DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
{@ﬁ STOCKHOLM, SWEDEN 2015
A

FKTHY

VETENSKAP
28 OCH KONST %%

s

Investigation of a new
integration test environment

Facilitating offline debugging of
Hardware-in-the-Loop

DEKUN YANG

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

Investigation of a new integration
test environment

Facilitating offline debugging of
Hardware-in-the-Loop

Dekun Yang

2015-11-17

Master’'s Thesis

Examiner and Academic adviser
Gerald Q. Maguire Jr.

Industrial adviser
Thomas Gustafsson

KTH Royal Institute of Technology

School of Information and Communication Technology (ICT)
Department of Communication Systems

SE-100 44 Stockholm, Sweden

Abstract | i

Abstract

Advanced automatic testing is very important in development and research within the vehicle
industry. Hardware-in-the-loop (HIL) systems give the ability to validate Electronic Control Units
(ECUs) based on software simulation without gathering all of the physical hardware. This enables
testing by providing inputs and examining the corresponding outputs of the ECUs in a simpler and
safer way than in traditional physical testing. HIL offers the advantage that we can verify and
validate the functions of ECUs prior to full-scale hardware production.

On the contrary, because HIL systems are normally released as general-purpose test beds, it
takes time to embed them into the current system. Additionally, the question of how to fill the gap
between the HIL and the test environment is even more critical when the test bed is expected to be
used for a long period of time without modifications. Furthermore, HIL systems are precious. It is
not practical and will be considered as a waste of resource if it is used exclusively by testers. Scania’s
RESI group uses Client-Server architecture to make it more flexible. The HIL system is hosted at
server side while the testers operate it at client side. This architecture enables different
implementations of client and server as long as a same protocol is applied, but this still does not
solve the problem that the HIL is not always accessible when the testers want to debug their scripts.
The testers want to find a solution to achieve this goal offline (without servers).

To solve the problem, we first investigated which programming languages are used in the
industry. Without doubt, there is no dominant language that ideally suits all situations, so secondly,
we developed a new test environment. The new environment including “Dummy Mode” and “Mat
Mode” is able to provide script validation service on basic and logic levels without servers. The
result shows the Dummy mode is able to reach a higher detection rate (99.3%) on simple errors
comparing to the current environment (81.3%). By reproducing and reusing the result of HIL
system, Mat mode is able to identify logic errors and provide better assistance when the logic errors
are found. In general, the proposed environment is able to show a better way of using HIL which
makes the whole system more efficient and productive.

Keywords

Hardware in the Loop, test environment, Python, declarative test script, imperative test script,
Simulink, MATLAB

Sammanfattning | iii

Sammanfattning

I fordonsindustrin stélls stora krav pa avancerad automatiserad testning. For att utvirdera
Electronic Control Units (ECUs) anvinds sa kallade Hardware-In-the-Loop-system (HIL) for att
simulera den omkringliggande hardvaran. Detta mdjliggor enklare samt sidkrare testning av ECU-
komponenterna dn vid traditionell fysisk testning. Med hjilp av HIL kan ECUs testas innan en
fullskalig produktion satts igdng. D& HIL-system vanligtvis utvecklas for ett brett
anvandningsomrade kan det ta tid att skrdddarsy dem for ett specifikt system. Ett annat viktigt
problem vi stills infor dr skillnaderna mellan HIL-systemet och testmiljon, d& testfallen forvintas
att anvidndas en ldngre tid utan férandringar. Vidare ar HIL-system kostsamma. Det anses vara
varken praktiskt eller ekonomiskt att 1dta HIL-system enbart anviandas av testare.

Scanias RESI-grupp anviander en klient-server-arkitektur for att dstadkomma flexibilitet HIL-
systemet kors pa serversidan medan testarna arbetar pa klientsidan. Den har typen av arkitektur
oppnar upp for olika implementationer pa klient- samt serversida, foérutsatt att samma
kommunikationsprotokoll anviands. En nackdel med den nuvarande 16sningen ar att HIL-systemet
inte alltid finns tillgingligt nar testarna vill felsoka deras programskript. Testarna vill hitta en
16sning dar det gér att utfora felsokningen lokalt, utan tillgéng till servrar.

For att kunna l6sa problemet undersoktes forst vilka programmeringssprak som anvands inom
industrin. Undersokningen visar pa att det finns inget programmeringssprak som ar idealt for alla
dndamal. Vidare utvecklades en ny testmiljo som tillhandahaller testligena "Dummy Mode" samt
"Mat Mode". Testmiljon kan anvidndas for att validera programskript pa grund- och logikniva utan
att kommunicera mot servrar. Resultatet visar att "Dummy Mode" detekterar upp till 99.3% av
enklare typ av fel 4n motsvarande 81.3% i nuvarande testmiljon. Genom att reproducera och
ateranvianda resultat av HIL-systemet kan “Mat Mode” identifiera logikfel samt ge en béttre
indikation om vad felen innebir. Generellt sitt kan den foreslagna testmiljon visa pé ett battre
anvandande av HIL, som gor hela systemet mer effektivt och produktivt.

Nyckelord

Hardware In the Loop, Testmiljo, Python, Deklarativ programmering, Imperativ programmering,
Simulink, MATLAB

Acknowledgments | v

Acknowledgments

I would like to thank my wonderful supervisor at Scania Thomas Gustafsson for his great support
and valuable experience with all my questions.

From KTH Royal Institute of Technology, I have received innumerous help and suggestions
from professor Gerald Q. Maguire Jr. I could not have finished this work without you. A thousand
thanks.

Thanks to my friend Mattias Appelgren and Eddie Kdmpe for the translation of the Abstract.

My beautiful girlfriend Ying Cai has provided great support to me during these six months.
Thank you so much!

Stockholm, November 2015
Dekun Yang

Table of contents | vii

Table of contents

ADSTIACT ..eeeeiiie e i
[AT o] o £ RSP [
SammanfatiniNngcooeeii s i
NN)74 1] [0 o i
ACKNOWIEAgMENTS...cciiiiiieeee e v
Table of CONTENTS. ..., Vil
LISt Of FIQUIES ..uuiiiiiii e IX
LiSt Of TABIES c.uneeeeeeee e, Xi
List of acronyms and abbreviations.........ccooeevvvvvieiieveennnnnnn. Xiii
I o1 4 0T 1V o £ 0 o I 1
11 BacKground..........oooiiiiiiiiii 1
1.2 Problem definitioncccccovviiiiiiiii 2
1.3 PUIPOSE ..t 2
1.4 GOAIS ettt 2
1.5 DeliMmitatiONS ... e 2
1.6 Structure of the thesis ... 2
2 Background.......ccoooooiiiiii 5
2.1 Evaluation of Language: Why is Python used as well? 5
2.1.1 Language Evaluation Criteria...........cccceevveeeeiieeiiiiiiieneeeen, 5

2.1.2 Current Testing Environmentcccccciiiiiiiiiiiniiniinnnns 6

2.1.3 CONCIUSION ..t 6

2.2 TeSt ENVIFONMENT ... e e 6
2.3 SymDboliC @XECULIONvieiii e 8
2.4 Brief introduction to test SCriPtSuvviviiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeee 9
2.5 Independent Guarded ASSErtioNScccceevveeeiieeeiiiiiiiie e, 9
2.6 MAT-FHES e e e e e eeeaees 11
2.7 (I o BTt 1 |- PP 12
3 Method, methodology, and toolscccccceevviiiiiiciiieneenn, 13
3.1 Feedback meetings ... 13
3.2 Priority ChecCKIliSt........ooovmiiiie e 13
3.3 Case study and literature reVieW.........cccceeeeeeeviviiiiee e, 14
3.4 Architecture and algorithm designccccooeeeeiiiiiiiiiiiiiieee e, 15
3.5 SOftWAre tOO0IS ..o 17
4 Implementationccooii i 19
4.1 DUMMY MOGE ...iiiiiiieeieeeeece e e e e e e eenaens 19
41.1 Algorithm and Implementationcoviiiiniiiiiiiiinnnens 19

4.1.2 OPtMIZALIONS ... 21

4.1.3 Analysis and Validation..............cccooveieeiiiiiiiiiiii e 23

4.1.4 Why not Symbolic eXecution.............ccoevvvviiiiiiiieeeeeeeeenns 24

4.2 1YY 1Y T Yo [SRR 24

4.2.1 Algorithm and Implementationccccccceeiiee e, 24

viii | Table of contents

4.2.2 ANALYSIS oo 25

4.2.3 Graphical User Interface (GUI)uuvciiieiiiiiiiiiiiiii. 27

4.2.4 A TEAI CASEu it 30

T A V4= 1 1= A [0 o [T 31
5.1 Offline debUGQING ...uuuuiiiiiiiii e 31
5.1.1 RUNTIME e 32

51.2 Error Detection RAteovvviiiiiii e 33

5.1.3 Ease of use: when an error is detected...........cccceevvneeeenn. 34

514 Ease of use: debugging with GUI in Mat mode............... 35

5.2 Efficient static analysis toolcvieiiiiiieiiiecc e 39
5.3 Be able to run automatically ... 40
6 Conclusions and FUture Workccoeeeeieiiiieiiiiniieiieeeieees 41
6.1 (7o) 1o 1 F-Y 10 o E TR 41
6.2 [T 0 g TL = LA 0] F 41
6.3 FULUTE WOTK ..ot e e e 42
6.4 REFIECHIONS «eeiie e 42
RETEIENCES ..ceeeee e 45

Appendix A: Detailed resultscccoooeveiiiiiiiiciee e, 47

List of Figures | ix

List of Figures

Figure 1-1:

Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 4-1:
Figure 4-2:

Figure 4-3:
Figure 4-4:
Figure 4-5:

Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 6-1:
Figure 6-2:

Illustration of HIL Simulation.........cccceeeeeciveeiicciiieeiecciieeeeees 1
Work flow in our Client-Server architecture..........cccceeuvuueneee... 7
Communication between Client and Servers.........ccccuvveeennnee.e. 7
Structure of a test script in REST......cccccooviiiiiiniiinniinienicenee. 9
Matching of a course and a SCTipt........cccceeeeeuvreeeeccineeeeeccnneeenn. 11
MATLAB level 5 MAT-file format........ccccccevvvviiininiiiiinnnnnnnnnnnn. 12
First Run of execution programccccceeeeveeeecveeeesneeecneennns 19
After the first trim program (second run of execution

PTOZTAIIL) «.uuevieeiieeeneireeeenireesereeesenreesereeessnreeseneeessnseesenneesnnee 20
Branch removed.........ccueeeieeiiiiiiecccieeeecee e 20
New Branch created..........cccceeeiieiiieiiiieeecciree e, 21
Gather information and exceptions from the running

PTOZTAIML...cccuveeeeereeeeereeeeeeeeesseeeassressssssesssssessssssessssseesssssesssees 21
Same Operation in tWo SCTIPES....ccceeerrevrieeiieiireeeeecieeeeeeee 26
General view of GUI, Mat mode.........ccceeeeeveeeeeeccireeeeecrreenn. 29
76701 15) 1 R UURR RSP RURRRPRRR 29
Plot With CONTICES ...coooveiiiiiiiieeeeececeeeeeeee e 30
Multiple curves plotted in the new environment.................... 35
Multiple curves plotted in the old environment 36
Zoom in at a specific area-new environmentc.ccceeeeuneen. 37
Zoom in to a specific area-old environment.............cccccuuuenn... 37
Z00m IN-NEW eNVIrONMENTcccevveviieeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeee. 38
Zoom in-old enviroNnment.........ccccceeeeeeeevivereeeeeeeeeeeissrrnnneeee 38
Coefficient setting-old environment.........c..cccceeeveeeeiueeencrneennns 39
TIIZZET SEQUETICEeveeeeeeurreeeeeeireeeeeneireeeeessrreeeeesssrreessssssseeesns 42
Future continuous integration testingcccecccceeeveeeenucennns 42

List of Tables | xi

List of Tables

Table 2-1: List Of functionsccceevviieiriieiniiieiiecceeceeceeee e 10
Table 3-1: List of priorities (ordered by priority).......ccceceeeeeveeeecveeennenn. 13
Table 5-1: EXCEPLIONS....ctiiuiiiiieeiieeiteeiteeiteeee ettt et esee e e s sane e 32
Table 5-2: Running time comparison: HIL hardware and Dummy

1000 1¢ (ST 33

Table 5-3: Errors Detected.......coovueereeeeiieeeiiiieeeeeee e eeeecrrrreeeeeeeeeeeeennens 34

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

API application programming interface
CAN Controller Area Network

CI Continuous Integration

COO Coordinator

DTC Diagnostic Trouble Code

ECU Electronic Control Unit

EMS Engine Management System

EES electronic error simulation

FIU failure injection unit

GMS gearbox management system

GPIB general purpose interface bus

GUI Graphical User Interface

HIL Hardware-in-the-loop

HTML Hypertext Markup Language

IDE Integrated Development Environment
I/0 Input/Output

LIN local interconnect unit

MIL Model-in-the-loop

RESI Vehicle Electrical Integration and Chassis System Software
Scipy Open Source Library of Scientific Tools
SESAMM Scania Electrical System Architecture for Modularization and Maintenance
SIL Software-in-the-loop

SOPS Scania Onboard Product Specification
SUT System Under Test

VEHIL Vehicle Hardware-in-the-loop

Introduction | 1

1 Introduction

Vehicles are expected to always be more reliable and intelligent due to advanced and complicated
systems, and at the same time vehicle manufacturers require faster and more efficient production
and delivery. In order to achieve these objectives, an optimized automatic test environment is of
great importance to the whole development process. This thesis aims to explain Scania’s current
automatic test environment and give a set of solutions that as a whole will improve the speed and
efficiency of this testing.

1.1 Background

Scania uses MathWorks® MATLAB®/Simulink®[1] to model the advanced control system and
Hardware-in-the-loop (HIL) to perform integration testing. HIL is a combination of software and
hardware which helps to perform testing of embedded systems while achieving low cost, a
repeatable test procedure, and high usability in a safer environment that traditional testing [2]. HIL
is also used to perform tests that would be hard or very dangerous to test in a real vehicle.
Furthermore, in Scania, HIL is used to complement real tests in vehicles in order to cover the large
variation space due to many options that are available when configuring a specific instance of a
vehicle.

In the HIL environment, components under tested believe that they are placed into a real
environment, but they are actually connected with various signal sources that send exactly the same
signals as the corresponding real component. Computers, instead of a physical plant (engine,
brakes, and vehicle dynamics), feeds the stimulated signals to the object(s) under test [3].

Many development procedures can benefit from this HIL pattern. Function tests can be done at
an earlier stage, thus accelerating the maturity of the products; especially when the product depends
upon other hardware or software that has not yet been brought into existence. Reactions taken by
Electronic Control Units (ECUs) of failures or dangerous situations can also be easily done at a
lower cost in terms of money and time than when using traditional testing. Most importantly, HIL
has the ability to automate all of these test cases. With an appropriate test configuration, testing can
run 24 hours a day without human interaction [4]. See the illustration in Figure 1-1 of HIL being
used to test an ECU.

ECU ECU

—— 4

) . Signal Signal |
|

Signal 10 Signal 10 | Simulation Simulation :

' |

' |

Physical : Engine |

Engine I Model :
|

|

' |

Real-time Simulation

Reality HIL-Simulation

Figure 1-1: Illustration of HIL Simulation

2 | Introduction

Obviously, HIL is a relatively independent general-purpose environment, but there is still a
large gap to fill to make it work perfectly inside Scania’s continuous integration (CI) system.

1.2 Problem definition

In RESI department, HIL is not always accessible to all test script writers. To debug or validate their
scripts, testers need to wait in queue. On the other hand, the scripts might contain very simple
errors before they are tested against HIL, and debugging such kind of errors on HIL is considered a
waste of time and resource. This reduces the efficiency of using HIL more seriously. Therefore, it is
very important to find a new way to make the debug of the scripts easier and use the HIL more
productive.

1.3 Purpose

The purpose of this degree project is to investigate a new testing environment to overcome the
current problems and improve the using efficiency of HIL. The new testing environment should be
able to do offline debugging in an easier way. Two debugging tools, Dummy and Mat are proposed
and implemented in the project and evaluated.

14 Goals

The goal of this project is to investigate a new test script environment. The goal has been divided
into the following three sub-goals:

1. Background research: which language is used in industry and what is the trade-offs if we switch
to the new language.

2. Implementation of a new test script environment: use the chosen language to implement a new
testing environment which is able to provide better offline debugging support and better user
experience.

3. Evaluation of the new testing environment: proof is required to illustrate the new environment is
better than the old one in terms of running time, bug detection rate and user experience.

15 Delimitations

This thesis does not discuss how to practically compose a test “course” because this is outside the
scope of this thesis. Although we do not have a pre-designed course at hand; fortunately, such a
course is completely independent of our environment, hence when we implement related functions
we will simply assume that we have a suitable course. More details about test courses can be found
in Sections 2.4 and 2.5.

The details of how to use HIL are also not part of this thesis because we use the well-known
client-server architecture in our test environment. This enables us to focus on the client part, while
ignoring the implementation of the server side (where the HIL is hosted).

1.6 Structure of the thesis

Chapter 2 presents relevant background information about test environment. Chapter 3 presents
the methodology and method used to solve the problem. Chapter 4 presents a detailed
implementation of the test environment in a systematic fashion. Chapter 5 compares the new and
old environment and gives an evaluation of the new one. Finally, the thesis concludes with Chapter

Introduction | 3

6 that offers some conclusions, suggestions for future work, and some reflections on the relationship
of this thesis project with society.

Background | 5

2 Background

This chapter introduces the Python programming language (used in our test environment), the
current test environment, and declarative scripts. Section 2.1 explains why Python is still used as the
main language in the test environment. Section 2.2 describes the architecture of the test
environment and Section 2.4 gives a brief introduction to test script. Section 2.5 introduces the
concept of “independent guarded assertions”. This concept is very important because it is used to do
matching between a script and the corresponding MATLAB (mat) files. This chapter also introduces
some additional aspects relevant to the thesis.

2.1 Evaluation of Language: Why is Python used as well?

This section explains why Python is still used in the test environment from two different aspects: a
comparison with other languages and the tradeoffs of moving to a new language.

211 Language Evaluation Criteria

It is very hard to evaluate any programming language in isolation because when we believe one
language is better than another, we make this judgement based on our own understanding of and
background in the two languages. Moreover, this conclusion might not hold for others in the same
team. This means, we cannot simply give each programming language a score and choose the
language with the highest score. Additionally, it is pointless to talk about the merits of a single
language without considering its application environment. As a result, we need to fully understand
the requirements and only then can we identify a language that would satisfy as these requirements.
Requirements that cannot be met by the language itself will need to be addressed by tools, either
available tools or our own tools.

Ordinarily, before we do a detailed comparison, some languages can be easily removed from our
list, such as low-level programming languages (machine languages and assembly languages) and
web programming languages (Javascript, Hypertext Markup Language - HTML, and so on).

Generally speaking, programming language evaluation criteria includes four aspects:
readability, write-ability, reliability, and cost [5].

Readability is the capability required for a reader to understand the purpose of a text. It
includes many aspects such as overall simplicity, data types, control statements, syntax
considerations, and so on. Write-ability includes simplicity, support for abstraction, and
expressivity [5]. These latter two factors determine if it is easy to implement a certain function in a
shorter length of code and whether the result code can be easily and correctly understood by other
readers within a shorter period. Reliability involves aspects such as type checking, exception
handling, and aliasing (different presentation of the same memory block, for example by pointers,
object names, and reference to the same object in C). Cost includes more general aspects, such as
the time spent training programmers, writing programs, compiling time, execution time,
maintainability, and so on [5].

By implementing a phone-code function, Lutz Prechelt [6, 7] provides a very good example
describing programming languages in a context which is quite close to us. Lutz sent the
requirements to programmers giving each of them the same requirements and input. The collected
result shows that the length of script languages such as Python and Perl was only half the length of
non-script languages such as C, C++, and Java, but the reliability of the program shows no
observable difference. Within the script language group, Python and Perl were faster in terms of
execution time than Rexx and Tcl.

6 | Background

Spinellis, et al. [8] found a similar result. Despite some particular inappropriate circumstances,
script languages (Python, Perl, and Javascript) require only one third the number of lines-of-code to
implement the same functions as non-script languages. These results suggest that a script language
is more suitable for our test environment because expressivity is a valuable merit to our test script-
writers. Shorter source code means fewer chances to make mistakes.

Another important factor is the built-in support for data structures and string processing
because we need to deal with different data flows and gather test results. This functionality is
supported quite well by script languages, such as Python and Perl.

2.1.2 Current Testing Environment

Currently, most of the testing code in RESI’s code base is written in Python. To give a more precise
impression, we calculated the LoC (line of code) for these testing scripts and related code. Two main
folders are taking into account, TC_NCG and main.R2014 while most scripts are in TC_NCG folder
and main.R2014 is a test automation framework (TaFw) providing support functionalities such as
hardware abstraction, hardware (signal) modeling, function interfaces, tools, communication
protocol implementation to servers and so on.

In general, the current project includes 3545 files and 3028 of them are Python files, accounting
for 1191784 line of code (in Python). The TaFw project was started four years ago (2010) and
delivered in 2014 after two years’ preparation. As we can see from this similar example, moving to a
new language means a huge amount of work to do and will take years of preparation. Additionally,
the testers will need a period of time to study the new features of another language, forcing them to
focus on the details of this new language, rather than focusing on the company’s products.

2.1.3 Conclusion

Due to the nature of weak or dynamic type systems of scripting languages, many errors cannot be
found during compile time[8]. However, we think with the help of offline debugging and other tools
or mechanisms, such as unit testing, can solve this problem indirectly. We will discuss this later in
Chapter 4. As a result of this chapter, the conclusion is that Python remains the best choice of
language for the testing environment.

2.2 Test Environment

Figure 2-1 shows the workflow in our department, RESI (Vehicle Electrical Integration and Chassis
System Software). The model is a combination of a general static model and a dynamic model. The
dynamic model models all of the dynamic behavior, such as a combustion engine. The static I/O
model describes how the I/0 boards of the HIL are allocated — i.e., connected to specific hardware,
and how the signals are transferred into other units, such as ECUs. The combination of a general
and dynamic model is needed for executing tests against the many possible vehicle variants
produced by Scania, avoiding the need for a per product model.

Each input and output, also known as a signal, has a unique layered name (such as
root/a/b/c/d) over the Scania naming scope, which constructs a tree structure from a larger
picture complying with their physical subordinate relationship, and the ‘root’ element identifies a
specific server. From the testing code’s perspective, each signal is represented as a subclass of
“ModelVariable” including the mapped set and get paths, block type, I/O type, possible values, and
S0 on.

Background | 7

Model General Network
Variable Functions
A
Inherit Call
I
1to1l
HIL Test
Model ——Name-Path—> del ; Servers
Mapping Model API Scrllpts
Call Network
Other Specific
Interfaces Functions
Figure 2-1: Work flow in our Client-Server architecture

Figure 2-2 illustrates the most basic level of communication between client and server, while
ignoring the details of the architecture and workflow.

Client I Servers
I
I
I
I
I
I
|
Network
Figure 2-2: Communication between Client and Servers

A client-server architecture is a networking architecture where the client requests a service from
the server, and the server processes the request and acts based upon the request [9]. An advantage
of using a client-server architecture is that the client and the server can communicate with each
other and are independent of their specific implementations — as long as they use a common
protocol to communicate. As noted in Section 1.5, this enables us to focus on the client, while
avoiding all of the implementation details of the server.

The “ModelVariable” class, shown in Figure 2-1, provides general-purpose functions to
implement the underlying mapping relationship to ensure that when a function is called, its
corresponding server peer will return a result. This mechanism greatly facilitates the process of
manipulating signals in a friendly and human-readable way.

Apart from general-purpose functions, the test environment provides another set of interfaces
to facilitate communication between the clients and the servers. These interface modules provide
specific functions to the test scripts. In the test environment, some functions, such as setting
neutral, starting the engine, or parking the vehicle, are used quite often in many scripts.
Furthermore, these functions commonly consist of the same operations. For example, “parking the
vehicle” consists of the operations “stop the vehicle based on the gear type”, “trigger the parking
brake”, “set neutral”, “release pedal and steering wheel”, and “resume the key position”. To stop a
truck, the test script simply calls the “parking the vehicle” function, instead of calling all of the
underlying operations. This enhances readability and write-ability, while decreasing cost since the
test author has to write fewer lines of code.

8 | Background

When a function, either a common function or specific function, is called from a script, the
request is sent through the network to its destination server. There are many servers in the test
environment and they each have different responsibilities. However, we will not go into the details
of how these servers process these requests, because these details are irrelevant to our work.
Logically our request is simply dispatched to a target server by a name mapping function based on
the first name of the requested path (which is ‘root’ server if a path ‘root/a/b/c/d’ is given).

Although the test environment architecture is a standard client-server model, it still has some
bottlenecks, and all the problems result from one underlying cause: a tester has only limited access
to these servers. In our department, we only have access to these servers 2 weeks out of every 4
weeks. Furthermore, during this time all of our team’s members share these servers. It is a waste of
time when a script is executed and then a simple run-time error occurs, as the tester now has to
either waste resources correcting this run-time problem or yield the server to another tester. In the
current client-server architecture not all of these run-time errors can be identified offline (for
example, by using PyLint) as opposed to online (when the servers are available and online).

To deal with these problems, composing and testing a new test script is split into three
consecutive phases: Dummy mode, Mat mode, and Normal mode. Chapter 4 will introduce each of
these phases.

2.3 Symbolic execution

Symbolic execution is mainly used to automatically analyze and generate test cases for statically
typed languages [16]. Instead of actual inputs, the interpreter of the symbolic execution tool uses
symbolic values to carry out the execution of programs, ending up with constraints on symbols of
each conditional branch, and a formula containing symbols in each branch. By analyzing the
constraints and formulas, symbolic execution tools are able to achieve high test coverage [13].

More specifically, consider the following program:

1 x = readNumber()
2 y=x/5

3 if (10-y==0)

4 return(failure)
5 return(success)

When the program is executed with symbolic execution, the variable x will be given a symbol as
the return value of function readNumber(), for example, ‘k’. The next line of code will assign
variable y with value ‘k/5’. Because of the following ‘if’ statement, the program will terminate with
two branches: failure (16 - k/5 == @) and success (10 - k/5 != 0), and the failure branch is
also marked as a constraint path. After the previous steps, if the targeted result of the program is
failure, then the analyzer of the symbolic execution will use a constraint solver to determine that
k == 5@ will ensure the failure of the program, while other values of k will result in success.

However, there are two common concerns with symbolic execution:

1. As the size of the program increases, the paths generated by symbolic execution will
also experience an exponential growth, even with a dead loop [14].

2. Multiple environmental factors, such as the operating system, user data and the
network taking the same (input) path to the program will also pose a challenge to the
symbolic execution [15].

Furthermore, symbolic execution will have more challenges when dealing with dynamic
languages, for example Python or Perl, in terms of complicated semantics, difficult type inference,
and so on [16].

Background | 9

Besides the issues mentioned above, there are also other reasons that symbolic execution is not
used in the implementation of Dummy mode. These reasons will be given in Section 4.1.4.

2.4 Brief introduction to test scripts

Each script in RESI (Research-Engine-System-Integration) represents a specific user function. All
of these specific user functions are stored in Scania’s internal database and can be access through
the Scania Electrical System Architecture for Modularization and Maintenance (SESAMM)
management system. The scripts follow the same structure — shown in Figure 2-3.

Pre

Actl

Act2

ActN...

Post v

Figure 2-3: Structure of a test script in RESI

The ‘pre’ function normally includes detection of the System under Test (SUT). For example, if a
script is going to test the steering light function, it has to ensure that the key is inserted in the
vehicle and that the vehicle is in the correct state. If these preconditions are met, then each of the
following actions (Action1 to ActionN — abbreviated Act1 to ActN) will be executed with a stimuli
and an associated assertion. Any violation of an assertion will be recorded and will trigger a specific
reaction of the execution, such as aborting the script. The ‘post’ procedure is responsible for
collecting the data, generating a final report, and restoring the SUT to a known default state.

There are two issues when executing such test scripts that should not be ignored. The first one is
the relationships between these steps, i.e., pre, actions, and post. Although the activities undertaken
by each step are encapsulated within the step, these activities still have a strong correlation between
each other. This means that the result of one step is strongly related to the activities of the previous
step. Another problem is that the ‘pre’ step contains not only state checks, but may also include
some unnecessary activities. These activities are undertaken even if the vehicle is already in the
desired state.

Although the two problems highlighted above look quite minor at this point, they greatly reduce
the applicability of a script in the new system — unless they are handled properly. A detailed
interpretation of these two problems and a proposed solution will be given in Section 4.2.2.

2.5 Independent Guarded Assertions

From the earlier discussion of Figure 2-2 we can see that all the inputs and outputs between client
and servers are done through the same super class: ModelVariable. More specifically all of the
operations are done by two functions in this class: setValue() and getValue(). Therefore, any script
can be translated into another (equivalent) version of the script containing only calls to setValue()
and getValue().

10 | Background

It is very common that a script is structured according to the following pattern: “Do A”, “Check
A done”, “Do B”, “Check B done”, ... and verify “Assertions” in the last step. For example:
Pre(State.idling(), setValue(), State.setGear(), State.setNeutral())

actl(self.toggle_worklight_function(), self.expected_response(assertions...))
Post(setValue(), Event.wait(), State.parked())

The above code was taken from an existing RESI script. Obviously, this code can also be
transformed into an equivalent using only setValues() and getValues(). Based on the ‘Independent
Guarded Assertions’ approach proposed by Gustafsson, et al. [10], setValue()s are classified into a
stimuli group, while the remaining functions form another group (i.e., assertions guarded by
conditions) as shown Table 2-1.

Table 2-1: List of functions
Do (stimuli) Check Done & asse:\rtions
(guards & assertions)

State.idling() guards for idling()
setValue() guards
State.setGear() guards for setGear()
State.setNeutral() guards for setNeutral()
self.toggle_worklight_function() guards

self.expected_response(assertions...)
setValue() guards
Event.wait()

After this first transformation, the origin script is subsequently transformed into another
“independent guarded assertion” script without any setValues(). This new script focuses on
describing the goals of a script, rather than the steps that need to be taken [10]. At the same time, a
set of stimuli (which form the course) is generated and used along with the new declarative script.

Theoretically, the new script can be applied with any course because it will never change the
state of SUT (as all of the setValue() operations have been removed). The new declarative script
iteratively evaluates the condition of the SUT and decides whether to accept it (as meeting the
desired state), or deny it and then repeat the current evaluation in the next iteration as a guard.
Figure 2-4 gives a more direct description of this procedure. When an action is taken in a course, an
action guard in the script will be used to identify if the action suits the action guard. In the course on
the left hand, action A is first tested by the script but fails to satisfy its first guard, so the course
moves to next action and the script remains its initial step (1). The next execution of the course is
action B (2), which satisfies the first action B guard of test script, so the script will also move on to
the second step (2) which corresponding to step (3) of the course. Therefore, after the first three
executions (step 1-3) of the course, all guards in the script are satisfied which will trigger the
assertion of the current system state. After any consecutive sequential execution of B and C, the
assertion will be made. In this case, the assertion is used twice, hence the script is tested twice as
well. It should be highlighted that at any time after B and C are matched, the assertion (3) must hold
or the script will fail because B and C are sufficient and necessary conditions for the assertion in

step 3.

Background | 11

1.Action A
2.Action B
3.ActionC
4.Action B
ction 1.Action B
Guard
Action D
>-Action 2.Action C
Guard
6.Action E
3.Assertion
7.Action F
8.Action B
9.Action C
10.Action A
Course Script
Figure 2-4: Matching of a course and a script

The ‘Independent Guarded Assertions’ design has the following merits:
1. Declarative scripts can be executed in parallel; thus saving a lot of time.

2. Declarative scripts are applied iteratively as many times as possible. As long as a scenario
matches the script, the assertions will be tested. This increases the applicability of a script.

3. By performing statistical analysis of the (current) scripts, it is possible to derive an
optimized and more meaningful course. This optimized course can be executed
concurrently with multiple declarative scripts. For example, we can predefine a course
containing a series of actions: starting the vehicle, ignition, speeding up, slow down,
steering left or right, reversing, parking the vehicle, enable and disable the hazard warning
lights, and leaving the vehicle. During this course, many scripts can be tested multiple times
during one execution. For example, the following scripts could be evaluated: ‘hazard
warning activation on and off’, ‘reverse light activation on and off’; and so on.

As a result, the declarative scripts can evaluate the correct functioning of a subsystem (in the
case above, the hazard warning and reverse lights) both multiple times and in many different test
scenarios (see Figure 4 in [10], the assertions of the scripts can be triggered simultaneously in a long
course).

2.6 MAT-files

MAT-files are binary files used to store data generated by MATLAB. By using MATLAB’s save()
function the arrays of a running MATLAB function will be stored into a MAT-file as a continuous
byte stream [6]. In general, there are two levels of MAT-files: level 4 (compatible up to MATLAB
version 4) and level 5 (compatible with MATLAB 5 and up). MATLAB 8.2 is used in RESI, so the

12 | Background

level 5 MAT-file format is used throughout the project. A level 5 MAT-file consists of a Header and
multiple Data Elements. Figure 2-5 shows the standard structure of a MATLAB level 5 MAT-file.

Header (128 bytes)

Descriptive Text (126 bytes)+
subsys data offset (2 bytes)

Data Element
Data type (2 bytes)+
number of bytes (2 bytes)+
Data or subelement

Data Element
Data type (2 bytes)+
number of bytes (2 bytes)+
Data or subelement

other data elements...

Figure 2-5: MATLAB level 5 MAT-file format

The Python Open Source Library of Scientific Tools (Scipy)* set of packages provides a set of
interfaces to interact with MAT-files [16] without requiring that the programmer know the details of
a MAT-file. After installing the Scipy package (version 0.16.0), the function loadmat(), found in the
scipy.io package, can be called to return a standard Python dictionary consisting of Data Elements
from a MAT-file as key-value pairs.

2.7 HIL in Scania

HIL has become the current de facto tool within the vehicle industries for testing ECUs [8]. Within
Scania, ECUs and the buses connecting to these ECUs are the objects to be tested using the HIL
environment. Automotive Simulation Models created with MATLAB are applied to simulate
operations against the related hardware [9]. As a result, the ECU and one or more busses physically
exist, while all of the rest of the system are realized by HIL.

In RESI, the HIL is provided by dSPACE corporation. Today dSPACE is highly involved in the
vehicular, specifically automotive and aircraft, industries and provides both software and hardware
to accelerate the development and testing procedures for vehicles.

In RESI, HIL is used in a more elaborate way than is typical in industry. HIL is deployed in a
client/server fashion, where scripts are executed in the client machine and the HIL is connected to
the servers. This client-server architecture isolates the technical specification of clients and servers,
enabling them to be implemented with any suitable tools [10]. Moreover, this means that the client
and server environments can use completely different choices of programming languages.

* http://www.scipy.org/

Method, methodology, and tools | 13

3 Method, methodology, and tools

This chapter introduces the tools and methods used in this project.

Unlike a problem-solving project with a list of functional requirements or performance
indicators, this project was designed to be open to a variety of ideas (including use of a new
programming language, a new Integrated Development Environment (IDE), or a new set of tools),
as long as collectively they achieve the desired goals (as stated in Section 1.4). A good strategy when
facing such an open-ended problem specification is to sort all of the requirements by priority, then
eliminate alternatives that do not satisfy an essential requirement. Furthermore, it is also critical to
restrict the research area due to limited duration of this project. That means that it is not practical
to use a long time to solve any single problem. For this reason, weekly feedback was used to provide
nearly continuous feedback keeping me focused and saving a lot of time.

To understand the current testing environment’s advantages and disadvantages, a full case
study and literature review of Scania’s internal resources was necessary. This helped me to
understand the workflow from how a script is composed from scratch to how it is applied during
testing. A literature review of research papers and articles was used to investigate what other
solutions have been proposed by other researchers and industrial companies.

3.1 Feedback meetings

A weekly discussion was held with Thomas Gustafsson (my supervisor and the department leader at
Scania RESI) to develop my understanding and guide my implementation of the new test
environment. This discussion focused on the following topics:

1. The summary of the previous week’s work;
2. Feedback on the current design and implementation;
3. Planning the coming week;

4. Examining the anticipated result(s) and the gap remaining between this and the current
work;

Focusing on specific results from the above;

Identifying problems and solutions.

3.2 Priority checklist

A checklist with priorities (see Table 3-1) was proposed during the initial phase of the project based
upon the series of interviews (described above).

Table 3-1: List of priorities (ordered by priority)
‘Must have’ ‘Better to have’
Offline debugging GUI support with offline debugging
Efficient static analysis tool Able to be integrated into Scania’s Continuous

Integration (CI) environment

Able to run automatically Management of scripts (layered by functionality)

14 | Method, methodology, and tools

On the left hand side of Table 3-1, we can see that ‘offline debugging’ is the highest priority in
the ‘Must have’ group because if this capability is provided, then providing ‘efficient static analysis
tool’ and ‘typing check’ can also be tackled. Currently, PyLint* is used to do static check with
restricted usage (details can be found in Section 4.1). If a run-time debugger could be applied
together with PyLint, this would provide the top three ‘Must have’ priorities. The reason why ‘run
automatically’ is of the lowest priority is that since the new environment is implemented in Python,
this is easy to achieve - as long as the interfaces are designed to be triggered by external tools
together with the appropriate parameters.

On the right side of Table 3-1, we see that having a GUI that supports offline debugging would
be of great help when a new script is composed. This assumes that this debugger would give a direct
hint as to the location where the script is likely to fail. Integration into CI is optional since only
limited work is left after the ‘run automatically’ functionality has completed. ‘Management of the
scripts’ is quite close to the functionality and purpose of the script itself - which is to some extent
beyond the scope of this project. As a result, all of the priorities on the right side of Table 3-1 are
optional. Whether they will be included in this thesis project will be determined based upon the
progress made on the other priorities of the project and whether sufficient time is available to
realize them.

3.3 Case study and literature review

Hardware-in-the-loop simulation is widely used in many areas such as automotive [17], power
trains [18], heating/cooling industry [19] even unmanned aerial vehicle [20]. In automotive
industry, many manufactures use the so-called V-model to design, implement, and validate their
production with HIL and other related modeling fashions such as SIL (Software-in-the-Loop) [21].
The following figure depicts the V-model used in Scania.

Functional P F System
Requirements |~ TestDrives, VEHIL Validation

/

Safety . p Safety
Requirements [~ TestDrives, VEHIL Testing
System System
-]
Specification VEHIL Verification
| System
T%Dé;e;]e] < HIL Integration &
9 testing
Module Module
Design Specs € SIL 1 Verification
Module
Construction
Figure 3-1: V-model in Scania

* http://www.pylint.org/

Method, methodology, and tools | 15

On the left side, the V-model goes from the top down to design the whole system in steps and
goes up on the right side to validate the design and implementation. As we can see from the figure,
“system integration and testing” utilizes Hardware in the loop (in our group, RESI). On the bottom
of this process, “Module Verification” uses Software-in-the-loop (SIL) to verify module design
specifications.

Ideally, SIL can help a lot with our test script debugging. Take the development of an ECU as an
example. Before an ECU is physically implemented, a software prototype (or a simulation of part of
it) can be carried out with the help of SIL to simulate its hardware [22]. This helps the ECU
developers validate their design, while the simulation is a basic software version of the ECU. To
validate our scripts, we can simply drive the software ECUs and execute the scripts to get the
validated result.

However, this is not easy as it looks like. For example, because the ECUs are developed by
different suppliers, their “software version” is not accessible due to information security and patent
protection rules. Additionally, the job of the RESI group is integration and testing. That means
many ECUs from different suppliers will be involved in the testing. It is quite common that these
ECUs come from various suppliers, which makes the problem even more complicated. For now, the
RESI group tryies to solve this problem by modeling the ECUs, but this topic is outside the scope of
this thesis.

In contrast to the Client/Server architecture used in RESI, based upon those papers we read
most of the Hardware-in-the-loop environments are built locally. For example, Catilin Vasiliu and
Nicolae Vasile [18] used AMESim and LabVIEW to model and simulate powertrains, with the HIL
test bed directly connected to a PC. In [23], the simulation is also finished locally. In [20], the
authors describe their system architecture and setup in detail. The HIL is used to connect the
control board and control system to simulate the dynamics of a real vehicle. All of the hardware is
connected to a CAN bus and then to a PC through a serial link. The simulated (fake) process
executes on a standard Linux system locally.

3.4 Architecture and algorithm design

As mentioned before, the bottleneck of the existing test environment is the limited access to
validation resources (i.e., limited access to the HIL hardware). As a result, the test script writers
cannot get immediate feedback (by running their tests and getting results) on their latest scripts
until every piece of the whole test chain is available ‘online’.

From a general view of the whole process (referred to in the following discussion as a “cycle” or
“module”), there are two ways to handle this limited access to resources and the resulting
inefficiency when writing tests:

1. Early error detection: Try to find more bugs before a new script goes online. This will
greatly increase the productivity of the HIL when it is available for use.

2. Reproduce and reuse the HIL results: Normally, when composing a new script, the
stimuli (of a given script) will not be changed even if the script contains errors - because
each script has a fixed corresponding use case. Instead, a script will be executed several
times while debugging the script, but the stimuli frequently remains (almost) the same. This
enables the test script writers to test a script many times - while only needing to utilize the
HIL hardware once.

On the other hand, there are other solutions, such as add more HIL servers and create a full
emulation of the HIL servers. Honestly, buying more HIL servers can definitely solve the problem
but our hands are tied in the department budget. Creating a software emulation of HIL, which is
known as software in the loop (SIL) as we stated before, is technically available, but that requires

16 | Method, methodology, and tools

the modeling and implementation of the ECUs and all related I0 and behaviors. This is considered a
huge effort to put in.

It is possible to build smaller autonomous test modules which do not rely on external inputs and
are able to generate internal outputs. This enables the construction of drivers and stubs for a
specific module, enabling this test module to execute and operate independently. Drivers feed
inputs to the test module, while stubs collect the output data from the module [11].

Depending upon the resources required, the current environment can be divided into three
modules which can be driven independently in three different modes: Dummy mode, Mat mode,
and Normal mode. Figure 3-2 shows these modes and their associated purposes and context.

Purely Offline
Detect run-time errors
Early Error Detection
Basic level
Dummy Mode

Offline+Online
Detect logic errors based on the
simulation of HIL hardware
Reproduce and Reuse of HIL
Medium level
Mat Mode

Purely Online
Detect remaining errors
High level

Normal Mode

Figure 3-2: Three modes

All inputs and outputs of a script are done with setValue() and getValue() through a subclass of
‘ModelVariable’ which contains all possible values of a signal. An example is shown as follow, which
a signal (also as a subclass of ModelVariable) and all its possible values (-1, 0 and 1) are listed.

1 class DS_TurnSignal(ModelVariable):

2 __api_get path__ ="yellow3/Model Root/Yellow3/ControlPanel/

3 __api_set paths__ = ("yellow3/Model Root/Yellow3/ControlPanel/Dr...
4 __api_base_paths__ = ("yellow3/Model Root/Yellow3/ControlPanel/Dr...
5 __api_text = "DriverSwitches.Visibility.DS_TurnSignal"

6 __api_block_type ="dSPACESetTASignal"

7 __api_io_type ="lO"

8 __api_default_values__=None

9 TURN_LEFT =-1

10 OFF=0

11 TURN_RIGHT =1

So how should one activate the “Turning Left” and read the current state of the Turning signal?
The function setValue() and getValue() is defined in ModelVariable, so the tester can simply call
these two functions with DS_TurnSignal object to achieve this goal.

Dummy mode is designed to identify run-time errors, such as ‘too many values to unpack’ or
‘list index out of range’. For testing purposes when the system is running and it tries to get a value of

Method, methodology, and tools | 17

a signal, the first of the possible values of the signal will be returned. This happens until the end of
the execution of a script and the chose values will be recorded as a “path”. The path will be
remembered and removed from Dummy mode for the next execution, thus ensuring that there are
no missing or duplicated paths. The reason we choose to test our script this way is because we are
fully aware of the input of the program (script), and with the help of optimizations we introduced in
Section 4.1.2, we can further reduce the size of the input set. For the sake of execution speed and
complexity, a dynamic tree structure and an exception list are used to represent the execution paths.
Section 4.1 presents the details of this implementation.

In order to test a script with mat files, a transformation from the (original) imperative script to a
declarative script is required. This transformation can be done in a few steps. After matching a
script and a mat file, the GUI displays a report indicating conflict points (if any) to assist the test
script writer. A conflict occurs when the value of a signal is expected to be X in the script, but is
found in the Mat files to be value Y. Many signals are involved in the execution of a script, therefore
in the report only ten signals plotted (this choice is based on the resolution of the user’s screen). In
order to provide more precise information, these signals are sorted vertically based on their
relevance to the conflict. A covariance matrix is used by the sorting algorithm, where the covariance
value expresses the strength of the correlation of two or more sets of variables [8].

35 Software tools

A number of different software tools have been used in this project. Each of these is briefly
described in the following paragraphs.

Python 2.7 was utilized because most of the current code, including the tool chain provided by
dSpace is written in Python version 2.7. An appealing point (which is closely related to solving the
problem to be addressed by this project) is that Python 3 introduces function annotations [12].
However, the pay back is expected to be low in comparison with the effort required to shifting from
Python 2 to Python 3. For this reason, Python 2.7 will continue to be used.

PyLint 0.28.0 is a very good static analysis tool for Python programs, hence it has been used
in this project to facilitate the offline debugging of test scripts.

Pycharm 4.5 was used to develop the project. Pycharm is a popular Python IDE with some
helpful features such as intelligent coding assistance, smart code navigation, effective code
refactoring, and so on.

Matplotlib 1.4.3 was used to implement the GUI assistance module. Matplotlib is a 2-
dimensional plotting library implemented in Python. It can generate high quality figures and
provides various means of implementing interactive operations. This version was the latest stable
version (as of when the project is being conducted).

SciPy 0.15.0 was used to load data from Mat files.
NumPy 1.8.0 was used to calculate the covariance for the ordering of the signals.

Jenkins is a tool for monitoring repeatedly executed tasks, for further details see
https://wiki.jenkins-ci.org/. Jenkins is used to automate some of the testing (Section 5.3, and
Section 6.3).

Implementation | 19

4 Implementation

As we mentioned before, the 'Dummy' and 'Mat' mode operate on different levels. Dummy mode
performs run-time checks on all paths of the script, while in Mat mode the scripts will be executed
with Mat files. The following sections of this chapter will give details of the implementation of
Dummy mode and Mat mode.

4.1 Dummy Mode

This chapter will introduce the design and implementation of Dummy mode. Dummy mode is the
initial step of the test environment. Based on the variables a script used, Dummy will do exhaustion
on the values of variables to investigate the errors of a script. The optimization of the algorithm will
also be given in the following chapter.

411 Algorithm and Implementation

As stated before, the class ModelVariable is the superclass of classes used to communicate between
client and server. Each subclass of ModelVariable contains all possible values of this signal, thus it is
possible to take over the control of the client program locally by feeding it different values without
any server.

In Dummy mode, the script will be executed several times to test all possible paths. To
implement this, Dummy mode has two programs running alternatively: an execution program and a
trim program. The execution program runs first. Initially a list of objects (an execution list) will be
generated, then the script is fed with the first possible value of each signal object. For example, the
values returned from the Dummy mode of the execution program is [1,1,1,2] of signals A, B, C, and
D, which is shown in Figure 4-1 in the middle of the list of signals.

Client

Signa
A

1,23

Values:

Signa
A

Values:

1,2,3

Signa

Signa
D

2,34

Values:

C 1- C
Values: Values:
1,2 1,2

Signa

Signa
D

Values:

2,3,4

Dummy
Program

Execution List

Local

Figure 4-1: First Run of execution program

The execution list is a dynamic list where objects are removed or added in each execution. When
this dynamic list is empty, then the execution program will be terminated. After the first run of the
script, the history of the execution list is scanned and trimmed for next run. The trim algorithm
works as follows:

20 | Implementation

(1) The first value of the last object in the list is removed (which is value 2 of signal D in Figure
4-2). Because the execution program always uses the first possible value as a result,
removing this value of the last object will remove the latest tested path, as shown in Figure
4-2. Because the path [1,1,1,2] has been tested, the value “2” of signal D is removed after the
first run of trim. Values [1,1,1,3] will be returned when the execution program is executed
next time.

Client

Figure 4-2:

(2) If there is no remaining value for the last object, then the trim function will remove this
object, and repeat step (1) on the next to the last object (which is now the last object in the
list, signal C). This loop will stop until there are more than one values of the last object in
the execution list, or there is no object left in the list (and the program exits). From an
execution path perspective, removing an object from the list means a branch has been fully
tested. Figure 4-3 shows that signal D has already been removed and the branch of signal
“C” with the value “1” was fully tested and hence and the value “1” of signal C is also

removed.

Client

Signa
A

12,3

B

Values:

Signa
C

Values:

Figure 4-3:

Values:

Signa

Values:

Signa
A
Values:

Values:
3,4

Execution List

Dummy
Program

Local

Signa
A
Values:

Values:
2

Signal\
o)
Values:

\

After the first trim program (second run of execution program)

Dummy
Program

Execution List

Branch removed

Implementation | 21

The Dummy program can also add new objects into the execution list, which represents the case
where a new branch is executed and created. Figure 4-4 shows signal E has been created and added

to the execution list after the path for signal C with value“2” is being tested.

Client

Values:
1

Figure 4-4:

Values:
1

Execution List

Dummy
Program

Local

New Branch created

After the execution program stops, information regarding errors and exceptions are collected in
a global file in dictionary format of Python and is showed in command line in the end. This
information will also be used as results for Jenkins. Figure 4-5 shows how the whole procedure

works.

Execution Program: Retrives value from signals in the execution

Zr list, creates a signal if it reaches the end of execution list
count(execution list) Gather running information and exceptions
>0

Trim Program: remove the first value of last object in execution
list, if no value is left, trace back the execution list

count(execution list) ==

Exit, gather and post all information

Figure 4-5: Gather information and exceptions from the running program

41.2 Optimizations

A common problem with this brute force exhaustive testing is performance. One of the solutions is
to eliminate or restrict the exploration of some unnecessary paths. In our case, an exception list of
signals is generated in advance of Dummy mode testing. Any signal that belongs to this exception
list is given one or a set of default value(s) to avoid exploration for all its actual internal values. The

signals are classified as follows:

22 | Implementation

1. Hardware environmental signal exception list

Since the Dummy program runs purely in software, it is necessary to avoid exhaustive
testing on hardware-related signals when the script is running in Dummy mode. These
hardware signals, such as “connect the battery” and “turn on battery switch”, are normally
guaranteed for the hardware to work properly and have no influences on the logic or result
of the execution. As a result, all of these types of hardware signals are pre-registered in the
exception list and given a default value.

2. Script related signal exception list

In RESI, each action in a script ends with a set of assertions to test if the SUT is functioning
as expected, but in Dummy mode, the result of these assertions is not our concern because
we are only interested in testing all possible execution paths of a script, rather than the
success or failure of an assertion. From another perspective, the execution path will not
change due to different results of the assertions.

As Figure 2-3 showed, a “post” procedure is executed at the end of each script to clean up
the environment for the following executions, but in Dummy mode, this is unnecessary
because the Dummy program is stateless in terms of hardware. As a result, the post
procedure is not executed in Dummy mode.

3. Functional signal exception list

Event.wait() is used in the script to trigger a synchronized suspension of the program (for a
certain period of time) in order to wait for the occurrence of a given event; such as, waiting
for a corresponding event (ClutchPedal <= 5) after releasing the clutch pedal (set
ClutchPedal == 0). But since Dummy is running on purely software level, the pending
operation should be removed to save time. Besides, there are only two consequences of
Event.wait(): abortion or continuation. In either case, the consequence of this wait
operation will not change the execution path.

4. Specific signal classes

There are some special signals used to communicate between client and server which only
have ranges of values instead of possible values, such as EngineSpeed. Doing exhaustive
testing for each possible values of a variable like this will be a waste of time. For example, if
the range of EngineSpeed is from 0 to 10000 rpm, rather than doing exhaustive testing of
all ten thousand cases (numbers), it is more productive to focus on some specific values,
such as o0 (shut down), 3000 (stand by), and 10000 (running) representing different status
of the engine. For such variable values, it is a good idea to put these variables into the
exception list with a sufficient number of representative values.

As can be observed from the above, adding any of these types of signals to the execution list will
increase the execution time, but will not change the execution path, hence these signals will be
added to the exception list to save time and improve performance.

At the beginning, Dummy is designed to test all paths and return the aggregated error message
to users, but we realize this is not a good strategy. Dummy as a debugger aims to find bugs, and the
bugs should be found as early as possible to save the waiting time of users. Besides, it is quite
possible that a bug triggers a series of error message. Investigating all error messages is also a waste
of time for users. As a result, we setup a configuration to determine if Dummy will stop when a bug
is found, this switch is ON if Dummy is executed by normal users and it is OFF when executed on
Jenkins.

Implementation | 23

4.1.3 Analysis and Validation

In this section we will demonstrate a code snippet and its generated Dummy paths to analyze and
validate the Dummy mode and its optimizations.

The following code is used to ignite a vehicle. It will basically be used in all scripts. The expected
vehicle status should be “parked” and “ignition on” after the function is called.

1 def ignition_on():
2 _connect_battery_and_main_switch()
3 key_state = get_value(driver_variables.DriverSwitches.PowerSupply.KeyPosition)
4 engine_speed = get_value(asm_mdl_drv.MDL_DISP.EngineSpeed.n_Engine)
5 if key_state != driver_variables.DriverSwitches.PowerSupply.KeyPosition.IGNITION or engine_speed != 0:
6 if engine_speed > 0.5:
7 Event.wait(
(asm_mdl_veh.MDL_DISP.Overview.v_x_Vehicle_CoG,
Event.plusminus(0, 2), Event. ACTION_FAIL_RETURN),
(asm_mdl_drv.MDL_DISP.ActiveTransmission.Geatr,
0, Event ACTION_FAIL_RETURN), timeout = 60)

8 set_value(driver_variables.DriverSwitches.PowerSupply.KeyPosition,
driver_variables.DriverSwitches.PowerSupply.KeyPosition.IGNITION)

9 set_value(driver_variables.DriverSwitches.Brake.DS_ParkingBrake, ON)

10 set_neutral()

11 utilities.sleep(2)

We only call this function in a script and execute the script in Dummy. The following is the
output from Dummy.

Exceptions found:0

total paths tested:105

As we stated in the chapter 4.1.2, the hardware environmental signals (BatteryConnect and
BatteryMainSwitch) used in _connect battery_and_main_switch() will be registered in the
exception list and given a default successful value. The KeyPosition (line 3) signal has 5 possible
values (KEY_REMOVED: -1, KEY_INSERTED: o, RADIO_MODE: 1, IGNITION: 2 and START: 3).
In line 4, the script tries to get the current engine speed. The possible values are (0, 3000 and
10000). Function set_neutral() (line 10) is shown below:

1 def set_neutral():
2 if gearbox_is_working:
3 gearbox_type =

get value(asm_md|_drv.MDL_DISP.CUSTOM_SWITCHES_DRIVETRAIN.Sw_GearShifter)
4 if 1 == gearbox_type:

5 set_gear(0)

6 res = Event.wait(
(asm_mdl_drv.MDL_DISP.ActiveTransmission.Gear, 0, Event ACTION_FAIL_RETURN),
timeout = 30)

7 if res 1= 0:

8 # Could not set neutral gear

9 Print().debugPrint("Failed setting manual gearbox in netural®)

10 elif 2 <= gearbox_type <=7:

11 set_gear(Gears.N)

12 res = Event.wait(

24 | Implementation

(asm_mdl_drv.MDL_DISP.ActiveTransmission.Gear, 0, Event ACTION_FAIL_RETURN),

timeout = 30)
13 if res 1= 0:
14 # Could not set neutral gear
15 Print().debugPrint("Failed setting gearbox in netural")

Variable gearbox_is_working is a global variable and is True by default. There are seven
possible values of signal Sw_GearShifter, including the KeyPosition and engine speed which
increases the combination number to 5*3*7 = 105. It is easy to see that these value combinations are
able to cover all execution paths. On the contrary, if the optimization is not applied, the total paths
will be 350000. The exception list helps a lot to reduce the validation time of Dummy mode.

414 Why not Symbolic execution

The algorithm and implementation of Dummy mode is similar to Symbolic execution at first
glimpse, but when looking into the details, we found that our customized tool, Dummy, is more
capable and suitable to be integrated into our current test environment based on the following
reasons.

First of all, as a general-purpose code analysis tool, the Symbolic execution cannot be used to
carry out the analysis of the signal classes of our code. For example, after analyzing the class
DS_TurnSignal (listed in chapter 3.4) with Dummy, the result is that the possible values are -1, 0
and 1. This conclusion is drawn based on the truth that the possible values are the class members
which the names are not surrounded with two underscores (which are class members TURN_LEFT,
TURN_RIGHT and OFF of DS_TurnSignal class, for example). Similar analysis of signal classes is
done in Dummy mode. Symbolic execution is not aware of this customized convention in the
naming of the signals members, so it cannot provide any useful information from this point of view.

Secondly, as stated before, distributed systems, such as our test environment with a client-
server architecture, poses a big challenge to Symbolic execution because of their complexity in
networking. In our case, after analyzing related signal classes, Dummy mode registers all possible
values and is able to use them locally, as if they are received from networking. This can greatly
reduce the complexity of testing our scripts, but Symbolic execution is unable to do that.

The last and most important reason is, from the system design perspective, as the first step in
our testing environment, it should be able to output customized analysis results and data structures
(signal objects) for the next step (Mat mode). This is important and necessary for Mat mode because
it will use these signal objects to form sequences, patterns and draw diagrams. But as a static code
analysis tool, Symbolic execution can only generate testing results and related documentations.

4.2 Mat Mode

This chapter introduces the underlying mechanism of Mat mode and the detailed implementation,
along with GUI to help locate logic errors in the script.

421 Algorithm and Implementation

Mat mode goes further than Dummy. Based on the theory of Thomas Gustafsson et al. [10], the test
script is separated into two parts: stimuli that drive the SUT and independent guarded assertions. In
Mat mode, operations in a script are firstly read as sequences, and then a pattern representing a test
action is formed by these sequences (further details are given below). This pattern is used against a
Mat file to evaluate the independent guarded assertions. The following gives a detailed description
of the implementation:

Implementation | 25

1. Transform script operations into sequences

In Dummy mode only “get” operations are considered because the returned values are the
only factors determining the behavior of a script. In contrast, in Mat mode all types of
operations, including “set”, “get”, “wait”, and “assertions”, are considered. Each of these
four types of operations will be transformed into a unique class: sequence. In this
transformation, the “wait” operation is more complicated because in a script it normally
consists of many simultaneous getValue()s and subsequent reactions to the result of
applying these value. A sequence object stores all the information relevant for each

operation.

2. Create a pattern from the sequences

In Mat mode, operations are captured by a Recorder module. The Recorder listens to the
calls to ModelVariable, then based on the type (set, get, wait, or assertion) of the caller, it
will create a sequence. Once the script has completely executed, a complete set of
sequences, also known as a pattern, is generated. The following is a partial Recorder
produced log of a pattern transformed from the test script TCo005. The full transferred log
can be found in appendix.

IHIIHITIALL SEQs in Pattern//HIHITIHTIINII
SEQ: TYPE:31,

Name:set_neutral,
Value:None,Va:None,Action:0 with parallel of 0

False

SEQ: TYPE:2,

Name:yellowl/Model Root/Yellowl/ControlPanel/Driver_Switches/Brake/DS_ParkingBra
ke[0|1)/Control/Value,

Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:2,

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_MainL
ightSwitch[0_3]/Control/Value,

Value:2,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:2,

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_Workl
ightSwitch[0|1])/Control/Value,

Value:1,va:0,Action:0 with parallel of 0

True

422

3. Run the test script against a MAT-file

To evaluate the independent guarded assertion, we apply the mechanism described in [10].
All operations before an assertion in a script are guards of this assertion
({guard=>assertion}). The assertion should hold after all guards are applied.

Analysis

The algorithms introduced in Mat mode proposes a method of transferring imperative scripts into
declarative scripts. The reason why we are able to achieve this is that we do not do the
transformation from the programming language perspective, instead, we do this based on the
nature of our scripts and testing environment:

1. The script communicates with the server only through signals, and for each signal, we
know its entire possible values. This is very important because it greatly reduces the
complexity of the communication of a script and a server. It helps us to abstract the

26 | Implementation

operations of a script and normalize them into sequences and patterns. For example, if
a client operates a server through many different ways, such as command lines,
function calls, remote procedure calls even through binary files, we would have never
been able to do this transformation because there is no way to normalize them and
express them in declarative way.

2. The transformed declarative scripts can be applied to Mat files. The nature of
declarative scripts in our use case is to describe scenarios including the preconditions
and assertions, but there is no information in the declarative scripts indicating what
commands, or signal values should be accepted and executed by HIL servers. In short,
the declarative scripts cannot drive HIL servers, but can be executed against Mat files.

Another benefit from the transformation procedure is that the operations of a script
and expected results are separated. If a script is written in imperative way, the script is
only able to be executed and validated once because the script itself has already strictly
defines the operations required to be taken and the expected results. The test scenario
will not be validated if another script contains exactly the same operations, shown in

Figure 4-6.

Operation E Operation E

Operation A Operation A Operation A
Operation B Operation B Operation B
Operation C Operation C Operation C
Assertion 1 Operation D Assertion 1
Assertion 2 Operation D

Script1 Script 2
Assertion 2
merged
script
Figure 4-6: Same Operation in two Scripts

In the figure shown above, assertion 1 cannot be not validated in the execution of script 2
because they are not related at all. But if the scripts are written in declarative way, the
assertion 1 in script 1 will be validated when the operation series (operation 1 - operation 2 -
operation 3) is executed in script 2.

The above discussion raises another interesting topic: how to construct a good (high quality)
course (a long operation series) to test more declarative scripts? A simpler answer is: just link all
operations together. For example, a course for script 1 and script 2 can be operation A — operation B
— operation C — operation E — operation A — operation B — operation C — operation D. This ensures
that all scenarios described in the scripts will be validated, but the disadvantage is quite obvious:
duplicated operations.

Implementation | 27

To solve the problem, we can compare and merge declarative scripts. For example, the script 1
and script 2 can be simply merged into “merged script” in Figure 4-6. Ideally, this can solve the
problem, but we still have a few practical issues.

Generally speaking, when we transfer a script from imperative to declarative script, the “pre”
and “post” will be reused several times with the actions. For example, a script containing “pre”,
“act1”, “act2”, “post” will be converted into two scripts: “pre”, “act1”, “post” and “pre”, “act2”, “post”
because act1 and act2 are considered as two smallest “validation unit”, and the “pre” and “post” are
designed as the general precondition and post-condition of the actions. For one hand, it is possible
to combine act1 and act2 together, but doing this will reduce the applicability of this script because
it will require more conditions of a scenario. For another reason, the testing cases in each action of a
script are logically designed to be independent to each other, so it is pointless to combine them
together. In chapter 2.4, we introduced two current issues hampering the merge: the relationships
between each actions (ACT1...ACTN in each script) of a script and too many operations taken in
“pre” step.

Problem 1. The current script (Figure 2-3) does not guarantee the independence of each action.
That means changing an action of a script (remove/add/simply execute) might cause the script fail.

For example, consider a script with the following functions: “pre”, “act1”, “act2”, “act3”, “post”.

Executing (“pre”, “act2”, “act3”, “post”) or (“pre”, “act2”, “post”) might not get successful result
because some of the operations in “act1” is a precondition for “act2” or “act3”. The ideal goal is a

script can run successfully with any action(s) between its “pre” and “post”.

Problem 2. Ideally, there should have as few setValue() calls as possible in “pre”. Currently,
there are many unnecessary setValues() in “pre”. For example, in function ignition_on(), variable
DS_ ParkingBrake will be set to “ON” no matter what is the current state of this signal. This is fine in
imperative script, but in declarative testing, too many setValue() in “pre” will greatly reduce the
applicability of a script when we do the matching to a Mat file.

Although the above issues exist in the current environment and require some time to be solved,
they do not block our project at all. If these problems are tackled, we are able to go one step further
to build a more flexible, reusable and productive testing platform, and our new test environment
gives full possibilities and supports for that.

The new environment is able to provide higher level abstraction and customization. The old
environment is constructed with scripts, and the scripts can hardly be combined to build new scripts
without modifications. In the new environment, each “pre”, “action” and “post” group makes a
“meta validation” which is able to be combined with any other “meta validation”. With its own
preconditions and post-conditions, each group forms a self-governing unit. As more imperative
scripts are transformed into declarative scripts to create more “meta validations”, we are able to

simply build new test scenarios by selecting and combining these existing “meta validations”.

4.2.3 Graphical User Interface (GUI)

The goal of the GUI is to provide information regarding the conflicts detected between a Mat file
and a script in a user-friendly visual fashion. What the GUI shows is what a logic analyzer or digital
oscilloscope would show when given the values provided as inputs and outputs to the SUT. The
source data input to the GUI is a combination of the Mat file and the result of Mat program (the
result of step 3 above). The Mat file serves as the base data to give the user a first impression of the
general pattern of the signals of interest. If conflicts are found by Mat program, then they will be
highlighted in the display of the signals.

The Mat file generally contains a huge number of time-value pairs, where each time-value pair
is recorded every 10 milliseconds on the HIL servers. The normal recorded time span of a Mat file is

28 | Implementation

several minutes. This duration gives sufficient time to perform a satisfactory test course. Therefore,
the GUI provides an interface to the analysis tool that analyzes the data collected when executing a
script. The Matplotlib was used to implement the GUI. Although it took a lot of work to implement
the GUI, its detailed implementation will not be discussed here because the implementation details
of GUI are irrelevant to the main topic of this thesis. Chapter 5 gives a comparison of this new GUI
with the previous GUI tool used in RESI.

The visual tool needs to be able to clearly show the value changes of a signal over a long period
of time, typically a few minutes (as this is the duration of a complete test course). This tool should
provide some common built-in functions, such as zoom in, zoom out, and pan, to enable users to
focus on specific data. As we wish to investigate the relationship between multiple signals, it is
convenient to show all signals of interest in one screen.

The tool should also be able to show the result of running a test script in terms of highlighted
errors when conflicts are found by the Mat program. When composing a script, it is common that
one signal is ignored when an event should be triggered by two signals as preconditions. However,
this is not easy to know which is the relevant signal among many related signals. Therefore, the GUI
module sorts the signals based on a measure of how close the other signals are to the signal
responsible for the conflict. The NumPy covariance tool is used to calculate the strength of these
relationships.

Figure 4-7 gives an overview of the output of the GUI tool in Mat mode. This figure shows ten
signals plotted by the GUI for a time span of 500 seconds. Curves 1 to 5 are shown on the left half of
the screen are and curves 6 to 10 on the right half of the screen (with the numbering in each case
from top to bottom). The x-axis (horizontal) indicates time, while the y-axis shows the signal’s value
(scaled to the maximum possible value of this signal). This feature is very important because if a
fixed range of y-axis is used in all curves, either some of the curves cannot be displayed completely
(for example, if use 0 to 1 range, curve 10 cannot be displayed completely) or the changes of the
curves cannot be easily observed (for example, if use 0 to 15 range, the 4 depressed pits within 100
and 300 seconds in curve 2 cannot be easily observed because their y-value is 0.2). Because we are
showing the overall curves for a long period of time, it is possible that a signal is changed very
frequently, exactly like the two blue rectangles in curve 1 (between 150 and 250 in x-axis).

Some general functions are listed on the left bottom of the screen. The first button is home
button. When pressed, the GUI will resume to the initial state. All operations including zoom in,
zoom out, drags and drops will be undone. The following two buttons, left arrow and right arrow are
used to go back or forward of user operations. When the forth button is pressed, all diagrams are
enabled to drag and drop with mouse click and release. The fifth button is used to zoom in or out on
a single curve. The sixth button is used to configure the layout of the GUI, such as the space between
two curves, the indent of each curve and so on. The last button is used to take a screen shot and save
it as a JPG file. The x and y values indicated at the right down corner shows the actual values for
which ever curve the mouse is in.

Implementation | 29

B rigre 1 = o ®
o Frrng fou o X X at red]_mdi_eme/Model Aoot/Red]_MDL_Env/MOL g aver] T|-2P}
18 18 T
fa £ |
Fu I 2. !
i | 3 [
@ oz |
1) =10 — —
:"’ ® contrall_canz /B Anlow MasvETER TR - = il lindFr Py it wighti i e
1. fau
E X0
E T 2w
il e Ao
' Tentrall_can2/Bul€lstemucaniend Manscemz ki & * * centralf, Hiicanrveion b ViR plifended e
g be 1 OO0 M
i i
2 T
3 5o
e centralf Alicanveion_Mastituvintormation ViRxAWorkightOutgiistatus o r-;!h‘:m 3 aFrofh HrryucaliughtsFilnwheel worku§Atio1 KConversiodfout]
B] u
o Zm
e P
.? a2 | W a2
i A 0 oty L S i BainLightswitchl Tl.cwmw\n i :rnd.\ rrdl_dir Root/Red3 nm— : s i’
1. ifih Baun Lxl i “” Modal B fic £ f
§ G s
2]
B i
& H L —— R, [N S |
:‘ =3 . 3 s o - ol ~108 L] Ed) we 2l e
floo+sIsi|@ e
Figure 4-7: General view of GUI, Mat mode

The vertical red line helps to identify a specific value on each plotted signal at a fixed time point.
It will follow the movements of a cursor dragged over it. All plotted areas can be moved horizontally
by mouse using drag and drop. An important feature is that the x-axis (time value) of all plotted
areas are linked, this ensures that all plotted areas are displaying the same time span and the signal
value the red line indicates is always at the same time point for all curves. This feature is preserved
when zooming in/out, as shown in Figure 4-8, thus all of the plots will be zoomed together.

B Figure = =) *
. red]_mdi_snwModel Root/Red]_MOL_Env/MDL | wver]-3T]- 2P}
1 "
gal £
2 7
2 a
? o2 i
L] -18
e contrall_can2/BusSystemuCiireitow MamveTe2 Tcurenttess ™ yellowIModel Root/mallow 3iiscaingFromMardwarBVISCUVZ Prysicall it ReverseLight{o)) Bbnversionoutt
u 10
£» f o
3o D
i, T
& : 7o
oty centratl, Hn2/ussystems canfilion Mancems klicestborinpeverse ™ = centrall_can2/diSystemscan/vellow Famcuvintormation Y meversetampinteRed
i 1)
g §
55 2
2. 3
s T
™ "
™ centrall_can2/BifSystemucanviow Fanc (uwer utshitus yeliow 1Ml Aoots Siing Sty LightsFimhwhesl i ve 1
18 18
o $e
Zu 2
;nl Eu
& o @ a
vell Root/vellon 3C A airyros Haint nio_31Eh o3 T deviboded Root/Red ML ity ot SorvGear Voutl
A
'_é :: ; ”
g :
b ;_I_\ H) ——]
@ o R,
os
= = o = = — =) 3 e
Figure 4-8: Zoom in

If a change in signal A results in a change of signal B, then signal A must change earlier than
signal B, then we say that signal A is active and signal B passive.

30 | Implementation

4.2.4 A real case

Figure 4-9 demonstrates a real case when conflicts were found when a new script was being
composed. The red highlighted portion of the curves indicates a conflict. When ctrl+left or ctrl+right
is pressed, the vertical red line will move among the conflicts to give an accurate location of when in
time this specific conflict began and will enable the user to see what the state of each of the curves is
at that point in time. After browsing all of the signals we found that the signals 3 and 9 (the 4t
signal from the top on the right side) are most likely responsibility for the conflict because their
change covers the conflict’s duration (i.e., time span), but the other curves seem to be behaving
normally. It is not hard to see that the changes in signal 3 completely overlap the duration of the
conflict, which makes it a passive signal. Our conclusion is that signal 9 (which changed prior to
signal 3) is the trigger of this conflict. When re-examining this script, we found that we forgot to set
the “DS_ParkingBrake” variable, which is exactly the name of signal 9, to “0” before making the
assertions.

It should be highlighted that the above reasoning is purely based on the curve shown in the GUI,
but in practical use, it is also very helpful to do the reasoning after understanding the meanings and
the relationships of the indicators. For example, the signal 3 (“GearboxInReverse”) has the following
possible values and meanings: value 0 means “GearboxNotInReverse”, value 1 means
“GearboxInReverse”, values 2 means “Error”, and value 3 means “NotAvailable”. Sometimes it is
possible and easy to locate the time of an error solely based on one signal. For example, the value of
signal 3 is “Error”, which should not occur if the vehicle is in a correct or normal state, indicates that
there must have been a problem during the specific period of time.

- =}

yoliow BusSystems/CANATS Sub_RES/DrrvelLightingStatus_V/RX/Workhghtindicator rod]_mdi_sm/Model Root/Red]_MDL_Emy/MDLUserinterface/Emvmnment/MOL_PAR/ManualControlSelectorLaver(-3T|-2P- LRION|10
H T £
2 2
o s = E —
3 3 I]
2 -
5 5 |
"o & | | l
*entrall_can2/BusSstemuCAN ellow BamVETEZ TIRXC I antGear Viflow model oot Allow 310/Sc alngFrobiHardware/ VISIC UV Physic aliLights/RévbraeLight]0]1 MC onersicn/Out 1
H o R
s L |
. ERL |
4 I
- 4
& &
@ —— r - r oy |
cifitrall_cand/BussyFemacanson MERGPMZ KM GeaBhninReverse g cortrall Fhn2 Bussystemsclieton Mancuifitormaton viRxmierseLampintended
. -t e I]
g i g, |
2 | | 2 |
8 I 3
3 I 3.
gt . g T -]
W oas | E | |]
certrall_Tin2/Bussystemuciiveion_MamcuviFtormation_vmamwBikighoutpatstatul” yeoW I Model Rootveliol In0rScalingFrom A iware Vs CUVZ PR scaliLights Tirthwiikel_workisghtl0)1 FEbnversionoutl
U T kL p= — I
% o §
2 2
2w ‘ 2
u B
5 | &
@ | | #
™ yvellow 3 Model RESEvellow 3ControlPalelDriver_SwitchedVisibaityD5_MainLifheswitchlo_3WContfbivalue Fi3_mdl_drvdodel Rooumeds MDL_DriMDLUsertnterfaceivetraintoL DisffctromansmisssoniGear Uoutl
)]
H 3
8] rn 2
B | | E
£ | 2
-3 | | 5
@ | | & L
2 | | — —y 1 —— —_ —
Lo0+ =l o

Figure 4-9: Plot with conflicts

Evaluation | 31

5 Evaluation

This chapter introduces the criteria used to evaluate the differences between the new testing
environment and the existing one. In Table 3-1 of Section 3.2 a priority list was introduced. The new
environment is required to fulfill all priories on the left of the table and satisfy as many as possible
of those on the right of the table. The evaluation in this chapter will be mainly based upon whether
the new environment achieves the requirements shown in this list of priorities.

While some of the desirable properties were already provided in the old environment, for some
reasons they are either unused or not easy to use. For this reason, the metrics used in the evaluation
of this thesis project were selected considering two aspects: completeness (i.e., fulfilling the
requirement or not) and ease of use. For some aspects such as the GUI, it is hard to determine
which alternative is better because each user has his or her own preferences, therefore the
comparison will be carried out based upon specific use cases in a number of different scenarios and
the detailed operations will be listed and compared.

All experiments are run on a computer with Intel Core i7-3740 (Quad Core), 16 GB RAM, and
Microsoft’s Windows 7 64bit operating system.

5.1 Offline debugging

This function is very important in the new system because it forms the basis of many other
functions. Because the new environment also uses the Pylint as a static code analysis tool in exactly
the same way as in the old environment, we will not compare this part. The greatest improvement
we made in the new environment is that we are able to find run-time exceptions. Python has a few
types of exceptions, such as AssertionError, AttributeError, and so on. We selected 15 of the most
common types of errors and deliberately put them into the script we are going to investigate. These
errors are shown in Table 5-1.

On the other hand, due to the limited time for this project, we randomly selected 10 scripts (out
of 110 scripts, accounting for 9% of the scripts) to validate the new environment. The selected
scripts are: TCo001, TCo002, TC0004, TCo005, TCo014, TC0016, TC0023, TC0037, TC0066 and
TCo076.

The result is shown in the following two sections in terms of two indicators: run time and error-
detection rate.

32 | Evaluation

Table 5-1: Exceptions

Exception Name

Exception Description

AssertionError It is raised when a failed assert() is triggered.

AttributeError It is raised when an attribute reference or assignment fails. For
example, when trying to reference to a non-exist attribute of an object.

EOFError It is raised when a built-in Python function encounter the end of the
input stream before reading any data.

IOError It is raised when an 10 error happens, such as disk full, file not exist.

IndexError This error is raised when referencing an item in the list with an index
which is beyond the range of the list.

KeyError This error is raised when trying to retrieve a value with a key which
does not exist in the dictionary.

MemoryError This error is raised when the program runs out of memory.

NameError This error is raised when a non-exist name is referenced within the
current naming scope.

NotImplementedError If a method or behavior is required to be implemented but ignored by a
subclass.

ReferenceError When an object is referenced after it has been garbage collected, a
ReferenceError will be raised.

Stoplteration Stoplteration is raised on calling next() function of iterators when it has
reached the end.

SyntaxError This error is raised when the Python parser cannot understand the
source code. For example, calling eval(“two plus five”) will raise this
€error.

TypeError This error is raised when the type is mismatched or used in a wrong
fashion. For example, print (3)+”six” will raise this problem.

ValueError This error is raised when the value is matched but the value is
incorrect.

ZeroDivitionError This error is raised when o is used as a denominator of a divided

operation

5.1.1 Run time

The reason why we have considered run time here is to investigate how much faster we can find a
bug in a script compared to a normal test (run against HIL) of a script. Normally, if we run a script
against real HIL environment, it will take some time, t. During this t time, the HIL environment will
only test and validate one running path. It is time consuming and difficult to test all paths to get a
total time, so in order to compare to the Dummy mode, we only calculate a minimal running time of
each script. The minimal running time is measured in this way: we pre-assume the script will
terminate successfully and for the path it executes, we will accumulate the time. For example, if a
script has an operation time.sleep(10) and there is no way of avoiding the execution of this

Evaluation | 33

operation unless the script fails, then 10 seconds will be added to the accumulated running time of
this script.

For the Dummy mode, similar operations (sleep/wait operations) will be skipped because they
are mainly used for the HIL hardware to respond, while Dummy mode is running purely in
software. In Table 5-2 the running time for the selected 10 scripts is given and compared with the
minimal running time on HIL.

Table 5-2: Running time comparison: HIL hardware and Dummy mode

Soript | M tseconds) | Time (socondsy | Saved Time

TCo001 20 185 7.5%
TCo002 45 1.96 56.5%
TCo004 26.0 7.88 70.0%
TCooo05 12.0 5.96 50.4%
TCoo14 3.0 1.80 40.0%
TCoo016 3.6 1.56 57.0%
TCo023 10.0 4.30 57.0%
TCo037 10.0 2.10 21.0%
TC0066 10.0 6.50 65.0%
TCo076 124.5 33.20 73.3%

It can be seen from the table that for all 10 scripts Dummy mode takes less time and is able to
test more test cases. For the least time saving case (TCo001) Dummy saves 7.5% time and for the
most time saving case (TC0076) it saves 73.3%. The average savings in time for all 10 scripts is
52.6%.

5.1.2 Error Detection Rate

As stated before, we randomly inserted errors into different code segment of each script and test if
these errors were found. The results (shown in Table 5-3) shows that almost all errors can be found
in Dummy mode (99.3%), but can only partially be found when the script is executed in HIL
(81.3%). In fact, the two groups are not comparable because group A is not designed to be used for
error detection, but from another perspective, group A can, to some extent, represent a normal bug
detection rate when the script is finished and tested against the HIL environment. It should be
noted that the result in group A is collected in a simulated way which presumes the script will
terminate successfully and all assertions within the script will hold.

After examined the scripts we found the test coverage is the most influential factor in the
difference between the two groups. Because the goal of the test scripts is to validate the functionality
of the production instead of making an error-tolerance program, most of the code serves the main
branch (which is also the branch that will run successfully) and as a result, the error-detection rate
is rather reasonable.

We also analyzed the fact that one error is not being detected in Dummy mode (script TC0076).
Based on the context, the system will generate a log message after the program has waited for 15
seconds. As stated before, Dummy mode will not execute the wait() for any reason and that is why
this error cannot be found. Admittedly, this might be a problem in logic of Dummy mode, but in

34 | Evaluation

practical use this is not a problem, because the program will not behave differently based on the
waiting time.

Table 5-3: Errors Detected
Script E';LO:ISI E ?gl?:un;i‘;} d En;ﬁrlis)l? ritr?:;/ted Total Errors
(group B)
TCooo01 9 15 15
TCo002 15 15 15
TCo004 11 15 15
TCo005 13 15 15
TCoo14 11 15 15
TC0016 12 15 15
TCoo023 13 15 15
TCoo037 15 15 15
TC0066 15 15 15
TCo076 8 14 15

We noticed that the bug detection rate in group A is not as high as group B, but as a default
group with only one execution path, it is quite high. After investigating the scripts, we found that
this occurs because the scripts are relative simple and do not contain complicated error-handling
code. That is due to the nature of the script, as they are designed to find bugs of other systems,
rather than being designed to be error-tolerant themselves. For example, the try/catch block is
rarely used in our scripts, while it is quite common in Python applications.

5.1.3 Ease of use: when an error is detected

The following information is taken from an email from Jenkins when an error occurred.

1 Exception Traceback:

2 File "run_dummy.py", line 19, in <module>

3 tc.execute()

4 File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\main.R2014\Interface\exec
5 ute.py", line 314, in execute

6 self.execute_act(actname)

7 File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\main.R2014\Interface\exec
8 ute.py”, line 171, in execute_act

9 actRunner(self, act_name)

10 File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\main.R2014\Interface\exec
11 ute.py", line 160, in actRunner

12 getattr(obj, act)()

13 File "C:\Users\kevinyeoh\OneDrive\Code\CodesInScania\TC_NCG\TC0005_ReverseLigh
14 tActivationWithWorkingLights_Simple.py", line 110, in actl

15 print(spam[6])

16 IndexError: list index out of range

17 input serial:

18 [(OFF, 0), (TEMP_VALUE', 250), (TEMP_Manual', 1), (TEMP_Manual’, 1)]

[N
[{e]

20 Exceptions found:;1
21
22
23 total paths tested:1

Evaluation | 35

Lines 1 to 16 show the error messages generated by Python. Lines 17 and 18 indicate what input
values triggered this error. This information helps to analyze and reconstruct the problematic
environment. Line 20 shows how many errors were found during the test and the total number of

paths tested is displayed at the end.

To locate the errors, the old environment relies on log files which makes the debugging take
quite a long time and is inconvenient. These error messages are located on HIL servers and the user
maybe need to search several few log files to find the error message. In the new environment, error
messages are immediately returned when exceptions are encountered along with the environment
information. When a bug is found, everyone in the team will receive an email containing the error

message.

5.1.4 Ease of use: debugging with GUI in Mat mode

In this chapter, the two test environments are compared based on different use cases.

The old environment provides a tool called captureVisualization. This tool is mainly used to
read Mat files and display multiple signals, but it has nothing to do with the scripts. In other words,
this tool is used for assistance or visualization when composing or debugging scripts. However, it
cannot help to find any problem based on the running result of the scripts.

1. Plot multiple curves

Both environments can plot multiple curves, as shown in Figure 5-1 and Figure 5-2.

- o

Figure 5-1:

Multiple curves plotted in the new environment

Ha Frin lourWom VBusSyitemaCANASSub_RBS/DrivelightingStatus V/RKWorkightindicator red]_mdi_sn/Model Root/Red]_MDL_Env/MDLUserinterface/Emvmnment/MOL_PAR/ManualControliSelectorLaver(-3T|-2P- LRION|10
S = 3 |
§ o : 5 !

5 o | s I——— | =y
2w | 4 |
5 5 | |
. 3 | [
contrall_can?/BusSystemyCAN ilow MasVETE? T CurrentGear - ‘yallow 1Moded Rootfrliow 310rsc akndFromi AUV PhysicalLightsReverseLight] Bl PConversionouff
" L o s
s ~ t.
3 g \ 2"
3 J | g e
% o 3
g ‘ 5
@ we
L T O T) |

- Tentrall_can2/BudSistemacan/veldl Mancem2 KaKGearbaxinfeverd’ - certralf_can2/BusSystentiicAN velon MasfiCUvintormaton ViR MeverseLampfflended g
2 — 3 i =T
4., | 3" |
2 = |
g 1 - e g | |
o 1 o 1.4
@ o | Ae 11

. [rl —| : |

™ cortral]_cand/BusSystentUCAN Yellow MasliUvintormation VRXWorkightOutgistatus T pelaliModel oot elldw A0S alingFroMMardware VISACUT PhycaliLights Fihwheel_ worki o)1 KConversioAitt]
e [o =T

fa i | Eu i
2 e |1 . ||
3w || 3w [

& & 1 1

@ or | # o [

Y e - Y F B — — " : 5 " = = :
yellow3iMode! Root/ellow3/ContrBiPanel Drver_Swilthes/Visibiity D5 FainLightswitchl o SControlvalue 1943 mdll_drviModel Root/Red3_ MOL BrvMDLUserinterTacaDnvetrainmol Dispractive Transmission/Gearl Lout]
£ o2 2 {

L B i n 2
Z 11 =
3 111 3
£ LY L £
é 1 | H

158 i g = = = = -
2O+ el

36 | Evaluation

DS_TumSignal

"o act1-0.005
FT." P dimadie s - —=re 5.)
ME-------- i—MaLocallun{YellowVahbcleWa-ghl_F] I
0 350
Flrienas e
2|: seemsess —— LitAxiePosition!(Yellow ASC1_F) |
0 350 400 450
eeemneee S e e e
:I_ : : ; : i : | — LMJdeP'osnllun?[Yello:v&SCI_F][‘l
‘ﬂ 300 350 400 450
2F 'I—qunrlmnlnd:r.ﬂﬂ.ﬂ Status(Yellow, CUVInf _VJB
% 30 %0 0 0
1 e s et e s
05 Leftintended(Y ellow. CUVInf v |f
o
‘0 300 350 400 450
05 DirindLampStatusTrailerLeft(Yellow CUVIMormatmn_V]]J
o . - . -

350 400 450

-[—— BrakeLightRequest(Yaliow Gwz'ﬂil

350 400 450

=
o

s { ——— EngneSpeed(Yellow EEC1 E) Iy

350 400 450
ppedBeami Yellow CUVInf V) [|
350 400 450
Figure 5-2: Multiple curves plotted in the old environment

The layout of the plotted curves in the old environment makes it hard to read the values, and
there is no way to change the layout. For the new environment, it is easier to observe the general
curve and read a single value.

2. Zoom in and out at a specific area

Both two environments provide convenient functions to zoom in and out, as shown in Figure
5-3 and Figure 5-4.

Evaluation | 37

i i - a8 x
yellow YBusSystems CANVISSub_RES/DrveLightingStatus_V/RX Worklightindicator red]_midl_env/Model Root/Red]_MDL_EnvMOL _PAR/ManualControliSelectorLaver]-3T]- 2P}
™ 1
o 8 g
3o i®
8 e 5 - ! T
e § = l
B on L L1
48 L L]
o 28 % cantrall_eahdussystemtanveiow Wlaetcs TailturentGaad™ s yeliow HModet Root Meliom 3A07S<aShgFromardwars VISV By alisghtDReverseLightih) WConversinout
g ia
g g "
] 3w
= &
@ - — —] Wt
hosd dhraty_can2/Blssystemuckfivetow maitrmz xmSlarbastnRevifie i ¥ centrallLan2/BusSystiinsicanrendl Mancuvidfirmation viilineverselantfintended
" 1 e ==
i i
N 1 S u
fu | L
I | RS E R
@ o3 | @ e
o8 | | L | s »
= contrall Fan2/BusSysfimauCAN AW MasmcLvinlS R = yeliow 1/MEdel Root elldh: 9t FhscuvzmhylicalLightsmiwnes!_workEightio1 IConie
g G]
fa o
LT [
3o T o
- e -39
@ 02 W e
w3 Mol R e bty ML §tF 3uControl e ._‘redllf'\"\:m drviModel Root/Red MBL DDLU Intertace/Div BlbpnctiveTrans earfout
1] T
i £
33]
1 | = |
3 1 g’
F oy i
-~ ' by F E— L == e S) | Rl]
o rect
Figure 5-3: Zoom in at a specific area-new environment
gdeAKN09L|0E
H H H H — DS_TumSignal
. ECEEEERTESEERECEERY, EEETE [NERTRENETES RN T TS | SEHUIE SR LR TN FE P e et el act1-0.005
H H H H — — pre -0.005
: H : : whole -0.005
1) . P B L LT TT [T BESESE RO R e R A
= H H v v post 494 905.
= H H H H H)
I AU U S | W A 1 o
0 1 i L L 1 1
0 20 40 60 80 100 120

iy - o = T
= DirlndLampStatusTrailerLeft{Yellow (:U\."Inlarmatmn_\n'}J]|

. T T T R |
W ; : : = 5 |
' : : i : [
. - SO NS S OIS DU YR, —
:) 5 |

: ' |

o 1 L 1 l L 1 1 |

Figure 5-4: Zoom in to a specific area-old environment

We zoomed in on the first curve on both environments. It can be seen from the figure that for
the old environment the x-axis of all curves is not zoomed in at a same scale (curve1 zoomed in
200% to 125 seconds, but curve2 remains at 500 seconds). As we stated before we aim to
investigate the relationship between signals, and an important factor is to do this is to know the

38 | Evaluation

values of a signal at a certain time point. After zooming in, the new environment facilitates this,
but this is impossible for the old environment.

3. Zoom in and out on only x or y axis

Zoom in solely on x-axis (time axis) is very useful when we are switching between a larger view
(to investigate the relationship between signals) and a detailed view (to concentrate on the
signal value at a specific time point). Because the signal value (y-axis) fluctuates within a fixed
small range of numbers, zooming in on the y-axis will result in a non-continuous plot, and there
is no way to see the value of a signal, as can be seen in Figure 5-6. In contrast, the new
environment is able to zoom in solely on x-axis, as was shown in Figure 5-5.

B

- = =
at red}_mdl_snw/Model Root/Red]_MOL_EmeMOL P I {-3T}-2P1-1R)
it 1"
£ 5
i 5
ER L.
2o o
R oz a
- t a0 -
- contrill_canz/ussyifemucanmiin Manvercs ThocurrentGell - el i AlrscakngtromiTi s ks, 3GFH 011 M onwerHions
- 1] _— —_— ——
:, §u
3 2w
3 B
-3 &
& w e
. ettt — — -
centrall 4 AN veiow Tancemz wril i - Shtran_canz/etlisysemsicanifeson Manvcih in Lifh e
11 e oo - coo-
B B
2 g u
1 =
1a —] %
3 o] [A
. diftrall_can2/lisystemucanietow_ mamaciin A ghati e y.-;;-umoaﬂudﬁmmmm.ﬂu\grﬁmuud‘&“«-muunﬂmm-wd‘?‘.mw_wﬁmmmL{a#‘wmmml
1 w0
Tu ta
2 S
'g‘ " Fu
@ o A
I o8
ellow 3del Root Relldw3/ControPardDrmver_SwitetEivstty 05 BanLightswitiilo_3lcentrodibiue _red3_mdl driModel Root/Red3_ MODL DBl oD L T AT ot
1] 3
£ £,
i ;-
1
& o 3
54 — | D | — —]
T] o) £ e B B] e e £ . = ™ £
200+ oM —_
Figure 5-5: Zoom in-new environment

Bl
agdae Nso9e 08

——— DI_RearRight

— — ae11 0005

L I . O O 0 U U O O O D O | BB

whale 0,005

— — post494.905
0595
059

&

0585

o
-

Figure 5-6: Zoom in-old environment

Evaluation | 39

4. Order curves based on the degree of how close they are related (coefficient)

Both environments have this feature. By ticking the “use coefficient” on the right down corner,
the old environment can order the curves based on their coefficient (see Figure 5-7). This
feature is enabled by default in the new environment, and if errors are detected, the curves will
be ordered based on the error values within this time period (time range from the first error to
the last error, as shown in Figure 4-9)

Capture File Version

Select plot mesde
(7] Pt only setected sct
A Pt act wmits
7] Shew Expacted Response

Select Sgnals 1o plot Select piot mode
= O Pot st () Dapisy i same piot
() Dsplay in same piot + (®) Pot selected (#) Dmclay separety
() Dmpiay secaredy
Piot
| | Vse coethicmnts
Figure 5-7: Coefficient setting-old environment

5. Show and locate conflicts of a script based upon a Mat-file

The old environment can only read a Mat file and display it. It does not provide any functions
related to the script that was being executed. The new environment displays conflicts in an
integrated fashion (shown in Section 4.2.4), thus enabling the test script writer to better
investigate them.

5.2 Efficient static analysis tool

PyLint is a very good tool for static analysis. In the new environment it is used in exactly the same
way as in the old environment, hence there is no difference between them.

40 | Evaluation

5.3 Be able to run automatically

Dummy mode can be easily triggered by Jenkins continuous integration system. We use unittest
module in Python to trigger the Dummy mode. The unittest-xml-reporting package is used to output
the result in XML and served as a bridge between Jenkins and our programs.

Conclusions and Future work | 41

6 Conclusions and Future work

In this chapter, this thesis project is finalized by demonstrating the outcomes and proposing future
work.

6.1 Conclusions

Based on the discussion in Chapter 5 we can draw some conclusions. The new environment provides
a unified solution to improve the experience of writing a test script when developing a test script.
Two tools, Dummy mode and Mat mode is designed and implemented by myself. In Dummy mode,
it is possible to identify many different types of runtime exceptions within a short time. In Mat
mode, with the help of Mat files we can detect logic errors of the test script without being
connecting to the HIL servers. A total number of 2600 lines of code is used to implement the whole
project (excluding ~800 lines of code used for evaluation).

In comparison to the old environment, the new environment is able to increase the efficiency of
using HIL servers by means of reuse and reproduce the result of the signal. The new environment is
better in terms of shorter running time and better support for investigating conflicts and errors
offline.

The original goals of this master thesis project (from Section 1.4) have been met. The detailed
evaluation of the new integration testing environment was given in Chapter 5. In general, most
targets have been achieved as planned, except for an optional requirement (test script
management). Overall, a new script testing environment is implemented. 10 out of 110 scripts are
tested in Dummy mode and a new script is composed to evaluate the Mat mode. Finally, the new
environment (Dummy mode part) is being integrated into the current integration testing
environment of RESI in Scania and is expected to facilitate the development cycle.

I benefited a lot from conducting this project. By having a chance to work in Scania’s RESI
department, I experienced the most advanced HIL laboratory in Sweden. This cutting edge server
can greatly benefit the development and test cycle in terms of saving time and increasing
productivity. However, if we want to take this one step further, further integration and
customization is also very important.

6.2 Limitations

Due to the limited curation of this thesis project, the trigger sequence was not considered. Figure 6-1
shows an example (highlighted by the red circle), where signals 1, 2, and 3 are triggered
sequentially. Because the mechanism we are using in the Mat mode to detect if two signals are both
triggered (equals to 1, for example) at a certain point of time is to validate their values at this time
(in the picture, the time between each pair of green lines), the values before or after this point of
time (the time outside each pair of green lines) are all ignored.

42 | Conclusions and Future work

Signall e e— —— e — ——
Signal2 — —_— — —_————

Signal3 ——— = ——— — — -

Figure 6-1: Trigger sequence

6.3 Future work

The new environment can easily be integrated into a Jenkins environment, as shown in the large
gray rectangle in Figure 6-2. However, the elements in the upper right hand corner (the “GUT Script
Design” and “GUI Course Design”) were not implemented in this thesis project. Their
implementation would offer great help to create longer and better-designed courses, and in return,
would benefit the composing of new scripts.

Imperative Declaraitve GUI Script Design
[eauence] [Seaquence] HES

Sequence || Sequence GUI Course Design

Pattern
Dummy Mat Normal
I mat files K:I HIL I
Continuous Intergration
Figure 6-2: Future continuous integration testing

6.4 Reflections

The project focused on integrating the testing environment into a more stable and effective test
environment. We are able to increase the coverage rate of each test script and to find problems as
early as we can. From a more general view, the thesis aims at simplifying the debugging of the
scripts and increasing the possibility of finding a bug. Visualization of the data also enables us to
provide more useful information to our users. As a consequence, the users are able to debug their
scripts offline and are given more chance to find a bug before their script go online to HIL
environment.

From an economic perspective, this thesis provides guidance to test environment developers in
terms of designing and implementing a new automatic test environment based on an existing one.
The proposed solutions have been proven to be effective and productive in our project, which

Conclusions and Future work | 43

provide very useful information for other similar projects. The new environment can also save some
time comparing to the old one, which also saves money (i.e., is an economic benefit).

Maximizing the utilization of existing test scripts is also considered during the project. All
existing scripts can benefit from the new environment with very limited changes, which is also a
positive economic effect for Scania.

The positive social effect of this project is we are able to increase the satisfaction of the test
script composers. In the old environment, they need to wait in queue to use the HIL, find useful
information in piles of log files, correct the script, and the continue the development loop. In the
new environment, they are able to finish part of the job locally in a more convenient way.

References | 45

References

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

The MathWorks Inc., MATLAB Runtime Version 8.2 (R2013b) 64bit. Natick, Massachusetts:
The MathWorks Inc., 2010 [Online]. Available:
http://se.mathworks.com/supportfiles/downloads/R2013b/deployment files/R2013b/install
ers/win64/MCR R2013b win64 installer.exe

Jim A. Ledin, ‘Hardware-in-the-Loop Simulation’, Embedded Systems Programming, vol. 12,
no. 2, pp. 42—60, Feb. 1999.

Susanne Kohl and Dirk Jegminat, ‘How to Do Hardware-in-the-Loop Simulation Right’, SAE
International, Warrendale, PA, 2005-01-1657, Apr. 2005 [Online]. Available:
http://www.sae.org/technical/papers/2005-01-1657. [Accessed: 15-Jun-2015]

ASAM HIL workgroup, ‘Application Programming Interface for ECU Testing via Hardware-in-
the-Loop Simulation’, Association for Standardisation of Automation and Measuring Systems,
Programmers Guide: Part 1 of 4 Version 1.0.0 Base standard, Jul. 2009 [Online]. Available:
http://wiki.simwb.com/swbwiki/swbdoc/docs/UserManuals/PYToolkit/ASAM AE HII. BS-
1-4 API-for-ECU-Testing-via-HIL-Simulation V1-0-0.pdf

Amirhossein Chinaei, ‘Programming Languages: Chapter 1’, Department of Electrical and
Computer Engineering. University of Puerto Rico Mayagiiez, Sping-2010 [Online]. Available:
http://ece.uprm.edu/~ahchinaei/courses/2010jan/icom4036/slides/03icom4036Intro.pdf
Lutz Prechelt, ‘An empirical comparison of C, C++, Java, Perl, Python, Rexx, and Tcl’, Fakultat
fir Informatik, Universitat Karlsruhe, Karlsruhe, Germany, Technical Report 2000-5, Mar.
2000 [Online]. Available: http://page.mi.fu-

berlin.de/prechelt/Biblio/jccpprt computer2000.pdf

L. Prechelt, ‘An empirical comparison of seven programming languages’, Computer, vol. 33,
no. 10, pp. 23—29, Oct. 2000. DOI: 10.1109/2.876288

Diomidis Spinellis, Vassilios Karakoidas, and Panos Louridas, ‘Comparative language fuzz
testing: programming languages vs. fat fingers’, in PLATEAU '12 Proceedings of the ACM 4th
annual workshop on Evaluation and usability of programming languages and tools, New
York, NY, USA, 2012, pp. 25—34 [Online]. DOI: 10.1145/2414721.2414727

National Instruments, ‘Understanding Client-Server Applications -- Part 1°, National
Instruments, White paper NI-Tutorial-4431, Oct. 2011 [Online]. Available:
http://www.ni.com/white-paper/4431/en/pdf

Thomas Gustafsson, Mats Skoglund, Avenir Kobetski, and Daniel Sundmark, ‘Automotive
system testing by independent guarded assertions’, presented at the IEEE Eighth International
Conference on Software Testing, Verification and Validation Workshops (ICSTW), Graz,
Austria, 2015, pp. 1—7 [Online]. DOI: 10.1109/ICSTW.2015.7107474

Paul Ammann and Jeff Offutt, ‘Introduction to software testing’. New York: Cambridge
University Press, 2008, ISBN: 978-0-521-88038-1.

Collin Winter and Tony Lownds, ‘PEP 3107 -- Function Annotations’, 02-Dec-2006. [Online].
Available: https://www.python.org/dev/peps/pep-3107/. [Accessed: 15-Jun-2015]

James C. King, ‘Symbolic execution and program testing’, Communications of the ACM,
volume 19, number 7, 1976, 385--394

Anand Saswat, Patrice Godefroid, Nikolai Tillmann (2008). "Demand-Driven Compositional
Symbolic Execution". Tools and Algorithms for the Construction and Analysis of Systems,
Lecture Notes in Computer Science 4963: 367—381.

Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. "KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs.", Proceedings of the 8th
USENIX conference on Operating systems design and implementation OSDI'08. USENIX
Association Berkeley, CA, USA. 2008.

Samir Sapra, et al. "Finding errors in python programs using dynamic symbolic execution."
Testing Software and Systems. Volume 8254 of the series Lecture Notes in Computer Science,
Springer Berlin Heidelberg, 2013. 283-289, doi: 10.1007/978-3-642-41707-8_20.

Hosam K. Fathy, et al. "Review of Hardware-in-the-Loop Simulation and Its Prospects in the
Automotive Area", Proceedings of SPIE - The International Society for Optical Engineering
(Impact Factor: 0.2). 05/2006; 6228. DOI: 10.1117/12.667794. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.976 0&rep=rep1&type=pdf
Catilin Vasiliu and Nicolae Vasile, " Hardware-in-the-loop Simulation for Electric
Powertrains", Revue Romaine des Science Techniques, No. 2/ 2012, Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.2976 &rep=repi1&type=pdf

46 | References

[19]

[20]

[21]

[22]

[23]

David Fischer, "Test Cases for Hardware in The Loop Testing of Air To Water Heat Pump
Systems in A Smart Grid Context", Available: http://www.greenhp.eu/work-packages/wp10-
smart-grid/?eID=dam_frontend push&docID=2582

Daniel Simon, "Hardware-in-the-loop test-bed of an Unmanned Aerial Vehicle using Orccad",
6th National Conference on Control Architectures of Robots, May 2011, Grenoble, France.
14p., 2011.<inria-00599685> Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.220.4932&rep=rep1&type=pdf or
https://hal.inria.fr/inria-00599685/file/Simon-hardware.PDF

F. Mosnier and J. Bortolazzi. Prototyping car-embedded applications. In Advances in
Information Technologies: The Business Challenge, pages 744—751. I0S Press, Amsterdam,
The Netherlands, 1997.

Andreas Bayha, Franziska Griineis, and Bernhard Schétz. "Model-Based Software In-the-
Loop-Test of Autonomous Systems", Proceedings of the 2012 Symposium on Theory of
Modeling and Simulation - DEVS Integrative M&S Symposium. SCS/ACM 2012. Available:
https://www4.in.tum.de/~schaetz/papers/mod4sim.pdf

Peter Waeltermann, Thomas Michalsky, and Johannes Held. "Hardware-in-the-loop Testing
in Racing Application", SSAE Motor Sport Engineering Conference and Exhibition, 2004.
Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.474.4087&rep=rep1&type=pdf

Appendix A: Detailed results | 47

Appendix A: Detailed results

The transferred script log:

SEQ: TYPE:31,

Name:set_neutral,

Value:None,Va:None,Action:0 with parallel of o

False

SEQ: TYPE:2,

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_MainL
ightSwitch[o_3]/Control/Value,

Value:2,Va:0,Action:0 with parallel of o

True

SEQ: TYPE:2,

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_Workl
ightSwitch[0]|1]/Control /Value,

Value:1,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:3,

Name:/wait_event,

Value:0,Va:0,Action:0 with parallel of 1

subevent:yellow3/Model Root/Yellows/ControlPanel/Driver_Switches/Visibility/DS_W
orklightSwitch[0]|1]/Control/Value,0,None,23

False

SEQ: TYPE:2,

Name:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_Workl
ightSwitch[0|1]/Control/Value,

Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:3,

Name:/wait_event,

Value:0,Va:0,Action:0 with parallel of 1

subevent:yellow3/Model Root/Yellow3/ControlPanel/Driver_Switches/Visibility/DS_W
orklightSwitch[o0]|1]/Control/Value,0,None,23

False

SEQ: TYPE:3,

Name:/wait_event,

48 | Appendix A: Detailed results

Value:0,Va:0,Action:0 with parallel of 2

subevent:red1_mdl_env/Model Root/Red1_MDL_Env/MDLUserInterface/Environment/MDL_P
AR/ManualControl/Pos_ ClutchPedal[%]/Value,0,None,23
subevent:central1_can1/BusSystems/CAN/Red_Main/TCProp_K/RX/ClutchPedalPosition,0
,None,23

False

SEQ: TYPE:31,

Name:set_neutral,

Value:None,Va:None,Action:0 with parallel of o

False

SEQ: TYPE:31,

Name:set_neutral,

Value:None,Va:None,Action:0 with parallel of o

False

SEQ: TYPE:3,

Name:/wait_event,

Value:0,Va:0,Action:0 with parallel of 4

subevent:red3_mdl_drv/Model Root/Red3_MDL_Drv/MDLUserInterface/Drivetrain/MDL_DI
SP/ActiveTransmission/Gear[]/Out1,0,None,21
subevent:centrali_can2/BusSystems/CAN/Yellow_Main/GPM2_K/RX/GearboxInReverse,0,N
one,23

subevent:yellow3/Model Root/Yellows/10/ScalingFromHardware/VIS/CUV2/Physical/Lig
hts/ReverseLight[o|1]/Conversion/Out1,0,None,23
subevent:yellow3/BusSystems/CAN/VISSub_RBS/DriveLightingStatus_V/RX/WorklightInd
icator,0,None,23

False

SEQ: TYPE:1,

Name:red3_mdl_drv/Model Root/Red3_MDL_Drv/MDLUserInterface/Drivetrain/MDL_DISP/A
ctiveTransmission/Gear[]/Outt,

Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:16,

Name:assertEqual,

Value:red3_mdl_drv/Model Root/Red3_MDL_Drv/MDLUserInterface/Drivetrain/MDL_DISP/
ActiveTransmission/Gear[]/Out1,Va:0,Action:0 with parallel of o

False

SEQ: TYPE:1,

Conclusions and Future work | 49

Name:centrali_can2/BusSystems/CAN/Yellow_Main/ETC2_T/RX/CurrentGear,
Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:16,

Name:assertEqual,
Value:centrali_can2/BusSystems/CAN/Yellow_Main/ETC2_T/RX/CurrentGear,Va:0,Action
:0 with parallel of 0

False

SEQ: TYPE:1,

Name:yellow3/Model Root/Yellow3/10/ScalingFromHardware/VIS/CUV2/Physical/Lights/
ReverseLight[0]1]/Conversion/Out1,

Value:0,Va:0,Action:0 with parallel of o

True

SEQ: TYPE:16,

Name:assertEqual,

Value:yellow3/Model Root/Yellow3/I10/ScalingFromHardware/VIS/CUV2/Physical/Lights
/ReverseLight[0]|1]/Conversion/Out1,Va:0,Action:0 with parallel of 0

False

SEQ: TYPE:1,
Name:centrali_can2/BusSystems/CAN/Yellow_Main/GPM2_K/RX/GearboxInReverse,
Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:16,

Name:assertEqual,
Value:central1_can2/BusSystems/CAN/Yellow_Main/GPM2_K/RX/GearboxInReverse,Va:0,A
ction:0 with parallel of 0

False

SEQ: TYPE:1,
Name:centrali_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/ReverseLampInt
ended,

Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:16,

Name:assertEqual,
Value:centrali_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/ReverseLampIn
tended,Va:0,Action:0 with parallel of 0

False

50 | Appendix A: Detailed results

SEQ: TYPE:1,

Name:yellow3/BusSystems/CAN/VISSub_RBS/DriveLightingStatus_ V/RX/WorklightIndicat
or,

Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:16,

Name:assertEqual,

Value:yellow3/BusSystems/CAN/VISSub_ RBS/DriveLightingStatus_ V/RX/WorklightIndica
tor,Va:0,Action:0 with parallel of 0

False

SEQ: TYPE:1,
Name:central1_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/WorklightOutpu
tStatus,

Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:16,

Name:assertEqual,
Value:centrali_can2/BusSystems/CAN/Yellow_Main/CUVInformation_V/RX/WorklightOutp
utStatus,Va:0,Action:0 with parallel of o

False

SEQ: TYPE:1,

Name:yellow3/Model Root/Yellow3/I10/ScalingFromHardware/VIS/CUV2/Physical/Lights/
FifthWheel_WorkLight[o|1]/Conversion/Outt,

Value:0,Va:0,Action:0 with parallel of 0

True

SEQ: TYPE:16,

Name:assertEqual,

Value:yellow3/Model Root/Yellow3/I10/ScalingFromHardware/VIS/CUV2/Physical/Lights
/FifthWheel_WorkLight[o|1]/Conversion/Out1,Va:0,Action:0 with parallel of 0

False

TRITA-ICT-EX-2015:236

