
On-demand virtual laboratory
environments for
Internetworking e-learning
A first step using docker containers

ANDREAS KOKKALIS

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMPUTER SCIENCE AND COMPUTER ENGINEERING,
SECOND LEVEL
STOCKHOLM, SWEDEN 2018

On-demand virtual laboratory
environments for Internetworking
e-learning
A first step using docker
containers

Andreas Kokkalis

2018-01-29

Master’s Thesis

Examiner
Gerald Q. Maguire Jr.

Academic adviser
Anders Västberg

KTH Royal Institute of Technology
School of Electrical Engineering and Computer Science (EECS)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

 Abstract | i

Abstract

Learning Management Systems (LMSs) are widely used in higher education to
improve the learning, teaching, and administrative tasks for both students and
instructors. Such systems enrich the educational experience by integrating a wide
range of services, such as on-demand course material and training, thus
empowering students to achieve their learning outcomes at their own pace.

Courses in various sub-fields of Computer Science that seek to provide rich
electronic learning (e-learning) experience depend on exercise material being
offered in the forms of quizzes, programming exercises, laboratories, simulations,
etc. Providing hands on experience in courses such as Internetworking could be
facilitated by providing laboratory exercises based on virtual machine
environments where the student studies the performance of different internet
protocols under different conditions (such as different throughput bounds, error
rates, and patterns of changes in these conditions). Unfortunately, the integration
of such exercises and their tailored virtual environments is not yet very popular in
LMSs.

This thesis project investigates the generation of on-demand virtual exercise
environments using cloud infrastructures and integration with an LMS to provide a
rich e-learning in an Internetworking course. The software deliverable of this
project enables instructors to dynamically instantiate virtual laboratories without
incurring the overhead of running and maintaining their own physical
infrastructure. This sets the foundations for a virtual classroom that can scale in
response to higher system utilization during specific periods of the academic
calendar.

Keywords

Learning management systems, Learning Tools Interoperability, E-learning,
Docker containers, virtualization, virtual laboratories

 Sammanfattning | iii

Sammanfattning

Lärplattformar (eng. Learning Management Systems (LMS)) används i stor
utsträckning för högre utbildning för att förbättra lärande, undervisning och
administrativa uppgifter för både studenter och instruktörer. Sådana system berikar
den pedagogiska erfarenheten genom att integrera ett brett utbud av tjänster, såsom
on-demand kursmaterial och träning, vilket ger studenterna möjlighet att uppnå sina
lärandemål i egen takt.

Kurser inom olika delområden av datavetenskap som syftar till att ge en bred
erfarenhet av elektroniskt lärande (e-learning) har träningsmaterial i form av
frågesporter, programmeringsövningar, laboratorier, simuleringar etc. Praktiskt
erfarenhet i kurser som Internetworking kan underlättas genom att tillhandahålla
laboratorieövningar baserade på virtuella maskinmiljöer där studenten studerar
prestanda för olika internetprotokoll under olika förhållanden (t.ex. olika
gränsvärden, felfrekvenser och förändringsmönster under dessa förhållanden).
Tyvärr är integrationen av sådana övningar och deras skräddarsydda virtuella miljöer
ännu inte populär i LMSs.

Detta examensarbete undersöker generering av virtuella träningsmiljöer på
begäran med hjälp av molninfrastruktur och integration med en LMS för att ge ett
rikt e-lärande i en Internetworking-kurs. Programvaran som levereras av detta
projekt gör det möjligt för instruktörer att dynamiskt instansera virtuella laboratorier
utan att behöva hantera sin egen fysiska infrastruktur. Detta sätter grunden för ett
virtuellt klassrum som kan skala med högre systemutnyttjande under specifika
perioder av den akademiska kalendern.

Nyckelord

Lärplattform, Lärverktyg Interoperabilitet, E-lärande, Dockercontainrar,
virtualisering, virtuella laboratorier

Contents

List of Tables

1 Introduction 1
1.1 Background . 1
1.2 Problem definition . 2
1.3 Goals . 3
1.4 Research Methodology . 4
1.5 Delimitations . 4
1.6 Structure of the thesis . 5

2 Background 7
2.1 LMS . 7
2.2 LTI . 8
2.3 Sinatra DSL . 10
2.4 LTI tool provider . 12

2.4.1 Integration of an external application into Canvas LMS . . . 17
2.4.2 Securing the connection between a TP and a TC 19

2.5 LTI applications . 22
2.6 Linux Containers . 23
2.7 Web based shell emulators . 28
2.8 Related work . 31

2.8.1 EDURange . 31
2.8.2 GLUE! . 31
2.8.3 INGInious . 31

2.9 Summary . 34

3 Methodology 35
3.1 Research Process . 35
3.2 Evaluation Process . 35

4 Implementation 39
4.1 Software architecture . 39

4.1.1 Canvas LMS . 40
4.1.2 Web server . 42

4.1.3 Docker Remote API Consumer 45
4.1.4 Session Storage . 47
4.1.5 Persistent Storage . 48
4.1.6 Binding network ports of the host system to container ports . 49

4.2 LTI Tool Client . 51
4.2.1 Authentication . 51
4.2.2 Home Page - List of Images 54
4.2.3 Image History . 55
4.2.4 Run Container page . 56
4.2.5 Commit Container page . 59
4.2.6 Delete Container page . 60
4.2.7 Delete Image page . 60

4.3 LTI Tool Provider . 61
4.3.1 Configuration of an Assignment 64
4.3.2 Student accessing a laboratory environment 67

4.4 Evaluation . 68
4.4.1 Unit testing in Go . 71
4.4.2 Generating a test coverage report 80
4.4.3 Integration tests . 82
4.4.4 Summary of tests . 93

5 Conclusions and Future Work 97
5.1 Conclusions . 97
5.2 Future work . 99

5.2.1 Scalability . 99
5.2.2 Web based shell emulators . 99
5.2.3 Tool Client user interface design 100
5.2.4 Evaluation of the Periodic Checker module 101
5.2.5 Desired Features . 101
5.2.6 Assignment evaluation . 102

References 103

Appendices 110

A Development and testing setup 111

List of Figures

2.1 Overview of LTI . 9
2.2 A TP using LIS services . 10
2.3 Adding an external application to Canvas 18
2.4 Configuring an assignment to use an external tool 18
2.5 States of the container lifecycle . 27
2.6 Shell In A Box emulator running in a web browser window 29

4.1 High Level Overview of the System Architecture 39
4.2 Architecture of the system components 40
4.3 Sample configuration of a course and its participants in Canvas LMS . . 41
4.4 Sign in form - LTI Tool Client Interface 52
4.5 Tool Client page “List of Images” . 54
4.6 Tool Client page “Image History” . 56
4.7 Tool Client page “Run Container” . 58
4.8 Tool Client page “Commit Container” 59
4.9 Tool Client page “Delete Container” . 60
4.10 Tool Client page “Delete Image” . 61
4.11 Configuration of the TP in Canvas . 65
4.12 Assignment Description that could be placed into the Canvas LMS course

(based upon the first part of the assignment in [1] - this material appears
here based upon CC BY 3.0 US) . 66

4.13 Laboratory environment via Canvas LMS 67
4.14 The four layers of the Clean Architecture 69
4.15 The source code directory tree of this project 71
4.16 Sample of the go tool cover HTML output 81
4.17 Overview of project’s test coverage report from codecov.io 82

List of Algorithms

1 PeriodicChecker . 50

List of Tables

2.1 Routes of a Ruby Sinatra TP . 12

4.1 Endpoints of the HTTP Web Server . 44
4.2 List of implemented domain models . 69
4.3 Types of implemented tests per Endpoint 94
4.4 Average execution time for each endpoint 95

Listings

2.1 Sinatra basic route . 10
2.2 Sinatra route with HTTP GET parameters 11
2.3 Wildcard route pattern . 11
2.4 Sinatra route with template . 11
2.5 index.erb . 12
2.6 Code dependencies and some global variables of the TP 13
2.7 Launch route . 14
2.8 Assignment route . 15
2.9 Report the assignment grade to Canvas 16
2.10 XML response from Canvas . 17
2.11 TLS configuration of a Sinatra application 19
2.12 Generating a self signed TLS certificate and encryption key 20
2.13 Sample OpenSSL configuration for issuing SSL/TLS certificates . . . 20
2.14 XML configuration of an external application for Canvas 23
2.15 Docker pull command . 25
2.16 Docker images command . 25
2.17 Docker run command . 25
2.18 Docker ps command . 26
2.19 Installing a package in the container Operating System 27
2.20 Create a new docker image out of a running container 28
2.21 List the docker images, shows the newly created image 28
2.22 Definition of a task in task.yaml . 33
2.23 Code input of question1 in template.py 33
2.24 Evaluation of student code by the run file 33
4.1 Golang simple HTTPS web server 42
4.2 Start container request . 45
4.3 Redis session value for a container run configuration 47
4.4 Relational Database Schema of the Tool Client 48
4.5 Javascript function consuming the /admin/login/ endpoint 53
4.6 Javascript function consuming the /admin/images/ endpoint 55
4.7 Authentication of the LTI Launch requests in Go 61
4.8 LTILaunch route handler function 63
4.9 Example of a simple unit test in Go 71
4.10 Example of a simple unit test in Go 73

4.11 Source code of the Docker API client 75
4.12 Unit test of intializing a connection with the Docker API 76
4.13 Source code of Admin Logout HTTP handler 77
4.14 Sample of the Redis repository interface and its implementation . . . 78
4.15 Unit test of Admin Logout HTTP handler 79
4.16 Structure of Gingo test specifications 83
4.17 Initial configuration of integration tests for the image routes 85
4.18 Performing a request to an endpoint within a spec file 86
4.19 An HTTP request as modeled in the integration package 87
4.20 An expected HTTP response as modeled in the integration package . 88
4.21 Assertion of an HTTP response of the integration package 89
4.22 Example of a JSON expected response containing regular expressions 90
4.23 Sample output of a successful Ginkgo integration test 91

List of Acronyms and Abbreviations

AJAX Asynchronous JavaScript and XML

API application programming interface

BDD Behavior Driven Development

CA Certificate Authority

CI Continuous Integration

CPU Central Processing Unit

CSS Cascading Style Sheets

DOM Document Object Model

DSL Domain Specific Language

EC2 Elastic Compute Cloud

e-learning electronic learning

ERB Embedded RuBy

GLUE! Group Learning Uniform Environment

GNU GNU’s Not Unix!

GUI Graphical User Interface

HTML Hyper Text Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IT information technology

JSON JavaScript Object Notation

KTH Kungliga Tekniska Högskolan

LIS Learning Information Services

LMS Learning Management System

LTI Learning Tools Interoperability

LTS Long Term Support

LXC Linux Containers

MIME Multipurpose Internet Mail Extensions

MIT Massachusetts Institute of Technology

MOOC Massive Open Online Course

OCI Open Container Initiative

RDBMS Relational Database Management System

SCROM Sharable Content Object Reference Model

SHA Secure Hash Algorithm

SQL Structured Query Language

SSH Secure Shell

TC Tool Consumer

TCP Transmission Control Protocol

TLS Transport Layer Security

TP Tool Provider

TTL Time To Live

UI User Interface

URL Uniform Resource Locator

XML Extensible Markup Language

Chapter 1

Introduction

The use of electronic learning (e-learning) technologies has been well established in
modern education to assist both students and instructors in their learning,
teaching, and administrative tasks. One of the e-learning technologies most widely
adopted by the academic community is Learning Management Systems (LMSs).
An LMS is a software application that handles all aspects of the learning process
[2], enabling instructors to design rich e-learning courses and students to
experience self-paced learning using a variety of features, such as on-demand
course material, video lectures, automatic delivery and evaluation of assignments,
collaboration tools, etc.

Many courses, especially in various sub-fields of Computer Science depend on
training events in the form of programming assignments, laboratory exercises,
simulations, etc. These activities are crucial for students to gain hands-on
experience with complex concepts and systems [3]. Although LMSs support
on-line training events, such as interactive quizzes with automatic evaluation and
analysis of results, providing training events that depend on complex virtual
environments and software are not yet very popular (and hence not widely
supported or used).

One of the main advantages of using an LMS is that it supports the integration
of external applications to provide personalized, domain specific e-learning, such as
messaging and video streaming services, on-line office suites, collaboration tools, or
even training environments with exercises tailored to the needs of a specific course.

1.1 Background

Hands-on experience is very important to achieve understanding of complex systems
and concepts. For example, when studying computer networks, laboratory exercises
are a common student activity. An Internetworking course often involves students
studying the performance of different Internet protocols under different conditions
(such as varying throughput bounds, error rates, and patterns of changes in network
conditions).

1

CHAPTER 1. INTRODUCTION

These experiments depend on specific software, network topologies, and local
or virtual hardware. Traditional approaches for realizing such environments
depend upon the student’s own hardware or on-site computer labs with
pre-configured software [4]. More modern approaches involve remote access to
virtual machines running on central servers or cloud infrastructures [5].

Currently LMSs do not have built-in support for such laboratory
environments. However, one of the main advantages of designing an on-line course
on top of an LMS that supports the integration of extenal applications is to
provide tailored functionality for the course’s and student’s specific needs. Today,
many LMSs, such as Instructure Inc.’s Canvas [6] LMS, implement the IMS
Global Learning Consortium Tools Interoperability® (LTI®) specification.
Learning Tools Interoperability (LTI) allows the exchange of information between
the LMS and third party components, thus exposing internal functionality of the
LMS to external applications in a controlled manner.

Supporting virtual laboratory environments in a LMS in order to meet the
needs of an Internetworking course, requires the design of a software framework
that implements the LTI interoperability specification in order to exchange
relevant information between the laboratory environment and the LMS.

1.2 Problem definition

Hands on experience is a very important aspect of the learning process in several
fields of Computer Science, including computer networks. Understanding the
domain specific concepts and problems of an Internetworking course, depends
greatly on exercise material and laboratory practice. Today, such exercises, are
not usually designed to extract suitable analytics for the instructor (as an
instructor ideally wishes to evaluate each student’s level of understanding of each
of the different concepts covered in an exercise). Assessing the student’s
understanding is currently achieved by using additional training material, such as
quizzes or assignments in forms of reports which are manually evaluated by
instructors or by other students in the form of peer reviews. These alternative
methods both introduce a delay in feedback to the student (hence reducing the
student’s rate of learning) and are not scalable (for example, preventing their use
in Massive Open Online Courses (MOOCs)).

Supporting an on-line version of an Internetworking course through a LMS
that enables students to achieve the course’s learning outcomes at their own pace,
depends greatly on designing interactive practice environments. Such
environments should be easily modified by the instructor to fit the needs of
different exercises. Although today LMSs support a variety of training events,
such as quizzes and assignments through integration of external services, on-line
virtual laboratory environments that fulfill the requirements of an Internetworking
course are not yet well supported and hence not widely used.

However, similar practice environments are common in on-line courses that

2

1.3. GOALS

teach programming languages. Such environments are part of systems that
provide tools for designing coding assignments, and support several assessment
methods, including automatic evaluation and grading of code [7] and programming
quizzes. These systems often provide standalone web applications or LTI
integrations in LMSs that expose functionality for developing code, submitting
assignments, and presenting feedback to users [8, 9].

This project aims to design a software framework that supports interactive
training material for an Internetworking course, integrates with a LMS to provide
a rich e-learning experience, and offers dynamic instantiation of laboratory
environments that scale according to the needs of the virtual classroom.

1.3 Goals

The design of such a laboratory environment for an Internetworking course has to
meet several user requirements from the perspective of both students and
instructors, and integrate with an LMS to offer a rich e-learning experience. The
expected outcome of this project is a software framework that supports
instantiation of on-demand laboratory environments using cloud based
technologies to enrich the learning experience of students, allowing them to
proceed at their own pace. Additionally, the framework should enable a teacher to
customize the environment according to different exercises’ requirements, and
provide the instructor with constructive feedback about each student’s progress
and understanding.

The process of designing this framework can be realized by achieving the
following goals:

• Devise a method to easily build virtual laboratory environments,

• The framework should enable the instructor to easily create and manage
different versions of laboratory environments, as such environments can be
reused for different assignments.

• The framework should be integrated with the LMS to enable students to access
the training environments via the LMS,

• The method of integration of such exercise environments should be usable by
others - thus an important part of this thesis project is documenting the
selected method to facilitate the integration of a diverse set of external
environments (for example, an ns-3 [10] simulator configured for a particular
simulation),

• The framework should scale in such way that it enables students to do
assignments at any given time, thus offering on-demand availability of the
underlying services, and

3

CHAPTER 1. INTRODUCTION

• A student should be able to access a training environment within reasonable
upper bounded time from the moment she requests from the LMS to start an
assignment.

1.4 Research Methodology
This project is carried out using the design science research approach. Design
science research addresses important unsolved problems in unique or innovative
ways or solved problems in more effective or efficient ways. It focuses on the design
and construction of information technology (IT) artifacts that have utility in real-
world, application environments. The artifacts, as the outcome of the research
process, aim to improve domain-specific systems and processes [11, 12]. The utility,
quality, and adequacy of a design artifact, is thoroughly evaluated under varying
experimental setups to verify that it successfully fulfills the stated requirements.

Design, in several research fields, including IT, is an iterative process of
planning, generating alternatives, and selecting a satisfactory outcome. Design
science research, although it is not performed using strictly defined processes, can
be summarized by three closely related cycles of activities (these cycles are the
relevance cycle, the rigor cycle, and the design cycle) [13], that act as guidelines
for designing, constructing, and evaluating an artifact. The relevance cycle
establishes the application context that not only provides the requirements for the
research as inputs, but also defines acceptance criteria for the evaluation of the
research results. The rigor cycle provides past knowledge to the research project
to ensure its innovation. It is contingent on researchers to thoroughly research and
reference this knowledge base in order to guarantee that the designs produced are
research contributions and not routine designs based upon the application of
well-known processes. The central design cycle iterates between the core activities
of building and evaluating the design artifacts and processes of the research [11],
until the acceptance criteria, as defined in the relevance cycle, are met.

The resulting software and documentation of this project attempt to solve the
problem of designing and realizing a framework for rich on-line laboratory
environments for an e-learning course on Internetworking, that is to be accessible
via a specific learning management system (Instructure’s Canvas LMS). The two
different domains that define the context of this problem are the Internetworking
course domain, and the LMS along with the method(s) of integration of external
applications into Canvas (in this case via LTI).

1.5 Delimitations
This project addresses the problem of designing and integrating virtual laboratory
environments to support e-learning in an LMS for an Internetworking course. The
laboratory framework, the expected outcome of this project, has to fulfill several
requirements: usability for different types of users (instructor, administrator, and

4

1.6. STRUCTURE OF THE THESIS

student), integration into the Canvas LMS via the LTI specification, and satisfy the
laboratory and pedagogical challenges of this particular course. Although there are
different specifications for integrating external applications and services into a LMS
[14], this project addresses only the LTI specifications, as this method is supported
by Canvas (along with many other LMSs, for example LTI can be used together with
edX as either a consumer or provider [15]). The laboratory framework, is designed
to suit the needs of a typical classroom (in this case approximately 30 students),
thus its scalability is limited.

Testing the scalability of the designed system regarding the number of users is
outside of the scope of this thesis project. However, a system might be scaled up
by using larger virtual instances (vertical scaling) or by creating multiple instances
(horizontal scaling). Additionally, scaling up and down of services in clouds has
been investigated by others [16].

1.6 Structure of the thesis
Chapter 2 explains what an LMS is, introduces the LTI specification for
integrating external learning applications into such systems, and presents an
example of an external learning tool which is integrated with Canvas LMS.
Furthermore, it presents the related technologies that were used to implement the
software artifact of this project, along with projects that addressed problems
related to the e-learning process in other fields of Computer Science. Chapter 3
explains the methods used to evaluate the proposed artifact. Chapter 4 presents
the software artifact that was designed to facilitate student understanding of
Internetworking via e-learning, and finally, Chapter 5 presents the results and the
future work required to prepare the software artifact for use in production with
Canvas LMS.

5

Chapter 2

Background

This chapter explains what an LMS is and how learning applications are
integrated in such systems to support rich e-learning. Moreover, it introduces
research artifacts that offer on-line training environments for various courses in
the Computer Science domain. Lastly, it introduces those technologies that were
used to design the framework that supports training events for an Internetworking
course.

2.1 LMS

LMSs are software applications that automate the training, teaching, and
administrative tasks of the learning process [2]. They have been widely adopted
by higher education institutions to automate their organizational functions and
provide a rich e-learning experience for both instructors and students.

Such systems are designed to provide self-guided services; rapid delivery and
composition of learning material; tracking and reporting of progress through
training programs, classroom, or on-line events; personalized content; and
centralization and automation of administration [17]. From a learner’s perspective
the most common use cases of an LMS are planning ones own learning experience
and collaboration with colleagues; while from an instructor’s perspective the most
common use cases are the design and delivery of educational content along with
tracking and analysis of students’ learning evolution [18].

The main functionality of an LMS concerns content organization and delivery,
communication and collaboration, and assessment∗ of student’s learning process.
Some of the most commonly used features of an LMS for e-learning are video
streaming of lectures, on-line notes and presentations, quizzes and practice

∗According to Wynne Harlen and Mary James [19], formative assessment is performed by
teachers during the learning process, to modify and improve the teaching and learning activities.
It is based on observation of students’ individual efforts and development; thus, having a qualitative
and diagnostic nature. Summative assessment, performed by both instructors and students, is based
on public criteria that aim to measure student’s achieving of the course learning outcomes.

7

CHAPTER 2. BACKGROUND

environments, automatic evaluation of assignments (usually exercises with
predefined input and output), wikis, and discussion forums [20]. These services are
either offered directly by the LMS or by integrating external applications that are
designed according to specific interoperability standards. Section 2.2 describes this
interoperability and integration in detail.

Although LMSs provide built-in learning applications for designing e-learning
courses, their functionality is often very limited and might not suit the needs of
every course. Moreover, not all LMSs support the same learning tools, nor provide
the same functionality for e-learning. Fortunately, external learning tools can be
integrated with multiple different LMSs, allow re-use of existing materials thus
minimizing the effort for designing an e-learning course. Usually such tools are
web services∗ that are discoverable by an LMS via the service’s Uniform Resource
Locator (URL) and authorization parameters (such as secret keys). The
communication between the LMS and the tool is performed by exchanging
messages whose format and content is defined by the interoperability specification.
Section 2.3 shows several web frameworks that can be used to design external
learning tools as web services.

There are several LMSs in the market (Blackboard, Moodle, Kanu, . . .) that
are used by multiple institutions. In the scope of this project the chosen learning
management platform is Canvas [6]. This LMS was chosen because the system is
open source, supports a well defined interoperability specification, and was selected
in 2016 by KTH as their LMS.

2.2 LTI

Interoperability is the ability to communicate, execute programs, or transfer data
among functional units in a manner that requires the user to have little or no
knowledge of the unique characteristics of those units [21]. An e-learning platform
usually consists of several services such as course and user administration modules,
and learning applications that exchange information in a formal and standardized
way.

The IMS Global Learning Consortium Tools Interoperability (LTI) specification
establishes a way of integrating rich learning applications (often remotely hosted
and provided through third-party services) with platforms, such as LMSs, portals,
learning object repositories, or other educational environments [22]. The main goal
of LTI is to standardize the process of building links for sharing information and
exposing functionality between external learning tools and the LMS [23]. There are
two major pieces of software involved in LTI. The first is called a Tool Consumer
(TC) and it refers to the software (such as an LMS) that consumes the output of

∗In service oriented architectures, a web service is a piece of software that makes itself available
over the Internet and allows third-party software to communicate with them by exchanging strictly
defined messages formatted in Extensible Markup Language (XML), JavaScript Object Notation
(JSON), etc.

8

2.2. LTI

external tools, and the second, is a Tool Provider (TP) which provides an external
tool for use by the TC.

An example of a basic learning tool, is a service that accepts a request to perform
a course assignment such as multiple choice question via a web form, evaluates the
user’s input, and returns a pass/fail grade. In this scenario, the service is the TP
and Canvas LMS is the TC. A user of Canvas with administrative access (e.g.,
teacher), configures the integration of the external tool, a course assignment for
which the tool will be launched, and finally, chooses whether the interface of the
tool will be embedded in Canvas, or run in a new browser window. Figure 2.1 shows
a basic flow for launching a TP from the TC. The user requests from the LMS that
they want to do an assignment. This specific assignment has been configured to
launch a specific LTI capable external tool together with arguments that are passed
to the TP. The TP authenticates and accepts the LTI Launch request by the TC
and starts a session for that particular user that allows this user to interact with
the assignment.

Figure 2.1: User launching an external tool

A TP often requires access to course related information, such as people, groups,
memberships, courses, and outcomes. This information along with standardized
ways of retrieving it are defined by the IMS Global Learning Consortium Learning
Information Services (LIS) specification [24]. These services can be provided either
by the TC or by a third party system. Canvas LMS implements the LTI version
1.1 which includes a subset of the LIS specification, called the LTI Basic Outcomes
Service. In the example mentioned above, the information that Canvas provides
to the TP when performing an LTI Launch are: how to access the LIS services,
the resource identifier (assignment) for which a grade will be reported, and user
information such as the unique identifier of the student. Figure 2.2 shows how a
TP can communicate with LIS services to get user data and report the grade of the
assignment back to the TC.

9

CHAPTER 2. BACKGROUND

Figure 2.2: A TP using LIS services

2.3 Sinatra DSL

A simple web server is a piece of software designed to process Hypertext Transfer
Protocol (HTTP) requests. Many web frameworks have been developed in several
programming languages that allow rapid development of web servers and
applications. Amongst these, Sinatra [25, 26], is a Domain Specific
Language (DSL) for writing web applications in Ruby. A Sinatra web application
is organized around routes which are HTTP methods paired with a URL-matching
pattern. Listing 2.1 presents a minimal sinatra application. The route "/" is
paired with a get HTTP method. Every time this route is invoked, it provides a
"Hello World!" text response.

Listing 2.1: Sinatra basic route

hello_world.rb

require 'sinatra '

get '/' do

'Hello world!'
end

A file named hello world.rb contains the code shown in Listing 2.1, which is
called a route block. A route block starts with a keyword such as get, post,

put, ... and corresponds to an HTTP method, and finishes with the keyword
end. Executing the web application is as simple as running the command ruby

hello world.rb. This will start a sinatra web server on the default host
(localhost) that listens for Transmission Control Protocol (TCP) connections on
the default port (4567). By visiting the URL http://localhost:4567/ with a
browser, the route "/" is invoked and the response returned to the user.

10

2.3. SINATRA DSL

A route can also utilize HTTP GET query parameters as shown in Listing 2.2.
In this case, if a course id is provided as a parameter of query string, then its value
is loaded into the local variable courseID. The same concept could be applied if the
route was an HTTP POST method and course id was one of the post’s parameters.

Listing 2.2: Sinatra route with HTTP GET parameters

get '/assignments ' do

matches "GET /assignments?course_id=IKXXX"

courseID = params['course_id ']
uses course_id variable; query is optional to the / route

end

Sinatra also supports the use of wildcards to match all parameters of the query
string. Such parameters are called splat, are symbolized with a ”*” router pattern,
and are accessible via the params[’splat’] array. In the Listing 2.3, the route
’/department/*/course/*’ represents the course catalog of a university. The splat
parameters match the department (informatics) and course (ID001) identifiers
respectively.

Listing 2.3: Wildcard route pattern

get '/department /*/ course /*' do

matches /department/informatics/course/ID001

params['splat '] # => ["informatics", "ID001"]

end

Templates are a text injection mechanism, that allows static text to be
enriched using dynamic content (e.g., a Hyper Text Markup Language (HTML)
template might contain some static text and variables, where the variables are
replaced during runtime). In Sinatra a template by default is stored under the
directory ./views, and can be used in many different ways, including rendering
HTML pages, constructing a JSON object as a response to an HTTP request, etc.
Listing 2.4 shows the route get ’/assignments’ which stores the value of the
course id parameter into an instance variable @courseID which makes the value
of this variable available for use in the template shown in Listing 2.5.

Listing 2.4: Sinatra route with template

get '/assignments ' do

@courseID = params['course_id ']
erb :index

end

Calling the assignments route by visiting the url
http://localhost:4567/assignments?course id=IK1552 will parse the query
parameter, invoke the index.erb template∗ stored under the directory ./views,
and substitute for the text <%= @courseID%> with the value of the variable

∗Embedded RuBy (ERB) is part of the Ruby standard library, and serves as the mechanism
for variable substitution within template files.

11

CHAPTER 2. BACKGROUND

@courseID. The response that will be rendered by the browser will be an HTML
page that contains the text “List of assignments for IK1552” in its body.

Listing 2.5: index.erb

<!DOCTYPE html>

<html>

<head>

<title >Assignments </title>

</head>

<body>

<p>List of assignments for <%= @courseID%></p>

</body>

</html>

A Sinatra route can be used to serve static files. By default, static files are
served from the ./public directory that is located under in the same directory as
the application. A Sinatra application, although it is minimalistic, it is not limited
to default options, thus one can configure different port numbers, root directories,
custom template engines and locations, etc. Other web servers similar to Sinatra
are: Flask in Python, and Netty in Java.

A collection of URL routes such as /department/*/course/* and
/assignments describe a server-side web application programming
interface (API), that is based on an HTTP request-response message exchange. In
the context of web application development, such routes are named API endpoints
and they describe the method for accessing application resources. An endpoint is
consumed by a client-side application or a web service, and are either publicly
accessible or protected by some sort of authorization scheme.

2.4 LTI tool provider
This section presents a TP written in Ruby Sinatra that implements the Basic
Outcomes Service of the LTI specification. This TP is integrated into the Canvas
LMS which will act as a TC. The TP has three routes (listed in Table 2.1).

Table 2.1: Routes of the TP

launch route for launching the external tool

assignment route for starting an assignment

report route for reporting the result of the assignment to Canvas LMS

The launch route implements the LTI Launch functionality of the LTI
specification, accepts requests for launching the external tool, and initiates a
unique session per request. The assignment route checks for a valid session, and
then returns an HTTP response with an HTML form. The form is the assignment
and in this example contains a simple arithmetic question that the student has to

12

2.4. LTI TOOL PROVIDER

reply to by submitting her answer in the form’s input. Finally, the report route
validates the student’s input, and reports a pass/fail grade to the TC.

This example assumes that a Canvas instructor has created an assignment and
configured it to launch the TP. The following code snippets present the code
implementation of the TP (inspired by lti example from the github repository of
Instructure Inc. at [27], the functionality of each route, and the XML messages
that are used to communicate with the TC.

Listing 2.6 shows the code dependencies to implement the TP. First it requires
the sinatra gem∗ and the oauth gem (used to implement the service provider,
according to the LTI specification for authorization between a a TP and a TC). The
$oauth keyt and $oauth secret variables define the key and secret that is used by
the TP to identify the TC. These variables are configured in a Canvas LMS when
specifying the external tool. Finally the disable :protection statement allows
for the HTML content produced by the Sinatra application to be embedded into an
HTML frame of the TC, and the enable :sessions statement allows for session
information to be used between subsequent HTTP requests to Sinatra routes.

Listing 2.6: Code dependencies and some global variables of the TP

dependencies

require 'sinatra '
require 'oauth '
require 'oauth/request_proxy/rack_request '

key and secret for authenticating requests from the TC

$oauth_key = "test"

$oauth_secret = "secret"

disable x-frame to allow embedding the TP in the TC

disable :protection

ennable sessions for uniquely identifying students

enable :sessions

The launch route shown in Listing 2.7 is responsible for authorizing a request
from the TC to launch the assignment. First it verifies the request against the
secret variable. If the authorization fails, then a text message is returned to
inform the Canvas user that the integration of the tool was not successful. After
the authorization succeeds, the HTTP request parameters
lis outcome service url and lis result sourcedid (these correspond to the
LTI LIS services) are read. The first corresponds to the TC URL that is used to
report a grade for an assignment, while the latter is a unique identifier that is used
to map an assignment grade to a particular student. If these parameters were not
provided when Canvas invoked this route, then the request will fail. By default

∗Ruby gems are versioned packages of ruby source code. In practice they are libraries that
are hosted in public servers that make them available for download via ruby package management
systems.

13

CHAPTER 2. BACKGROUND

Canvas sets these parameters when a tool provider is correctly configured as a
graded assignment. After the successful verification of the afore mentioned
parameters, their values are stored in the corresponding session objects and the
route redirects to the get /assignment route.

Listing 2.7: Launch route

post "/launch" do

verify the request of the TC

begin

signature = OAuth:: Signature.build(request , :

consumer_secret => $oauth_secret)
signature.verify () or raise OAuth :: Unauthorized

rescue OAuth:: Signature :: UnknownSignatureMethod ,

OAuth :: Unauthorized

return %{ Unauthorized attempt. Make sure you used the

consumer secret "#{ $oauth_secret}"}
end

Verify that this is a valid request

to perform an assignment

unless params['lis_outcome_service_url '] && params['
lis_result_sourcedid ']
return %{It looks like this LTI tool was not launched as

an assignment , or you are trying to do the assigment as a

teacher rather than as a a student .}

end

store the relevant parameters from the launch into the

user's session , for access during subsequent HTTP requests

.

%w(lis_outcome_service_url lis_result_sourcedid).each { |v|

session[v] = params[v] }

Go to the assignment

redirect to("/assignment")

end

The /assignment route, presented in Listing 2.8, starts by validating the session
variable lis result sourceid. If this parameter was not set, then the tool was not
launched via the TC, hence an error text message is returned. This error message
will be visible in the user’s browser (either as a frame within the Canvas LMS or
as a new tab on the user’s browser). If the session is valid, then the route replies
with an HTML form that is rendered by the user’s browser. This form includes
a simple arithmetic addition question and an input field for the student to reply.
The form action sends the form to the report route using the HTTP post method.
When the student presses the submit button within the browser, the report route
is invoked. Note that in this listing the form has been included directly in the route
block, but it could have been placed in a ruby template, such as was done for the

14

2.4. LTI TOOL PROVIDER

template in Listing 2.5.

Listing 2.8: Assignment route

get "/assignment" do

Verify the validity of the session

unless session['lis_result_sourcedid ']
return %{You need to take this assignment through Canvas .}

end

Render a form with the assignment question.

<<-HTML

<html >

<head ><title >Demo LTI Assignment </title ></head >

<body >

<form action="/report" method="post">

<p>What is the sum of 100 + 200 ?</p>

<input name='sum' type='text' width='5' id='sum'
required />

<input type='submit ' value='Submit ' />

</form >

</body >

</html >

HTML

end

The report route, is displayed in Listing 2.9, is invoked when the student
submits the form. If the form parameter sum is not provided, then the user is
redirected (again) to the assignment via the corresponding route. Upon successful
validation of the form input, an XML response message is defined and sent to
Canvas via the appropriate LIS services to report the student’s grade for this
assignment. The format of the XML message is based upon the
imsx POXEnvelopeRequest class defined in the XML schema of the IMS General
Web Services documentation [28] and described in the LTI 1.0 implementation
guide [29].

The body of the message contains the field sourceID that is assigned the value
of the session variable #session[’lis result sourcedid’] , while the
resultScore field that corresponds to the assignment’s grade and has the value 1 in
the textString subfield if the provided sum was 300 or 0 otherwise. The
corresponding assignment was configured earlier in Canvas to accept a maximum
of 1 point for the grade for this assignment.

The message is signed according to the OAuth 1.0 protocol∗ using the same
consumer key and secret that were provided during the LTI launch request
(launch route). The message is posted synchronously to the Canvas LIS service

∗OAuth provides a method for clients to access server resources on behalf of a resource owner
(such as a different client or an end-user). OAuth also provides a process for end-users to authorize
third-party access to their server resources without sharing their credentials (typically, a username
and password pair) by using user-agent redirections [30].

15

CHAPTER 2. BACKGROUND

defined by session[’lis outcome service url’] using a Multipurpose Internet
Mail Extensions (MIME)† encoding, and the response is stored in the response

variable. Because the post was done synchronously, the code will wait until the
response to this post is received. Thus the body of the response can be used to
compute the message to be displayed to the user via their browser.

Listing 2.9: Report the assignment grade to Canvas

post "/report" do

sum = params['sum']
if !sum || sum.empty?

redirect to("/assignment")

end

now post the score to canvas. Make sure to sign the POST

correctly with

OAuth 1.0, including the digest of the XML body. Also make

sure to set the

content -type to application/xml.

xml = %{

<?xml version = "1.0" encoding = "UTF -8"?>

<imsx_POXEnvelopeRequest xmlns = "http :// www.imsglobal.org/lis

/oms1p0/pox">

<imsx_POXHeader >

<imsx_POXRequestHeaderInfo >

<imsx_version >V1.0</ imsx_version >

<imsx_messageIdentifier >12341234 </ imsx_messageIdentifier

>

</imsx_POXRequestHeaderInfo >

</imsx_POXHeader >

<imsx_POXBody >

<replaceResultRequest >

<resultRecord >

<sourcedGUID >

<sourcedId >#{session['lis_result_sourcedid ']}</
sourcedId >

</sourcedGUID >

<result >

<resultScore >

<language >en </language >

<textString >#{sum == 300 ? 1 : 0}</ textString >

</resultScore >

</result >

</resultRecord >

</replaceResultRequest >

</imsx_POXBody >

</imsx_POXEnvelopeRequest >

†The MIME-type is a two-part identifier for file formats and format of contents transmitted
via the Internet.

16

2.4. LTI TOOL PROVIDER

}

consumer = OAuth :: Consumer.new($oauth_key , $oauth_secret)
token = OAuth :: AccessToken.new(consumer)

response = token.post(session['lis_outcome_service_url '],
xml , 'Content -Type' => 'application/xml')

headers 'Content -Type' => 'text'
%{

Your score has #{response.body.match (/\ bsuccess\b/) ? "been

posted" : "failed in posting"} to Canvas. The response was:

#{response.body}

}

end

Lastly the contents of reponse are evaluated and checked to a certain degree
whether posting the grade was successful or not, and then a text message is sent
to the user to be rendered by her browser informing her about the status of
posting the grade to Canvas. The response of a successful post is highlighted in
Listing 2.10 in the imsx codeMajor xml field.

Listing 2.10: XML response from Canvas

<?xml version="1.0" encoding="UTF -8"?>

<imsx_POXEnvelopeResponse xmlns="http://www.imsglobal.org/

services/ltiv1p1/xsd/imsoms_v1p0">

<imsx_POXHeader >

<imsx_POXResponseHeaderInfo >

<imsx_version >V1.0</imsx_version >

<imsx_messageIdentifier/>

<imsx_statusInfo >

<imsx codeMajor>success</imsx codeMajor>

<imsx_severity >status </imsx_severity >

<imsx_description/>

<imsx_messageRefIdentifier >12341234 </

imsx_messageRefIdentifier >

<imsx_operationRefIdentifier >replaceResult </

imsx_operationRefIdentifier >

</imsx_statusInfo >

</imsx_POXResponseHeaderInfo >

</imsx_POXHeader >

<imsx_POXBody ><replaceResultResponse/></imsx_POXBody >

</imsx_POXEnvelopeResponse >

2.4.1 Integration of an external application into Canvas LMS

The text above presented how to develop a simple LTI provider that supports
graded assignments. The Canvas LMS Graphical User Interface (GUI) allows the
integration of external applications via different options, such as manual
configuration forms, launch URLs, and pasting in XML entries. This section

17

CHAPTER 2. BACKGROUND

presents how to configure an external tool using a manual configuration form via
the Settings->Apps->External Apps->Add App menu for a Canvas course. Here
we assume that an instructor wishes to add an external app for a particular
course. The input form shown in Figure 2.3 is loaded. The instructor inputs a
name for the application, the LTI Launch URL, and the consumer key and secret.

Figure 2.3: Adding an external application to Canvas

After adding this external tool, the instructor creates a new assignment,
configures it to launch the application within Canvas, or using an external window
(as shown in Figure 2.4), and then specifies a grading scheme. Once the
assignment is configured and published in Canvas, a student can complete this
assignment via the course page. Section 2.5 explains how to integrate external
applications using URLs and XML configuration.

Figure 2.4: Configuring an assignment to use an external tool

18

2.4. LTI TOOL PROVIDER

2.4.2 Securing the connection between a TP and a TC

The communication between the Canvas LMS and external application tools is by
default expected to be performed using the Hypertext Transfer Protocol
Secure (HTTPS)∗ protocol. In the example presented in previous section, the
communication between the TP and the TC was over HTTP, hence Canvas
generated a corresponding error while launching the TP. The Sinatra web-server
can be easily configured to listen for HTTPS connections on a specific port.
Listing 2.11 shows such a configuration of the Sinatra web server (named
Webrick). HTTPS requires a TLS certificate which for the purposes of this
example was issued and signed using the OpenSSL [31] cryptography and TLS
toolkit, rather than a trusted third party Certificate Authority (CA).

Listing 2.11: TLS configuration of a Sinatra application

require 'sinatra/base'
require 'webrick '
require 'webrick/https'
require 'openssl '

CERT_PATH = '/opt/CA/'

webrick_options = {

:Port => 8443,

:Logger => WEBrick ::Log::new($stderr , WEBrick ::

Log:: DEBUG),

:DocumentRoot => "/ruby/htdocs",

:SSLEnable => true ,

:SSLVerifyClient => OpenSSL ::SSL:: VERIFY_NONE ,

:SSLCertificate => OpenSSL ::X509:: Certificate.new(File.

open(File.join(CERT_PATH , "cert.pem")).read),

:SSLPrivateKey => OpenSSL ::PKey::RSA.new(File.open(File

.join(CERT_PATH , "key.pem")).read),

:SSLCertName => [["CN", '127.0.0.1 ']]

}

class MyServer < Sinatra ::Base

post '/' do

"Hellow , world!"

end

end

Rack:: Handler :: WEBrick.run MyServer , webrick_options

∗HTTPS is a protocol for communication over HTTP within a connection encrypted by
Transport Layer Security (TLS). TLS uses a public and a private encryption key to generate
a session key which is used to encrypt the data flow between client and server. An HTTP message
is encrypted prior to transmission and decrypted upon arrival.

19

CHAPTER 2. BACKGROUND

Listing 2.12 shows how to generate a TLS certificate using the OpenSSL
command line tool. The command is openssl req and it takes several arguments
such as -new (request new certificate), -x509 (format of the public key),
-extensions v3 ca (the extensions to add for a self signed certificate, shown in
the corresponding block of Listing 2.13, -keyout key.pem (the output file for
storing the key), -out cert.pem (the output file for storing the self-signed
certificate), -days 365 (the number of days until the certificate expires), and
finally the sample configuration file openssl.conf for reading the default values.

Listing 2.12: Generating a self signed TLS certificate and encryption key

openssl req -new -x509 -extensions v3_ca -keyout key.pem -out

cert.pem -days 365 -config ./ openssl.conf

The OpenSSL configuration shown in Listing 2.13, is a sample file containing
default values for generating a TLS certificate and a public key file, and is available
for download in Markus Redivo’s page ”Creating and Using SSL Certificates” [32].
More details regarding the use of the req command of the OpenSSL toolkit can be
found in the corresponding man page [33], and information about the configuration
file can be found in Phil Dibowitz’s blog page “Openssl.conf walkthru” [34].

Listing 2.13: Sample OpenSSL configuration for issuing SSL/TLS certificates

---Begin---

OpenSSL configuration file.

Establish working directory.

dir = .

[ca]

default_ca = CA_default

[CA_default]

serial = $dir/serial
database = $dir/index.txt
new_certs_dir = $dir/newcerts
certificate = $dir/cacert.pem
private_key = $dir/private/cakey.pem
default_days = 365

default_md = md5

preserve = no

email_in_dn = no

nameopt = default_ca

certopt = default_ca

policy = policy_match

[policy_match]

countryName = match

stateOrProvinceName = match

organizationName = match

20

2.4. LTI TOOL PROVIDER

organizationalUnitName = optional

commonName = supplied

emailAddress = optional

[req]

default_bits = 1024 # Size of keys

default_keyfile = key.pem # name of generated keys

default_md = md5 # message digest algorithm

string_mask = nombstr # permitted characters

distinguished_name = req_distinguished_name

req_extensions = v3_req

[req_distinguished_name]

Variable name Prompt string

#---------------------- ----------------------------------

0.organizationName = Organization Name (company)

organizationalUnitName = Organizational Unit Name (department, division)

emailAddress = Email Address

emailAddress_max = 40

localityName = Locality Name (city, district)

stateOrProvinceName = State or Province Name (full name)

countryName = Country Name (2 letter code)

countryName_min = 2

countryName_max = 2

commonName = Common Name (hostname, IP, or your name)

commonName_max = 64

Default values for the above, for consistency and less typing.

Variable name Value

#---------------------- ------------------------------

0.organizationName_default = The Sample Company

localityName_default = Metropolis

stateOrProvinceName_default = New York

countryName_default = US

[v3_ca]

basicConstraints = CA:TRUE

subjectKeyIdentifier = hash

authorityKeyIdentifier = keyid:always,issuer:always

[v3_req]

basicConstraints = CA:FALSE

subjectKeyIdentifier = hash

----End----

21

CHAPTER 2. BACKGROUND

2.5 LTI applications
Edu App Center [35] is an open database for learning tools maintained by
Instructure [36] and among its several services, it offers a collection of open
learning applications that implement the LTI specification. These applications can
be integrated with different LMSs. The user can apply filters to locate an
appropriate tool and can browse tutorials about integrating a tool with the LMS
of their choice. Often these tools are hosted by third party services (e.g GitHub,
Youtube, Turnitin). The goal of Edu App Center is to enable instructors to easily
configure these external applications to their courses, thus providing and fostering
a market place for LTI applications.

Section 2.4.1 presented how an instructor can integrate a Ruby Sinatra
external application into Canvas LMS using a web form. This approach is limited
to the functionality of Canvas LMS. An alternative method for integrating
external applications via XML configuration can be used across different LMSs.
Edu App Center offers such configurations for every LTI tool listed in the
marketplace. Additionally, it provides the XML Config Builder service, that allows
instructors to generate XML for integrating custom built external LTI applications
into different LMSs. Listing 2.14 shows an example of such XML entry (generated
by the Edu App Center’s XML Config Builder) that was used to integrate the
Ruby Sinatra application (presented in the previous section) into Canvas.

First, the XML version and the charset encoding are defined. Then the
cartridge basiclti link xmlns specifies that this is an LTI link that can be
used for integrating an external application. This block contains the whole XML
configuration. It starts by defining the IMS Global XML schema that is used to
describe this entity. Then the LTI Launch URL is specified (blti:launch url),
and it is followed by metadata, regarding the title (blti:title) and description
(blti:description) of the external application. Finally, it defines a block for LTI
extensions (blti:extensions platform) that specifies the LMS platform to act
as a TC for this TP. This block of XML code can contain information that is
specific to each LMS that is supported by the TP.

22

2.6. LINUX CONTAINERS

Listing 2.14: XML configuration of an external application for Canvas

<?xml version="1.0" encoding="UTF -8"?>

<cartridge_basiclti_link xmlns="http://www.imsglobal.org/xsd/

imslticc_v1p0"

<!-- Definition of the XML Schema -->

xmlns:blti = "http: //www.imsglobal.org/xsd/imsbasiclti_v1p0"

xmlns:lticm ="http: //www.imsglobal.org/xsd/imslticm_v1p0"

xmlns:lticp ="http: //www.imsglobal.org/xsd/imslticp_v1p0"

xmlns:xsi = "http: //www.w3.org /2001/ XMLSchema -instance"

xsi:schemaLocation = "http: //www.imsglobal.org/xsd/

imslticc_v1p0 http: //www.imsglobal.org/xsd/lti/ltiv1p0/

imslticc_v1p0.xsd

http: //www.imsglobal.org/xsd/imsbasiclti_v1p0 http: //www.

imsglobal.org/xsd/lti/ltiv1p0/imsbasiclti_v1p0.xsd

http: //www.imsglobal.org/xsd/imslticm_v1p0 http: //www.

imsglobal.org/xsd/lti/ltiv1p0/imslticm_v1p0.xsd

http: //www.imsglobal.org/xsd/imslticp_v1p0 http: //www.

imsglobal.org/xsd/lti/ltiv1p0/imslticp_v1p0.xsd">

<!-- The LTI Launch url -->

<blti:launch_url >http: //192.168.39.39 :4567/launch </

blti:launch_url >

<!-- Title of the External Application -->

<blti:title >Arithmetic Assignment </blti:title >

<!-- Description for the external application -->

<blti:description >Sample arithmetic assignment tool</

blti:description >

<-- Configuration specific to the TC -->

<blti:extensions platform="canvas.instructure.com">

<lticm:property name="privacy_level">public </

lticm:property >

</blti:extensions >

</cartridge_basiclti_link >

2.6 Linux Containers

A container is a light weight operating system running inside the host system,
executing instructions native to the Central Processing Unit (CPU), eliminating
the need for instruction level emulation or just in time compilation [37]. Linux
Containers (LXC) [38] is an operating-system-level virtualization method for
running multiple isolated Linux systems (containers) on a host using a single
Linux kernel. Its purpose is to virtualize a single application rather than a whole

23

CHAPTER 2. BACKGROUND

operating system inside a virtual machine. LXC uses cgroups∗ to isolate resources
(such as CPU, memory, network, etc.) and namespaces† to isolate the application
from the operating system [40].

Docker [41] was initially a Linux container engine that provides the ability to
manage containers as self contained images. Docker utilizes LXC for the container
implementation, has image management capabilities, and implements a Union File
System (UnionFS). It features resource isolation via cgroups and namespaces,
network and file system isolation through LXC functionality, and allows managing
the lifecycle of a container [37]. Although docker initially utilized LXC as the only
execution driver for resource isolation, lately it introduced libcontainer [42], which
includes its own implementation for resource isolation, but also has bindings to
leverage other technologies (such as LXC, libvirt-lxc [43], and systemd-nspawn
[44]), thus libcontainer realizes a cross-system abstraction layer for packaging,
delivering, and running applications in isolated environments. The
implementation and functionality of libcontainer is defined by the Open Container
Initiative (OCI) [45] specification which defines the image formats, the image
management interface, and the container runtime life-cycle.

Docker leverages a client-server architecture. The server is called a docker
daemon, and it is responsible for the container’s runtime environment. It also has
capabilities for building, running, and distributing docker containers. The Docker
client is a user interface for communicating with the docker daemon. The client
has several implementations, including a command line tool [46] and the Docker
Remote API [47]. The Docker ecosystem includes different technologies and tools
for managing images, container and application runtime, infrastructure
deployment and orchestration, etc. The Docker Hub is an image registry that
stores container images in a similar way as traditional package management stores
software artifacts. An image is part of a repository and has an author and a
version, thus making the image and its configuration easy to distribute and
discover.

Listing 2.15 illustrates how a container image can be downloaded from the
Docker Hub using the command line interface of the docker daemon. The
command docker pull ubuntu:14.04 requests a download of the image of
Ubuntu from the repository that is tagged with version 14.04. To realize this pull,
the Docker daemon connects to the Hub and then requests this particular image of
that repository, and starts downloading the image together with its configuration
and dependencies. Finally, after the downloading is complete, the Docker daemon
creates a hash string of the image using the Secure Hash Algorithm (SHA)

∗Control groups (cgroups) is a Linux kernel feature that is responsible for managing resources
such as CPU, memory, disk I/O, network, etc.

†A namespace wraps a global system resource (process IDs, mount points, network devices,
network stacks, ports, etc.) in an abstraction that makes it accessible to the processes. Within a
namespace each process has its own isolated instance of the global resource. Changes to the global
resource are visible to other processes that are members of the namespace, but are invisible to
other processes [39].

24

2.6. LINUX CONTAINERS

algorithm. Subsequently this hash is used uniquely identify the image in the local
registry of this docker daemon.

Listing 2.15: Docker pull command

$: docker pull ubuntu :14.04

14.04: Pulling from library/ubuntu

ba76e97bb96c: Pull complete

4d6181e6b423: Pull complete

4854897 be9ac: Pull complete

4458 f3097eef: Pull complete

9989 a8de1a9e: Pull complete

Digest: sha256 :062 bba17f92e749bd3092e7569aa0\

6c6773ade7df603958026f2f5397431754c

Status: Downloaded newer image for ubuntu :14.04

Using the command line client, docker can list all downloaded images along with a
set of metadata for these images. Listing 2.16 shows the output of the command
docker images, which contains the name of the repository, the repository tag, a
unique identifier of the image, and additional information (such as when the image
was created and stored in the Docker Hub), and its size.

Listing 2.16: Docker images command

$: docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu 14.04 4d44acee901c 3 days ago 187.9 MB

The container runtime, defines the different states of a container: created,
started, paused, stopped, and deleted. In order to run an application inside an
isolated environment, first a container has to be created from an existing image
and then started. Listing 2.17 shows the command docker run which specifies the
execution of a container from a particular image and causes it to execute a
particular application (in this case /bin/bash).

Listing 2.17: Docker run command

$: docker run -t -i ubuntu :14.04 /bin/bash

In more detail, the command causes the runtime to create a container from the
image ubuntu:14.04, and configures it according to the specified arguments. The
command argument -t requires allocates a pseudoterminal (pty) [48], and the
argument -i attaches the standard input and output to this pseudoterminal.
Finally, the container starts and executes the command /bin/bash.

Listing 2.18 illustrates the docker ps command which lists the containers that
are in the running state. The output of the command includes information such
as the unique identifier of the container, the container image, the command that
is running, and other information such as when the container was created it, when
it started running, what port bindings the container has with the host operating
system, and a unique name.

25

CHAPTER 2. BACKGROUND

Listing 2.18: Docker ps command
$: docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
91 af84830636 ubuntu :14.04 "/bin/bash" 3 seconds ago Up 2 seconds

lonely_lichterman

The commands presented previously are just a subset of those available via the
command line interface of the docker client. The complete set of commands can
be found by running docker without any arguments or with the argument “help”.
Figure 2.5, from the documentation about the Docker Remote API, shows a state
diagram of a container, along with the various commands and events that are
responsible for containers transitioning between different states.

26

2.6. LINUX CONTAINERS

Figure 2.5: States of the container lifecycle

Listing 2.17 showed how to run the bash shell process inside a linux container.
The code snippets of Listings 2.19 and 2.20 illustrate how one can install a package
in the operating system of the container and then create a new image of the resulting
container (outside of the container).

Listing 2.19: Installing a package in the container Operating System

27

CHAPTER 2. BACKGROUND

root@91af84830636 :/# apt -get install traceroute

Listing 2.19 shows the user root executing the apt-get command in a bash

terminal of a running container with identifier 91af84830636. Using the apt
package manager of Ubuntu, the root user installs the traceroute package. Later
this running container is used to create a new image, that will contain the current
state of this container (i.e., the container that now has traceroute installed in it).

Listing 2.20: Create a new docker image out of a running container

$: docker commit -m "traceroute -package" -a "KTH" 91 af84830636

my-ubuntus:traceroute

The command docker commit accepts a -m parameter containing a commit
message, a -a parameter specifying the author of this commit (in this case
“KTH”), the id of the container that will be used to create a new image (in this
case 91af84830636), the name of the repository (my-ubuntu), and the reference tag
for this repository (:traceroute). Executing the command docker images as
shown in Listing 2.21, will verify that the image was created.

Listing 2.21: List the docker images, shows the newly created image

$: docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

ubuntu 14.04 4d44acee901c 3 days ago 187.9 MB

my-ubuntus traceroute 1261 c79eb3da 4 seconds ago 166.9 MB

Linux containers can be used to create pre-configured machines for laboratory
assignments of an Internetworking course. By creating container images tailored to
the needs of each assignment, a student can focus on the exercise, while avoiding
details that are not relevant to the learning process. A software solution that
supports creating images and running containers on demand, can be very useful for
e-learning, as it takes a student just a few seconds to access a unique laboratory
environment via her web browser.

2.7 Web based shell emulators
When it comes to e-learning assisted by LMSs, students are used to performing
most of their learning tasks via their web browser. Using pre-configured laboratory
environments based on docker images entails the same risks as traditional labs,
as the student has to install docker and manually execute a series of commands
before she will be able to focus on the learning process. An alternative solution
would be to support such environments in a remote server, and then simply provide
the student access to the remote environment via a web browser. The software
that provides access to a linux shell via a web browser is often called a web based
terminal emulator. The technology that provides communication between the server
(the terminal emulator) and the client (the web browser) is called Web-based Secure
Shell (SSH). The server side of the implementation involves a web application that

28

2.7. WEB BASED SHELL EMULATORS

accepts requests for keyboard events and forwards these keyboard events to a secure
shell client communicating with the connected SSH server. The terminal output is
either passed to the client where it is converted into HTML via JavaScript or it is
translated into HTML by the server before it is transmitted to the client [49].

There are several implementations of web based shell emulators, such as
GateOne [50] and Shell In A Box [51]. The latter, implements a web server that
can export arbitrary command line tools to a web based terminal emulator. This
emulator is accessible to any JavaScript and Cascading Style Sheets (CSS) enabled
web browser. The server listens on a specified port and publishes services that are
displayed by a VT100 [52] emulator implemented as an Asynchronous JavaScript
and XML (AJAX) [53] web application. Figure 2.6 shows the web based emulator
running in a web browser that enables the user to access the remote system via an
SSH session. In this case the Shell In A Box web server is a process running on a
docker container based on the ubuntu:16.04 docker image, and is listening for
secure TLS connections on port 4200.

Figure 2.6: Shell In A Box emulator running in a web browser window

The default configuration settings of the server require a TLS certificate for the
server to start. If no certificate is provided, a self signed certificate is generated.
In addition to the certificate, Shell In A Box requires users that want to access the

29

CHAPTER 2. BACKGROUND

linux server via an SSH session to authenticate themselves using a username and
a password. Such credentials are also passed as parameters to the server startup
process.

The docker image was configured to run the Shell In A Box web server
according to the instructions of the GitHub repository docker-shellinabox [54] of
the Github user sspreitzer. This repository, mentions two different methods of
acquiring the docker image. The first downloads the image from the Docker image
registry using the remote image repository sspreitzer/shellinabox∗. The
downloading of the image is initiated by the docker pull command as explained
in the previous section. The second method, specifies configuration rules to use
when building the image in a local image repository with the docker build

command.
Figure 2.6 shows that the emulator is accessible via the URL

https://localhost:4200, where localhost is the host system that is running
the Docker daemon, and 4200 is a TCP port of the host system that is reserved by
Docker and is used to forward network packets to the container that is running
the Shell In A Box web server process, and is listening for connections on the
container’s TCP network port 4200. When Docker is installed on a Linux host, a
network interface named docker0 is created. The docker0 network interface is
actually an Ethernet bridge∗ that enables packet transmission between physical
and virtual network interfaces [56], and enables the host machine to receive and
send packets to containers connected to this bridge interface. Additionally, the
docker server has functionality that allows a network port of the host system to be
bound to a network port of the container. For example, the docker run command
accepts a parameter -p IP:host port:container port which specifies which
host port should bind to a container port. The command below shows how to run
a container (running a Shell In A Box web server process) from the image
repository sspreitzer/shellinabox with version latest, and map the TCP port
4200 of the host system to the TCP port 4200 of the container.

docker run -p 4200:4200 -e SIAB_PASSWORD =123 -e SIAB_USER=

admin -e SIAB_SUDO=true sspreitzer/shellinabox:latest

);

The parameter -e specifies environment variables that are saved in the in the linux
operating system of the container during its creation. Those environment variables†

are parsed by the Shell In A Box web server initialization script to configure the
web server, the authentication credentials, and sudo access for the Linux user.

∗The sspreitzer/shellinabox image is based on the Ubuntu 16.04 Linux operating system
∗A bridge is a way to connect two Ethernet segments together in a protocol independent way.

Packets are forwarded based on Ethernet address, rather than IP address (as a router would do).
Since forwarding is done at Layer 2, all protocols can go transparently through a bridge [55].

†The environment variables are explained in detail in the documentation contained in the
GitHub repositories referenced above.

30

2.8. RELATED WORK

2.8 Related work
The support for interoperability specifications by several LMSs has allowed rapid
experimentation and implementation of external application frameworks that offer
a variety of on-line training events for various Computer Science courses. This
section presents some of these frameworks and describes how they are relevant to
this project.

2.8.1 EDURange
Designing on-line training environments for the field of cyber security requires
overcoming some technical constraints, such as high availability and scalability,
and pedagogical limitations, such as teaching analysis skills to understand
complex systems and concepts via practicing [3]. EDURange addresses these
issues by designing an open source framework that provides interactive security
exercises in an elastic cloud environment [57].

EDURange is a software framework, designed to work on Amazon Elastic
Compute Cloud (EC2) [58]. It allows teachers to easily build and scale dynamic
virtual environments to host cybersecurity training [59]. This framework provides
ease of use for instructors, by offering the flexibility to specify exercises at a high
level and allowing the instructor to configure different aspects of the training
scenarios in order to provide a tailored learning experience that focuses on
analysis skills.

2.8.2 GLUE!
Group Learning Uniform Environment (GLUE!) is a middle-ware integration
architecture that aims to standardize the integration of existing external learning
tools into several LMSs [60]. It facilitates the instantiation and enactment of
collaborative learning situations within LMSs, by using the distinctive
administrative features of these systems to manage users and groups. LTI and the
Sharable Content Object Reference Model (SCROM) are two specifications for the
integration of external learning tools into an LMS. However, each LMS usually
supports only a single interoperability specification; thus, developing a universal
external tool requires a substantial development effort to support the different
interoperability standards. In contrast, GLUE! proposes a software architecture
that takes advantage of the common integration features of LMSs to integrate
multiple existing learning tools into multiple LMSs.

2.8.3 INGInious
Programming exercises are the most common form of practice for students
learning Computer Science. Traditionally, the evaluation of these exercises,
requires grading of reports, reading source code, and testing source code, thus
making it time consuming, especially for large classes (i.e., large numbers of

31

CHAPTER 2. BACKGROUND

students). INGInious [8, 61, 62, 63] is a software framework that empowers
instructors to easily construct coding tasks and it supports automatic evaluation
and grading of the code, thus providing both students and teachers with
constructive feedback.

The framework consists of two main components: the frontend and the backend.
The frontend provides a web interface where students perform programming tasks
and an administration module that allows instructors to design these tasks. The
backend is responsible for running and grading the code inside remote isolated
Linux containers. Each container is specifically built for a particular programming
language, according to configuration provided by the instructor or the administrator
of the system, thus supporting the evaluation of tasks written in any programming
language that runs in a Linux environment.

One of the main features of INGInious is that the frontend component can be
used either as a stand-alone web application or as an external learning tool that
is integrated into an LMS using the LTI specification. Additionally, the backend
component scales horizontally very easily, since it utilizes a docker container for
every task request, therefore it is suitable for MOOC platforms.

A programming task in INGInious is designed using a configuration file
(task.yaml) that identifies the problem to be solved by the student, and the
evaluation process, a template file (template.py) that presents the task to the
student, and defines the input field for the code, and finally, a file (run) that
executes the student code, and validates the output. The following code samples
show the minimum configuration required by the instructor, to design a simple
“Hello World” task in Python. Listing 2.22 is the task file. It starts with
key-value pairs that are used to describe the name and context of the task.

32

2.8. RELATED WORK

Listing 2.22: Definition of a task in task.yaml

name: "Hello World!"

context: "In this task , you will have to write a python script

that displays 'Hello World!'."
problems:

question1:

name: "Let's print it"

header: "def func():"

type: "code"

language: "python"

limits:

time: 10

memory: 50

output: 1000

environment: "default"

Then it defines the problems that have to be solved to complete this task. Each
problem has a unique name within the task (question1) and a series of metadata
such as the programming language to be used for solving the problem, and the text
input to print in the input form. Finally it contains other metadata that defines
the resources of the virtual environment that will be used to evaluate the code.

Listing 2.23: Code input of question1 in template.py

def func():

@ @question1@@

func()

Listing 2.23 defined the input into field in which the student will input their code.
Finally, the run file defined in Listing 2.24, is a shell script, that parses the input
code using the INGInious commands parsetemplate, then evaluates the expected
output against the results of the input function using the command run student.
Finally it prepares the result of the task using the feedback command.

Listing 2.24: Evaluation of student code by the run file

#! /bin/bash

Parse the template and put the result in studentcode.py

parsetemplate --output studentcode.py template.py

Verify the output of the code ...

output=$(run_student python studentcode.py)

if ["$output" = "Hello World!"]; then

The student succeeded

feedback --result success --feedback "Success!"

else

The student failed

feedback --result failed --feedback "Your output is $output"
fi

33

CHAPTER 2. BACKGROUND

Detailed information for specifying a task in INGInious platform can be found in
the official teacher documentation [64]. As part of the research in this thesis project,
the LTI component of INGInious was configured with Canvas LMS, to perform
sample programming tasks such as the “Hello World!” code that was explained
earlier.

2.9 Summary
Canvas LMS is an open source system that aims to assist in every aspect of the
learning process. It offers functionality for e-learning activities such as rich media,
interactive quizzes, methods for automatically evaluating assignments, and finally
allows developers to design and integrate their own learning tools via the LTI
specification. The LTI specification standardizes the method of integrating
external learning applications in LMSs via XML configurations, and allows the
LMS to exchange structured messages with a TP to share information such as user
sessions, and learning outcomes.

LTI is only one of the several specifications for integrating learning applications
into LMSs. GLUE! is a middleware implementation that supports the integration
of external learning tools into different LMS that implement different specifications.

Designing assignments for an Internetworking course relies heavily on laboratory
environments. Creating and managing such environments can easily be performed
by using Linux Containers. Docker offers a high level API that allows to create
container images with provisioned software, tailored to the requirements of different
assignments. The Docker runtime can nearly instantly create and execute software
realizing a particular laboratory environment. Using web based shell emulators,
students can access the environment and focus on the learning process, rather than
configuring the environment themselves.

Similar approaches that address the problem of virtual laboratory
environments, and automatic assignment evaluation have been proposed by
researchers in other fields of Computer Science. Several of these approaches were
evaluated, and provided useful guidelines for designing the software artifact of this
project. The EDURange project focuses on devising a set of exercises that train
students in the Cybersecurity domain. Moreover, if offers a method for deploying
the framework in cloud infrastructures, to increase availability of the system for
students and instructors, and also reduce the cost of hosting the framework for
educational institutions. The Inginious framework focuses on providing an
environment for evaluating coding assignments in all programming languages
whose runtime is supported by the linux kernel. The system offers high availability
for evaluating code using unit tests, and the actual evaluation is performed within
a docker container.

34

Chapter 3

Methodology

This thesis project is carried out using the Design Science research method. This
type of research focuses on the design and construction of IT artifacts that have
utility in the real world, in this case as an application environment, and aim to
improve domain-specific systems and processes. In the context of this research, the
real world problem is the lack of interactive virtual laboratory environments in the
form of e-learning tools.

3.1 Research Process

Vijay Vaishnavi and Bill Kuechler in their book Design Science Research in
Information Systems [65] describe the process for performing Design Science
Research in the following five steps: Awareness of the Problem, Suggestion,
Development, Evaluation, and Conclusion. In the scope of this project, the first
two steps are reflected in the Introduction and Background chapters (i.e.,
Chapters 1 and 2). The literature study that was performed, provided
understanding of the problem, of how other researchers have addressed similar
problems, and how existing technologies can be combined to devise a solution for
the problem addressed by this thesis project. The Development step is reflected in
Chapter 4: Implementation, which describes the designed software artifact. The
Evaluation step is addressed in Section 4.4, that evaluates the functionality of the
artifact against a set of criteria (listed in Section 3.2). Finally, the Conclusion step
(covered in Chapter 5) summarizes the results, and proposes a series of actions to
be taken as part of the future work of this project.

3.2 Evaluation Process

The literature study that was carried out within the scope of this project revealed
two important software solutions (EDURange and INGInious) that address
similar problems in different domains of Computer Science. Further analysis of

35

CHAPTER 3. METHODOLOGY

their functionality and implementation inspired the work of this project and lead
to a number of high level requirements. These requirements are:

• The laboratory environments can be designed using Docker containers, in a
similar way that INGInious uses them to perform the evaluation of student
assignments. A laboratory environment can be realized by creating a
container image which includes all software required for a given
Internetworking assignment.

• High availability of these laboratory environments can be achieved by creating
and running a docker container for each student session. This approach was
utilized by both INGInious (for the evaluation of each coding assignment) and
EDURange (which relies on preconfigured virtual machines that are used to
facilitate Cybersecurity training).

• The instructor should be able to dynamically update the underlying software
and the assignments, similarly to the way INGInious creates a new assignment.

• The system’s design should not be specific to a particular cloud infrastructure
provider. This is facilitated because of the fact that the Docker runtime is
supported by most linux operating system distributions which can run on
dedicated or virtual hardware.

Furthermore, a series of goals were selected to be used as guidelines for the
system’s design. These guidelines focus on the interaction of the two main user
roles of the system: the instructor and the student. These guidelines are:

• The instructor should have complete control over the software used for a
particular assignment (for example, install the software and create a container
image that will be used for a particular assignment).

• The instructor should always know which container images exist in the system,
and should have sufficient privileges to delete and create these images.

• The system should provide a way for the instructor to access a laboratory
environment, in similar to the way a student is expected to access it.

• The system should provide a suitable configuration for the instructor to create
an assignment in Canvas LMS and connect it with a particular container
image.

• The student should be able to launch a laboratory environment from a Canvas
LMS, by simply pressing the assignment button. The resulting container
should be available to the user (almost) instantly (as shown in Section 4.3.2).

The evaluation of the software artifact was performed in two steps. First, the system
was evaluated against the requirements mentioned earlier to validate whether the

36

3.2. EVALUATION PROCESS

solution is aligned with the goals of this project, and then, additional evaluation
methodologies such as unit testing were used to test that the implemented code was
performed as intended.

37

Chapter 4

Implementation

The artifact that was designed within the scope of this thesis work consists of two
different modules: a TP and a Tool Client. The TP enables students to access a
laboratory environment via LTI integrations with a Canvas LMS, while the Tool
Client provides an administrative tool which exposes functionality enabling the
instructor to preconfigure the laboratory environments and configure the integration
with the LMS acting as a TC. Figure 4.1 presents a high level overview of these
two types of users interactions with the system.

Figure 4.1: High Level Overview of the System Architecture

The TP and the Tool Client are not separate systems, but different
components of the same web server. This co-location enables them to share
common functionality such as the container runtime and management of user
sessions.

4.1 Software architecture
Section 2.3 introduced an example of a web server which had the role of a TP that
accepted and authenticated requests from a Canvas LMS to launch assignments.
Similarly to that approach, an HTTP web server was used to support the

39

CHAPTER 4. IMPLEMENTATION

functionality of the LTI Tool Client and the LTI Tool Provider. The Docker
daemon provided the required functionality to manage the container runtime and
container image manipulation. This functionality was exposed to the web server
via a Docker Remote API client library. The API endpoints accessible via HTTP
request methods were developed as part of the web server functionality that
consume (i.e. utilize) the Docker client library to support the various use cases of
the Tool Client and the TP. The web server communicates with two different data
stores: (1) the session and (2) the persistent storage for storing and retrieving user
session information and storing & retrieving assignment configurations
respectively. Figure 4.2 presents these components. Details of the web server are
given in Section 4.1.2, while details of the Docker daemon’s remote API are given
in Section 4.1.3. The session storage is described in Section 4.1.4 and the
Persistent Storage in Section 4.1.5.

Figure 4.2: Architecture of the system components

4.1.1 Canvas LMS
Canvas LMS was used during the development phase of this project to understand
and test the functionality of the LTI integration with the TP. Canvas is based on the
Ruby on Rails framework [66] and has several software dependencies. To facilitate
the installation of Canvas, a virtual machine was configured to run the Ubuntu
14.04 operating system. The software dependencies of Canvas were installed in the
operating system as explained in the ”Quick Start” wiki page of the official Canvas
LMS GitHub repository[67]∗.

∗A simplified method for installing Canvas LMS in a virtual machine using Vagrant [68] and
VirtualBox [69] was developed and used in this project. This method is documented in a public
GitHub repository [70]. The README.md file is included in Appendix A.

40

4.1. SOFTWARE ARCHITECTURE

After the installation was complete and the system was running successfully,
Canvas was configured to have an administrator account. This account was used to
register two additional user roles (the instructor and the student), the institution
(KTH), the department (ICT), and a course (Internetworking). The instructor user
was configured to have the Canvas role teacher for this course, while the student
user was configured to participate in this course. Figure 4.3 shows the configuration
performed via the Canvas User Interface (UI).

(a) Structure of a course in Canvas

(b) People participating in a Canvas Course

Figure 4.3: Sample configuration of a course and its participants in Canvas LMS

The configuration of the LTI app and course assignments were previously
explained in Figures 2.3 and 2.4 (respectively) of Section 2.4.1.

41

CHAPTER 4. IMPLEMENTATION

4.1.2 Web server
The TP and Tool Client components are sets of API endpoints that are served by
the same web server. Each endpoint is responsible for carrying out a specific task,
such as authentication, exposing system resources to users, and launching LTI
integrations. These endpoints were implemented using the Go programming
language (also known as Go or Golang) [71, 72]. The web server itself, is
implemented in Go and is part of the standard net/http [73] package. Listing 4.1
shows an example of an HTTP web server that is configured to listen for TLS
connections on port 443 and has a single endpoint that replies to HTTP GET
requests for the root ("/") URL path.

Listing 4.1: Golang simple HTTPS web server

import (

"net/http"

"github.com/julienschmidt/httprouter"

)

func handler(w http.ResponseWriter , req *http.Request , _

httprouter.Params) {

w.Header ().Set("Content -Type", "text/plain")

w.Write ([] byte("This is an example server .\n"))

}

func main() {

router := httprouter.New()

router.GET("/", handler)

http.ListenAndServeTLS(":443","cert.pem","key.pem",router)

}

The line import "net/http" includes the package which implements the HTTP
web server. The line import "github.com/julienschmidt/httprouter" includes
a Go package developed by Julien Schmidt [74], which maps URL paths such as
the root path "/" to HTTP Request methods (such as GET, POST, DELETE,
PUT, etc.), and Go functions such as handler(w http.ResponseWriter, req

*http.Request, httprouter.Params) that process the corresponding HTTP
request.

Go language is a strictly typed language, similar to C and C++. The declaration
of variables, function parameters, and function return types is performed by first
writing the corresponding parameter, variable or function name followed by its
type. In the example above the function handler has three parameters w, req,
and . The type http.ResponseWriter is an interface that exposes functionality
such as setting an HTTP response header and writing an HTTP response. The
prefix http. indicates that ResponseWriter is a type that is part of the package
http. Functions, types, and variables that are declared in a package and start
with an uppercase letter, are exported by the compiler, hence are available for
use in other packages, by first invoking the package name followed by a dot, and

42

4.1. SOFTWARE ARCHITECTURE

then referring to the type, function, or variable. The type http.Request is an
interface that exposes functionality for reading request parameters, form data, etc.
The type httprouter.Params is a key-value data structure that maps http request
parameters names to their values. Since such data are not relevant in the function,
instead of naming the parameter, the blank identifier (represented by the underscore
symbol) is used.

The server starts executing following the call to ListenAndServeTLS(":443",

"cert.pem", "key.pem", router) function. This first parameter is the port
number that the server will be listening on for incoming TLS connections,
cert.pem and key.pem are the TLS certificate and key respectively that were
generated similarly to the instructions in Section 2.4.2, while router is the URL
router created in the line above it. The router parameter is declared and
initialized using the symbols :=. This syntax tells the compiler to infer the type of
the variable router from the return type (Router) of function New() that is
declared in package httprouter. The call router.GET, takes two parameters, the
URL path "/" and the function handler. The function GET registers the fact
that every GET HTTP Method to the root path should be handled by function
handler.

The implementation developed during this project defines a series of functions
(such as the handler function mentioned earlier) that implement functionality, such
as creating a docker image, launching an assignment, etc. Each function is mapped
to a specific URL path and an HTTP Method. Table 4.1 shows the URL Paths,
the HTTP Method, and explains the functionality realized by each endpoint.

43

CHAPTER 4. IMPLEMENTATION

Table 4.1: Endpoints of the HTTP Web Server

URL Path & HTTP Method Endpoint functionality

/admin/login

POST
Implements the login functionality for the
admin user of the LTI Tool Client

/admin/logout

GET
Implements the logout functionality for the
admin user of the LTI Tool Client

/admin/containers/run/:id

POST
Handles the container run functionality for the
admin user of the LTI Tool Client. Parameter
:id is the identifier of the image to be used for
creating and starting a container.

/admin/containers/kill/:id

DELETE
Handles the container kill and remove
functionality for the admin user of the LTI
Tool Client. Parameter :id is the identifier
of the running container.

/admin/containers/commit/:id

POST
Handles the image creation functionality for
the admin. It uses a specific running container
as a seed for the new image. Parameter :id is
the identifier of the running container.

/admin/images

GET
Lists all container images available to the
admin user of the LTI Tool Client.

/admin/images/history/:id

GET
Returns information about a particular image
to the admin user of the LTI Tool Client.
Parameter :id is the identifier of the image.

/admin/images/delete/:id

DELETE
Deletes a particular image. Parameter :id is
the identifier of the image.

/lti/launch/:id

POST
The LTI Tool Provider. Handles the LTI
Launch request. Parameter :id is the
identifier of the image that should be used to
create and start a container for this particular
request.

/ui/*filepath

GET
Handles requests for all static files that are
located in a custom directory. The syntax of
the URL route is related to the specification of
httprouter package.

44

4.1. SOFTWARE ARCHITECTURE

4.1.3 Docker Remote API Consumer

The web server communicates with the Docker daemon via the Docker Remote API
[47] to create and delete images and then, create, start, and delete docker containers.
The web server uses the Go implementation of the Remote API Client library [75]
to make requests to the Docker server. The version of the Docker Server used in
this implementation is 1.12.4, and the version of the server API was 1.24. The
version of the API is very important when initializing the client library from the
Go code, as a matching version ensures that the client will communicate using the
same version of the API calls that the server is responding to. This Remote API
Client library has functionality similar to the Docker command line client that was
introduced in Section 2.6. Listing 4.2 shows how a request is performed by the client
Cli to start a container using the ContainerStart function of Cli. It is assumed
that the container was previously created using the ContainerCreate function.

Listing 4.2: Start container request

Cli.ContainerStart(context.Background (), containerID , types.

ContainerStartOptions {})

The first parameter expects a variable of type Context∗, the second parameter is
the unique identifier of the container to start. The last parameter is a Go struct of
type types.ContainerStartOptions and its members are initialized with the
zero values of their corresponding type using the curly brackets {}†. The
ContainerStartOptions is part of the Docker Checkpoint & Restore [78]
functionality that is not relevant to this project, hence no further explanation of it
is given.

The functionality of the TP relies on facilitating a connection to a laboratory
environment via the web shell emulator Shell in a Box. In order to support this
functionality, a docker image with a pre-configured installation of Shell in a Box
was chosen to serve as the initial container image of the system. The Tool Client
allows the administrator to choose this initial image as a seed for creating new
laboratory environments. The docker daemon stores images in its local image
registry from various remote image repositories. The system was designed to
access only a particular subset of images of the local image registry. Section 2.6
explained that a container image is identified by a repository, author, and a

∗The package context defines the Context type, which carries deadlines, cancellation signals,
and other request-scoped values across API boundaries and between processes [76]. The background
function returns a non-nil, empty Context. This context is never canceled, has no values, and has
no deadline. The context is typically used by the main function, initialization, and tests, and as
the top-level Context for incoming requests.

†The Go language specification [77] describes the initialization of variables as follows: When
storage is allocated for a variable, either through a declaration or a call of new, or when a new
value is created, either through a composite literal or a call of make, and no explicit initialization
is provided, the variable or value is given a default value. Each element of such a variable or value
is set to the zero value for its type: false for booleans, 0 for integers, 0.0 for floats, "" for strings,
and nil for pointers, functions, interfaces, slices, channels, and maps.

45

CHAPTER 4. IMPLEMENTATION

version. In the Docker Remote API, the repository and the version of an image
are identified by a parameter named RepoTags, i.e., an image of Ubuntu with
version 14.04 has the RepoTag ubuntu:14.04 where the semicolon is the delimiter
between the repository and the version. The system is allowed to operate only on
images that belong to a particular repository in order to satisfy the requirement
for containers that can be accessed via a web shell emulator. In this
implementation the repository was named dc and cannot be changed by any user
of the system, while the image version identifies the different images and is a
parameter that the administrator can set when a new image is created.

The source code of this implementation includes a Go package named dc (named
after docker containers). This package is responsible for manipulating the images
of the homonym repository, initializes the API client, and contains functions that
consume the Docker API Client library. These functions are invoked by several
HTTP route handlers in the Tool Client and the Tool Provider to deliver the desired
functionality to the end users. The list below introduces the names of these functions
along with brief descriptions of their intended functionality. This functionality is
explained in more detail in the next sections of this chapter.

• ListImages requests the Docker API to return a list of all of container images,
and afterwards, iterates over the results to filter out only images of the dc

repository. This function is invoked by the endpoint /admin/images.

• ImageHistory requests the Docker API to return detailed information about
a particular image (such as the author, the RepoTags, when was it created,
and a text message that identifies the creation of the image). This function is
invoked by the endpoint /admin/images/history/:id.

• ImageRemove requests the Docker API to remove a particular container
image from the local repository. This function is invoked by the endpoint
/admin/images/delete/:id.

• RunContainer first requests the Docker API to create a container from a
specific image, and then starts the container. This endpoint returns
configuration information for the user to access the container via the web
SSH emulator. This function is invoked by the endpoint
/admin/containers/run/:id and the endpoint /lti/launch/:id.

• RemoveContainer first requests the Docker API to stop a running container,
and then to remove it from the container runtime (for example, this can be
used after a container session expires for a user). This instance of the
laboratory environment is purged and is no longer available for the system
or the users. This function is invoked by the endpoint
/admin/containers/kill/:id.

• CommitContainer requests the Docker API to create a new image using a
running container as seed. For example, this can be used when an instructor

46

4.1. SOFTWARE ARCHITECTURE

is running a container instance to configure software for a new laboratory
environment. Once she is done with the configuration, she performs a request
to “commit the container” as an image, in the local repository. This function
is invoked by the endpoint /admin/containers/commit/:id

4.1.4 Session Storage
The system uses an in-memory key-value storage to store and retrieve information
for user and container sessions. When a container is running for a particular user,
whether that user is an administrator of the Tool Client, or a student who is
accessing a laboratory environment via the LMS, the session storage stores
information needed by the system to uniquely identify the user. In addition, the
running container is stored in this storage. This mechanism prevents users from
running multiple instances of a specific laboratory environment at the same time∗,
thus preventing resource exhaustion.

The session storage is realized by the open source in-memory data structure
store Redis [79]. The server communicates with Redis using the client library for
Go [80]. The information stored for a student session has the format key-value,
where the key is a unique identifier for the user, while the value is a JSON object
containing information about the running container. Every data entry has a Time
To Live (TTL) value that defines when the key expires. For the system, an expired
key means that the session has expired, thus a container should neither exist in a
running state nor should the user be able to access it. The code sample in Listing
4.3 shows the value of a Redis key, used to identify a running container for an admin
user of the Tool Client:

Listing 4.3: Redis session value for a container run configuration

{

"id" : "b79803d58414fd7786",

"port" : "4200",

"username" : "admin",

"password" : "password",

"url" : "https :// localhost :4200"

}

The id is the identifier of the container. A Shell in a Box web server that is running
in a container listens for connections on a specific port number. The attribute port

is the port number that the host system is using to forward data packets to the port
of the running container. The attributes username and password are additional
parameters that the user should use to authenticate herself to access the emulated
unix shell, and finally, url is the URL containing the hostname and the port to

∗In this implementation, a user is limited to run only one laboratory environment at a time.
This means that an instructor cannot access two different containers at a time and a student can
only run and access one laboratory environment at a time. The implementation does not limit
users from having multiple SSH sessions to the same container, hence a user can access the shell
emulator multiple times from different browser tabs or windows.

47

CHAPTER 4. IMPLEMENTATION

access the shell emulator. For an admin user, such an entry has a key with a format
such as run:adm:7ff10abb653dead4186089acbd2b7891, where run:adm: is the
prefix, and 7ff10abb653dead4186089acbd2b7891 is a hash of the administrator’s
numeric account identifier. For a student the corresponding key has the format
run:usr:7272818191010, where the prefix is run:usr: and 7272818191010 is the
user identifier that is returned by Canvas via the LTI Launch integration.

Additional key-value data entries are stored in Redis, such as HTTP cookie
information for users of the Tool Client. Such keys have the format
adm:7ff10abb653dead4186089acbd2b7891, have a TTL of one day, and are
created when the administrator successfully authenticates herself to the Tool
Client.

4.1.5 Persistent Storage
The system uses a Relational Database Management System (RDBMS) to store
persistent, information such as login credentials for the administrative user. The
database server is PostgreSQL [81] with version number 9.6. A combination of two
Go packages are used to establish connections, and then store and retrieve data
from the PostgreSQL database. The first Go package is database/sql [82]. This
package provides a generic interface interface to SQL databases. This package is
intended to be used in conjunction with a database driver that implements the SQL
interface functions. In this implementation the database driver is provided by the
Go package pq [83].

Although the data stored in the persistent storage are not enough to justify the
use of a RDBMS, a full-featured RDBMS was chosen to support future engineering
choices that will extend the functionality of the system, such as storing information
for assignments, and analytics regarding the usage of the system. This additional
information will be available to the instructor via the Tool Client interface. This
future work is documented in Section 5.2.

The current relational schema consists of a single table called admins that
stores information such as the unique numeric identifier (id) of an admin user, the
username and password that the administrator uses to sign into the Tool Client, a
status that can be active or deleted, and optional information such as the name

of the user, and timestamps that indicate when the admin account was created
and when the user last signed into the Tool Client. Listing 4.4 presents the
Structured Query Language (SQL) database schema definition using PostgreSQL
specific syntax.

Listing 4.4: Relational Database Schema of the Tool Client

CREATE TYPE enum_admin_status AS ENUM('active ', 'deleted ');
CREATE TABLE admins(

id SERIAL PRIMARY KEY ,

username varchar (60) NOT NULL UNIQUE ,

password varchar (100) NOT NULL ,

name varchar (100),

48

4.1. SOFTWARE ARCHITECTURE

status enum_admin_status NOT NULL DEFAULT 'active ',
created_at TIMESTAMP WITHOUT TIME ZONE DEFAULT

CURRENT_TIMESTAMP ,

last_login TIMESTAMP WITHOUT TIME ZONE

);

The method for accessing and storing data using the lib/pq package in Go is
unimportant for this project, hence it has been left out. Moreover, the official
documentation of the pq package [83] covers these methods in detail.

4.1.6 Binding network ports of the host system to container ports
The web server of the Tool Client and the TP is required to run multiple
containers for several users at the same time. As explained in Section 2.7, each
container is running the Shell In A Box web server process . In order for the shell
emulator to be accessible from a user’s browser, network packets from the host
system should be forwarded to the corresponding docker container via a network
bridge interface (docker0). This is achieved by binding TCP ports of the host
system to the TCP port 4200 of each container running the shell emulator web
server process. To avoid port collision on the host server, the system reserves and
utilizes a specific port range between 4200-4399. This means that the system has
the ability to support a maximum of 200 running containers at the same time,
hence, the web server can serve a maximum of 200 requests to run containers via
the /admin/containers/run:id and /lti/launch:id endpoints.

Several mechanisms have been used to avoid port collision and to guarantee that
the system has sufficient port resources to create new containers. During the startup
process of the web server, a key-value data structure is initialized that stores the
TCP port numbers as keys, while values are of boolean type and indicate whether
the port is in use by a container or not. The definition of the data structure in Go
code is:

type portResources struct {

portsAvailable map[int]bool

}

The code states that PortResources is a struct that contains the map data structure
portsAvailable.

When the function of the dc package RunContainer executes following a
request to run a container for any of the /admin/containers/run/:id or
/lti/launch/:id endpoints, the system will check if there is an available port in
the map, and if so it will set this port’s associated value to true to indicate that
the port is in use. Similarly, when the function RemoveContainer is invoked, the
system will locate the port in the map, and set its value to false, thus making
the port reusable. This functionality covers the use cases when users manually
request to run and kill containers.

Section 4.1.4 introduced the user sessions and their corresponding running
configuration keys in Redis. As noted earlier these sessions are defined to expire

49

CHAPTER 4. IMPLEMENTATION

after some specific TTL. When a container session expires, the container is still
running, but the key is removed in Redis. This indicates that the container should
be terminated, and the port should become available for reuse by the system. A
module named PeriodicChecker has been developed, that periodically checks
whether the ports used by Docker containers are consistent with the
PortResources map and the session keys in Redis. If for some reason a container
is running and is using a port within the specified range, but the corresponding
map entry does not have the value true, the mechanism will fix this inconsistency.
Similarly, the system will check for inconsistencies in the Redis storage. If a key is
missing for a container that is running, it assumes that the container has expired,
and the container should be killed, and the port resources should be returned to
the system for use. Algorithm 1 shows pseudocode that describes the the
functionality of the PeriodicChecker module.

Algorithm 1: Module PeriodicChecker

usedPorts := getPortsOfDockerContainers()
foreach port ∈ PortResources do

if port ∈ usedPorts then
PortResources[port] := true

else
PortResources[port] := false

foreach port, containerID ∈ usedPorts do
if port /∈ redisPorts then

RemoveContainer(containerID, port)

The first line performs a series of calls to the Docker Remote API, to
determine which containers are running in the system, and what host ports are
used for these containers. The function returns the usedPorts map, with the
ports as keys, while the values are the container identifiers. The following loop
iterates over the PortResources map and resets its entries. A port entry of
PortResources that exists in usedPorts, gets the value true, while an entry that
does not exist in usedPorts gets the value false. Finally, the last loop, iterates
over the entries of the usedPorts map, checks whether an entry for such a port
exists in Redis storage, and if it does not, it invokes the RemoveContainer

function of the dc package tp request via the Docker API to remove the container
from the Docker runtime, and then releases the port from PortResources map by
setting the corresponding entry to false.

Accessing the PortResources data structure is performed with the use of a
mutex mechanism. Such a mechanism ensures that two functions that are running
concurrently cannot access the data structure simultaneously, thus avoiding race
conditions and enforcing atomic operations on the data structure. In Go, a function
that can execute concurrently is called a goroutine [72]. Every handler function of
the web server is executed as a goroutine. For this initial implementation, the go

50

4.2. LTI TOOL CLIENT

package sync was used, which provides mutex locking functionality that blocks the
execution of a goroutine when a mutex is locked. For example, when a function
is trying to read the list of ports, it will try to lock the mutex. If a lock exists
on that mutex, the function will stop executing, until the mutex is unlocked. This
mechanism ensures atomic operations on the PortResources, thus avoiding two
containers mapping to the same host port, and avoiding the PeriodicChecker

manipulating the port resources that are accessed by another goroutine at the same
time.

The PeriodicChecker was implemented to solve issues encountered during the
development phase of the Tool Client. These issues were:

• Restarting the web server results to a new empty PortResources data
structure, while containers are still running, and running container
configurations exist in the Redis session storage. The mechanism described
in this section ensures that the PortResources data structure will be filled
with data associated with running containers during the start-up process of
the web server.

• A container stops or crashes for some reason (i.e., the admin user created
an image that broke the configuration of the Shell In A Box web server).
The PeriodicChecker module will set the value of an unused port to false,
and then remove any existing running configurations from the Redis session
storage.

4.2 LTI Tool Client

The LTI Tool Client acts as an administration panel for the system. It allows a user
with admin privileges∗ to create and delete docker images that act as pre-configured
laboratory environments. These docker images are used when configuring an LTI
integration for a course assignment in Canvas. This section explains the intended
functionality of the Tool Client, presents the web pages of the Tool Client UI, and
describes the key concepts used in this implementation.

4.2.1 Authentication

The API endpoints consumed by the Tool Client UI have access restrictions to
prevent unauthorized requests, i.e., requests not from an administrator. The process
for authenticating an administrator and creating a user session is performed by
submitting a web form with username and password parameters. This form is
presented in Figure 4.4.

∗A user with admin privileges is defined to be a user that has an entry in the table admins of
the PostgreSQL database with the status column having the value active.

51

CHAPTER 4. IMPLEMENTATION

Figure 4.4: Signin form - LTI Tool Client Interface

When the Sign in button is clicked by the user, the Javascript function shown
in Listing 4.5 executes to perform the following steps. First it accesses the form’s
parameters, then it sets the HTTP request URL to /admin/login, the header
Content-Type to application/json, then it sets the HTTP request body to contain
the following JSON object:

{

"username ": "admin",

"password ": "password"

}

Listing 4.5 shows the jQuery function jQuery(), which locates the HTML form
using the HTML class attribute with value form-signin. The following function
call .submit specifies which function will execute, when the submit button (Sign in)
of the HTML form is clicked. The body of that function calls the jQuery function
$.ajax() [84] which performs an AJAX request to the /admin/login endpoint. The
$.ajax() function has the parameters url, type, dataType, data, contentType,
success, and error.

52

4.2. LTI TOOL CLIENT

Listing 4.5: Javascript function consuming the /admin/login/ endpoint

jQuery('.form -signin ').submit(function () {

$.ajax({
url: "/admin/login",

type: 'post',
dataType: 'json',
data: JSON.stringify ({

username: $("#userName").val(),
password: $("#Password").val(),

}),

contentType: "application/json",

success: function(data) {

window.location.replace("/ui/images.html");

},

error: function(response) {

// error handling

}

});

});

The parameter url, specifies the url path that is used to perform the HTTP
request, and correspond to the server endpoint that handles the request. The
parameter type, is the HTTP method to use for this request. The parameter type

specifies the format of the data that is passed in the HTTP request body, and the
parameter data, contains the JSON object shown earlier that is generated by
locating the HTML input elements with identifiers #userName and #Password

using the jQuery function $()∗, and extracting their values by invoking the jQuery
function .val(). These data are converted to a JSON object using the function
stringify() of the Javascript object JSON. The parameter contentType sets the
HTTP header to application/json, and is the HTTP request header that the
server is expecting. The parameter success specifies the Javascript function to
execute if the server responds with an HTTP StatusOK status code (200), while
parameter error specifies the function to execute if the HTTP response contains a
status code different than 200†.

If the server replies that an error occurred, a corresponding error message is
presented to the user, while if the request was successful, the user is redirected to
the home page of the Tool Client interface.

The server validates the form data and compares the given parameters with the
corresponding values of the user entry in the persistent storage. If the credentials
match, a user session is created and stored in the session storage, and then an HTTP
cookie is created containing information to uniquely identify this administrator.
Afterwards, every subsequent request to other endpoints of the Tool Client, verifies
that a cookie exists for that particular user, and that its value matches an existing

∗The jQuery function $() is an alternative way of writing the function jQuery(), that accepts
a string parameter.

†The HTTP response status codes are explained in detail by RFC 7231 [85].

53

CHAPTER 4. IMPLEMENTATION

entry in the session storage. If no such value exists either in the cookie value or in
Redis session storage, then the user is redirected to the sign in form.

4.2.2 Home Page - List of Images
The home page of the application is entitled “List of Images” (see Figure 4.5). This
page contains a table with three columns: the image identifier (ImageID), the name
of the image (Name), and the date the image was created (Created At). The user
can click on each row of the table to go to the next page named “Image History”
which provides more detailed information about this specific image.

Figure 4.5: Tool Client page “List of Images”

When the browser renders the HTML elements of this web page, it performs an
HTTP GET request (as shown in Listing 4.6) for URL path /admin/images using
the same $ajax() function that was presented earlier, with different parameters,
specifically the GET HTTP method as type and /admin/images as url. The server
upon successful authentication of the request, calls the dc function ListImages

to request the Docker Remote API to return the list of images of the dc image
repository, and afterwards, prepares a JSON array as a response, containing image
information as a response. An example of the data in such a response is:

{

"data": [{

"Id": "00 db67e76050",

"RepoTags ": "dc:0.1 _traceroute"

"CreatedAt ": "2016 -12 -29 T13 :51:33+02:00"

}, {

"Id": "83364 c85cafc",

"RepoTags ": "dc:0.0 _seed"

"CreatedAt ": "2017 -01 -01 T12 :45:48+02:00"

}]

}

54

4.2. LTI TOOL CLIENT

If the server responds with HTTP status code 200, the jQuery function $.each()
iterates over the JSON array contained in the response to parse the data and
appends a row in the HTML table (using the jQuery function append()) for each
array element.

Listing 4.6: Javascript function consuming the /admin/images/ endpoint

$(document).ready(function () {

$.ajax({
url: "/admin/images",

success: function(response) {

$.each(response.data , function(k, v) {

$("#image -table").append(
'<tr onclick=\' toImageHistory ("' + v.Id + '")\' role

=" button">'+
'<td>' + v.Id + '</td>'+
'<td>' + v.RepoTags + '</td >'+
'<td>' + v.CreatedAt + '</td>'+

'</tr >')
});

},

error: function(response) {

handleError(response)

}

});

});

The jQuery function $(document).ready() provides a way to run Javascript
code, when the page’s Document Object Model (DOM) becomes safe to be
manipulated, and before the user can view or interact with the page content.
When the “List Images” page is loaded, this function executes a call to the
$ajax(). On success, it parses the response object provided by $ajax, and then
iterates over the response.data. Function function(k,v), specifies the action to
be performed for each key (k), and value (v), of the JSON array. The call to
$("#image-table").append locates the HTML table with the attribute identifier
#image-table, and then appends a table row use the <tr> element. The attribute
onclick specifies the action to be performed when the user clicks on a table row.
This action is a call to a Javascript function named toImageHistory(), which
requests the server to return the HTML page “Image History” that contains
details about a particular docker image.

4.2.3 Image History
When the administrator clicks on a table row in the page “List of Images”, an
HTTP GET request to the /admin/images/:id endpoint is performed, similarly to
the call presented in Listing 4.6. The server authenticates the request and afterwards
it requests the Docker API to return information about a particular image. The
server returns a JSON object with the requested information as shown below:

55

CHAPTER 4. IMPLEMENTATION

{

"Id" : "4165 bca12451"

"RepoTags" : "dc:0.1 _traceroute"

"Comment" : "Installed traceroute package"

"Created At" : "2017 -01 -01 T12 :45:48+02:00"

}

This JSON object is parsed by the success function, and then its content is injected
in the HTML page using the $(#id).append() function as shown earlier. The
resulting page is shown in Figure 4.6.

Figure 4.6: Tool Client page “Image History”

In addition to the information returned by the server, the user is presented
with two button options: “Run Container” and “Delete Image”. Run Container
requests the page of the Tool Client that consumes the
/admin/containers/run/:id endpoint, and gives the admin user access to this
image as a running container, while Delete Image requests the Tool Client page
that consumes the /admin/images/delete/:id endpoint and presents the admin
user with an option to delete the container image from the system.

4.2.4 Run Container page

The “Run Container” page works similarly to the previously explained pages. When
the user clicks on the corresponding button of the page “Image History”, before the
HTML of the page is rendered by the browser and presented to the user, a request
to the /admin/containers/run/:id endpoint is performed. The parameter :id is

56

4.2. LTI TOOL CLIENT

the identifier of the image, that is used to create and start a container. The server
performs the following steps following the POST request to the endpoint:

1. Verifies that the correct HTTP cookie was sent with the request. If the
request is not authorized, an HTTP response with HTTP status code 401

Unauthorized is returned.

2. Validates the request parameter :id. If the image identifier is not valid, then
a response with HTTP status code 400 Bad Request is returned.

3. Extracts the session key from Redis, and then looks for this container’s run
configuration. This check provides information for the endpoint handler, to
know whether an existing container session exists and should be returned as
a response or a new request should be made to the Docker API for running a
container. This mechanism prevents subsequents requests from running new
containers if a session already exists, thus preventing resource exhaustion for
ports.

4. If a container session already exists, then the TTL value of the Redis key is
renewed, and the JSON value of the key (shown in Listing 4.3) is returned as
part of the HTTP response.

If no container session was present in Redis storage, then a request is made to
the Docker Remote API to run a new container. The server will first look for
an unused port resource. If no ports are available, then an HTTP response
with an error message is returned. If an unused port is found, it is reserved,
and a container is created using the configuration parameters port, username,
and password that are required for the Shell In A Box web server. The request
for running the container is performed similarly to the example of the docker
command docker run presented in Section 2.7. The major difference is that
the web server performs two requests to the Docker Remote API via the Go
client, by calling the functions ContainerCreate and ContainerStart of the
client library.

Finally, if the Docker API responds with success and starts the container,
then a new JSON configuration entry is stored in Redis and this JSON entry
is returned as a response to the calling jQuery function.

Figure 4.7 presents the contents of the web page “Run Container”. The page
contains an an HTML iframe, that embeds the Shell In A Box shell emulator, with
an active SSH session. The page shows the user which credentials they need to use
to login into the Linux shell (Username and Password), and below the iframe are
two buttons: “Commit Container” and “Delete Container”. When these buttons
are clicked a request is made to the corresponding web pages of the Tool Client
(the first is responsible for creating an image from a running container, while the
second is responsible deleting the running container).

57

CHAPTER 4. IMPLEMENTATION

Figure 4.7: Tool Client page “Run Container”

The contents of the terminal presented in Figure 4.7∗ show the administrator
user (named “admin”) running the tcpdump program [86] to perform a capture
of incoming TCP packets to the network interface eth0 and the port 4200. The
program captures packets sent from the Shell In A Box emulator while the user is
typing commands in the terminal. The packets are forwarded to the web server that
is running inside the container. This web server is listening for connections on port
4200. There are two commands shown in the figure. The first is tcpdump -i eth0

tcp port 4200 --direction=in -c 2 -w out.pcap. The parameter -i specifies
the network interface to listen on, in this case eth0. The parameter tcp specifies
to listen only for TCP packets. The parameter port specifies the destination port
on which the targeted TCP packets will arrive. The parameter --direction=in

specifies to listen only for incoming TCP packets. The parameter -c specifies that
the program should stop listening after capturing the first 2 packets. Finally, the
parameter -w specifies the output file into which tcpdump should write the results.
The second command tcpdump -r out.pcap has the parameter -r which specifies
the input file from which it should read the previously captured output. When the

∗The user named “admin” has successfully logged in the shell using the given username and
password, and then has executed the command clear to remove any previous output from the
terminal. These two steps have not been included in Figure 4.7.

58

4.2. LTI TOOL CLIENT

program runs it will output information about the previously captured packets on
the standard output.

This process can be used by an instructor to specify an assignment that involves
the use of tcpdump program. The instructor can configure the required software for
the assignment, and then test the assignment inside the emulator to verify that the
laboratory environment is configured correctly and is ready to be used by students.
Once the configuration is complete, the admin user of the Tool Client clicks on
the “Commit Container” button to visit the corresponding page in order to create
a container image (as described in the next section), to subsequently be used for
configuring an LTI integration in Canvas.

4.2.5 Commit Container page
The “Commit Container” page allows the admin user of the Tool Client to create
new images using a running container as its configuration. The page (shown in
Figure 4.8) contains an HTML form with three input fields to be used as metadata
when storing the image in the local Docker image repository. The first field is
Commit Author, i.e., the name of the author (i.e., user) who issues the commit
command. The second is Repository Tag. The value of this field will be used
to identify the image. The last input field is Commit message. This field allows
the admin user to provide additional information for the image. Examples of this
input data were presented earlier on the “Image History” page (shown in Figure
4.6). The form has a submit button, that when clicked performs an HTTP POST
request to the /admin/containers/commit/:id endpoint. The Javascript function
that parses the form data and performs the request is similar to that of the “Login
page” (see Listing 4.5).

Figure 4.8: Tool Client page “Commit Container”

The handler function of the endpoint authenticates the user’s request, then
performs validation of the form’s input fields, and then requests the Docker
Remote API to create a new container image. This is performed using the

59

CHAPTER 4. IMPLEMENTATION

function ContainerCommit of the Go client library. If the image is successfully
created, the server issues a request to delete the container and its corresponding
and port mappings from Redis session storage.

4.2.6 Delete Container page

The “Delete Container” page (shown in Figure 4.9) presents the user with a
message to confirm that they wish to delete a running container, and a button
labeled “Delete Container”. When this button is clicked, a Javascript function is
triggered to perform an HTTP DELETE request to the
/admin/containers/kill/:id endpoint to delete the container. The handler
function of the endpoint authenticates the user’s request, verifies that the
container is actually running by checking for this container’s running
configurations in Redis. Finally, the handler requests the Docker Remote API to
remove the container using the function ContainerRemove of the Go client library,
and afterwards, all related session keys are removed from the Redis session
storage.

Figure 4.9: Tool Client page “Delete Container”

4.2.7 Delete Image page

The “Delete Image” page (shown in Figure 4.10) is loaded after clicking the
corresponding button in the “Image History” page. It works similarly to the
“Delete Container page”, but performs an HTTP DELETE request to the
/admin/images/delete/:id endpoint. The handler of the endpoint authenticates
the user’s request, performs validation of the image identifier, and requests the
Docker Remote API to delete the image by calling the function ImageRemove of
the Go client library.

60

4.3. LTI TOOL PROVIDER

Figure 4.10: Tool Client page “Delete Image”

4.3 LTI Tool Provider
The TP is realized by a single endpoint called /lti/launch/:id. The parameter
:id is used to identify the container image that should be used to run a container.
The handler function of the endpoint has a mechanism for authenticating requests
from Canvas LMS in a similar way as the Sinatra web application presented in
Section 2.4. This mechanism is implemented using a Go library for LTI
integrations[87]. The route definition is:

router.POST("/lti/launch /:id", route.OAuth(route.LTILaunch))

The HTTP method is POST, while the handler functions that serve the request
for the URL /lti/launch/:id are OAuth, and LTILaunch. The first is the
authentication mechanism and its implementation is shown in Listing 4.7, while
the latter is the function that serves requests for running laboratory environments.

The OAuth function is of type httprouter.Handle (this type is defined as
type Handle func(http.ResponseWriter, *http.Request, Params)), has the
parameter handler that is a function of the same type, and has the same return
type. Several programming languages including Go support passing functions as
arguments to other functions or specifying them as return values. Such languages
are often categorized as programming languages with support for “First Class
Functions”. In the listing below, the OAuth function, defines the return function
right after the reserved word return. This function is responsible for
authenticating requests for the LTI route.

The authentication is performed using the OAuth 1.0 Protocol. A request to
this route is expected to have an OAuth signature that matches a predefined key
and a secret. Such a signature is sent by Canvas. The signature is based on the
key and secret values defined during the integration of an external application (such
as the TP). When Canvas performs the LTI Launch request, it sends an OAuth
signature. The server verifies that signature as shown in the code in Listing 4.7.

61

CHAPTER 4. IMPLEMENTATION

Listing 4.7: Authentication of the LTI Launch requests in Go

func OAuth(handler httprouter.Handle) httprouter.Handle {

return func(res http.ResponseWriter , req *http.Request ,

params httprouter.Params) {

// OAuth authentication of the TP requires to match the

// request URL to match the expected path. Since image IDs

// change all the time , the path is constructed using

// the imageID as extracted from the HTTP Header.

path := fmt.Sprintf("https ://%s%s",req.Host ,req.URL.Path)

p := lti.NewProvider("oauth_secret", path)

p.ConsumerKey = "oauth_key"

ok, err := p.IsValid(req)

if !ok {

res.Write ([] byte("Invalid request"))

return

}

if err != nil {

res.Write ([] byte("An error occured"))

return

}

handler(res , req , params)

}

}

The parameter req contains the signature value and method that are sent by the
LMS. The OAuth signature provider is created following a call to the function
NewProvider(), which takes two arguments oauth secret (the secret that
protects the route) and path (the URL path of the route). The key of the TC is
configured by the assignment p.ConsumerKey = "oauth key". The call to the
function IsValid(req) creates a server-side signature and compares it against the
signature sent by the TC. This function has two return values, a boolean ok and
an error. If the result contains an error, or ok does not have the value true, then
error messages are returned in the HTTP response. If the signature matches, then
the handler function is invoked to create a new laboratory environment.

The handler function LTILaunch operates similarly to the function that
handles requests to the /admin/containers/launch/:id endpoint (as previously
explained in Section 4.2.4), but instead of returning a JSON object as a response,
the LTILaunch handler returns an HTML page containing the credentials for
logging into the shell together with an iframe with the shell emulator embedded in
it. The resulting page is shown in Figure 4.13, while a simplified version of the
handler’s code is shown in Listing 4.8.

62

4.3. LTI TOOL PROVIDER

Listing 4.8: LTILaunch route handler function

func LTILaunch(res http.ResponseWriter , req *http.Request ,

params httprouter.Params) {

t, _ := template.ParseFiles("templ/html/assignment.html")

// Validate imageID

if !vImageID.MatchString(imageID) {

t.Execute(res , Resp{Error: "Invalid URL. Contact the

administrator"})

}

// Parse LTI Post params

err := req.ParseForm ()

// Error handling is omitted in listing

// extract Canvas userID and store is as session key

userID := req.PostFormValue("user_id")

sessionExists , err = dc.ExistsUserRunConfig(userID)

// Error handling is omitted in listing

if sessionExists {

cfg , err = dc.GetUserRunConfig(userID)

// Update the TTL

err = dc.SetUserRunConfig(userID , cfg)

} else {

// SESSION didn'texist , Generate username and password

username := "guest"

password := newPassword ()

// Run container request

cfg , err = dc.RunContainer(imageID , username , password)

}

// Set session

err = dc.SetUserRunConfig(userID , cfg)

// Return HTML template with data

t.Execute(res , getResp(cfg))

}

type Resp struct {

ContainerID string

Port string

Username string

Password string

URL string

Error string

}

63

CHAPTER 4. IMPLEMENTATION

The first action of the LTILauch function is to create a text template following
a call to function ParseFiles() of Go package html/template. The function takes
an HTML file as an argument and produces a variable of type Template. The
function t.Execute(res, RespError: "text message") is used to inject string
values into the template t and to write the output to the HTTP response res. The
Go struct Resp contains values of type string that are used in the template to
inject the URL of the iframe containing the shell emulator, the username, password,
and container identifier. For example, a variable containing an error is passed in
the HTML template using the .Error syntax. The Execute function will replace
the contents of .Error with the value of the Error variable.

Error: {{ .Error }}

After the template variable is initialized, the handler validates the image
identifier parameter :id via a call to vImageID.MatchString(imageID). The
variable vImageID is a compiled regular expression defined as var vImageID =

regexp.MustCompile(^([A-Fa-f0-9]12,64)$). The function MatchString

verifies whether the parameter imageID of type string, matches the regular
expression (an alphanumeric sequence of 12-64 characters consisting of a
hexadecimal encoding of the container’s identifier) and returns a boolean value as
a result.

Afterwards, the handler reads the user id form parameter sent by Canvas, and
checks whether a container run configuration exists in the Redis session storage for
that particular user. If such a configuration exists, then it is loaded in the cfg

variable and the TTL value of the Redis entry for this configuration is renewed. If
such a configuration was not present, then a username, and a random password

are created and passed as parameters to the function RunContainer of package dc

to create and start a new container for this user session. The new container run
configuration is stored in Redis following a call to SetUserRunConfig.

Finally, a call to t.Execute(res, getResp(cfg)) is performed, to write the
configuration values into the HTML template and to return these values to the
invoking Canvas LMS. The function getResp(cfg) initializes a Resp struct with
the values returned from the RunContainer function.

Section 4.3.1 contains an example of configuring an /lti/launch/:id route
as an external application in Canvas LMS and Section 4.3.2 contains an example
of a student accessing a laboratory environment through an assignment that was
configured to launch the external application.

4.3.1 Configuration of an Assignment

Figure 4.11 shows how a specific image was configured in Canvas, as an external
application. The name of the application is tcpdump 01, the consumer key and the
shared secret have values oauth key and oauth secret (respectively). These values
must match those configured in the OAuth handler function (shown in Listing 4.7).
The Launch URL is https://localhost:8080/lti/launch/9f6ffc322b08 where

64

4.3. LTI TOOL PROVIDER

the identifier of the container image is the identifier created in the Tool Client from
the “Commit Container” page of Figure 4.8.

Figure 4.11: Configuration of the TP in Canvas

An assignment configuration was created in Canvas to run the external tool
shown above. The tool was instructed to run in a new browser window, rather
than embed the response of the TP in the same page. For the configuration of the
assignment, the laboratory assignment “Hands-on 6: Understanding TCP and
tcpdump”[1] from the course “6.033: Computer System Engineering” of the
Massachusetts Institute of Technology (MIT), “Electrical Engineering &
Computer Science Department” was used. A description of this assignment is
shown in Figure 4.12.

65

CHAPTER 4. IMPLEMENTATION

Figure 4.12: Assignment Description that could be placed into the Canvas LMS
course (based upon the first part of the assignment in [1] - this material appears
here based upon CC BY 3.0 US)

66

4.3. LTI TOOL PROVIDER

The description of Figure 4.12 instructs the user to use the tcpdump command
line program that is pre-configured in the laboratory environment to study TCP
packets that were sent from a server called willow to a server called maple. It
provides some information regarding the output of tcpdump, and then asks the
student a series of four questions to complete the assignment. Methods for replying
to such questions are not presented in this example, as they are not relevant to the
use of the laboratory environment. At the bottom of the assignment, an HTML
button with content “Load Sample tcpdump assignment in a new window” is visible.
When this button is clicked, Canvas performs the HTTP POST request to the
/lti/launch/:id endpoint, and requests the browser to render the HTML response
in a new window (shown in Figure 4.13).

4.3.2 Student accessing a laboratory environment
Figure 4.13 shows a student accessing the laboratory environment via the HTML
page returned as a response from the LTILaunch route handler. The student has
already authenticated herself in the shell, and is following the assignment’s
instructions to execute the command tcpdump -r tpdump.dat > outfile.txt to
write the output of the TCP packet trace in a human readable format into file
outfile.txt.

Figure 4.13: Laboratory environment via Canvas LMS

67

CHAPTER 4. IMPLEMENTATION

The bottom of the page contains a text (in blue background) that instructs the
user to open the shell emulator in a new browser window, to leverage full screen
capabilities of the shell. Finally, a button called “Terminate” provides the option
for the user to terminate the container session.

4.4 Evaluation

The evaluation of the LTI Tool Client and Tool Provider implementations was
performed using unit and integration testing techniques [88], to verify the functional
correctness of the software against desired specifications. While the unit tests were
developed to evaluate the individual components (units) of the system, such as the
validation of user input for all api requests, the configuration tool, and the port
resource manager, the integration tests were developed to check the behavior of the
LTI Tool Client and the Tool Provider as a system that interacts with its dependent
services such as the Docker daemon, the Redis session storage and the PostgreSQL
RDBMS.

The software artifact of this project was developed using the Clean
Architecture software application design practice [89, 90]. The Clean Architecture
models systems in four layers, structured as concentric circles, where the inner
layers represent the domain model (i.e. docker images and containers) and their
use cases (i.e. create a docker image from a running container), while the outer
layers represent mechanisms for realizing the use cases (i.e. the API services and
the communication with the docker daemon). Figure 4.14 shows the four layers of
this architecture design model.

68

4.4. EVALUATION

Figure 4.14: The four layers of the Clean Architecture

The domain models of this project are listed in Table 4.2.

Table 4.2: List of implemented domain models

Model Description

Container A docker container

Image A docker image

Admin An administrator user of the Tool Client

RunConfig
A configuration of a running container that exposes
an SSH session over an HTTP connection.

Among several Use Cases the most notable are:

• Get all docker images

• Run a docker container

• Kill a docker container

• Commit a docker container to create a new image

• Find an administrator user by their username

69

CHAPTER 4. IMPLEMENTATION

The Interfaces represent interactions with the Use cases and domain models.
The API routes introduced in table 4.1 are the web interfaces for exposing the use
cases via the Restful API. Finally the connection with the docker daemon, the
PostgreSQL RDBMS and the Redis key-value storage and the web server represent
the Infrastructure layer of the architecture.

The clean architecture introduces an important rule which dictates that source
code software dependencies can only point inwards (i.e. an interface for retrieving
an admin object from the database, depends on a predefined admin domain model).
An inner circle is never aware of software defined in an outer circle, thus simplifying
dependency injection, and resulting to decoupled software packages that can be
easily tested. In Go, declarations of such layers are realized by interfaces, that are
named collections of struct methods having the purpose of contract that dictates the
desired outcome of each member function. There can be multiple implementations
for such interfaces. An example is an interface that describes a SELECT statement
for a particular table in some RDBMS, can be implemented several times, using
different database drivers. This is particularly useful when an underlying technology
of the infrastructure layer changes, only a particular layer of the architecture will
be affected. Such methodology of multiple implementations of the same interface
is particularly useful when performing unit tests. For example, the business logic
can be tested in forms of unit tests without a real database connection, by mocking
the implementation of that inner layer (i.e providing an alternative implementation
that simulates a connection with the database). As a result, each layer can be tested
independent of the other layers, while the system as a whole can be tested using
other techniques, such as integration tests.

Figure 4.15 shows the go packages and their structure, as implemented in this
project. The directory cmd contains the source code for the HTTP web server (the
main function). The rest of the source code is organized under the directory pkg.
The package pkg/drivers contains the infrastructure layer that models the
connections with the database (docker), the connection with the session storage
(redis), and the docker API client library (docker). The package repositories

contains the interface layer that implements the use cases for interacting with
the domain model, and the directories under pkg/api contain the interfaces that
implement the web services container, image, lti and auth, that provide the use
cases for interacting with docker containers, provide authentication and
authorization to the LTI Tool Client and Provider, etc. The directory portmapper

implements the port management software, config provides functions for reading
configuration parameters required by other packages, and lastly, the directory
integration provides functionality for testing the system as a whole.

70

4.4. EVALUATION

Figure 4.15: The source code directory tree of this project

cmd

dock server

pkg

api

auth

container

image

lti

portmapper

repositories

config

drivers

docker

postgres

redis

integration

The next sections explain how unit tests and integration tests are performed
in Go. Section 4.4.1 shows how the source code of this project was tested using
unit testing. Section 4.4.2 shows how test coverage of source code is calculated in
Go and introduces the test coverage report for this project. Section 4.4.3 shows
how the system as a whole was evaluated using integration testing and introduces
benchmarks for each API endpoint.

4.4.1 Unit testing in Go

The Go programming language includes the package testing[91] that provides
functionality for testing individual units (functions) of a program. A test is a
function that its name contains the prefix Test, accepts a single argument that is
a pointer to the *testing.T data structure and resides in a file suffixed with
test.go. The data structure T, provides functions to terminate a test given a

failure. A test is executed by running the command go test. Listing 4.9 shows an
example of a simple test for a function Sum that calculates the sum of two integers.

Listing 4.9: Example of a simple unit test in Go

package sum_test

import "testing"

func Sum(x,y int) int { return x+y }

func TestSum(t *testing.T) {

s := Sum(1,1)

71

CHAPTER 4. IMPLEMENTATION

if s != 2 {

t.Errorf("Incorrect sum , expected: %d", actual: %d, 2, s)

}

}

The test runs by executing the command go test -v sum test.go. The flag v

requests for verbose output for each test of the file.

go test -v sum_test.go

=== RUN TestSum

--- PASS: TestSum (0.00s)

PASS

ok command -line -arguments 0.001s

The output indicates that the go test command line tool executed one test which
succeeded (indicated as PASS) and in total it took 0.001 seconds.

Most tests written for this project use additional packages that provide
functionality for performing assertions which are easier to read, have better output
for errors, and execute parallel tests for permutations of the functions’ input
arguments. Listing 4.10 shows an example of the TestSum in such format.

72

4.4. EVALUATION

Listing 4.10: Example of a simple unit test in Go

import (

"testing"

"github.com/stretchr/testify/assert"

)

func TestSum(t *testing.T) {

tests := [] struct {

x, y, expect int

name string

}{

{

x: 1,

y: 1,

expect: 2,

name: "Good test",

},

{

x: 1,

y: 5,

expect: 3,

name: "Force an error",

},

}

for _, tt := range tests {

t.Run(tt.name , func(t *testing.T) {

actual := Sum(tt.x, tt.y)

assert.Equal(t, tt.expect , actual)

})

}

}

The slice tests defines a list of struct objects that contain three fields,
x,y,expect that correspond to the two input integers of function Sum and the
expected output, and the field name that defines a name for each test permutation.
The permutations are looped using the keyword range, and each permutation is
assigned to the variable tt. The function Run of package testing allows to run
nested tests within the TestSum function. Such tests will run in parallel, and
inform the parent test about their success or failure. The package assert provides
various functions for performing assertions that improve readability of the source
code and test output. In this example the function Equal takes three arguments,
the pointer t to the T data structure, the expected output expect of the function
Sum and the actual output. The second permutation is written with incorrect
expected output to show how failure error messages are presented to the user.

73

CHAPTER 4. IMPLEMENTATION

go test -v sum_test.go

=== RUN TestSum

=== RUN TestSum/Good_test

=== RUN TestSum/Force_an_error

--- FAIL: TestSum (0.00s)

--- PASS: TestSum/Good_test (0.00s)

--- FAIL: TestSum/Force_an_error (0.00s)

Error Trace: sum_test.go:35

Error: Not equal: 3 (expected)

!= 6 (actual)

FAIL

exit status 1

FAIL command -line -arguments 0.002s

After executing this test, the standard output shows that TestSum executed two
tests where the TestSum/Good test suceeded while TestSum/Force an error failed
because the expected output did not match the actual output.

74

4.4. EVALUATION

Listing 4.11 shows the implementation of a function that initializes a connection
with the Docker daemon using the Docker API client library, as explained in Section
4.1.3.

Listing 4.11: Source code of the Docker API client

package docker

import (

"os"

"github.com/docker/docker/client"

)

// APIClient encapsulates the Docker Remote API client

type APIClient struct {

Cli *client.Client

}

// NewAPIClient initializes a new Docker API client.

func NewAPIClient(dockerConfig map[string]string) (*APIClient ,

error) {

_ = os.Setenv("DOCKER_API_VERSION", dockerConfig["version"])

_ = os.Setenv("DOCKER_HOST", dockerConfig["host"])

cli , err := client.NewEnvClient ()

if err != nil {

return nil , err

}

return &APIClient{Cli: cli}, nil

}

The function NewAPIClient() initializes the connection with the Docker daemon.
It accepts a single argument dockerConfig that is of type map[string]string,
that contains the version of the Docker API and the host url where the daemon is
responding to requests (either a unix socket or an HTTP connection URL). It sets
two environment variables DOCKER API VERSION and DOCKER HOST. Then it performs
a call to the function NewEnvClient() that is part of the docker remote API Go
client package. If NewEnvClient() fails to initiate a connection it will return an
error, and a nil pointer to struct APIClient.

75

CHAPTER 4. IMPLEMENTATION

Listing 4.12 shows how this code is tested from the function TestNewAPIClient.

Listing 4.12: Unit test of intializing a connection with the Docker API

package docker

import (

"testing"

"github.com/stretchr/testify/assert"

)

func TestNewAPIClient(t *testing.T) {

cli , err := NewAPIClient(map[string]string{

"version": "1.25",

"host": "unix :/// var/run/docker.sock",

})

assert.NoError(t, err)

assert.NotNil(t, cli)

cli2 , err := NewAPIClient(map[string]string{

"version": "x",

"host": "local",

})

assert.Error(t, err)

assert.Nil(t, cli2)

}

First it provides valid argument to the function NewAPIClient. It performs two
assertions, one that the function did not return an error by calling
assert.NoError(t, err). This function checks whether the error variable is nil

or not. Then it performs the second assertion that the client is not nil by calling
the assert.NotNil(t, cli) function and passing the client as an argument.
Similarly, the second test case, provides invalid argument to NewAPIClient,
forcing the docker Remote API Client library to produce an error, thus returning
a nil pointer of type APIClient and an error.

Mocking dependencies in unit tests

The test of Listing 4.12 assumed that a docker daemon was running at the time
the test was executing. If the daemon was not running, both test cases would have
failed, and the test would not be successful. There are cases in which running
actual software dependencies such as the Docker daemon, or a Redis server might
be inconvenient, or outside the scope of a unit test. For example, the route handler
of the Logout API endpoint of the LTI Tool Client, attempts to match a valid
session cookie in the HTTP request with an entry in the Redis session storage.
If such entry exists in the storage, it will attempt to delete it. When testing the
individual function Logout, validation of the request cookie is of higher importance
than potential connection errors of the Redis client. Since the system as a whole
is tested using integration tests, the dependency of the connection with Redis will

76

4.4. EVALUATION

be simulated (mocked), and only the functional correctness of the Logout function
against various inputs will be evaluated.

Listing 4.13 shows the source code of the Logout HTTP handler. First it reads
the cookie with name ses from the HTTP request. If it fails, a call to function
api.WriteErrorResponse is performed, with a status code
http.StatusUnauthorized that corresponds to http status code 401 as defined in
section 3.1 of RFC 7235 of the Hypertext Transfer Protocol (HTTP/1.1), and a
corresponding error message string "Unauthorized". Then it will attempt to
delete the corresponding entry in the Redis session storage. In case of failure it
returns an error, and in case of success, it invalidates the cookie and writes it to
the response HTTP headers, along with an empty response body (call to function
api.WriteOKResponse()).

Listing 4.13: Source code of Admin Logout HTTP handler

// AdminLogout logs out an admin

func (s Service) AdminLogout(w http.ResponseWriter , r *http.

Request , _ httprouter.Params) {

// Get session cookie

cookie , err := r.Cookie("ses")

if err != nil {

api.WriteErrorResponse(w, http.StatusUnauthorized , "

Unauthorized")

return

}

// Check if session exists in Redis. If it doesn't exist

sent Unauthorized. Frontend will redirect to login page.

if err = s.redis.AdminSessionDelete(cookie.Value); err !=

nil {

api.WriteErrorResponse(w, http.StatusInternalServerError ,

err.Error())

return

}

cookie = &http.Cookie{

Name: "ses",

Value: "",

Path: "/",

Expires: time.Now(),

}

http.SetCookie(w, cookie)

api.WriteOKResponse(w, nil)

}

The code above shows that the struct service has a field s.redis which is a
golang interface, of type RedisRepository. RedisRepository is an
implementation of the Interfaces layer of the architecture, that uses the redis

77

CHAPTER 4. IMPLEMENTATION

driver from Infrastructure layer and provides a function AdminSessionDelete

that deletes a key from Redis. Listing 4.14 shows the implementation of the
repository and its AdminSessionDelete function.

Listing 4.14: Sample of the Redis repository interface and its implementation

// The RedisRepository interface with a method signature

called AdminSessionDelete

type RedisRepository interface {

AdminSessionDelete(key string) error

}

// The RedisRepo implements the RedisRepository interface

type RedisRepo struct {

redis redis.Redis

}

// AdminSessionDelete implements the method of the

RedisRepository interface

func (r *RedisRepo) AdminSessionDelete(key string) error {

_, err := r.redis.Del(key)

return err

}

When testing the Logout route handler a connection to a Redis server is not
available. Instead, an alternative implementation of the RedisRepository interface is
initialized, and provided as argument to the service struct. That implementation
returns either an error or nil when the test needs to test any of those cases.
Listing 4.15 shows the test code of the route handler AdminLogout, the different
permutations of the HTTP request input, and the alternative implementation of
the RedisRepository from a package named repomocks.

78

4.4. EVALUATION

Listing 4.15: Unit test of Admin Logout HTTP handler

func TestAdminLogout(t *testing.T) {

tests := [] struct {

service Service

request *http.Request

expectCode int

expectCookie *http.Cookie

name string

}{

{

service: NewService(nil),

request: httptest.NewRequest(http.MethodGet , "/",

nil),

expectCode: http.StatusUnauthorized ,

expectCookie: nil ,

name: "session does not exist",

},

{

service: NewService(repomocks.NewRedisRepositoryMock ().

WithAdminSessionDelete(errors.New("redis network

error"))),

request: cookieRequest("1"),

expectCode: http.StatusInternalServerError ,

expectCookie: nil ,

name: "deleting session errors",

},

{

service: NewService(repomocks.NewRedisRepositoryMock ().

WithAdminSessionDelete(nil)),

request: cookieRequest("1"),

expectCode: http.StatusOK ,

expectCookie: &http.Cookie{Name: "ses", Value: "", Path:

"/", Expires: time.Now()},

name: "deleting session succeeds",

},

}

for _, tt := range tests {

t.Run(tt.name , func(t *testing.T) {

w := httptest.NewRecorder ()

tt.service.AdminLogout(w, tt.request , nil)

assert.Equal(t, tt.expectCode , w.Code)

if tt.expectCookie != nil {

assert.Equal(t, tt.expectCookie.String (), w.Header ().

Get("Set -Cookie"))

}

})

}

}

79

CHAPTER 4. IMPLEMENTATION

The mocked dependency allows to test the functional correctness of the
AdminLogout route handler without a real connection to a Redis server. The
function call to NewService intializes a Service struct and takes the
RedisRepository interface as an argument. The first test case, does not provide a
valid request cookie, therefore the function will exit before the call to
AdminSessionDelete. The second test case evaluates the response when the
AdminSessionDelete function returns an error, while the last test case evaluates
a valid request with a valid cookie and no errors returned by
AdminSessionDelete, and the response code and cookie matches the expected
code and cookie as defined in the test case.

4.4.2 Generating a test coverage report
The go test command allows for generating a coverage report. Test coverage is
a term that describes how much of a package’s code is exercised by running the
package’s tests [92]. If a test invokes x% of a package’s source statements, then that
package has x% test coverage. The coverage module instruments ∗ the binary source
code using the GNU’s Not Unix! (GNU) gcov[94] tool by adding break points to
every branch, and calculating if those breakpoints are reached during a an invocation
of a test. The number of covered branches over the total breakpoints produces the
coverage percentage. The go test command allows to write all coverage statistics
into a single file called the profile for further analysis.

The listing below shows how to invoke the go test command using the cover

flag to generate a coverage report for the source code of Listing 4.11 that was
presented in the previous section.

go test -v -cover -coverprofile=coverage.txt -covermode=count

github.com/andreas -kokkalis/dock_server/pkg/drivers/docker

=== RUN TestNewAPIClient

--- PASS: TestNewAPIClient (0.00s)

PASS

coverage: 100.0% of statements

ok command -line -arguments 0.004s

The flag covermode with value count indicates that it shouldn’t only check if a
statement run, but also how many times it run. The flag coverprofile indicates
to write the coverage statistics into the output file coverage.txt.

mode: count

pkg/drivers/docker/docker.go :15.71 ,19.16 4 2

pkg/drivers/docker/docker.go :22.2 ,22.34 1 1

pkg/drivers/docker/docker.go :19.16 ,21.3 1 1

where the output numbers match the following fields:
name.go:line.column,line.column numberOfStatements count.

∗Instrumentation[93] is a source code insertion technology that adds specific code to the source
files under analysis. After compilation, execution of the code produces dump data for runtime
analysis or component testing.

80

4.4. EVALUATION

The field name.go indicates the filename, the first occurrence of ling.column.
Opening this file using the go tool cover -html=coverage.txt command line
tool, will open a web browser window such as the one of Figure 4.16 to show a human
readable view of the coverage report. Statements highlighted with green color are
covered fully, statements highlighted with red are not covered, while statements in
gray are slightly covered.

Figure 4.16: Sample of the go tool cover HTML output

This project uses the Travis [95] Continuous Integration (CI) [96] tool to run its
tests. Travis provides for free, resources that enable to run programs under various
configurable conditions. This project’s Travis configuration enables to compile the
source code using go version 1.9 on an Ubuntu 14.04 virtual machine, that runs a
docker daemon. The development environment is completely reproducible in that
remote virtual machine, where the reader can investigate the various builds and
tests that were implemented and executed as part of this project [97, 98].

During a Travis build, the following events are taking place. First the code is
compiled, along with all its software dependencies. Then the unit tests are executed,
and then the integration tests run. If any of the unit or integration tests fail,
the build is considered unsuccessful. Finally, the unit tests run again to generate
coverage reports, and upload them to Code Coverage[99] service that analyzes test
coverage reports from various programming languages and provides historical data
and statistics about the tests of a particular project. Figure 4.17 shows the overview
of coverage percentage per file, as exported from codecov.io [100] for the git commit
number a794b854eddea7fe8556c7897d51d57aa08fecc5 of master branch of the
GitHub repository [98] of this project.

81

CHAPTER 4. IMPLEMENTATION

Figure 4.17: Overview of project’s test coverage report from codecov.io

The first column contains the name of the file, the second column the total lines
of code per file. The third , forth and fifth columns show the number of lines fully,
partially, and not covered respectively, while the last column shows a summary
percentage of the files statements coverage from tests.

4.4.3 Integration tests

Section 4.4.1 introduced how unit tests are developed in Go, and how this project
utilized such tests to verify the functional correctness of the project. In most cases,
individual layers of the system where tested, while dependencies were simulated
by alternative implementations of the interfaces. Testing a system along with its
dependencies is also very important, to verify that multiple units, when working with
each other, can deliver the desired functionality according to some specifications.
In the scope of this project, an integration test assumes that before testing some
code, all its software dependencies are running correctly, i.e., the HTTP web server
for the API, the Docker daemon, and finally the Redis and PostgreSQL servers.

The Ginkgo [101] Behavior Driven Development (BDD) [102] testing framework
was used to define specifications for integration tests. BDD uses a form of natural
language constructs to describe a software specification (testing suite) along with

82

4.4. EVALUATION

its acceptance criteria under various conditions. The Ginkgo framework consumes
the testing package of Go in order to run tests using the go test command line
tool, and provides such natural language constructs via functions calls.

The developer must import two packages, ginkgo and gomega, where the first
provides an API for natural language constructs while the second an API for
performing assertions. The method of importing these packages is called dot
imports, and allows for accessing functions of those packages directly, without
using the package name prefix. The listing below shows how those imports are
defined.

import (

"testing"

. "github.com/onsi/ginkgo"

. "github.com/onsi/gomega"

)

All test specifications are executed from a test function by performing the following
two calls:

func TestImageEndpoints(t *testing.T) {

RegisterFailHandler(Fail)

RunSpecs(t, "Image Suite ")

}

The call to RegisterFailHandler(Fail) defines the behavior of the ginkgo
framework when encountering a failure. This handler defines what messages are
printed during a failure in the standard output, as well as if the framework will
continue running tests succeeding a failed scenario. The call to RunSpecs(t,

"name of specification"), indicates that ginkgo should execute all registered
specifications in the test file. The pointer to the testing.T data structure is given
as argument to RunSpecs to allow ginkgo to use the underlying functionality of
the testubg package. All specifications for a given test are defined within the
Describe function block as showed in Listing 4.16.

Listing 4.16: Structure of Gingo test specifications

var _ = Describe("Image api endpoints", func() {

It("Should list all images", func() {

// perform request

// record response

// assertions

})

It("Should get image history of seed image", func() {

// ...

})

})

The Describe function accepts a string parameter to indicate the name of the
top level specification, and a function that is executed when invoking the Describe

83

CHAPTER 4. IMPLEMENTATION

function. The value of Describe is assigned to an unnamed variable. This ensures
that Ginkgo will execute the specifications defined within that code block when the
RunSpecs function is called. Within a Describe block, other functions named It

are defined to describe sections of the testing suite that should occur at a sequential
order. In the example of Listing 4.16 two sections are defined, the first to execute
tests for the route /admin/images introduced in Table 4.1, while the second for the
route /admin/images/history:id. The first argument of each of the It functions
is a string variable that verbosely declares the intention of each section in a human
readable way.

In addition to the Describe and It functions, Ginkgo provides other functions
such as the BeforeSuite to define a series of actions that should be taken before
executing any specifications, AfterSuite to define the actions to perform after
executing all specifications, and BeforeEach and AfterEach that define actions to
be taken before executing each It section of the specification. The latter is useful,
for example when a test depends on having a particular state of the session or the
persistent storage. Listing 4.17 shows an example of a BeforeSuite block that
initializes all dependences of the ImageService that models all routes relevant to
docker images.

84

4.4. EVALUATION

Listing 4.17: Initial configuration of integration tests for the image routes

var _ = BeforeSuite(func() {

spec = integration.NewSpec(dir)

Describe("Initialize configuration", func(){

c, err := config.NewConfig(path.Join(s.TopDir , confDir),

environment)

gomega.Expect(err).To(gomega.BeNil(), "Init config")

spec.Config = c

})

Describe("Connect to redis", func(){

redis , err := redis.NewClient(spec.Config.GetRedisConfig ()

)

gomega.Expect(err).To(gomega.BeNil(), "Connect Redis")

spec.Redis = redis

spec.RedisRepo = repositories.NewRedisRepo(redis)

})

Describe("Connect to docker daemon", func(){

dockerClient , err := docker.NewAPIClient(spec.Config.

GetDockerConfig ())

gomega.Expect(err).To(gomega.BeNil(), "Init docker api

client")

spec.DockerCLI = dockerClient

spec.DockerRepo = repositories.NewDockerRepository(

dockerClient , spec.Config.GetDockerConfig ())

})

Describe("Initializes HTTP routes", func(){

router := httprouter.New()

imageService := image.NewService(spec.RedisRepo , spec.

DockerRepo)

router.GET("/admin/images", imageService.ListImages)

router.GET("/admin/images/history /:id", imageService.

GetImageHistory)

spec.Handler = router

})

})

Within the BeforeSuite multiple Describe functions can be defined, to group
various actions that need to be performed before executing any tests. The call to
integration.NewSpec function initializes a data structure that holds information
such as the connection to PostgreSQL, Redis, Docker daemon, the routes, as well
as a set of member functions that perform HTTP requests, record the HTTP
responses, and compare the response against an expected response. Each
Describe block contains a call to initializing a connection to an infrastructure

85

CHAPTER 4. IMPLEMENTATION

layer resource (i.e., Redis, Docker, HTTP server) and an initialization of each
repository of the interface layer of the Clean Architecture. The calls to
gomega.Expect() functions declare assertions that are performed during the
initialization of each service. If any of these assertions fails, the rest of the tests
will not be executed, and the specification is considered unsuccessful.

Listing 4.18 shows the definitions for testing the two endpoints GET

/admin/images and GET /admin/images/history:id. The first part of the
specification, initializes a Request object that is defined in Listing 4.19 and is part
of the integration package, by calling the function NewRequest and passing as
arguments three parameters. The first (http.MethodGet) is the HTTP method to
use, the second "/admin/images is the request URI that matches the registered
route, while the last is an interface{} to any JSON serializable data structure to
be used as the HTTP request body (in this example no JSON body is required,
therefore the value of the parameter is nil). Then the specification initializes an
object of the Response data structure that models an expected API response for a
particular HTTP request. Listing 4.20 shows the definition of the Response data
structure that is also part of the integration package, and the function
NewResponse that initializes a pointer to a Response object. This function takes
two arguments, the first is the expected HTTP status code that the server will
respond, and the expected JSON body that the server will send as part of the
HTTP response.

Listing 4.18: Performing a request to an endpoint within a spec file

var _ = Describe("Image api endpoints", func() {

var img api.Img

It("Should list all images", func() {

request := integration.NewRequest(http.MethodGet , "/admin/

images", nil)

response := integration.NewResponse(http.StatusOK , imgspec

.ImageListGood)

spec.AssertAPICall(request , response)

var images []api.Img

response.Unmarshall (& images)

img = images[len(images) -1]

})

It("Should get image history of seed image", func() {

request := integration.NewRequest(http.MethodGet , fmt.

Sprintf("/admin/images/history /%s", img.ID), nil)

response := integration.NewResponse(http.StatusOK , imgspec

.ImageHistoryGood)

spec.AssertAPICall(request , response)

})

})

Then, the function AssertAPICall that is shown in Listing 4.21 is executed to test

86

4.4. EVALUATION

whether the actual server response matches the expected response. The Response

structure provides some additional functions such as Unmarshall that allows for
reading the actual JSON response into a Go data structure. This is particularly
useful for capturing data that are required to be given as input to subsequent API
requests. For example the call to /admin/images/history/:id route requires a
valid docker image identifier, that is loaded from the array of images returned by
the /admin/images endpoint.

Listing 4.19: An HTTP request as modeled in the integration package

// Request struct for performing an HTTP request

type Request struct {

method string

url string

body interface {}

// HTTPRequest models the HTTP request. It's exported allow

// for setting custon request headers and cookies.

HTTPRequest *http.Request

}

// NewRequest intializes a Request object

func NewRequest(method , url string , body interface {}) *Request

{

jsonBody , err := json.Marshal(body)

gomega.Expect(err).To(gomega.BeNil(), "Error marshaling body

parameter to json")

return &Request{

method: method ,

url: url ,

body: body ,

HTTPRequest: httptest.NewRequest(method , url , ioutil.

NopCloser(bytes.NewReader(jsonBody))),

}

}

The HTTPRequest field of the Request struct is initialized using the
httptest package of Go, by calling the httptest.NewRequest function. The
parameters of this function are similar to the parameters of the
integration.NewRequest function, with the slight difference that the body of
httptest.NewRequest must be of type io.Reader, that models an input stream
of data. The JSON serializable data structure body is first converted to json
binary data using the function json.Marshal, and then converted into a stream
by calling the function ioutil.NopCloser(bytes.NewReader(jsonBody)).

87

CHAPTER 4. IMPLEMENTATION

Listing 4.20: An expected HTTP response as modeled in the integration package

// Response struct for asserting an http API response

type Response struct {

expectedCode int

expectedBody string

recorder *httptest.ResponseRecorder

}

// NewResponse initializes a Response object hat is used to

test the expected output against the actual HTTP response

func NewResponse(expectedCode int , expectedJSONBody string) *

Response {

return &Response{

expectedCode: expectedCode ,

expectedBody: expectedJSONBody ,

recorder: httptest.NewRecorder (),

}

}

The Response data structure holds information for an expected API response.
The expectedBody should be a valid JSON string and the expectedCode is the
HTTP status code that shall be returned after performing a particular HTTP
request. Function NewResponse initializes the Response object and returns a
pointer to that object. The field recorder is initialized following a call to
httptest.NewRecorder that returns a pointer to a httptest.ResponseRecorder

structure that implements the http.ResponseWriter interface which is used when
defining the route handlers for each endpoint. The recorder offers functionality for
retrieving the HTTP response headers and body and is used by the function
AssertAPICall to test the actual HTTP response against the expected one.

Listing 4.21 shows the implementation of AssertAPICall function that is also
part of the integration package. The function takes two parameters, a pointer to a
Request and to a Response object. First it initializes a timer by calling
time.Now() of the time Go package that is used to count the time that elapsed
while serving a particular HTTP request. The timer is stopped by calling
time.Since(start) that returns an integer that represents the amount of
nanoseconds that elapsed since the start. The call to
s.Handler.ServeHTTP(response.recorder, request.HTTPRequest) is calling
the function ServeHTTP of the router that was assigned to the field Handler of
the structure Spec as shown in Listing 4.17. The ServeHTTP function takes two
arguments, the httptest.ResponseRecorder and the http.Request. It matches
the URL of the request with one of the registered routes, and invokes the
corresponding route handler function. It records the response into the
response.recorder object. Afterwards the function writes to stdout the original
request, and actual response into a human readable format by calling the
.pretty() functions respectively). The next step is to start performing assertions.
The first assertion will check whether the actual HTTP status code of the
response matches the expected one. Then it will attempt to load the JSON

88

4.4. EVALUATION

response body into the api.Response data structure, and perform an assertion to
test if an error occurred. Finally it compares the actual response of the API
endpoint with the expected JSON response. This step is performed by calling the
CompareRegexJSON function of the integration package. This function actually
executes a Python command line program called json-regex-difftool[103], an
open source project licenced under the Apache Licence 2.0 [104] developed by
©Bazaarvoice Inc that allows to compare two JSON files to check if the key value
pairs of each JSON object match. In addition, it offers to define an expected
JSON value for an object, using a regular expression, which is useful when we
want to evaluate a docker container or image identifier, that is generated during
an HTTP request to one of the API endpoints, and the exact character sequence
of the identifier is not known.

Listing 4.21: Assertion of an HTTP response of the integration package

func (s *Spec) AssertAPICall(request *Request , response *

Response) {

// Perform HTTP Request

start := time.Now()

s.Handler.ServeHTTP(response.recorder , request.HTTPRequest)

took := time.Since(start)

// Log request and response to stdout

s.Log.Printf("%s\n", request.pretty ())

s.Log.Printf("%s\n", response.pretty ())

s.Log.Printf("Took: %s\n", took.String ())

// Perform assertions

gomega.Expect(response.Code()).To(gomega.Equal(response.

expectedCode), "status codes do not match")

var actualResponse api.Response

err := json.Unmarshal(response.recorder.Body.Bytes(), &

actualResponse)

gomega.Expect(err).To(gomega.BeNil())

diff , err := CompareRegexJSON(response.expectedBody ,

response.ToString (), s.TopDir)

gomega.Expect(err).To(gomega.BeNil(), "Diff tool returned

error")

gomega.Expect(diff).To(gomega.Equal(""), "Diff is not empty"

)

}

The call to CompareRegexJSON returns a string of the diff if the expected
response does not match the actual, and an error, in case an error occurs while
executing the command line tool. Both of these return values are evaluated in
corresponding assertions to test that no error was returned, and that there was no

89

CHAPTER 4. IMPLEMENTATION

difference between the two JSON strings.
Listing 4.22 shows how an expected JSON response is defined using regular

expressions for values of particular fields. The code of this listing represents a
response of the GET /admin/images endpoint. The key Id is expected to have an
alphanumeric sequence of 12 to 64 characters as value, while the key CreatedAt

is expected to match anything as a value, since the time and date of the image
creation is not of high importance for the assertion.

Listing 4.22: Example of a JSON expected response containing regular expressions

{

"data": [

{

"Id": "([A-Fa-f0 -9]{12 ,64})$",
"RepoTags ": [

"andreaskokkalis/dc:0.2 _tcpdump_assignment"

],

"CreatedAt ": "(.+)"

},

{

"Id": "([A-Fa-f0 -9]{12 ,64})$",
"RepoTags ": [

"andreaskokkalis/dc:0.1 _traceroute"

],

"CreatedAt ": "(.+)"

},

{

"Id": "([A-Fa-f0 -9]{12 ,64})$",
"RepoTags ": [

"andreaskokkalis/dc:0.0 _seed"

],

"CreatedAt ": "(.+)"

}

]

}

The executing a Ginkgo specification that was described in this section is
performed by invoking the go test command line tool as shown in the listing
below.

go test -v ./pkg/api/image/spec -ginkgo.v

The flag ginkgo.v is passed to the specification, to indicate that it should print a
verbose output of the tests. Listing 4.23 includes the output of the Ginkgo suite for
the two image endpoints /admin/images and /admin/images/history:id.

90

4.4. EVALUATION

Listing 4.23: Sample output of a successful Ginkgo integration test

=== RUN TestImageEndpoints

Running Suite: Image Suite

==========================

Random Seed: 1515276041

Will run 2 of 2 specs

Image api endpoints

Should list all images

/home/andreas/workspace/golang/src/github.com/andreas -kokkalis

/dock_server/pkg/api/image/spec/ginkgo_image_test.go:61

{

"HTTP_Request ": {

"Method ": "GET",

"URL": "/admin/images"

}

}

{

"HTTP_Response ": {

"Code": 200,

"Headers ": {

"Content -Type": [

"application/json; charset=UTF -8"

]

},

"Body": {

"data": [

{

"CreatedAt ": "2017 -01 -04 T05 :53:37 -05:00" ,

"Id": "02 ba2aacd9c9",

"RepoTags ": [

"andreaskokkalis/dc:0.2 _tcpdump_assignment"

]

},

{

"CreatedAt ": "2017 -01 -04 T05 :51:10 -05:00" ,

"Id": "976 f25c6d342",

"RepoTags ": [

"andreaskokkalis/dc:0.1 _traceroute"

]

},

{

"CreatedAt ": "2016 -12 -29 T06 :51:33 -05:00" ,

"Id": "83364 c85cafc",

"RepoTags ": [

"andreaskokkalis/dc:0.0 _seed"

91

CHAPTER 4. IMPLEMENTATION

]

}

]

}

}

}

Took: 14.527027 ms

Image api endpoints

Should get image history of seed image

/home/andreas/workspace/golang/src/github.com/andreas -kokkalis

/dock_server/pkg/api/image/spec/ginkgo_image_test.go:71

{

"HTTP_Request ": {

"Method ": "GET",

"URL": "/admin/images/history /83364 c85cafc"

}

}

{

"HTTP_Response ": {

"Code": 200,

"Headers ": {

"Content -Type": [

"application/json; charset=UTF -8"

]

},

"Body": {

"data": [

{

"Comment ": "",

"CreatedAt ": "2016 -12 -29 T06 :51:33 -05:00" ,

"CreatedBy ": "",

"Id": "83364 c85cafc",

"RepoTags ": [

"andreaskokkalis/dc:0.0 _seed"

],

"Size": 0

}

]

}

}

}

Took: 887.08µs

92

4.4. EVALUATION

Ran 2 of 2 Specs in 0.094 seconds

SUCCESS! -- 2 Passed | 0 Failed | 0 Pending | 0 Skipped ---

PASS: TestImageEndpoints (0.09s)

PASS

ok github.com/andreas -kokkalis/dock_server/pkg/api/image/

spec 0.101s

The output of a test contains the custom messages printed by the
AssertAPICall function such as the HTTP request, the response and time it took
to process it, and also information for each test, such as the string variables
defined in each Describe and It block. In addition, the file and line number that
each It block is defined is printed, along with a message for success (SUCCESS) or
failure. At the end of the specification, it prints a summary for all tests that run,
along with information for the total execution time of the tests.

4.4.4 Summary of tests

The initial implementation of the source code, was not performed using the Clean
Architecture design model. Therefore the evaluation of the code using unit and
integration tests became very inefficient. A refactoring for the source code was
performed to apply such architecture, and start testing each component and layer
of the system independently, using unit and integration tests. Both types of tests
improved the quality and readability of the code, and resulted in the discovery of
multiple error prone implementations, that were improved in order for the tests to
succeed under various input permutations.

The purpose of the implemented tests was to evaluate the behavior of the API
endpoints of the LTI Tool Client and Provider and provide a solid foundation for
this project to facilitate extensibility and adaptability to new technologies while
guaranteeing a method of testing and identifying regressions. The Javascript code
of the user interface that is part of the LTI Tool Client was not tested, since that
implementation is a simple consumer of the HTTP API, that was developed to
provide better insights regarding the implemented functionality for the reader.

The routes of Table 4.1 have been tested using integration and unit tests. Table
4.3 shows the type of tests that were developed for each route, or middleware.

93

CHAPTER 4. IMPLEMENTATION

Table 4.3: Types of implemented tests per Endpoint

Route Unit tests Integration tests

POST /admin/login 3 3

GET /admin/logout 3 3

POST /admin/containers/run/:id 7 3

DELETE /admin/containers/kill/:id 7 3

POST /admin/containers/commit/:id 7 3

GET /admin/images 3 3

GET /admin/images/history/:id 3 3

DELETE /admin/images/delete/:id 3 3

POST /lti/launch/:id 3 7

Session authorization middleware 3 3

LTI OAuth middleware 3 7

In addition to the unit tests for the HTTP routes, unit tests were written to
test the functionality of other Go packages that were developed as dependencies of
this project, such as the portmapper package that implements the algorithm
introduced in Section 4.1.6, for repositories of the interface layer, and finally the
api package that contains the model definitions along with several helper
functions for standardizing API responses and error handling. The endpoints
prefixed with /admin/containers/ were tested using integration tests only. This
route group depends solely on docker containers being in a particular state, in
order to test some specific action, therefore mocking the docker daemon would not
provide more insights regarding the correctness of such software. In addition, all
software dependencies of these routes, such as the session Redis repository, or the
port binding software, has been already tested using unit tests. The unit tests for
the rest of the API routes, were performed using mocked software dependencies.
The LTI launch route was tested using unit tests, to check the functional
correctness of OAuth middleware along with the route and the session
management logic.

Table 4.4 presents the average execution time for each API route, given a valid
request and a successful response. Each test executed for 100 times, and the logged
time that was introduced in Section 4.4.3 for each route was logged to a file. Later,
the average execution time was computed. Then tests run sequentially for each
endpoint, using the go test command line for executing Ginkgo specifications.

94

4.4. EVALUATION

Table 4.4: Average execution time for each endpoint

Route Mean execution time (ms)

POST /admin/login 75.4567226

GET /admin/logout 0.21936022

POST /admin/containers/run/:id 598.56898125

DELETE /admin/containers/kill/:id 426.9313529

POST /admin/containers/commit/:id 542.58344475

GET /admin/images 11.56397094

GET /admin/images/history/:id 1.38308949

DELETE /admin/images/delete/:id 22.59314895

The most time consuming operations were the ones that required the creation
of docker resources such as containers and images. The average execution time for a
container run request is 598.56898125ms which involves creating a container from a
given image, and then starting the container. The route /lti/launch/:id was not
included in the performance tests, since it re-uses the implementation of running a
container for the Tool Client, thus the only difference in performance would be the
one of decoding an LTI Launch XML request instead of a JSON request.

While unit and integration tests are available in Travis builds, the performance
tests were executed in physical machine. CPU and memory resources of Travis are
often shared by multiple virtual machines, thus, measuring execution time of such
software would depend on the system load at any given moment. The configuration
settings of the machine used to perform the benchmarks are listed in detail in
Appendix A. The modified code along with the time reports (stored in .csv files)
for each specification can be found in the branch report/benchmarks of the GitHub
repository [98] of this project.

95

Chapter 5

Conclusions and Future Work

LMSs are designed to improve learning, teaching and administrative tasks in
higher education. Among their most important features is the integration of
external applications that provides personalized domain specific e-learning.
Student understanding of CS domains such as computer networks involve in their
curriculum hands-on experience via exercise material and laboratory practice.
Such practice is usually performed within a traditional physical classroom and
computer labs, and little progress has been made to offer similar learning
experience within the context of a virtual classroom and e-learning. This thesis
project investigated the integration of on-demand virtual laboratory environments
for Internetworking e-learning with Canvas LMS leveraging the capabilities of
Docker container virtualization. The outcome of this work is a software artifact
that provides a method for instructors to easily build, manage and integrate
virtual laboratory environments that are available to students as exercise material
through an LMS.

5.1 Conclusions

One of the main points of this thesis is that a student or instructor can
dynamically instantiate virtual exercise environments within a reasonable upper
bounded time. The basic benchmarks that were presented in Section 4.4.4
indicated that accessing such environments can be achieved within less than a
second, while their integration with the LMS improved their accessibility,
comparing to traditional labs, where students and instructors are required to be
physically present. Moreover, the preparation and configuration of the exercises
can be performed as easily and within the same upper bounded time with
accessing the environments. With traditional computer laboratories, institutions
have a high cost for setting up and maintaining their own infrastructure, that
includes human and server resources. Often such setups, have high utilization
during pre-defined periods of the academic calendar, while their overall usage
throughout a year is pretty low. Leveraging cloud technologies, one can argue that

97

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

such cost can be reduced and at the same time utilize the clouds’ burst
capabilities to serve the high demand during periods of the academic year while
empowering distant learning.

The design science research methodology that was followed during this work,
resulted to in-depth analysis of related work such as INGInious and the LTI
specification, that concluded the initial system architecture. In addition, using
existing software, allowed for a proof of concept implementation that fulfilled the
initial design goals, while setting strong foundations for a future implementation
of a scalable virtual laboratory that empowers Internetworking e-learning.

The LTI specification is well documented and simple to understand, since it is
based on the widely known implementation of the OAuth authentication protocol.
Although this work was limited to the LTI specification, the underlying work with
the API and the Docker containers, allows for implementing several interoperability
protocols, and expose them as different API endpoints, that can offer integration
capabilities with several LMSs.

Choosing the Go programing language for the source code implementation of
this project proved to be easier than expected, since the language is simple to learn
and understand and widely adopted by the open source community that offers high
quality documentation and examples for performing various programming tasks.
In addition, the built-in support of the language for testing and benchmarking
methodologies, improves the quality of source code, and drives developers to write
simple, extensible and readable code.

The chosen method for accessing docker containers was a web based emulator
of an SSH connection to a remote server. Although such choice proved to be
particularly useful for testing and presenting the implementation of an LTI
Launch case, it had several drawbacks. The host system required to expose a
series of ports in order to allow a predefined number of containers to run and
forward network packets from the host system to the docker daemon and the API,
and at the same time exposed such ports to the user. The jQuery framework used
to develop the web interface of the LTI Tool Client faced several problems when
requesting resources from multiple hosts such as the API running on port 8080

and the containers running on a range of ports of the same server. A
production-ready implementation of such system would run the API server in a
different environment than the Docker server, and potentially use some sort of web
proxy to route traffic between those servers without the user being aware of the
underlying network configuration.

Finally, the use of technologies such as GitHub, Travis CI and CodeCov,
contributed positively to the sustainability of this work, by enabling the reader to
inspect the source code, the configuration settings of the development environment
in a remote cloud infrastructure, and the evaluation methods used to test the
software artifact. In addition, other software dependencies such as the docker
images and the Canvas LMS setup has been version controlled in Docker Hub and
GitHub repositories respectively.

98

5.2. FUTURE WORK

5.2 Future work
This section introduces various topics that should be investigated as part of the
future work related to this project. Section 5.2.1 addresses different approaches to
scaling the LTI Tool Client and its docker dependencies. Section 5.2.2 lists
alternative implementations for web based shell emulators. Section 5.2.3 discusses
future functionality of the LTI Tool Client. Section 5.2.4 lists approaches to
evaluate the performance and implementation of the “Periodic Checker” module.
Section 5.2.5 documents functionality that should be implemented to improve the
performance, stability, and usability of the TP. Finally, Section 5.2.6 discusses
ideas for supporting automatic evaluation of assignments.

5.2.1 Scalability

The architectural design of the implementation presented in Chapter 4 has limited
scalability. The Docker daemon and the TP are running in the same virtual
machine on one physical computer system, hence they are bound by the CPU and
memory resources that the underlying physical machine provides, hence the
containers aggregate resource consumption is limited. In addition, this setup has
limitations on the number of ports the Docker daemon can use to bridge network
connections between the containers and the host system. A lot of work has been
done in deploying scalable clusters of container runtime environments. Docker
Swarm [105] has clustering capabilities for turning groups of Docker Engines into a
single, virtual Docker Engine. Swarm treats each Docker Engine as a node of a
decentralized distributed system, and offers a series of features such as load
balancing and methods for scaling applications running in a cluster. This
functionality is available via the Docker Swarm API[106] that is designed to be
(mostly) compatible with the Docker Remote API∗.

5.2.2 Web based shell emulators

Shell In A Box was chosen as the web terminal emulator, but there are alternative
implementations that have not being investigated as this was outside the scope of
this project. In addition, the base container image used by the Tool Client was
not evaluated. The configuration of the shellinabox software package has more
capabilities than supported in the docker image sspreitzer/shellinabox. Some
of these additional features that may prove useful in this project are: predefined TLS
certificates for the Shell in a Box server, specifying Linux user groups, usernames,
disabling or enabling sudo access for users of a particular container image, and
customization of the CSS of the web emulator.

Section 2.7 presented three configuration parameters of the
sspreitzer/shellinabox container image, that were used in this project. These

∗Some API endpoints of Docker Remote API have not yet been implemented in the Docker
Swarm API. These missing endpoints are documented in the official documentation page [106].

99

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

parameters were SIAB USER that defines the username to be used when accessing
the container via an SSH session, SIAB PASSWORD that defines the user’s password,
and SIAB SUDO that provides the user with sudo access. During the
implementation of the “Commit Container” functionality for the Tool Client, it
was decided that all users would have the username “guest”, but different
passwords.

When a container of the chosen image is created (i.e. for the admin user of the
Tool Client), a default user group and identifier is chosen for the given user. If a new
image is created using this container, this user group and identifier are reserved for
the admin user. As a consequence, when running a container of this newly created
image, the default settings will collide with the ones committed by the admin, hence
the container fails to start the Shell in a Box web server. Discarding the SIAB USER

parameter from the creation process of a container, resulted in the use of the default
“guest” user and solved the problem temporarily, but created additional security
issues such as, any user knowing the port number and the password of another
user can access their running shell. To overcome this issue, a new method should
be implemented using the entrypoint.sh† and the Dockerfile‡, that deletes the user
group, the user, etc., used by the admin when an image is created using a running
container.

This project assumed that a web based emulator would be a suitable method
for accessing a laboratory environment. As part of future work, an alternative
implementation should be investigated, that instead of returning an emulator shell,
directly provides configuration settings, such as an ssh key for download, so that the
user can ssh directly into the container from her own terminal. This will probably
be more useful than using a shell running in a browser window, as users will not rely
on their browser communicating with the emulator, but instead will rely directly
on their local ssh agent.

5.2.3 Tool Client user interface design

The design of the Tool Client was not based on user research, i.e., how the user
expects to access an emulator shell and what views are desired by an admin to
easily manage container images. In addition, the implemented functionlity of the
Tool Client is very limited. An instructor will want to have a way of knowing
which images are created and which assignments these container images are
associated with. A user-oriented approach should be used, to identify the most
important functionality for the admin user and students. In addition to defining
the required functionality, the method of presenting this functionality should be
investigated. This could use methodologies of “User Experience Design”[107] such
as wireframes, prototypes, and user stories. Additionally, the system should be

†The file entrypoint.sh of the {sspreitzer/shellinabox} container image is a bash script that
initializes parameters required by the web server to start.

‡The Dockerfile is text configuration file that contains all the commands a user could pass on
a command line to assemble an image.

100

5.2. FUTURE WORK

evaluated using real users, in order to identify usability issues and limitations,
while exploring alternatives.

5.2.4 Evaluation of the Periodic Checker module

Section 4.1.6 introduced the functionality of the PeriodicChecker module. The
algorithm explained in that section is based on several assumptions, such as the
availability of the Redis session storage and that a periodic check will complete in
sufficient time to avoid timeouts of HTTP user requests that are handled by mutex
locked goroutines. For example, during a scheduled check, the module identifies that
a container port is no longer used and it marks its value in the PortResources map
as false. Right after that a request to Redis session storage is performed to remove
any keys associated with that port. The request to Redis is performed synchronously
and the function waits for a response, hence every goroutine that is trying to access
the PortResources map, will be blocked until Redis replies. A request to run a
container might time out due to this waiting. As part of future work, the system
should be benchmarked and tested against such scenarios, to decide whether the
Redis session storage is appropriate for storing running container configurations.

In addition, Go provides an additional mechanism for accessing memory
resources concurrently. This mechanism is called a channel, and it allows a
goroutine to send values to another goroutine. The functionality of channels
should be investigated, and compared against the implementation of mutex locks,
to identify whether such an implementation would be beneficial for performing
atomic operations on the PortResources map.

5.2.5 Desired Features

During the implementation of the Tool Client, various use cases were explored and
these inspired the features described in this section. The desired features are:

• The system should evaluate if an image is functional after it is committed. A
functional image is defined as a container image that can successfully launch
the web SSH emulator process. A process should be implemented that tests a
newly created image against such criteria, and if an image fails to pass, then
the admin user of the Tool Client should be notified and the image should be
flagged as problematic.

• The RDBMS schema should be extended to include information that
associates a container image with an assignment along with additional
information provided by the admin user of the Tool client. This information
should be visible in the Tool Client.

• The implementation of the session storage mechanism does not allow a user
to run multiple container images at the same time. This is a limitation, as a
student might want to complete multiple assignments at the same time and

101

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the admin user might wish to launch multiple container images to verify or
copy configurations.

• The Tool Client should support a page that presents the admin user with
a page providing additional useful information, such as which containers are
running at the time the page is requested and which users are associated
with each container. In addition, such a page could provide analytics about
the previous usage of the containers, such as the duration of each currently
running container session, average and mean execution times per image (or
assignment), etc.

• The user interface of the LTI Launch and the Tool Client performs
synchronous requests to the server to implement requests to running a
container (i.e., HTTP POST requests to the /admin/containers/run/:id

and HTTP POST requests to /lti/launch/:id). The interface assumes
that after a successful response from the server, the requested container will
continue running. However, if a container crashes, the user is not informed.
An implementation that asynchronously checks (for example, by doing
heartbeat monitoring) whether the requested container is still running along
with methods to present failure results to the user should be investigated.

5.2.6 Assignment evaluation
Part of the initial idea for this project, was to design a system that supports
automatic evaluation of assignments and reporting of analytics that will assist in
the learning process for both students and instructors. Section 2.8.3 explained
how INGInious supports automatic evaluation of coding assignments with unit
testing. Unfortunately, Internetworking assignments have different requirements
than a coding assignment. As part of future work, such requirements should be
investigated to conclude if similar unit-testing approaches can be used to evaluate
Internetworking assignments.

In addition to the evaluation, an instructor is often interested in how much time
a student takes to complete an assignment. Several time-tracking approaches could
be used to extract such analytics for an instructor.

102

References

[1] Computer System Engineering - M.I.T. Department of EECS. Understanding
TCP using tcpdump. http://web.mit.edu/6.033/www/assignments/

handson-tcp.html. [Online; accessed 2017-01-02].

[2] William R. Watson and Sunnie Lee Watson. An argument for clarity: what
are learning management systems, what are they not, and what should they
become? TechTrends, 51(2):28–34, 2007.

[3] Stefan Boesen, Richard Weiss, James Sullivan, Michael E. Locasto, Jens
Mache, and Erik Nilsen. EDURange: Meeting the Pedagogical Challenges
of Student Participation in Cybertraining Environments. In 7th Workshop on
Cyber Security Experimentation and Test (CSET 14), San Diego, CA, August
2014. USENIX Association.

[4] Ricardo Nabhen and Carlos” Maziero. Education for the 21st Century —
Impact of ICT and Digital Resources: IFIP 19th World Computer Congress,
TC-3, Education, August 21–24, 2006, Santiago, Chile, chapter Some
Experiences in Using Virtual Machines for Teaching Computer Networks,
pages 93–104. Springer US, Boston, MA, 2006.

[5] Introducing hands-on experience to a massive open online course on openhpi.

[6] Instructure, Inc. Canvas Learning Management System. https://www.

canvaslms.com/. [Online; accessed 2016-02-21].

[7] Daniela Fonte, Daniela da Cruz, Alda Lopes GanÃ§arski, and Pedro Rangel
Henriques. A flexible dynamic system for automatic grading of programming
exercises. In OASIcs-OpenAccess Series in Informatics, volume 29. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[8] Guillaume Derval, Anthony Gego, Pierre Reinbold, Benjamin Frantzen, and
Peter Van Roy. Automatic grading of programming exercises in a MOOC
using the INGInious platform.

[9] Ricardo Queirós and José Paulo Leal. Programming Exercises Evaluation
Systems - An Interoperability Survey. In CSEDU (1), pages 83–90, 2012.

103

REFERENCES

[10] NS-3 Consortium. NS-3 Simulator. https://www.nsnam.org/overview/

what-is-ns-3/.

[11] Alan Hevner and Samir Chatterjee. Design Science Research in Information
Systems. In Design Research in Information Systems, volume 22, pages 9–22.
Springer US, Boston, MA, 2010.

[12] Vijay K. Vaishnavi and William Kuechler, Jr. Design Science Research
Methods and Patterns: Innovating Information and Communication
Technology. Auerbach Publications, Boston, MA, USA, 1st edition, 2007.

[13] Alan R. Hevner. A three cycle view of design science research. Scandinavian
journal of information systems, 19(2):4, 2007.

[14] C. Alario and S. Wilson. Comaprison of The Main Alternatives To
The Integration of External Tools in Different Platforms. In ICERI2010
Proceedings, 3rd International Conference of Education, Research and
Innovation, pages 3466–3476. IATED, 15-17 November, 2010 2010.

[15] Open edX as an LTI Tool Provider. https://open.edx.org/blog/

open-edx-lti-tool-provider. [Online; accessed 2016-02-28].

[16] Md. Iqbal Hossain and Md. Iqbal Hossain. Dynamic scaling of a web-based
application in a Cloud Architecture. Master’s thesis, KTH, Radio Systems
Laboratory (RS Lab), 2014.

[17] Ryann K Ellis. Field Guide to Learning Management Systems, 2009.

[18] José Paulo Leal and Ricardo Queirós. A comparative study on LMS
interoperability. Higher Education Institutions and Learning Management
Systems: Adoption and Standardization, page 142, 2011.

[19] Wynne Harlen and Mary James. Assessment and Learning: differences and
relationships between formative and summative assessment. Assessment in
Education: Principles, Policy & Practice, 4(3):365–379, November 1997.

[20] Janne Malfroy Kevin Ashford-Rowe. E-Learning Benchmark Report:
Learning Management System (LMS) usage. http://www.uws.edu.

au/__data/assets/pdf_file/0007/452077/Griffith_UWS_Elearning_

Benchmark_Report.pdf, 2009.

[21] ISO. Information Technology Vocabulary. ISO 2121317 - 2382:2015,
International Organization for Standardization, 2015.

[22] IMS GLOBAL Learning Consortium. Learning Tools
Interoperability ®(LTI®). http://www.imsglobal.org/activity/

learning-tools-interoperability. [Online; accessed 2016-02-23].

104

REFERENCES

[23] Ricardo Queirós, José Paulo Leal, and José Paiva. Integrating rich learning
applications in LMS. In State-of-the-Art and Future Directions of Smart
Learning.

[24] IMS Learning Information Services. https://www.imsglobal.org/lis/.
[Online; accessed 2016-02-28].

[25] Ruby Sinatra - official documentation page. http://www.sinatrarb.com/

documentation.html. [Online; accessed 2016-07-17].

[26] Alan Harris and Konstantin Haase. Sinatra: Up and Running. O’Reilly Media,
Inc., 1st edition, 2011.

[27] LTI Outcome Service Example using Canvas LMS. https://github.com/

instructure/lti_example. [Online; accessed 2016-04-23].

[28] IMS Global Learning Consortium including the IMS Logos, Learning Tools
Interoperability® (LTI®). IMS Global General Web Services. https://www.
imsglobal.org/gws/index.html. [Online; accessed 2016-07-27].

[29] IMS Global Learning Consortium including the IMS Logos, Learning Tools
Interoperability® (LTI®). IMS Global Learning Tools Interoperability™

Implementation Guide. https://www.imsglobal.org/specs/ltiv1p1/

implementation-guide. [Online; accessed 2016-07-27].

[30] Ed. E. Hammer-Lahav. The OAuth 1.0 protocol, April 2010.

[31] OpenSSL Software Foundation. OpenSSL cryptography and SSL/TLS toolkit.
https://www.openssl.org/. [Online; accessed 2016-08-07].

[32] Marcus Redivo. Creating and using SSL certificates. http://www.eclectica.
ca/howto/ssl-cert-howto.php. [Online; accessed 2016-08-07].

[33] OpenSSL Software Foundation. OpenSSL - official documentation of
command req. https://www.openssl.org/docs/manmaster/apps/req.

html. [Online; accessed 2016-08-07].

[34] Phil Dibowitz. Openssl.conf walkthru. https://www.phildev.net/ssl/

opensslconf.html. [Online; accessed 2016-08-07].

[35] An open LTI app collection. https://www.eduappcenter.com/. [Online;
accessed 2016-07-11].

[36] Instructure Inc. Instructure. https://www.instructure.com/. [Online;
accessed 2016-07-17].

[37] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. Virtualization vs
Containerization to Support PaaS. pages 610–614. IEEE, March 2014.

105

REFERENCES

[38] Linux Containers - LXC. https://linuxcontainers.org/lxc/

introduction/. [Online; accessed 2016-02-28].

[39] Linux Programmer’s Manual, overview of Linux namespaces. http://man7.

org/linux/man-pages/man7/namespaces.7.html. [Online; accessed 2016-
02-28].

[40] Rami Rosen. Linux containers and the future cloud. Linux J, 240, 2014.

[41] Docker Inc. Docker. https://www.docker.com/. [Online; accessed 2016-02-
28].

[42] Docker Inc. Libcontainer implementation. https://github.com/

opencontainers/runc/tree/master/libcontainer. [Online; accessed 2016-
11-20].

[43] LXC container driver. https://libvirt.org/drvlxc.html. [Online;
accessed 2016-11-20].

[44] systemd-nspawn. https://www.freedesktop.org/software/systemd/man/

systemd-nspawn.html. [Online; accessed 2016-11-20].

[45] The Linux Foundation®. Open Container Initiative. https://www.

opencontainers.org/about. [Online; accessed 2016-11-20].

[46] Docker Inc. Docker Command Line Reference. https://docs.docker.com/

engine/reference/commandline. [Online; accessed 2016-11-20].

[47] Docker Remote API. https://docs.docker.com/engine/reference/api/

docker_remote_api. [Online; accessed 2016-11-20].

[48] Michael Kerrisk. Unix pseudoterminal interface. http://man7.org/linux/

man-pages/man7/pty.7.html, 2005. [Online; accessed 2016-11-20].

[49] Web based SSH. https://en.wikipedia.org/wiki/Web-based_SSH.
[Online; accessed 2016-11-19].

[50] Dan McDougall. GateOne. https://github.com/liftoff/GateOne. [Online;
accessed 2016-11-20].

[51] Markus Gutschk. shellinabox.

[52] Digital Equipment Corporation. VT100 Series Technical Manual, 1979.

[53] Holdener, III, Anthony T. Ajax: The Definitive Guide. O’Reilly, first edition,
2008.

[54] Sascha Spreitzer. shellinabox for docker. https://github.com/sspreitzer/
docker-shellinabox. [Online; accessed 2016-11-20].

106

REFERENCES

[55] The Linux Foundation. The Linux foundation wiki - bridge. https://wiki.
linuxfoundation.org/networking/bridge. [Online; accessed 2016-12-18].

[56] Docker Inc. Docker documentation - customize the docker0 bridge.
https://docs.docker.com/engine/userguide/networking/default_

network/custom-docker0/. [Online; accessed 2016-12-18].

[57] The Evergreen State College Olympia, Washington. EDURange: A
Cybersecurity Competition Platform to Enhance Undergraduate Security
Analysis Skills. http://blogs.evergreen.edu/edurange/. [Online; accessed
2016-02-28].

[58] Amazon Elastic Compute Cloud - Amazon EC2. https://aws.amazon.com/
ec2/. [Online; accessed 2016-02-28].

[59] EDURange Github project. 2014. [Online; accessed 2016-02-28].

[60] Carlos Alario-Hoyos, Miguel L. Bote-Lorenzo, Eduardo Gómez-Sánchez,
Juan I. Asensio-Pérez, Guillermo Vega-Gorgojo, and Adolfo Ruiz-Calleja.
GLUE!: An architecture for the integration of external tools in Virtual
Learning Environments. Computers & Education, 60(1):122–137, 2013.

[61] INGinious by Université Catholique de Louvain. http://inginious.org/.
[Online; accessed 2016-02-28].

[62] Github repository of INGInious. https://github.com/UCL-INGI/

INGInious. [Online; accessed 2016-02-28].

[63] Technical documentation of INGInious. http://inginious.readthedocs.

org. [Online; accessed 2016-02-28].

[64] Teacher documentation of INGInious. http://inginious.readthedocs.io/
en/latest/teacher_documentation.html. [Online; accessed 2016-02-28].

[65] Vijay K. Vaishnavi and William Kuechler, Jr. Design Science Research in
Information Systems. January.

[66] Ruby on Rails - official web page. http://rubyonrails.org/. [Online;
accessed 2016-07-17].

[67] Instructure, Inc. Canvas LMS Istallation Quick Start Wiki Page. https:

//github.com/instructure/canvas-lms/wiki/Quick-Start. [Online;
accessed 2016-11-07].

[68] HashiCorp. Vagrant. https://www.vagrantup.com/. [Online; accessed 2016-
08-07].

[69] Oracle. VirtualBox. https://www.virtualbox.org/. [Online; accessed 2016-
08-07].

107

REFERENCES

[70] Andreas Kokkalis. Canvas LMS installation using Vagrant. https://github.
com/andreas-kokkalis/canvas_lms_vagrant. [Online; accessed 2016-08-
07].

[71] The Go Programming Language. https://golang.org/. [Online; accessed
2016-08-07].

[72] Alan A.A. Donovan and Brian W. Kernighan. The Go Programming
Language. Addison-Wesley Professional, 1st edition, 2015.

[73] Go package net/http. https://golang.org/pkg/net/http/. [Online;
accessed 2016-08-07].

[74] Julien Schmidt. HttpRouter - a trie based high performance HTTP
request router. https://github.com/julienschmidt/httprouter. [Online;
accessed 2016-12-07].

[75] Docker Inc. Go implementation of the Docker Remote API library. https:

//godoc.org/github.com/docker/docker/client. [Online; accessed 2016-
08-07].

[76] Go package context. https://golang.org/pkg/context/. [Online; accessed
2016-12-07].

[77] The Go Programming Language Specification. https://golang.org/ref/

spec#The_zero_value. [Online; version 2016-05-31].

[78] Docker Inc. Docker Checkpoint and Restore. https://github.com/docker/
docker/blob/master/experimental/checkpoint-restore.md. [Online;
accessed 2016-12-18].

[79] Redis. https://redis.io/. [Online; accessed 2016-12-18].

[80] Type-safe Redis client for Golang. https://github.com/go-redis/redis.
[Online; accessed 2016-12-18].

[81] PostgreSQL - open source object relational database system. https://www.

postgresql.org/. [Online; accessed 2016-12-18].

[82] Go package database/sql. https://golang.org/pkg/database/sql/.
[Online; accessed 2016-12-18].

[83] Pure Go Postgres driver for database/sql. https://github.com/lib/pq.
[Online; accessed 2016-12-18].

[84] The jQuery Foundation. ajax function of jquery for performing asynchronous
http (ajax) requests. https://api.jquery.com/jquery.ajax/. [Online;
accessed 2016-12-18].

108

REFERENCES

[85] J.Reschke R. Fielding. Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content, June 2014.

[86] tcpdump - command line packet analyzer. http://www.tcpdump.org/.
[Online; accessed 2016-12-18].

[87] Jordi Collell. Golang LTI - Go Tools for working with the LTI specification.
https://github.com/jordic/lti. [Online; accessed 2016-12-18].

[88] Software Testing Levels. http://softwaretestingfundamentals.com/

software-testing-levels/. [Online; accessed 2017-12-29].

[89] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Robert C. Martin Series. Prentice Hall, Boston, MA,
2017.

[90] Manuel Kiessling. Applying the Clean Architecture to Go
applications. http://manuel.kiessling.net/2012/09/28/

applying-the-clean-architecture-to-go-applications/. [Online;
accessed 2017-12-29].

[91] Go package testing. https://golang.org/pkg/testing/. [Online; accessed
2017-12-28].

[92] Rob Pike. The Go Blog, The cover story. https://blog.golang.org/cover.
[Online; accessed 2017-12-28].

[93] IBM Knowledge Center. Source code instrumentation overview.
https://www.ibm.com/support/knowledgecenter/SSSHUF_8.0.0/com.

ibm.rational.testrt.doc/topics/cinstruovw.html. [Online; accessed
2017-12-29].

[94] gcov - A Test Coverage Program. [Online; accessed 2017-12-29].

[95] ®Travis CI, GmbH. Travis CI. https://about.travis-ci.com/. [Online;
accessed 2017-12-29].

[96] John Ferguson Smart. Jenkins: The Definitive Guide. O’Reilly Media, Inc.,
2011.

[97] Travis builds of dock server github project. https://travis-ci.org/

andreas-kokkalis/dock_server/. [Online; accessed 2017-12-29].

[98] Andreas Kokkalis. Github project of On-demand virtual laboratory
environments for Internetworking e-learning: A first step using docker
containers. https://github.com/andreas-kokkalis/dock_server.
[Online; accessed 2017-12-29].

109

REFERENCES

[99] Codecov. Home page of Code Coverage tool. https://codecov.io/. [Online;
accessed 2017-12-29].

[100] Source code statement coverage reports of the dock server GitHub project.
https://codecov.io/gh/andreas-kokkalis/dock_server. [Online;
accessed 2018-01-03].

[101] Onsi Fakhouri. A Golang Behavior Driven Design Testing Framework. https:
//onsi.github.io/ginkgo/. [Online; accessed 2018-01-03].

[102] J.F. Smart. BDD in Action: Behavior-Driven Development for the Whole
Software Lifecycle. Manning Publications Company, 2014.

[103] Inc. Bazaarvoice. JSON to JSON diff tool. https://github.com/

bazaarvoice/json-regex-difftool.

[104] Apache license, version 2.0.

[105] Docker Inc. Docker swarm. https://www.docker.com/products/

docker-swarm. [Online; accessed 2017-01-02].

[106] Docker Inc. Docker swarm api. https://docs.docker.com/v1.9/swarm/

api/swarm-api/. [Online; accessed 2017-01-02].

[107] Sari Kujala, Virpi Roto, Kaisa Väänänen-Vainio-Mattila, Evangelos
Karapanos, and Arto Sinnelä. UX Curve: A Method for Evaluating Long-term
User Experience. Interact. Comput., 23(5):473–483, September 2011.

110

Appendix A

Development and testing setup

The development and testing of this project were performed using a laptop machine
with the following setup:

• Operating system: Ubuntu Linux 16.04.3 Long Term Support (LTS).

• CPU: Intel® Core™ i7-7500U CPU 2.70GHz x 4

• Memory: 16GB

• Go version: go1.9.2 linux/amd64

The Docker engine installation had the following settings as extracted by
executing the command docker version:

• Version: 17.12.0 Community Edition

• API version: 1.35 (minimum version 1.12)

• Go version: go1.9.2

• Git commit: c97c6d6

• Built: Wed Dec 27 20:09:53 2017

• OS/Arch: linux/amd64

• Experimental mode: enabled

The docker containers used as dependencies for Redis and PostgreSQL were:

• Redis: redis:4.0 or redis:latest

• PostgreSQL: postgres:9.6.1

The containers used during implementation and testing can be found under the
Docker Hub url https://hub.docker.com/r/andreaskokkalis/dc/tags/.

111

TRITA-EECS-EX-2018:16

www.kth.se

