
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

A R J U N R E D D Y K A N T H L A

 Network Performance Improvement
for Cloud Computing using

Jumbo Frames

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Network Performance Improvement for
Cloud Computing using Jumbo Frames

Arjun Reddy Kanthla

Master of Science Thesis
March 28, 2014

Examiner and Academic Adviser

Professor Gerald Q. Maguire Jr.

Department of Communication Systems

School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden.

Abstract

The surge in the cloud computing is due to its cost effective benefits and the
rapid scalability of computing resources, and the crux of this is virtualization.
Virtualization technology enables a single physical machine to be shared by
multiple operating systems. This increases the efficiency of the hardware, hence
decreases the cost of cloud computing. However, as the load in the guest
operating system increases, at some point the physical resources cannot support
all the applications efficiently. Input and output services, especially network
applications, must share the same total bandwidth and this sharing can be
negatively affected by virtualization overheads. Network packets may undergo
additional processing and have to wait until the virtual machine is scheduled by
the underlying hypervisor before reaching the final service application, such as a
web server.In a virtualized environment it is not the load (due to the processing
of the user data) but the network overhead, that is the major problem. Modern
network interface cards have enhanced network virtualization by handling
IP packets more intelligently through TCP segmentation offload, interrupt
coalescence, and other virtualization specific hardware.

Jumbo frames have long been proposed for their advantages in traditional
environment. They increase network throughput and decrease CPU utilization.
Jumbo frames can better exploit Gigabit Ethernet and offer great enhancements
to the virtualized environment by utilizing the bandwidth more effectively
while lowering processor overhead. This thesis shows a network performance
improvement of 4.7% in a Xen virtualized environment by using jumbo frames.
Additionally the thesis examines TCP’s performance in Xen and compares Xen
with the same operations running on a native Linux system.

Keywords: virtualization, cloud computing, jumbo frame, Xen, TCP

i

Sammanfattning

Den kraftiga ökningen i datormoln är p̊a grund av dess kostnadseffektiva fördelar
och den snabba skalbarhet av datorresurser, och kärnan i detta är virtualisering.
Virtualiseringsteknik möjliggör att man kan köra flera operativsystem p̊a en
enda fysisk maskin. Detta ökar effektiviteten av h̊ardvaran, vilket gör att
kostnaden minskar för datormoln. Men eftersom lasten i gästoperativsystemet
ökar, gör att de fysiska resurserna inte kan stödja alla program p̊a ett effektivt
sätt. In-och utg̊angstjänster, speciellt nätverksapplikationer, m̊aste dela samma
totala bandbredd gör att denna delning kan p̊averkas negativt av virtualisering.
Nätverkspaket kan genomg̊a ytterligare behandling och måste vänta tills den
virtuella maskinen är planerad av den underliggande hypervisor innan den
slutliga services applikation, till exempel en webbserver. I en virtuell miljö är
det inte belastningen (p̊a grund av behandlingen av användarens data) utan
nätverket overhead, som är det största problemet. Moderna nätverkskort har
förbättrat nätverk virtualisering genom att hantera IP-paket mer intelligent
genom TCP- segmenterings avlastning, avbrotts sammansmältning och genom
en annan h̊ardvara som är specifik för virtualisering.

Jumboramar har länge föreslagits för sina fördelar i traditionell miljö.
De ökar nätverk genomströmning och minska CPU-användning. Genom
att använda Jumbo frames kan Gigabit Ethernet användandet förbättras
samt erbjuda stora förbättringar för virtualiserad miljö genom att utnyttja
bandbredden mer effektivt samtidigt sänka processor overhead. Det här
examensarbetet visar ett nätverk prestandaförbättring p̊a 4,7% i en Xen
virtualiserad miljö genom att använda jumbo frames. Dessutom undersöker
det TCP prestanda i Xen och jämför Xen med samma funktion som körs p̊a en
Linux system.

Nyckelord: virtualisering, datormoln, jumboram, Xen, TCP

iii

Acknowledgments

My sincere gratitude to my supervisor Professor Gerald Q. Maguire Jr. for
giving me an opportunity to work under him and for his very best support
throughout the thesis work. His enthusiasm and patience in clearing my doubts
and providing suggestions is incalculable. Simply I found the epitome of a
teacher.

Special thanks to my programme coordinator May-Britt Eklund-Larsson,
for her gracious support throughout my graduate studies.

Finally, I would like to thank my family and my friend Pavan Kumar Areddy
for their support during the thesis work.

v

Contents

Abstract i

Sammanfattning iii

Acknowledgments v

List of Figures ix

List of Tables xi

List of Acronyms and Abrreviations xiii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Goals . 3
1.3 Structure of the Report . 4

2 Background 5
2.1 Cloud Computing . 5

2.1.1 Infrastructure as a Service (IaaS) 5
2.1.2 Platform as a Service (PaaS) 6
2.1.3 Software as a Service (SaaS) 6

2.2 Virtualization . 6
2.2.1 Types of virtualization 8

2.3 Virtualization Technologies . 9
2.3.1 Xen . 9
2.3.2 OpenVZ . 9
2.3.3 Kernel-based Virtual Machine (KVM) 9

2.4 Xen Hypervisor . 9
2.4.1 Scheduling Mechanism in Xen 11

2.5 MTU and Jumbo Frames . 12
2.6 Transmission Control Protocol 14

vii

CONTENTS

2.7 Related Work . 16
2.7.1 Work on schedulers . 16
2.7.2 Work on MTU and network performance 17

3 Methodology 19
3.1 Workloads and Tools . 20

3.1.1 Iperf . 20
3.1.2 TCPdump . 21
3.1.3 httperf . 22
3.1.4 Additional tools . 23

3.2 Measurement Metrics . 23
3.2.1 Network Throughput . 24
3.2.2 Network Latency . 24
3.2.3 CPU utilization . 24

3.3 Experimental Setup . 26
3.3.1 Bridging . 27

4 Evaluation and Results 29
4.1 Throughput . 31
4.2 CPU Utilization . 33
4.3 Throughput at the client . 35
4.4 Additional Measurements . 36

4.4.1 Xen Performance Comparison 36
4.4.2 TCP Behavior in Virtual Machine 37

4.5 Analysis and Discussion . 39

5 Conclusions and Future Work 43
5.1 Conclusions . 43
5.2 Future Work . 44
5.3 Required Reflections . 44

A Configuration 55

B Data Files 61

C Issues 67

viii

List of Figures

1.1 Extra layers of processing . 3

2.1 Types of hypervisors . 8
2.2 Architecture of Xen hypervisor 10
2.3 Credit Scheduler . 11
2.4 Standard and jumbo Ethernet Frames 12
2.5 TCP Header with data . 14
2.6 TVP settings in a running Linux 16

3.1 Iperf server . 20
3.2 Iperf client . 21
3.3 Example of tcpdump output . 22
3.4 Pictorial Representation of throughput and bandwidth for a

physical link . 24
3.5 Example of pidstat output . 25
3.6 Experimental Setup . 26
3.7 Screen-shot showing Dom0 and two running VMs 27
3.8 Linux Bridging . 28
3.9 Linux bonding with bridge . 28

4.1 NIC features enabled . 30
4.2 Network protocol stack with Iperf and TCPdump 30
4.3 Virtual Machine and Dom0 Throughput 31
4.4 Throughput observed to decrease from 6000 bytes MTU 33
4.5 CPU usage of Netback service in Xen 34
4.6 Throughput seen at client . 35
4.7 Xen Performance compared to native Linux system 37
4.8 Sequence of 1500 byte MTU packets in Dom0 38
4.9 Sequence of 1500 byte MTU packets in VM 38
4.10 Sequence of 5000 byte MTU packets in Dom0 38
4.11 Sequence of 5000 byte MTU packets in VM 38

ix

LIST OF FIGURES

4.12 Sequence of 9000 byte MTU packets in Dom0 39
4.13 Sequence of 9000 byte MTU packets in VM 39
4.14 Incongruency of abstraction layering concept 41

A.1 Processor Details . 55
A.2 Xen Hypervisor Details . 56
A.3 NIC Details . 57
A.4 Other NIC Details . 58

x

List of Tables

2.1 MTU size and Ethernet speeds 13
2.2 Overhead comparison of standard and jumbo frames 14

3.1 Bonding Modes . 28

4.1 Performance gain of virtual machine 32
4.2 Performance gain in Dom0 . 32
4.3 Average Throughput over 10 seconds 32

xi

List of Acronyms and
Abrreviations

µs Microseconds

ACK acknowledgement

BDP Bandwidth Delay Prodouct
BW Bandwidth

CPU Central Processing Unit

GbE Gigabit Ethernet

I/O Input and Output
IaaS Infrastructure as a Service
IP Internet Protocol
iSCSI Internet Small Computer System Interface
IT Information Technology

Mbps Megabits per second
MSS Maximum Segment Size
MTU Maximum Transmission Unit

NAS Network-attached storage
NFS Network File System
NIC Network Interface Card

OS Operating System

PaaS Platfrom as a Service
PCI Peripheral Component Interconnect

xiii

List of Acronyms and Abrreviations

RFC Request for Comments
RTT Round Trip Time

SaaS Software as a Service
SLA Service Level Aggrement
SMP symmetric multiprocessing

TCP Transimssion Control Protocol

UDP User Datagram Protocol

VLAN Virtual Local Area Network
VM Virtual Machine
VMM Virtual Machine Monitor
VT Virtualization Technology

xiv

Chapter 1

Introduction

Cloud Computing has become an essential part of the information technology
infrastructure in the recent years. Cloud computing offers hardware resources
and software services to users without requiring that the users actually own
these resources. Some advantages for adopting cloud services are reduction in
capital investments, hassle free maintenance, increased reliability, etc. However,
the core advantages are flexibility, elasticity, and scalability as processing can
be scaled up or down according to the user’s needs. Cloud computing offers
cost effective benefits in many fields, including but not limited to scientific
processing, big data collection, rendering images for the entertainment industry,
etc.

A prime reason for the proliferation of cloud computing is virtualization
technology (VT), which enables the computer’s owner to fully utilize the
computer. Modern symmetric multiprocessing (SMP) processors are frequently
idle and virtualization exploits this property to enable server and application
consolidation by running multiple concurrent Operating Systems on a single
physical processor. However, scaling the resources according to the user’s needs
and meeting a Service Level Aggrement (SLA) with this user is crucial in
successfully exploiting VT.

Many studies have been done to understand the affects on the network of
virtualization and many solutions have been proposed to reduce the network
overhead on the Central Processing Unit (CPU), for example by performing
part of the processing in the network interface itself. However, very few have
studied the effects of jumbo frames in a virtual environment. The primary
motivation to study jumbo frames is that, they are already available (i.e.,
already implemented by network interfaces) and no new software or hardware is
necessary to make use of them. The open question is if using them can actually
enhance the performance of VT.

1

CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Ideally applications running in a virtual environment must run independent
of each other, i.e., the application’s performance should not be affected by
other running applications. Unfortunately, this is not true as concurrently
running applications do affect one another, inturn effecting both their individual
and collective performance. Performance isolation is a major challenge when
designing and implementing virtualization. In a SMP server, the negative
performance impact on another application, running on a different core is called
cross-core interference [1].

There are many factors affecting the performance of the applications running
in a Virtual Machine (VM). Performance depends on the application type
(whether it is Input and Output (I/O) intensive or Central Processing Unit
(CPU) sensitive) and the scheduling mechanisms used within the hypervisor.
Usually data-centers disallow latency sensitive and CPU sensitive applications
being co-located. According to Gupta, et al. [2] achieving performance isolation
requires good resource isolation policies. Email, web-search and web-shopping
are I/O sensitive applications, while image rendering, data computations and
file compression are processing intensive (require many CPU cycles). Paul,
Yalamanchili, and John [3] showed that, suitable deployment of VMs reduces
the interference between the actions of different VMs.

Although the latest generation of SMP processors are capable of large
amounts of computing in a short period of time, today’s high speed networks
can quickly saturate these processors, thus the CPU’s capacity is the bottleneck.
As a result network resources can be underutilized. In a virtualized server with
multiple network applications the load on the CPU is more compared to that
of a traditional server. As Mahbub Hassan and Raj Jain [4] state:

“On the fastest networks, performance of applications using
Transimssion Control Protocol is often limited by the capability
of end systems to generate, transmit, receive, and process the data
at network speeds.”

2

CHAPTER 1. INTRODUCTION

Virtualization of networking typically introduces additional layers of packet
processing in the form virtual bridges, virtual network interfaces, etc. As shown
in Figure 1.1 and according to Tripathi and Droux [5], fair sharing of the
physical network resource among the virtual network interfaces is a primary
requirement for network virtualization.

Figure 1.1: Extra layers of processing

Although many studies have been done to minimize the CPU load in a
virtual environment, by measuring performance and optimizing the code, but
very few researchers have examined what effects can occur when increasing the
Maximum Transmission Unit (MTU). Jumbo frames, as will be discussed in
section 2.5, are not currently being utilized in many virtual environments.

As the frame size increases, the same amount of user data can be carried in
fewer frames. Utilizing larger frames requires in less CPU overhead, which is
desirable. Furthermore, utilizing large frames is a great opportunity for VT to
exploit the capacity offered by Gigabit Ethernet (GbE) and to decrease the
network overhead and decrease the load on CPU, while at the same increasing
the application’s effective throughput. In the light of all these factors, the
goal of this project is to study how much gain in effective throughput is possible
when using jumbo frames rather than standard Ethernet frames in a virtualized
environment. The second question is how much the load on the CPU can be
reduced by utilizing large frames.

1.2 Goals

The initial idea was to test how two competing VMs affect one another with
respect to their performance and bandwidth (BW). As the project progressed,
the focus shifted to studying the effects jumbo frames, as inspired by [6, 7]

3

CHAPTER 1. INTRODUCTION

and others. It was clear that using jumbo frames has benefits in a standard
physical environment. Thus, the goal was to study the affects and benefits of
jumbo frames in a virtual machine environment.

The main goal of the thesis is to study the benefits of using jumbo frames
in a virtual machine environment. Thus the subgoals were to quantify how
much performance improvement can be achieved using jumbo frames and how
much CPU load (associated with networking protocol stack processing) can
be reduced by sending large frames instead of standard sized Ethernet frames
(which for the purpose of this report are assumed to be limited to a MTU of
1500 bytes).

1.3 Structure of the Report

The rest of the thesis is structured as follows:

Chapter 2 introduces the basic concepts of cloud computing, virtualization,
and summarizes some open source technologies that are relevant. The
chapter also describes the Xen hypervisor, one is of the popular open
source hypervisors used to realize VT. This is followed by a description of
jumbo frames and their benefits. The Transimssion Control Protocol is a
complex protocol and some of the most important parts of this protocol
are described in the section 2.6. The chapter concludes with a summary
of related work .

Chapter 3 begins with a description of the methodology that was applied,
then explains the tools and workloads that were utilized for this research.
This is followed by an explanation of the metrics used for the evaluation.
The chapter finishes by describing the experimental set up used for all
the measurements.

Chapter 4 presents all the measurements in the form of visual representations
(graphs), rather than as numeric data (detailed numeric data is included
in an appendix). The last section of this chapter discusses the benefits of
jumbo frames from a holistic viewpoint.

Chapter 5 concludes the thesis with a conclusion, then suggests some future
work and finally ends with some the reflections on the project in a broader
context.

4

Chapter 2

Background

This chapter lays the foundation for the rest of the thesis. It begins by introducing
cloud computing, then briefly explains the different types of cloud computing
services. This is followed by a detailed description of virtualization, followed by
a discussion of the Xen hypervisor. Next the TCP protocol and MTU concepts
are explained. The final section in this chapter discusses related work.

2.1 Cloud Computing

Cloud computing according to Armbrust, et al. includes both the hardware
resources and software services offered by a data center [8]. If these services
can be accessed by public (who can be charged based upon their usage), then
it is called a Public Cloud. Some of the companies offering these services are
Amazon, Google, Microsoft, and Heroku. In contrast, a Private Cloud can only
be accessed by one organization. Additionally, there are Hybrid Clouds that mix
both public and private clouds. A number of sources (such as [8, 9, 10]) explain
cloud computing in detail and also from an economic perspective. Depending on
the type of service and the level of the administrative access, cloud computing
is classified into many sub-classes. The following subsections describe three of
the most common sub-classes.

2.1.1 Infrastructure as a Service (IaaS)

IaaS cloud providers offer physical or virtual hardware. Amazon Elastic
Compute Cloud (EC2) is one such commercial public IaaS cloud. Users can buy
computing capacity according to their needs and scale the amount of resources
that they utilize as required. Customers can build any kind of software and
have full control over this software, but they do not know exactly what the

5

CHAPTER 2. BACKGROUND

underlying hardware over which this software runs. EC2 uses Xen virtualization
(see section 2.4).

2.1.2 Platform as a Service (PaaS)

PaaS cloud providers offer a particular platform as a service. Customers have to
use the specific software provided, to build their applications and cannot use any
software which is inconsistent with this platform. As a result customers have
to selectively choose their cloud service provider based upon the application
they are going to write and use. Google App Engine [11] is an example of
PaaS, currently it offers only a few programming languages such as, Java, Php.
Heroku [12] is another PaaS provider, but they support Ruby, Python, and
several other languages.

2.1.3 Software as a Service (SaaS)

SaaS directly provides the applications which users can use. These applications
have already been built (for specific needs). Typically users access these
applications using a browser and their data is stored in the provider’s servers.
Examples of SaaS are email (such as Google’s gmail), salesforce.com and
Dropbox.

2.2 Virtualization

The genesis of mainstream virtualization technology [13, 14, 15, 16] dates back
to 1972, when IBM first introduced in its System 370 server commercially.
Virtualization is a framework in which one or more Operating Systems (OSs)
share same physical hardware. Modern computers (such as servers) are
frequently idle and are powerful enough to run multiple OSs on a single physical
machine. Virtualization leverages the use of hardware, while reducing costs and
carbon footprint. Running multiple OSs on single physical machine also helps
a data center to achieve server consolidation. Since certain applications are
compatible only with certain OSs, there are some limitations in combinations
of applications and OS. For example, Microsofts’s Windows Server can only
be installed on top of a Microsoft OS. As a result by running both Windows
and Linux OSs on same physical machine, modern multicore processors can be
utilized efficiently and applications can still run at near native speed, without
the need to run two or more separate computers each running only a single OS.

6

CHAPTER 2. BACKGROUND

A Hypervisor or Virtual Machine Monitor (VMM) is a software layer, which
presents an abstraction of the physical resources to an OS installed on top of this
VMM. Traditional OS perform context switching between applications, without
the applications being aware of this context switching, whereas a VMM performs
context switches between two or more VMs without the applications in these VMs
being aware of this VM context switching. The OS running in a VM is called
a virtual OS or a guest or simply an VM instance. The hypervisor’s main
functions are scheduling, memory allocation to each guest, and virtualization of
the underlying hardware. The hypervisor runs in a privileged mode and guest
the OSs run in the user mode (or another unprivileged mode). Guest OSs do
not have direct access to the hardware, instead the hypervisor schedules all jobs
and assigns the necessary physical resources by some scheduling mechanism.
This is achieved by trapping the guest OS’s instructions and processing these
instructions in the hypervisor. After the hypervisor executes the instruction
the result is return back to the guest OS [17] [18].

In a traditional environment once an OS is installed, the drivers for the
hardware devices are also installed into this OS. Since an OS installed inside a
VM never directly accesses the underlying physical hardware it is possible to
move the guest OS to an other physical machine. A VM makes use of virtual
resources provided by the underlying physical machine. These virtual resources
include one or more virtual CPUs (vCPUs), virtual network interface cards
(vNICs), etc. Just as the device drivers loaded into an OS can be optimized
based upon the physical hard device that is present, the device drivers loaded
into a guest OS can be optimized for the virtual resource that the hypervisor
presents to the guest instance.

A hypervisor that is installed directly above the hardware is called a Type
1 hypervisor, bare-metal, or native hypervisor. Such a hypervisor has complete
control over the hardware. A Type 2 hypervisor is installed as a regular
application inside a host OS, while all the hardware control is controlled by
the host OS. This is illustrated in Figure 2.1. It is also possible in some VMMs
to give a gust OS direct access to the underlying hardware, for example by
mapping part of a devices Peripheral Component Interconnect (PCI) address
space into the guest OS.

7

CHAPTER 2. BACKGROUND

Figure 2.1: Types of hypervisors

2.2.1 Types of virtualization

Depending on how the hardware is virtualized, virtualization can be broadly
classified into three types:

Full Virtualization In full virtualization, the hypervisor virtualizes the entire
set of hardware. As a result the guest OS is unaware of being virtualized
and believes that it controls all of hardware. In this case, the guest OS
can be installed without any modification. However, the performance of a
fully virtualized system is low compared to other types of virtualization,
since all of the hardware is virtualized.

Paravirtualization In paravirtualization, the guest OS is cognizant that it
is residing on virtualized hardware. In this approach the guest OS must
be modified (ported) in order to be installed on the hypervisor. Some
hardware is exposed to the guest and this results in increased performance.
For example, in this approach all but a small set of instructions can
be directly executed by the guest OS and its application, while some
instructions cause a trap which invokes the VMM.

Hardware-assisted Virtualization The surge in VT has prompted vendors
to manufacture hardware specifically designed to support virtualization.
Hardware components such as processors and Network Interface Card
(NIC) are being manufactured to assist or compliment VT. Virtualization
at the hardware level gives a great boost to the performance. Technologies
such as Intel’s VT [19, 20] and Single Root Input and Output virtualization

8

CHAPTER 2. BACKGROUND

(SR-IOV) is a new feature added to PCI devices, by which the I/O
virtualization overhead is significantly reduced [21].

2.3 Virtualization Technologies

There are many hypervisors available, some of them are open source and some
are proprietary. A few of them are described below. The following subsections
describe three of the most common open source hypervisors.

2.3.1 Xen

Xen is a open source VMM for the x86 architecture, first developed at the
University of Cambridge Computer Laboratory [22]. Xen has wide industry
support and many cloud providers use Xen to virtualize their servers, such as
Amazon EC2, Citrix Systems, and Rackspace. Xen can be implemented in
both either in paravirtualization or full virtualization modes.

2.3.2 OpenVZ

OpenVZ is a hypervisor which is built into the Linux kernel. As it is built
into the kernel, only a Linux based OS can be installed. VMs are called Linux
Containers. It has less overhead than Xen, as there no separate (hypervisor)
layer. This type of virtualization is called OS-level virtualization. Oracle’s
Solaris zones is another example of OS-level virtualization.

2.3.3 Kernel-based Virtual Machine (KVM)

KVM requires hardware assisted virtualization [23] i.e, to install KVM the
underlying processor must have virtualization capability. In addition to the
open source hypervisors using hardware assisted virtualization, a number
of commercial products, such as VMware, Inc.’s VMware ESX server and
Microsoft’s Hyper-V. VirutalBox supports hardware assisted virtualization and
paravirtualization and exists as both open source and as a proprietary product
from Oracle.

2.4 Xen Hypervisor

Xen is popular for paravirtualization and provides good isolation among guest
OSs. The current stable release is Xen 4.3. As stated above in order to
implement paravirtualization, a guest OS must be modified. This gives

9

CHAPTER 2. BACKGROUND

performance benefits, but limits the choice of guest OSs. Whereas, full
virtualization allows us to choose any OS, but at the cost of increased overhead.
Figure 2.2 shows the paravirtualized architecture of the Xen hypervisor, showing
the main tasks of the hypervisor as scheduling and memory management. In
paravirtualization, I/O virtualization is handled by a privileged domain called
driver domain the (Dom0). Dom0 has direct access to the I/O devices and
I/O traffic must flow through Dom0. Dom0 is also a guest, but has privileged
access to the underlying hardware.

Figure 2.2: Architecture of Xen hypervisor

Each guest OS (DomU in Xen terminology) has one or more virtual
frontend network interface and Dom0 has corresponding virtual backend network
interfaces. Each backend network interface is connected to a physical network
interface through a logical bridge. Hypercalls are software traps from a domain
to the hypervisor. These hypercalls are analogous to system calls used by
applications to invoke OS operations. Event Channels are used to communicate
event notifications to/from guest domains. These events are analogous to
hardware interrupts.

10

CHAPTER 2. BACKGROUND

2.4.1 Scheduling Mechanism in Xen

Scheduling is a mechanism by which a process or job is assigned system
resources. The actual scheduling is handled by a scheduler. Usually there
are many processes to be executed on a computer, a scheduler decides which
process to run next (from those processing in the run queue) and assigns a
CPU for some time for this process. Xen allows us to choose the appropriate
scheduling mechanism depending on our needs.

The Credit scheduler is a pre-emptive∗ and proportional share scheduler
and is currently Xen’s default scheduler. Ongaro, Cox, and Rixner [24] give
details of the Xen credit scheduler. Each domain is given a Weight and a Cap.
A domain with higher weight gets more CPU time. By default a domain is
given a weight of 256 [25], as shown in Figure 2.3. The Cap function limits
the maximum CPU capacity a domain can consume, even if the system has
idle CPU cycles. The Schedule Rate Limiting is a feature added to the credit
scheduler, by which a VM is given a minimum amount of CPU time without the
possibility of being preempted. The minimum time by default is one millisecond
(ms). Another VM with higher priority is denied the CPU until the currently
running process has had its one ms of CPU time. We can change the ratelimitus
value to suit the type of applications running on a particular VM. If latency
sensitive applications are running, then VMs can be assigned a µs factor, so
that VMs are scheduled frequently.

xm sched-credit

Name ID Weight Cap

Domain-0 0 256 0

vm1 256 0

vm2 4 256 0

vm3 1 256 0

Figure 2.3: Credit Scheduler

The Simple Earliest Deadline First (SEDF) scheduler uses real-time
algorithms to assign the CPU. Each domain is given a Period and a Slice. A
period is a guaranteed time unit of CPU time to be given to a domain and a

∗In a preemptive scheduler the running process is stopped, if there is any other process
with a higher priority in the run queue.

11

CHAPTER 2. BACKGROUND

slice is a time per period that a domain is guaranteed to be able to run a job
(without preemption). Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat
have compared various schedulers in [26].

2.5 MTU and Jumbo Frames

The Maximum Transmission Unit (MTU) is the maximum amount of payload a
data-link frame can carry. A jumbo frame [27] can be defined as an Ethernet
frame carrying more than 1500 bytes of payload. This includes all of the
upper-layer headers and application data. In contrast, a standard Ethernet
frame is restricted to carrying only a payload of 1500 bytes. Gigabit Ethernet
(GbE), as standardized in IEEE 802.3ab standard [28], is capable of carrying
more than 9000 bytes of payload. However, jumbo frames have never been
standardized, because of compatibility issues and because vendors potentially
need to change their equipment. Today GbEs are becoming a common network
interface even for personal computers and laptops. Figure 2.4 shows both
standard and jumbo frames with TCP and IP headers (in both cases assuming
no options are being used).

Figure 2.4: Standard and jumbo Ethernet Frames

Table 2.1 summarizes the amount of time required to send a frame, as seen
wire-time has decreased for different versions of Ethernet, but MTU has been
relatively constant.

12

CHAPTER 2. BACKGROUND

Table 2.1: MTU size and Ethernet speeds

Ethernet Technology Rate Year Wire Time MTU
Ethernet 10 Mbps 1982 1200 µs 1500

Fast Ethernet 100 Mbps 1995 120 µs 1500
Gigabit Ethernet 1 Gbps 1998 12 µs 1500

10 Gigabit Ethernet 10 Gbps 2002 1.2 µs 1500
100 Gigabit Ethernet 100 Gbps 2010 0.12µs 1500

(Adapted from [29])

Jumbo frames offer a substantial improvement in throughput over standard
Ethernet frames, as they carry six times more data in a single frame. Hence
the same amount data can be carried more effectively as a large IP packet
might not needed to be fragmented or if it does need to be fragmented it results
in fewer IP packets. Assuming TCP and IP headers of 20 bytes each and
excluding any options, we can see from the computation below that data to
header utilization is 2.55% higher. Hence jumbo frames can more effectively
utilize the available Bandwidth (BW).

Data to header ratio for 1500 MTU = 1500−40
1500

= 97.00%

Data to header ratio for 9000 MTU = 9000−40
9000

= 99.55%

Now, consider an application has to sent a data of 18000 bytes via TCP,
then the Maximum Segment Size (MSS) is equal to 8960 bytes, based upon:

MSS = MTU − 20(IPheader)− 20(TCPheader) (2.1)

As Table 2.2 shows, by using jumbo frames the same amount of data can
be carried in fewer packets. Sending fewer packets decreases the CPU overhead
as the network stack has fewer packets to handle and only has to perform
Transimssion Control Protocol (TCP) related operations three times rather
than 13 times (as a minimum for both - assuming no packets are lost). A
natural question is to ask, why the MTU is limited to 9000 bytes. This limit
is because for frames larger than 12000 bytes, the bit error rate increases and
it is difficult to detect the errors in physical link layer (due to the choice of
checksum algorithm that is used). Hence, from the above discussion it is clear
that using large packets reduces CPU utilization for protocol processing and
increases the effective throughput.

13

CHAPTER 2. BACKGROUND

Table 2.2: Overhead comparison of standard and jumbo frames

MTU size MSS = MTU - 40 Total Packets Generated Overhead bytes
1500 1460 13 13× 40 = 559
9000 8960 3 3× 40 = 120

2.6 Transmission Control Protocol

The Transimssion Control Protocol (TCP) is a reliable, connection-oriented,
byte stream protocol. Figure 2.5 shows the TCP header. In order for two
entities to communicate using the TCP protocol, they must first establish a
connection using a three-way handshake. Following this each entity can stream
data bytes to the other entity, who when they successfully receive these bytes
will acknowledge the received bytes. If an ACK is not received within a certain
period of time, then a transmission timer goes off and the sender retransmits
the unacknowledged bytes. Retransmission is the foundation of TCP’s reliable
service.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source port number Destination port number

Sequence nubmer

Acknowledgement nubmer

Header
Length Reserved

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Window Size

TCP Checksum Urgent Pointer

Options (if any)

Data
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

Data

Figure 2.5: TCP Header with data

(Adapted from [30])

Other vital functions of TCP are flow control and congestion control.

14

CHAPTER 2. BACKGROUND

Flow control is used by the receiver to control the transmission rate of the
sender. Flow control prevents buffer overflow at the receiver. The receiver
advertises a window size with every ACK, thus the sender can only send the
number of bytes specified in this advertised window. Note that flow control only
prevents the receiver’s buffer from overflowing, it does not consider the buffering
at any of the intermediate routers. To prevent the sender from exceeding the
buffering capacity of the intermediate routers (and the network links) another
window called the congestion window is used by the sender to avoid causing
congestion in the network. In TCP the congestion window is governed by three
algorithms: slow start, congestion avoidance, and multiplicative decrease [31].

During the initial connection establishment, the receiver advertises its
window size (i.e., amount of data the sender can send) without awaiting for an
acknowledgement. Once the connection is established, the congestion window
size is additively increased until a loss is detected or a timer goes off. If
either of these events occur the sending rate is decreased by a multiplicative
factor. Dukkipati, et al. [32, 33], have shown the affects of window size and
congestion window on throughput and have recently proposed in Request for
Comments (RFC) 6928 to increase the initial window size to ten segments†

[34]. Additionally, new protocols such as the “Fast and secure protocol” (fasp)
[35], are being developed to overcome TCP’s weaknesses.

In Linux, the TCP socket buffer space can altered in the kernel via the
virtual file proc/sys/net/ipv4/tcp rmem. Figure 2.6 shows that tcp rmem has
minimum, default, and maximum values. In this kernel, when an application
creates a TCP socket it receives by default a buffer of 87380 bytes. However,
the amount of buffer space can be altered by an application using the socket’s
Application Programming Interface (API) as long as the requested buffer space
lies between the minimum and maximum values (6MB in this case). For an
ideal receive window size, the buffer size should be greater than or equal to the
Bandwidth Delay Product (BDP) in order to be able to fully utilize a physical
link. BDP is given by equation 2.2. Linux also auto-tunes the default buffer
size (within the minimum and maximum limit) for the given connection. Auto
tuning is enabled in this kernel as tcp moderate rcvbuf is set to 1 and the
TCP congestion algorithm used is cubic. For proper tuning of the system refer
to [36].

†A segment is simply MSS bytes.

15

CHAPTER 2. BACKGROUND

cat /proc/sys/net/ipv4/

tcp_rmem

4096 87380 6291456

tcp_moderate_rcvbuf

1

tcp_congestion_control

cubic

Figure 2.6: TVP settings in a running Linux

BDP = BW ×Dealy (2.2)

2.7 Related Work

Virtualization has improved the overall utilization of computing resources,
especially because it can exploit the processing power of multicore CPUs.
However, virtualization also poses new challenges with regard to the networking
as network packets undergo additional processing before reaching the guest OS.
Although the available network bandwidth is typically high within a datacenter,
the application performance of an application running in a guest OS is degraded
because of the extra layers of processing. For this reason it is very important
to measure and characterize the overheads and optimize the parameters of the
network stack based upon understanding how these parameters and overheads
affect the network’s performance. A number of studies have been done on I/O
virtualization. The following subsections summarize this research in two ares:
scheduling and MTU size.

2.7.1 Work on schedulers

Performance of applications can be affected by the scheduler used in the VMM
as explained in section 2.4. Different scheduling mechanisms have different
effects on performance [37, 38]. An I/O intensive application’s performance
highly depends upon which scheduler is used. In the case of Xen, performance
depends upon how the Dom0 is scheduled and Dom0 is generally scheduled
more frequently than the guest domains [37]. Xen schedulers perform well on
CPU intensive applications, but for I/O sensitive applications they achieve

16

CHAPTER 2. BACKGROUND

varied results[24]. Mei, et al. [39] showed a performance gain of upto 40%
simply by co-locating two communicating I/O sensitive applications. However,
not all applications can be co-located as this would greatly limit scalability
and the types of applications that can be run.

Apparao, Makinei, and Newell [40] showed that TCP’s performance
decreased by 50% in a Xen virtualized system compared to a native Linux
environment. This was due to the increase in the path length (the extra path
length was due to the extra layers of processing). Benevenuto, et al. in order to
assess the virtual overhead on applications, present a performance evaluation
of a number of applications when these migrated from native execution to a
Xen virtual environment [41]. Whiteaker, Schneider, and Teixeira [42] showed
that network usage from competing VMs can introduce delays as high as 100
ms and that virtualization adds more to delay to the sending of packets than
to receiving packets.

2.7.2 Work on MTU and network performance

There are very few studies done on how jumbo frames affect performance in
a virtual environment, but there are extensive studies done on performance
that can be achieved by exploiting other NIC capabilities in both traditional
and virtual environments. Oi and Nakajima [43] showed that when using Large
Receive Offload (LRO) in a vNIC, throughput increased by 14% and that large
MTUs considerably improved throughput. Menon, Cox, and Zwaenepoel [44]
proposed a new virtual interface architecture, by adding a software offload
driver to the driver domain of the VMM. Y. Dong and colleagues[45, 46] showed
the advantages of interrupt coalescence‡. The advantages of jumbo frames have
been extensively studied and debated [6, 7, 47, 48, 29], but all of these studies
were confined to a traditional physical environment.

‡In interrupt coalescence the CPU is interrupted once for a collection of multiple packets
instead of generating interrupts for every single packet.

17

Chapter 3

Methodology

This chapter describes the methodology adapted for testing the affects of jumbo
frames in a virtualized environment. The first section discusses the general
considerations taken into account this evaluation. The first section explains
the criterion considered when choosing a suitable workload. The second section
explains what tools are required to measure these workloads. The final section
describes the experimental setup.

As stated in section 1.1, the goal of this project is to study the affects of
jumbo frames in a virtualized environment. There are many choices available
for building a virtual environment and choosing the appropriate virtualization
platform depends on many different factors. Hwang Jinho, et al. [49] compared
four different hypervisors and concluded that no single virtualization platform
was suitable for all types of applications. Different platforms are best suited for
different applications and a heterogeneous environment is a desirable strategy
for cloud data centers.

In order to build a virtualized environment for use in this thesis project, Xen
was selected as described in section 2.4. Xen makes efficient use of multicore
processors by scheduling the vCPUs appropriately. Since extensive studies
have been done using Xen and a lot of existing research results are available,
Xen was a good choice to build our virtualized environment. As more and
more hardware assisted virtualization computers are being manufactured, it is
appropriate to measure performance in a fully virtualized environment rather
than a paravirtulized environment. However, in order to build a fully virtualized
Xen environment, the underlying processor has to support virtualization.

19

CHAPTER 3. METHODOLOGY

3.1 Workloads and Tools

There are innumerable tools available to generate traffic for different needs
when testing network performance. Many tools have been tested and considered
during the course of this thesis project, nonetheless for the testing of network
performance only a few tools suffice (in the context of this thesis). These tools
provide similar statistical output. The following subsections describe some of
the tools that were investigated and used for testing network performance in
the experimental setup described in section 3.3.

3.1.1 Iperf

Iperf [50] is a powerful and simple tool used for measuring throughput and
other network parameters. Iperf works on a client-server model and measures
the throughput between two end systems. It can generate both TCP and User
Datagram Protocol (UDP) traffic. Iperf allows us to test the network by setting
various protocol parameters, such as MSS size, TCP window size, buffer length,
multiple parallel connections, etc. After the program runs it provides a report
on the throughput, jitter (packet delay variation), and packet loss. The main
purpose of using Iperf is to fine tune a system by varying different parameters
(for the given network conditions). The default port number of Iperf is 5001,
which should be allowed through the firewall in order for client and server to
connect. Iptables (i.e., the firewall in Linux) can be turned off entirely (this
should only be done in an isolated testing environment). Figures 3.1 and 3.2
show an example of the output regarding MSS and bandwidth seen at server
and client respectively.

iperf -s -m

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte default

--

[4] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 43931

[ID] Interval Transfer Bandwidth

[4] 0.0- 5.0 sec 560 MBytes 935 Mbits/sec

[4] MSS size 1448 bytes MTU 1500 bytes, ethernet

Figure 3.1: Iperf server

20

CHAPTER 3. METHODOLOGY

iperf -c 192.168.1.102 -i 1 -t 5

--

Client connecting to 192.168.1.102, TCP port 5001

TCP window size: 87 KByte default

--

[3] local 192.168.1.135 port 43931 connected with 192.168.1.102 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0- 1.0 sec 114 MBytes 960 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 1.0- 2.0 sec 111 MBytes 934 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 2.0- 3.0 sec 111 MBytes 934 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 3.0- 4.0 sec 111 MBytes 934 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 4.0- 5.0 sec 112 MBytes 936 Mbits/sec

[ID] Interval Transfer Bandwidth

[3] 0.0- 5.0 sec 560 MBytes 939 Mbits/sec

[3] MSS size 1448 bytes MTU 1500 bytes, ethernet

Figure 3.2: Iperf client

3.1.2 TCPdump

TCPdump [51] was used to capture the network traffic. Ingress or egress traffic
can be captured on a selected interface or of a network. TCPdump outputs
the contents of the packets that match a boolean expression, to the user’s
desired level of detail. This program reports details such as what transport or
application protocol is being used, hostnames, IP addresses, sequence numbers,
and so on. We can also configure the program to capture a desired number of
packets. For example 100 packets can captured using the command: tcpdump
-i eth0 -c 100. Figure 3.3 shows a capture of the first five packets, as seen
in a three-way TCP handshake indicated by Flag [s] - for the Syn flag and
sender starts sending data beginning with the fourth packet.

21

CHAPTER 3. METHODOLOGY

tcpdump -i eth0 tcp -c 5

04:14:55.877324 IP 192.168.1.135.43928 > 192.168.1.102. commplex

-link: Flags [S], seq 753210484 , win 14600 , options [mss 1460,

sackOK ,TS val 3049047 ecr 0,nop ,wscale 7], length 0

04:14:55.877400 IP 192.168.1.102. commplex -link >

192.168.1.135.43928: Flags [S.], seq 3188553051 , ack 753210485 ,

win 14480 , options [mss 1460,sackOK ,TS val 141285276 ecr

3049047 ,nop ,wscale 7], length 0

04:14:55.877516 IP 192.168.1.135.43928 > 192.168.1.102. commplex

-link: Flags [.], ack 1, win 115, options [nop ,nop ,TS val

3049047 ecr 141285276] , length 0

04:14:55.877547 IP 192.168.1.135.43928 > 192.168.1.102. commplex

-link: Flags [P.], seq 1:25, ack 1, win 115, options [nop ,nop ,

TS val 3049047 ecr 141285276] , length 24

04:14:55.877564 IP 192.168.1.102. commplex -link >

192.168.1.135.43928: Flags [.], ack 25, win 114, options [nop ,

nop ,TS val 141285276 ecr 3049047] , length 0

Figure 3.3: Example of tcpdump output

3.1.3 httperf

Httperf was developed by David Mosberger and others at Hewlett-Packard
(HP) Research Laboratories [52, 53]. It is a tool to measure a webserver’s
performance. Following is an example output for a webserver running in the
VM, with httperf sending 2500 requests per second for a total of 10000 requests.

22

CHAPTER 3. METHODOLOGY

httperf --client =0/1 --server =192.168.1.104 --port =80 --uri=/ --rate =2500 --

send -buffer =4096 --recv -buffer =16384 --num -conns =10000 --num -calls=1

Maximum connect burst length: 4

Total: connections 10000 requests 10000 replies 10000 test -duration 6.560 s

Connection rate: 1524.5 conn/s (0.7 ms/conn , <=639 concurrent connections)

Connection time [ms]: min 0.6 avg 115.2 max 4014.2 median 52.5 stddev 332.1

Connection time [ms]: connect 31.0

Connection length [replies/conn]: 1.000

Request rate: 1524.5 req/s (0.7 ms/req)

Request size [B]: 66.0

Reply rate [replies/s]: min 1991.0 avg 1991.0 max 1991.0 stddev 0.0 (1 samples

)

Reply time [ms]: response 84.2 transfer 0.0

Reply size [B]: header 198.0 content 5039.0 footer 0.0 (total 5237.0)

Reply status: 1xx=0 2xx=0 3xx=0 4xx =10000 5xx=0

CPU time [s]: user 0.35 system 6.21 (user 5.3% system 94.6% total 99.9%)

Net I/O: 7894.8 KB/s (64.7*10^6 bps)

Errors: total 0 client -timo 0 socket -timo 0 connrefused 0 connreset 0

Errors: fd-unavail 0 addrunavail 0 ftab -full 0 other 0

3.1.4 Additional tools

These additional tools were tested during the project. Netperf [54] was also
developed at HP and is similar to iperf. Tcptrace [55] outputs statistics from a
capture file (a sample output is given in appendix), ostinato [56] to generate
traffic, and wireshark [57] (similar to tcpdump) can capture live traffic. Some
other useful tools are tcpspray [58] and tcpreplay [59].

3.2 Measurement Metrics

The performance metrics we measured were network throughput and CPU
utilization. By measuring these network related metrics, we can understand
whether BW utilization has increased and whether the user (client) is getting
increased performance by using jumbo frames. In particular, measurements
were done only on TCP, as explained in the chapter 2. TCP was selected
rather than User Datagram Protocol (UDP), because TCP is used by a lot of
applications and TCP was thought to be more susceptible to the behavior of
the scheduling mechanism of the hypervisor, thereby scheduling would have a
larger effect on the throughput. These two network metrics will be analyzed
and the results of the experiments will be present Chapter 4.

23

CHAPTER 3. METHODOLOGY

3.2.1 Network Throughput

Network throughput can be defined as the number of user data bytes transferred
per unit amount of time. As Hassan and Jain, state “An inefficient TCP
algorithm or implementation can significantly reduce the effective throughput
even if the underlying network provides a very high speed communication channel”
[31]. Equation 3.1 was proposed by Mathis, et al. in the paper “The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm” [60]. Throughput is
the primary metric used and it is expressed in Megabit per second (Mbps).
Throughput in bits per second is calculated using the following equation:

Throughput ≤ 0.7× MSS

RTT
√
PLoss

(3.1)

In this equation PLoss is the probability of packet loss, MSS is Maximum
Segment Size in bits, and RTT is the Round Trip Time in seconds. We can see
that throughput will always be less than the available network link bandwidth
(as shown in Figure 3.4)

Figure 3.4: Pictorial Representation of throughput and bandwidth for a physical
link

3.2.2 Network Latency

Latency or delay is the time taken for a IP packet from source to destination.
The Round Trip Time is the time taken for an IP packet to travel from a sender
to the receiver and the time it takes for the original sender to receive an ACK.
RTT can be measured using the ping utility [61]. Ping is also a primary tool
to check the network connectivity.

3.2.3 CPU utilization

Measuring CPU utilization of a process is necessary because this metric shows,
how much of the CPU’s processing power a particular process is consuming.

24

CHAPTER 3. METHODOLOGY

Utilization of the CPU is important because the CPU (or set of CPUs) is
being shared by all the other applications. CPU utilization is usually measured
as the percentage of the CPU that is being utilized. To collect this data we
monitor the netback process, which is the backend in the Xen hypervisor as
explained 2.4. This backend actually sends the traffic between virtual machines
and the hypervisor. CPU utilization can be obtained in many different ways.
In the following paragraphs we consider three alternative methods to obtain
this data.

/proc/pid/stat

Every process running under a Linux or any Unix based OS has a Process
Identification Number (pid). In Linux, statistics of a process can be found via
the file /proc/pid /stat. These stats are calculated from the boot time, hence
the values represent the cumulative resource usage of a particular process from
boot time, rather than instantaneous usage.

pidstat

Pidstat [62] is a monitoring tool used for currently (or recently) executing
processes in Linux. It provides CPU utilization and other resource statistics.
A specific process can be monitored by entering its pid. Figure 3.5 shows the
output for monitoring of the netback service once every second.

pidstat -p 790 1

10:05:29 PM PID %usr %system %guest %CPU CPU Command

10:05:30 PM 790 0.00 22.00 0.00 13.33 0 netback/0

10:05:31 PM 790 0.00 21.00 0.00 12.65 0 netback/0

10:05:32 PM 790 0.00 21.00 0.00 12.35 0 netback/0

10:05:33 PM 790 0.00 21.00 0.00 12.14 0 netback/0

10:05:34 PM 790 0.00 22.00 0.00 13.10 0 netback/0

10:05:35 PM 790 0.00 21.00 0.00 12.28 0 netback/0

10:05:36 PM 790 0.00 21.00 0.00 12.35 0 netback/0

10:05:37 PM 790 0.00 21.00 0.00 12.50 0 netback/0

10:05:38 PM 790 0.00 22.00 0.00 13.02 0 netback/0

Figure 3.5: Example of pidstat output

25

CHAPTER 3. METHODOLOGY

top

The top utility shows the currently running processes in Unix-like OSs. It
periodically displays CPU usage, memory usage, and other statistics. The
default ordering is from highest to lowest CPU usage of processes. Only the
top CPU consuming processes can be seen, with the number limited by the
display size.

3.3 Experimental Setup

Figure 3.6 shows a schematic view of the experimental setup. Dom0 is CentOS
6.5 running on Xen 4.3.2 hypervisor. Almost all major Linux distributions
[63, 64, 65] were tested including Xenserver [66], which was recently released as
an opensource server by Citrix [67]. Out of those OSs tested, CentOS [68] was
chosen because it was easy to implement and has good support for Xen. VMs
(DomUs) and clients are also running CentOS. Clients are connected directly
to the server using cross-over Ethernet cables. A similar setup was used in the
paper “Large MTUs and Internet Performance” [29] by Murray, et al.

Figure 3.6: Experimental Setup

26

CHAPTER 3. METHODOLOGY

The testing∗ environment consisting of a server with an Intel E6550, 2.33GHz
dual core processor, which has virtualization support, 3GB RAM, one on-board
Intel 1GbE network interface and one 1GbE Peripheral Component Interconnect
(PCI)-NIC. See appendix A for a complete configuration. Figure 3.7 shows a
screen shot of the virtual machine manager (this application is used to manage
VMs) with Dom0 and three VMs running on Xen hypervisor.

Figure 3.7: Screen-shot showing Dom0 and two running VMs

3.3.1 Bridging

Bridging inside Linux (Dom0) is an emulated physical bridge [69], which works
just like a physical bridge (see Figure 3.8). This bridge forwards Ethernet frames
to designated bridge ports based on Media Access Control (MAC) addresses.
A virtual interface of a VM generated by the hypervisor is assigned a MAC
address by the hypervisor and is attached to the bridge. Additionally a bond

can be configured to use multiple NICs (see Figure 3.9) and different bonding
modes (as shown in Table 3.1) can be used to suit network requirements, for
example to load balance.

∗The resources and space used for these experiments were at the Communication Systems
department at KTH Royal Institute of Technology.

27

CHAPTER 3. METHODOLOGY

Figure 3.8: Linux Bridging

Figure 3.9: Linux bonding with bridge

Table 3.1: Bonding Modes

Mode 1 Active-backup
Mode 2 Balance-xor
Mode 3 Broadcast
Mode 4 Link aggregation
Mode 5 Adaptive transmit load balancing
Mode 6 Adaptive transmit and receive load balancing

28

Chapter 4

Evaluation and Results

This chapter begins with an explanation of the various test cases designed to
evaluate the impact of the use of jumbo frames on network performance in
keeping with the objective of the project. Extensive measurements were taken to
analyze the experimental setup under various conditions. This chapter discusses
the results based on the parameters chosen in section 3.2.

Lowering CPU overhead by using jumbo frames is desirable in a virtualized
environment as it reduces the overhead in comparison with the use of standard
Ethernet frames. Because TCP window size is sensitive to the time outs and
packet drops, if the physical CPU cannot schedule the VM at sufficiently
frequent time intervals due to increased load, then the congestion window in
the client machine will perceive congestion in the network and TCP will enter
into either slow start or the congestion avoidance phase. This will occur despite
there not actually being any evidence of congestion in the network.

Given the experimental setup in Section 3.3 we changed the MTU, then see
how this affects network performance. The interface’s MTU can be set to 9000
bytes on an interface using the simple command: ifconfig eth0 mtu 9000.
However, this MTU has to be enabled along the entire path between the end
systems, otherwise fragmentation∗ will need to occur along the way. In this case,
the same MTU size has been configured on all clients, the Dom0 physical NIC,
virtual bridges, virtual interfaces, and in each guest OS. If the desired MTU is
not correctly enabled on the bridge, then the bridge will silently discard the
frames without any error notification. Path MTU discovery has been used to
check the test link. Path MTU discovery detects the largest possible MTU that
can be sent over the path without fragmentation. Additionally, there might be

∗Fragmentation splits IP packets into smaller IP packets, so each can pass through the
next hop link.

29

CHAPTER 4. EVALUATION AND RESULTS

additional performance issues if different MTU sizes are set on a connecting link.

Different TCP buffer sizes and other parameters have been via measurements,
for example iperf can be used with the option -w to specify different buffer
sizes. The NIC used in the test was an Intel 82566DM-2 Gigabit Network

Connection (rev 02) and this NIC has a number of capabilities, which offload
the CPU load. Figure 4.1 shows the NIC features enabled throughout the tests,
unless otherwise specified (for complete NIC features reference to Appendix
A). For example, with this configuration TCP segmentation and checksum are
done in the NIC rather than in network stack using the host’s CPU. Hence
enabling these NIC features boosts the network performance. Figure 4.2 shows
the network stack with Iperf running in the user space and TCPdump capture
at the network driver.

NIC functions enabled

tcp-segmentation-offload: on

tx-tcp-segmentation: on

tx-tcp-ecn-segmentation: off [fixed]

tx-tcp6-segmentation: on

udp-fragmentation-offload: off [fixed]

generic-segmentation-offload: on

generic-receive-offload: on

large-receive-offload: off [fixed]

Figure 4.1: NIC features enabled

user space
}

Iperf

kernel space

Socket

TCP
IP

Ethernet
}

TCPdump cature
hardware NIC

Figure 4.2: Network protocol stack with Iperf and TCPdump

30

CHAPTER 4. EVALUATION AND RESULTS

4.1 Throughput

The first step is to measure the throughput between the client and Dom0, this
measurement gives the throughput between the physical machines, without
involving any other VMs. In this measurement we measured a performance
improvement of 4.4 % in network throughput when using a jumbo frame of size
5000 bytes rather than the standard Ethernet frame size. The improvement in
the virtual machine’s network throughput is approximately 4.7 %, as shown in
Figure 4.3.

910

920

930

940

950

960

970

980

990

1000

1500 2000 3000 4000 5000

Th
ro

u
gh

p
u

t
[M

b
p

s]

Maximum Transmission Unit (MTU) in bytes

Throughput in Dom0 and VM

Xen-dom0

Virutal Machine

Figure 4.3: Virtual Machine and Dom0 Throughput

Table 4.1 and 4.2 shows the percent gain in throughput in virtual machine
and Dom0 respectively. Throughput increase is initially greater (for 2000 bytes
MTU), but as MTU increases, the increase in the throughput decreases. Beyond
an MTU of 5000 bytes, there was no substantial gain in network throughput.
This increase is approximately equal to 50 Mbps from 934 Mbps for standard
Ethernet frame to 981 Mbps for 5000 bytes MTU, as shown in Table 4.3.
Starting at 6000 bytes of MTU throughput suddenly drops as seen in Figure
4.4 (but only in the virtualized environment). Possible reasons for this behavior
are discussed the Section 4.5.

31

CHAPTER 4. EVALUATION AND RESULTS

Table 4.1: Performance gain of virtual machine

MTU BW Utilization Gain
1500 93.4 %

4.7 %
5000 98.1 %

Table 4.2: Performance gain in Dom0

MTU BW Utilization Gain
1500 93.7 %

4.4 %
5000 98.1 %

Table 4.3: Average Throughput over 10 seconds

MTU Dom0 [Mbps] VM [Mbps]
1500 937 934
2000 954 952
3000 969 967
4000 977 976
5000 981 981

For complete measurement data refer to Appendix B.

32

CHAPTER 4. EVALUATION AND RESULTS

0

100

200

300

400

500

600

700

800

900

1000

1500 2000 3000 4000 5000 6000 7000 8000 9000

Th
ro

u
gh

p
u

t
[M

b
p

s]

Maximum Tramission Unit (MTU) in Bytes

Throughput loss from 6000 MTU

Xen-dom0

Virutal Machine

Figure 4.4: Throughput observed to decrease from 6000 bytes MTU

4.2 CPU Utilization

Figure 4.5 shows CPU utilization of the netback service of Xen, as it forwards
packets to the VM. As can be seen in this figure the CPU utilization of this
service decreases, as the MTU increases. The netback service consumed 24.70%
of CPU when 1500 byte packets were being forwarded to the VM, while when
4000 bytes MTU packets were being forwarded netback was consuming only
about 17.10% of CPU. However, once the MTU reached 5000 bytes the CPU
utilization increased to 19.20%, however - the CPU utilization was still lower
that when the MTU was 1500 bytes. Finally the CPU utilization was 20.88%
for 9000 bytes packets. Overall, the CPU consumption of the service decreased
for larger sized frames than for standard sized Ethernet frames. One point to
remember is, these values are percentage values rather than absolute values
(i.e., number of CPU cycles).

33

CHAPTER 4. EVALUATION AND RESULTS

0

5

10

15

20

25

30

35

40

45

50

0

100

200

300

400

500

600

700

800

900

1000

1500 2000 3000 4000 5000 6000 7000 8000 9000

C
P

U
%

Th
ro

u
gh

p
u

t
[M

b
p

s]

Maximum Transmission Unit (MTU) in Bytes

Xen Netback CPU Utilization

Throughput [Mbps]

CPU%

Figure 4.5: CPU usage of Netback service in Xen

34

CHAPTER 4. EVALUATION AND RESULTS

4.3 Throughput at the client

Figure 4.6 shows the throughput as seen at the clients for 1500 and 5000 bytes
of MTU over an interval of 60 seconds.

900

910

920

930

940

950

960

970

980

990

1000

0 10 20 30 40 50 60

Th
ro

u
gh

p
u

t
[]

M
b

p
s]

Time [Seconds]

Throughput at client

At 5000 MTU

At 1500 MTU

Figure 4.6: Throughput seen at client

The confidence interval is given by equation 4.1, where 1.96 is the constant
for a Normal distribution for a confidence of 95%. In this equation n is the
sample size, σ is the Standard Deviation, and x̄ is mean of the sample. The
confidence interval tells us that 95% of the time or with 95% certainty the
result will be in between the upper and lower bounds, with the specified margin
of error.

ConfidenceInterval = x̄± 1.96σ√
n

(4.1)

35

CHAPTER 4. EVALUATION AND RESULTS

Confidence Interval for 1500 MTU

Confidence Level95 ,0% 1.359049674

Lower bound 933.8242837

Upper bound 936.542383

Confidence Interval for 5000 MTU

Confidence Level95 ,0% 1.521455208

Lower bound 980.0618781

Upper bound 983.1047885

4.4 Additional Measurements

The following subsections presents additional measurements. The Xen installed
machine is compared with the native Linux machine in the first section.
Following this TCP’s performance in the virtual machine is analyzed.

4.4.1 Xen Performance Comparison

Figure 4.7 compares native Linux to a Xen installed Linux. Xen performs
remarkably well and there was no performance loss compared to the native
Linux machine. We can see this as we vary the MTU size from the standard
frame of 1500 bytes to a 5900 bytes MTU, there was no loss in throughput.
However, with an MTU of 6000 bytes, throughput suddenly falls for both Xen
Dom0 and the VM - but not for the native Linux.

36

CHAPTER 4. EVALUATION AND RESULTS

0

100

200

300

400

500

600

700

800

900

1000

1500 2000 3000 4000 5000 6000 7000 8000 9000

Th
ro

u
gh

p
u

t
[M

b
p

s]

Maximum Transmission Unit (MTU) in Bytes

Native and Xen Linux

Native Linux

Xen-dom0

Virutal Machine

Figure 4.7: Xen Performance compared to native Linux system

4.4.2 TCP Behavior in Virtual Machine

In the following measurements the offloading capabilities of the NIC were turned
off. This offloading was turned off in order to have accurate measurements
of TCP’s performance in the VM. If reassembling is done in the NIC, then
packets are assembled before reaching the hypervisor and VM and TCPdump
captures these large packet sizes which are reassembled by the NIC. Hence NIC
offloading features were turned off to capture the correct packet sizes.

Figures 4.8 to 4.13, show packet captures with three different packet sizes
(1500, 5000, and 9000 bytes), ACK packets have not been included. The client
is sending these packets to VM, while these packets were captured as they enter
Dom0 and VM. These measurements have µs granularity. As seen, the TCP’s
flow (sequence) in Dom0 is normal, but the flow in the VM is regular this is
because of the VM scheduling. The inter-arrival time in the VM is regular,
rather than bursty and this is good for applications running in VM. However,
as the number of VMs increases the gap between the sequences of packets also
increases.

37

CHAPTER 4. EVALUATION AND RESULTS

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

418400 418450 418500 418550 418600 418650 418700 418750 418800 418850 418900

Se
q

u
e

n
ce

 N
u

m
b

e
rs

Time [microseconds]

1500 byte sequence in Dom0

Figure 4.8: Sequence of 1500 byte
MTU packets in Dom0

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

413000 413050 413100 413150 413200 413250 413300 413350 413400 413450 413500

Se
q

u
e

n
ce

 N
u

m
b

e
rs

Time [microseconds]

1500 byte sequence in virtual machine

Figure 4.9: Sequence of 1500 byte
MTU packets in VM

0

20000

40000

60000

80000

100000

120000

140000

429000 430000 431000 432000 433000 434000 435000

Se
q

u
e

n
ce

 N
u

m
b

e
rs

Time [microseconds]

5000 byte sequene in Dom0

Figure 4.10: Sequence of 5000 byte
MTU packets in Dom0

0

20000

40000

60000

80000

100000

120000

140000

451000 452000 453000 454000 455000 456000 457000 458000

Se
q

u
e

n
ce

 N
u

m
b

e
rs

Time [microseconds]

5000 byte sequence in virtual machine

Figure 4.11: Sequence of 5000 byte
MTU packets in VM

38

CHAPTER 4. EVALUATION AND RESULTS

0

50000

100000

150000

200000

250000

300000

707000 708000 709000 710000 711000 712000 713000 714000

Se
q

u
e

n
ce

 N
u

m
b

e
rs

Time [microseconds]

9000 byte sequence in Dom0

Figure 4.12: Sequence of 9000 byte
MTU packets in Dom0

0

50000

100000

150000

200000

250000

300000

684000 685000 686000 687000 688000 689000 690000 691000

Se
q

u
e

n
ce

 N
u

m
b

e
rs

Time [microseconds]

9000 byte sequence in virtual machine

Figure 4.13: Sequence of 9000 byte
MTU packets in VM

4.5 Analysis and Discussion

Although the test environment might represent a real virtual production envi-
ronment, these measurements do not correspond to real network measurements
as these measurements were made in a loss-less laboratory environment. In a
real production environment other factors may come into play. Hence these
measurements might not predict what would happen in a wide area network
setting or in a real production environment. However, within a data center we
expect a very low packet loss rate, i.e., comparable to what we had in our lab
environment.

Equation 3.1 can be interpreted as, throughput is directly proportional to
MSS, which in-turn is limited by MTU, as given by equation 2.1. Hence the
greater the MTU size the higher the network performance. Transmitting larger
packets by increasing MTU size reduces the CPU overhead. The overhead
reduction on the CPU is due to a decrease in the aggregate of overhead,
while the per-packet overhead is constant. This decrease in overhead is highly
beneficial for bulk transfers (which is essentially what Iperf is measuring).
While per-packet overhead remains the same the use of larger packets reduces
the load on the end-systems and the load on the intermediate routers.

There are certain points to consider when implementing jumbo frames. The
first point to consider is the buffer space required in the end systems and in
each of the intermediate routers. If a large amount of buffer space is required
in the routers, then this buffer space could be filled quickly and buffer overflow

39

CHAPTER 4. EVALUATION AND RESULTS

might be occur if packets are not forwarded swiftly. Additionally, if an error
occurs then re-transmission will be more costly. In the end system the TCP
window size shrinks quickly, if the application does not process the data bytes
quickly enough.

As seen in Section 4.4, there is no performance variation between standard
sized packets and jumbo frames in a virtual environment. Xen performed well
in scheduling the VM and TCP’s performance (at µs granularity) is good when
viewed from the viewpoint of the VM.

Recall from Section 2.2 that virtualization itself is nothing more than
abstraction beneath the OS, as the hypervisor simply schedules the execution
of the VMs. The hypervisor’s scheduling algorithm does not consider the
functioning of the OS running above it. Hence the entire protocol stack,
from application to physical layer, should be taken into account in order to
achieve greater performance. The abstraction concept of protocols has brought
independence and facilitated the design and implementation of protocols.
However, the performance of the entire system depends upon the complete
design, implementation, and operation of all parts of the protocols and
additionally is affected by their interaction (as shown in Figure 4.14).

Even if the physical layer is a GbE and the data link layer’s MTU has the
capacity to transfer data at a higher rate if the transport layer (in this case
due to TCP’s slow start and congestion avoidance behavior is not congruent
with the hardware’s capabilities, then the performance will suffer. Therefore,
the focus to achieve network performance improvements should be on core
protocols behavior inside the OS. One of the principle motivations of this
thesis project is that the hardware capabilities are not completely exploited
by software protocols. The limit of 1500 bytes MTU was designed for old
hardware, thus today’s GbE will be underutilized when using this size MTU.

40

CHAPTER 4. EVALUATION AND RESULTS

Figure 4.14: Incongruency of abstraction layering concept

41

Chapter 5

Conclusions and Future Work

This chapter concludes the thesis report with some future work and reflections
on the project.

5.1 Conclusions

The results of the tests performed and evaluation of these results has clearly
demonstrated that network performance can be improved in both the virtual and
physical environments by using larger MTUs. Approximately 5% performance
gain was achieved in the virtual environment by increasing the MTU from
1500 bytes to 5000 bytes. Additionally the CPU overhead can be reduced
by transmitting larger frames. Hence the use of jumbo frames is clearly
advantageous for virtual environments. Enabling jumbo frames will have a
tremendous advantage for cloud computing, for example live migration and
other data storage and transfer protocols (such as Network File System (NFS),
Network-attached storage (NAS), Internet Small Computer System Interface
(iSCSI), etc.).

One key point cloud customers have to remember is that although cloud
providers provide hardware resources dynamically, the performance seen by
the end user depends upon the choice of scheduling mechanism, scheduling and
kernel parameters, and upon data prioritization.

In a virtual environment, the complete utilization of the network’s resources
and the observed performance of an application depends entirely on the how
the network protocols in the OS are implemented and how applications are
prioritized. The flow of information from end-to-end is very dependent upon

43

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the system’s data path (kernel) rather than on the long fast pipes that connect
the endpoints.

5.2 Future Work

Throughput suddenly decreased starting at an MTU size of 6000 bytes MTU,
while upto that point throughput increased as MTU size increased, especially
in the virtual environment.This is might to attributed to limits in the Xen
stack, page size, or some other limit may be causing this behavior. Due to the
time constraints for this thesis project, further exploration of the reasons why
this behavior occurs has been left for future work. This future work should
consider making changes to the Xen code in order to explore the causes for the
observed behavior as well as looking for solutions to maintain the increased
performance with larger MTU sizes for Dom0 and the VM.

It would be interesting to see if there will be additional performance increases
using an MTU of 9000 or greater. Additionally, throughput can be measured
between two VM’s, which is not limited by MTU and performance might be
faster since it is just memory a mapping. This project specifically focused on
TCP’s performance while excluding UDP, therefore an investigation of UDP’s
performance is clearly another area of future work.

Jitter in the network due to VM scheduling of Xen is an interesting area to
explore. The affect on jumbo frames in comparison with standard Ethernet
frame sizes can be studied further. How do two or more VMs using different
MSS sizes co-exist in a single physical machine, since the total amount of buffer
space available to the network stack is limited. As Eniko Fey pointed in the
her thesis “The Effect of Combining Network and Server QoS Parameters on
End-to-End Performance” VLANs can be used to prioritize traffic [70].

5.3 Required Reflections

Cloud computing itself is a cost effective solution for the IT industry and
other IT enabled industries. Yet cloud providers have to minimize their costs
and maximize their profits. Jumbo frames further reduces the costs of cloud
providers by efficiently utilizing their in-house network and reducing power
consumption by reducing the number of CPU cycles required to transfer a
given amount of data. This project effectively addressed both economic and
environmental aspects of cloud providers and clients.

44

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

Cloud computing has leveraged the IT infrastructure by utilizing the unused
computing capacity. Usually, only an average of 30% or even lower processing
power is utilized in a data center [71], which is incredibly low utilization. But
using virtualization these underutilized servers can used more efficiently. With
proper planning, monitoring and personal, data centers and companies can
virtualize their own available infrastructure without moving to any third party
cloud providers, which results in huge power savings.

Recent research [72] concluded that there will a substantial energy savings
by moving the office work to cloud. However this might not be the precise
interpretation, as according to Scott M. Fulton III [73] the virtualization used
by the cloud providers is the primary reason for cost savings and reduced
power consumption, rather than the use of the cloud model itself. In order for
clouds to be greener, more work has to be done on virtualization specifically on
network virtualization which is responsible for interconnecting rapidly changing
clouds.

45

Bibliography

[1] J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “Contention aware
execution: online contention detection and response,” in Proceedings of
the 8th annual IEEE/ACM international symposium on Code generation
and optimization, CGO ’10, (New York, NY, USA), pp. 257–265, ACM,
2010.

[2] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “Enforcing
Performance Isolation Across Virtual Machines in Xen,” in Proceedings of
the ACM/IFIP/USENIX 2006 International Conference on Middleware,
Middleware ’06, (New York, NY, USA), pp. 342–362, Springer-Verlag New
York, Inc., 2006.

[3] I. Paul, S. Yalamanchili, and L. John, “Performance impact of virtual
machine placement in a datacenter,” in Performance Computing and
Communications Conference (IPCCC), 2012 IEEE 31st International,
pp. 424–431, Dec 2012.

[4] M. Hassan and R. Jain, High Performance TCP/IP Networking, ch. 13,
TCP Implemenation, p. 308. Pearson Prentice Hall, 2004.

[5] S. Tripathi, N. Droux, T. Srinivasan, and K. Belgaied, “Crossbow: From
Hardware Virtualized NICs to Virtualized Networks,” in Proceedings
of the 1st ACM Workshop on Virtualized Infrastructure Systems and
Architectures, VISA ’09, (New York, NY, USA), pp. 53–62, ACM, 2009.

[6] M. Mathis, “Raising the Internet MTU.” http://staff.psc.edu/

mathis/MTU/index.html. [Online; Last accessed 19-March-2014; Last
modified: not available].

[7] P. Dykstra, “Gigabit Ethernet Jumbo Frames.” http://sd.wareonearth.

com/~phil/jumbo.html, December, 1999. [Online; Last accessed 2-
February-2014].

47

http://staff.psc.edu/mathis/MTU/index.html
http://staff.psc.edu/mathis/MTU/index.html
http://sd.wareonearth.com/~phil/jumbo.html
http://sd.wareonearth.com/~phil/jumbo.html

BIBLIOGRAPHY

[8] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,” Tech. Rep. UCB/EECS-
2009-28, EECS Department, University of California, Berkeley, Feb 2009.

[9] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition:
A Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 5th ed., 2011.

[10] J. Hamilton, “Perspectives.” http://perspectives.mvdirona.com/.
[Online; Last accessed 12-March-2014; Last modifited 14-February-2014].

[11] “Google App Engine.” https://developers.google.com/appengine/.
[Online; accessed 19-March-2014; Last modified 7-February-2014].

[12] “Heroku.” https://www.heroku.com/. [Online; Last accessed 19-March-
2014; Last modified: not available].

[13] R. A. Meyer and L. H. Seawright, “A Virtual Machine Time-sharing
System,” IBM Syst. J., vol. 9, pp. 199–218, Sept. 1970.

[14] R. P. Goldberg, “Architecture of Virtual Machines,” in Proceedings of the
June 4-8, 1973, National Computer Conference and Exposition, AFIPS
’73, (New York, NY, USA), pp. 309–318, ACM, 1973.

[15] R. P. Goldberg, “Survey of virtual machine research,” Computer, vol. 7,
pp. 34–45, June 1974.

[16] P. H. Gum, “System/370 Extended Architecture: Facilities for Virtual
Machines,” IBM Journal of Research and Development, vol. 27, pp. 530–
544, Nov. 1983.

[17] K. Adams and O. Agesen, “A Comparison of Software and Hardware
Techniques for x86 Virtualization,” SIGARCH Comput. Archit. News,
vol. 34, pp. 2–13, Oct. 2006.

[18] R. Dittner and D. Rule, The Best Damn Server Virtualization Book Period:
Including Vmware, Xen, and Microsoft Virtual Server. Burlington, MA:
Elsevier, 2007.

[19] “Hardware-Assisted VT.” http://www.intel.com/content/

www/us/en/virtualization/virtualization-technology/

hardware-assist-virtualization-technology.html. [Online; Last
accessed 2-March-2014; Last modified: not available].

48

http://perspectives.mvdirona.com/
https://developers.google.com/appengine/
https://www.heroku.com/
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/hardware-assist-virtualization-technology.html

BIBLIOGRAPHY

[20] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
Virtualization Technology,” Computer, vol. 38, pp. 48–56, May 2005.

[21] Y. Luo, “Network I/O Virtualization for Cloud Computing,” IT
Professional, vol. 12, pp. 36–41, Sept 2010.

[22] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of
Virtualization,” SIGOPS Oper. Syst. Rev., vol. 37, pp. 164–177, Oct.
2003.

[23] “Kernel-based Virtual Machine.” http://www.linux-kvm.org/page/

Main_Page. [Online; Last accessed 19-March-2014; Last modified: not
available].

[24] D. Ongaro, A. L. Cox, and S. Rixner, “Scheduling I/O in Virtual
Machine Monitors,” in Proceedings of the Fourth ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, VEE ’08,
(New York, NY, USA), pp. 1–10, ACM, 2008.

[25] “Xen Credit Scheduler.” http://wiki.xen.org/wiki/Credit_

Scheduler. [Online; Last accessed 19-March-2014; Last modified
15-December-2013].

[26] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the Three CPU
Schedulers in Xen,” SIGMETRICS Perform. Eval. Rev., vol. 35, pp. 42–51,
Sept. 2007.

[27] M. Levy, “Jumbo Frame Deployment at Internet Exchange Points.” http:

//tools.ietf.org/html/draft-mlevy-ixp-jumboframes-00, Novem-
ber 14, 2011. [Online; Last accessed 20-February-2014].

[28] IEEE Standards Association. http://standards.ieee.org/about/get/
802/802.3.html. [Online; Last accessed 19-March-2014; Last modified:
not available].

[29] D. Murray, T. Koziniec, K. Lee, and M. Dixon, “Large MTUs and internet
performance,” in High Performance Switching and Routing (HPSR), 2012
IEEE 13th International Conference on, pp. 82–87, June 2012.

[30] W. R. Stevens, TCP/IP Illustrated (Vol. 1): The Protocols. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 1993.

49

http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://wiki.xen.org/wiki/Credit_Scheduler
http://wiki.xen.org/wiki/Credit_Scheduler
http://tools.ietf.org/html/draft-mlevy-ixp-jumboframes-00
http://tools.ietf.org/html/draft-mlevy-ixp-jumboframes-00
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html

BIBLIOGRAPHY

[31] M. Hassan and R. Jain, High Performance TCP/IP Networking. Pearson
Prentice Hall, 2004.

[32] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A. Jain,
and N. Sutin, “An Argument for Increasing TCP’s Initial Congestion
Window,” SIGCOMM Comput. Commun. Rev., vol. 40, pp. 26–33, June
2010.

[33] N. Dukkipati, M. Mathis, Y. Cheng, and M. Ghobadi, “Proportional
Rate Reduction for TCP,” in Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, IMC ’11, (New York,
NY, USA), pp. 155–170, ACM, 2011.

[34] J. Chu, N. Dukkipati, Y. Cheng, M. Mathis, “RFC6928 - Increasing TCP’s
Initial Window.” https://tools.ietf.org/html/rfc6928, April, 2013.
[Online; Last accessed 20-February-2014].

[35] Z. Conghua and C. Meiling, “Analysis of fast and secure protocol based on
continuous-time Markov chain,” Communications, China, vol. 10, pp. 137–
149, Aug 2013.

[36] J. Mahdavi, “Enabling High Performance Data Transfers.” http://www.

psc.edu/index.php/networking/641-tcp-tune. [Online; Last Updated
on Wednesday, 24 October 2012 15:50; Last accessed 20-February-2014].

[37] L. Cherkasova, D. Gupta, and A. Vahdat, “When Virtual is Harder than
Real: Resource Allocation Challenges in Virtual Machine Based IT Envi-
ronments.” http://www.hpl.hp.com/techreports/2007/HPL-2007-25.

pdf, February 2007.

[38] Zhuang, Hao, “Performance Evaluation of Virtualization in Cloud
Data Center,” Master’s thesis, School of Science, Aalto University,
2012. Available at: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:

diva-104206.

[39] Y. Mei, L. Liu, X. Pu, S. Sivathanu, and X. Dong, “Performance Analysis
of Network I/O Workloads in Virtualized Data Centers,” IEEE Trans.
Serv. Comput., vol. 6, pp. 48–63, Jan. 2013.

[40] P. Apparao, S. Makineni, and D. Newell, “Characterization of network
processing overheads in Xen,” First International Workshop on Virtual-
ization Technology in Distributed Computing (VTDC 2006), pp. 2–2, Nov.
2006.

50

https://tools.ietf.org/html/rfc6928
http://www.psc.edu/index.php/networking/641-tcp-tune
http://www.psc.edu/index.php/networking/641-tcp-tune
http://www.hpl.hp.com/techreports/2007/HPL-2007-25.pdf
http://www.hpl.hp.com/techreports/2007/HPL-2007-25.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104206
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-104206

BIBLIOGRAPHY

[41] F. Benevenuto, C. Fernandes, M. Santos, V. Almeida, and J. Almeida,
“A Quantitative Analysis of the Xen Virtualization Overhead.” http://

homepages.dcc.ufmg.br/~fabricio/download/ccc07.pdf, November
2007.

[42] Whiteaker, Jon and Schneider, Fabian and Teixeira, Renata, “Explaining
Packet Delays Under Virtualization,” SIGCOMM Comput. Commun. Rev.,
vol. 41, pp. 38–44, Jan. 2011.

[43] H. Oi and F. Nakajima, “Performance Analysis of Large Receive Offload in
a Xen Virtualized System,” 2009 International Conference on Computer
Engineering and Technology, pp. 475–480, Jan. 2009.

[44] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing Network
Virtualization in Xen,” in Proceedings of the Annual Conference on
USENIX ’06 Annual Technical Conference, ATEC ’06, (Berkeley, CA,
USA), pp. 2–2, USENIX Association, 2006.

[45] H. Guan, Y. Dong, R. Ma, D. Xu, Y. Zhang, and J. Li, “Performance
Enhancement for Network I/O Virtualization with Efficient Interrupt
Coalescing and Virtual Receive-Side Scaling,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 6, pp. 1118–1128, 2013.

[46] Y. Dong, D. Xu, Y. Zhang, and G. Liao, “Optimizing Network I/O
Virtualization with Efficient Interrupt Coalescing and Virtual Receive Side
Scaling,” in Proceedings of the 2011 IEEE International Conference on
Cluster Computing, CLUSTER ’11, (Washington, DC, USA), pp. 26–34,
IEEE Computer Society, 2011.

[47] Alteon Networks, white paper, “Extended Frame Sizes for Next
Generation Ethernets.” http://staff.psc.edu/mathis/MTU/

AlteonExtendedFrames_W0601.pdf. [Online; Last accessed 20-February-
2014].

[48] W. Rutherford, L. Jorgenson, M. Siegert, P. Van Epp, and L. Liu, “16000-
64000 B pMTU Experiments with Simulation: The Case for Super Jumbo
Frames at Supercomputing ’05,” Opt. Switch. Netw., vol. 4, pp. 121–130,
June 2007.

[49] J. Hwang, S. Zeng, F. Wu, and T. Wood, “A component-based performance
comparison of four hypervisors,” in Integrated Network Management (IM
2013), 2013 IFIP/IEEE International Symposium on, pp. 269–276, May
2013.

51

http://homepages.dcc.ufmg.br/~fabricio/download/ccc07.pdf
http://homepages.dcc.ufmg.br/~fabricio/download/ccc07.pdf
http://staff.psc.edu/mathis/MTU/AlteonExtendedFrames_W0601.pdf
http://staff.psc.edu/mathis/MTU/AlteonExtendedFrames_W0601.pdf

BIBLIOGRAPHY

[50] “Iperf.” http://sourceforge.net/projects/iperf/. [Online; accessed
4-February-2014; Last modified 12-June-2013].

[51] “TCPdump.” http://www.tcpdump.org/. [Online; Last accessed 19-
March-2014; Last modified: not available].

[52] D. Mosberger and T. Jin, “httperf - A Tool for Measuring Web Server
Performance,” in In First Workshop on Internet Server Performance,
pp. 59–67, ACM, 1998.

[53] “Httperf.” http://sourceforge.net/projects/httperf/. [Online; Last
accessed 19-March-2014; Last modified 08-April-2013].

[54] “Netperf.” http://www.netperf.org/netperf/. [Online; Last accessed
19-March-2014; Last modified: not available].

[55] “Tcptrace.” http://www.tcptrace.org/. [Online; Last accessed 18-
March-2014; Last modified: not available].

[56] “ostinato.” https://code.google.com/p/ostinato/. [Online; Last
accessed 18-March-2014; Last modified: not available].

[57] “Wireshark.” http://www.wireshark.org/. [Online; Last accessed 18-
March-2014; Last modified: not available].

[58] “Tcpspray.” http://linux.die.net/man/1/tcpspray. [Online; Last
accessed 18-March-2014; Last modified 31-October-2010].

[59] “Tcpreplay.” http://tcpreplay.synfin.net/. [Online; Last accessed
8-March-2014; Last modified 14-December-2013].

[60] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The Macroscopic Behavior
of the TCP Congestion Avoidance Algorithm,” SIGCOMM Comput.
Commun. Rev., vol. 27, pp. 67–82, July 1997.

[61] “Ping Utility.” http://www.freebsd.org/cgi/man.cgi?query=

ping&sektion=8. [Online; Last accessed 12-March-2014; Last modified:
not available].

[62] “pidstat man page.” http://linux.die.net/man/1/pidstat andhttp:
//www.mjmwired.net/kernel/Documentation/filesystems/proc.txt.
[Online; Last accessed 20-February-2014].

[63] “Debian.” https://wiki.debian.org/Xen. [Online; Last accessed 12-
March-2014; Last modified 05-March-2014].

52

http://sourceforge.net/projects/iperf/
http://www.tcpdump.org/
http://sourceforge.net/projects/httperf/
http://www.netperf.org/netperf/
http://www.tcptrace.org/
https://code.google.com/p/ostinato/
http://www.wireshark.org/
http://linux.die.net/man/1/tcpspray
 http://tcpreplay.synfin.net/
http://www.freebsd.org/cgi/man.cgi?query=ping&sektion=8
http://www.freebsd.org/cgi/man.cgi?query=ping&sektion=8
http://linux.die.net/man/1/pidstat
http://www.mjmwired.net/kernel/Documentation/filesystems/proc.txt
http://www.mjmwired.net/kernel/Documentation/filesystems/proc.txt
https://wiki.debian.org/Xen

BIBLIOGRAPHY

[64] “Fedora Xen Archive.” https://fedoraproject.org/wiki/Archive:

Tools/Xen?rd=FedoraXenQuickstart. [Online; Last accessed 12-March-
2014; Last modified 04-July-2013].

[65] “Ubuntu Xen Wiki.” https://help.ubuntu.com/community/Xen. [On-
line; Last accessed 12-March-2014; Last modified 22-December-2012].

[66] “XenServer Open Source Virtualization.” http://www.xenserver.org/.
[Online; Last accessed 12-March-2014; Last modified: not available].

[67] “Citrix.” http://www.citrix.com/. [Online; Last accessed 12-March-
2014; Last modified: not available].

[68] “Xen4 CentOS6 QuickStart.” http://wiki.centos.org/HowTos/Xen/

Xen4QuickStart. [Online; Last accessed 12-March-2014; Last modified
10-January-2014].

[69] “Linux and Xen Bridging.” http://www.linuxfoundation.

org/collaborate/workgroups/networking/bridge and http:

//wiki.xen.org/wiki/Network_Throughput_and_Performance_Guide.
[Online; Last modified on 29 August 2012, at 14:18; Last accessed
20-February-2014].

[70] E. Fey, “The Effect of Combining Network and Server QoS Parameters
on End-to-End Performance,” Master’s thesis, KTH Royal Institute of
Technology, Teleinformatics, 2000. Available at: http://urn.kb.se/

resolve?urn=urn:nbn:se:kth:diva-93516.

[71] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth Edition:
A Quantitative Approach, ch. 6, p. 440. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 5th ed., 2011.

[72] E. Masanet, A. Shehabi, L. Ramakrishnan, J. Liang, X. Ma,B. Walker, V.
Hendrix, and P. Mantha, “The Energy Efficiency Potential of Cloud-
Based Software: A U.S Case Study.” http://crd.lbl.gov/assets/

pubs_presos/ACS/cloud_efficiency_study.pdf, June, 2013. [Online;
Last accessed 17-March-2014;].

[73] Scott M. Fulton III, “Cloud Data Centers: Power Savings
or Power Drain?.” http://www.networkcomputing.com/data-center/

cloud-data-centers-power-savings-or-powe/240166022. [Online;
Last accessed 17-March-2014; Last modified 07-February-2014].

53

https://fedoraproject.org/wiki/Archive:Tools/Xen?rd=FedoraXenQuickstart
https://fedoraproject.org/wiki/Archive:Tools/Xen?rd=FedoraXenQuickstart
https://help.ubuntu.com/community/Xen
http://www.xenserver.org/
http://www.citrix.com/
http://wiki.centos.org/HowTos/Xen/Xen4QuickStart
http://wiki.centos.org/HowTos/Xen/Xen4QuickStart
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge
http://wiki.xen.org/wiki/Network_Throughput_and_Performance_Guide
http://wiki.xen.org/wiki/Network_Throughput_and_Performance_Guide
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93516
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93516
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://crd.lbl.gov/assets/pubs_presos/ACS/cloud_efficiency_study.pdf
http://www.networkcomputing.com/data-center/cloud-data-centers-power-savings-or-powe/240166022
http://www.networkcomputing.com/data-center/cloud-data-centers-power-savings-or-powe/240166022

Appendix A

Configuration

/proc/cpuinfo

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 15

model name : IntelR Intel CoreTM Core2 Duo CPU E6550 @

2.33 GHz
stepping : 11

microcode : 0xb3

cpu MHz : 2327.542

cache size : 4096 KB

fpu : yes

fpu_exception: yes

cpuid level: 10

wp : yes

flags : fpu de tsc msr pae mce cx8 apic sep mca cmov

pat clflush acpi mmx fxsr sse sse2 ss ht syscall nx lm

constant_tsc rep_good nopl pni monitor est ssse3 cx16

hypervisor lahf_lm dtherm
bogomips : 4655.08

clflush size : 64

cache_alignment: 64

address sizes : 36 bits physical , 48 bits virtual

power management:

Figure A.1: Processor Details

55

APPENDIX A. CONFIGURATION

xl info

host : localhost.localdomain

release : 3.10.25 -11. el6.centos.alt.x86_64

version : #1 SMP Fri Dec 27 21:44:15 UTC 2013

machine : x86_64

nr_cpus : 2

max_cpu_id : 7

nr_nodes : 1

cores_per_socket : 2

threads_per_core : 1

cpu_mhz : 2327

hw_caps : bfebfbff

:20100800:00000000:00000940:0000 e3fd

:00000000:00000001:00000000
virt_caps : hvm hvm_directio

total_memory : 3043

free_memory : 8

sharing_freed_memory : 0

sharing_used_memory : 0

free_cpus : 0

xen_major : 4

xen_minor : 2

xen_extra : .3 -26.el6

xen_caps : xen -3.0- x86_64 xen -3.0- x86_32p hvm

-3.0- x86_32 hvm -3.0- x86_32p hvm -3.0- x86_64
xen_scheduler : credit

xen_pagesize : 4096

platform_params : virt_start =0 xffff800000000000

xen_changeset : unavailable

xen_commandline : dom0_mem =1024M,max :1024M loglvl=all

guest_loglvl=all
cc_compiler : gcc GCC 4.4.7 20120313 Red Hat 4.4.7 -3

cc_compile_by : mockbuild

cc_compile_domain : centos.org

cc_compile_date : Tue Dec 10 20:32:58 UTC 2013

xend_config_format : 4

Figure A.2: Xen Hypervisor Details

56

APPENDIX A. CONFIGURATION

ethtool -k eth0

Features for eth0:

rx-checksumming: on

tx-checksumming: on

tx-checksum-ipv4: off [fixed]

tx-checksum-ip-generic: on

tx-checksum-ipv6: off [fixed]

tx-checksum-fcoe-crc: off [fixed]

tx-checksum-sctp: off [fixed]

scatter-gather: on

tx-scatter-gather: on

tx-scatter-gather-fraglist: off [fixed]

tcp-segmentation-offload: on

tx-tcp-segmentation: on

tx-tcp-ecn-segmentation: off [fixed]

tx-tcp6-segmentation: on

udp-fragmentation-offload: off [fixed]

generic-segmentation-offload: on

generic-receive-offload: on

large-receive-offload: off [fixed]

rx-vlan-offload: on

tx-vlan-offload: on

ntuple-filters: off [fixed]

receive-hashing: on

highdma: on [fixed]

rx-vlan-filter: off [fixed]

vlan-challenged: off [fixed]

tx-lockless: off [fixed]

netns-local: off [fixed]

tx-gso-robust: off [fixed]

tx-fcoe-segmentation: off [fixed]

tx-gre-segmentation: off [fixed]

tx-udp_tnl-segmentation: off [fixed]

fcoe-mtu: off [fixed]

tx-nocache-copy: on

loopback: off [fixed]

rx-fcs: off

rx-all: off

tx-vlan-stag-hw-insert: off [fixed]

rx-vlan-stag-hw-parse: off [fixed]

rx-vlan-stag-filter: off [fixed]

Figure A.3: NIC Details

57

APPENDIX A. CONFIGURATION

ethtool -l / -g eth0

Settings for eth0:

Supported ports: [TP]

Supported link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

1000baseT/Full

Supported pause frame use: No

Supports auto-negotiation: Yes

Advertised link modes: 10baseT/Half 10baseT/Full

100baseT/Half 100baseT/Full

1000baseT/Full

Advertised pause frame use: No

Advertised auto-negotiation: Yes

Speed: 1000Mb/s

Duplex: Full

Port: Twisted Pair

PHYAD: 1

Transceiver: internal

Auto-negotiation: on

MDI-X: off

Supports Wake-on: pumbg

Wake-on: g

Current message level: 0x00000007 7

drv probe link

Link detected: yes

Ring parameters for eth0:

Pre-set maximums:

RX: 4096

RX Mini: 0

RX Jumbo: 0

TX: 4096

Current hardware settings:

RX: 256

RX Mini: 0

RX Jumbo: 0

TX: 256

Figure A.4: Other NIC Details

58

APPENDIX A. CONFIGURATION

tcptrace -l filename

1 arg remaining, starting with ’test.dmp’

Ostermann’s tcptrace -- version 6.6.7 -- Thu Nov 4, 2004

36000 packets seen, 36000 TCP packets traced

elapsed wallclock time: 0:00:08.998177, 4000 pkts/sec analyzed

trace file elapsed time: 0:00:06.991139

TCP connection info:

1 TCP connection traced:

TCP connection 1:

host a: 192.168.1.135:41734

host b: 192.168.1.104:5001

complete conn: no SYNs: 1 FINs: 0

first packet: Fri Feb 14 17:15:14.851892 2014

last packet: Fri Feb 14 17:15:21.843031 2014

elapsed time: 0:00:06.991139

total packets: 36000

filename: test.dmp

a->b: b->a:

total packets: 36000 total packets: 0

ack pkts sent: 35999 ack pkts sent: 0

pure acks sent: 1 pure acks sent: 0

sack pkts sent: 0 sack pkts sent: 0

dsack pkts sent: 0 dsack pkts sent: 0

max sack blks/ack: 0 max sack blks/ack: 0

unique bytes sent: 596896032 unique bytes sent: 0

actual data pkts: 35998 actual data pkts: 0

actual data bytes: 596969880 actual data bytes: 0

rexmt data pkts: 5 rexmt data pkts: 0

rexmt data bytes: 73848 rexmt data bytes: 0

zwnd probe pkts: 0 zwnd probe pkts: 0

zwnd probe bytes: 0 zwnd probe bytes: 0

outoforder pkts: 0 outoforder pkts: 0

pushed data pkts: 698 pushed data pkts: 0

SYN/FIN pkts sent: 1/0 SYN/FIN pkts sent: 0/0

req 1323 ws/ts: Y/Y req 1323 ws/ts: N/N

adv wind scale: 0 adv wind scale: 0

req sack: Y req sack: N

sacks sent: 0 sacks sent: 0

urgent data pkts: 0 pkts urgent data pkts: 0 pkts

urgent data bytes: 0 bytes urgent data bytes: 0 bytes

mss requested: 1460 bytes mss requested: 0 bytes

max segm size: 26064 bytes max segm size: 0 bytes

min segm size: 24 bytes min segm size: 0 bytes

avg segm size: 16583 bytes avg segm size: 0 bytes

max win adv: 14600 bytes max win adv: 0 bytes

min win adv: 115 bytes min win adv: 0 bytes

59

APPENDIX A. CONFIGURATION

zero win adv: 0 times zero win adv: 0 times

avg win adv: 115 bytes avg win adv: 0 bytes

initial window: 596896032 bytes initial window: 0 bytes

initial window: 35993 pkts initial window: 0 pkts

ttl stream length: NA ttl stream length: NA

missed data: NA missed data: NA

truncated data: 0 bytes truncated data: 0 bytes

truncated packets: 0 pkts truncated packets: 0 pkts

data xmit time: 6.991 secs data xmit time: 0.000 secs

idletime max: 142.4 ms idletime max: NA ms

throughput: 85378939 Bps throughput: 0 Bps

60

Appendix B

Data Files

61

APPENDIX B. DATA FILES

Throughput Native Linux

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte default

--

[4] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47989

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.09 GBytes 935 Mbits/sec

[4] MSS size 1448 bytes MTU 1500 bytes, ethernet

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte default

--

[4] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47990

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.11 GBytes 952 Mbits/sec

[4] MSS size 1948 bytes MTU 1988 bytes, unknown interface

[5] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47992

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.13 GBytes 967 Mbits/sec

[5] MSS size 2948 bytes MTU 2988 bytes, unknown interface

[4] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47993

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.14 GBytes 975 Mbits/sec

[4] MSS size 3948 bytes MTU 3988 bytes, unknown interface

[5] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47994

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.14 GBytes 979 Mbits/sec

[5] MSS size 4948 bytes MTU 4988 bytes, unknown interface

[4] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47995

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.15 GBytes 982 Mbits/sec

[4] MSS size 5948 bytes MTU 5988 bytes, unknown interface

[5] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47996

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.15 GBytes 984 Mbits/sec

[5] MSS size 6948 bytes MTU 6988 bytes, unknown interface

[4] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47997

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.15 GBytes 986 Mbits/sec

[4] MSS size 7948 bytes MTU 7988 bytes, unknown interface

[5] local 192.168.1.135 port 5001 connected with 192.168.1.101 port 47998

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.12 GBytes 957 Mbits/sec

[5] MSS size 8948 bytes MTU 8988 bytes, unknown interface

62

APPENDIX B. DATA FILES

Throughput dom0

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte default

--

[4] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44063

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.09 GBytes 937 Mbits/sec

[4] MSS size 1448 bytes MTU 1500 bytes, ethernet

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte default

--

[4] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44064

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.11 GBytes 954 Mbits/sec

[4] MSS size 1948 bytes MTU 1988 bytes, unknown interface

[5] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44065

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.13 GBytes 969 Mbits/sec

[5] MSS size 2948 bytes MTU 2988 bytes, unknown interface

[4] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44066

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.14 GBytes 977 Mbits/sec

[4] MSS size 3948 bytes MTU 3988 bytes, unknown interface

[5] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44067

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.15 GBytes 981 Mbits/sec

[5] MSS size 4948 bytes MTU 4988 bytes, unknown interface

[4] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44068

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 843 MBytes 704 Mbits/sec

[4] MSS size 5948 bytes MTU 5988 bytes, unknown interface

[5] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44069

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 853 MBytes 713 Mbits/sec

[5] MSS size 6948 bytes MTU 6988 bytes, unknown interface

[4] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44070

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 863 MBytes 721 Mbits/sec

[4] MSS size 7948 bytes MTU 7988 bytes, unknown interface

[5] local 192.168.1.102 port 5001 connected with 192.168.1.135 port 44071

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 859 MBytes 718 Mbits/sec

[5] MSS size 8948 bytes MTU 8988 bytes, unknown interface

63

APPENDIX B. DATA FILES

Throughput VM

--

Server listening on TCP port 5001

TCP window size: 85.3 KByte default

--

[4] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47648

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.09 GBytes 934 Mbits/sec

[4] MSS size 1448 bytes MTU 1500 bytes, ethernet

[5] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47652

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.11 GBytes 952 Mbits/sec

[5] MSS size 1948 bytes MTU 1988 bytes, unknown interface

[4] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47653

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.13 GBytes 967 Mbits/sec

[4] MSS size 2948 bytes MTU 2988 bytes, unknown interface

[5] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47654

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 1.14 GBytes 976 Mbits/sec

[5] MSS size 3948 bytes MTU 3988 bytes, unknown interface

[4] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47655

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 1.14 GBytes 981 Mbits/sec

[4] MSS size 4948 bytes MTU 4988 bytes, unknown interface

[5] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47656

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 792 MBytes 662 Mbits/sec

[5] MSS size 5948 bytes MTU 5988 bytes, unknown interface

[4] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47657

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 817 MBytes 682 Mbits/sec

[4] MSS size 6948 bytes MTU 6988 bytes, unknown interface

[5] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47658

[ID] Interval Transfer Bandwidth

[5] 0.0-10.0 sec 819 MBytes 684 Mbits/sec

[5] MSS size 7948 bytes MTU 7988 bytes, unknown interface

[4] local 192.168.1.104 port 5001 connected with 192.168.1.135 port 47659

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 820 MBytes 685 Mbits/sec

[4] MSS size 8948 bytes MTU 8988 bytes, unknown interface

64

APPENDIX B. DATA FILES

CPU usage for 1500 bytes frame

Linux 3.10.25-11.el6.centos.alt.x86_64 02/27/2014 _x86_64_ 2 CPU

06:41:15 PM PID %usr %system %guest %CPU CPU Command

06:41:16 PM 791 0.00 25.00 0.00 25.00 0 netback/0

06:41:17 PM 791 0.00 24.00 0.00 24.00 0 netback/0

06:41:18 PM 791 0.00 25.00 0.00 25.00 0 netback/0

06:41:19 PM 791 0.00 25.00 0.00 25.00 0 netback/0

06:41:20 PM 791 0.00 25.00 0.00 25.00 0 netback/0

06:41:21 PM 791 0.00 24.00 0.00 24.00 0 netback/0

06:41:22 PM 791 0.00 25.00 0.00 25.00 0 netback/0

06:41:23 PM 791 0.00 25.00 0.00 25.00 0 netback/0

06:41:24 PM 791 0.00 24.00 0.00 24.00 0 netback/0

06:41:25 PM 791 0.00 25.00 0.00 25.00 0 netback/0

Average: 791 0.00 24.70 0.00 24.70 - netback/0

CPU usage for 5000 bytes frame

Linux 3.10.25-11.el6.centos.alt.x86_64 02/27/2014 _x86_64_ 2 CPU

06:39:20 PM PID %usr %system %guest %CPU CPU Command

06:39:21 PM 791 0.00 19.00 0.00 19.00 0 netback/0

06:39:22 PM 791 0.00 19.00 0.00 19.00 0 netback/0

06:39:23 PM 791 0.00 20.00 0.00 20.00 0 netback/0

06:39:24 PM 791 0.00 19.00 0.00 19.00 0 netback/0

06:39:25 PM 791 0.00 19.00 0.00 19.00 0 netback/0

06:39:26 PM 791 0.00 20.00 0.00 20.00 0 netback/0

06:39:27 PM 791 0.00 19.00 0.00 19.00 0 netback/0

06:39:28 PM 791 0.00 19.00 0.00 19.00 0 netback/0

06:39:29 PM 791 0.00 19.00 0.00 19.00 0 netback/0

06:39:30 PM 791 0.00 19.00 0.00 19.00 0 netback/0

Average: 791 0.00 19.20 0.00 19.20 - netback/0

65

APPENDIX B. DATA FILES

CPU usage for 9000 bytes frame

Linux 3.10.25-11.el6.centos.alt.x86_64 02/27/2014 _x86_64_ 2 CPU

06:35:54 PM PID %usr %system %guest %CPU CPU Command

06:35:55 PM 791 0.00 20.79 0.00 20.79 0 netback/0

06:35:56 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:35:57 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:35:58 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:35:59 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:36:00 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:36:01 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:36:02 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:36:03 PM 791 0.00 21.00 0.00 21.00 0 netback/0

06:36:04 PM 791 0.00 20.00 0.00 20.00 0 netback/0

Average: 791 0.00 20.88 0.00 20.88 - netback/0

66

Appendix C

Issues

• Best practices for Xen suggests, to pin (CPU affinity) one core to Dom0,
i.e. to dedicate a separate core to Dom0, which increases the performance
(no other VMs can use that core if it is idle). However, performance
decreased when one core is dedicated to Dom0. This might be because
only one core was available other VMs (insufficient physical resources).

• Tried using the HP procruve (2626-PWR J8164A) switch, which was
available in the laboratory. Though the switch has two GbE ports, it
do not support jumbo frames. Another NIC tested, D-link System Inc

DGE-528T Gigabit Ethernet Adapter supports a maximum 7152 bytes
of MTU.

67

www.kth.se

TRITA-ICT-EX-2014:27

	Abstract
	Sammanfattning
	Acknowledgments
	List of Figures
	List of Tables
	List of Acronyms and Abrreviations
	Introduction
	Problem Statement
	Goals
	Structure of the Report

	Background
	Cloud Computing
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)

	Virtualization
	Types of virtualization

	Virtualization Technologies
	Xen
	OpenVZ
	Kernel-based Virtual Machine (KVM)

	Xen Hypervisor
	Scheduling Mechanism in Xen

	MTU and Jumbo Frames
	Transmission Control Protocol
	Related Work
	Work on schedulers
	Work on MTU and network performance

	Methodology
	Workloads and Tools
	Iperf
	TCPdump
	httperf
	Additional tools

	Measurement Metrics
	Network Throughput
	Network Latency
	CPU utilization

	Experimental Setup
	Bridging

	Evaluation and Results
	Throughput
	CPU Utilization
	Throughput at the client
	Additional Measurements
	Xen Performance Comparison
	TCP Behavior in Virtual Machine

	Analysis and Discussion

	Conclusions and Future Work
	Conclusions
	Future Work
	Required Reflections

	Configuration
	Data Files
	Issues

