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Abstract

The recent advances in Natural Language Processing (NLP), association
based algorithms and recommendation systems enabled suppliers to personalize
the content offered to their clients / subscribers. However, their use has been
limited to either the industrial environment or to the research one, leaving
the education environment lacking when it comes to such tools. This report
focuses on exploring the use of recommendation systems in education. First, it
presents methods that are suitable for extracting meta-data that can be used to
derive certain associations and / or suggestions. Second, it proposes a method
that suggests courses and / or tutors based on a student’s interest. Third,
it provides DocAid, which is an API suitable for extracting meta-data from
different sources. Finally, a web application is built on top of DocAid to make
the aforementioned functionality available for others to use.

Keywords: keyword extraction; keyphrases extraction; recommender sys-
tems; suggestion; algorithms;
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Sammanfattning

De senaste framstegen inom Natural Language Processing (NLP),
föreningsbaserade algoritmer och rekommendationssystem möjlig leverantörerna
att anpassa det inneh̊all som erbjuds till sina kunder / abonnenter. Dremot
har användningen varit begränsad till antingen den industriella miljön eller
till forskning en, lämnar utbildningsmiljön saknas när det kommer till s̊adana
verktyg. Denna rapport fokuserar p̊a att utforska anvndningen av rekommen-
dationssystem i utbildningen. Först presenterar det metoder som är lämpliga
för extraktion av meta-data som kan användas fr att härleda vissa föreningar
och / eller förslag. För det andra föresl̊as en metod som tyder p̊a kurser och /
eller handledare som bygger p̊a en studerandes intresse. För det tredje ger det
DocAid, vilket är ett API som lämpar sig för att extrahera metadata fr̊an olika
källor. Slutligen är en webbapplikation byggd ovanp̊a DocAid för att göra den
tidigare nämnda funktioner tillgängliga för andra att använda.

Nyckelord: nyckelord extraktion; nyckelfras extraktion; rekommenderat sys-
tem; frslag; algoritmer
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1 Introduction

This project concerns analyzing meta-data extraction techniques for obtain-
ing information that can be used by recommender systems in an educational
context. This chapter states the problem and the tasks we desire to achieve.
Section 2 provides the methodology used by this project. Section 3 offers an
overview of the implemented system. Section 4 discusses the results we obtained
and Section 5 concludes the report.

1.1 General introduction to the project

This project began with the goal of building a course suggestion mechanism
based upon user’s interests and existing information from the university’s course
management and learning management systems. Because of privacy reasons
which limited access to other students’ record, this problem was generalized to
provide support for a much larger range of activities. Specifically the problem to
be addressed is “Extracting and Integrating Meta-data from on-line sources”.
However, the examples that will be used to illustrate many of the key func-
tionalities will be functions that could lead to improved course and instructor
selection

1.2 Background

Course Management Systems (CMS) and Learning Management Systems
(LMS) play an important role in modern education. CMS focuses on the
automatic administration of courses, tasks which may include editing course
content, course registrations, tracking learning progress, and homework sub-
mission [34]. On the other hand, LMS can include the CMS tasks but also
includes features for online collaboration (i.e., conversations, feedback) and may
provide personalized content [25, 34]. KTH Royal Institute of Technology [10]
uses different educational tools such as KTH Social [12], Bilda [3], Daisy [7],
and LADOK [9]. These systems are supported by large databases and storage
systems which contain information regarding course material, academic records
of users, and registration history.

1.3 Problem statement

The most commonly used platform for course selection at KTH is KTH
Social, which provides a search engine for finding and retrieving course informa-
tion. The search engine has two main functions: searching by course name and
advanced search. The latter filters results based upon the department that offers
a course and when the course is offered. However, this search engine requires
input from the user, which implies that the user already has knowledge of the
courses offered by the different departments. An alternative approach would
be to assist the student in course selection based upon personalized content
acquired from existing and relevant data (for example from CMS, LMS, and
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other sources). The underlying information that resides in these systems can be
exploited to provide a set of suggestions tailored to a particular user’s interests,
prior registration history, and in keeping with the student’s own study program
(i.e., the student’s plan of study leading to a particular degree).

1.4 Problem

This project investigates the different components for building a course
suggestion mechanism. The first component is the input, which varies from
user specified academic interests to user registration history extracted from
the existing CMS and LMS systems. The second component is responsible
for pre-processing the input to provide a set of relevant keywords. Such input
can be acquired from course web pages, documents (i.e ,transcripts of records)
and other CMS / LMS data. The final component takes advantages of user and
processed input and produces a set of suggestions using association rules. The
major components are:

• User input (e.g., URL of an HTML web page, document),

• Parse input to text source,

• Meta data extraction from text source, and

• Course and instructor suggestions built from meta data similarities of text
source and course data.

1.5 Goal

As stated above, the problem that will be addressed in this project is ”Ex-
tracting and Integrating Meta-data from on-line sources”. The goal of this
project is to analyze and implement the components mentioned in section 1.4.
The following sub-goals correspond to the steps modules that implement these
components.

• Acronym extraction module
for a text source - URL or uploaded document.

• Keyword extraction module
for a text source - URL or uploaded document.

• Key phrase extraction module
for a text source - URL or uploaded document.

• Document analysis module combines the previous modules for a given text
source.

• Course Advisor - uses the document analysis module to extract meta data
from various sources (i.e documents, registration history, user’s interests)
and outputs a list of course and instructor recommendations.
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1.6 Structure of this report

The remainder of this report is organized as follows. Section 2 describes
what methods will be used to implement solutions for the tasks presented in
Section 1.3. Section 3 shows an overview of the developed system that provides
the desired functionality, its modules and DocAid, which is the web application
we implemented for this project. Section 4 discusses the system’s benefits and
limitations. Section 5 provides discusses possible extensions and concludes the
report.
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2 Methods

In this section, we will present the details about how the tasks defined in
Section 1.3 can be approached and evaluated. First, we present the data that
was collected for this report. Second, we present the subgoals – together with
a literature review of corresponding papers that have treated similar problems
– in the following order: acronym extraction, keyword extraction, keyphrase
extraction, and the course advisor. The section concludes with the methods
used for evaluating the developed algorithms.

2.1 Data Collection

The data used in this project consisted of data specific to each course.
This data will be extracted from the KTH public Application Programming
Interface (API)[11]. The KTH web services can provide information regarding
any course’s status (e.g., is the course available, the course’s grade scale, the
course’s status, the course’s title, number of credits, name of the department
responsible for the course, the academic level of the course, recruitment code,
etc.). Additionally, information can be derived from each course’s web page and
from the documents accessible from this web page. This should enable us to
learn what acronyms are used in the course, the most commonly used words,
etc. We decided to merge both sources of information, as we found that in
practice the course description provided by the KTH API was limited and / or
absent in some cases.

2.2 Acronym extraction

Different methods to extract acronyms from texts have been developed. An
example of an implementation of one method is the Acronym Finding Program
(AFP) [35]. AFP uses inexact pattern matching applied to the text surrounding
a potential acronym that computes probability for the word of being an acronym.
Another example is the Three Letter Acronym (TLA) [37], which uses a set of
heuristics for acronym detection while comparing the first three letters of each
word with the possible acronym output. A third approach[14] again uses a
set of heuristics to develop a rule-based method. Finally, Yeates, Bainbridge,
and Witten [38] propose a new algorithm for identifying acronyms that uses a
compression-based identification method.

Due to limited time and the fact that we could not find an (open-source) im-
plementation for any of the methods mentioned above, we devised an algorithm
similar to [14] and [37], which is based on a set of heuristics, namely:

• acronyms are in upper case,

• acronyms contain initials of most of the words in their definition,
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• stop words ∗ are present in the definition of an acronym only when their
first letter is upper case (e.g. MOD can stand for M inistry Of Defense
or mean optical density but can not stand for M inistry of Defense†), and

• in order for a sequence of characters to be an acronym, the number of
letters has to be strictly greater than the number of digits (we arrived at
this consideration after closely analyzing documents that contained phys-
ical measurements such as geographical measurements, 45◦N, or physical
measurements 120VA).

After identifying the acronyms, the next step is identifying their spelling (if
present) and whether the acronym was spelled out when it was first used or
later in the document. To do this, the algorithm searches for n words (that are
not stop words) before the acronym and for n words after the acronym, where
n represents the number of letters contained by the acronym. This implies that
the algorithm checks if any ith word in the list (while ignoring stop words)
corresponds to the ith letter of the acronym and, if this is true for all elements
of either of the pre- or post-acronym word list, it implies that the acronym is
spelled.

2.3 Keyphrase and keywords extraction

Keyphrases summarize a document’s contents and are usually assigned by
the author(s) of the document. As noted in [36], there are two different ap-
proaches to keyphrases, namely keyphrase assignment, which selects phrases
from a controlled vocabulary that describes a document, and keyphrase ex-
traction, which uses lexical and information retrieval techniques to extract
keyphrases from the document’s content.

Keywords, are single words used by authors in a paper that describe the
paper’s content.

2.3.1 Naive approach

A naive approach to identifying keywords is to separate a text into words and
retrieve the most frequently mentioned ones. However, given the fact that words
often are derived from a stem‡, we decided on obtaining the most commonly used
stems and classify the words derived from them as keywords. Several methods
to extract stems have been developed (e.g., Hammarström [17] extracts stems
in an unsupervised manner, Porter [28] uses a minimal length based on the
number of consonant-vowel-consonant string remaining after the removal of a
suffix and is optimized for the English language, and Snowball[29], which is a
system where stemming rules can be specified ) out of which we decided to use

∗We define stop words as words that are frequently occurring but meaningless in terms of
information retrieval [21].
†In this case, “of” is only a stop word when its first letter is in lower case.
‡A stem is a form to which affixes can be attached [33]
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Porter’s stemming algorithm as it is implemented and available from Apache
Lucene [1]

2.3.2 Automatic keyphrase extraction

Several domain specific keyword extraction algorithms have been devel-
oped. One of these, KEA [36, 15] is a practical automatic keyphrase extraction
algorithm. MAUI[22] is freely available and it offers features such as topic
indexing with Wikipedia [23]. The heuristics behind KEA and MAUI allow for
keyphrases to have a maximum number of three words and minimum of one
word, which implies that a keyphrase can be a keyword but it is not limited to
this aspect. The algorithm is based on two features: (1) a phrases’ frequency
in a document compared to how much it is generally used and (2) the distance
into the document until the phrase appeared for the first time.

2.4 Course and instructor suggestion

Although suggestion systems have been thoroughly analyzed and explored
(see [6, 5, 16] as examples), to the authors’ knowledge, the use of such systems
has not been analyzed and / or evaluated in an educational context. We wish to
generate suggestions for one or more courses that best fits a student’s interests
and to identify suitable faculty members based upon a student’s interest. The
suggestions for courses and faculty members should be limited to those in the
area relevant to the student’s interest and their study plan.

We propose a system that receives as input either a list of keywords or a set
of documents that are of interest to the user and / or the registration history
of a student. The system outputs a list of courses that the students might
find interesting, together with a list of faculty members that teach in the area
relevant to the student.

The algorithm first generates a list of relevant keywords, a list of relevant
keyphrases, and a list of acronyms from the input and then searches in the
database for courses that have similar acronyms, keywords, and / or keyphrases.
We use a similarity computation based upon a variation of the Trigram algo-
rithm [20], which groups every three consecutive characters from a string (in this
case a trigram) and measures the similarity between two strings by counting the
number of trigrams they share. Alternatives to the Trigram algorithm include
calculating the normalized Levenshtein distance [39] (which is the number of
minimum-weight series of edit transformations that transforms the first string
into the second one) and the Ratcliff/Obershelp pattern recognition algorithm
[31] (which computes the similarity of two strings as the number of matching
characters divided by the total number of characters).

For each keyword from the user’s interest list, the algorithm finds the most
similar match in the list that contains keywords from all courses and the similar-
ity measures is assigned to that keyword. The similarity measures are summed
up and divided by the number of items in the user’s list of keywords to compute
the keyword weight. Similar operations are performed to obtain the keyphrase
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weight. The acronym weight is obtained by dividing the number of exactly
matched acronyms§ by the number of items in the user’s list of acronyms. These
three weights are summed up to obtain the total weight, which is then used to
order the courses by relevance (i.e., based upon this score).

2.5 Evaluation

This subsection describes the procedures that will be used to evaluate the
precision of the acronym extraction algorithm and the keyword and keyphrase
extraction algorithm. It concludes with a hypothetical description of how the
recommendation system could be evaluated.

2.5.1 Evaluation of acronym extraction

For the analysis of the acronym extraction algorithm, the acronyms from
10 technical reports have been manually extracted from the “List of acronyms
and abbreviations” preface page of each report¶. These acronyms have been
put in a list which is considered the “ground truth”. The automated acronym
extraction is performed on the same 10 technical reports (excluding the list of
acronyms and abbreviations preface page(s)) and the following measurements
are performed: the number of acronyms correctly identified as acronyms, the
number of words falsely identified as acronyms and the number of acronyms
falsely identified as words. The proposed model takes a sequence of characters
and classifies it as either an acronym or not. The percentage of acronyms in
a technical paper or report is small and a basic model that always classifies a
sequence of words as not being an acronym (in our initial measurements, the
accuracy of the baseline model was higher than 99%) would seem to have good
performance. To measure the proportion of correct measurements beyond this
baseline, we perform the measurements proposed by Taghva and Gilbreth [35],
namely recall‖ and precision ∗∗. Furthermore, we use the F1 measure, initially
introduced by van Rijsbergen [32], which combines recall and precision with an
equal weight by using their harmonic mean.

2.5.2 Evaluation of keywords and keyphrases extraction

To perform this evaluation, we used 20 research papers from various research
areas, all of which had a list keywords††. For each paper, the keywords that
have been specified by the author(s) have been used to produce a list that is
considered the ground truth for this paper. The keyword extraction algorithm
was used to extract a list of keywords and the keyphrase extraction algorithm

§An exact match occurs if the string exactly matched in spelling, if the spelling is present.
¶The list of these 10 documents is given in Appendix A
‖Recall is defined as the number of correct acronym definitions that were found by the

algorithm divided by total number of acronyms found in the document
∗∗Precision is defined as the number of correct acronyms found by the algorithm divided by

the total number of acronyms found by the algorithm
††The list of these 10 documents is given in Appendix B
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was used to extract a list of keyphrases. To measure the utility of the keyword
extraction algorithm, we count the number of exact matches between the ground
truth list and the list generated by the algorithm. Furthermore, we define partial
matches as a measure extrapolated from the generated list with regard to the
ground truth. This partial match measures how many of the keywords from the
ground truth list can be derived from a combination of any several items in the
algorithm generated list. The same two metrics are computed for the keyphrase
extraction algorithm.

2.5.3 Evaluation of course and instructor suggestion

Due to the lack of time, this step was not be performed, but we would
suggest designing a form / questionnaire to be filled in by a student when he /
she uses the web application. The questionnaire should inquire about his / her
degree of satisfaction with the proposed course and / or instructor. An ideal
solution would be to replicate a longitudinal study by recruiting a group of
master’s students who have completed their first semester to test this system.
They would receive suggestions (based on their existing registration history)
about courses and / or instructors and fill in a form designed to measure the
acceptance rate of the system (number of courses selected based on the suggested
courses) and the satisfaction of students (number of decisions that they did not
regret making based on the provided suggestions).
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3 Implementation

This section offers an overview of the system architecture, its modules, and
web application. First, we discuss the system’s architecture and our consider-
ations while choosing this architecture. Second, we present the main modules
and then we illustrate several examples on how they can be used. The section
concludes with a presentation of DocAid, which is the web application developed
for this project using the modules that have been implemented.

3.1 System Architecture

We named the underlying system that contains the meta data extraction
modules the DocAid Engine. This engine depends on various libraries to im-
plement each module:

• Apache Tika [2] is used to read input documents (PDF, TXT, ODT, DOC)
and web pages (HTML web pages) and extract the title and the content
of the source as text.

• Palladian [27] is used for extracting keywords from a text source.

• MAUI indexer [22] is used to extract key phrases from a document source.

• Jsoup Java HTML Parser [19] is used to strip HTML tags from various
text sources.

• jlangdetect - Language detection API for Java [18] is used to define the
language of a text source.

All modules mentioned in section 3.2 are available in the DocAid Engine via
an application layer. In Figure 1 we present the API wrappers for each module,
along with its input, output, and the libraries used. The following list maps the
wrappers to each module.

• CourseIndexBuilderWrp. Uses modules the modules “Course Web Page
Parser”3.2.8 and “Course XML parser” 3.2.7 to populate the database
with course meta data.

• URL/Document parser. Represents the modules “Parse Web Pages”3.2.6
and “Read Documents”3.2.5. It uses Apache Tika to parse web pages or
documents and provide the text output as input to the rest of the modules.

• KeywordExtractorWrp. Uses module “Extract frequently used (key)words”3.2.2
along with Palladian to extract keywords, then uses a keyword filter
module which removes from the result stop words and character sequences
that were falsely defined as keywords (e.g., words that contain numbers
such as LAB1).

• KeyphraseExtractorWrp. Uses module “Extract keyphrases”3.2.3 along
with MAUI to extract keyphrases.
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• AcronymExtractorWrp. Uses module “Extract Acronyms”3.2.1 to identify
acronyms.

• DocAnalyzerWrp. Document Analyzer is just a wrapper that combines
the the previous three wrappers and provides a summary of the results.

• CourseAdvisorWrp. Takes as input a list of text sources (multiple docu-
ments) and collects their output from the DocAnalyzerWrp. Optionally
takes as input the registration history of a KTH student, extracts the
course codes and provides them along with the keyphrases, keywords,
and acronyms as input to the recommender, which finally outputs course
and tutor recommendations. The recommender is build upon modules
“Suggest courses”3.2.9 and “Suggest tutors”3.2.10.

Figure 1: DocAid System achitecture
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3.2 Modules

This section will introduce the developed modules, the input, output and
usage of each module.

3.2.1 Extract acronyms

Data input This module takes as input text as a string.

Data output The module generates a list of acronyms, which contains
information regarding each acronym’s spelling and whether it was spelled out
on first use.

Usage and example To extract acronyms, there are two classes used: the
Acronym class, which is the object that represents the acronym and it contains
the acronym itself, its spelling, and whether it was spelled out on first use, and
the AcronymDetector class, which is a class that contains two static methods,
the detectAcronyms(Strings) and checkAcronymsOnSight(Strings).

The detectAcronyms(Strings) method takes as input a string representing
a text, it removes the non-ASCII characters and the punctuation, and then
extracts a list of strings, where each string is an acronym (the extraction is
performed according to the method mentioned in Section 2.2.

LinkedList <String > listOfUncheckedAcronyms =

AcronymDetector.detectAcronyms(String input );

The checkAcronymsOnSight(Strings) method takes as input a text, re-
moves the non-ASCII characters and the punctuation, and then extracts a list
of Acronym objects, each containing more information about each acronym.

LinkedList <Acronym > listOfUncheckedAcronyms =

AcronymDetector.checkAcronymsOnSight(String input );

3.2.2 Extract frequently used (key)words

Data input This module takes as input a text as a string.

Data output The module generates a list of stems, together with the
frequency with which they are used in the text and the words that the stem was
subtracted from.

Usage and example This module uses two classes: Keyword and the
utility KeywordExtractor. The Keyword class is the object that represents a
frequently used (key)word and it contains the stem that is / was processed by
the keyword extraction algorithm, the frequency, which represents the number
of times that stem was encountered in the text, and a set of terms from which the
stem was derived. The KeywordExtractor takes a text as input and generates
a list of keyword objects.
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ArrayList <Keyword > listOfKeywords =

KeywordExtractor.guessFromString(String input)

3.2.3 Extract keyphrases

This algorithm uses the MAUI library to perform the necessary operations
to extract keyphrases.

Data input This module takes as input a text as a string.

Data output The module generates a list of keyphrases, together with
the frequency with which they are used in the text.

Usage and example This module uses two classes: Keyphrase and the
utility KeyphraseExtractor. The Keyphrase class stores the phrase as a string,
the words in the phrase as a list of strings, and the stems of the words that were
used as a list of strings. The KeyphraseExtractor takes a text as input and
generates a list of keyphrase objects.

ArrayList <Keyphrase > listOfKeyphrases =

KeyphraseExtractor.getKeyphrases(String input)

3.2.4 Translate content

This functionality is based on MyMemory[24], which is a service that pro-
vides an API for translating terms.

Data input This module takes text as a string as input.

Data output The module generates a string representing the translation
of the input string in the desired language. The implemented application
provides translation services between English and Swedish only.

Usage and example The module uses one class, namely Translator,
which takes as input three strings, the first string representing the language
from which the text should be translated, the second string representing the
language to which the text should be translated, and the third one represents
the text that should be translated.

String translatedText =

Translator.translate("en", "sv", String input)

3.2.5 Read documents

This functionality is based on the Apache Tika library, which provides in-
formation (meta-data) regarding the type of the uploaded file.
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Data input This module takes a file as input.

Data output The module generates an InputDocument object, which
is an object representation of the file that contains information regarding the
document’s type, its title, its content, and its number of pages.

Usage and example The module uses one class, namely UtilClass, which
takes as input a file and returns an InputDocument object instance of the input.

InputDocument doc =

UtilClass.getInstance (). getInputDocument(

new File(String filePath ));

3.2.6 Parse web pages

This functionality is based on the Palladian library, which provides suitable
tools for retrieving and parsing the a web page’s HTML content.

Data input This module takes as input a string that represents the URL
of a desired web page.

Data output The module generates an WebDocument object, which is an
object representation of the content received from parsing the web page located
at the URL that contains information regarding the document’s title, content,
and its URL.

WebDocument docWeb = new WebDocument(String url);

3.2.7 Course XML parser

This module depends on the KTH API “för kurs- och programinformation”
[11]. It extracts course codes for a given year and course round. It also allows
us to read the XML page of each course and then extract meta data.

Data input This module takes as input a DOM (Document Object Model)
that corresponds to the XML page of the course list for a given round.

Data output The module generates a Map with instances of the class
Course. Each Course instance contains meta deta extracted from its’ XML
page.

13



Usage and example This course XML parser extracts a list of course
codes using the API using a URL of the form
http://www.kth.se/api/kopps/v1/courseRounds/{year}:{round}.

It extracts course meta data using the API using a URL of the form
http://www.kth.se/api/kopps/v1/course/{courseCode}.

javax.xml.parsers.DocumentBuilder dBuilder =

DocumentBuilderFactory.newInstance ().

newDocumentBuilder ();

org.w3c.dom.Document doc = dBuilder.parse(

"http ://www.kth.se/api/kopps/v1/courseRounds /2014:2");

HashMap <String , Course > courses = CourseXMLPageParser.

retrieveCourseCodes(doc);

CourseXMLPageParser.

updateCourseContent(courses.get("ID2203"));

The function updateCourseContent builds the URL for the course XML page
based on the course code, and then from each DOM node extracts meta data.

3.2.8 Course web page parser

This module parses a course’s home page to extract keywords, keyphrases,
and acronyms.

Data input An instance of the Course class.

Data output Updagtes Course with updated information regarding key-
words, keyphrases, and acronyms.

Usage and example First it creates the URL of the course page, using the
following patern ”http://www.kth.se/student/kurser/kurs/courseCode?l=en. The
courseCode is extracted from Course. It uses the module “Course web page
parser”3.2.6. It also detects and stores the language of the web page.

CourseHomePageParser.updateCourseInfo(course , stopwords );

3.2.9 Suggest courses

Data input This module takes as input four lists of strings: one list
contains course codes for courses taken by the user, a list of acronyms that
was previously extracted from either a web page or from several documents, a
list of keywords extracted from the same documents, and / or a list of keyphrases
extracted from the documents or from the specified list of interests by the user.

Data output The module generates a list of suggested courses, together
with the acronyms, keyphrases, and keywords that were used in assigning the
suggestion weight.

14



Usage and example This module depends on the course data set that was
extracted from KTH’s course web and it has been implemented as a PG/SQL
function.

select * from suggestcoursesfinal

(text[] course_ids , text[] acronym , text[] keyword ,

text[] keyphrases)

3.2.10 Suggest tutors

Data input This module takes as input a four lists of string: one list
contains course codes for courses taken by the user, a list of acronyms that was
previously extracted from either a web page or from several documents, a list
of keywords extracted from the same documents, and / or a list of keyphrases
extracted from the documents or from the specified list of interests by the user.

Data output The module generates a list of suggested tutors, together
with the acronyms, keyphrases, and keywords that were used in assigning the
suggestion weight.

Usage and example This module depends on the course data set that was
extracted from KTH’s course web and it has been implemented as a PG/SQL
function.

select * from suggesttutorfinal

(text[] course_ids , text[] acronym , text[] keyword ,

text[] keyphrases)

3.3 Web Application

The aforementioned modules have been implemented as part of the DocAid
Engine. To illustrate the efficiency of this set of models, we implemented a
web application built on top of the DocAid Engine. The web application is
functional and it can be accessed at the DocAid homepage: http://kthtest-
docaid.rhcloud.com/docaid/index.jsp [8]. Its architecture is shown in Figure 1.
The web application is hosted on Openshift [26], a cloud computing platform as
a service, that has full support for the components required by DocAid. First,
the DocAid Engine uses a PostgreSQL [30] database as a back-end to store
course meta-data and dictionaries of stop words.
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Figure 2: DocAid web application architecture

The DocAid functionality is available in the web application via the following
pages:

Acronym extraction The input form of this page is identical to the key
phrase extraction. See Figures 3 and 4 for examples of results. The three
columns of the table are the acronym, the acronym spelled out, and a boolean
field that indicates if the acronym was spelled out on first use in the source text.

Figure 3: Acronyms extracted from a web page URL (in this case, the URL is
the first item of Appendix C). The first column is the acronym. The second
column shows whether the acronym is spelled out. The final column is a boolean
value that indicates if the acronym was spelled out on first use.
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Figure 4: Acronyms from a document (in this case the 3rd item of Appendix C).
The first column is the acronym. The second column is the acronym spelled out
(if possible). The final column is a boolean value that indicates if the acronym
was spelled out on first use.

Keyword extraction The user has the option to provide the URL of an
HTML web page or to upload a document to the server. If the format of the file
is not supported, an appropriate message is returned to the user. Additionally,
there are several input parameters that can influence the keyword extraction
output, such as enable or disable filtering of stop words, words that contain
numbers (e.g., LAB1, or numeric text), minimum number of occurrences for a
stem to be considered a keyword and the minimum keyword length in characters.
Finally, when the input text source does not contain sufficient data to extract
keywords a corresponding message is returned.

Each row of the resulting table contains the stem, the frequency of the stem,
how many times this stem appeared in the source text, and the words that are
mapped to the particular stem. The table, by default, is sorted on frequency,
but it offers the option to sort the results on any column. Figures5 and 6 show
the input forms and Figures 7, 8, and 9 show the results extracted from the
document and / or the URL (as appropriate).
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Figure 5: Keywords form. Takes input the URL of an HTML page, the minimum
number of occurrences of a keyword, the minimum length of a word to be
considered as a keyword. It contains a checkbox to enable stop word filtering
and filtering of words that contain numbers.

Figure 6: Keywords from document. Takes input the document to upload, the
minimum number of occurrences of a keyword, the minimum length of a word to
be considered as a keyword. It contains a checkbox to enable stop word filtering
and filtering of words that contain numbers.
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Figure 7: Keywords extracted from the web page URL shown in Figure 5.
The first column is the keyword stem, the second column is the frequency of
occurrence and the final column holds the words that reference the stem.

Figure 8: Keywords extracted from an uploaded document (in this case the 3rd
item of Appendix C) with filtered stop words. The first column is the keyword
stem, the second column is the frequency of occurrence, and the final column is
the words that reference the stem.
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Figure 9: DocAid Keywords from an uploaded document (in this case the 3rd
item of Appendix C), unfiltered. The first column is the keyword stem, the
second column is the frequency of occurrence, and the final column is the words
that reference the stem.

Keyphrase extraction This page tales as input a URL or a text source. No
additional parameters are available to the user. The resulting table contains
two columns: the keyphrase and a factor. Figure 10 shows the input form for
a URL text source to extract key phrases, while Figures 11 and 12 show the
extracted results for this input.
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Figure 10: Key phrase form. Takes input the URL of an HTML page.

Figure 11: Key phrases extracted from the web page URL shown in Figure
10. The first column is the key phrase. The second column is the weight of
the keyphrase in ascending order. The smaller the factor the more relevant the
phrase.

21



Figure 12: Key phrases from an uploaded document (in this case the 3rd item
of Appendix C). The first column is the key phrase. The second column is the
weight of the keyphrase in ascending order. The smaller the factor the more
relevant the phrase.

Document analysis This page combines the functionality of the afore men-
tioned pages. The input parameters are the same as for keywords page and the
results are a table from each module.

Course advisor This page takes input from various sources. The user can
choose to use some or all of the fields. First, the user can specify a set of
keywords and key phrases delimited by commas which correspond to his / her
interest list. Second, the can upload his / her registration history. Our parse
has proven to work better with the transcript of records printed as a PDF file
from the KTH Social web site. Third, there is a document upload field which
allows for multiple files to be selected. From these files meta data are extracted
and used in the recommendation algorithm. Finally, all the keyword extraction
options are available for the user to customize along with two extra options
which limit the course and tutor suggestions.

The course suggestions table contain the course codes, the course title, the
recommendation weight (i.e., the sum of the other columns), acronym, keyword,
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and keyphrase weight. By default the table is sorted on the recommendation
weight, but the user can select the other weights for sorting.

Since the DocAid database is populated with detailed meta data for each
course, additional information can be presented to the user (i.e., the acronym,
keyword and key phrase matches from the document sources to the course meta
data).

Figure 13 provides the input form, and Figures 14 and 15 show the results of
the advisor module, and Figure 16 shows the detailed list of acronyms, keywords
and keyphrases used to determine the weight for the course “AG2417 Web and
Mobile GIS”.

Figure 13: Course Advisor form. Keywords and key phrases provided in the user
preference text area. A PDF document containing the transcript of records of
a KTH student has been uploaded (in this case the 2nd item of Appendix C).
Also, the user enters a PDF document with content of interest to the student (in
this case the 3rd item of Appendix C). The keyword extraction parameters are
shown and can be modified by the user. Finally the number of recommendations
per course and tutor can be limited.
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Figure 14: Course suggestions for input used in Figure 13.

Figure 15: Tutor suggestions for the input used in Figure 13.
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Figure 16: The keyphrases and acronyms that led to suggesting course “AG2417
Web and Mobile GIS”.

Performance issues The web application appears to have high latency. This
occurs because the available resources are shared with other users of Openshift,
and only 512 megabytes are dedicated to the application. Also, if the application
is not accessed for a specific amount of time, on the next access, it is redeployed.
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4 Results and discussion

In this section, we present the results of the proposed methods and we discuss
what can be deduced from them.

4.1 Acronym extraction

The algorithm recognized 940 acronym-definition pairs of which 196 were
incorrectly identified from the set of 10 documents. The results obtained were
79.1% precision (with a standard deviation of 13.2%) and 89.2% recall (with
a standard deviation of 5.6%), yielding an F1 score of 83.9% (with a standard
deviation of 7.9%). The results are shown in Table 1.

Table 1: Measurements performed to evaluate the acronym extraction
algorithm. The first column represents the document id. The next four
columns represent the number of acronyms inside a document, the number of
correctly identified acronyms, the total number of acronyms, and the number of
incorrectly classified words as acronyms. The final three columns represent the
precision, recall and F1 measure of the algorithm.

Doc id Declared Correct Total Incorrect Prec. % Rec. % F1 %
1 32 26 37 11 70.3 81.3 75.4
2 89 83 136 53 61.0 93.3 73.8
3 26 22 32 10 68.8 84.6 75.9
4 33 31 57 26 54.4 93.9 68.9
5 97 93 141 48 66.0 95.9 78.2
6 59 51 61 10 83.6 86.4 85.0
7 53 50 56 6 89.3 94.3 91.7
8 97 86 97 11 88.7 88.7 88.7
9 67 66 78 12 84.6 98.5 91.0
10 281 236 245 9 96.3 84.0 89.7
Agg. 834 744 940 196 79.1 89.2 83.9

When analyzing the misclassified instances, we noticed that our algorithm
failed to distinguish between words written in upper case by authors not as
acronyms, but as a mean to emphasize their importance. Furthermore, all the
acronyms that contained (any) small letters were missed because of the heuristic
we employed. Another confusion was caused by identifying codes assigned by
authors to certain elements as objects (e.g., a paper proposed the code COD
for a certain species of fish) or by identifying institutions in the bibliography /
references section as acronyms. We noticed that a large percentage of the falsely
classified words as acronyms were due to the employed heuristic, which allows
for two-letter upper case words to be considered as acronyms.

The algorithm identified the correct spelling out of the acronyms in 71.2%
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of the cases, and the correct spelling out of the acronyms on the first use was
identified in 68.8% of the cases. These results are shown in Tables 2 and 3.

Table 2: The output of tests performed for evaluating the acronym spelling
detection module. The first column represents the document id. The next two
columns represent the number of acronyms inside a document and the number
of correctly spelled acronyms identified by the algorithm.

Doc id Declared Identified Prec.%
1 32 24 75.0
2 89 62 69.7
3 26 16 61.5
4 33 19 57.6
5 97 78 80.4
6 59 43 72.9
7 53 36 67.9
8 97 74 76.3
9 67 58 86.6
10 281 184 65.5
Agg. 834 594 71.2

Table 3: Measurements performed for evaluating the ability to correctly identify
an instance of an acronym being spelled out on first use. The first column
represents the document id. The next two columns represent the number of
acronyms inside a document and the number of acronyms correctly spelled on
first use based upon the acronyms identified by the algorithm.

Doc id Declared Identified Prec.%
1 32 19 59.4
2 89 57 64.0
3 26 15 57.7
4 33 17 51.5
5 97 76 78.4
6 59 43 72.9
7 53 35 66.0
8 97 70 72.2
9 67 58 86.6
10 281 184 65.5
Agg. 834 574 68.8

Those acronyms whose spelling out could not be identified even if it was
present had a structure that did not match our heuristics (e.g., LIDAR was
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spelled as “light detection and ranging”, where “and” was treated as a stop
word and ignored). In the 5.6% of the cases were the spelling was correct but
it could not be identified on the first check, the error was caused either by an
extra comment for the first use (e.g., putting an extra note in parentheses when
the acronym is spelled out for the first time) or one of the words was split into
two syllables due to automatic hyphenation.

4.2 Keywords and keyphrases extraction

We extracted 100 keywords and phrases out of 20 documents, out of which
the naive approach exactly identified 20% of the cases and, if merged with the
partial identification, it managed to identify 52% of the cases. However, the
value of the standard deviation was high (22.4% for the exact identification and
30.6% for the merged approach) due to the fact that this method is solely based
on the frequency of the words used (see Table 4 for the results). We also noticed
that the number of suggestions depends on the frequency we set as a minimum
(see Table 5 for the number of suggestions per document, given a minimum
frequency of 20).
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Table 4: The results of measurements performed to evaluate the naive approach
of keyword extraction. The first column represents the document id. The next
columns represent the number of declared keywords in the abstract, the number
of exactly matched keywords, the number of approximately matched keywords,
the merged results, and the respective precisions.

Doc id Keyword Exact Approx. Merged Prec. Ex Prec. Merg
1 5 0 2 2 0.0 40.0
2 5 1 3 4 20.0 80.0
3 4 2 2 4 50.0 100.0
4 4 0 0 0 0.0 0.0
5 5 2 3 5 40.0 100.0
6 5 0 1 1 0.0 20.0
7 5 1 0 1 20.0 20.0
8 9 3 2 5 33.3 55.6
9 6 0 4 4 0.0 66.7
10 5 0 3 3 0.0 60.0
11 5 1 0 1 20.0 20.0
12 9 0 2 2 0.0 22.2
13 7 1 5 6 14.3 85.7
14 6 1 0 1 16.7 16.7
15 4 2 1 3 50.0 75.0
16 4 2 0 2 50.0 50.0
17 3 2 0 2 66.7 66.7
18 2 0 1 1 0.0 50.0
19 4 2 0 2 50.0 50.0
20 3 0 3 3 0.0 100.0
Agg. 100 20 32 52 20.0 52.0

29



Table 5: These measurements were performed to check the number of
suggestions considering only those keywords that occur at least 20 times. The
last column represents the number of suggestions.

Doc id Keyword Merged Suggestions
1 5 2 62
2 5 4 35
3 4 4 92
4 4 0 26
5 5 5 31
6 5 1 16
7 5 1 69
8 9 5 38
9 6 4 191
10 5 3 37
11 5 1 71
12 9 2 55
13 7 6 132
14 6 1 14
15 4 0 89
16 4 3 21
17 3 2 79
18 2 2 71
19 4 1 73
20 3 2 86
Agg. 100 49 1288

The keyphrases extraction performed with MAUI clearly outperformed the
naive approach, exactly identifying 65.0% of the keywords and merging the ex-
actly identified keywords with the partially identified ones, the classifier reached
an accuracy of 81.0%. However, the value of the standard deviation is still high,
19.7% for the exact approach and 17.5% for the merged approach (see Table 6
for the results). When verifying if most of the results are in a certain interval
(e.g., given a maximum number of 50 keyphrases recommended per document,
how many of the suggested keywords are in the first 10 recommendations), we
noticed that the matches tend to be in either the first suggested keyphrases or
the last suggested ones (when considering the weight), with a gap in the middle
(see Table 7 for the relevant measurements).
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Table 6: The results of measurements performed to evaluate the keyphrase
extraction. The first column represents the document id. The next columns
represent the number of declared keywords in the abstract, the number of exactly
matched keyphrases, the number of approximately matched keyphrases, the
merged results, and the respective precisions.

Doc id Keyword Exact Approx. Merged Prec. Ex Prec. Merg
1 5 3 2 5 60.0 100.0
2 5 4 0 4 80.0 80.0
3 4 2 2 4 50.0 100.0
4 4 3 0 3 75.0 75.0
5 5 4 1 5 80.0 100.0
6 5 3 1 4 60.0 80.0
7 5 2 1 3 40.0 60.0
8 9 7 0 7 77.8 77.8
9 6 3 2 5 50.0 83.3
10 5 3 0 3 60.0 60.0
11 5 3 1 4 60.0 80.0
12 9 7 1 8 77.8 88.9
13 7 4 2 6 57.1 85.7
14 6 1 1 2 16.7 33.3
15 4 3 0 3 75.0 75.0
16 4 3 1 4 75.0 100.0
17 3 3 0 3 100.0 100.0
18 2 1 1 2 50.0 100.0
19 4 3 0 3 75.0 75.0
20 3 3 0 3 100.0 100.0
Agg. 100 65 16 81 65.0 81.0
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Table 7: This table contains information regarding the distribution of the
suggested keyphrases, considering a maximum of 50 keyphrase recommendations
per document. Columns 2-5 represent the number of recommend keyphrases
that were found in their adjacent recommendation interval. It is noticeable that
for these tests, the distribution appears to have the form of a reversed Gauss
bell.

Doc id Keyword Merged 1-10 11-20 21-30 31-40 41-50
1 5 5 1 1 2 0 1
2 5 4 0 1 1 2 0
3 4 4 2 1 0 0 1
4 4 3 0 3 0 0 0
5 5 5 2 1 1 1 0
6 5 4 2 0 0 0 2
7 5 3 1 0 0 1 1
8 9 7 2 2 0 2 1
9 6 5 2 0 1 2 0
10 5 3 2 0 0 0 1
11 5 4 1 0 1 0 2
12 9 8 0 2 0 3 3
13 7 6 0 2 1 2 1
14 6 2 0 1 0 0 2
15 4 3 0 3 0 0 0
16 4 4 2 0 0 1 1
17 3 3 2 0 0 0 1
18 2 2 1 0 1 0 0
19 4 3 2 0 0 1 0
20 3 3 0 1 0 2 0
Agg. 100 81 22 18 8 17 17

The only observation we could made was that in some cases the authors
specify keywords or keyphrases that are not written in the text in the same
way as in the list of keywords in the abstract (e.g., if the author writes “sensor
fusion” as a keyword but in the text he / she uses “fused data from sensors”).

These tests should be performed on a larger data set to obtain more statis-
tically significant results.

4.3 Course and tutor suggestion

We have noticed that if we base the recommendation algorithm on naive
association rules, some courses and / or tutors are present in most of the
performed suggestions. This is mostly due to the level of detail of each course
description, which is automatically associated with the tutor as well, and varies
across all courses (some courses only have the time schedule in their content,
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while others provide information regarding the studied literature and a list of
commonly used acronyms and abbreviations of the course).

5 Conclusions and future work

This section concludes the report and presents the authors’ views regarding
what could be implemented to improve the presented system.

5.1 Conclusions

In this report, we have shown that it is possible to collect meta-data from
on-line sources and presented a set of tools that can be used for this task.
Furthermore, we have explored the possibility of recommending courses based
on a user’s predefined set of interest, such as manual input of keywords and /
or keyphrases, uploading documents of interest, and updating his / her regis-
tration history. We have designed a web application that supports the proposed
subgoals and we made it publicly available at the DocAid homepage [8].

5.2 Future work

In this report, we implemented the course and tutor recommendation func-
tionality based solely on static content, where a course is considered to be
relevant to a document or interest list if it has similar keywords, keyphrases, or
acronyms. To make the recommending system more robust, it would be useful
to consider each course’s prerequisites and future learning perspective (e.g., the
“Modern Database Systems” course requires the “Introduction to Databases”
course). Finally. a great addition would be to take into account the registration
trend of students (if 90% of the students that took courses A and B continued
with C, the recommender system would tend to suggest C). However, users
might not be willing to share their registration history or other education related
information because of privacy concerns. It would be interesting to take into
account personalized content that adapts to the user’s preference. Such a system
would probably be similar to the one proposed by Billsus and Pazzani [4]), which
suggests a daily news program based on the preference data derived from what
the user reads in a predefined time interval.
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umd.edu/Documents/MODIS_Burned_Area_Collection5_User_Guide_2.
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4. “Spawning and nursery grounds of selected fish species in UK waters”
http://www.cefas.defra.gov.uk/publications/techrep/TechRep147.
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5. “ACRP Report 88: Guidebook on Integrating GIS in Emergency Man-
agement at Airports” http://onlinepubs.trb.org/onlinepubs/acrp/
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6. “List of acronyms and abbreviations - Guidelines for safe recreational
water environment” http://www.who.int/water_sanitation_health/
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7. “List of acronyms and abbreviations - Environmental Protection Agency”
http://www.epa.gov/hudson/CIP_07_section5.pdf Last accessed June
7, 2014.
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serv/energy/Operational%20Assessment%20of%2016%20UNC%20Campuses-Final%

20%20Report.pdf Last accessed June 7, 2014.
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Special Report on Renewable Energy Sources and Climate Change Miti-
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10. “Annual review of DFID support to the anti-corruption commission phase
2 in Sierra Leone” http://s4rsa.wikispaces.com/file/view/DFID+Support+
to+the+Anti-Corruption+Commission.pdf Last accessed June 7, 2014.
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word and keyphrase extraction algorithm
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Appendix C: Documents and URL used as input
for the web application

1. “Intelligent Transport Systems” http://www.etsi.org/technologies-clusters/
technologies/intelligent-transport Last accessed June 7, 2014

2. Registration history of the second author of this report. The document
was generated on 28 January, 2014.

3. “Privacy in the context of Smart Home Environments - Based upon a sur-
vey of experts ” http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/
140528-Jahaivis_M._Arias-with-cover.pdf Last accessed June 7, 2014
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