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Abstract

The advent of the fifth generation mobile networks (5G) presents many new challenges
to satisfy the requirements of the upcoming standards. The 5G Radio Access Network
(RAN) has several functions which must be highly optimized to keep up with increasing
performance requirements. One such function is the Packet Processing Function (PPF) which
must process network packets with high throughput and low latency. A major factor in
the pursuit of higher throughput and lower latency is adaptability of 5G technology. For
this reason, Ericsson has developed a prototype 5G RAN PPF as a Virtualized Network
Function (VNF) using an extended version of the Data Plane Development Kit’s Eventdev
framework, which can be run on a general purpose computer. This thesis project optimizes
the throughput and latency of a 5G RAN PPF prototype using a set of benchmarking and
code profiling tools to find bottlenecks within the packet processing path, and then mitigates
the effects of these bottlenecks by changing the configuration of the PPF.

Experiments were performed using IxNetwork to generate 2 flows with GTP-u/UDP/IPv4
packets for the PPF to process. IxNetwork was also used to measure throughput and latency
of the PPF.

The results show that the maximum throughput of the PPF prototype could be increased by
40.52% with an average cut-through latency of 97.59% compared to the default configuration
in the evaluated test case, by reassigning the CPU cores, performing the packet processing
work in fewer pipeline stages, and patching the RSS function of the packet reception (Rx)
driver.

Keywords: 5G, RAN, virtualization, packet processing, NFV, optimization.





iii

Sammanfattning

Med den annalkande femte generationen av mobila nätverk (5G) följer en rad utmaningar
för att uppnå de krav som ställs av kommande standarder. Den femte generationens
Radioaccessnätverk (RAN) har flera funktioner som måste vara väloptimerade för att
prestera enligt ökade krav. En sådan funktion är Packet Processing-funktionen (PPF), vilken
måste kunna bearbeta paket med hög genomströmning och låg latens. En avgörande
faktor i jakten på högre genomströmning och lägre latens är anpassningsbarhet hos 5G-
teknologin. Ericsson har därför utvecklat en prototyp av en PPF för 5G RAN som en virtuell
nätverksfunktion (VNF) med hjälp av DPDK:s Eventdev-ramverk, som kan köras på en dator
avsedd för allmän användning. I detta projekt optimeras genomströmningen och latensen
hos Ericssons 5G RAN PPF-prototyp med hjälp av ett antal verktyg för prestandamätning
och kodprofilering för att hitta flaskhalsar i pakethanteringsvägen, och därefter minska
flaskhalsarnas negativa effekt på PPFens prestanda genom att ändra dess konfiguration.

I experimenten användes IxNetwork för att generera 2 flöden med GTP-u/UDP/IPv4-paket
som bearbetades av PPFen. IxNetwork användes även för att mäta genomströmning och
latens.

Resultaten visade att den maximala genomströmningen kunde ökas med 40.52% med en
genomsnittlig latens på 97.59% jämfört med den ursprungliga PPF-prototypkonfigurationen
i testfallet, genom att omfördela processorkärnor, sammanslå paketbearbetningssteg, och att
patcha RSS-funktionen hos mottagardrivaren.

Nyckelord: 5G, RAN, virtualisering, packet processing, NFV, optimering.
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Chapter 1

Introduction

This chapter gives an introduction to the subject of this thesis and includes a brief overview
of the latest developments in mobile networks, specifically 5G, along with a description
of the problem of implementing efficient and future proof packet processing. A concrete
research question is presented along with an explanation of the purpose and goals of the
thesis.

1.1 Motivation

Mobile networks have rapidly become an omnipresent part of people’s daily lives in the
past few decades, giving access to quick and easy communication in nearly all parts of the
world. As the evolution and integration of technology into our everyday lives continues,
the demand for better coverage, quality of service, lower latency, and higher data rates in
mobile networks continues to increase. According to a 2016 Cisco∗ white paper, the global
total amount of mobile data traffic reached an estimated 3.7 exabytes (EB) per month during
the year 2015 [1]. The same paper predicts an increase from 3.7 EB/month globally in 2015
to 30.6 EB/month by the year 2020, which would mean an increase of 827% in the five years
following 2015.

To keep up with the increasing volume of mobile data, mobile networks have to constantly
adapt and evolve. Currently, the fifth generation of mobile networks also known as 5G
is under development and has been predicted to arrive around the year 2020 [2, 3]. With
the transition from the fourth generation mobile networks (4G) to 5G networks comes
requirements for higher throughput and lower latency in the Radio Access Network (RAN).
A vital part of any 5G RAN architecture is the Packet Processing Function (PPF). The
PPF is responsible for the handling data packets flowing through the network. A highly
optimized PPF is an important component in order to provide the high throughput and
low latency proposed for the 5G standard. To reduce the cost of maintaining and updating
network functions such as the PPF, network operators have moved to Network Functions
Virtualization (NFV) [4, 5, 6]. Ericsson has followed this trend by developing a 5G RAN PPF
as a Virtualized Network Function (VNF). For example, this introduces a need for additional
performance considerations regarding packet I/O, as the cost of I/O will generally increase
∗ Cisco Systems, Inc.
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2 CHAPTER 1. INTRODUCTION

under virtualization with traditional Linux network drivers [7]. To combat this problem,
Ericsson’s PPF relies on Data Plane Development Kit (DPDK) [8], which reduces I/O cost
by giving user space applications direct access to the buffers of the Network Interface
Cards (NICs). Additionally, DPDK has functionality to improve the caching performance
of network applications, as well as data structures which allows lockless operations in
applications running on multicore systems. Ericsson’s 5G RAN PPF prototype uses DPDK’s
Eventdev framework [9] for scheduling and load balancing packet processing events over
multiple CPU cores, and is designed to run on multicore systems with at least 4 CPU
cores. The DPDK master thread requires one CPU core, while the rest of the CPU cores
can be configured to run Eventdev threads. The PPF prototype configures Eventdev to
run a centralized software scheduler on its first logical core (lcore), packet reception (Rx)
and transmission (Tx) on its second lcore, and worker threads on the remaining lcores.
The Eventdev configuration plays an important role in the optimization of Ericsson’s PPF
prototype and will be described in greater detail in Section 2.2.4. Virtualization and NFV
will be described in Section 2.2.1.

This thesis studies the packet processing performance of a 5G RAN PPF prototype developed
by Ericsson, by profiling its software and measuring and evaluating the throughput and
latency while processing UDP/IP packets. A set of benchmarking and profiling tools were
used to used to gain insight about the bottlenecks of the PPF prototype in an attempt to
remove or mitigate the effects that these bottlenecks had on the throughput and latency of the
PPF prototype. The PPF prototype was optimized using by reconfiguration of the Eventdev
framework, including core assignments and consolidated packet processing stages. Lastly,
an optimization of the RSS computation in the Rx driver was performed to further improve
the throughput and latency performance. The purpose of this study was to gain a deeper
understanding of an existing prototype of a 5G RAN PPF, and to optimize a 5G RAN PPF
implementation in terms of throughput and latency.

1.2 Problem Statement

This thesis answers the question: "Given an NFV PPF prototype for the 5G RAN based on the
DPDK Eventdev framework, what are the bottlenecks of its packet processing path, and how can their
effects be mitigated?"

The investigation looks at implementation details of Ericsson’s 5G RAN PPF prototype, and
more specifically at its use of the Eventdev framework which is used for the scheduling of
packet processing events and packet reception (Rx) and transmission (Tx). To gain insight
into the bottlenecks and costly operations performed by the PPF prototype, Linux Perf
and IxNetwork was used. The Eventdev framework provides a number of configurable
parameters which affect for example the number of reception and transmission buffers,
the size of the bursts of events which are enqueued or dequeued for processing, a limit
on the number of new events which are allowed to enter the PPF prototype before old
events are processed, and more. These parameters, as well as the scheduling quanta for
different events, were considered when attempting to optimize the PPF’s throughput and
latency. The goal of this investigation was to provide an understanding of the effects of
different configurations and implementation details of the PPF prototype on its throughput
and latency when processing UDP/IP packets, and finally to optimize the performance of
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the PPF prototype.

The optimization process was focused on (1) configuration optimization and (2) code
optimization. While both methods were used to achieve better throughput and latency
performance, there is an intended distinction between the use of the terms as follows:

• Configuration optimization achieves increased performance of the PPF prototype by
changing the way it performs its tasks, i.e. a reassignment of CPU cores, changes to
the scheduling of tasks, or changes to the packet processing stages.

• Code optimization achieves increased performance by increasing the speed at which
tasks are performed, for example a speedup of the Receive Side Scaling (RSS) com-
putation without changing the way that the PPF prototype operates.

Uses of the term optimization alone in this thesis refers to configuration optimization or code
optimization interchangeably.

1.3 Purpose

The purpose of this thesis project was to aid Ericsson∗ in their development of a 5G RAN
by providing a deeper understanding of the effects that different configurations of the
Eventdev framework and other implementation details of a 5G RAN PPF have on the
processing of UDP/IP packets. By understanding which parameters have the greatest effect
on throughput, latency, and the execution of hot parts of the PPF prototype, the 5G RAN PPF
can be optimized. This thesis is a step towards an optimized implementation of the 5G RAN
PPF, and by extension a step towards a full deployment of the 5G standard to the market.

1.4 Goal

The end goal of this thesis project was to understand the effects of different configurations
of an implementation of the Eventdev framework on throughput and latency of a 5G RAN
PPF, and ideally to suggest the best 5G RAN PPF configuration from those that were studied.
The results are presented in terms of the throughput and latencies achieved for different
configurations of the adjustable parameters of the event device.

The thesis will be valuable to the teams at Ericsson working with the 5G RAN PPF by
providing a deeper understanding of its functions and configurability, to others who are
involved in the development of 5G RANs, and to others who want to implement efficient
packet processing functions. A concrete deliverable is a set of example configurations
which could aid in the design and evaluation of different packet processing function
implementations.

∗ Telefonaktiebolaget LM Ericsson



4 CHAPTER 1. INTRODUCTION

1.5 Delimitations

This thesis looks at different configurations of a 5G RAN PPF prototype developed by
Ericsson, and determines which of these configurations work best in terms of high through-
put and low latency of UDP/IPv4 packets. To determine which configuration works best,
tests were performed using Ixia’s∗ IxNetwork software to generate UDP network traffic
and perform throughput and latency measurements. In addition, the tools described in
Section 2.3.2 were used for code profiling and benchmarking. The aim of these tests
was to find critical parameters, potential bottlenecks, and costly operations caused by the
configuration of the Eventdev framework used by the PPF prototype, and to collect general
measurements on throughput and latency. The methodology of the throughput and latency
measurements is described in Sections 3.2 and 3.3, and are based on Ericsson’s previously
configured test cases. The throughput was measured using Ethernet frames of only 90 bytes,
which was close to the minimum possible size needed to accommodate a 32 byte payload
and all of the required encapsulation. Using 90 bytes as the only Ethernet frame size for
testing was deemed appropriate as these test results represent the worst case for throughput
performance (more formally goodput, due to the small payload size relative to the overhead
of the various headers). The number of packets per second (pps) was recorded. For the
latency tests, a mix of frames of 86 bytes, 592 bytes, and 1522 bytes were used.

There are several key capabilities of 5G which can all be viewed as performance indicators
- such as mobility, spectrum and energy efficiency, etc. This thesis will focus only on the
optimization of throughput (peak and user experienced data rate) and data plane latency. In
terms of optimizations of these capabilities, this thesis limits itself (1) to parameters within
the code of the Eventdev framework and its registered drivers which run inside the Virtual
Machine (VM) under the PPF prototype, and (2) potential optimizations of the hypervisor
settings.

1.6 Methodology

This thesis studies the effects on throughput and latency that different configurations of the
Eventdev framework and its configured drivers which are at the core of the PPF prototype
developed by Ericsson have. A combination of Linux Perf and IxNetwork were used to
profile the PPF to help identify the effects seen following a configuration adjustment. The
study was performed in the following steps:

1. Pre-study to find state-of-the-art network analysis and performance profiling tools to
help identify potential bottlenecks in the Eventdev framework of the PPF prototype.
IxNetwork was chosen for traffic generation and measurements, as it was compatible
with Ericsson’s testbed equipment and had all the basic measurement functionality
needed. Linux Perf was chosen for code profiling due to the relative ease of running it
on the PPF prototype, and due to its extensive profiling features.

2. Using the IxNetwork and Linux Perf, a baseline measurement of UDP/IP processing
with the 5G RAN PPF using the default event device configuration was produced. The
maximum throughput achieved without any packet drops was recorded, as well as the

∗ https://www.ixiacom.com/products/ixnetwork
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minimum, average, and maximum latency. Perf was used to identify expensive and
frequent function calls.

3. Iterative reconfigurations of the PPF prototype were made and analyzed using IxNet-
work and Linux Perf as described in step 2.

4. The results of these investigation are compiled and discussed in terms of throughput
and latency in Chapter 4.

5. Suggestions and considerations for a finished 5G RAN PPF product are presented in
Chapter 5.



Chapter 2

Background

This chapter explains the theoretical background for this thesis, including descriptions of 4G
and upcoming 5G mobile networks, packet processing, code profiling, and NFV.

2.1 4G/LTE and 5G Mobile Networks

Mobile networks are currently evolving from their reliance on a variety of 4G standards
towards an emerging 5G standard. This section describes the state of current mobile
networks and the architecture of their Radio Access Networks (RANs) as well as an overview
of the progress being made towards the development of a 5G standard. In this thesis we will
focus on the 4G and 5G standards as specified by the 3rd Generation Partnership Project
(3GPP).

2.1.1 State of Modern Mobile Networks

With the rapid worldwide increase in mobile data traffic and the advent of 5th generation
mobile networks (5G), the requirements on the performance of mobile networks will
drastically increase. The IMT-2020 specification suggested by Working Party 5D of ITU-R
lists a set of key parameters to define the performance of future mobile networks [10], of
which the first three are the subject of this thesis:

• Peak data rate - The maximum data rate under optimal conditions. Data rate means the
amount of data which can be sent through a part of a network per unit of time. This
thesis uses the terms throughput and data rate interchangeably. Throughput is often
given in the unit: bits/second (bps).

• User experienced data rate - The data rate that is achieved under typical conditions from
the perspective of a user.

• Latency - The time it takes for a packet to traverse the given part of a network from
entry to exit.

Also included in the key capabilities of IMT-2020 5G are requirements on:

6



CHAPTER 2. BACKGROUND 7

• Mobility,

• Connection density,

• Energy efficiency,

• Spectrum efficiency, and

• Area traffic capacity.

Mobile network standards differentiate between downlink (DL) and uplink (UL) capabilities
in their specifications. For example, IMT-2020 specifies different data rates and latencies for
the DL and UL. The DL in this case refers to data connections from the core network (CN)
towards the user equipment (UE), and the UL refers to the traffic from the UE towards the
CN. The latency specifications of IMT-2020 also differentiate between what is called the data
plane (sometimes user plane) and the control plane. The control plane comprises the functions
of the network concerned with for example routing and network topology, while the data
plane performs the actual forwarding of packet data according to the rules set by the control
plane. Since the data plane performs per packet operations while the control plane generally
does not, it is generally more important for data plane functions to be able to achieve the
lowest possible latency. The IMT-2020 5G specification suggests improvements over its 4G
predecessor IMT-Advanced with respect to all of the key capabilities, with a twentyfold
increase in the peak data rate and tenfold improvements to the user experienced data rate
and latency as shown in Table 2.1.

Table 2.1: Comparison of the 4G (IMT-Advanced) and 5G (IMT-2020) DL data rate and
latency specifications [10, 11].

4G (IMT-Advanced) 5G (IMT-2020)

Peak DL data rate (Gbps) 1 20

Ubiquitous DL data rate (Mbps) 10 100

Data plane latency (ms) 10 1

Control plane latency (ms) 100 10∗

The rest of this chapter introduces current and upcoming mobile network architectures
designed to implement 4G and 5G standards.

2.1.2 4G - E-UTRAN

The 4G RAN, formally known as Evolved Universal Terrestrial Radio Access Network,
abbreviated E-UTRAN), consists of a decentralized system of base stations called Evolved
NodeBs (eNBs), which communicate with each other via a standardized interface named X2.
The network of eNBs communication with the UEs via the Uu interface on one side and on
the other side with the CN via the standardized S1 interface[13].
∗ Based on use case analysis in [12].



8 CHAPTER 2. BACKGROUND

UE

E-UTRAN

Evolved
Packet

Core

Uu

X2

S1-U

S1-MME

eNB

eNB eNB

Internet

Figure 2.1: Simplified overview of the 4G architecture with E-UTRAN.

Each eNB performs both control plane and data plane tasks. The control plane tasks of the
eNB include radio resource management functions, such as radio bearer control, connection
mobility control, radio admission control, and dynamic resource allocation [14]. The data
plane is responsible for the handling and forwarding of actual user data.

In the data plane, the protocol stack of E-UTRAN is responsible for the communication
between UE and eNBs consists of a physical layer protocol generally referred to as PHY, a
data link layer consisting of the Medium Access Control (MAC), Radio Link Control (RLC),
and Packet Data Convergence Protocol (PDCP) protocols [15]. At the network layer, the UE
communicates with E-UTRAN gateways in the Evolved Packet Core (EPC). In the control
plane the IP protocol is replaced by the Radio Resource Control (RRC) and Non-Access
Stratum (NAS) protocols at the network layer [14]. Figure 2.2 shows the E-UTRAN protocol
stack.
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Figure 2.2: The protocol stack of E-UTRAN.

2.1.3 5G - New Radio

To achieve the performance and efficiency of the 5G RAN (also called New Radio (NR) [16])
specified in IMT-2020, the different network functions within the RAN architecture need to
be highly adaptable and configurable to account for their environment and specific use case.
For maximum flexibility and efficiency, 5G NR will likely be implemented as a combination
of several different sub-architectures based on different mechanisms. These architectures
include Distributed RAN (D-RAN) upon which E-UTRAN is based, Centralized RAN
(C-RAN), and Virtualized RAN (V-RAN). [17]

2.1.3.1 D-RAN

As explained in Section 2.1.2, E-UTRAN consists of a flat architecture of eNBs which work
together and communicate with both the UE and CN, and lacks centralized controllers. This
type of RAN without centralized control is known as D-RAN. D-RAN architectures come
with several benefits, such as high mobility by easy implementation of fast handovers of
UE connections [13], quick time to market, and easy deployment of individual base stations
[17]. However, D-RAN is not optimal in all scenarios. In some cases better throughput
and/or lower latency can be achieved by adding some degree of centralization, as will be
explained further on. An example of D-RAN was shown in Figure 2.1 on page 8, illustrating
the E-UTRAN architecture.

2.1.3.2 C-RAN

In E-UTRAN there is no centralized control to enable fast handovers of user connections
from a set of eNBs to another set of eNBs or to provide fast communication between eNBs
and UE. However, as the demand for higher data rates increases, the density of nodes must
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increase. Without any centralized logic to distribute workloads and allocate appropriate
network functions, denser deployment may lead to inefficiency in the utilization of nodes,
because of greater variance in workload between Radio Access Points (RAPs). The peak DL
data rate of 20 Gbps and latency of 1 ms anticipated for the 5G NR may be achieved by
ultra-dense deployment of RAPs together with centralized logic for on-demand allocation of
specific network functions. Such functions may for example include high bandwidth packet
delivery of streaming media to UEs or ultra-low latency messaging in machine-to-machine
communications, for example between driverless vehicles [18]. This type of architecture,
where centralized logic is used to allocate network functions, is referred to as Centralized
RAN (C-RAN). While decisions on the architecture of the 5G RAN are still being made, it
has been suggested that the 5G NR should be deployed with some degree of centralization
[17, 19].

UE

C-RAN

Fiber

RAP

RAP

Data center

Backhaul Core Network

Figure 2.3: An overview of a generic C-RAN architecture.

2.1.3.3 V-RAN

The development of 5G NR includes transitioning parts of the decentralized architecture of
E-UTRAN which relies on specific purpose processors, towards centralized logic and gen-
eral purpose processors with Software-Defined Networking (SDN) and Network Function
Virtualization (NFV) [19]. A RAN that runs Virtual Network Functions (VNFs) on general
purpose hardware is sometimes called a V-RAN. There are multiple potential benefits of
NFV which relate directly to the needs of a future 5G RAN. NFV allows for separation
of the logical network resources from physical network resources, hence running network
functions which traditionally would run on special purpose hardware on general purpose
hardware instead, which leads to [17]:

• Easy and cost effective deployment of new or upgraded VNFs.

• Scalability of the Virtual Machines (VMs) running each network function, leading to
increased flexibility in the RAN.

• Increased energy efficiency with several VNFs running on the same physical host
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machine and on different cores of the same processor.

2.1.3.4 5G New Radio and Cloud RAN

While the exact specifications of the 5G standard are yet to be fully determined, there have
been several suggestions about the details of the 5G NR architecture. Many point to what
is often called Cloud RAN [17, 18, 10], which generally means a combination of D-RAN,
C-RAN, and V-RAN where network functions can be allocated dynamically based on the
needs of the network user. The aim is to use the best suited parts of each type of architecture
for each use case in order to achieve the highest performance possible in the vastly different
situations that are expected to occur in the deployment of 5G NR.

5G has also been proposed to use Multiple Radio Access Technologies (Multi-RAT) to include
unlicensed spectrum for greater spectral efficiency [19]. For example, E-UTRAN can be
used for the control plane while 5G NR provides higher throughput and/or lower latency.
Multi-RAT solutions will likely also be required to provide coverage during the initial phase
of 5G deployment [17].

2.1.4 Functional Splitting of the 5G NR

An important factor in the performance of the 5G RAN is the way in which the network is
logically split into its different elements. This means the separation of network functions
with different characteristics - for example those with less strict requirements on latency
(mainly control plane functions) from those that require very low latency (for example data
plane functions) or functions that can benefit from NFV from those that cannot. In the context
of C-RAN, the degree of centralization, i.e. the decision of which network layers to centralize,
is also an important question as it will affect the performance of the RAN. The degree to
which the 5G RAN should be centralized is discussed in [17] and [18]. Centralization splits
are considered within the PHY layer, between the PHY and MAC layers, and between the
RLC and PDCP layers [17]. In the former case, parts of the PHY layer which can benefit
from running in a distributed architecture would remain distributed while the rest of the
PHY layer processing is centralized along with the higher layers. In the PHY-MAC split, a
distributed PHY layer and centralized MAC (and higher) layer is discussed. Similarly the
RLC-PDCP split suggests centralization of the PDCP layer and higher layers.

Erik Westberg provides an overview of the current E-UTRAN architecture and the envi-
sioned 5G RAN architecture, with descriptions of their respective functional splits [20], as
shown in Figures 2.4 and 2.5. A logical abstraction of the E-UTRAN architecture can be made
by splitting it into its Radio Unit (RU) and a Digital Unit (DU) functions. The RU function
performs the physical radio communication with the UE and connects to the DU function.
The DU function performs both control plane and data plane functions with different levels
of urgency.



12 CHAPTER 2. BACKGROUND

Digital Unit

User Equipment

Control Plane
Functions

Data Plane
Functions

4G RAN
Radio Unit

Internet

Core Network

Figure 2.4: An abstract overview of the 4G RAN architecture. Solid lines represent
connections between data plane functions and dashed lines represent connections between
control plane functions.

As demonstrated in the functional abstraction of E-UTRAN shown in Figure 2.4, the DU
function performs both control plane and data plane tasks, where the data plane generally
requires lower latency [11]. To pave the way for further optimizations to reduce the latency
of data plane functions, it is beneficial to separate architectural functions, increasing the
flexibility and configurability of individual functions. For example, the envisioned 5G
RAN architecture can be split into the functions depicted in Figure 2.5. In this functional
split, the Radio Function remains its own function while the DU function of E-UTRAN
is split into a Baseband Processing Function (BPF), Radio Control Function (RCF), and a
Packet Processing Function (PPF). While the BPF performs both control plane and data plane
functions, the RCF performs only control plane functions and the PPF mostly performs data
plane functions. Thus the functions of the RCF and PPF have been completely separated.
The suggested functions of the 5G RAN are well suited to NFV. Westberg suggests that the
BPF be implemented on specific purpose hardware due to its strict requirements on spectrum
efficiency, while the RCF is suitable for NFV. Implementation of the 5G RAN PPF as a VNF
is the subject of this thesis. Its configuration will be studied based on code profiling and
measurements of throughput and latency.
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Figure 2.5: An abstract overview of an envisioned 5G RAN architecture. Solid lines represent
connections between data plane functions and dashed lines represent connections between
control plane functions.

2.2 Packet Processing for 5G RAN

In today’s mobile networks, user equipment (UE) communicates with other UEs and with the
core network via radio base stations called eNBs, which perform different types of processing
of the data traffic. Packet processing is performed by an eNB; together with other types of
processing such as baseband processing which prepares data for efficient transmission over
the radio interface. A network packet is a unit of data which contains control information
such as the source and destination of the packet, and the actual data transmitted (i.e. the
payload). A Packet Processing Function (PPF) looks at the content of packets moving through
the network and performs operations on the packet’s data depending on the content of
the packet. The PPF may perform common and simple but time critical functions such
as forwarding of user data packets, and less frequent but more complex functions in the
control plane such as processing packets which contain information about network topology
changes, error handling, etc. The latter types of operations are often less critical in terms
of throughput and latency. The path of packets inside the PPF that is made up of the most
common and time critical operations is often referred to as the fast path and has traditionally
exploited some type of hardware acceleration. The corresponding slow path is made up of
the operations which require more advanced or less time critical types of processing and has
traditionally been performed in software running on a general purpose processor.

In E-UTRAN (as described in Section 2.1.2), the packet processing, as well as baseband and
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radio control, is performed by the eNB’s DU and runs on special purpose hardware. The 5G
RAN PPF, which has been factored out of the DU, represents a distinct unit as was shown in
Figure 2.5 on page 13. The 5G RAN PPF is a virtualized adaptation of the packet processing
elements of the eNB and is designed to run in a Cloud RAN architecture. The reasons for
running a virtualized 5G RAN PPF include greater adaptability and configurability, thus the
PPF VM guest can be installed on any general purpose machine that fulfills the hardware
requirements. This approach makes it easier to deploy a PPF, to configure the emulated
hardware of the VM to better accommodate the PPF software, and more.

This section will explain the concepts related to packet processing and how it is being im-
plemented for upcoming 5G standards. These concepts include virtualization, NFV, Event-
driven packet processing using DPDK, as well as packet I/O and its related performance
implications.

2.2.1 Virtualization

Virtualization enables multiple Virtual Machines (VMs) to run on physical machines. There
are multiple aspects of virtualization, each with different types of benefits. For example,
applications designed for an architecture different than that of the physical machine can be
run inside a VM that offers the desired architecture. A VM can also be very flexible because
its hardware components can be emulated, hence VMs can be easily changed without having
to replace any physical components. This section will explain the concepts of virtualization
and Network Function Virtualization (NFV). NFV refers to the virtualization of network
functions. NFV is a cornerstone in the development of large parts of the upcoming 5G
standard, and is largely the basis of the 5G RAN PPF.

Virtualization can be realized on many general purpose machines. Figure 2.6 shows an
overview of a generic virtualization setup. The physical machine, which is generally referred
to as the host machine or host, often runs an operating system referred to as the host OS.
This host OS runs a special type of software called a hypervisor, which provides support for
maintaining and running VMs. Some hypervisors are capable of running on bare-metal,
i.e. without a host OS - such hypervisors are called Type 1 hypervisors, while hypervisors
running on top of a host OS are called Type 2 hypervisors. A hypervisor may run one or
more different VMs at once. A VM consists of emulated hardware components, which can
be fully or partly independent of the components of the host. The concept of complete
virtualization of all components of the VM is called full virtualization. The emulation of a
subset of components of the VM is called paravirtualization. A VM, sometimes called a guest
machine or guest, can run a guest OS which is often different from the host OS. For example,
VMs can be used to run applications and functions which cannot be executed directly by the
host OS. Another benefit of virtualization is that functions inside VMs are generally isolated
from functions running inside other VMs. This isolation can be emphasized by allocating
different host resources to different guests, for example by CPU core isolation where different
VMs are allocated different cores of the host’s CPU.
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Figure 2.6: An overview of a generic virtualization with a host machine running several
guest systems.

Network Function Virtualization (NFV) refers to the virtualization of network functions
so that they can run on general purpose hardware instead of having to run on special
purpose hardware as was previously the case. Network functions that are virtualized
are commonly called Virtualized Network Functions (VNFs). NFV offers several potential
benefits, including the following that were listed in a white paper produced by contributors
to the ETSI NFV Industry Specification Group (NFV ISG) [4]:

• Reduced equipment costs - By running several VNFs on the same physical general
purpose machine, the cost of maintenance and power consumption can be reduced.
An example of NFV with multiple VNFs running on the same host machine is shown
in Figure 2.7.

• Faster time to market - New network products and services can be deployed faster as
the reliance on special purpose hardware is reduced. For example, new VNFs can be
pushed to previously deployed general purpose machines.

• Scalability of network functions - Capabilities of VNFs can potentially be extended while
still running on the same platform.

• Innovation encouragement - The deployment difficulty and cost both decrease, facilitat-
ing research driven deployments of experimental network services.
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Figure 2.7: Example use of NFV. In this example, a general purpose host machine has been
configured to accommodate multiple VNFs. One such VNF is demonstrated: the PPF which
runs inside a 4 core VM and is isolated from the other VNFs on the host system.

However, reaping all of the potential rewards of NFV is non-trivial and presents challenges.
For example, virtualization usually comes with a performance penalty which VNFs must
overcome. This challenge is also emphasized in many applications by the requirements
on portability of the VNFs between different hypervisors and host systems. Different
hypervisors are available for different host and guest systems, and each hypervisor im-
plements different functionalities and has different characteristics. In the case of the 5G
RAN PPF prototype tested in this thesis, the performance penalty is minimized by choosing
QEMU/KVM as hypervisor, as this hypervisor has previously shown high performance
when running VNFs in similar tests [21]. To realize the performance of the underlying host
machine, CPU core isolation can be used. This helps increase guest performance by pinning
threads to specific CPUs. This pinning of threads to specific cores has several beneficial
effects, including avoidance of CPU migrations and maintaining cache coherence, both of
which help maximize performance.

Using LMbench 3 alpha 9 (see Section 2.3.2) on the host and guest machines of Ericsson’s PPF
prototype, a comparison between the host and guest performance was made. To illustrate
the performance penalty of the virtualization, the memory and cache access latency (Table
2.2), memory read/write bandwidth (Table 2.3) and context switch (CS) time (Table 2.4)
were measured. Table 3.1 in Section 3.1 shows the specifications of the testbed setup. The
configuration described in Section 3.1 LMbench was configured using its config-run script
with the following settings (descriptions of these settings are available in Appendix A.3):

• MULTIPLE COPIES [default 1]: 1
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• Job placement selection [default 1]: 1

• MB [default ...]: 1024

• SUBSET (ALL|HARWARE|OS|DEVELOPMENT) [default all]: all

• FASTMEM [default no]: no

• SLOWFS [default no]: no

• DISKS [default none]: none

• REMOTE [default none]: none

• Processor mhz [default ... MHz, ... nanosec clock]: [default]

• FSDIR [default /var/tmp]: /var/tmp

• Status output file [default /dev/tty]: /dev/tty

• Mail results [default yes]: no

The results show decreased performance in terms of memory latency and bandwidth.
However, the context switch times were actually shorter in some measurements. This may
be due to the fact that the host and guest OS are built around different kernels which may
handle context switches differently, and that fewer processes ran on the guest machine.

Table 2.2: Latencies of L1-L3 cache and main memory reads in nanoseconds as reported
by LMbench. The bottom row displays the relative performance of the guest machine
and is calculated as frequencyguest/frequencyhost for the CPU MHz frequency column and
latencyhost/latencyguest for the cache and main memory latency columns.

CPU clock
frequency
(MHz)

L1 cache
latency (ns)

L2 cache
latency (ns)

L3 cache
latency (ns)

Main memory
latency (ns)

Host 2899 1.3790 5.3080 24.3 130.2

Guest 2460 1.6340 11.5 70.4 136.3

Relative guest
performance (%)

84.9 84.394 46.2 34.5 95.52
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Table 2.3: Memory read/write bandwidth for the host and guest machines as reported
by LMbench. The bottom row displays the relative performance of the guest machine
and is calculated as frequencyguest/frequencyhost for the CPU frequency column and
bandwidthhost/bandwidthguest for the memory read/write bandwidth columns.

CPU clock frequency
(MHz)

Memory Read
(MB/s)

Memory Write
(MB/s)

Host 2899 10000 7450

Guest 2460 6640 5599

Relative guest
performance (%)

84.9 66.4 75.2

Table 2.4: CS time in microseconds for different numbers of processes and process sizes on
the host and guest machines as reported by LMbench. The relative performance of the guest
machine is calculated as frequencyguest/frequencyhost for the CPU frequency column and
cshost/csguest for the CS columns.

CPU clock
frequency
(MHz)

2p/0K
(us)

2p/16K
(us)

2p/64K
(us)

8p/16K
(us)

8p/64K
(us)

16p/16K
(us)

16p/64K
(us)

Host 2899 4.470 3.510 3.040 2.610 1.780 2.430 1.670

Guest 2460 0.630 1.050 1.240 1.840 2.500 2.160 2.600

Relative
guest
performance
(%)

84.9 710 334 245 142 71.2 113 64.2

2.2.2 Packet I/O

Realizing packet processing as a VNF with high throughput and low latency requires
efficiency within the I/O and network stack on the packet processing platform. Recent efforts
to improve packet processing speeds - such as the Data Plane Development Kit (DPDK) [8]
- have been made by reworking the way in which network applications communicate with
Network Interface Cards (NICs) on Linux platforms. The PPF implementations tested in
this thesis will use DPDK drivers and libraries for packet processing. To better understand
DPDK and its effects on packet processing, it is beneficial to also have an understanding
of the way in which packets are traditionally handled by Linux; how packets traverse the
Linux network stack from arrival at the NIC to an application upon reception, and vice versa
during transmission. This section will now explain the general process of packet reception
(Rx) and transmission (Tx) of Ethernet frames in the traditional Linux network paradigm
using the Linux New API (NAPI) [22], based on the previous work by W. Wu, M. Crawford,
and M. Bowden in “The performance analysis of linux networking – Packet receiving” [23].

The packet Rx procedure is illustrated in figure 2.8. When an Ethernet frame arrives at
the NIC, it is buffered in the NIC’s internal hardware and transferred to kernel space main
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memory by the device driver using Direct Memory Access (DMA). The NIC and the Linux
kernel each also have buffers of data structures generally referred to as packet descriptors
which contain packet metadata, realized in the Linux kernel code as a ring buffer structure
called sk_buff [24]. A packet descriptor of an arriving Ethernet frame is initially stored in the
NIC before being copied into an available sk_buff residing in kernel space main memory.
The NIC then informs the CPU of the arriving frame with a hardware interrupt request. The
NIC’s interrupt handler, which is part of the NIC driver, then schedules a software interrupt.
For each CPU the kernel maintains a poll queue of devices that have made software interrupt
requests. The kernel polls the NICs referenced in each CPU’s poll queue via the NICs’ device
driver poll function to retrieve new packets contained in the sk_buffs of the ring buffer for
further processing by the kernel’s network stack. When an sk_buff is taken from the ring
buffer, a new sk_buff is allocated and appended to the ring.
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Figure 2.8: shows the following steps in processing of the arriving Ethernet frames:
1. Ethernet frame arrives as physical signals at the NIC and is stored in its internal

hardware buffer.
2. Ethernet frame is transferred by the NIC device driver to a ring of packet descriptors

(sk_buffs) in kernel space main memory, using DMA.
3. Hardware interrupt from NIC to indicate that a packet has arrived and is available to

the kernel. This hardware interrupt causes the NIC device driver to run its interrupt
handler.

4. The NIC device driver schedules a software interrupt request for the NIC device in the
CPU’s poll queue. The poll queue is polled to check if any of the NICs have reported
new incoming packets.

5. If a device is scheduled in the CPU’s poll queue, sk_buffs are taken from the ring buffer
for further packet processing in the network stack. New sk_buffs are allocated and
appended to the ring to replace the used descriptors.

6. The processed packet is placed in the application’s socket queue.
7. Application retrieves packet via read/recv or similar system call.
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The Linux network stack will process incoming packets differently depending on the
protocols involved. IP packets are removed from the ring buffer and processed by calls to
the ip_rcv() (ip6_rcv() for IPv6) function of the IP stack [25, 26]. This function extracts
the IP header, performs checks on the packet, etc. and determines what to do with it, i.e.
transport layer processing, forwarding, or dropping the packet. If the packet has arrived at
the destination host, then the kernel will proceed with for example TCP or UDP processing
before submitting the packet to the receiving application’s socket receive buffer. From there,
a user space application can acquire the packet, copying the data into user space memory,
and removing the packet from the socket receive buffer using for example the recv() [27]
system call.

Packet Tx can be performed by a call to the send() system call (or equivalent) which
copies the message from user space to kernel space memory where protocol processing is
performed, placing packet information in an sk_buff in a Tx packet descriptor ring, and
eventually transmits the packet by calling hard_start_xmit(), which is a pointer to a Tx
callback function defined by the NIC’s device driver [28].

While Linux’s traditional approach to packet I/O maintains a clear separation between
kernel and user mode and protects the NIC device from direct interaction with user space
applications, it involves many operations which slow down the performance on the packet’s
I/O path as demonstrated by Georgios P. Katsikas in [7]. Key factors in the slow performance
of the traditional Linux network I/O, compared to recent alternatives such as the Data
Plane Development Kit (DPDK), include the number of expensive system calls and context
switches involved in the I/O process, which in large part are caused by the copying of data
between user space and kernel space memory.

To mitigate the problem of slow I/O due to excessive data copying and context switching,
DPDK (which is described in greater detail in Section 2.2.4) introduces a set of libraries
and drivers which allow direct access to a NIC’s hardware storage from Linux user space.
Traditionally Linux Rx requires a receive system call which involves context switching to
the kernel to process the incoming packet before copying the packet data to user space and
context switching back to user space. By mapping a NIC’s hardware buffers to user space
memory and bypassing the kernel, these context switches and data copies can be avoided.
DPDK’s packet I/O process is shown in Figure 2.9.
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Figure 2.9: The following steps are performed during packet Rx using DPDK:
1. Ethernet frame arrives as physical signals at the NIC and is stored in its internal

hardware buffer.
2. DPDK’s registered Poll Mode Driver (PMD) polls the NIC directly, looking for arriving

Ethernet frames.
3. Frames are received by the application in user space, bypassing the kernel to avoid data

copying and context switching between kernel and user space. Frame information is
placed in Mbufs in a ring buffer by the application.

4. The application performs the desired processing of packets at the network and
transport layers.

DPDK maintains a ring buffer of a structure called Mbuf, which corresponds to Linux’s
sk_buff structure. These are mapped to the packet descriptors of a NIC and are passed to
a user space application by a Poll Mode Driver (PMD) registered by DPDK. Polling requires
a CPU core to actively query the NIC for incoming packets at some rate. When a NIC receives
packets at a high rate, this technique grants good performance by avoiding the requirement
for handling interrupt requests [7]. Since the purpose of the 5G RAN PPF is to process
incoming packets at a high rate, polling is the preferred method for acquiring packets from
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the NIC. However, when the rate of incoming traffic is low, the CPU core used to poll the
NIC is underutilized.

While DPDK’s network I/O is designed to outperform traditional Linux’s network stack,
it blurs the boundaries between Linux kernel and user space by allowing user space
applications access to the hardware address space of the NICs. DPDK also leaves all of the
responsibility for packet processing to the application, whereas the Linux kernel’s network
stack performs some of the network and transport layer processing. In the case of the 5G
RAN PPF, the increased I/O speed and flexibility in the implementation details of the packet
processing motivates the use of the DPDK rather than relying on Linux’s traditional network
stack.

2.2.3 Receive Side Scaling

Receive Side Scaling (RSS) is a technology which distributes Rx packets to different CPU
cores to achieve good performance scaling in multicore systems. RSS processes the received
packet data in the NIC through a hash function, which produces a hash value. The least
significant bits of the hash value are used to index an indirection table, which contains the
IDs of the available CPU cores. Figure 2.10 shows the general RSS process. [29]

Received Data

Indirection
Table

Hash Function

Hash Value LSBs

...

Core 0

Core 1

Core 2

1

Core ID 0

...

Core ID n

Figure 2.10: An overview of the RSS core selection process. Derivative of the illustration at
[29]

DPDK implements RSS as a software function, based on the Toeplitz hash function. The
code for DPDK’s RSS function which is used by the PPF prototype and was subject to code
optimization in this thesis project, is shown below and is available at [30]:

static inline uint32_t
rte_softrss_be(uint32_t *input_tuple, uint32_t input_len,
const uint8_t *rss_key)

{
uint32_t i, j, ret = 0;

for (j = 0; j < input_len; j++) {
for (i = 0; i < 32; i++) {

if (input_tuple[j] & (1 << (31 - i))) {
ret ^= ((const uint32_t *)rss_key)[j] << i |

(uint32_t)((uint64_t)(((const uint32_t *)rss_key)[j + 1]) >>
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(32 - i));
}

}
}
return ret;

}

2.2.4 The Data Plane Development Kit

The Data Plane Development Kit (DPDK) is an Open Source BSD licensed∗ set of libraries
and NIC drivers for fast packet processing in data plane applications [8]. DPDK can be used
in Linux systems running on a wide range of processor architectures, including Intel x86,
ARM and more†. This section summarizes some of the most important design principles and
implementation details of DPDK necessary for understanding this thesis. The information is
based on the DPDK Programmer’s Guide [31] which contains a more complete description
of DPDK and its functions. The components of DPDK which are used by the PPF prototype
include:

• Environment Abstraction Layer - The Environment Abstraction Layer (EAL) allows
the libraries of DPDK to communicate directly with low level resources from user
space via an abstract and highly configurable interface. It is responsible for the
initialization of DPDK, memory mappings for direct access to the NICs’ memory, CPU
core affinitization, keeping track of CPU specific properties and functions, and more.

• Mbuf Library - Similar to the sk_buff in the traditional Linux packet I/O paradigm,
as was described in Section 2.2.2, DPDK uses packet descriptor buffers for incoming
and outgoing packets, although they differ from the sk_buff in the details of their
implementation.

• Mempool Library - The Mempool library handles allocation of Mbufs by DPDK appli-
cations. It includes features such as per logical core (lcore) caching of Mbufs to avoid
excessive inter-core communication. It also optimizes the spread of objects over the
DRAM and DDR3 memory channels by memory alignment.

• Ring Library - While traditional Linux ring buffers are implemented as a circular doubly
linked list of the packet descriptor struct sk_buff, DPDK implements a ring buffer as a
fixed size table of pointers to packet descriptors. This design improves the performance
of queue operations at the cost of a larger memory footprint and less flexibility. Some
of the features of the DPDK ring manager library include its lockless implementation,
multi- and single-producer/consumer operations to append or retrieve packets and
bulk operations for appending or retrieving a specified number of packets at once.

• Poll Mode Drivers - DPDK allows an application to register a Poll Mode Driver (PMD).
This PMD is used to poll a system’s NICs in order to receive packets. The purpose of
polling the NICs is to avoid the use of interrupts, which can degrade the performance
of high throughput VNFs. Using DPDK’s hardware abstraction layer (HAL), the PMD
can poll the NIC and retrieve packets directly in user space.

∗ https://opensource.org/licenses/BSD-3-Clause † There is also a port of DPDK for FreeBSD.
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• Eventdev Framework - A framework which supports an event driven packet processing
model. This framework introduces scheduling functionality and dynamic load balanc-
ing between lcores.

The 5G RAN PPF proposed by Ericsson is a virtualized adaption of the PPF of the DU
inside E-UTRAN’s eNBs. This PPF is built using DPDK’s Eventdev framework [9] with a
software event device driver. The PPF maps a virtual event device inside the user space of
a Linux guest to the physical NICs of the host machine. An event device is essentially an
event scheduler, which configures a set of event queues used to hold different types of events
waiting to be scheduled. An event is a unit of schedulable work, for example a packet
that has just been received and awaits further processing, a timer expiry notification, or
an intermediate unit of work between packet processing pipeline stages. Linked to each
event queue is an event port, which is used to configure the enqueue and dequeue operations
associated with one or more event queues. An event port can be linked to multiple event
queues. The event port configures enqueue depth and dequeue depth, which specify the number
of event objects to enqueue or dequeue in a burst operation where multiple events are
enqueued or dequeued at once. This parameter may affect the throughput and latency
of packet processing since burst enqueue/dequeue operations reduce the total amount
of enqueue/dequeue operations that have to be performed. Depending on the balance
between the cost of a single enqueue/dequeue operation and the processing time after
enqueue/dequeue, this may increase throughput and in some cases reduce the average
packet delivery latency of the application. However, burst operations may also increase
the per-packet latency when the operation must wait for a certain number of events to arrive
before the enqueue/dequeue. The maximum time to wait for enough events in the event
queue to perform a successful burst operation on an event port is specified by the event port
structure. Also configured by the event port is the new event threshold, which is used to control
the number of new events which are allowed to enter the event device. This parameter can
be used to make the Eventdev complete processing of older events before accepting new
ones. As such, an optimized setting of this parameter may reduce the latency of packets in
cases when many new events are produced.

In a multicore architecture, different CPU cores can be assigned to poll the event queues and
schedule events of any type or specified types. This approach makes it easy to implement
natural and dynamic balancing of workloads between CPU cores. One lcore (the DPDK
master lcore) is reserved for program control while the rest of the lcores can be divided as
desired with a subset of lcores used for scheduling of events, a subset of lcores for Rx/Tx,
and the rest of the lcores as workers for different packet processing stages. The event queues
are capable of simultaneously queueing events from multiple flows. This functionality can
be configured using different event scheduling types, which specify how events belonging
to a flow can be scheduled for processing. The scheduling types are:

Ordered Events from a flow handled by the event queue can be scheduled for parallel
processing on different lcores, but the original order of the events is maintained.
Correct ordering is ensured by the enqueue operation on the destination event queue
of the events. The event port handling the events of an ordered event flow will only
process events of this particular flow until the burst dequeue operation is performed
on the port, or earlier if the burst enqueue operation is performed with an option to
release the flow context.
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Atomic An atomic flow can be scheduled only to a single event port at a time. This
differs from the ordered scheduling type by not scheduling events concurrently to
different ports. However, the original order of events is maintained also for the atomic
scheduling type since only a single port will schedule processing of a flow.

Parallel Events from a flow can be scheduled in parallel to different ports. Event order is
not necessarily maintained.

The ASCII image in Figure 2.11 displays the functionality of the Eventdev framework.

The PPF software is driven by DPDK and receives and transmits packets directly from Linux
user space. Incoming packets are acquired from the NIC’s Rx queues using a PMD which
is scheduled on a CPU core reserved for handling of packet I/O. When a new packet has
arrived, a packet Rx event is generated by the event device and is placed in an event queue
for packet processing by the worker cores. The worker cores dequeue new and intermediate
events from the event queues based on decisions from the scheduler cores. The worker cores
then perform the different stages of packet processing, which eventually finishes and may
generate a Tx event for the response to/forwarding of the packet that was initially received.
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+-----------------+
| +-------------+ |

+-------+ | | flow 0 | |
|Packet | | +-------------+ |
|event | | +-------------+ |
| | | | flow 1 | |port_link(port0, queue0)
+-------+ | +-------------+ | | +--------+
+-------+ | +-------------+ o-----v-----o |dequeue +------+
|Crypto | | | flow n | | | event +------->|Core 0|
|work | | +-------------+ o----+ | port 0 | | |
|done ev| | event queue 0 | | +--------+ +------+
+-------+ +-----------------+ |
+-------+ |
|Timer | +-----------------+ | +--------+
|expiry | | +-------------+ | +------o |dequeue +------+
|event | | | flow 0 | o-----------o event +------->|Core 1|
+-------+ | +-------------+ | +----o port 1 | | |

Event enqueue | +-------------+ | | +--------+ +------+
o-------------> | | flow 1 | | |

enqueue( | +-------------+ | |
queue_id, | | | +--------+ +------+
flow_id, | +-------------+ | | | |dequeue |Core 2|
sched_type, | | flow n | o-----------o event +------->| |
event_type, | +-------------+ | | | port 2 | +------+
subev_type, | event queue 1 | | +--------+
event) +-----------------+ | +--------+

| | |dequeue +------+
+-------+ +-----------------+ | | event +------->|Core n|
|Core | | +-------------+ o-----------o port n | | |
|(SW) | | | flow 0 | | | +--------+ +--+---+
|event | | +-------------+ | | |
+-------+ | +-------------+ | | |

^ | | flow 1 | | | |
| | +-------------+ o------+ |
| | +-------------+ | |
| | | flow n | | |
| | +-------------+ | |
| | event queue n | |
| +-----------------+ |
| |
+-----------------------------------------------------------+

Figure 2.11: Functionality of the Eventdev framework - taken from the DPDK Eventdev
documentation [9].
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2.2.5 A 5G RAN PPF Prototype

The 5G RAN PPF prototype developed by Ericsson is based on the DPDK Eventdev
framework as described in Section 2.2.4. This section will further describe the way in which
the PPF prototype was configured.

The PPF prototype is designed to run on a general purpose machine using at least 4 CPU
cores. The cores are distributed as follows: one master core to process user I/O for PPF
control, one core to perform scheduling, one core to perform both Rx and Tx of packets,
and one worker core to perform packet processing. If the PPF prototype is offered more
than 4 cores, the additional cores are configured as worker cores. The PPF prototype was
configured with a centralized software scheduler running on a single core and performing
the scheduling for all worker cores. The PPF prototype has 7 event queues: 1 Rx queue, 1
Tx queue, 1 timer queue and 4 worker queues. The Rx and Tx queues are used to enqueue
events resulting from packet reception and events of packet transmissions to be executed
respectively. The timer event queue is used to enqueue timer expiry events. The worker
queues are used to enqueue events for different stages of packet processing. For the purpose
of this thesis the PPF prototype was configured with 4 processing stages, each with their
own event queue. The first stage performs classification of events to decide how to process
it further. This stage also increments the event flow ID of the event, which loops back
to 0 at 512. Thus, the PPF prototype creates 512 flows. The second and third stages are
dummy stages which consume a number of CPU cycles to simulate the time consumption
of packet processing. The fourth and final stage also consumes a number of cycles before
applying some actual packet processing and sending the packet out on the Tx event queue
for transmission. The priority of each stage decreases with the stage number, i.e. the first
stage has the highest priority and the fourth stage has the lowest priority.

The PPF prototype has 4 event ports linked to its event queues. The Rx, Tx and timer event
queues each have their own event port and are the only queues linked to their respective
ports. The worker event queues all share the last event port.
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Figure 2.12: The PPF prototype is programmed using DPDK’s Eventdev framework and
was configured with 7 event queues and 4 event ports. It runs on a minimum of 4 cores. In
this figure, the CPU core running the DPDK master thread has been left out since it is not
configured by the Eventdev framework.

2.3 Performance Optimization

This section describes the ideas that helped optimize the performance of the PPF prototype.
Section 2.3.1 gives a brief introduction to some system metrics and their effects on the
performance of systems and applications. Section 2.3.2 presents a set of tools which can
be used to gather information about the presented system metrics.

2.3.1 System Performance Factors

There are a variety of system metrics and factors that are vital to a system’s performance.
The performance impact of these metrics may be affected by reconfiguration and code
optimization. A few of these are described below.

2.3.1.1 Context switch cost

A context switch (CS) means that the state of a process is saved and later restored to the
saved state. A CS can occur during multitasking when a process is swapped out for another,
at an interrupt, or when switching between Linux user/kernel space. The number of CSs
and cost of context switching can have a large impact on the system’s performance since
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each CS introduces additional overhead in execution time. The cost of a CS can depend on
the number of processes in the system, the size of a process, the choice of scheduler, etc. For
example, if a CS occurs due to an excessive use of system calls in an application, i.e. the CS is
a switch between Linux user and kernel space, then the performance of the application may
be optimized by reducing the number of system calls. Figure 2.13 shows general process of
a CS.

RAM

Execution time

Process 2

Program Counter

R0

R1

R2

Rn

...

CPU

CS

Program Counter

R0

R1

R2

Rn

...

Process 1

Program Counter

R0

R1

R2

Rn

...

Process 1

Process 2

Figure 2.13: The general process of a context switch (CS). Before the CS, the CPU executes
process 1. During the CS, the CPU stores its registers in main memory, and loads into its
registers the previously stored registers from process 2 from main memory. Process 2 then
proceeds to execute. The diagram at the bottom illustrates the execution time overhead of
the CS.

2.3.1.2 Memory access cost

The number of memory access and the cost of memory access by an application can have
a large impact on system performance. The cost of memory access is determined by
the bandwidth and latency of memory access operations, which result from the system’s
hardware specifications, the amount of contention for memory resources, etc. The cache
hit/miss rate also affects memory access, as we shall see next.

2.3.1.3 Cache hit/miss ratio

To reduce the cost of memory access, most modern general purpose processors are equipped
with a small amount of fast but expensive memory called cache memory. This cache memory
is often arranged in a hierarchy of increasingly larger but slower memories as the distance
to the processor increases. A common cache configuration is to have level 1 (L1 cache), 2
(L2 cache), and 3 (L3 or LLC for last level cache) caches. The L1 cache is often divided into
separate a instruction cache and data cache. When an application makes a memory access,
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a lookup of the accessed memory address will simultaneously be performed in the cache
hierarchy. If the address is present in a cache, then the instruction or data will be fetched
from the cache instead of the main memory. This is referred to as a cache hit and is usually
many times faster than accessing the main memory. If the accessed address is not present in
a cache, the instruction or data will be fetched from main memory and usually also copied
to the cache for future references. This is referred to as a cache miss. If the cache is full when
bringing a new entry into the cache, old entries must be evicted. Maintaining a high cache
hit rate can be an important factor in performance optimization.

Caches generally store instructions and data that have recently been used, or that have been
fetched from memory due to their close proximity in the memory’s address space. The
proximity of accesses in time is often referred to as temporal locality, and proximity in address
space as spatial locality. To utilize the cache as much as possible, it is important to consider the
temporal and spatial locality of memory access when programming an application. Effective
use of a system’s caches can often drastically increase the performance of an application.

2.3.1.4 CPU Load Balance

A balanced workload among the CPU cores is an important factor when optimizing parallel
code in a multicore system. DPDK’s Eventdev framework performs dynamic load balancing
among its worker cores. However, there are still potential bottlenecks when the number of
scheduling, Rx/Tx, and worker cores are static. For example, with a large number of worker
cores, having only a single scheduling or Rx/Tx core might form a bottleneck. With such
a bottleneck, speedup of the packet processing by the worker cores will not help. For this
reason, it is important to assign the right number of cores to each functionality.

2.3.2 Performance Profiling

This section presents the set of tools that were used to gather information about the metrics
described in Section 2.3.1 in order to present a basis for optimization of the 5G RAN PPF.

2.3.2.1 LMbench

LMbench [32] is a benchmark suite for Linux systems capable of measuring a variety of
system performance metrics. LMbench provides benchmarks for the bandwidth of cached
file reads, memory copying, memory reads, etc. as well as latency benchmarks for context
switching, process creation, signal handling, memory reads, etc. This thesis project used
LMbench 3 alpha 9 to measure and compare host and guest machine performance (see
Section 2.2.1. LMbench can be configured using its config-run script, which configures
different test parameters and gathers basic performance information such as the CPU’s
clock frequency. Using the results script, the tests are then performed according to the
configuration file produced by config-run. Test results can be viewed using the make see
command from the LMbench root directory. The following process was used to gather
performance information on the PPF prototype’s host and guest machines:

1. Shut down the PPF process
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2. Run LMbench3 script ./config-run from the lmbench/scripts/ directory

3. Run LMbench3 script ./results from the lmbench/scripts/ directory

4. Get result report using the make see command from the lmbench/ directory

2.3.2.2 Linux Perf

Perf [33] is a code profiling tool shipped with the Linux kernel under tools/perf. Perf
uses performance counters to present statistics about the execution of an environment or
application in a variety of ways. These performance counters include cache references and
cache misses, branches and branch misses, instructions, cycles, page faults, CPU migrations,
context switches, and more. Perf is capable of monitoring specific processes by passing their
process IDs (PIDs) to a Perf command. Some valuable commands of Perf include:

• perf stat - The perf stat command can be used to gather information from selected
performance counters. Which performance counters to report can be specified using
the -e option. Additionally, a specific PID can be profiled using the -p or -pid option.
The following example output was produced when running the command perf stat
-C 2 sleep 10 on the PPF prototype, which gathers event counts during 10 seconds:

Performance counter stats for ’CPU(s) 2’:

10001.032648 task-clock (msec) # 1.000 CPUs utilized
(100.00%)

3866 context-switches # 0.387 K/sec
(100.00%)

0 cpu-migrations # 0.000 K/sec
(100.00%)

0 page-faults # 0.000 K/sec
28910198243 cycles # 2.891 GHz

(100.00%)
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend

50033467534 instructions # 1.73 insns per cycle
(100.00%)

7413056830 branches # 741.229 M/sec
(100.00%)

14910328 branch-misses # 0.20% of all branches

10.000835628 seconds time elapsed

• perf record - This command gathers counter statistics like perf stat, but for later
reports. Event counts are saved in a perf.data file which can be used to display
information about system or program execution.

• perf report - The perf report command displays the data from a perf.data file.
Depending on the options given to perf, the data can be displayed as for example a call
graph of the functions called in the system or by an application which also shows the
percentage of time spent executing each function. This information can be useful when
searching for an application’s bottlenecks.
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2.3.2.3 IxNetwork

Ixia’s IxNetwork [34] is a traffic generator application capable of generating a variety of
types of network traffic. This thesis uses IxNetwork to measure the throughput and latency
of Ericsson’s 5G RAN PPF prototype.



Chapter 3

Methodology

This chapter describes the methodology used to find an optimized implementation of
Ericsson’s 5G RAN PPF prototype, including the testbed setup, the parameters which were
tweaked and the software that was used for the performance measurements.

3.1 Testbed Setup

This section provides an overview of the machines involved in the experiments and their
connections, as well as the configuration used for the 5G RAN PPF prototype. For the
purpose of the experiments in this thesis, the PPF prototype was configured to use a UDP
relay which receives and forwards UDP packets with a four stage packet processing pipeline,
instead of the more complicated software used in a real world deployment of the 5G RAN
PPF. This was done to focus the optimization effort on the efficiency of the Eventdev and
VM configurations rather than on the packet processing code. The testbed setup and test
environment were provided by Ericsson. This both makes the results of these measurements
more generically usable and makes them unrepresetative for the performance of the actual
Ericsson 5G RAN PPF.

Figure 3.1 displays an overview of the testbed setup. The PPF prototype runs as a VM with
a Wind River Linux 8 guest OS. In the testbed used in the experiments for this thesis, the
QEMU-KVM hypervisor was used. Table 3.1 lists the specifications of the testbed.

34
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Figure 3.1: An overview of the testbed.

Table 3.1: The specifications of the testbed setup.

Testbed Specifications

Host OS

Kernel release: 4.4.0-89-generic,
Kernel version: #112-Ubuntu SMP Mon Jul 31 19:38:41 UTC 2017,
Hardware platform: x86_64,
OS: GNU/Linux

Host CPU Intel(R)Xeon(R) CPU E5-2680 v3 @ 2899 MHz
Host NICs Intel Corporation Ethernet 10G 2P X520 Adapters (× 2)
Hypervisor QEMU emulator version 2.5.0 (Debian 1:2.5+dfsg-5ubuntu10.14)

Guest OS

Kernel release: 4.1.27-rt30-WR8.0.0.17_standard,
Kernel version: #1 SMP Sun Sep 10 07:08:22 CEST 2017,
Hardware platform: x86_64,
OS: GNU/Linux

Physical Layer Switch
Chassi: MRV Media Cross Connect, NC316-288PMCHS,
Blade: MRV Media Cross Connect, 10G SFP+ Blade

OvS Version ovs-vswitchd (Open vSwitch) 2.7.0
DPDK Version 17.05
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To prepare the PPF prototype for throughput and latency tests, the hypervisor and VM were
optimized to process traffic with minimum packet drops. To reduce the number of packet
drops caused by the host and guest OS, the following configuration was used:

• CPU core pinning using the isolcpus boot parameter. This reduces unwanted CPU
migrations and context switches by isolating the selected CPU cores from the Linux
kernel scheduler. By isolating the cores on which PPF threads are running, the kernel
will not schedule other tasks unless CPU affinity system calls are explicitly made for
this purpose. On the hypervisor, QEMU-KVM processes running the PPF/VM threads
were pinned to the physical CPU cores 6, 8, 10, 12, 14, 16, 18, 20, 22 on socket 0. Core 0
was assigned the non-PMD threads of DPDK and QEMU-KVM/VM. The OvS bridge
PMD threads (one per NIC) were pinned to cores 2 and 4 respectively.

• The nohz_full [35] boot parameter was set for the cores running QEMU-KVM/PPF and
OvS threads. This parameter tells the kernel to omit scheduling-clock ticks for selected
cores, which can reduce OS jitter by for example reducing the number of context
switches. This parameter was set for cores 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22 on
the host machine. The VM guest kernel was compiled without this capability.

• The rcu_nocbs boot parameter was set for the cores running PPF threads so that they
do not receive RCU callbacks, which would take time away from the processing of
packets.

• Disabling CPU frequency throttling by the command:
cpupower frequency-set -g performance -d 2.9G -u 2.9G, to avoid a pe-
riod of decreased performance when the CPU has been in an idle state before it
increases the CPU frequency.

• Disabling automatic NUMA balancing by the command:
echo 0 > /proc/sys/kernel/numa_balancing. Automatic NUMA balancing
optimizes the performance of an application running on a NUMA system by moving
the application’s tasks closer to the memory that it references. The PPF prototype is
configured to run on a single NUMA socket, making NUMA balancing unnecessary.
Relocation of a PPF thread would temporarily halt its processing of packets which
could decrease performance and cause packet drops.

• Disabling HyperThreading by the command: ./set_ht 0. Enabling HyperThread-
ing may increase performance. However, for the purpose of reproducibility of the
benchmarks in this thesis, all PPF prototype threads were run on physical cores.

• Setting echo 0 > /sys/module/kvm/parameters/halt_poll_ns to avoid halt-
ing idle virtual CPUs of the KVM guest, which would require to wake them up when
new processing work is received. The process of waking threads up may negatively
impact the latency performance of the PPF.

3.2 Throughput Measurements

This thesis evaluates the maximum throughput of the modified PPF prototype under
different configurations. To measure the maximum throughput, IxNetwork was used to
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perform a binary search for the greatest throughput at which no packets were dropped.
IxNetwork was configured to send Ethernet II/VLAN/IPv4/UDP/GTP-u packets of size
90 as shown in Figure 3.2.

Ethernet II hdr
14 bytes

90 bytes

VLAN hdr
4 bytes

IPv4 hdr
20 bytes

UDP hdr
8 bytes

GTP-u hdr
8 bytes

Payload
32 bytes

Ethernet II trlr
4 bytes

Figure 3.2: The structure of the Ethernet frames used to measure maximum throughput. Hdr
and trlr are abbreviations of header and trailer respectively.

The binary search was performed by initially setting a lower bound frame rate of 750 000
frames/second (fps) for which the PPF prototype was known to cause zero packet drops,
and a higher bound frame rate of 2 000 000 fps - as this later rate was known to exceed the
capacity of the PPF prototype. IxNetwork was then used to run at each frame rate for 10
seconds, sending a total of 10×t frames, t being the frame rate, and moving the middle value
up when no packets were dropped and down when packets were dropped. The precision of
the maximum throughput measurements was set to 100 fps. The procedure is described by
the pseudo code below. The high and low bounds were adjusted and verified between tests.

t_high = 2000000 // (or adjusted value)
t_low = 750000 // (or adjusted value)
// Verify 0 packet drops for t_low and >0 packet drops for t_high
while t_high - t_low > 100
t_current = (t_high + t_low) / 2

// Send t_current fps for 10 seconds
if num_packets_dropped == 0 then

t_low = t_current
else

t_high = t_current
end

end
return t_low

IxNetwork was configured with two traffic flows, one for each physical NIC in the testbed.
Each NIC was configured to transmit packets to the PPF prototype which proceeded to
process and forward the packets to the other NIC’s Rx port. The flows were configured
with the settings: Tx mode interleaved, src/dest mesh OneToOne, route mesh OneToOne,
uni-directional.

3.3 Latency Measurements

The latency of the PPF prototype was measured using IxNetwork. IxNetwork was config-
ured with one flow from the Tx port of one physical NIC of the testbed to the Rx port of the
other NIC. The transmitting NIC was configured to transmit packets to the PPF prototype
which proceeded to process and forward the packets to the receiving NIC’s Rx port. The flow
was configured with the settings: Tx mode interleaved, src/dest mesh OneToOne, route
mesh OneToOne, uni-directional. The latency mode was set to cut-through, meaning the
time from reception to transmission of the first bit of a frame. Ethernet frames were sent
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using a custom IMIX configuration with frames of size 86 bytes with weight 7, 592 bytes
with weight 4, and 1522 bytes with weight 1. The choice of 86 bytes as the size for small
packets was made because this was the smallest frame size to accommodate internal headers.
For the large frames, 1522 bytes was chosen as the size as this is the standard Maximum
Transmission Unit (MTU) of an Ethernet II frame with VLAN tagging when not using jumbo
frames. 592 bytes was chosen by Ericsson as a suitable size of medium frames. Initial tests
revealed that the average cut-through latency reported generally stabilized after about 40
seconds, thus 40 second latency measurements were performed in subsequent testing. The
throughput was set to 500 000 fps because early tests revealed this was a safe number that
most configurations could handle.

3.4 Code Profiling

Code profiling with Linux Perf was used as a complement to the throughput and latency
measurements. Linux Perf was used to look for slow functions, bad cache performance or
other performance inhibiting behavior. The main commands used to perform profiling were
the "perf record", "perf report", and "perf stat" commands. To gain knowledge about the
execution time of different functions in the code, the following command was used: "perf
record -C <core IDs> sleep 10". This command records the portions of the total execution
time that different functions spend executing on the specified cores during 10 seconds. These
statistics can then be viewed using "perf report".

To gain knowledge about cache statistics, the following command was used: "perf stat -
C <core IDs> -e L1-dcache-loads,L1-dcache-load-misses,L1-dcache-stores sleep 10". This
command reports the cache miss ratio on the specified cores during 10 seconds. This
command can also be used with "stat" replaced by "record", which produces a record of
where cache hits/misses occur.

3.5 Multicore Performance Scaling

To gain some insight into the parallelism of the PPF, multicore performance scaling tests were
performed with different numbers of Rx/Tx cores and worker cores. Figure 3.3 shows the
event path with the default core assignment with the maximum number of workers.
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Figure 3.3: The default core assignment and path of events with 1 Rx/Tx core and 7 worker
cores.

Each test included measurements of throughput and latency according to the methodology
described in Sections 3.2 and 3.3. Tests seemed to reveal that no significant performance
gain occurred when increasing the number of workers beyond 4 or 5, which could suggest a
bottleneck in the delivery of packets from the Rx/Tx core to the worker cores. To investigate
this, the PPF prototype was reprogrammed to support multiple Rx/Tx cores, with an option
to reconfigure the core affinity at boot time by reading a parameter file. The throughput and
latency scaling tests were then rerun with 2 Rx/Tx cores and up to 6 worker cores. Figure
3.4 shows the event path with the new assignment of cores.
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Figure 3.4: An alternative core assignment and path of events using 2 Rx/Tx cores and 6
worker cores.

3.6 Packet Processing Stage Consolidation

The Eventdev framework enables the programmer to perform packet processing in different
stages. The default configuration of the PPF prototype has workers performing packet
processing in 4 stages (illustrated in figure 3.5):

1. A classification stage where events are classified depending on their type and sent on
to the next event queue for further processing.

2. A dummy stage which simulates time consumption from packet processing by actively
consuming the specified number of instruction cycles. This stage consumes a config-
urable number of cycles per packet event and forwards the events to the next stage’s
event queue. For the baseline tests, this stage was configured to consume 0 cycles.

3. Another dummy stage like stage 2. This stage was set to consume 0 cycles for baseline
tests.

4. The last worker stage consumes instruction cycles (set to 0 for baseline tests) in the
same way as the previous two stages, and continues to process the packets and send
them to the Tx event queue.
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Figure 3.5: The path taken by packet events. The Rx/Tx core receives packets and forwards
events into the eventdev. The worker processes packet (and timer) events through its four
stages and sends them back to the Rx/Tx core through the event queues. The Rx/Tx core
takes Tx events and sends out packets. The scheduler core schedules events for the different
cores and decides their processing order.

One of the reasons for performing the packet processing in multiple stages is to present
the Eventdev framework with smaller units of work which can be balanced among the
worker cores. However, when the processing requires events to maintain their original order
between stages, this introduces overhead from a larger number of enqueue and dequeue
operations. More stages also introduces a degree of parallelism overhead due to locking
mechanisms resulting from the atomic scheduling of events. For this reason, it makes sense
to test a configuration with consolidated processing stages which classify packets early and
processes them to completion. This approach should reduce the amount of overhead and
potentially improve the cache hit ratio by keeping the events in the CPUs’ L1 caches for
longer. These potential improvements are at the cost of potentially having the workloads
unevenly balanced. To test this approach, the PPF prototype was reprogrammed with a
reduced number of worker stages, as shown in figure 3.6:

1. The same classification stage as before.

2. A consolidation of stages 2, 3, and 4, where packets need only be dequeued once and
enqueued once, and no synchronization between events of the same flow is needed.
The same total amount of cycles were consumed as in the default configuration.
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Figure 3.6: The event path with consolidated worker stages. The classification of packets
remains in its own stage while the 3 subsequent stages have been merged into a single stage.

To test its throughput and latency, the consolidated configuration was then included in the
multicore performance scaling tests described in Section 3.5.

3.7 Rx Optimization - RSS Patch

The Rx driver of the PPF prototype makes use of DPDK’s RSS functionality, as described in
Section 2.2.3. The RSS hash value is computed using the Toeplitz hash function, provided
by DPDK’s hash library [30]. When profiling the PPF prototype using Linux Perf on the
Rx/Tx core after it was discovered that Rx seemed to be a performance bottleneck, it was
revealed that a substantial portion of the execution time was spent performing RSS hash
computations. When sending packets with a flow setup as described in Section 3.2 but
with both flows reconfigured to send continuous traffic at 1 200 000 fps which was close
to the maximum throughput achieved for the default PPF prototype configuration using
2 Rx/Tx cores, Linux Perf reported that the portion of time spent computing the RSS
hash function was 29% on the Rx/Tx core. The computation loops through each bit of
a 32-bit integer, checks if each bit is set, and performs further operations if the bit is set.
This is unnecessarily inefficient, since there are alternatives which avoid looping through
all the unset bits. An example of this was suggested in a patch by Zhou Yangchao [36].
This patch uses the rte_bsf32 function, which is an inline function calling GCC’s built-
in function __builtin_ctz() [37]. The __builtin_ctz() takes an unsigned integer
argument and returns the number of trailing zeros starting with the least significant bit. To
mitigate the effects of the RSS computation, Yangchao’s methodology was adopted for the
PPF prototype’s Rx driver. The results using this patch are displayed in Section 4.3.

3.8 Optimization Workflow

The optimization workflow used in the experiments can be summarized as follows:
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1. Configure the PPF prototype to have only 1 worker core.

2. Perform throughput and latency measurements. Linux Perf was used to gather
information about the time consumed by different function calls made by the PPF
prototype, as well as overall system statistics including the cache hit ratio and more.

3. Increase number of worker cores.

4. Repeat from step 2 until no further CPU cores are available.

5. After running all measurements with 1 Rx/Tx core - repeat from step 1 using 2 Rx/Tx
cores.

6. Optimize code and repeat all measurements.

7. Compilation, comparison, and analysis of the results, as seen in Sections 4, 5, and 6.

The basic idea of the experiments described in this thesis was to isolate the parameters of
the PPF which affected the throughput and/or latency the most, and adjusting the values
using IxNetwork and Linux Perf as measurement and profiling tools. IxNetwork was used
to generate network traffic and to measure throughput and latency while Linux Perf was
used for deeper performance analysis of for example cache statistics, Instructions Per Cycle
(IPC) statistics, and context switching.



Chapter 4

Results

This chapter summarizes the results of the throughput and latency measurements for the
tested PPF prototype configurations.

4.1 Core Reassignment Results

The PPF prototype has access to 10 CPU cores, of which a minimum of 3 are used for the
DPDK master core, scheduling, and Rx/Tx. The remaining cores can be used to run worker
threads. This section summarizes the scaling of throughput for different assignments of the
CPU cores using an otherwise unchanged configuration of the PPF prototype. Throughput
was measured according to the methodology described in Section 3.2. Figure 4.1 shows the
maximum throughput of the PPF prototype with one worker core reassigned to Rx/Tx. No
other changes were made to the PPF configuration. The throughput was lower with 2 Rx/Tx
cores for all numbers of worker cores.
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Figure 4.1: Maximum throughput results with reassigned CPU cores: 1 Rx/Tx cores and up
to 7 worker cores; and 2 Rx/Tx cores and up to 6 worker cores.

Figures 4.2, 4.3, and 4.4 display the latency results of the core reassignments. The results
show that the average latency increased for each respective number of worker cores when
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assigning an extra Rx/Tx core. The lowest average latency was seen with only a single
worker core with both 1 and 2 Rx/Tx cores.
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Figure 4.2: Comparison of the average latency with reassigned CPU cores: 1 Rx/Tx cores
and up to 7 worker cores, to 2 Rx/Tx cores and up to 6 worker cores.
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Min 15660 13920 15100 16220 14820 16960 17220
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Figure 4.3: The minimum, average and maximum average cut-through latency at 500 000 pps
using 1 Rx/Tx cores and up to 7 worker cores. The dashed line is a curve fit of the average
latency data, with its function and R2 value displayed above chart area.
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Figure 4.4: The minimum, average and maximum average cut-through latency at 500 000 pps
using 2 Rx/Tx cores and up to 6 worker cores. The dashed line is a curve fit of the average
latency data, with its function and R2 value displayed above chart area.

4.2 Worker Stage Consolidation Results

This section displays the results of the tests with consolidated worker stages. Throughput
and latency was measured using 1 Rx/Tx core and up to 7 worker cores, and 2 Rx/Tx cores
and up to 6 worker cores. The highest throughput was achieved using 2 Rx/Tx cores and 6
worker cores. The maximum throughput using consolidated worker stages was higher than
the maximum throughput using the default packet processing stages, at 1.99 Mpps versus
the the default maximum throughput of 1.59 Mpps.
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Figure 4.5: Maximum throughput results with consolidated worker stages. Throughput was
measured with 1 and 2 Rx/Tx cores and 7 and 6 worker cores respectively.

Figures 4.6, 4.7, and 4.8 show the results of the latency measurements. The average cut-
through latency increased for all respective numbers of worker cores when using 2 Rx/Tx
cores instead of 1.
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Figure 4.6: Comparison of the average latency with consolidated worker stages and
reassigned CPU cores: 1 Rx/Tx cores and up to 7 worker cores, to 2 Rx/Tx cores and up
to 6 worker cores.
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Figure 4.7: The minimum, average and maximum average cut-through latency at 500 000 pps
when using 1 Rx/Tx core, up to 7 worker cores and consolidated worker stages. The dashed
line is a curve fit of the average latency data, with its function and R2 value displayed above
chart area.
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Figure 4.8: The minimum, average and maximum average cut-through latency at 500 000 pps
when using 2 Rx/Tx core, up to 6 worker cores and consolidated worker stages. The dashed
line is a curve fit of the average latency data, with its function and R2 value displayed above
chart area.

4.3 RSS Patch Results

This section displays the results of the tests with consolidated worker stages and the RSS
patch applied. Throughput and latency was measured using 2 Rx/Tx core and up to
7 worker cores, and 2 Rx/Tx cores and up to 6 worker cores. The highest maximum
throughput with this configuration was achieved using 2 Rx/Tx cores and 6 worker cores,
as shown in Figure 4.9. The case with 1 Rx/Tx core and 1 worker core was excluded due to
tests failing with strange results.
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Figure 4.9: Maximum throughput results with consolidated worker stages and the RSS patch
applied. Throughput was measured with 1 and 2 Rx/Tx cores and 7 and 6 worker cores
respectively.
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Figures 4.10, 4.11, and 4.12 display the latency results for the PPF configuration with
consolidated worker stages and the RSS patch applied. Reassigning a worker core to Rx/Tx
increased the latency for all configurations.
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Figure 4.10: Comparison of the average latency with consolidated worker stages, the RSS
patch applied and reassigned CPU cores: 1 Rx/Tx cores and up to 7 worker cores, to 2 Rx/Tx
cores and up to 6 worker cores.
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Figure 4.11: The minimum, average and maximum average cut-through latency at 500 000
pps when using 1 Rx/Tx core, up to 7 worker cores, consolidated worker stages, and the RSS
patch. The dashed line is a curve fit of the average latency data, with its function and R2

value displayed above chart area.
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Figure 4.12: The minimum, average and maximum average cut-through latency at 500 000
pps when using 2 Rx/Tx core, up to 6 worker cores, consolidated worker stages, and the RSS
patch. The dashed line is a curve fit of the average latency data, with its function and R2

value displayed above chart area.

4.4 Summarized Results

Figure 4.13 shows the throughput achieved when using one scheduling core, 1 Rx/Tx core
and 2 Rx/Tx cores, and an increasing number of worker cores up to the maximum of 7 and
6 cores respectively. The highest maximum throughput (2.23 Mpps) was achieved using 2
Rx/Tx cores, 6 worker cores, consolidated worker stages, and the RSS patch applied. These
reconfigurations improved the throughput performance by 40.52% compared to the default
PPF configuration with 1 Rx/Tx core and 7 worker cores, which achieved a throughput of
1.58 Mpps.
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Figure 4.13: The throughput performance scaling with increasing number of workers. *
denotes the PPF prototype with consolidated worker stages, and ** denotes the PPF with
consolidated worker stages and RSS patch applied. The test case failed for 1 Rx/Tx Core **,
and the result was excluded.

Figure 4.14 shows a summary of the average cut-through latency results. The lowest
observed average latency of 54 210 ns was achieved using the PPF configuration with
consolidated worker stages, 1 Rx/Tx cores and 1 worker core. The average cut-through
latency reported for the configuration with the highest observed throughput of 2.2 Mpps
was 58 138 ns, which is 1 438 ns lower than that of the completely default PPF configuration.
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Figure 4.14: The average cut-through latency performance scaling with increasing number
of workers. * denotes the PPF prototype with consolidated worker stages, and ** denotes the
PPF prototype with consolidated worker stages and RSS patch applied. The test case failed
for 1 Rx/Tx Core **, and the result was excluded.
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Discussion

5.1 Results Analysis

During the beginning of this thesis project, cache optimization and context switching was
assumed to play an important role in the optimization of the PPF. When profiling the default
PPF using Linux Perf, a miss ratio of 7.08% among the L1 data cache loads was reported on
the Rx/Tx core, and 3.55% on the worker cores. However, when looking at the cause of the
cache misses, it was discovered that a majority were an intended result of prefetching, and
some due to locking mechanisms. Linux Perf reported 387 CS/second on the Rx/Tx core
and 336 CS/second on the worker cores. The reconfigurations presented in this thesis did
not have a significant effect on the cache miss ratio or number of context switches. DPDK
takes several measures to optimize cache utilization and minimize context switching. For
this reason, focus was shifted from these aspects towards the multicore performance scaling
of the PPF.

By adding support for multiple Rx/Tx cores in the PPF prototype, and measuring the
maximum, minimum, and average throughput, and maximum cut-through latency using
different core assignments, it was discovered that a plateau in throughput was reached
when using only 4 or 5 of the available 7 worker cores. This plateau was assumed to be
caused by a bottleneck in the Rx or Tx drivers or the scheduler. However, when adding
an additional Rx/Tx core to the default PPF configuration, at the cost of one worker core,
both the throughput and the latency performance got worse. The maximum throughput
dropped by 23.9% when comparing the configuration with 1 Rx/Tx core and 7 worker cores
to the configuration with 2 Rx/Tx cores and 6 worker cores, and the latency increased by
3.66%. One of the reasons for this decrease in throughput seems to be that the Eventdev
cannot schedule the Rx/Tx driver completely in parallel as it is not thread-safe. This leads to
decreased efficiency in the Rx driver due to synchronization overhead. Linux Perf reported
that 24.49% of the cycles on the Rx/Tx cores were spent on atomic scheduling, when using 2
Rx/Tx cores instead of 1. When using the stat command of Linux Perf on the Rx/Tx cores
while letting the PPF prototype process packets at close to the maximum throughput for two
different configurations of the PPF prototype, the output numbers shown in Table 5.1 were
produced. This output shows that the IPC went from 1.73 on the single Rx/Tx core to 0.98
over the 2 Rx/Tx cores: roughly a 77% drop. The number of CS per second also dropped by
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78%, from 387 to 217 CS per second. Additionally, the number of branches taken dropped
by 64% while the number of branch misses almost doubled, from 0.20% to 0.38%. While
the reason for the increase in branch mispredictions could have been investigated also using
Perf, this investigation had to be left out due to limited time with the testbed equipment.

Table 5.1: Statistics reported by Linux Perf when processing packets at close to the maximum
throughput of two different configurations of the PPF prototype: 1.5 Mpps using 1 Rx/Tx
core and 7 workers, and 1.2 Mpps using 2 Rx/Tx cores and 6 workers. The perf stat command
was executed on all Rx/Tx cores in both cases.

1 Rx/Tx core, 7 workers 2 Rx/Tx Cores, 6 workers

CPU core utilization 1.000 2.000
Number of CS 387 /sec 217 /sec
CPU migrations 0 0
Page faults 0 0
CPU clock frequency 2.891 2.891
Instructions/cycle 1.73 0.98
Branches 741.229 M/sec 453.175 M/sec
Branch misprediction % 0.20% 0.38%

However, when consolidating the last three worker stages, making them a single unit of
schedulable work, the throughput increased for all numbers of workers when using 1 Rx/Tx
core, indicating a speedup in the worker cores. When reassigning one worker core to Rx/Tx,
the throughput increased with 5 and 6 worker cores. This indicates a maximum throughput
of around 1.6 Mpps for a single Rx/Tx core, without the RSS patch. To verify that Rx/Tx
was indeed a throughput bottleneck, a 1000 cycle delay per packet was added to the fourth
worker stage, while processing at 1.99 Mpps. Linux Perf reported that this increased the
cycles consumed by the fourth worker stage from 6.08% to 26.92% of the total cycles on the
worker cores, while the additional delay had no apparent impact on the throughput.

With support for the belief that Rx/Tx was the bottleneck, the Rx/Tx core was inspected.
When profiling the Rx driver at a throughput of 1.2 Mpps for the default configuration, it was
reported that at least 29% of the instruction cycles were consumed by the RSS function of the
Rx core. Looking for to speedup the RSS code, the patch described in Section 3.7 was found.
When measuring the maximum throughput using consolidated worker stages and the RSS
patch, a throughput of 2.2 Mpps was achieved with 2 Rx/Tx cores and 6 worker cores. This
is a 40.52% increase in throughput from the default configuration. When profiling the Rx
code again at 1.2 Mpps, the portion of instruction cycles consumed by RSS computations
had dropped to 18.6%.

The average latency results varied for the different PPF configurations. Assigning an extra
Rx/Tx core seemed to increase the average latency for all of the tested configurations. This
increase in latency seemed to be a result of the synchronization overhead introduced when
running the Rx driver in parallel on two different cores. This overhead was reported to
be 24.49% on the dual Rx/Tx cores. However, the average latency increased by at most
5 327 ns, corresponding to 9.58%, of the average latency for the case with 1 worker core and
none of the optimizations applied, when going from 1 to 2 Rx/Tx cores. The minimum



CHAPTER 5. DISCUSSION 55

recorded average latency recorded was 54 210 ns for the configuration with consolidated
worker stages, 1 Rx/Tx core and 1 worker core. However, this configuration achieved
the relatively low maximum throughput of 0.75 Mpps, compared to the greatest observed
throughput of 2.2 Mpps. For the configuration with the highest throughput, the average
latency was 97.59% of the average latency for the completely unmodified PPF prototype
with 1 Rx/Tx core and 7 worker cores. Both optimizations, i.e. consolidating the last three
worker stages and applying the RSS patch, seemed to reduce the average latency with all
core configurations. Most of the line fits in each average latency scaling chart (Figures 4.3,
4.4, 4.7 4.8, 4.11, 4.12) seem to suggest that the average latency increases with more worker
cores, although with a fairly large degree of uncertainty. Most of the latency seems to come
from the constant term of each respective function.

5.2 Methodology Discussion

IxNetwork was used to find the maximum throughput and minimum, average, and
maximum cut-through latency for different configurations of the PPF prototype. This tool
worked well when measuring the maximum throughput. However, it would have been
desirable to also measure the median cut-through latency of the PPF prototype, as well as
latency jitter and distribution. The latency measurements could have been performed in
another way, perhaps by gathering raw latency measurement data and doing further analysis
outside of the measurement tool. The main reason for using IxNetwork was that it was easy
to use for traffic generation and measurements by the same tool, and that Ericsson’s test
equipment was set up this way. The latter was difficult to change, and although it may have
been possible to use another tool, that would have required much more effort and time than
using IxNetwork.

Another improvement that could have been made to the methodology would have been to
perform more consistent profiling with Linux Perf to find the reason for the behavior of the
PPF prototype under different configurations. Due to unavailability of the testbed for much
of the duration of the project, the time window for testing became very limited. For this
reason, the focus was set on completing the throughput and latency scaling measurements
with different core assignments, with Perf as a complement where analysis was needed. In
the end, this may not have been enough to gain all of the valuable insight that was potentially
offered. Systematic apples-to-apples tests using Linux Perf should have been made for each
of the configurations of the PPF prototype. This could have provided more information
about the exact details of the atomic scheduling overhead and reason for the behavior of the
minimum/average/maximum latency as the number of Rx/Tx and worker cores differed.
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Conclusions and Future Work

This section states the conclusions made from the results and analysis presented in Sections
4 and 5. Also included in this section are required reflections regarding the ethics and
sustainability aspects of this thesis project, and suggestions for future work related to the
5G RAN PPF and its prototype.

6.1 Conclusions

The problem statement of this thesis project was: "Given an NFV PPF prototype for the 5G
RAN based on the DPDK Eventdev framework, what are the bottlenecks of its packet processing
path, and how can their effects be mitigated?" The throughput of the PPF prototype in a 2 flow
traffic setup was raised by 40.52%, with a latency of 97.59% compared to the default PPF
prototype configuration. This was done by reassigning one worker core to perform Rx/Tx,
consolidating three of the packet processing stages into a single unit of schedulable work,
and optimizing DPDK’s software RSS function. An intermediate result suggests that the
maximum throughput of an unmodified Rx/Tx core of the PPF prototype is close to 1.6
Mpps. One of the points of having multiple packet processing stages when using DPDK’s
Eventdev library is to have smaller units of schedulable work, which can be evenly balanced
among CPU cores. However, the PPF prototype seemed to benefit from fewer but longer
processing stages to outweigh the negative impact that this change could have on load
balancing.

6.2 Limitations

This thesis project was somewhat limited by the fact that all measurements were performed
on a prototype of the 5G RAN PPF, which meant that the full processing path was not
included in the tests. For example, the consolidation of packet processing stages may
have a different meaning in a real-world application than they had in the prototype tests.
Additionally, the tests had to be shaped around Ericsson’s testbed setups and what tools
were available to use for this setup. Gaining access to the testbed was non-trivial as it
had to be shared with Ericsson employees during many periods of the project, which made
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continuous testing difficult. This dragged out the duration of the tests and measurements
which somewhat lowered the quality of the experiments, since only the most important
measurements could be done by the end of the project. For example, a more in-depth analysis
of the PPF prototype using Linux Perf could have been made, as well as measurements of the
median latency and latency jitter and distribution, if there was more time and easier access
to the testbed.

6.3 Required Reflections

Optimizing the PPF for throughput may lead to a higher energy efficiency, which is
important to the economic and environmental aspects of 5G RAN. With a higher throughput,
the amount of CPU cores required by each PPF in the 5G RAN may be reduced. Also, less
PPF nodes may be required if a single node can handle the traffic that would otherwise
require multiple nodes. Another consideration of the environmental aspect of the PPF
prototype is that it utilized 100% of all of its assigned CPU cores, even when it is not
processing any traffic. This may keep the PPF ready for incoming packets at all times, at
the cost of the energy required to run the CPU at full speed all the time. Perhaps it could
be worth some extra initial latency to be able to put the PPF in an idle state when it is not
processing traffic, or to scale its performance according to the amount of traffic that requires
processing.

6.4 Future Work

This thesis answers what some of the bottlenecks were and how to mitigate their effects
mainly on the throughput of the PPF prototype, as described by the problem statement, but
fails in many cases to report the reasons why. A more systematic code profiling analysis
could have helped explain the effects seen in the results. Linux Perf was a useful tool, and in
future studies it should be utilized more than it was in this thesis project.

A few topics to investigate further emerged during this thesis project, which are summed up
below:

• An interesting and desirable result of NFV is the potential portability of network
functions between physical machines. For this reason, it could be interesting to test
how the PPF performs with different host machines, host OS, and hypervisors.

• This thesis project used a UDP relay to simulate a packet processing pipeline. A
complete optimization of the PPF should be performed on an instance with real world
software instead of the placeholder code used for testing in this thesis project.

• The PPF runs its software with 100% CPU utilization at all times. If this is to
keep the cache hot and to keep the PPF ready for incoming packets, this may lead
to increased performance. However, if there is no traffic being processed, this is
inefficient as the resources are left unused. To leave room for other VNFs as well
as for environmental reasons related to energy consumption, perhaps some allocated
resources could be released when traffic is low at the cost of higher latency in the early
phase of transmission.
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• An interesting optimization to try would be to compile the VM guest OS kernel with
NO_HZ=full capability, as this was a pre-test optimization used on the host machine
to reduce OS jitter. Having a guest OS kernel with this capability may further reduce
OS jitter.

• The measurements in this thesis are based on Ericsson’s pre-existing test cases. The
throughput tests only set up 2 traffic flows, and the latency test only set up 1 IMIX
traffic flow. It could be interesting to evaluate the PPF with a greater variety of network
flows, and with different payloads and packet sizes.

• Software RSS proved to be an expensive functionality of the Rx driver. Experiments
could be made with RSS offloading. The NICs for the experiments in this thesis project
have RSS hardware offloading capability, yet RSS is performed in software. One of
the reasons for running the PPF as a VNF is to be able to run it on different types of
hardware. However, if RSS offloading capability is detected, this could likely boost the
PPF’s performance.

Additionally, the DPDK libraries used by the PPF have a number of configurable parameters
which were originally intended as a part of the PPF optimization in this project. These
parameters could affect both throughput and latency. Some of these parameters are:

• Enqueue and dequeue depths of Eventdev event ports - The event device uses event
queues to contain events of different types and to allow the scheduler to dynamically
distribute the load when processing events. The event queues are linked to event ports
which can be set to enqueue and dequeue events in bursts of configurable sizes. These
burst sizes are called the enqueue and dequeue depths. Tuning these parameters to
find the right balance can affect the throughput and latency when processing events:
increasing the burst size may increase both throughput and latency and may also affect
cache performance.

• New event threshold on Eventdev event ports - This parameter is used to protect the
event device from being overwhelmed when the system is under heavy load. It limits
the amount of new events that are enqueued in the event queues. If the new event
threshold is set too low, the event device will be underutilized due to starvation from
backpressure at the ingress, and if set too high the event device may be flooded with
new events which can lead to increased latency.

• Eventdev scheduling quanta - The number of events scheduled at each scheduling
function call. This parameter serves as a hint to the scheduler, which may not adhere
to the configured quanta.
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Appendix A

LMbench Output

This section contains the output when running LMbench on the host and guest machines on
which the 5G RAN PPF was evaluated.

A.1 Host (Physical) Machine Results

L M B E N C H 3 . 0 S U M M A R Y
------------------------------------

(Alpha software, do not distribute)

Processor, Processes - times in microseconds - smaller is better
------------------------------------------------------------------------------
Host OS Mhz null null open slct sig sig fork exec sh

call I/O stat clos TCP inst hndl proc proc proc
--------- ------------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
selistnh0 Linux 4.4.0-8 2899 0.10 0.13 0.39 0.92 2.40 0.10 0.68 193. 559. 947.

Basic integer operations - times in nanoseconds - smaller is better
-------------------------------------------------------------------
Host OS intgr intgr intgr intgr intgr

bit add mul div mod
--------- ------------- ------ ------ ------ ------ ------
selistnh0 Linux 4.4.0-8 0.5000 0.0400 1.0600 8.1700 9.0600

Basic float operations - times in nanoseconds - smaller is better
-----------------------------------------------------------------
Host OS float float float float

add mul div bogo
--------- ------------- ------ ------ ------ ------
selistnh0 Linux 4.4.0-8 1.0300 1.7200 4.6700 2.8800

Basic double operations - times in nanoseconds - smaller is better
------------------------------------------------------------------
Host OS double double double double

add mul div bogo
--------- ------------- ------ ------ ------ ------
selistnh0 Linux 4.4.0-8 1.0300 1.7200 7.0700 4.8300
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Context switching - times in microseconds - smaller is better
-------------------------------------------------------------------------
Host OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw
--------- ------------- ------ ------ ------ ------ ------ ------- -------
selistnh0 Linux 4.4.0-8 4.4700 3.5100 3.0400 2.6100 1.7800 2.43000 1.67000

*Local* Communication latencies in microseconds - smaller is better
---------------------------------------------------------------------
Host OS 2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
--------- ------------- ----- ----- ---- ----- ----- ----- ----- ----
selistnh0 Linux 4.4.0-8 4.470 6.463 8.46 9.991 12.7 38.

File & VM system latencies in microseconds - smaller is better
-------------------------------------------------------------------------------
Host OS 0K File 10K File Mmap Prot Page 100fd

Create Delete Create Delete Latency Fault Fault selct
--------- ------------- ------ ------ ------ ------ ------- ----- ------- -----
selistnh0 Linux 4.4.0-8 4.9812 4.2954 9.7819 5.5132 5670.0 0.195 0.18030 1.067

*Local* Communication bandwidths in MB/s - bigger is better
-----------------------------------------------------------------------------
Host OS Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
--------- ------------- ---- ---- ---- ------ ------ ------ ------ ---- -----
selistnh0 Linux 4.4.0-8 3936 8360 5103 6370.0 9870.9 8993.3 5875.6 10.K 7450.

Memory latencies in nanoseconds - smaller is better
(WARNING - may not be correct, check graphs)

------------------------------------------------------------------------------
Host OS Mhz L1 $ L2 $ Main mem Rand mem Guesses
--------- ------------- --- ---- ---- -------- -------- -------
selistnh0 Linux 4.4.0-8 2899 1.3790 5.3080 23.4 130.2

A.2 Guest (Virtual) Machine Results

L M B E N C H 3 . 0 S U M M A R Y
------------------------------------

(Alpha software, do not distribute)

Basic system parameters
------------------------------------------------------------------------------
Host OS Description Mhz tlb cache mem scal

pages line par load
bytes

--------- ------------- ----------------------- ---- ----- ----- ------ ----
vrcs Linux 4.1.27- x86_64 2460 32 128 8.4100 1

Processor, Processes - times in microseconds - smaller is better
------------------------------------------------------------------------------
Host OS Mhz null null open slct sig sig fork exec sh

call I/O stat clos TCP inst hndl proc proc proc
--------- ------------- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----
vrcs Linux 4.1.27- 2460 0.09 0.13 0.61 1.16 2.95 0.12 0.77 129. 419. 1031
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Basic integer operations - times in nanoseconds - smaller is better
-------------------------------------------------------------------
Host OS intgr intgr intgr intgr intgr

bit add mul div mod
--------- ------------- ------ ------ ------ ------ ------
vrcs Linux 4.1.27- 0.4100 0.0400 1.2600 9.6500 10.7

Basic float operations - times in nanoseconds - smaller is better
-----------------------------------------------------------------
Host OS float float float float

add mul div bogo
--------- ------------- ------ ------ ------ ------
vrcs Linux 4.1.27- 1.2200 2.0400 5.5200 2.9000

Basic double operations - times in nanoseconds - smaller is better
------------------------------------------------------------------
Host OS double double double double

add mul div bogo
--------- ------------- ------ ------ ------ ------
vrcs Linux 4.1.27- 1.2200 2.0400 8.3500 5.7400

Context switching - times in microseconds - smaller is better
-------------------------------------------------------------------------
Host OS 2p/0K 2p/16K 2p/64K 8p/16K 8p/64K 16p/16K 16p/64K

ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw ctxsw
--------- ------------- ------ ------ ------ ------ ------ ------- -------
vrcs Linux 4.1.27- 0.6300 1.0500 1.2400 1.8400 2.5000 2.16000 2.60000

*Local* Communication latencies in microseconds - smaller is better
---------------------------------------------------------------------
Host OS 2p/0K Pipe AF UDP RPC/ TCP RPC/ TCP

ctxsw UNIX UDP TCP conn
--------- ------------- ----- ----- ---- ----- ----- ----- ----- ----
vrcs Linux 4.1.27- 0.630 3.380 5.16 5.939 7.743 25.

File & VM system latencies in microseconds - smaller is better
-------------------------------------------------------------------------------
Host OS 0K File 10K File Mmap Prot Page 100fd

Create Delete Create Delete Latency Fault Fault selct
--------- ------------- ------ ------ ------ ------ ------- ----- ------- -----
vrcs Linux 4.1.27- 2.5258 1.5459 5.4627 2.9655 4941.0 0.473 0.22480 1.058

*Local* Communication bandwidths in MB/s - bigger is better
-----------------------------------------------------------------------------
Host OS Pipe AF TCP File Mmap Bcopy Bcopy Mem Mem

UNIX reread reread (libc) (hand) read write
--------- ------------- ---- ---- ---- ------ ------ ------ ------ ---- -----
vrcs Linux 4.1.27- 4340 4792 4384 4896.9 7060.4 6465.8 4137.3 6640 5599.

Memory latencies in nanoseconds - smaller is better
(WARNING - may not be correct, check graphs)

------------------------------------------------------------------------------
Host OS Mhz L1 $ L2 $ Main mem Rand mem Guesses
--------- ------------- --- ---- ---- -------- -------- -------
vrcs Linux 4.1.27- 2460 1.6340 11.5 70.4 136.3
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A.3 LMbench Config-Run Script Sample Output

=====================================================================

L M B E N C H C ON F I G U R A T I O N
----------------------------------------

You need to configure some parameters to lmbench. Once you have configured
these parameters, you may do multiple runs by saying

"make rerun"

in the src subdirectory.

NOTICE: please do not have any other activity on the system if you can
help it. Things like the second hand on your xclock or X perfmeters
are not so good when benchmarking. In fact, X is not so good when
benchmarking.

=====================================================================

If you are running on an MP machine and you want to try running
multiple copies of lmbench in parallel, you can specify how many here.

Using this option will make the benchmark run 100x slower (sorry).

NOTE: WARNING! This feature is experimental and many results are
known to be incorrect or random!

MULTIPLE COPIES [default 1]:
=====================================================================

Options to control job placement
1) Allow scheduler to place jobs
2) Assign each benchmark process with any attendent child processes

to its own processor
3) Assign each benchmark process with any attendent child processes

to its own processor, except that it will be as far as possible
from other processes

4) Assign each benchmark and attendent processes to their own
processors

5) Assign each benchmark and attendent processes to their own
processors, except that they will be as far as possible from
each other and other processes

6) Custom placement: you assign each benchmark process with attendent
child processes to processors

7) Custom placement: you assign each benchmark and attendent
processes to processors

Note: some benchmarks, such as bw_pipe, create attendent child
processes for each benchmark process. For example, bw_pipe
needs a second process to send data down the pipe to be read
by the benchmark process. If you have three copies of the
benchmark process running, then you actually have six processes;
three attendent child processes sending data down the pipes and
three benchmark processes reading data and doing the measurements.
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Job placement selection [default 1]:
=====================================================================

Hang on, we are calculating your timing granularity.
OK, it looks like you can time stuff down to 100000 usec resolution.

Hang on, we are calculating your timing overhead.
OK, it looks like your gettimeofday() costs X usecs.

Hang on, we are calculating your loop overhead.
OK, it looks like your benchmark loop costs X.XXXXXXXX usecs.

=====================================================================

Several benchmarks operate on a range of memory. This memory should be
sized such that it is at least 4 times as big as the external cache[s]
on your system. It should be no more than 80% of your physical memory.

The bigger the range, the more accurate the results, but larger sizes
take somewhat longer to run the benchmark.

MB [default XXXX]:
Checking to see if you have XXXX MB; please wait for a moment...
XXXXMB OK
XXXXMB OK
XXXXMB OK
Hang on, we are calculating your cache line size.
OK, it looks like your cache line is bytes.

=====================================================================

lmbench measures a wide variety of system performance, and the full suite
of benchmarks can take a long time on some platforms. Consequently, we
offer the capability to run only predefined subsets of benchmarks, one
for operating system specific benchmarks and one for hardware specific
benchmarks. We also offer the option of running only selected benchmarks
which is useful during operating system development.

Please remember that if you intend to publish the results you either need
to do a full run or one of the predefined OS or hardware subsets.

SUBSET (ALL|HARWARE|OS|DEVELOPMENT) [default all]:
=====================================================================

This benchmark measures, by default, memory latency for a number of
different strides. That can take a long time and is most useful if you
are trying to figure out your cache line size or if your cache line size
is greater than 128 bytes.

If you are planning on sending in these results, please don’t do a fast
run.

Answering yes means that we measure memory latency with a 128 byte stride.

FASTMEM [default no]:
=====================================================================

This benchmark measures, by default, file system latency. That can
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take a long time on systems with old style file systems (i.e., UFS,
FFS, etc.). Linux’ ext2fs and Sun’s tmpfs are fast enough that this
test is not painful.

If you are planning on sending in these results, please don’t do a fast
run.

If you want to skip the file system latency tests, answer "yes" below.

SLOWFS [default no]:
=====================================================================

This benchmark can measure disk zone bandwidths and seek times. These can
be turned into whizzy graphs that pretty much tell you everything you might
need to know about the performance of your disk.

This takes a while and requires read access to a disk drive.
Write is not measured, see disk.c to see how if you want to do so.

If you want to skip the disk tests, hit return below.

If you want to include disk tests, then specify the path to the disk
device, such as /dev/sda. For each disk that is readable, you’ll be
prompted for a one line description of the drive, i.e.,

Iomega IDE ZIP
or
HP C3725S 2GB on 10MB/sec NCR SCSI bus

DISKS [default none]:
=====================================================================

If you are running on an idle network and there are other, identically
configured systems, on the same wire (no gateway between you and them),
and you have rsh access to them, then you should run the network part
of the benchmarks to them. Please specify any such systems as a space
separated list such as: ether-host fddi-host hippi-host.

REMOTE [default none]:
=====================================================================

Calculating mhz, please wait for a moment...
mhz: should take approximately 30 seconds
I think your CPU mhz is

4267 MHz, 0.2344 nanosec clock

but I am frequently wrong. If that is the wrong Mhz, type in your
best guess as to your processor speed. It doesn’t have to be exact,
but if you know it is around 800, say 800.

Please note that some processors, such as the P4, have a core which
is double-clocked, so on those processors the reported clock speed
will be roughly double the advertised clock rate. For example, a
1.8GHz P4 may be reported as a 3592MHz processor.

Processor mhz [default XXXX MHz, X.XXXX nanosec clock]:
=====================================================================
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We need a place to store a 128 Mbyte file as well as create and delete a
large number of small files. We default to /usr/tmp. If /usr/tmp is a
memory resident file system (i.e., tmpfs), pick a different place.
Please specify a directory that has enough space and is a local file
system.

FSDIR [default /var/tmp]:
=====================================================================

lmbench outputs status information as it runs various benchmarks.
By default this output is sent to /dev/tty, but you may redirect
it to any file you wish (such as /dev/null...).

Status output file [default /dev/tty]:
=====================================================================

There is a database of benchmark results that is shipped with new
releases of lmbench. Your results can be included in the database
if you wish. The more results the better, especially if they include
remote networking. If your results are interesting, i.e., for a new
fast box, they may be made available on the lmbench web page, which is

http://www.bitmover.com/lmbench

Mail results [default yes]: no
OK, no results mailed.
=====================================================================

Confguration done, thanks.

There is a mailing list for discussing lmbench hosted at BitMover.
Send mail to majordomo@bitmover.com to join the list.
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