3 Application Server

The Application Server (AS) hosts and executes applications and services. AS
takes the role either as a SIP UA, a SIP B2BUA (Back-to-Back User Agent, i.e. a
concatenation of two UAs), a SIP redirect server or a SIP proxy server depending
on the service. AS communicates via the Serving-CSCF.

The AS can be located in a foreign network. It may interface the HSS but only
if it is located in the home network.

3.3.4 Media Resource Function

The Media Resource Function (MRF) takes care of media-related tasks in the home
network. Some tasks are transcoding between different codecs, playing announce-
ments, analyzing media, obtaining statistics and mixing media streams. MRF is
partitioned into the MRF Controller (MRFC) and the MRF Processor (MRFP).
MRFC acts as a SIP UA and interfaces the S-CSCF. MRFP manages the media-
related functions and is controlled by MRFC.

3.3.5 PSTN/Circuit-Switched Gateway

The Public Switched Telephone Network/Circuit-Switched Gateway (PSTN/CS) is
the interface towards to the old Public Switched Telephone Network and other
circuit-switched networks. This enables IMS terminals to communicate with PSTN
terminals.

The PSTN/CS gateway is divided into three functions: the Signaling Gate-
way (SGW), Media Gateway Control Function (MGCF), and the Media Gateway
(MGW).

3.3.6 Breakout Gateway Control Function

The Breakout Gateway Control Function (BGCF) is a SIP server and routes based
on telephone numbers. The BGCF selects a PSTN/CS gateway when an IMS user
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wants to initiate a session with a PSTN user. If there is no suitable PSTN/CS
gateway in the network it selects another network.

3.4 Identification

The discussion about identification started in Section 2.1.1 when discussing SIP.
SIP identification can be described as a subcomponent of the identification mecha-
nism in IMS. In IMS subscribers are identified by the Public User Identity (Public
ID). A Public ID can either be a SIP URI or a TEL URL [6] (A URL is a sub-
set of a URI [5]). A TEL URL (see Figure 3.1) represents a phone number and
is needed for backward-compatibility with PSTN terminals that only can handle
digits. Depending on the context a Public User Identity can be represented in ab-
breviated formats, for example a TEL URL in local format, long-distance format
or the absolute international format.

tel:+46-705-619-508

Figure 3.1. Example of a TEL URL in international format

Each subscriber is also assigned a Private User Identity (Private ID). The Public
User Identity can be extracted from a SIP message but the Private User Identity
is not sent over the network. Its purpose is for subscription identification and
authentication. A subscriber has one or more Private User Identities, and each
Private User Identity is associated with one or more Public User Identities. A
Public ID can also be associated with more than one Private ID. However, the
normal case is one Private ID per subscriber and at least two associated Public IDs
- one SIP URI and one TEL URL. The HSS stores the Private User Identity and
the associated Public User Identities.

3.5 Traffic flow through the product

All traffic in an IMS network passes through the product. Traffic in telecommunica-
tions is called a “call”, which corresponds to a SIP dialog. A call can be described
by a half call model, where a half call divides a call into an originating half and a
terminating half. The caller’s messages pass through his or her operator’s product
in the originating side of a call. The product then forwards the messages to the
product at the terminating side, which serves the callee. It can be the same physical
node. The product handles two types of traffic flows: registration traffic and session
traffic.

The registration traffic is essentially SIP REGISTER transactions. It involves
only the originating half of the network because its purpose is to register the location
of a UE and not to communicate with another UE. The traffic goes to the product
and back to the UE.
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The session traffic is all other traffic and it consists of full calls from one UE to
another UE as described above. Then both the originating and terminating half is
involved in the traffic.



Chapter 4

Server Architecture

Basic knowledge in operating systems is assumed in this and the following chapters.
For a good coverage of this topic, see Tannenbaum [26].

There are several ways to design a server. The simplest way is to handle all
requests sequentially, but all sophisticated models service several requests concur-
rently. Concurrency can be achieved by using multiple processes, multiple threads
or asynchronous input/output operations. Server performance is measured in terms
of serviced jobs per time unit and latency time per job.

This chapter presents several server architectures and defines optimal server
characteristics. Many innovations in server architecture have originally been in-
tended for web servers or other specific types of servers. Hence, it does not follow
that all ideas are directly applicable on the product and other SIP proxy servers
built on TSP.

4.1 Characteristics

A server can be thought of as a pipeline, whose input is a flow of requests and
output a flow of responses. A server cluster can be thought of as several pipelines
in parallel. A server is well-conditioned if it has a performance similar to a pipeline:
When the load increases the delivered throughput should increase proportionally
until the maximum capacity of the server is reached. Load above maximum capacity
should not degrade the throughput, only increase the response time due to queuing.
The response time, or the latency, should be roughly constant under light load.
Inevitably, the number of requests per time unit to a server is far greater than the
number of serving processors, even if a server cluster is employed. This means that
the requests can never be handled truly in parallel. Due to this limiting factor, the
response time of a well-conditioned service should increase linearly with the number
of clients. The impact of a load increase should be equal or policy-determined for
the clients.

These are ideal characteristics. A typical experience is a degradation of through-
put as load increases and a dramatic increase in latency. In the worst case the server
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more or less stops functioning when the load is above capacity.
From an architectural point of view there are no big differences between a proxy

server and a regular server. Both employ a client/server model, where the client
sends a request message to a server and the server services the request and returns
a response message. The difference is that a proxy server does not generate the
response itself; instead it performs some work on the request and then forwards it
to the next node, which can be another proxy server or a server. The proxy server
may also handle the response message. If the proxy server handles the response
message and the proxy server is stateful, which means that it maintains a state in
order to know the context when servicing a request or a response, then it needs to
keep a transaction state for a relatively long time between the reqest and response
message. This can affect the architecture, since it may be necessary to dispatch
both the request and the response to the same process in the operating system.

The general steps involved in serving a request start with the request receipt.
The server reads a network socket and parses the incoming message. The processing
steps depend on the functional behavior of the server, but they typically involve
reads/writes from disks or databases, and possibly network communication with
other nodes. Finally, the server sends a response message. The response should be
dispatched as soon as logically possible in order to reduce latency. Cleanup tasks
can be taken care of afterwards.

4.2 Single-Process Serialized Server Architecture

The single-process serialized server architecture (SPS) [32] is the naïve approach
to server architecture. The model sequentially accepts a request and services it
to the end before taking on the next request. The sequential model is easy to
implement and requires only one process and one thread of execution. But the
model is unacceptable because any model must be dimensioned to handle a massive
amount of requests in parallel and this model processes them sequentially. Different
users make requests independently of each other and do not expect to wait in a
queue before they can make a call. Even though the actual execution in a CPU
is serialized, this model is still unacceptable in comparison to a concurrent model
due to two reasons: First, a long job can block all other jobs for a long time,
thus giving short jobs poor and unreliable latency. Second, the CPU is not utilized
efficiently. A normal job involves I/O operations, during which the CPU is idle. I/O
(input/output) refers to operations that transfer data into or out from the primary
memory of a computer to/from peripheral devices. If no other jobs are scheduled
during these wait states, then CPU-time is wasted.

SPS is only acceptable as long as scheduling predictability is not important, as
is the case with low-priority background tasks. However, most server applications,
including SIP applications, are oriented around processing large numbers of short-
lived tasks that are triggered by external events. The desire to efficiently handle
parallel tasks lead to hardware clusters and concurrent models. Concurrency is
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accomplished by using processes, threads and/or asynchronous I/O, which requires
support by the operating system. The more sophisticated models utilize a balanced
combination of these techniques. Most performance optimizations either reduce
initialization time or exploit cache effects.

4.3 Multi-Process Server Architecture

The multi-process server architecture (MP) [34, 32] assigns a process for sequen-
tially executing the basic steps associated with serving a client request. Concurrent
request handling is achieved by utilizing multiple processes at the same time. The
operating system transparently takes care of the scheduling according to some pol-
icy.

The simplest way to implement a MP model is to have a master process with
an infinite while-loop. The process accepts new connections in the loop and for
each new incoming request the master process creates a new process to which it
dispatches the job. The master process is free to listen for new requests and start
new worker processes without having to wait for a worker process to finish. The
worker process exits itself upon completion of the job.

In a Unix context this model is called the forking model, because the system
call for creating a new process is called “fork”. The benefit of the forking model
is the simplicity of the master process, which is a good guarantee for robustness.
Furthermore, a process is the smallest fault domain in an operating system. If a
worker process fails due to some software error, only one request is affected. If all
requests were handled by one process, then all requests would be lost in a process
failure. Another benefit of the forking model is that small memory leaks are not a
problem. The concept of an operating system process comprises a private address
space, which is assigned by the OS kernel. Since the worker processes are extremely
short-lived, there is no risk that bad memory management by the programmer leads
to significant memory leaks by accumulation. When a process exits, the address
space is automatically garbage collected.

The first web servers, the CERN httpd and the NCSA httpd, were forking Unix
servers [32]. Despite its simplicity, the forking model is considered obsolete for web
servers due to performance reasons [32]. Creating a new process takes considerable
time and in the forking model this processing time grows proportional with the
number of requests.

The first breakthrough in high performance web server engineering was the
introduction of the pooling model [32]. The multi-process pooling model assigns, as
in the forking model, a process to each request. The improvement is a pre-creation
of a fixed number of processes at server startup time, which forms a pool of long-
lived worker processes. The master process assigns a job to a process in the pool,
which performs the job and returns to the pool upon completion. A queue could be
used to synchronize the distribution of jobs to free worker processes, but the model
is independent of the specific data structure, hence the more general term pool
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is employed instead of queue. If there are more incoming requests than available
processes, the requests will simply be queued in the master process. The free web
server Apache employed the process pooling model in its initial version 1.x [36].

The benefit of the pooling model compared to the forking model is apparent.
Reuse of a process eliminates system calls and the associated process initializa-
tion and termination overheads. Since this procedure repeats for each request,
the performance benefit is considerable. The introduction of long-lived processes
may require a method to deal with memory leaks, because often servers are imple-
mented using programming languages that lack automatic garbage collectors due
to requirements on predictability of performance. Memory leaks can be handled
in two ways [32]: by limiting the lifetime of a worker process or by using memory
pools. Limitation of a worker process lifetime means that after a specific time or a
specific number of handled requests a new process with fresh memory replaces the
old process. Memory pools means that specialized dynamic memory management
routines are employed instead of standard routines like malloc() and free() or
new() and delete(). Since a process in the pool is regarded as a new process,
the dynamic memory management routine could simply have a method that marks
all dynamic memory it controls as free. It could be implemented as a wrapper to
malloc(), which makes one large request to malloc() at the beginning of the job
and one invocation to free() at the end of the job. Pointers are used to keep track
of where the allocated memory starts and ends. Several memory pools can be used
if needed. No time-consuming freeing of memory to the OS is necessary.

4.4 Multi-Threaded Server Architecture

The multi-threaded server architecture (MT) [34, 32] is similar to MP. The concep-
tual difference between processes and threads is that threads share memory and
other resources. A process is a container of one or more threads. The execution
state is associated with the thread, and multiple threads yield concurrency. Similar
to the forking model one thread is spawned per job and exited upon completion.
Let us denote it the spawning model. The spawning model can be enhanced to
a thread pooling model in the same way as the forking model. It even allows an
optimization, where the workers read directly from the socket, which makes the
master thread redundant. This is not easily implemented for processes because
processes do not share sockets. MT requires OS support for kernel threads in order
to effeciently schedule runnable threads [34]. It is not impossible to share memory
between processes.

Except from the conceptual difference there are very important performance
and robustness differences between multiple processes with one thread each and
one process with multiple threads. Threads are more lightweight, i.e. starting and
managing a thread is less resource consuming than it is for a process. Using a MT
architecture yields improved performance in comparison to MP. But processes are,
as earlier pointed out, the smallest fault isolation domain, so if one thread in a
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process crashes, then this often results in that the whole process and, consequently,
all its threads go down. A MP architecture improves robustness in comparison to
MT. It is a trade-off between performance and robustness.

It is in many cases easier to perform optimizations in a MT architecture due
to the shared memory. If several jobs request the same data, then the information
only needs to be read once to the shared heap memory. However, shared memory
together with concurrency brings in a more difficult concurrent programming model.
The programmer must ensure the consistency of shared data, because the system
does not guarantee a specific instruction order of two concurrent kernel threads. The
kernel can change the executing kernel thread between any machine instructions.
Consistency is achieved through various synchronization mechanisms, e.g. condition
variables, mutexes or monitors, which bundle sequences of instructions into atomic
operations.

Two cases when MT is more manageable for optimizations than MP are infor-
mation gathering and application-level caching. They are similar types of tasks that
frequently occur. The MP model must gather information via time-consuming IPC
operations. It also leads to multiple caches instead of one due to non-shared data,
which imply more misses and inefficient memory consumption. The MT model can
be implemented with a single cache and a global space for information data, but
accesses/updates must be synchronized, which can lead to lock contention. The
SPED architecture, as we will see in the next section, needs neither IPC nor syn-
chronization to share information.

The MP and MT models can be combined into process pools, where each process
contains a pool of prespawned threads. Apache version 2.x [36] is based on this
architecture.

4.5 Single-Process Event-Driven Server Architecture

The single-process event-driven server architecture (SPED) [34, 32] uses a single
process and a single thread of control to process multiple jobs. The key is to use
non-blocking system calls to perform I/O operations. The process is asynchronously
notified about the completion of disk and network operations as these operations
often are time-consuming. The CPU can overlap operations instead of having to
wait idle. SPED is often designed as a state machine, where each job performs
several steps. The steps are interleaved with steps associated to other jobs.

Concurrency is already achieved in MP and MT, but the benefit of SPED is
that the overhead of context switching and thread synchronization is avoided. The
memory requirements are smaller, since it has only one process and one stack.
However, the OS must provide true asynchronous support for all I/O operations,
which is not always the case [34].

[35] compared a simple MT server, having one pre-allocated thread per task,
with an event-driven of the server, having only one thread (and one process) to
handle all jobs. Each task consisted of a 8 KB read from a disk file. It always read
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the same file, so the data was always in the buffer cache. The experiment yielded
large performance variations. For the MT version, throughput reached its peak at
approximately 10 concurrent threads (one thread per task), having a throughput of
approximately 25,000 tasks per second. The throughput started to degrade substan-
tially after reaching 64 concurrent threads. Response time approached infinite as the
number of concurrent threads increased to 1,000 and beyond. The server collapsed
in other words. For the event-driven version, throughput reached a peak value above
30,000 tasks per second, when having 64 tasks in pipeline. The major difference
was that the throughput remained constant at almost maximum throughput as load
gradually increased to 1,000,000 tasks in pipeline. Response time increased only lin-
early as the number of tasks increased, which equals the optimal latency behavior
described earlier. A conclusion from this test is that event-driven architectures scale
better. The management and context-switching overhead of threads and processes
grows as there are more threads and processes to manage.

The Harvest and Squid proxy servers employ the SPED architecture [32] as well
as the Zeus web server [38].

4.6 Asymmetric Multi-Process Event-Driven Server
Architecture

The asymmetric multi-process event-driven server architecture (AMPED) [34] com-
bines SPED with MP or MT. In general it behaves like SPED, but dedicated helper
processes (or threads) handle blocking calls that cannot be re-architected asyn-
chronously. The processes communicate via an interprocess communication (IPC)
channel and task completion is notified back via the IPC as any other asynchronous
event. IPC between the server and the helper processes implies an extra cost, but
when the alternative is a blocked server it is better to put work on dedicated pro-
cesses.

The Netscape Enterprise Server employs the AMPED model [32, 37].

4.7 Staged Event-Driven Server Architecture

The staged event-driven server architecture (SEDA) [33, 35] uses stages as the fun-
damental unit of processing. Applications are programmed as a network of event-
driven stages connected by explicit queues. A stage is a self-contained application
component consisting of a group of operations and private data. Conceptually, a
stage resembles a class in an object-oriented language, but an object is a data rep-
resentation, which for example functions, threads, or stages act on, while a stage
is a control abstraction used to organize work. An operation is an asynchronous
procedure call, i.e. invocation, execution and reply are decoupled. Stages have
scheduling autonomy over its operation, which allows it to control the order and
concurrency with which its operations execute. An operation executes sequentially,
non-preemptible and can invoke any number of synchronous and asynchronous op-
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erations. The programmer designs operations to which the system dispatches asyn-
chronous events. An operation must relinquish the given control over the execution
thread in order to let other asynchronous operations execute. Asynchronous opera-
tions are triggered by events, such as network messages, completed disk operations,
internal calls from asynchronous operations, timed-out timers, synchronizations,
system updates, etc.

Continuing on the pipeline metaphor in the beginning of Section 4.1, the pipeline
is divided into several stages, where each stage solves a subtask of the job. The
pipeline does not have to be linear. The approach can be generalized to a finite
state automaton. The orthogonal difference between SEDA and the earlier described
architectures is that SEDA is flow-centric, not resource-centric.

The MP model encapsulates a job in a process, which performs all steps. A
stage handles only one step but for a batch of jobs. The former model gives an
easy abstraction and fault isolation. The latter model tries to leverage on hardware
mechanisms such as caches, TLBs, and branch predictors. Processor speed and
parallelism has improved rapidly, while the memory access time has only improved
slowly during the last decades [33]. The previously mentioned mechanisms are
attempts to alleviate this performance gap, by storing data that are likely to be
re-used in fast media. All these mechanisms assume that programs exhibit locality,
i.e. previously executed code is likely to repeat and contiguous data are likely to
be accessed. But server software displays less spatial and temporal locality due to
the few loops and the short period of execution before another process or thread is
scheduled [33]. Studies referenced by [33] have found that online database systems
perform only a tenth of its peak potential, because of high cache miss rates. The goal
of SEDA is to schedule flows of similar operations sequentially instead of interleaving
diverse operations belonging to different stages. Larus improved server throughput
by 20% and reduced L2 cache misses by 50% using SEDA compared to MT [33].

Few operating systems have built-in support for stages. Almost all OSes are
designed with the process construct in order to provide a virtual machine view,
which hides the concurrency with other processes from the programmer’s view.
Stages can of course be designed within one process or one process can correspond to
one stage. The first design is fragile and the second model risks that IPC consumes
all gains.





Chapter 5

Telecom Server Platform

The product is implemented on the Telecom Server Platform (TSP) [30, 28, 29, 31].
In order to model an efficient proxy server it is essential to understand the platform.
This chapter describes TSP.

5.1 Design and Characteristics

TSP provides server functionality but it is separated from the gateway functionality
unlike Ericsson’s telephone switch AXE. TSP is an Ericsson technology, but it is to
some extent based on commonly available components and open standards. TSP
includes a processor cluster, two operating systems, clusterware, a distributed object
oriented database and an associated development environment. TSP furthermore
includes a run time environment for Java and a CORBA-compliant object request
broker. Communication with the external world is IP based.

The hardware consists of commercial off-the-shelf components, e.g. Intel Pen-
tium processors. The two operating systems in TSP are Linux and Dicos —the
latter is an Ericsson developed operating system. Dicos is intended for real-time
and mission critical tasks. Subsequently, the normal traffic flow is handled by Dicos.
Linux takes care of host operation and maintenance (O&M) as well as providing a
standard programming environment for integration of third-party software. Since
the thesis only concerns traffic processing, the description of TSP is focused on the
Dicos part.

Key design goals of TSP have been:

• Reliability

• Scalability

• Real-time operation

• Openness
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The strongest emphasis has been put on reliability. Existing telecommunication
systems already provide a reliable and almost constantly available emergency in-
frastructure and new products should be able to match their predecessors’ working.

Scalability means that operators should be able to add new processors to the
cluster and get an equivalent increase in capacity without having to replace the old
hardware.

Real-time operation is a necessary feature of a telephone conversation. In
telecommunications soft real-time performance is sufficient [28], which means that
performance is specified in terms of statistics, e.g. a certain operation is required
to perform 90% of the time within a certain time limit, in contrast to hard time
limits.

Openness in TSP means

• Non-specialized hardware: to always benefit from the latest commercially
available hardware technology;

• Standard programming languages: to have access to a large developer com-
munity;

• Interoperability: to communicate with external systems using standard pro-
tocols;

• Compatibility: to run third-party software on standard operating systems.

5.2 Process Types

There are two main categories of process types in TSP: static and dynamic. Static
processes are created when the system is started or when the process is installed.
They are also recreated after a failure. Dynamic processes are created when they
are addressed by another process and do not restart after failure. Generally static
processes are intended for continuously running functionality and dynamic processes
are intended for short-lived tasks.

There are five subgroups of static and dynamic processes in total:

• Static central

• Static load shared

• Dynamic load shared

• Dynamic keyed

• DB-keyed

These are called process categories. A specification of a process belonging to
a process category results in a process type. One or more instances of a process
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type are created at run-time. A distinction is made between logical and physical in-
stances. A physical instance is the actual instance on a processor. A logical instance
is a virtual, application level addressable view. A logical process instance can be
mapped to several processors with one physical instance on each of these processors
sharing the load of the logical instance. A logical instance can be represented by
several physical instances over time, for example due to a process crash.

A static central process is only instantiated once in the system per process type.
It is not load shared because there is only one physical instance at a time and it is
addressed by the process name in the process type specification.

A static load shared process is only instantiated once in the system per pro-
cess type and has one physical process instance on every processor specified to be
involved in the distribution.

A dynamic load shared process is load shared like the static counterpart, but has
as many logical instances as the application developer creates.

A dynamic keyed process is distributed accorded to a key value, which gives a
possibility to co-locate it with database objects. A keyToDU() method is used to
map a specific process key to a specific processor. The distribution mechanism is
described in Section 5.5 on page 30. Dynamic keyed processes are not load shared,
thus there is only one physical instance per logical instance at a time. If dynamic
keyed process is started with an already existing key, there is a call for the existing
process instead of the creation of a new process instance.

A DB-keyed process is a special type primarily designed for hardware supervi-
sion. It belongs to the static process category and it does not use load sharing. It
is distributed according to a database object key value. If the database object is
deleted, the process is automatically deleted. The DB-keyed processes are mostly
used by TSP itself.

5.3 Interprocess Communication

Processes do not share memory but can communicate over something called dialogs,
which is a high level form of interprocess communication. A dialog is a communi-
cation protocol between two objects. The two objects are called parties and handle
the communication. Each communicating process also has a proxy object to repre-
sent the other party. A remote operation is simply done by a method call on the
proxy object.

A dialog between two process types must be specified before it can be set up, just
like a process type must be specified before a process can be instantiated. A dialog is
per definition set up by the initiating party. The other party is the accepting party.
Beside the objects that are parties in the dialog, two setup objects are required for
initializing the underlying communication protocol. The dialog specification states
which operations are possible to invoke on a process, rather than which operations
a process can invoke on another process. A remote operation can return a value,
but does not need to.
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Instantiation of dynamic processes are always initiated by existing processes and
never by the system. A dynamic process is created by addressing a non-existent
accepting party at dialog setup.

5.4 Database

An integral part of the TSP architecture is a distributed object-oriented real-time
database, stored entirely in the primary memory of the processors. Data in a
process is considered to be volatile whereas data in the database is considered to be
persistent, due to replication and other safety mechanisms.

Data is abstracted by persistent objects types (POTs). POTs have attributes
that represent the persistently stored data and methods to manipulate the data.
Instances of POTs, data objects, are accessed either by a unique primary key or by
a reference from an attribute of a data object.

An interesting aspect is that, even if interprocess communication and databases
are effectively different concepts, both allow processes to communicate and exchange
data.

5.5 Distribution

The distribution goals in a distributed system are to balance the processor load and
to minimize the interprocessor communication. The distribution mechanism of TSP
is as follows: The application developer groups process instances into a controllable
number of distribution units (DUs), which in run-time are distributed by TSP to
processors. There are two levels of mapping before a process instance is mapped to
a distribution unit. The first mapping is from process type to distribution unit type.
The process type specification includes a declaration to state which distribution unit
type it belongs to, which means that the mapping is determined at compile-time.

The second level of mapping is trivial for all process categories, except for dy-
namic keyed processes, because in those cases there should only be one distribution
unit instance per distribution unit type. A dynamic keyed processes is assigned to
a distribution unit type, which has between one and 1024 distribution units. The
application developer implements a keyToDU() method, which at run-time on basis
of the process key determines which distribution unit this process instance should
be placed in. The distribution units can be allocated to different processors, but
the application developer does not control which processor within a given pool that
TSP allocates a particular distribution unit on. The key feature is that by allocating
a database object to the same distribution unit type and the same distribution unit
as the process, the application developer knows that the process will be co-located
with the data without a priori having to know which processor TSP will distribute
the distribution unit on.

A site-specific configuration file associates the physical processors with logical
distribution pools. A processor can be part of more than one pool. Likewise,
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distribution unit types are associated with the pools. Within a pool it is up to TSP
to map the distribution units containing processes, to the processors in accordance
with the distribution goals.

5.6 Program and Development Environment

Programs for TSP are written in C, C++ or Java. But first the processes, di-
alogs and the persistent object types are defined in the proprietary specification
language Delos. Delos generates C/C++ or Java skeleton files. The developer adds
application-specific code in these skeleton files. Normally the developer structures
the code so that only parts of the application-specific code are contained in the pre-
generated files. The rest is written in separate C, C++ or Java files. TSP services
are presented through an API, which is further described in [29].

Understanding the associated development environment is central for application
development. The development environment runs on Unix and a description is given
in [31]. The environment includes tools for configuration, building, debugging and
simulation.

5.7 Execution Paradigm

All execution within a process occurs as the execution of serialized callback func-
tions [28]. Execution is triggered by outside events —operations on dialogs are
asynchronous— and the programmer must adapt to the inherently asynchronous
paradigm. For example, a scenario with an infinite while loop that listens on a
socket for messages is a forbidden programming style in TSP, because the method
never releases the control of the execution thread. If the execution thread of the pro-
cess never is released, then no other events scheduled for this process gets execution
time. The correct programming style in this case lets the system, asynchronously
on incoming messages, invoke a method, which receives and handles the message.
By the same reason, blocking calls should be used with great care in order not to
starve other calls to the process.

Since all callback functions run serialized, the difficulties with synchronization
and consistent states involved in concurrent programming are more or less hidden
from TSP application developers. Avoiding concurrent programming and concealing
kernel multithreading is a deliberate design choice by the TSP architects, who have
valued a forced safe programming practice higher than programmer flexibility and
control [28].

Processes can execute on four priority levels: high, normal, low and background.
Traffic applications run on normal priority and maintenance on low. Hardware
servicing processes can run on high priority, if needed. The background priority
level is intended for audits and hardware diagnostic tests. The scheduling policy is
as follows : the highest priority process that is ready to execute is allowed to execute
for at most one time slice (about two milliseconds) until it becomes blocked, idle,
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or its time slice expires. If its time slice expires, the process is placed last in the
queue of its priority level. This procedure is then repeated with the highest priority
process that is ready to execute.

In order to uphold soft real-time performance TSP has a load-regulation mech-
anism that permits applications to reject parts of the traffic operations. Another
feature to sustain real-time performance is an interruptible OS kernel in Dicos. To
reduce kernel complexity the number of operations that is allowed to run in the
kernel is restricted.



Chapter 6

Prototypes and Tests

This chapter describes the current process model and discusses how the process
models presented in Chapter 4 can be applied to the product. Finally three models
are implemented and tested.

6.1 Current Process Model

The current process model of the product creates one dynamic keyed process per
half call. In other words, one process encapsulates one transaction. The INVITE
and ACK transactions are counted as one transaction by Ericsson in contrast to the
standardized terminology (see discussion about the INVITE and ACK transactions
in Section 2.4.1 on page 10). In order to ensure that a new process is created for each
request a unique process key must be given in the process instantiation. The current
process key is designed to guarantee transaction uniqueness and is a concatenation
of Public User ID, From, To, Call-ID, CSeq, and something called Port Portion.
All fields can be determined based on information contained in a SIP message. The
SIP header fields are extracted using a SIP parser. The procedure of calculating the
Public User ID depends on several factors such as originating or terminating call,
request method name, etc. For a response message, the Public User ID is extracted
from the Via header. The Public User ID is hashed to a number in the process key.

The process instances are mapped on a distribution unit (DU) in accordance
with the distribution mechanism in TSP. The keyToDU() method extracts the Public
User ID from the process key and takes it modulus the total number of DUs. In
short, the same user is always placed in the same DU. Since the database objects
related to a specific user also are mapped to a DU based on the Public User ID,
a user’s database objects and process instances will always be co-located on the
same processor. This reasoning presupposes that the designer during the Delos
specification phase has mapped the process type (PT) and the database object type
(POT) to the same distribution unit type (DUT).

The tasks involved in a transaction are encapsulated in state machine logic.
The capsules executing sub-functions are controlled by a mediator function. Some

33
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tasks are distributed on static load shared processes. In those cases one logical
instance —physically replicated on every processor— takes care of all transactions
in the system. These tasks include SIP state monitoring, accounting, configuration,
network initiated user requests, as well as other functions. Distribution to other
processes implies asynchronous interprocess communication. The typical processing
of a half call also involves network communication with other functions, such as the
HSS, BGCF, MRFC, and AS (described in Section 3.3 about IMS on page 15). The
network communication is asynchronous and possibly between physically differently
located nodes. These delays are longer than those caused by asynchronous IPC.
Asynchronous delays do not consume CPU time, but they affect the response time
of a transaction.

6.2 Process Model Discussion

The current product process model is similar to the forking model described in
Section 4.3 on page 21. It is extremely stable because a process crash will only
affect one transaction and potential problems of memory leaks are avoided by the
short-lived processes. All information that lives longer than a transaction such as
dialog states must be stored in the database. The very high degree of persistent
storage additionally strengthens the robustness of the solution, but on the other
hand it has a performance cost due to database accesses and updates. The forking
model is considered obsolete for web servers due to the high initialization costs. It
must be stressed that most research assumes the time it takes to start a process in
Unix, which is very costly. TSP is designed for rapid process creation [29]. Upgrades
are easily performed with short-lived dynamic processes but can be tricky with
long-lived dynamic processes. Static processes are always long-lived and therefore
during upgrade a new instance is started in parallel with the existing one and given
an address reference to the existing instance. Dynamic processes on the other hand
are simply asked by the system to terminate within a given time frame. This is not
a problem for short-lived dynamic processes because they would anyway naturally
terminate within this time. But for long-lived dynamic processes, this means that
it needs to store its states to the database before terminating.

The TSP documentation [29] recommends a “resource centric model”, which
means that all traffic handling covering one “resource” is confined into one dynamic
process instance. The motivation for this principle is that the recovery domains
should be kept as small as possible. The current process model in the product has
a small recovery domain, but I think it would be more natural to model a single
user as a resource confined in a process instead of a transaction. Two observations
suggest performance improvements by this change. The first observation is that half
calls related to one user access partly the same user data. The second observation
is that one user performs several transactions during a limited time frame. One
call implies at least three transactions. A more advanced user behavior implies
more transactions. But the product should be dimensioned for about one million
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subscribers, and it is not possible to have one million processes allocated in the
system at the same time. The problem can be solved by having a timer on each
inactive process, which sends a termination signal to the process after time-out. The
next time a message arrives the process is re-started and data is fetched from the
database. Whether this is a good solution depends on a number of factors. The total
available memory and the required memory per process determine the maximum
number of processes that is possible to have at a given time. The maximum number
of processes in the system at a given time and the traffic model give the maximum
lifetime of a process, i.e. the timer value. The traffic model and the value of the
timer statistically determine the share of processes that needs to be restarted per
transaction. If this value is low, this model could be efficient. If employed, then
Public User ID can be used as the process key in a “user centric model”. A possible
optimization is to have a centralized timer in a static process instead of one timer
per process. All user processes register their termination time and the static process
notifies when it is time to terminate. The static process can delay a termination if
there is enough memory or force an earlier termination if necessary.

TSP does not provide multithreading so any MT model can be discarded imme-
diately for the product. One of the performance strengths of multithreading is the
shared heap memory. A user centric process model could still share user data in
the heap between different transactions, thus reducing database reads and writes.
However, it may still be necessary to write to the database for backup reasons, but
the number of reads should at least be decreased.

TSP implements an event-driven execution model, which seems like a good
choice with the literature study in server architecture in mind. But unlike SPED
and AMPED the currently employed event-driven model is a mixture with MP.
Hence, weaknesses from MP such as process management overhead and cleaned
caches from context switches are not avoided. When a process only handles one
transaction there are no queuing events to handle when the process becomes idle,
which leads to a context switch. It may seem strange to employ an event-driven
execution model and at the same time encourage a resource centric process encap-
sulation. It is important to remember that robustness is chosen before performance
by the telecom industry if a choice is necessary. The rigorous stability requirements
disqualify SPED, MT and any other single process models.

The pooling multi-process model can be implemented as a minor change to the
current process model. In this case, the fault isolation domain is unchanged and
process initialization costs are saved. The number of processes is fixed. An addi-
tional operation in the TSP dialog between the master process and a worker process
needs to be defined. Instead of terminating a worker process upon completion the
worker process should notify the master process via this dialog operation that it is
ready to receive new jobs. There must be one master process per processor and,
since a master process must be able to dispatch a job to any DU in order to achieve
co-location with database objects, each master process must manage one pool per
DU. Hence there are as many pools per DU as there are processors in the cluster.
A dynamic keyed process per DU that manages the pool would reduce the number
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to one pool per DU. The mapping of a job to a process is dynamic within a pool,
because any process in the correct pool can handle any assigned job. No modifica-
tions related to product functionality are necessary in the product. But this fact
also means that there are no potential improvements concerning the implementation
of functionality.

A change to user encapsulation and a change to pooling are both potential
optimizations. However, it is complex to combine pooling and user encapsulation.
User encapsulation implies that a process does not return to the pool before it has
timed-out. Half calls related to a user with an active process can not be directed
to any process in the pool. Instead it must be dispatched to the correct active
process. Moreover, it can be discussed whether these two changes are enough for a
dramatic impact. A solution that still takes advantage of these benefits, but also
enables other optimizations is a model with multiple users per process and multiple
processes (MUMP). Mapping all users to one process is not possible due to stability
reasons, but a fine-tuned number of users per process can meet both robustness
and performance requirements. As in the pooling model, the number of processes
is fixed and processes are long-lived. Unlike the pooling model, the mapping of a
user to a process is static. In MUMP a Public User ID is always mapped to the
same process key (and a process key is always mapped to the same DU). Because
the number of users in the system is greater than the number of processes, several
Public User IDs map to the same process key. The process has a data structure, e.g.
a hashmap, to distinguish between different user objects. The initialization costs
are removed as in the pooling model and more concurrent jobs per process lead to
fewer context switches. MUMP does not scale in the sense that a subscriber increase
leads to an unchanged number of users per process. The number of processes can be
a configuration parameter. However, memory consumption is likely to be an issue
if user and state information is cached. Suppose there are X processes and each
process maximally is assigned M bytes. Furthermore, assume that there are Y users
per process and that the amount of memory Y users need if they cache registration
state and dialog state is more than M bytes. If the process allocates more than M
bytes the process stay at this size because dynamic memory management functions
do rarely give back memory to the OS before the process terminates and these
processes are long-lived. Hence, there must either be a mechanism that makes sure
that the limit M never is exceeded or a mechanism that releases memory to the OS.
Having such mechanisms adds complexity.

The staged event-driven model can, as stated previously, be implemented with
all stages in one process or with one stage per process. The first method does not
meet the robustness requirements and the second method increases latency due to
IPC. However, SEDA introduces some interesting ideas on localization and it might
be possible to increase performance by sending a batch of jobs over a dialog at the
same time instead of one by one. The question is whether there are jobs to the
same process frequently enough to win time on buffering.
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6.3 Prototypes

On basis of the background study and the discussion above I choose to implement
prototypes of three models for measurements and comparison. The three models
I chose to implement were a forking MP model, a SPED model and a pooling
MP model. The prototypes are designed for one traffic processor on TSP, but all
prototypes can be extended to handle a cluster.

The reason to why I chose to implement a forking MP model was because it
resembles the current process model and in order to recommend any changes I must
be able to measure it against the standard. The implemented model is an extreme
case because it creates a new dynamic process for each message. The prototype is
hereafter referred to as the dynamic prototype.

I implemented a SPED model because it is the contrary case to the dynamic pro-
totype in regard to the number of processes. The prototype dispatches all messages
to the same process. The prototype is hereafter referred to as the asynchronous
prototype because it only relies on asynchrony for concurrency.

I chose to implement a pooling MP model because it improves the currently
employed model without modifying the logic. The prototype is hereafter referred
to as the pooling prototype.

The reason to why I chose these models in favor of MUMP and AMPED was be-
cause the benefits are more clearly observable in these extreme cases. Observation
of benefits arising from implementation of functionality requires a full implementa-
tion of the product, which is beyond the scope of this thesis. Hence, the prototypes
are restricted to the process models and they do not implement a SIP parser nor the
extensive logic related to the product. However, as stated previously, combinatory
models like MUMP and AMPED are interesting when considering a real implemen-
tation. The SEDA model was rejected, because it is too dissimilar from the current
solution to motivate the implementation costs.

The target environment for the prototypes is the Dicos OS. The prototypes are
developed in the TSP development environment on Linux mentioned in Section 5.6.
The processes and dialogs are specified in Delos, the TSP definition language, and
all other code is written in C++. All prototypes use a static central process as
master process. The worker process(es) are dynamic keyed processes. The process
keys are simply a number starting from zero. The master process receives incoming
messages and a worker process forwards the message to the recipient. There is
a dialog between the master process and each worker process and it is used by
the master process to dispatch an incoming message to a worker process. In all
models the server specific behavior should be performed in the worker process, but
as stated previously these prototypes do not perform this step. All three prototypes
receive and send SIP messages encapsulated in UDP datagrams. The code related to
the socket management notifies the master process asynchronously about incoming
messages.

The dynamic prototype creates one dynamic keyed process and dialog per mes-
sage. The dialog and process are shutdown after completion. The pooling prototype
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creates 100 dynamic keyed processes and dialogs initially and puts process identi-
fiers in a ready queue. The master processes picks worker processes from the queue
and the worker processes subsequently signals via the dialog to be put back in the
ready queue. The asynchronous prototype creates one dialog and dynamic keyed
process initially to which all messages are dispatched.

6.4 Tests

The goals of the tests are to quantify the process management costs in order to eval-
uate differences between the models. The first test ensures the correct functionality
of the prototypes. The second test measures capacity affecting factors. The third
test measures latency originating from the prototypes.

6.4.1 Test model

The test model is as follows: A half call model is employed, which means that there
is only one proxy server instead of one per user agent as in the full call model. The
test model employs three nodes in total: one user agent client (UAC), one user
agent server (UAS) and one proxy server (the prototype). A (half) call consists
of one INVITE transaction, one ACK transaction and one BYE transaction. No
provisional responses are sent and in total one call corresponds to five messages.
The UAC initiates all transactions. There is a holding time of 2000 ms between
the ACK transaction and the BYE transaction. The test model is illustrated in
Figure 6.1.

The traffic generator SIPp (release 1.0) [42] acts as UAC and UAS. SIPp is
started with two instances on the same node so the UAC and the UAS have the
same IP address. The network analyzer tool Ethereal (release 0.10.12) [43] is used
to capture SIP communication. The prototypes are employed on TSP 5.1 - MCP
6 with one traffic processor activated. The program TelORB Manager is used for
TSP management, abortion identification and surveillance of memory usage. The
program TelORB Viewer shows CPU usage per processor. I used the commands pts,
ps (process status) and cs (capsule status) for collecting measurement information.

Before progressing with the tests, let us more carefully define a couple of terms.
Load is defined as the number of calls per second a server is burdened with from an
external point of view. Load does not take a server’s capability into consideration.
Capacity is the maximum load a server is capable of handling. Throughput is the
number of handled calls that a server outputs per second. The throughput is less
than or equal to the capacity of the system. When being in a stable state, the
throughput equals the load. Load, capacity and throughput can also be defined in
terms of SIP messages per second instead of (half) calls per second. Since a half
call corresponds to a deterministic number of SIP messages in this test model, it is
only a matter of measurement unit.
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Figure 6.1. Test model

6.4.2 Test 1: Functionality

The purpose of the functionality test is to ensure that the test environment is
correctly set up and that the prototypes work properly. The goal of this test is to
perform one successful half call, i.e. five messages. No measurements are performed.
Figure 6.2 shows the port configuration used for this (and the following) tests. The
prototypes send messages from an ephemeral port. SIPp sends from the same port
it is listening to. The traffic generated by one half call is captured by Ethereal and
presented in Appendix C.

Figure 6.2. Port configuration
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6.4.3 Test 2: Capacity

There are several factors that potentially limit the capacity of a server, for example
lack of bandwidth, memory or CPU capacity. Compliance with quality specifica-
tions might also reduce server capacity. For example, if a certain load leads to
latency above a specified maximum value, then the maximum allowed load must be
restricted to a value less than this load. If IP packets are dropped or the rate of
incoming messages are greater than the rate of outgoing (proxied) messages then
obviously the load is above maximum capacity. A server that gracefully handles
overload rejects some fraction of the incoming calls in order to equalize the rate of
accepted incoming messages with the rate of outgoing messages. Preferably new
calls, i.e. INVITE requests, are rejected and ongoing calls are prioritized.

The goals of these capacity tests were to measure

• how CPU usage varies as a function of call rate for each prototype

• the CPU processing time of a call for each prototype

The less CPU processing time per call and the less CPU usage required for solving
a task, the better server performance. I did not do any memory measurements,
because the prototypes did not store any user data or state information.

CPU utilization can be measured as percentage of CPU capacity. Closely cor-
related to CPU utilization is CPU load, which can be measured in form of a scalar,
representing the number of running and runnable processes during a given time
period (i.e. the sum of the run queue length and the number of currently running
processes). Operating systems providing this scalar value usually denote it load
average. While the optimal CPU usage is 100%, the optimal load average is 1. If
the CPU load is 100%, then no CPU time is wasted. If the load average is less than
1, then no processes are stalled waiting for CPU time. Stalled processes in ready
state affect performance negatively, but they are not the only waiting state affecting
the performance of a system. Processes that await I/O, i.e. processes in “sleeping”
state or “blocked” state, potentially affect performance too. To distinguish these
two bottlenecks, a process whose performance to complete a computation princi-
pally is determined by the speed of I/O operations to memory is generally referred
to as I/O bound. A process whose performance principally is determined by the
speed of the CPU is generally referred to as CPU bound.

I measured the CPU usage for each prototype by starting with a call rate of
100 half calls per second and noting the value in TelORB Viewer. Then I increased
the half call rate by 100 and repeated the procedure until the half call rate reached
1000. In the dynamic prototype the CPU usage increased by approximately 5
percentage points per increased hundred in half call rate. The corresponding value
for the pooling prototype and the asynchronous prototype was 1 percentage point
(see Figure 6.3). The number of concurrent calls increased and stabilized at a higher
value every time I increased the call rate. But at 500 calls per second and beyond,
the increase was indefinite.
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Figure 6.3. CPU usage as a function of call rate

Since the CPU computation time per job is independent of call rate (the linear
curve in Figure 6.3 confirms this theoretical anticipation), I only systematically
measured the computation time at 300 half calls per second for each prototype.
The calculations use Equation 6.1.

CPU time per call =
CPU time

Number of calls
(6.1)

I measured CPU time for approximately 500,000 calls. The pts command provided
the accumulated CPU time of the two process types associated with the prototypes.
The arithmetic mean values are displayed in Table 6.1, while complete test data is
presented in Appendix D. Table 6.1 is analyzed in the next chapter.

Prototype CPU time (ms)

Asynchronous 0.10
Dynamic 0.39
Pooling 0.11

Table 6.1. CPU time per call: The arithmetic mean value measured in millisec per
half call.

6.4.4 Test 3: Latency

The goal of the third test is to empirically identify any variations in latency between
the process models. Latency in this context is the difference between the time the
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proxy receives a SIP message and the time it sends that SIP message. In order
words, the interesting value is the contribution to latency by the proxy server and
not the total round-trip time.

I measured latency using the time stamps provided by Ethereal, which shows
when messages are received and sent. After generating around 10,000 calls per call
rate for each prototype, I analyzed the Ethereal time stamps using Product La-
tency Analyzing Utility v3.0, a proprietary program by Ericsson. Product Latency
Analyzing Utility v3.0 calculates various values such as mean values and medians.
Figure 6.4 shows the 75th percentile values (remember from Chapter 5 about TSP
that the telecommunication industry uses statistical goals). Figure 6.5 shows the
75th percentile values but only for the INVITE requests. Figure 6.6 shows latency
values for the 75th percentile but only for the BYE requests. Complete test results
are presented in Appendix E.
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Figure 6.4. Latency for the 75th percentile of all SIP messages
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Figure 6.5. Latency for the 75th percentile of all INVITE requests
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Chapter 7

Test Analysis

This chapter analyzes and evaluates the tests described and the diagrams presented
in Section 6.4. All data from the measurements is enclosed in Appendix C to
Appendix E.

7.1 Functionality Test

Everything worked correctly and expectedly in the functionality test. Note in the
printouts in Appendix C that the proxy did not modify the SIP messages as a
complete SIP proxy product would do (in for example the Via and Record-Route

headers).

7.2 Capacity Test

The first question raised by the capacity tests is why we lost packets at call rates
greater than 400 half calls per second. To understand whether this was due to
deficiencies in the proxy I analyzed a case with 500 generated half calls per second.
Totally 10,000 calls were initiated. If no packets were lost this should imply 50,000
SIP messages and 100,000 UDP datagrams. The actual number of UDP datagrams
that went in and out from proxy server was 99,490 datagrams based on Ethereal
data. The UAS received 10,000 INVITE requests (see Figure 7.1), hence there were
no losses there. The UAC received 10,000 200 OK responses, hence there were
neither no losses there. But the UAS only received 9,982 of 10,000 ACK request,
hence there was a packet loss somewhere. The UAS only received 9,745 of 10,000
BYE requests and the UAC received all 9,745 200 OK responses. In total, we lost
273 packets. Did we lose them before, inside or after the proxy node? If we lost
them after the proxy then the total number messages into and out from the proxy
should be 10, 000 ∗ 2 ∗ 4 + 9, 745 ∗ 2 = 99, 490. This number is exactly the same
number as the verified number of packets that actually was captured by Ethereal.
Hence, no packets were rejected by the proxy. The messages were lost after the
proxy and probably the packets were dropped by the UAS’s network interface card
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Figure 7.1. Illustration of where packets were lost

(NIC). If I had had more client computers I could probably have pushed the call
rate further.

The computation time per job of the pooling prototype and the asynchronous
prototype were approximately equal (see Table 6.1). The asynchronous prototype
performed slightly better. The relative gain between the asynchronous prototype
and the dynamic prototype was large, about 75% less computation time for the
asynchronous prototype. However, the gain was only about 0.3 ms in absolute
terms.

When not taking potential improvements associated with functionality into ac-
count, the improvement with long-lived processes is not good enough to alone mo-
tivate a redesign of the product. The overall computation time goal is 15 ms and
satisfactory improvements are around 0.5 ms. On the other hand, there are some
potential optimizations in the product implementation using long-lived processes,
for example reducing the number of database transactions. If resources are not
insufficient, dialogs to static helper processes can be open all the time, additionally
improving performance.

7.3 Latency Test

The latency test gave some strange results. The prototypes were designed to treat
all messages exactly equally, but still there were big discrepancies between INVITE
transactions and BYE transactions, especially for the dynamic prototype. If we
instead of percentile values look at mean values and standard deviations (see Ap-
pendix E), then we can see that the differences can not alone be explained by
random errors and bad precision. According to the Ethereal FAQ [44], “Ethereal
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gets time stamps from libpcap/WinPcap, and libpcap/WinPcap get them from the
OS kernel, so Ethereal is at the mercy of the time stamping code in the OS for time
stamps”. Furthermore, the FAQ states that Intel x86 processors, starting from the
Pentium Pro, have a Time Stamp Counter (TSC) register from which the OS kernel
get high-precision time stamps (1 µs resolution). The precision of the time stamps
can not be the reason to the discrepancies.

But how is the accuracy? Are there any systematic errors in the measurements?
All measurements are performed exactly the same, so there are no apparent ex-
planations for having a systematic error in one measurement but not in another
measurement. According to the preceding citation from the Ethereal FAQ, the
packets were time stamped by the OS and not by the NIC. Hence, the NIC had to
deliver and notify the CPU about a packet before the measurement started. This
means that there could have been buffering behaviors that disturbed the accuracy.
However, these delays should have been independent of process model. Remember
that we only were interested in measuring the delay inside the proxy. This value
should anyway be applicable for relative comparison as long as all prototypes were
measured with the same start and end points. Buffering after the start point can be
more troublesome in terms of individual values, but the measuring method, which
took averages of multiple samples, should weigh up that.

After some consideration, the probable explanation to this discrepancy phe-
nomenon is that the INVITE messages were sent continuously by the user agent
program SIPp, while it apparently buffered the BYE requests and sent it in one
chunk. The latter mode gave greater latency values because the messages arrived
in one chunk and had to be queued.

To sum up, these measurements are most likely correct, but it could be inter-
esting to measure all messages with the continuous sending mode or, preferably, by
using many independent user agents in order to get a better message distribution.

Latency, which is the sum of the queuing time and the computation time, showed
quite constant values for the asynchronous prototype. The latency of the dynamic
prototype increased linearly and the latency of the pooling prototype was somewhere
in between. While having in mind that an unrealistic message distribution might
have disturbed the results, the same method always measured significant differences
between the prototypes. The latency results speak for the asynchronous prototype
or the pooling prototype.

7.4 Conclusions

The results from the tests show that a process model that avoids process creations
and terminations performs better, but not drastically better in absolute numbers.
As previously mentioned in Section 6.2, this feature can partly be achieved by
having one user per process with timer and entirely by implementing pooling of
the current transaction based solution or by implementing MUMP. The first two
solutions are quite simple. Pooling leads to the fewest number of code changes,
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but it does not lead to any other potential improvements. User based encapsulation
results in clean and nice modeling, and is therefore recommendable. MUMP has the
greatest performance potential, but it must be carefully modeled and dimensioned.
There is a risk of having to introduce mechanisms for controlling various issues such
as memory consumption, leading to performance costs and degraded robustness due
to complex code.



Chapter 8

Conclusion

This chapter summarizes conclusions from the Master’s thesis. It gives a recom-
mendation on appropriate ways forward for the product and points out some future
work.

8.1 Summary

Knowledge about how process models differ in terms of performance, memory usage,
robustness and complexity from a platform perspective is important when designing
the architecture. However, the process model is only a part of the full server archi-
tecture and advantages and disadvantages have to be put in relation to the overall
picture. Only a complete design can take all aspects into account. The following
list summarizes important conclusions about process models for high performance
telecom system based on TSP:

• Usage of multiple worker processes is the only way to achieve an inherently
stable process model.

• Event-driven process models with asynchronous I/O operations are typically
very efficient.

• The test results show that process models that avoid TSP process startup
and termination as well as TSP dialog setup and shutdown perform better
than process models that create new processes. The gain is approximately 0.3
ms in computation time per half call, assuming the comparison model creates
a new process per SIP message. This improvement does not take any other
optimizations enabled by long-lived processes into account.

• The test results show that process models with few processes and no startup
time reduce latency considerably when many messages arrive at the same
time.

• Long-lived processes affect memory consumption even when they are idle,
since the memory never is released by the process. Assuming each worker

49



50 CHAPTER 8. CONCLUSION

process require approximately the same maximum amount of memory and
that they never release any memory to the OS, the number of worker processes
must be less than the available memory for worker processes divided by the
maximum amount of required memory per worker process.

• Process models with short-lived processes tend to be difficult to optimize in
performance, since data is short-lived and the amount of initializations is
difficult to reduce. However, short-lived processes typically yield less complex
process models than long-lived processes.

A design of the product should take the following conclusions into account:

• Process models with multithreading are not realizable, because TSP does not
support an interface to kernel threads at application level.

• A multi-process model must be employed in order to fulfill the robustness
requirements of the product.

• The multiple worker processes should be designed as TSP dynamic keyed
processes.

• An event-driven model must be employed, because TSP’s execution paradigm
is event-driven.

• A user centric process encapsulation is more natural than a transaction centric
encapsulation from a modeling perspective.

• The current process model enforces database backups at transaction level, but
a user level process model can also implement database writes at transaction
level.

• A transaction centric process encapsulation leads to short-lived processes, if
the processes are not reused by the pooling method.

• A process model that avoids process creations/terminations and dialog se-
tups/shutdowns performs better, however not drastically better at low call
rates.

Pooling is simple to add to the current transaction centric solution. It does not
lead to any other potential improvements, but it is the most cost-efficient way to
implement long-lived processes, since it requires only minor modifications of already
fully functioning code.

The model with multiple users per process has the best potential, but each
process must limit its memory consumption, leading either to complex code and
overhead costs or to little space for caching of state and user data. The memory
resources required for the product must be calculated, given its functionalities and
traffic model, before it can be considered realizable.
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One user per process is simpler than many users per process, but leads to more
changes to the current solution than transaction centric pooling. From a memory
perspective, the model can easily terminate inactive processes if memory consump-
tion is too high. A negative characteristic is that the model must terminate its
processes immediately if the set of active users is greater than the set of processes
that fits into the memory. The process lifetime is the shortest during busy hours
when you want the performance to be at its best. Section future work briefly out-
lines what data that is needed for estimating the average process lifetime value
during busy hour.

Transaction centric pooling as well as multiple users per process can eliminate
process startup and termination costs. The one user per process model can partly
accomplish this feature. The best process model of these three to proceed with for
the product is a decision between acceptable implementation costs and potential
performance benefits. If implementation time is valued high, pooling is the better
alternative. Otherwise the feasibility of the two user centric models should be
calculated from a memory perspective before any of these models are considered
appropriate for the product. Such a calculation must take product functionality
and traffic models into account, which is beyond the scope of this thesis. However,
if there is enough memory available, the performance potential is greater for these
two models.

8.2 Future Work

The rate of process creations that can be avoided in the one user per process model
can be calculated if a traffic model is assumed, a TSP system is assumed and the
memory consumption per process is estimated. A traffic model typically includes the
total number of users, the user penetration per service, the usage rate for a service
per user during busy hour, the average number of transactions per second generated
when using a specified service and so on. One must also statistically decide how the
transactions are related to the user set, because the efficiency of the model depends
on rate of transactions that originate from a user with an already allocated process
in the system. Such calculations as well as other memory calculations that involve
product functionality are left as future work.
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Appendix A

Abbreviations

2G Second Generation of Mobile Systems
3G Third Generation of Mobile Systems
3GPP Third Generation Partnership Project
AAA Authentication, Authorization, and Accounting
ADSL Asymmetric Digital Subscriber Line
AMPED Asymmetric Multi-Process Event-Driven Server Architecture
ANSI American National Standards Institute
AS Application Server
B2BUA Back-to-Back User Agent
BGCF Breakout Gateway Control Function
COPS Common Open Policy Service
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
CSCF Call/Session Control Function
DNS Domain Name System
DU Distribution Unit
DUT Distribution Unit Type
FAQ Frequently Asked Questions
GSM Global System for Mobile Communications
HSS Home Subscriber Server
HTTP Hypertext Transfer Protocol
I-CSCF Interrogating-Call/Session Control Function
I/O Input/Output
ID Identity
IETF Internet Engineering Task Force
IMS IP Multimedia Subsystem
IP Internet Protocol
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IPC Interprocess Communication
ISP Internet Service Provider
ITU International Telecommunication Union
L2 Level-2 CPU Cache
MGCF Media Gateway Control Function
MGW Media Gateway
MIME Multipurpose Internet Mail Extensions
MP Multi-Process Server Architecture
MRF Media Resource Function
MRFC MRF Controller
MRFP MRF Processor
MT Multi-Thread Server Architecture
MUMP Multiple Users Per Process Multi-Process Server Architecture
NCSA National Center for Supercomputing Applications
NIC Network Interface Card
O&M Operation and Maintenance
OS Operating System
P-CSCF Proxy-Call/Session Control Function
POT Persistent Object Type
PSTN Public Switched Telephone Network
PSTN/CS Public Switched Telephone Network/Circuit-Switched Gateway
PT Process Type
QoS Quality of Service
RFC Request for Comments
RTP Real-Time Transport Protocol
RTPC RTP Control Protocol
S-CSCF Serving-Call/Session Control Function
SEDA Staged Event-Driven Server Architecture
SDP Session Description Protocol
SGW Signaling Gateway
SIP Session Initiation Protocol
SLF Subscriber Location Function
SMS Small Message Service
SMTP Simple Mail Transfer Protocol
SPED Single-Process Event-Driven Server Architecture
SPS Single-Process Serialized Server Architecture
SS7 Signaling System no. 7
TCP Transmission Control Protocol
TEL URL Telephone URL
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TLB Translation Lookaside Buffer
TSC Time Stamp Counter
TSP Telecom Server Platform
UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UE User Equipment
URI Universal Resource Identifier
URL Universal Resource Locator
VoIP Voice over IP
WLAN Wireless Local Area Network





Appendix B

SIP Headers

SIP headers

Accept Content-encoding Max-forwards Route
Accept-encoding Content-language MIME-version Server
Accept-language Content-length Organization Subject
Alert-info Content-type Priority Supported
Allow CSeq Proxy-authenticate Timestamp
Also Date Proxy-authorization To
Authorization Encryption Proxy-require Unsupported
Call-ID Error-info Record-route User-agent
Call-info Expires Require Via
Contact From Response-key Warning
Content-disposition In-reply-to WWW-authenticate Retry-after

Table B.1. SIP headers
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Test data: Functionality

SIP data generated by one half call. A half call corresponds in the test model to an
INVITE transaction, an ACK transaction and a BYE transaction between a UAC,
a proxy server and a UAS.

Frame 1 (605 bytes on wire, 605 bytes captured)

Ethernet II, Src: 00:04:96:15:22:30, Dst: 00:20:ce:c9:ad:0c

Internet Protocol, Src Addr: 10.50.99.200 (10.50.99.200),

Dst Addr: 10.50.100.99 (10.50.100.99)

User Datagram Protocol, Src Port: 5080, Dst Port: 5060

Session Initiation Protocol

Request-Line: INVITE sip:sipphone10001@cscf99.lab SIP/2.0

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-0

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>

Call-ID: 1-31866@10.50.99.200

CSeq: 5 INVITE

Contact: <sip:sipphone10001@10.50.99.200:5062>

Max-Forwards: 70

Subject: Performance Test

Content-Type: application/sdp

Content-Length: 187

Message body

Figure C.1. INVITE request from UAC to Proxy
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Frame 2 (605 bytes on wire, 605 bytes captured)

Ethernet II, Src: 00:20:ce:c9:ac:90, Dst: 00:04:96:15:22:30

Internet Protocol, Src Addr: 10.50.100.99 (10.50.100.99),

Dst Addr: 10.50.99.200 (10.50.99.200)

User Datagram Protocol, Src Port: 65480, Dst Port: 5081

Session Initiation Protocol

Request-Line: INVITE sip:sipphone10001@cscf99.lab SIP/2.0

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-0

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>

Call-ID: 1-31866@10.50.99.200

CSeq: 5 INVITE

Contact: <sip:sipphone10001@10.50.99.200:5062>

Max-Forwards: 70

Subject: Performance Test

Content-Type: application/sdp

Content-Length: 187

Message body

Figure C.2. INVITE request from Proxy to UAS

Frame 3 (334 bytes on wire, 334 bytes captured)

Ethernet II, Src: 00:04:96:15:22:30, Dst: 00:20:ce:c9:ad:0c

Internet Protocol, Src Addr: 10.50.99.200 (10.50.99.200),

Dst Addr: 10.50.100.99 (10.50.100.99)

User Datagram Protocol, Src Port: 5081, Dst Port: 5060

Session Initiation Protocol

Status-Line: SIP/2.0 200 OK

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-0

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 5 INVITE

Contact: <sip:sipphone10001@10.50.99.200:5081>

Content-Type: application/sdp

Figure C.3. 200 OK response from UAS to Proxy
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Frame 4 (334 bytes on wire, 334 bytes captured)

Ethernet II, Src: 00:20:ce:c9:ad:0c, Dst: 00:04:96:15:22:30

Internet Protocol, Src Addr: 10.50.100.99 (10.50.100.99),

Dst Addr: 10.50.99.200 (10.50.99.200)

User Datagram Protocol, Src Port: 65479, Dst Port: 5080

Session Initiation Protocol

Status-Line: SIP/2.0 200 OK

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-0

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 5 INVITE

Contact: <sip:sipphone10001@10.50.99.200:5081>

Content-Type: application/sdp

Figure C.4. 200 OK response from Proxy to UAC

Frame 5 (371 bytes on wire, 371 bytes captured)

Ethernet II, Src: 00:04:96:15:22:30, Dst: 00:20:ce:c9:ad:0c

Internet Protocol, Src Addr: 10.50.99.200 (10.50.99.200),

Dst Addr: 10.50.100.99 (10.50.100.99)

User Datagram Protocol, Src Port: 5080, Dst Port: 5060

Session Initiation Protocol

Request-Line: ACK sip:sipphone10001@10.50.99.200:5081 SIP/2.0

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-9

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 5 ACK

Max-Forwards: 70

Route: <sip:sipphone10001@10.50.99.200:5081>

Content-Length: 0

Figure C.5. ACK request from UAC to Proxy
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Frame 6 (371 bytes on wire, 371 bytes captured)

Ethernet II, Src: 00:20:ce:c9:ac:90, Dst: 00:04:96:15:22:30

Internet Protocol, Src Addr: 10.50.100.99 (10.50.100.99),

Dst Addr: 10.50.99.200 (10.50.99.200)

User Datagram Protocol, Src Port: 65478, Dst Port: 5081

Session Initiation Protocol

Request-Line: ACK sip:sipphone10001@10.50.99.200:5081 SIP/2.0

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-9

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 5 ACK

Max-Forwards: 70

Route: <sip:sipphone10001@10.50.99.200:5081>

Content-Length: 0

Message body

Figure C.6. ACK request from Proxy to UAS

Frame 7 (372 bytes on wire, 372 bytes captured)

Ethernet II, Src: 00:04:96:15:22:30, Dst: 00:20:ce:c9:ad:0c

Internet Protocol, Src Addr: 10.50.99.200 (10.50.99.200),

Dst Addr: 10.50.100.99 (10.50.100.99)

User Datagram Protocol, Src Port: 5080, Dst Port: 5060

Session Initiation Protocol

Request-Line: BYE sip:sipphone10001@10.50.99.200:5081 SIP/2.0

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-12

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 6 BYE

Max-Forwards: 70

Route: <sip:sipphone10001@10.50.99.200:5081>

Content-Length: 0

Figure C.7. BYE request from UAC to Proxy
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Frame 8 (372 bytes on wire, 372 bytes captured)

Ethernet II, Src: 00:20:ce:c9:ad:0c, Dst: 00:04:96:15:22:30

Internet Protocol, Src Addr: 10.50.100.99 (10.50.100.99),

Dst Addr: 10.50.99.200 (10.50.99.200)

User Datagram Protocol, Src Port: 65477, Dst Port: 5081

Session Initiation Protocol

Request-Line: BYE sip:sipphone10001@10.50.99.200:5081 SIP/2.0

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-12

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 6 BYE

Max-Forwards: 70

Route: <sip:sipphone10001@10.50.99.200:5081>

Content-Length: 0

Message body

Figure C.8. BYE request from Proxy to UAS

Frame 9 (352 bytes on wire, 352 bytes captured)

Ethernet II, Src: 00:04:96:15:22:30, Dst: 00:20:ce:c9:ad:0c

Internet Protocol, Src Addr: 10.50.99.200 (10.50.99.200),

Dst Addr: 10.50.100.99 (10.50.100.99)

User Datagram Protocol, Src Port: 5081, Dst Port: 5060

Session Initiation Protocol

Status-Line: SIP/2.0 200 OK

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-12

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 6 BYE

Message body

Figure C.9. 200 OK response from UAS to Proxy
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Frame 10 (352 bytes on wire, 352 bytes captured)

Ethernet II, Src: 00:20:ce:c9:ac:90, Dst: 00:04:96:15:22:30

Internet Protocol, Src Addr: 10.50.100.99 (10.50.100.99),

Dst Addr: 10.50.99.200 (10.50.99.200)

User Datagram Protocol, Src Port: 65476, Dst Port: 5080

Session Initiation Protocol

Status-Line: SIP/2.0 200 OK

Message Header

Via: SIP/2.0/UDP 10.50.99.200:5080;branch=z9hG4bK-1-12

From: <sip:sipphone10000@cscf99.lab>;tag=1

To: <sip:sipphone10001@cscf99.lab>;tag=1-SIPP-UAS

Call-ID: 1-31866@10.50.99.200

CSeq: 6 BYE

Message body

Figure C.10. 200 OK response from Proxy to UAC



Appendix D

Test data: Capacity

D.1 Asynchronous Prototype

Call rate (s−1) CPU usage (%)

0 0
100 1
200 2
300 3
400 4
500 4.5
600 5
700 6
800 7
900 8
1000 8.5

Table D.1. CPU usage as a function of call rate

Process type CPU time (ms) Accum Peak

10198 22125 1 1
10201 27111 1 1

Table D.2. Data retrieved from pts command. Accum is accumulated number of
process instances. Peak is highest number of concurrently active process instances.

Successful calls 499921
Total messages 24997872
Total calls 499957.4
CPU time per call 0.10 ms
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D.2 Dynamic Prototype

Call rate (s−1) CPU usage (%)

0 0
100 4
200 9
300 13.5
400 19
500 25
600 30
700 34.5
800 41
900 45
1000 55.6

Table D.3. CPU usage as a function of call rate

Process type CPU time (ms) Accum Peak

10198 53691 1 1
10201 139091 2500209 69

Table D.4. Data retrieved from pts command. Accum is accumulated number of
process instances. Peak is highest number of concurrently active process instances.

Successful calls 500038
Total messages 2500212
Total calls 500042.4
CPU time per call 0.39 ms
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D.3 Pooling Prototype

Call rate (s−1) CPU usage (%)

0 0
100 1
200 2
300 3
400 4
500 5
600 6
700 7
800 8
900 9
1000 10

Table D.5. CPU usage as a function of call rate

Process type CPU time (ms) Accum Peak

10198 24787 1 1
10201 30684 100 100

Table D.6. Data retrieved from pts command. Accum is accumulated number of
process instances. Peak is highest number of concurrently active process instances.

Successful calls 499921
Total messages 2499786
Total calls 499957.2
CPU time per call 0.11 ms





Appendix E

Test data: Latency

Min, mean, max, median, standard deviation and percentile values are all measured
in milliseconds. Call rate is in half calls per second.

E.1 Asynchronous Prototype

Call rate 100 200 300 400 500 600 700 900

Min 0.77 0 0 0.05 0 0.01 0.57 0.14
Mean 0.95 0.96 0.96 0.96 0.96 0.97 0.97 0.99
Max 1.46 2.35 2.28 1.77 1.86 1.83 1.79 3.62

Median 0.96 0.96 0.96 0.96 0.96 0.97 0.97 0.97
Std dev 0.01 0.04 0.05 0.03 0.04 0.04 0.04 0.08

Count 10000 50104 10000 9994 10000 10000 10000 10000
75% <= 0.97 0.97 0.97 0.97 0.97 0.98 0.98 0.99
95% <= 0.97 0.97 0.98 0.98 1 1.01 1.02 1.11
99% <= 0.98 1.02 1 1.01 1.05 1.08 1.11 1.24

Table E.1. PROXY INVITE REQUEST

73



74 APPENDIX E. TEST DATA: LATENCY

Call rate 100 200 300 400 500 600 700 900

Min 0.49 0 0 0.05 0 0 0 0
Mean 0.7 0.71 0.72 0.72 0.73 0.73 0.72 0.72
Max 1.34 2.38 2.05 2.55 2.56 2.47 3.08 2.82

Median 0.7 0.71 0.71 0.71 0.71 0.71 0.71 0.71
Std dev 0.02 0.07 0.11 0.14 0.16 0.15 0.14 0.13

Count 10000 50104 10000 9994 10000 10000 10000 10000
75% <= 0.71 0.72 0.71 0.72 0.71 0.72 0.71 0.72
95% <= 0.72 0.72 0.72 0.73 0.74 0.74 0.74 0.76
99% <= 0.73 1.07 1.51 1.72 1.72 1.7 1.52 1.39

Table E.2. PROXY 2xx INVITE RESPONSE

Call rate 100 200 300 400 500 600 700 900

Min 0 0 0 0 0 0 0 0.01
Mean 0.74 0.74 0.74 0.75 0.74 0.75 0.75 0.74
Max 1.91 2.36 2.49 2 2.52 2.15 1.91 1.95

Median 0.74 0.74 0.73 0.74 0.74 0.74 0.74 0.74
Std dev 0.05 0.06 0.07 0.07 0.07 0.07 0.08 0.08

Count 10000 50104 10000 9994 10000 10000 10000 10000
75% <= 0.75 0.75 0.74 0.75 0.75 0.75 0.75 0.75
95% <= 0.75 0.76 0.75 0.76 0.76 0.77 0.77 0.77
99% <= 0.98 1.04 0.89 1.16 1.08 1.03 1.2 1.05

Table E.3. PROXY ACK REQUEST

Call rate 100 200 300 400 500 600 700 900

Min 0.68 0.41 0.34 0.71 0.67 0.04 0.7 0.49
Mean 0.89 1.28 1.5 1.65 1.68 1.69 1.71 1.62
Max 1.41 2.03 2.14 2.6 2.66 2.85 3.24 3.54

Median 0.89 1.34 1.58 1.71 1.67 1.64 1.63 1.45
Std dev 0.1 0.2 0.28 0.34 0.41 0.45 0.51 0.55

Count 10000 49674 10000 9954 9745 9236 8440 7577
75% <= 0.96 1.42 1.72 1.9 2.01 2.03 2.11 1.98
95% <= 1.05 1.5 1.83 2.12 2.33 2.48 2.59 2.72
99% <= 1.11 1.61 1.94 2.26 2.46 2.64 2.83 3.15

Table E.4. PROXY BYE REQUEST
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Call rate 100 200 300 400 500 600 700 900

Min 0.01 0.02 0.02 0.01 0.11 0.05 0.07 0.02
Mean 0.71 0.68 0.69 0.75 0.77 0.83 0.87 0.95
Max 1.59 1.67 1.92 2.48 2.66 2.84 3.17 3.53

Median 0.72 0.69 0.56 0.51 0.49 0.49 0.47 0.51
Std dev 0.04 0.2 0.33 0.46 0.5 0.58 0.65 0.7

Count 10000 49674 10000 9954 9745 9236 8440 7577
75% <= 0.73 0.75 0.74 0.8 0.93 1.23 1.26 1.22
95% <= 0.75 1.1 1.47 1.77 1.89 2.12 2.38 2.59
99% <= 0.79 1.3 1.71 2.06 2.27 2.51 2.75 3.1

Table E.5. PROXY 2xx BYE RESPONSE

Call rate 100 200 300 400 500 600 700 900

Min 0.39 0.09 0.07 0.16 0.16 0.02 0.27 0.13
Mean 0.8 0.87 0.92 0.97 0.98 0.99 1 1
Max 1.54 2.16 2.18 2.28 2.45 2.43 2.64 3.09

Median 0.8 0.89 0.91 0.93 0.91 0.91 0.9 0.88
Std dev 0.04 0.11 0.17 0.21 0.24 0.26 0.28 0.31

Count 10000 49932 10000 9978 9898 9694 9376 9031
75% <= 0.82 0.92 0.98 1.03 1.07 1.14 1.16 1.13
95% <= 0.85 1.01 1.15 1.27 1.34 1.42 1.5 1.59
99% <= 0.92 1.21 1.41 1.64 1.72 1.79 1.88 1.99

Table E.6. SUMMARY ASYNCHRONOUS PROTOTYPE

E.2 Dynamic Prototype

Call rate 100 200 300 400 500 600 700 900

Min 0 0 0 0 0 0 0 0.01
Mean 0.83 0.87 0.97 1.08 1.42 1.73 2.25 3.51
Max 2.35 7.24 6.5 9.06 13.31 17.12 19.74 23.92

Median 0.82 0.82 0.82 0.84 0.84 0.86 0.89 1.1
Std dev 0.06 0.34 0.79 1.23 2.19 2.99 4.09 5.82

Count 9999 9998 9998 9934 9906 9705 9711 9996
75% <= 0.82 0.82 0.83 0.87 0.9 0.93 0.97 1.19
95% <= 0.83 0.84 0.93 1.04 6.39 11.35 14.59 18.89
99% <= 1.11 3.09 5.71 8.03 11.52 14.16 17.37 21.26

Table E.7. PROXY INVITE REQUEST
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Call rate 100 200 300 400 500 600 700 900

Min 0 0 0 0 0 0 0 0
Mean 0.63 0.66 0.72 0.8 0.99 1.11 1.32 2.03
Max 1.84 4.25 6.67 9.59 11.59 13.61 15.76 17.62

Median 0.62 0.62 0.62 0.62 0.63 0.63 0.63 0.73
Std dev 0.11 0.34 0.58 0.89 1.51 1.88 2.38 3.43

Count 9999 9998 9998 9934 9906 9705 9711 9996
75% <= 0.62 0.62 0.63 0.63 0.63 0.64 0.65 0.82
95% <= 0.63 0.63 0.66 0.73 4.9 5.8 7.15 11.51
99% <= 1.53 3.59 3.81 5.03 8.3 10.49 12.83 15.4

Table E.8. PROXY 2xx INVITE RESPONSE

Call rate 100 200 300 400 500 600 700 900

Min 0 0 0 0 0 0 0 0
Mean 0.67 0.7 0.74 0.79 0.88 0.97 1.07 1.44
Max 2.23 4.59 7.16 9.53 13.23 16.63 21.35 23.65

Median 0.65 0.65 0.65 0.65 0.65 0.66 0.66 0.77
Std dev 0.15 0.37 0.63 0.97 1.5 1.96 2.31 2.82

Count 9999 9998 9998 9934 9906 9705 9711 9996
75% <= 0.66 0.66 0.66 0.66 0.66 0.68 0.72 0.85
95% <= 0.66 0.66 0.67 0.68 0.81 0.99 1.52 3.17
99% <= 1.19 2.58 4.54 7.34 11.2 14.45 16.85 20.03

Table E.9. PROXY ACK REQUEST

Call rate 100 200 300 400 500 600 700 900

Min 0.61 0.54 0.46 0.68 0.41 0.41 0.04 0.7
Mean 1.66 2.86 4.39 5.81 8.23 10 11.76 13.94
Max 2.67 4.45 7.17 10.43 13.4 16.33 20.26 22.94

Median 1.74 3.12 4.67 6.34 9.42 11.37 13.4 15.99
Std dev 0.35 0.83 1.51 2.22 3.12 3.89 4.67 5.48

Count 9998 9999 9999 9928 9703 9250 8967 8092
75% <= 1.88 3.54 5.62 7.79 10.76 12.89 15.28 18.39
95% <= 2.06 3.85 6.22 8.61 11.76 14.57 17.38 19.82
99% <= 2.16 4.04 6.42 8.94 12.33 15.84 18.21 21.22

Table E.10. PROXY BYE REQUEST
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Call rate 100 200 300 400 500 600 700 900

Min 0.62 0.63 0.62 0.61 0.63 0.75 1.35 1.2
Mean 1.28 2.96 4.71 6.83 9.8 12.44 14.85 17.9
Max 1.98 4.64 7.2 10.47 13.48 17.13 23.27 24

Median 1.24 2.88 4.56 6.89 9.79 12.4 14.87 17.99
Std dev 0.17 0.48 0.9 1.28 1.45 1.84 2.29 2.57

Count 9998 9999 9999 9928 9703 9250 8967 8092
75% <= 1.33 3.32 5.48 7.81 10.98 13.75 16.26 19.62
95% <= 1.66 3.82 6.26 8.73 12.03 15.27 18.35 21.79
99% <= 1.79 4.03 6.48 9.06 12.61 16.17 19.27 22.84

Table E.11. PROXY 2xx BYE RESPONSE

Call rate 100 200 300 400 500 600 700 900

Min 0.25 0.23 0.22 0.26 0.21 0.23 0.28 0.38
Mean 1.01 1.61 2.31 3.06 4.26 5.25 6.25 7.76
Max 2.21 5.03 6.94 9.82 13 16.16 20.08 22.43

Median 1.01 1.62 2.26 3.07 4.27 5.18 6.09 7.32
Std dev 0.17 0.47 0.88 1.32 1.95 2.51 3.15 4.02

Count 9999 9998 9998 9932 9825 9523 9413 9234
75% <= 1.06 1.79 2.64 3.55 4.79 5.78 6.78 8.17
95% <= 1.17 1.96 2.95 3.96 7.18 9.6 11.8 15.04
99% <= 1.56 3.47 5.39 7.68 11.19 14.22 16.91 20.15

Table E.12. SUMMARY DYNAMIC PROTOTYPE

E.3 Pooling Prototype

Call rate 100 200 300 400 500 600 700 900

Min 0.91 0 0.03 0 0 0 0 0.01
Mean 0.97 0.99 1.05 1.03 1 1.01 1.01 1.05
Max 1.83 12.19 4.6 15.33 6.17 6.33 1.77 2.44

Median 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98
Std dev 0.02 0.27 0.52 0.57 0.3 0.3 0.12 0.24

Count 10000 10000 10000 9999 10000 9998 10000 10000
75% <= 0.97 0.97 0.97 0.97 0.98 0.98 0.99 1
95% <= 0.97 0.99 0.99 1.01 1.07 1.23 1.39 1.79
99% <= 1.02 2.49 4.34 5.4 1.14 1.36 1.55 2.13

Table E.13. PROXY INVITE REQUEST
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Call rate 100 200 300 400 500 600 700 900

Min 0.26 0 0 0 0 0 0 0.01
Mean 0.71 0.74 0.77 0.77 0.78 0.77 0.78 0.81
Max 1.25 4.12 4.04 8.21 4.86 10.31 6.02 6.65

Median 0.71 0.71 0.71 0.71 0.71 0.71 0.71 0.71
Std dev 0.03 0.23 0.37 0.45 0.44 0.46 0.46 0.36

Count 10000 10000 10000 9999 10000 9998 10000 10000
75% <= 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.74
95% <= 0.72 0.72 0.73 0.8 0.78 0.77 0.8 1.34
99% <= 0.93 2.65 3.49 3.67 4.04 3.53 3.75 2.36

Table E.14. PROXY 2xx INVITE RESPONSE

Call rate 100 200 300 400 500 600 700 900

Min 0.6 0 0 0 0 0 0.01 0.01
Mean 0.75 0.77 0.83 0.85 0.86 0.85 0.85 0.85
Max 1.74 5.88 4.38 8.88 6.15 6.27 5.77 5.37

Median 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
Std dev 0.08 0.24 0.44 0.66 0.65 0.64 0.64 0.61

Count 10000 10000 10000 9999 10000 9998 10000 10000
75% <= 0.75 0.75 0.79 0.76 0.79 0.78 0.78 0.78
95% <= 0.75 0.76 0.82 0.82 0.82 0.82 0.82 0.83
99% <= 1.04 2.05 3.88 5.17 5.18 5.19 5.15 5.04

Table E.15. PROXY ACK REQUEST

Call rate 100 200 300 400 500 600 700 900

Min 0.38 0.05 0.75 0.06 0.75 0.75 0.75 0.72
Mean 1.21 1.96 2.73 3.44 3.86 4.25 4.65 5.38
Max 1.76 3.4 4.21 5.34 5.46 5.94 6.6 7.69

Median 1.28 2.12 2.76 3.54 4.22 4.91 5.36 6.19
Std dev 0.22 0.58 0.86 1.18 1.26 1.41 1.54 1.93

Count 10000 10000 10000 9641 8606 7883 7382 6434
75% <= 1.39 2.46 3.49 4.44 4.88 5.28 5.73 6.8
95% <= 1.49 2.66 3.91 4.98 5.19 5.5 6.04 7.21
99% <= 1.55 2.74 4.05 5.11 5.31 5.68 6.21 7.33

Table E.16. PROXY BYE REQUEST
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Call rate 100 200 300 400 500 600 700 900

Min 0.68 0.11 0.73 0.27 0.74 0.73 0.68 1.24
Mean 0.95 2.48 3.91 4.75 4.9 4.97 5.05 5.18
Max 1.49 3.68 4.57 5.96 6.17 6.29 6.53 7.69

Median 0.93 2.61 4.03 4.96 5.04 5.14 5.1 5.01
Std dev 0.14 0.34 0.43 0.68 0.56 0.61 0.64 0.95

Count 10000 10000 10000 9641 8606 7883 7382 6434
75% <= 1.06 2.72 4.23 5.18 5.27 5.35 5.48 5.5
95% <= 1.2 2.82 4.39 5.51 5.6 5.63 5.91 7.02
99% <= 1.29 2.89 4.48 5.7 5.8 5.87 6.12 7.28

Table E.17. PROXY 2xx BYE RESPONSE

Call rate 100 200 300 400 500 600 700 900

Min 0.57 0.03 0.30 0.07 0.30 0.30 0.29 0.40
Mean 0.92 1.39 1.86 2.17 2.28 2.37 2.47 2.65
Max 1.61 5.85 4.36 8.74 5.76 7.03 5.34 5.97

Median 0.93 1.43 1.84 2.19 2.34 2.50 2.58 2.73
Std dev 0.10 0.33 0.52 0.71 0.64 0.68 0.68 0.82

Count 10000 10000 10000 9856 9442 9152 8953 8574
75% <= 0.98 1.52 2.04 2.41 2.53 2.62 2.74 2.96
95% <= 1.03 1.59 2.17 2.62 2.69 2.79 2.99 3.64
99% <= 1.17 2.56 4.05 5.01 4.29 4.33 4.56 4.83

Table E.18. SUMMARY POOLING PROTOTYPE


