A Topologically Aware Resource
Management System

&

£y,
SHARIQ MOBEEN EKTHS

{B VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Degree projectin
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden

A Topologically Aware Resource
Management System

Sharig Mobeen

mobeen@kth.se

2014-01-15

Master’s Thesis

MSV-RBS Department at Ericsson

Examiner: Professor Gerald Q. Maguire Jr.
Industrial Supervisor: Magnus Krongvist

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology
Stockholm, Sweden

Abstract

As companies fight for market share whoever is able to bring products to market faster
has an advantage over their competitors. Therefore it is absolutely essential to constantly
evaluate and optimize processes to achieve shorter time-to-market for products.

These optimizations have to be carried out in all parts of a company. This thesis describes
one such attempt made by a Swedish telecommunication vendor focused on enabling a
resource management system to gain a greater understanding of the resources available
during testing. This system manages all of the hardware utilized by the users, software
testers, within one particular part of the organization and aids users by automatically
converting the information stored in its database into a configuration file that will later be
used in the testing framework’s execution environment. Unfortunately, the current version of
this resource management system lacks semantic understanding of the information necessary
to automatically generate the configuration file, leaving a rather large part of the
configuration file to be manually entered by the testers, a rather time-consuming task. The
inability to completely automate the process means that the testing process is slower, more
error prone, and increases the work needed for a new engineer to become a productive
software tester.

In order for the resource management system to automatically generate the configuration
file it needs to know not only which resources it is managing, but must also how these
resources are interconnected, i.e. the topology of the resources. For this reason this thesis
describes how to make the resource management system topologically aware, thus making
verification of the System under Test (SUT) more efficient and mitigating the problems
mentioned above. This thesis does not deal with the intricate details of how to automatically
extract the topology, as this is inherently domain specific and thus difficult to generalize.
Rather, this thesis focused on how to allow users to custom-build their desired topology by
defining a set of rules that restrict how resources can be interconnected.

The goal of providing functionality for storing and retrieving topological information
from database has been successfully achieved, and the resulting code has been integrated into
the existing resource management system. However, the functionality has not yet been
delivered because of a limitation in our front controller that stops us from providing an
efficient web interface to our tool. After delivery the implemented solution is expected to
remove most manual work related to test configuration and therefore also reduce the learning
curve for new engineers.

Keywords: Topology, Resource Management System, SUT, Testing

Sammanfattning

Nir foretag slass om marknadsandelar har de som kan leverera produkter till marknaden
snabbare en fordel over sina konkurrenter. Det dr dédrfor av hogsta vikt att kontinuerligt
utvéirdera och optimera processer for att produkten snabbare skall nd marknaden..

Dessa optimeringar maste utforas inom samtliga omraden inom ett foretag. Denna uppsats
beskriver ett sddant forsok av ett svenskt telekombolag att stirka ett resurshanteringssystem
for att uppnd en hogre forstéelse for de resurser den hanterar. Detta system hanterar samtlig
hardvara for anvidndare (mjukvarutestare) inom en del av organisationen. Det hjilper
anvdndarna att automatiskt konvertera informationen i sin databas till en konfigurationsfil
som anvédnds 1 testramverkets exekveringsmiljo. Tyvérr saknar den nuvarande versionen den
semantiska forstdelsen av dess data for att kunna automatiskt generera konfigurationsfilen,
vilket tvingar anvindaren att manuellt 4gna sig &t denna tidskrdvande uppgift. Oférmagan att
inte kunna automatisera fullt ut innebér att den 6vergripande testprocessen ar langsammare,
mer felbenigen och Okar tiden det tar for en ny ingenjor att komma igéng och bli en
produktiv mjukvarutestare.

For att resurshanteringssystemet ska kunna generera konfigurationsfilen automatiskt
krivs inte bara kunskap om vilka resurser den hanterar utan ocksa hur dessa ér
sammankopplade. Det vill sdga hur de topologiskt relaterar till varandra. Den hdr uppsatsen
beskriver darfor hur ett resurshanteringssystem kan bli topologiskt medvetet och déarigenom
astadkomma en mer effektiv testning av produkten och didrmed Overkomma de tidigare
ndmnda problemen. Denna uppsats inte gd& in pa detaljer om hur man extraherar den
topologiska strukturen av resurser eftersom detta i sin natur &r doménspecifikt och darigenom
svart att generalisera. Fokus istéllet ligga pa hur man kan tillata anvindare att bygga onskad
topologi genom att definiera regler for hur olika resurser kan sammankopplas.

Malet vi satte upp med att kunna lagra och inhdmta topologisk information fran en
databas har med framgang integrerats i det existerande resurshanteringssystemet. Andringen
ar dock @nnu inte fullt ut levererad pa grund av en begrinsning i vdr nuvarande front
controller som hindrar oss fran att pa ett effektivt sitt koppla samman vért nya verktyg med
ett webbgransnitt. Efter leverans forvintas den implementerade 16sningen eliminera storre
delen av det manuella arbete som tidigare krivts i samband med konfiguration av testmiljon,
och dirigenom dven minska inldrningskurvan for nya ingenjorer.

Nyckelord: Topologi, Resurshanteringssystem, SUT, Testning

il

Acknowledgements

First of all, Thanks to ALLAH, the most merciful and most beneficent for giving me
wisdom and allowing me to complete this thesis.

I would like to express my gratitude to Professor Gerald Q. Maguire Jr. for his
assistance & supervision. His invaluable guidance helped us in all the difficulties we faced in
the progress of this thesis project. I would like to give special thanks to my supervisor
Magnus Kronqvist for helping me to develop my technical skills and for his continuous
guidance and encouragement throughout this thesis process.

I wish to express my special thanks to Ahmed Kamal Mirza (Late), Muhammad Muaaz,
and Wagqas Liaqat Ali for their moral support and guidance during my study period. I also
wish to express my gratitude to Abdul Rahim and Muhammad Fahad for their valuable
recommendations of how to improve this thesis.

Last but not least, I want to acknowledge & express gratefulness to my family who
showed great patience and endured with me throughout all.

Table of Contents

F N 01 4 = ot OO O TPS ST S TR UPT PRSI i
SAMMEBNTALENING ..ttt st e h e b s e bt b e s e e bt e b e se e Rt e R e e e bt e R e e e bt e R et e b e ne e st ebeneene s b e e enenr s iii
ACKNOWIBAGEMENTS......cee ettt et b e bt ae e s e e e e b e se e e be s bt e Rt ehe et e mseseeebesbesbeebeeaeanteseenbesbesaeas v
TADIE OF CONTENTS. ...ttt b h b h e b e bt b et e it b et e st b e b et s b e s e st sbe s et nbe e Vii
LISt OF FIQUIES ..ttt etk et b et b e s e e st b s e e Rt b e s e e he e b s b e st e b e e b et eb e s b et ebenb e st b e e eneeee iX
LI o =T =SSP Xi
List of acronyms and abbr@ViationS..........cvoieirieieres e Xiii
R 1 1€ o [ot A o o TSP STTTTTRR 1
1.1 Problem defNTtION.coeiiiiiieie ettt ettt et st sae bttt 1
1.2 CONEEXE OF STUAY .veviiiiiiieieieee ettt et e st e s bt e te e st e esbeesbeesaessaesseensesssesssesssesseenseenseans 1
1.3 IMIOTIVALION ...ttt ettt et e h e b et e e et e bt e e bt e b e e bt emaesmeesaeesbe e bt enteenteenteebeenbeenbean 3
14 Objectives and CRAIENZEScoveriiiiiiiiteeiieiiei ettt ettt ettt sae et bt se et e e e teseeebeeseeseeneeneeneenes 3
1.5 TATZET AUAICIICE ...ttt ettt et e a e b et e bt e e e ebtesbee s bt e bt emtesaeesaeenbeenbeenteans 6
1.6 L0034 138 o)1 13 o) 1SRRI 6
1.7 L0 1011 T 0TSPTSRO 7
2 Basic Conceptsand Background SEUAYccccocvieriiemerieerese st sse e s eeesee s e e s sre e eneeseeesseesrennes 9
2.1 BaSICS Of TESTINE ...eeuvietieeiieiieiieie ettt ettt te st e st et et e enaeesteeseeseenseensesnsesseesseenseenseenseenseansesssenseensenn 9
211 LeVEIS Of TOSHIG ...ttt ettt 9
2.1.2 Types Of teSHNG LECAMIGUESc..ccooeveeiieiieiiiie ettt ettt be et sre e 10
2.2 Taxonomy of Test deVEIOPIMENL........cc.eecuieiirieriieiiete ettt ettt a e st esbeebeessessaesseesseesneees 11
23 Resource Management System (RIMS)cc.ooiiiiiiiiiiiiiei e e 12
231 SClf-fOTMING SYSTEIS ...ttt ettt ae ettt e ettt ee et eae e e 12
2.3.2 LAZY SYSTOIMS ..ottt ettt ettt nn e 12
2.3.3 Network ViSUQLiZAtiON SOfIWAFE...............ccoiueieiii ittt ettt 13
2.4 Common Public Radio Interface (CPRITM).........cc.cooiiiiiiiiiieeie ettt ettt et tae e eraeeavee s 14
2.5 Network topology Management SYSEIMcc.eerueerierierieriierteeteetesteesteeseeseseeesseesseessesnesseesseesseeseans 14
2.5.1 Applications of Topological Resource Management SYStems...............c.cccueverveeseeneeveeneennanneans 15

2.5.2 Network topology management system through a database of managed network resources
including [0ICAl TOPOIOZIEScc.cceeeiiiieiieiiieieeieeeeee ettt 16
2.6 GITAIIIMAT ..ttt ettt sttt et ea bt eat e eb e s bt e bt et e eateea et sae e s bt e bt et e eateeatesbaesb e e beenbeembeemeesueenae 17
2.6.1 Recursively enumerable grammar (Type-0)cccoooiioiioiiiiiniaiieeeeeeeee e 17
2.6.2 Context-sensitive grammar (TYDE-1)c.cccuuieiiiriiieie ittt 17
2.6.3 Context-free grammar (TYPE-2)..........cccuouioiiiioi ettt 18
2.6.4 Regular grammar (TYPe-3)ccuu ettt ettt 18
I (V= {gToT (o] [T | OSSOSO 19
3.1 F N Y (S LT o) 01 (010) 13 PSSP 20
32 SUZEESHION/SOIULION ...ttt ettt et et e e e e e sseesseesseenseensesseesseesseenseenseenseensessnenseensens 20
33 DEVEIOPIMENL ...ttt sttt ettt et et et eeabe e s tessee s st enseenseenseessenseanseenseensessseseenseensesnsesens 21
34 EVATUALION ...ttt sttt et b e st b e a e bttt b et beebeene et et nee 21
3.5 COMCIUSION ...ttt ettt ettt b e bt bt e st e s et e st e b e sb e eb e estes b et e e b e sbeebeeaeenneneeneen 22

4 "PeppesBodega’ RIMS....... ettt bbbt bt h et e e e et he et et nee b b ene e e e ee 23
4.1 OLA-PBSYSTOIM ...ttt ettt s et et e be s et e b et e bt saeebe e st mb e st e ebeeseeseeneenseseeneeneenes 23
4. 1.1 INfOFMALION BANK..........ooioiiieieeeee ettt ettt ettt 24

B B 7 7211 o K TSRS PSRPRIU 24

42 PeppesBodega-RIMS ..ottt ettt et et st esae e seenseeneennesnne e 25
421 DEVEIOPDIMENL ...t et 25

42,2 SEAKE-MOIACES ...ttt bttt ettt 25

42,3 ACCESS FIGRES .ottt ettt ettt b e ns b ent ettt e eta et beenre e 25

42,4 WED BASEUA VIEWS ...t et 26

4.2.5 Salient Features of PeppesBodega-RMSccocoioiiiiioiiiiiiiiiieee e 27

4.2.6 Architectural design of PeppesBodega-RMS..............c.ccocooiiiiiioiiiiiiieieies et 29

5 PeppesBodega Extended RM S s Topological FrameworKccciiririiniine e 33
5.1 EXISTING AESIZI -.cntteuiieiiieie ettt ettt ettt et ae et e bt et e et e eneesaeenaeenteeneeneeeneene 33
5.2 DESIZN TTANSTEION ...ttt ettt ettt ettt e bt e b et et e s st e st et e emeeeam e neesaeesaeenaeenseeneeneesneenne 33
5.2.1 Development t00lS and deSIIN..............c.ccocouivuiiiiiiiiiiiieiit ettt ettt 33

5.2.2 Integration with exiSting QrCRITECIUTE...............cc.cccouiiiriiiiiictieie st et 37

5,23 IREEFSUCES ..o e ettt 43

6 TeStiNg and EVAIULION..........cciiiciceee ettt et sttt et e eaa et e e s temeeseesee s enteseesreseeneeeents 45
6.1 Achievements and DISCIEPANCIESeevvieriieieriertieteeeeseesteeseeiteseesseeseessessnassesseesssessesssesssessesseenns 45
O.1.1 ACHIEVEIMEILS ...ttt ettt et ettt 45

0.1.2 DISCTEDANCIES ..ot e ettt e et e e et e st e e s abeeeabeessb e sheessbeesssaenaseesseensseennnas 46

6.2 Analysis of the characteristics of PeppesBodega-TFcccooiiiiiiiiiiiiee e 46
0.2.1 AdMIRISIIALIVE OPE@FALIONSccueeieeeeieeiei ettt ettt et e et e et eneeneeaneenee 46

6.2.2 Components of a topological RMSc..ccooveiieiiiiee ettt et 49

6.2.3 Features of a topological RMScccociiimiiiiiiiiiiiteie ettt ettt 50

6.3 Testing of PeppesBodega-TFc.ooiiiiiiiieeeee et s 51
0.3.1 TSt CONFIGUIAIION. ... ettt she ettt et 51

0.3.2 RElIQDIIILY [ESHING.........c.oeevveeieiie ettt ettt ettt ettt aeeaaesteeaeesseensensesnee e 52

0.3.3 PerfOrmanCe tESLING.c.cccveoecueeieeiieeiiecie ettt eete ettt ae st ae et saeeeaeesae e enaeenee s 59

0.3.4 TS COVOIAGO.........oeeeeeeeeeee ettt ettt et ettt et eat et et 81

0.3.5 TeSHNG Of WED-ULL.......c.ccoiiieeie ettt ettt ettt eneens 85

7 ConclusioNS and FULUIM@WOIKccouiiiiiiiiiii s e e 86
7.1 COMCIUSIONS ...ttt ettt ettt ettt st et bt sae bt et e st e bt sae bt eseensenenbesaeene 86
7.2 FULUIE WOTK ...ttt ettt st st et sttt saeeaeene 87
7.3 RETIECHIONS ...ttt sttt st st se e seen 88
REFEIEINCES ... e 91
N] = T [0 95
Y = TN =rs = TaTo F= o o =T g o = GRS 95
B. BNF-EI@nQg QramIMarccccooiieieiieiieiesieeeteeseeseste s e s e sreste s e sressesseesaetasessesssessessessesmesesssessessessessessensensessens 97
O O 101 To1 O 1= o T 1= {1 o [P TUUUTTP 97
D. TeSNG Of WED-UL ... ettt sr e e b b nn e ene s 100

viii

List of Figures

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 1-5:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 3-1:
Figure 3-2:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:

Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 6-16:
Figure 6-17:

Work flow and Team interaction MOdelccoiiiiiiiiiieeieesee et 2
STP view in PeppesBodega-RIMScovoiiiiiiiiiieiieseee ettt ettt snees 4
Create a new empty topological CONfIgUIAtIONc.cccvevvieriieriiiieiiereere e 4
Populating a topological coOnfigUrationcceeveerieriirciiiieriesie et sreesae e e 5
Generation of @ configuration file...........cccevierieiieiieiereee e 6
TEStING LEVEIS [5, 6] .onveeeieiieiieiieteee ettt ettt ettt ettt e s stessaessaesseesseenseensesneenseenseanseens 10
Black-box testing vs. White-box teStNG[5]......ccvervircirriiiieriieriierieeie e seeseeereesreereereeeneseeennees 11
Network Visualization Software Adopted from [16]........cceeiieiieiiiienieeeee e 13
Logical versus Physical topology [18].....cccuieiieiiiieieeee et 15
Research methodology of Design Science Research (Adapted from [27]).....ccceccveeveivniennnnnen. 20
The development model followed to construct the artifact(s).........ccceeveeevievieiiinienieiieieeieiens 21
Old-PB-System ATCRITECIUIEccuveiiieiieiieieitesttete ettt eteesteebeebeeaessaesreesseeseessesssesssenseenseens 24
Device view in PeppesBodega-RIMScccooiiiiiiiiiicece ettt 26
Architectural Design of PeppesBodega-RMS..........cccooiiiiiiiiiiiiecieeeeceeteee e 30
Architectural design of PeppesBodega-TFcccooieiiiiiiieiieeeee e 37
Create CONTIGUIALIONcvireieiieiieieeie ettt et e st e et et e et e esaesseeseensesnsesnsesneesseeseenseanseans 38
TOPOLOZY SIZNUIM VIBWeeviiietieniieieeiestesetesteesaeetesstesseesseesseenseessesssesseesseessesnsesssesssesseenseensenns 39
TOPOlOZY MANAZEIMEINT VIEWc.tieutieiieiieieieitienteerte et eeteetee et eteenteeseesseesseesseeseeneesneesaeesaeeaeennens 39
Textual configuration - Erlang-configccoociiioiiiiiiiieeeee e 40
Textual configuration - XIML.......cccooiiiiiii ettt sttt s e e 41
Device management of @ powered-0ff deVICe........ueiiiriiiiiiiiiiieeceee e 48
CONIOL OF AEVICES ...ttt sttt b e et eae et e et et e s beseeebeeneeneeneeneas 49
Requirement deliVEry PLanc.ooiiiiiiiiieieee ettt ettt 51
RECUISIVE ZrammMar PATSINGccveeveeverieriereertiesteeseesesaesseesseeseesesssesssesseesseessessesssesssesseessens 54
Create configuration - Max CNTccocoiiiiiiiiiiiiiec ettt steesre e sae e e sseesseenseens 63
Create configuration - MaX ACCc.coiieiiiiieiienieit ettt saesae st e sseeseseesseesseeseenseens 64
Create configuration - MaX OWNcociiiiiiiiriieie ettt seeseeesaeeaeenne e 64
Transaction of devices to configuration (dataset-1) - OWN with 49 devicesccecvevveeeiennene 68
Transaction of devices to configuration (dataset-1)- ACC with 49 devicescccecveveeeeenne 68
Transaction of devices to configuration (dataset-1) - CNT with 49 devices........ccccoeeveeeeeenns 69
Transaction of devices to configuration (dataset-1) — max CNT with 49 devices............cc........ 69
Transaction of devices to configuration (dataset-1) — max ACC with 49 devices..................... 70
Transaction of devices to configuration (dataset-1) - max OWN with 49 devices 70
Transaction of devices to configuration (dataset-2) - OWN with 100 configurations................. 73
Transaction of devices to configuration (dataset-2) - ACC with 100 configurations 73
Transaction of devices to configuration (dataset-2) - CNT with 100 configurations.................. 74
Transaction of devices to configuration (dataset-2) - max CNT with 100 configurations.......... 74

X

Figure 6-18:
Figure 6-19:
Figure 6-20:
Figure 6-21:
Figure 6-22:
Figure 6-23:
Figure 6-24:
Figure 6-25:
Figure 6-26:

Figure 7-1:

Transaction of devices to configuration (dataset-2) — max ACC with 100 configurations......... 75
Transaction of devices to configuration (dataset-2) - max OWN with 100 configurations 75
Delete configuration - Max CNTc.occieiiiierierieeee ettt eeessaeseeenneas 78
Delete configuration - Max ACCcoeouieiieiiieieeieeee ettt eae et e e seenseensessaenseensens 78
Delete configuration - max OWNccciiiiiiiriiieieie ettt esnaeseeeneas 79
Queries t0 MNesia databasecc.eecvieeiiiiieeie ettt s e e e e e e e beesabeesane e 80
Failure conditions and software levels of ED-12B, Adopted from[49]c.cccoviiiiiiniennnee, 82
'COVET' StAtEMENT COVEIAZE ... e.ueetieuiieiietietieteeteeiteeteesteesteeteeseesseesseeseenseeneeeseesseeseenseensesseenseas 83
'SMOhET MC/DC COVEIAZEvevetietienieiieieriete sttt ettt et e e s te bt sbeeeeese et ensessentesbeseeeneeneeneensaneas 84
Web-UI testing with Selenium and WebCHent............cccooiiiiiiiriiiieieeeee e 100

List of Tables

Table 2-1: Testing TerMINOLOZY ... ccuveiuiiiiieiieieee ettt et sttt e st esb ettt st saeesbe e e ens 11
Table 5-1: Levels of Grammar defInTtion.........c..cccveveirieieinieiiincineeteieteieee et 35
Table 6-1: fprof profile for create CONfIGUIAtIONccueviiriieriieiieieeeeeeee et ne e 62
Table 6-2: fprof profile for ‘Transaction of devices to configuration (dataset-1)"........ccccevvverieviecrievvennnnns 66
Table 6-3: fprof profile for 'Transactions of devices to configuration (dataset-1)"...........ccoocververrevirnnennnnns 67
Table 6-4: fprof profile for ‘Transaction of devices to configuration (dataset-2)"..........ccceeeevrerirecrrenennnnns 71
Table 6-5: fprof profile for ‘Transaction of devices to configuration (dataset-2)c..cocceverervereenienenuenne. 72
Table 6-6: prof profiler for delete CONfIGUIAtIONS.cc.eiiuieiiieiieieeiee e e 77

xi

List of acronyms and abbreviations

CPP

DID

DSR

DU I&V

FT

JCAT

JCT

LAB

MIS

MSV

NCI

png

RMS

ST

STP

SUT

SW

TF

TEC

XML

Connectivity Packet Platform

Device Identifier

Design Science Research

Digital Unit Integration and Verification
Function Test

Java Common Automated

Joint Common Test

Laboratory

Management Information System
Maintenance and System Verification
Node Common Infrastructure
portable network graphics

Radio Base Station

Resource Management System
System Test

System Test Plant

System Under Test

Software

Topological Framework

Test Environment Configuration

extensible markup language

xiil

1 Introduction

This chapter presents a general introduction and gives the basic background knowledge
required to understand this Master’s thesis. Next it describes the motivation for this thesis
project. Then, it summarizes the expected contributions in the field of testing that should
result from this thesis project. Finally, the chapter concludes with a description of the
structure of rest of thesis.

1.1 Problem definition

In the Maintenance and System Verification (MSV) - Radio Base Station (RBS) System
verification department, each RBS is tested at the system level. During system verification,
the RBS is tested both using regression testing (to ensure that it meets legacy requirements)
and feature testing (to lead market trends by providing novel features).

Testing of a lot of different types of Test Environment Configurations (TECs) in
conjunction with different RBS nodes requires a large amount of effort and time. Time and
effort are both critical attributes in the quality of testing of the system under test (SUT). If
more time is spent testing, then better quality of testing can be ensured (assuming that the
additional testing time is spent testing a larger number of test cases which cover more of the
system’s functionality). However, the time required to input the TECs into a test environment
is generally ignored. This leads to increased efforts on the part of the verification engineer,
with time spent unnecessary on preparation/debugging of the testing environment which may
even lead to an unreliable pass/failure verdict in the testing results.

Another problem is that currently the focus on testing is from the laboratory (LAB)
administration’s point of view. The LAB administration needs to keep track of the equipment
which is owned and ensure effective utilization of this equipment (for power consumption
saving and because this equipment is expensive). Bodega is the database providing the basis
for the Resource Management System (RMS) used by the LAB administration. Although this
RMS has addressed the problems of tracking and equipment utilization very adequately, there
are still major opportunities for efficiency enhancements that this thesis project hopes to
contribute to. Not all but many of the pieces of equipment need more structured and detailed
information to assist not only the LAB administration to work effectively. Additionally, this
data can also provide greater insight for the test teams enabling them to increase the
automation of their test environment.

1.2 Context of Study

This thesis project is being carried out at Ericsson AB, Kista, Sweden in the MSV - RBS
System verification department. In this Master’s thesis the word “department” always refers
to the “MSV — RBS System verification department”. This department consists of two test
teams: microCPP (Connectivity Packet Platform) and Node Common Infrastructure (NCI)
system test (NCI-ST) team (NCI-1 and NCI-2). To be more specific this thesis project is
carried out in the NCI I-2 test team. The NCI -test teams perform Black-Box testing of
software (SW) (see section: 2.1.2 for details). The NCI team consists of a NCI function-test
(NCI-FT) (see section: 2.1.1 for details) team and a NCI-Design team. Figure 1-1 shows a
model of the interactions between these teams.

| | .]
- NCI-FT delivers JCT framework
NCI [.41 T
NCI - Design
I‘_T £ JCAT framework
v | Testing frameworks
NCI-ST
[
MSV- RBS microCPP
]
o : Peppes Bodega
Team |
Figure1-1: Work flow and Team interaction model

In the context of this Master’s Thesis project we will not focus on the hierarchy of teams
in the department, but rather only on those details relevant to this Master’s Thesis project.

NCI can be considered as two cross-functional teams: NCI-FT and NCI-Design (see
section 2.1 for details). NCI-Design develops certain features and they are initially tested at a
function-test level by NCI-FT. The NCI-FT team uses Joint Common Test (JCT) as a test
framework for testing implemented features. After testing at a functional level, these features
are then delivered as a black-box to the NCI-ST team.

The NCI-ST team is currently using JCT as a test framework for testing implemented
features, but on the side has started porting the test environment from JCT to Java Common
Automated (JCAT). Both the JCT and JCAT test frameworks use the PeppesBodega-RMS
(see Chapter 4 for details) for retrieving information about the SUT. PeppesBodega-RMS” is
an internal tool used within the MSV department and has not been made publically available.

The LAB Team is responsible for the physical installation of devices in the lab. This team
also uses the PeppesBodega RMS to store information about the devices. The information
stored in the PeppesBodega RMS is then used by NCI-FT and NCI-ST teams for testing
purposes either directly (to access device information) or indirectly (to execute test cases via
JCT/JICAT framew).

" There is no relationship between Pepesbodega (http://www.pepesbodega.se/) and PeppesBodega-RMS. It
is just a coincidence that their names are similar.

1.3 Motivation

As discussed earlier the time and effort spent during the testing process plays a key role in
determining the quality of testing of the SUT. The ability to perform testing using different
test equipment depends on both the location & availability of the test equipment & SUT; and
the topology of the interconnection of this equipment that is needed to perform the desired
tests on the SUT. The motivation for this thesis project is to provide a hassle-free
environment to the MSV — RBS System verification department. Also, the results should ease
the LAB setup process, both from an administrative point of view and for verification
purposes.

The above discussion establishes the need for a topology aware RMS system which will
contain comprehensive details about the SUT as administered by the LAB team.

1.4 Objectives and Challenges

The main goal of this Master’s Thesis project is to design, develop, and evaluate a
topology aware RMS system that will provide efficient TECs and efficiently use &
administer the LAB’s equipment. The specific goals of this Master’s thesis are:

e Design and implement a topological RMS that outputs a TEC for the SUT in a textual
format (in the scope of this Master’s thesis this format will be: JCT-config (Erlang) or
JCAT-config (extensible markup language (XML)) and in a graphical format, such as
portable network graphics (png);

e To provide a detailed view of all of the relevant LAB equipment for administrative
purposes ; and

e To evaluate the tool that is produced.

In order to achieve these goals, the biggest challenge is expected to be gathering the
requirements from all of the departments using the existing PeppesBodega-RMS. The
remaining challenges include collecting data about the LAB equipment and their
interconnections in order to specify their topology.

Figure 1-2 shows the current picture of devices booked in a System Test Plant (STP).
The devices have two interfaces for performing action i.e. IP (referred to Ethernet in Figure
1-2) and Serial connection (referred to RS232 in Figure 1-2) connection. An IP connection
has an IP address associated to it and used for sending commands to the device. The serial
connection is a TCP connections and physical realized over an Ethernet connection to a
switch with multiple ports; this interface is used for debugging purposes. The STP
information shown in Figure 1-2 lacks any information about how the four devices (identified
by Device Identifiers - DIDs) are connected to each other. This topological information is
critical for the verification engineers for their test oriented tasks. For example: “Checking the
delay measurement” for the connection between device-A and device-B requires information
such as (1) type of connection between them, (2) length of interconnection (cable connecting
the devices), and other delay calculation information which depends on topological
information.

Show | 10 E! entries

Search

Availability Device Name ~ STP DID Ethernet RS232 Site Cabinet
ebilran STP265 1574 Seki3003 E1

ebilran STP265 1589 Seki3003 E1

ebilran MRBS1944 STP265 1944 10.10.10.12 172.31.89.162 2005 Seki3003 E1

ebilran MRBS1971 STP265 1971 10.10.10.13 172.31.89.162 2004 Seki3003 E1

Showing 1 to 4 of 4 entries

First | | Previous | |1 | Next | Last

Figure 1-2: STP view in PeppesBodega-RM S

As discussed above this topological information is very important when it comes to
testing of interconnections or to setup connections between the devices. In context of this
Master’s thesis project topology’ and ‘configuration’ will be used alternatively, as every test
configuration corresponds to a specific interconnection topology of a selected set of devices.
The aim of the project is to realize a user interface that will enable a user to create a test
configuration by selecting the devices that are to be interconnected with the SUT (and each
other). Figure 1-3 shows a proposed interface for creating an empty topology. In Figure 1-3 a
new configuration ‘Configurationl’ is created for user ‘Alice’.

Configuration Name Configuration!
User ID Alice
Figure 1-3: Create a new empty topological configuration

After creation of a new configuration, the devices included together with the SUT should
be included from the main database in order to carry out a particular test oriented task. This
interface should be capable of including a complete STP or a single standalone device from
an existing STP. For example, consider the case where STP-1 contains device-1, device-2,
and device-3; and STP-2 contains device-4, device-5, and device-6; then it should be possible
to utilize all devices (device-1, device-2, and device-3) from STP-1 and any single device
from STP-2 (device-4, device-5, or device-6). Figure 1-4 shows that all of the devices in
STP-1 and device-4 (from STP-2) are being added to the ‘Configuration-1" for user ‘Alice’

(in the configuration created in Figure 1-3).
CONFIGURATION-1_ALICE / Devices \
device-1 IAI
device-2
device-3 .
device-4
See
Figure 1-5 Ivl
4)
Device STP-1 A
D
STP device-4 D
_ _J
Figure 1-4: Populating a topological configuration

Figure 1-5 shows the formation of a configuration. The aim of this interface is to provide
a user with the ability to define the interconnections between any two components. This
basically involves the following five important items of information:

1.

el

DID of first device

Port of first device that needs to be connected

DID of second device

Port of second device which is connected to first device
Information about this interconnection

It is also important to note that if device-1’s port-1 is connected to device-2’s port-1, then
the information about this interconnection should be the same when seen from device-2’s
perspective. For this purpose the functionality of undirected graphs will suffice for the
objectives of this Master’s thesis (See details in Chapter 5).

As mentioned in sectionl.2 there are two frameworks being used for test automation: JCT
(written in Erlang*) and JCAT (written in Java). JCT requires input in Erlang (cfg) format,
whereas JCAT needs input in XML format. To cater to the needs of all of the teams it is
important to provide the user with the ability to generate either an XML or Erlang
configuration file.

" For further information about the Erlang programming language see: http://www.erlang.org/

CONFIGURATION-

<<device-
Ports Connected Port of Connected | Information of interconnection
DID . DID
Port-1 B device-1 B [[pon-X1 B Length:10m

[Port-1 [N evice- 1 [Mliport-X1 |

Port-2 | device-2 | | |port-X2

Pot3 | |deviced | pot-X3 |
device-4
Generate configuration file [XML]
[Erlang]
Figure 1-5: Generation of a configuration file

1.5 Target Audience

This results of this thesis project will assist the verification engineers within the MSV —
RBS System verification department (here after the “target” department), function test (FT)
teams, and LAB administration team. The thesis should also provide additional insights for
test architects (for example, enabling them to design better and more complete tests). Other
verification departments might utilize the research, findings, and salient features of this
project to assist them in efficiently performing testing and for administrative purposes.

1.6 Contributions

This Master’s thesis contributes to an existing PeppesBodega RMS by modifying
following the behavioral aspects of this RMS:

e Restructured the PeppesBodega RMS:

Store/retrieve topological information

Provide hassle-free input for generation of TECs
Enable efficient utilization of used/unused resources
Align TEC information for all teams using this RMS

This master’ thesis also contributes to facilitating understanding of the basic concepts
related to testing and to build a foundation for new verification engineers by providing
domain specific knowledge for the target department.

The idiom “Use a picture. It's worth a thousand words” explains the importance of
visualization in understanding complex concepts. There are two basic means for explaining
any phenomenon, namely textual and graphical representation. Tools for analysis can either

generate textual details or graphical visualizations. Unfortunately in many cases presenting
information in only a textual format makes it quite difficult to digest the concept, while in
other cases a graphical representation is insufficient for understanding the idea behind the
concept. Moreover, having only a graphical representation may not provide the input
necessary for other processes (in our case the need for a TEC). For these reasons this thesis
project provided will utilize textual representation and emphasize the need for graphical
representation.

1.7 Outline

The thesis is organized into six chapters. Following this introduction chapter, Chapter 2
provides the basic concepts and terminology of testing (providing a foundation for rest of the
thesis), then reviews some of the relevant literature within the domain of RMS in general and
a topology based RMS in particular. Architectural details of the existing PeppesBodega-RMS
are given in Chapter 3. Chapter 4 explains the methodology adopted to achieve the goals
stated in Section 1.4. Chapter 5 explains the design and gives implementation details of the
proposed topology based RMS (here after referred to as the PeppesBodega-TF (Topological
Framework)). Chapter 6 describes the testing (functional and non-functional) and evaluation
of a prototype of the PeppesBodega-TF. Chapter 7 concludes the thesis and suggests future
work.

2 Basic Concepts and Background Study

This chapter provides a comprehensive background concerning the two major subjects of
this thesis: testing and resource management systems (RMSs). Testing has been further
divided into two subsections, with Section 2.1 introducing the concepts that are critically
important for readers who have no or limited background in testing; whereas section 2.2
focuses on explaining the terminology of the testing domain. Section 2.3 provides
information to give the reader a basic understanding of approaches to better utilize resources
when testing as well as how to reduce the overhead in doing so. Section 2.5 introduces the
basics of a network topology resource management system. Finally, section 2.6 introduces
the basics of formal grammars.

2.1 Basics of Testing

If you ask ten different verification engineers, it is quite possible that all of them define
and interpret “testing” in their own way. However, with respect to software all of the
definitions will highlight the belief that testing is used to find bugs in the software in order to
assure better software quality. A concise and one of the most accurate definitions is provided
by B.B. Agarwal, et al.:

“Testing is the major quality-control measure used during software development.
Its basic function is to detect errors in the software. Thus, the goal of testing is to
uncover requirement, design, and coding errors in the program” [1].

Testing is generally performed in two organizational structures[2]:

1. An independent development team and a separate independent test team; or
2. A team consisting of testers and developers, i.e., a cross functional team.

The concept of cross-functional teams has been gaining attention within a large number
of organizations over the past several decades[2]. We will not compare which organizational
structure is better, as this is outside of the scope of this Master’s thesis. However, for the
purposes of this thesis project we need to be able to support both organizational structures.

2.1.1 Levels of Testing

Software testing depends upon the scope (or levels [3, 4]) and the time plan usually
follows the categorized order (see Figure 2-1):

1. Unit Testing,

2. Integration Testing,
3. System Testing, and
4. Acceptance Testing.

Each of these levels of testing will be described further detail in the following paragraphs.
These descriptions will follow the chronologic order generally used for testing; hence it will
start with unit testing and end with acceptance testing.

System testing

Acceptance testing

Figure 2-1: Testing levels[5, 6]

2.1.1.1 Unit Testing

Unit testing (component testing or function testing) is used to test isolated parts of
modules, units, or modules of software. This type of testing is usually performed by the
developer of each particular software unit.

2.1.1.2 Integration Testing

After unit testing, the isolated units that are intended to work together are grouped
together and verification is performed on these groups (as built from these units). This is done
to verify that the communication within a particular group of units works as expected.

2.1.1.3 System Testing

System testing is done after integration of a complete system has been performed. A
system test is the first stage in which the system is tested against specific system
requirements. Verification performed in this stage that does not require knowledge of the
software’s design is referred to as black box testing. This thesis project is mainly being
carried out within a department which focuses on this level of testing.

2.1.1.4 Acceptance testing

Acceptance testing is an important test phase because this level of testing will analyze if
the quality of the software of the whole system is sufficient to deliver the system to
customers.

2.1.2 Types of testing techniques
Testing can be performed using either of following two techniques[5]:

1. Black-box testing or
2. White-box testing

In black box testing input (as a stimulus) is given to a system, and then the result is
matched with the expected (required) output. If the result matches the expected output, then
the test is said to be passed — otherwise the test is said to be failed. In white-box testing we
are concerned with both the test result and whether the software worked properly or not. In
the case of white-box testing we have access to the source code for the software and can
analyze the test results in terms of execution paths through the code. In the target department,
system testing is performed using black-box testing.

10

Unknown Equation versus Known Equation

Figure 2-2: Black-box testing vs. White-box testing[5]

2.2 Taxonomy of Test development

This section will provide the reader with the testing terminologies generally used in
automated test environments[6, 7]. We will describe desirable properties of the commonly
used terminologies and their interpretation in the target department (if not explicitly specified
otherwise). The most important terms are given along with a brief description in Table 2-1.

Table 2-1: Testing Terminology

Test Oracle

Test case

Test Suite
Test
Specification
Test Scope

Test Coverage

Legacy testing

The test oracle provides a verdict for the failure or passing of the
software application under test[8]. In the target department this is
referred to as a “Requirement specification” by the system-design team
and as a “Test Specification” by the test team.

A test case is the basic unit of an automated test suite. A particular test
case is designed to produce an output which will be checked by a test
oracle (requirement specification). Some of the desirable properties of
test cases are:

e Must have a single test oracle,

e Created using a modular approach,

e Designed in a structured way to facilitate its easy maintenance,

and
e Be well documented.

Test cases are combined together into a test suite targeting a common
area of interest.

See explanation of Test Oracle.

The test scope defines the amount of testing performed to reach a test
verdict which satisfies the pass criteria.

For a given test case or test suite the degree of test coverage specifies the
fraction of the complete set of features of a given SUT that are tested.

A “regression test” is performed in order to see if a newly added feature
causes errors in previously working release(s).

11

2.3 Resource Management System (RMS)

Resource management has always been an important part of any large organization and
even small groups of people working together may need to perform resource management in
order to efficiently achieve a goal of common interest. A number of software packages have
been developed to automate and assist in resource allocation (one of the main objectives for
creating and using a RMS)[9]. Horikiri et al. provided a generalized definition of an RMS:

“A resource management system, of the type wherein processes are applied to
real resources, which are resources previously input into a computer system that
performs information processing, to obtain new resources, includes a plurality of
context maintaining units that respectively establish a correspondence with
attributes ”.[10]

In Section 1.4 we noted that a focal point of this Master’s thesis project is the storage and
retrieval of topological information concerning a SUT to or from a RMS. In terms of this
topology formation RMSs can be categorized into two distinct classes: Self-forming
(intelligent) systems and Lazy (unintelligent) systems.

To the best of my knowledge after carrying out a detailed literature review, these two
classes have not been classified using these specific terms in any scientific literature.
However, from a research perspective these categories have been prevalent under different
names (see the discussion in Sections 2.3.1 and 2.3.2). The reason for this categorization in
the context of this Master’s thesis is provided in the following discussion of these systems.

2.3.1 Self-forming systems

Systems that consist entirely of intelligent” devices are called ‘self-forming systems’. A
significant body of research has been devoted to gathering resource information via different
communication methods within a network of such devices[11-15]. All of these methods have
their own advantages and disadvantages in terms of performance, capacity, completeness, etc.
For example, Migas et al. attempted to finding route information, topology information, etc.
with the help of static and mobile agents that crawl the network to obtain the information
necessary for reconfiguration of an ad hoc network [14]. Although this method automatically
obtains information available within the network, it injects extra traffic within the network.
This extra traffic may not be problematic when bandwidth is not a scarce resource, but the
method still has capacity implications.

As the devices registered in the PeppesBodega RMS are not intelligent, we will not
further study this approach. However, in the future this approach might be relevant if the
devices that are being registered are intelligent.

2.3.2 Lazy systems

Systems that consist of at least one non-intelligent device are called “Lazy systems”. The
reason why they are called /azy is that they do not automatically provide any configuration
information (for example, they do not provide any information concerning their

" Intelligent devices are devices that are able to sense their environment and can contribute to achieve a
specific goal. For example, gathering information about the topology of a system.

12

interconnection topology). This domain is applicable to the devices considered in this
Master’s thesis project.

2.3.3 Network visualization software

A number of programs for network visualization have been developed, each targeting
specific needs, such as for designing and generating different types of networks[16]. These
programs can either be used by manually entering information to create diagrams (for lazy
systems - section 2.3.2) or utilize automatic/semi-automatic (self-forming systems - section
2.3.1) approaches for creating diagrams by sensing their own environment. Figure 2-3 shows
a detailed overview of some examples of such software.

Import Virtual =

Rans NetworkData Devices o'
10SCAPE Network . X ;. N
Iisto D Yes Yes Yes Yes Yes
10-Strike Yes
Cade Yes
(Creately Yes
Dia Yes
Diagramly Yes
Edraw Yes Yes
Elia Yes Yes
LAN Surveyor s | No Yes
LanFlow Yes Yes
Lumeta IPsonar : Yes
na, ine - :
Networl Yes Yes
Mappin
MaSSHandra Yes Yes Yes Yes Yes
Microsoft Visic e
Professional ifesiites
Microsoft Visic 2
'w/ System Center Yes Yes
Yes
Yes
Yes.

Figure 2-3: Network Visualization Software Adopted from [16]

In Figure 2-3 the cells marked with red rectangles are applicable to a tool which meets the
goals (as stated in section 1.4) of this Master’s thesis. Network Discovery, in the scope of this
Master’s thesis refers to application marked “No” in this table. The column marked “Change
Topology” refers to providing the users of the application with the option to change the
topology of the SUT. The column marked “Cabling” is also important in the domain of
topological information, in the target department this concerns information about cable
connections (in terms of their length, delay, and type).

13

2.4 Common Public Radio Interface (CPRI™)

In order to facilitate the interconnection of radio equipment a number of vendors
(including Ericsson, Huawei, NEC, NSN and Alcatel-Lucent) have defined a common
scheme for specifying the internal interfaces associated with a radio base station.

The CPRI specification is defined for the communication between Radio Equipment
control (REC) and Radio Equipment (RE). The specification of CPRI covers layer 1 and 2 of
OSI model. The layer 1 (physical layer) supports communication both over electrical (local
radio units) and optical cable (remote radio units). Layer 2 (Data link layer) supports
flexibility and scalability. This standardization has provided a platform to cross-use the
products from different vendors. We will not provide details of this protocol as this is not
intrinsic ally of interest for this Master’s thesis. The readers who are interested can find
detailed information about its history, specification and ongoing activities at
http://www.cpri.info/index.html. The CPRI specification is relevant in this thesis only
because we will refer to CPRI ports (see for example section 5.2.1.3)

2.5 Network topology management system

The schematic description of a network of nodes and their interconnections is referred to
as a “network topology”[17]. A network topology can be categorized into two sub-categories
based on a geometrical view: a physical topology and a logical topology.

A physical topology refers to the physical placement of nodes and their interconnections
(via cables, fiber, etc.). In computer networks, physical topology refers to the physical layout,
i.e., the locations of the computer and the cabling between the computers.

In contrast, a logical (signaling) topology refers to the path followed by a signal from one
node to another node in the network. The logical topology mostly is the same as the physical
topology. However, in some cases software can introduce differences between the logical and
physical topology. In other cases the hardware within the nodes are responsible for the
mismatch between the logical and physical topologies. This (difference between the logical
and physical topologies) should not be taken as a fault in the network because logical
topologies are typically generated for a specific purpose.

Figure 2-4 presents a scenario where the logical topology is different from physical
topology. In the physical topology (shown on the left side of Figure 2-4) the computers are
connected to a central hub. The physical topology only indicates that the data packet will be
sent to all the other computers. However, if we want to know if “the data packet will be sent
simultaneously out all of the ports” or “will travel around a ring and be consecutively sent to
all the ports”, we have to look inside the hub (i.e., we must know how the input and output
ports are interconnected). This information which tells us the signaling path, in this case the
path a data packet will traverse, is referred as a logical topology.

14

Logical topology

Physical
topology

Figure 2-4. L ogical versus Physical topology [18]

2.5.1 Applications of Topological Resource
Management Systems

Topology resource management systems have been utilized in different fields, each with
their own domain requirements. The following two subsections describe two application
scenarios, where we see gathering of information about the topology of the resources in the
network in order to achieve a specific goal.

2.5.1.1 Conservation of energy in a sensor network

Schurger et al. [19] utilized the concept of topological resource management to conserve
energy in a sensor network. In their approach, the sensor nodes’ activity is tuned to maximize
sleep mode and the sensor nodes only enter wake mode when data needs to be forwarded to
neighboring nodes. Topological information is needed to plan the wakeup and sleep
transitions of the sensor nodes.

2.5.1.2 Efficient utilization of resources to increase network
lifetime

Pan et al. [20] also utilized information about a system’s topology to increase a network’s
operating lifetime in the case of battery powered wireless sensor network nodes. In their
approach, a two-tiered wireless sensor network consists of many base stations and many
sensor nodes. The sensor nodes were physically placed in clusters around base stations. The
responsibility of each sensor node is to capture, encode, and transmit sensor data (from the
specific area where it resides) in a raw format to an application node. The application node
then creates a local view of the area and sends this to the base station in a composite bit-
stream format. Passing topology information to the base stations helps the base stations to
better manage the network; thus increasing the network’s operating lifetime.

In both of the above scenarios, we see that both of the approaches to gathering
information about the topology of resources in the network can be used to achieve a system
specific goal.

15

2.5.2 Network topology management system through a
database of managed network resources including
logical topologies

Kulkarni et al. [21] presented a RMS for computer networks along with specific methods
for maintaining complex relationships in this network of computer elements. This
architecture used a simple database to store node information, type information, and view
data. The views are specific to the context of each node’s information. For example, adding
or removing a parent of a child node will change the views of both nodes.

This system was specifically designed for computer networks for management and
control purposes. The system was designed to provide the capability for visualization of
computer networks. As mentioned above, there are two types of topologies (logical and
physical). This system was capable of meeting the needs for maintenance of both physical
and logical topologies in the database by applying a new data model. Physical and logical
databases were stored in separate Management Information Server (MIS) databases. Users of
this system were restricted to accessing the data through the database containing the physical
topology. Consistency is maintained via a consistency application that is present in both
(physical and logical) databases.

2.5.2.1 Salient Features of a Network RMS

Over the past few decades there has been an enormous expansion in computer networks
and at the same time these networks are becoming more and more complex. The invention by
Kulkarni et al. still holds an important position as it was not specific to a particular computer
network. Their invention is still applicable for most network domains because it generalizes
the services that a RMS could provide. The following are the essential operations that
network administrators (i.e., management users) usually require:

Monitor Monitoring the network is important for calculating performance and capacity
metrics. How efficiently resources within the system are utilized can be
evaluated. Unusual behavior of resources can also be detected by statistical
methods appropriate for the specific domain of the system under consideration.

Manage Monitoring of resources creates an opportunity for administrators to find an
alternative way to utilize these resources in order to increase the system’s
efficiency.

Control The control part of the RMS ensures that the managed resources follow a
specified behavior.

2.5.2.2 Components of a topological managed RMS

The work of Kulkarni et al. introduced important components in the topological managed
RMS:

1. Plurality of nodes in the network

2. Plurality of interconnection among these nodes

3. A management system consisting of managed network resources stored in a database
4. Database of managed network resources including:

a. Definition of “Network nodes”
b. “Node types” associated with network nodes
c. “Node view” associated with network nodes

16

5. Plurality of network administrators

2.5.2.3 Specifications of a topological managed RMS

Apart from inheriting salient features of a network RMS (see section 2.5.2.1), the work of
Kulkarni et al. also provided following features that result from cross-communication among
the components (see section 2.5.2.2):

1. Network administrators should have the option to modify the database with
information about the managed network;

2. Network administrators should be able to visualize the “Node view” as extracted from
the database of the managed network; and

3. The “Node view” should be updated when node attributes change. For example, if a
parent is added to the attribute of a node, then this parent relationship can be used to
create a new “Node view”.

2.6 Grammar

In any programming language, we have a set of rules to write expressions in the language,
which will then be translated by the compiler into machine language instructions to perform
the requested operations.

The set of rules in formal language theory is known as a ‘grammar’. A grammar G can be
defined as tuple of four items: G = {N, T, P, S} where N = Finite set of non-terminals, T =
Finite set of terminals, P = Finite set of production rules, and S = a start symbol.

Chomsky [22] described a hierarchy of grammars with four classes of formal grammars:

1) Recursively enumerable grammar (Type-0),
2) Context-sensitive grammar (Type-1),

3) Context-free grammar (Type-2), and

4) Regular grammar (Type-3).

Type-1, Type-2, and Type-3 grammars are differentiated by the way the production rules
are setup for them. An explanation of these production rules are provided in their respective
subsections below. We will not go into the details of these grammars, as it requires quite a
detailed explanation of all the concepts involved. However Chomsky[22] and Natarajan [23]
explain automata theory and relevant topics in detailed.

2.6.1 Recursively enumerable grammar (Type-0)

In this grammar, there exists a Turing machine, for which production rules are defined
such that the machine will enumerate all possible words from the alphabets of the language.
2.6.2 Context-sensitive grammar (Type-1)

A context-sensitive grammar or type-1 grammar has production rules of form:

aAp - ayf

Where A is a non-terminal and a, B, y are the strings from the set of terminals and
non-terminals. Also the following restrictions are made:

o — empty or non-empty
B — empty or non-empty
vy — must be non-empty

17

2.6.3 Context-free grammar (Type-2)

Context-free grammars form the theoretical foundation for most programming languages,
even though the syntax is restricted to context-sensitive name resolution for declaration and
scope of code. Type-2 grammars have production rules of form:

A -y

Where A is a non-terminal and v is string from the set of terminal and non-terminals. y
can be empty or non-empty. A parser is often utilized for the subset of type-2 grammars for
easy parsing. LL parser[24] is an example of a parser which utilizes the subset of context-free
grammars.

We have utilized this approach in the implementation of the solution proposed in this
Master’s thesis. The reason for choosing this approach is that we needed a flexible approach
that can be easy maintained in the future despite increase in the number and types of devices
in the LAB.

2.6.4 Regular grammar (Type-3)

Regular grammar can be implemented in two ways: right-regular or left-regular
grammars.

Right-regular In this case the regular grammar is restricted to having a single
non-terminal on left side and the right side consists only of a single
terminal; which can be followed by single non-terminal in the case of a
right-regular grammar.

L eft-regular In this case the regular grammar has a single terminal on right side and can
possibility be preceded by a single non-terminal.

This grammar classification is extensively applied to regular expressions. Regular
expressions are frequently used for specifying searching patterns and defining the lexical
structure of programming languages — both are applications of regular grammars.

18

3 Methodology

The scientific research methodology used in this thesis project is based on a set of
analytical techniques and perspectives (or logically formulated steps) to investigate a given
phenomenon, to acquire new knowledge, and to correct & integrate existing knowledge.

The goal of this Master’s thesis project is to design, develop, and evaluate a topology
aware RMS system that will address the need to efficiently generate a TEC and enable
efficient administration of the LAB’s equipment. Therefore, this thesis has adopted the
Design Science Research (DSR) approach, because DSR involves designing novel artifacts to
analyze and understand the behavior of given aspects of information systems[25].

In addition to positivist and interpretive perspectives, DSR is considered is yet another set
of analytical techniques or perspectives for performing research in information systems[26].
Henver et al. describe the process of DSR as “Design science ... creates and evaluates IT
artifacts intended to solve identified organizational problems”[27]. Wherein the artifacts are
defined as “innovations that define the ideas, practices, technical capabilities, and products
through which the analysis, design, implementation, management, and use of information
systems can be effectively and efficiently accomplished”’[27].

We will create new artifacts to extend the PeppesBodega RMS in order to achieve the
goals stated in Section 1.4. The underlying process of this Master’sthesis is derived from the
general methodology of DSR as shown in Figure 3-1.

The process (shown in Figure 3-1) begins with an Awareness of problem. The knowledge
about the problem space is acquired during this phase, and the scope of the problem area is
delimited during this phase. The suggestion/solution phase follows immediately after the
Proposal (i.e., an output of the Awareness of problem phase). A tentative design is
formulated after building knowledge concerning the problem space. The tentative design is
implemented during a development phase. However, the techniques for implementation vary
depending on the design specification of the artifact(s) to be constructed. Once constructed,
the artifact is evaluated during the Evaluation phase according to the Proposal; deviations
from expectations (both quantitative/qualitative) are carefully noted and tentatively
explained. The Conclusion phase is considered as the finale of a specific research effort. The
results obtained, knowledge gained, and the facts learned during whole process are the
outputs of this phase.

In following subsections, we will give an overview of the methodology to be utilized in
solving the problem stated earlier in this thesis (in the scope of design science research).

19

Knowledge Process Outputs \
flows steps
» Awarenessof ' 1
1 Proposal '
problem I '
! 1
J ' |
Suggestion 1 Tentative Design ,
| P p—— 4
Circumscription u
Development Artifact
Operation and Goal Evaluation Performance
Knowledge jl Measures
Conclusion Results /
Figure 3-1: Resear ch methodology of Design Science Research (Adapted from [27])

3.1 Awareness of problem

“Problem space is defined by the environment for which the phenomenon of
interest lies” [27].

In this Master’s thesis, our environment of interest is a topological resource management
system. As discussed in section 1.1, there is a long lead time before new verification
engineers can start actual testing and there can also be a mismatch of the group of devices
utilized for testing (here after referred to as a STP) causing frequent interruptions in testing in
order to reconfigure the testing environment before continuing testing. From the LAB
administration’s view, not all but most of the equipment needs more structured and detailed
information in order to enable efficient utilization of this equipment and to enable efficient
testing.

3.2 Suggestion/solution

“The objective of design-science research is to develop technology-based
solutions to important and relevant business problems "[27].

The solution to the problem that this Master’s thesis project will address is the design,
development, and evaluation of a topology aware RMS system that will address the needs for
efficiently generating TECs and will enable well managed administration of the LAB’s
equipment. Apart from this functional requirement, we have important non-functional
requirements, for example to gather requirements from all the departments using the existing
PeppesBodega RMS. Other non-functional requirements include collecting data concerning

20

the LAB’s equipment and their potential interconnections in order to manually extract
topology information . The evaluation (see section 3.4) is part of our non-functional
requirements.

In this Master’s thesis project, the current web framework (PeppesBodega RMS) will be
extended to provide topology information in textual and graphical representations. This
information will be presented in XML [28] for the textual output format and as png [29] for
the graphical output format. The textual information in XML format will be used by two test
frameworks JCT and JCAT as input for their TECs. The visual representation will serve two
purposes: (1) so that an experienced user can easily debug configuration problems and (2) to
lower the learning curve for new verification engineers.

3.3 Development

We followed an iterative-waterfall model (as shown in Figure 3-2) to implement the
suggested tentative design. The functional and non-functional requirements of the problem
space (as explained in section 3.1) are elaborated during the requirements elicitation phase.
Next the design specifications (as explained in section 3.2) are proposed and implemented to
fulfill these requirements. As a result, a functional prototype is developed which is an
extension of the prototype developed in previous phases(s). Finally, tests (see Chapter 6 for
details) are performed to examine if there is any gap between the specifications and this
prototype. This is an iterative model, thus in every iteration the development underwent a
similar cycle of requirement elicitation, modification of the design, implementation of this

design, and testing of the prototype.

Test Design Tt Do best Degn

Code * [[

Requirements

\

Test Design
\ \ Code 4/ /
Figure 3-2: The development model followed to construct the artifact(s)

3.4 Evaluation

The evaluation of the artifacts developed as constructed during development phase is
performed during Evaluation phase. These artifacts are evaluated on the basis of following

" As noted in section 2.3.2 the current equipment does not directly provide information about the device and
its potential interconnections, hence this information must be manually extracted and entered into the
RMS.

21

criteria: reliability and comparative analysis. Chapter 6 of this report provides the details of
the evaluation of the artifacts constructed during this Master’s thesis project.

3.5 Conclusion

The conclusion phase is the finale of this (Master’s thesis project’s) research effort.
Chapter 6 and Chapter 7 presents the results obtained, the knowledge acquired, and the facts
learned during this Master’s thesis project.

22

4 “PeppesBodega” RMS

As discussed in Section 2.3, a RMS has an important position in the effective utilization
of resources in terms of both cost and time. When it comes to system level testing, it is nearly
impossible to avoid using a RMS to track information for the different SUTs used by
different verification engineers.

The target department felt there was a need for a new RMS system, but planned the
transition to this new RMS in two distinct phases:

“Old-PB-System” This RMS was developed as a result of the initial needs of the LAB
team to manage device information, which was previously done
using a piece of paper or a simple text file (containing device
information). This manual method resulted in a non-trivial task to
perform on a daily basis.

“PeppesBodega” This new RMS replaced the “Old-PB-System” and was introduced
as a requirement by Micheal_Thomsson . He provided a detailed
description of the requirements for the PeppesBodega RMS.

4.1 OIld-PB-System
The “Old-PB-System” was a simple RMS system that consisted of:

a single HTML file that realized a graphical interface for its users,

e a text file that served as a database, and
two Linux commands (sed” and awk*) were used to perform data manipulation of the
information about devices in database.

Figure 4-1 shows the architecture of the Old-PB-System.

" Micheal D. Thomsson, Project Manager for DU I&V Department at Ericsson AB

" sed, a stream editor, http://www.gnu.org/software/sed/manual/sed.html

i awk, pattern scanner/processor, http://www.gnu.org/software/gawk/manual/gawk.html

23

Presentation Application service Database

HTML Document

(Web UI) Linux sed/awk

Figure4-1: Old-PB-System Architecture

4.1.1 Information Bank

In this design a single HTML file was used to store the device data. The device data was
limited to the following information: Name of the device, IP address of the device, and Serial
number of the device.

To load the data into the HTML page the standard Linux sed and awk commands were
used. This design supported only two needs of the LAB team: (1) tracking all the devices in
the lab and (2) manual allocation of IP address to each device from an IP address pool.

4.1.2 Limitations

The design of the Old-PB-System had quite a lot of problems and included the following
limitations:

e [nsufficient information for design and test teams

Verification engineers and software developers were unable to see the detailed
information about the devices in order to see if they suited task specific requirements.

e No time-limitation for booking

Once a device was booked, it was booked forever. Even if the person who made the
booking would be away for a long period of time, no-one else could utilize this
device. Due to this a series of problem occurred. Initially there was an increase in the
number of unusable devices, and then new devices were ordered even though an
existing device could have been reused. From the LAB’s team point of view, this was
a complete disaster from both space and cost perspectives.

24

e Slow response time

The load time for several hundred dEViCCS on the webpage took approximately 40
seconds. According to Jakob Nielsen , a web usability consultant, no more than 10
seconds is acceptable for a website’s visitor to retain his/her interest[30].

4.2 PeppesBodega-RMS

PeppesBodega-RMS is the current RMS. It is used extensively by both the design and test
teams at the target department. It is a robust, scalable, and easily maintainable solution which
addressed the limitations of the previous system (details of how it did this will be explained
in subsequent subsections). Currently this RMS is being extensively used by the LAB team
(see section 1.2) for administrative purposes and also by the design and test teams for task
oriented purposes.

4.2.1 Development

PeppesBodega-RMS was developed in Erlang’. OTP* was generally used in development
of its web-framework. beard[32] is one of the essential components that was created in order
to provide dynamic content selection via the web-interfaces.

4.2.2 Stake-holders

PeppesBodega-RMS provides services to three different graphical regions: Sweden,
China, and Croatia. All three regions have their own local administrators and users.

4.2.3 Access rights

Users of PeppesBodega-RMS can be divided into two user groups based upon the actions
performed on certain content in the database:

e Administrator group

This group is further divided into two subgroups

Local Administrator A local administrator has the relevant permissions to
modify the information concerning devices/STPs
local to a particular region. For example, the local
administrator for Sweden can only modify
device/STP information for the LAB’s devices
located in Sweden

Super Administrator A super administrator has the relevant permissions to
modify information about devices/STP globally (i.e.,
in any region). A super administrator can modify the
view content for all devices/STPs. These changes

* Jakob Nielsen, http://www.nngroup.com/people/jakob-nielsen/

T Erlang, http://www.erlang.org

Y OTP, “OTP is set of Erlang libraries and design principles providing middle-ware to develop these
systems”.[31]

25

depend upon a change request from local
administrators. A moderator is responsible for
maintenance of the PeppesBodega-RMS which
includes troubleshooting of malfunctioning features
(see section 4.2.5 for details), updating the framework
with updates of the development tools (see section
4.2.1 for details) being used, development of new
requested features, etc.

e User group

Members of this group have no permissions to modification any device/STP. The only
actions they can perform are to book or cancel their booking of a STP.

4.2.4 \Web based views

These are the two major views that display information via the web interface: device view
and STP view. These are further explained in the following paragraphs.

4.2.4.1 Device view

A ‘device’ is an atomic item in the PeppesBodega-RMS database. The device view is
used to display a list of devices and their associated information. In the device view, the
free-text search box is used to search for devices which match a given string. By default only
the first ten entries are shown, however from a drop-down option the user is able to see all the
devices that match the search criteria. Figure 4-2 shows a snapshot of the device view.

7 Peppes Bodega x =@ X
& C bodega2l.rnd.kisw.ericsson.se:d =
3 MSV-NCI (] Eriesson (] Misc
Home » Devices
Show | 10 2 entries
Search: |available
Availability Device Name ~ STP DID Ethernet RS232 Site Cabinet Position Type ProdNo ProdSH PcbProdio PchSN Config StartableCV le HNotes l-s:::‘
available RUS KRC ROA 128
availatle RRUW KRC ROA 128
available RUS KRC ROA

avallable RUS KRC R
RUS KRC R
RUS KRC R
RRULEZ KRC R
RUS KRC R
RRULE1 KRC ROA 12
RUS KRC ROA 128

available
Shewing 1 to 10 of 186 entries (filkered from 666 total entries)
First | | Previous | [(2| (3| | 4| |5 |Next| | Last

Figure 4-2: Deviceview in PeppesBodega-RM S

In Figure 4-2, the search criteria ‘available’ will display all the devices that are currently
not booked by any user. Search criteria can be used to find available devices of a particular
type. Additionally, different search criteria can be combined with a space character in
between them and each of different search criteria will have AND" boolean logic.

* AND, http://www.exploratorium.edu/Ic/search/boolean.html , Last visited : 2013-12-23

26

4.2.4.2 STP view

One or more devices are grouped together to form an ‘STP’. The resulting STP is
bookable by any user. The concept of a STP was introduced so that device(s) can be booked
by a particular user for a specific purpose. An STP consists of the following four important
components:

List of devices,

Booking purpose,

Booking time (period), and
Booking user.

The ‘List of devices’ refers to a subset of all the devices that will be reserved for the
‘Booking User’ who has booked the STP for a specific ‘Booking purpose’ for a specified
‘Booking time’ (period). The default booking time (period) is two weeks. The ‘Booking time’
(period) ensures that the ‘Booking User’ has control of these devices for the specified time
frame. After this time period expires the status of these devices automatically returns to the
“Available” state.

4.2.5 Salient Features of PeppesBodega-RMS

PeppesBodega-RMS is being used extensively in the NCI and MSV-RBS-NCI
departments (See section 1.2) for administration of the devices maintained by the LAB team.
These departments have both common and domain specific tasks which need to be
performed. For example, NCI uses the information about devices to perform function tests,
whereas MSV-RBS-NCI utilizes the same information to perform system tests. However, the
configuration files needed by NCI and MSV-RBS-NCI are different and contain domain
specific information. The PeppesBodega-RMS serves as the backbone of the testing
processes in these departments.

The PeppesBodega-RMS has the following salient features (each of which will be
described further in the following paragraphs):

1. Device tracking,
2. Concept of STP,

3. Device booking,

4. 1P address pool management,
5. Storage Inventory,

6. Database backup,

7. Email subscription,

8. Naming Convention,

9. Lab-Scan System, and

10. Requirement-Request portal.

4.2.5.1 Device tracking

Within the PeppesBodega-RMS, each device is uniquely identified by a unique device
identifier (DID).
4.2.5.2 Concept of STP

A STP is the smallest bookable unit for the PeppesBodega-RMS. A STP must contain at
least one device. For a device to be bookable by a user it must be part of a STP and then this
STP can be booked. It is important to note that the set of devices in a STP is typically very
stable, since these devices are used together to conduct a specific type of test.

27

4.2.5.3 Device booking

As mentioned above devices cannot be booked until the device is part of an STP. Device
booking is done in terms of a STP for the following reasons:

e The SUT for a specific purpose usually consists of more than one device, i.e. it is
easier to book a single STP for testing a SUT rather than separately booking several
devices. Consider a SUT which requires device;, device,, and devices, it is more
convenient to book one STP rather than separately booking these three devices.

e Managing a STP is far easier than managing individual devices. If you need another
device to test the SUT, then you simply add the device to the STP. Once the testing
task is finished, then all of the devices in the STP can be made available by simply
unbooking the STP. For a similar test the STP can be rebooked by another person.

e Each STP has associated with it a set of comments that can be used to identify the
purpose for which this STP can be used.

4.2.5.4 IP address pool management

In a large network, such as Ericsson’s internal network, efficient utilization of IP address
space* is important. Due to the consumption of a large number of IP addresses by the many
devices within the LAB, it was very important to automatically track the IP addresses
allocated to devices and free up unused IP addresses.

Public IP address space is being used for the LAB’s devices rather utilizing a private IP
address space because it is preferred to keep the LAB environment as close to the customers’
environment as possible; for example, for vulnerability tests. Additionally, when the SUT is
installed it will generally be in an environment with statically assigned IP addresses, rather
than a networked environment with a dynamic host configuration protocol server; hence it is
better to test the devices with such a configuration.

4.2.5.5 Storage Inventory

Devices in a storage area are part of a reserved STP (specifically STP-003). This STP is
non-bookable and it is not visible to members of the ‘User Group’, rather it is only visible to
the ‘Administrator Group’. Within the ‘Administrator group’, the local administrators have
their own reserved STPs and these STPs do not overlap with each other.

4.2.5.6 Database backup

A backup of the database is taken at regular intervals. Thus if the database is corrupted or
unavailable for any reason, the database can be recovered from the backup. Additionally,
there are cases when it is necessary to know what device information was available on a
particular date in the past.

The database backup is stored only on a single disk, at least from the moderator’s
perspective. But internally within the network team, the separate replicas are maintained and
data is safely preserved even in the case of a failure of a primary disk.

The shortcoming of this database backup approach is that there is no mechanism which
can cater for the scenario when information was entered in the database since the last backup

" Specifically addresses from the IPv4 address space.

28

and then the database is corrupted. In this case the information lost cannot be recovered by
any known means in the currently implemented system, i.e., there is no journaling or log file
to keep track of changes to the database.

4.2.5.7 Email subscription

An email subscription is available to a ‘Booking user’. This user will be sent email twice
before a booking expires for a particular STP. The first email is sent three days prior to the
expiration of the booking period and a second email is sent on the last day of booking period.
In this way the booking user is notified that if no actions are performed, the booking will
expire. Before the booking expires the user can rebook the STP for a new time period.

4.2.5.8 Naming Convention

For effective communication to take place among different departments concerning a
particular product, the naming convention should be consistent. The PeppesBodega-RMS
defines naming conventions for all the devices. This information is used during the process of
selecting and installing software on a particular type of device. A department can search in
the device view to find information about all of the devices of a specific type, and then if
necessary a suitable non-booked device can be selected for inclusion in the STP.

4.2.5.9 Lab-Scan System

The PeppesBodega-RMS saves information in two phases. In the first phase information
is saved in the database and in the second phase a text file (specifically the TEC) is generated.
This text file is currently used for two purposes:

e To create an installation script for a particular device and
e In the test environment (JCT and JCAT) this file is used to automate the generation of
test instructions for this particular device.

4.2.5.10Requirement-Request portal

Change requests and new functionality requests are handled via a web portal. All the
stakeholders (see section 4.2.2) can submit requirements. The impact of these potential
changes analyzed by a moderator who considers the estimated implementation details
(technical architecture needs and deliverable artifacts) to meet the requirements of the
proposed change. Then an estimate of the time that will be required to make this change is
calculated and provided to the department responsible for the RMS to prioritize their
implementation of these requirements.

4.2.6 Architectural design of PeppesBodega-RMS

This section describes the overall architecture design of PeppesBodega-RMS that is
relevant for the proposed extension of it in this Master’s thesis. The following are the main
components of the PeppesBodega-RMS architecture (as shown in Figure 4-3): (1) Command
line interface (CLI), (2) Web User Interface (UI), (3) Core Application, and (4) Database.

29

CLI WEB Ul CoreApplicaticn Database

beard =
Template
Solution

db_MySQL

frontend : backend |

Figure 4-3: Architectural Design of PeppesBodega-RM S

4.2.6.1 CLI

The functionality implemented in the PeppesBodega-RMS (see section 4.2.5) can be used
via a command line interface (CLI) by the moderator for debugging purposes. Other than the
moderator, no-one else can use the CLI. The CLI is accessed via an Erlang shell, where all
the functionality is available via the two core applications: bodega and bodega-adm (See
section 4.2.6.3). As the CLI is not easy to interact with; a tool with an interactive graphical
user interface (GUI) would be more convenient to use than a simple CLI; and that was the
motivation behind users using a WEB UI in PeppesBodega-RMS rather than using a CLI.

4.2.6.2 Web Ul

PeppesBodega-RMS is currently running on Yaws (Yet another webserver) webserver .
As yaws supports the dynamic-content web application, we needed a template solution to
handle web requests. At first mustache [33] was used as a template solution, but due to the
fact that this resulted in a slow response times, a similar template solution with high
performance, called beard [32] was developed and is now used for creating webpages with
dynamic-content selection. The beard template solution works with two input files: (1) a
Template file and (2) a View-logic file.

The template file is used to provide the structure of the content (in HTML [34] format) on
the webpage and does not contain any embedded logic. The view-logic file contains the
functions used in the templates for data input via templates. The result is that the logic is
isolated via the template, which has the advantage that the template, if needed, can be reused
independent of natural language boundaries, i.e., the same view logic can be used with a
template in English, Swedish, Chinese, etc. The framework under discussion has used a

" For details about YAWS see http://hyber.org/ .

30

separate directory structure for both view-logic and template files. Also the naming
convention corresponding to view-logic and template is kept the same with two different
extensions used in order to distinguish them from each other.

As discussed above PeppesBodega-RMS is using beard for its dynamic content selection
and as the requirements increased so did the pattern catalogues (see section 4.2.6.3). There
was a need for a front-controller to make the design sufficiently efficient that we can shift
between different patterns by changing only a single entry point. The front-controller has
been further divided into front-end and back-end parts. The front-end and back-end parts
together provide the interface for different functional and non-function requirements (see
section 4.2.5); some of the most important requirements were listed in section 4.2.6.3.

The input to the core application is firstly validated by the web UI module. This
restriction of having the actual functionality and validation functionality in a separate place
makes it easier to locate the bug in the event of a problem.

4.2.6.3 Core Application

As discussed in section 4.2.3, there are two access-rights groups, i.e. administrator group
and user group. Based upon the functionality of both the groups and their ability to change
the state of PeppesBodega-RMS, two APIs were developed:

1. bodega.erl
2. bodega adm.erl

In general, states are very important to consider when it comes to efficient design
techniques. QuickCheck [35] is an efficient property-based testing tool, which provides the
user with the state of the SUT when a fault occurs. This in-turn is only possible if the
implementation and the structure the code design utilized as few side-effects as possible and
where side-effects are used they should be limited to only a few specific areas; although the
use of functional programming languages (such as Erlang) restricts the usage of side-effects.
PeppesBodega-RMS was carefully designed such that the use of side-effects is limited to
only certain specific places.

The API ‘bodega.erl’ is responsible for the all of the actions performed by the user group,
whereas the ‘bodega adm.erl” API provides the functionality for all actions that can be
performed by the administrator group. The allowed state-changes available for members of
the user group are the booking and unbooking of devices, while the allowed state-changes for
the administrator group include all the possible state-changes in PeppesBodega-RMS (see
section 4.2.5)

4.2.6.4 Database

A state-change in PeppesBodega-RMS is handled in two different ways (either state-
change-independent or state-change-dependent), depending upon what has been changed and
where the changes have occurred.

A state-change-independent state-change that is done locally is written directly to the
database. This type of state-change is not an input to any test oriented task and is only used to
administer the device usage information, such as booking and unbooking. Once this action
has been performed, the new data is written to the database.

A state-change-dependent state-change is also done locally on the system but is not
written directly to the database. The state-change remains local to the system, until a ‘lab-
scan’ is performed and then the state-change is pushed to the database. This type of state-

31

change is used in test oriented tasks, such as installation of devices, test case execution, etc.
The reason for this dependency is to ensure that the contents of the database are readily
available to the user when performing a test oriented task; this is achieved by storing the
database in a user-readable format each time a lab-scan is performed.

Initially the core application was developed to support MySQL; later it was decided to
shift to Mnesia [36] as all the RMS development was in Erlang, hence it was logical to use an
Erlang based database in order to be consistent with the development tools. Today there is
still support for MySQL, but Mresia is the only database (actively) used in this framework as
it caters for all the needs for PeppesBodega-RMS. In Mnesia the backend database storage
can be either Ets” or Dets'. Ets tables resides in Erlang runtime system where as Dets are
stored on disk. This reflects lower read/write time of Ets as compared to Dets. The selection
of usage of Ets and Dets is done as a property” provided during the creation of table in
Mnesia database. In PeppesBodega-RMS Dets are being used.

: Ets, http://www.erlang.org/doc/man/ets.html, Last accessed : 2013-12-28

T Dets, http://www.erlang.org/doc/man/dets.html, Last accessed : 2013-12-28

* property, {disc_only copies, nodes()} refers to dets, {ram_copies, nodes()} refer to both ets whereas
{disc_copies, nodes()} refers both to ets and dets. http://www.erlang.org/doc/man/mnesia.html, Last
accessed : 2013-12-28

32

5 PeppesBodega Extended RMS’s

Topological Framework

PeppesBodega Extended RMS’s topological framework is the artifact constructed (in this
Master’s thesis) to solve the problem stated in sectionl.l. DSR was adopted as a
methodology throughout this Master’s thesis project to create PeppesBodega Extended RMS
- topological framework (TF). To simplify the naming we will refer to this artifact as
PeppesBodega-TF in the remainder of this thesis.

5.1 EXxisting design

Chapter 4 explained the design transitions (section 4.1 and section 4.2) of PeppesBodega-
RMS; it also stated different reasons for why a new solution was implemented to extend the
existing PeppesBodega-RMS

PeppesBodega-RMS has been catering very well to the needs of all the involved
departments when it comes to the functions expected of an ordinary RMS system, e.g. device
tracking, efficient use of IP-pool and storage inventory etc. But the requirements for a
topological RMS emerged, not only to contribute to even more structured information being
available about each of the devices, but also to increase the efficiency of test automation.

5.2 Design Transition

PeppesBodega-TF should facilitate the activities of the different teams (see section 1.2)
by providing more and better structured information about the devices and hence provide
greater control over test automation. PeppesBodega-TF is expected to successfully fulfill all
the objectives (stated in section 1.4) and to solve all the problems described earlier in this
thesis.

The following subsections describe the step-by-step processes that this Master’s thesis
project employed to implement the desired solution.

5.2.1 Development tools and design

The development of PeppesBodega-TF has utilized the same development tools and
followed the same design principle as PeppesBodega-RMS (see section 4.2). The reason for
these being the same is that the artifact created in this Master’s thesis project (PeppesBodega-
TF) is not a standalone web-framework; but rather it is an extension of the existing
PeppesBodega-RMS. So we found it fairly logical and convenient to use the same
development tools and design principles. However, there are some new concepts introduced.
Each of these new concepts will be discussed in following subsections.

5.2.1.1 Device Definition

In order to explain the following subsection, first we need to define the devices in the
LAB and how they can be connected to each other. As the system verification domain is very
broad in the MSV-NCI department, it is difficult to explain all possible configurations in the
context of this topological RMS. Before explanation of any configurations, the relevant
background definitions are needed. The configuration explanation will be developed during
the explanation in each relevant subsection (See section 4.2.6.3).

33

5.2.1.1.1 Devices

As mentioned in section 4.2.5.1, each device is uniquely identified by a unique device
identifier (DID) to keep track of the devices for LAB administration purposes. As of today
these DIDs are not used inside a TEC; but there exists a plan for automating the device
information for the convenience of verification engineers and to avoid conflicts with
mismatches of information due to human error.

The devices (identified by DIDs) are associated with product identifiers (PIDs). A device
associated with a PID guarantees that the device has certain specific functional features. More
than one device can have same PID. PIDs (in Ericsson AB) have the same meaning as models
of a particular appliance (in real life).

5.2.1.1.2 Interconnection

Each device has some connection points” with which other devices can connect to it;
these connection points are referred as interconnections. We have logically grouped together
the devices that have some common functionality (although having different PIDs) and
having common interconnections. This concept of logically combining different devices on a
‘device type’ level will be discussed in section 5.2.1.4.

5.2.1.2 Grammar selection

PeppesBodega-RMS was built following quite good programming practices, of which the
most noteworthy was avoiding hardcoded values in the source code. The Erlang config files
are used as input to different processes in order to avoid hardcoded values being written in
multiple places.

For the PeppesBodega-TF it was decided not to use the Erlang config files; but rather we
opted for a computer grammar based solution. The reason for selecting a computer grammar
was that we needed a scalable solution for definition of devices and their possible
interconnections; and some of the inherent features of the selected grammar (e.g. allowed
structure, composition of expressions, etc.) were helpful during the implementation.

To specify the definition of devices and their possible interconnections, we have selected
a context-free grammar. As context-free grammars are extensively used for type definitions
in programming languages, a similar approach was adopted to provide the foundation blocks
used in the proposed solution.

As the SUT being used in the target department is being tested internally (see section 1.2)
the grammar is domain specific. This Master’s thesis proposes a special grammar translation
that can also be used externally.

5.2.1.3 Grammar definition

After selecting the grammar, the definition of the grammar was done in BNF[37-39] (in
Erlang format). The BNF in its standard format and its interpretation in Erlang format (as
relevant to this Master’s thesis domain) can be found in Appendix A.

" These connection points include both physical connectors and logic connectors (for example, an IP
address, protocol, and port number).

34

We will explain three grammar expressions (with different levels); the rest of the
grammar also follows the same principle. See Equation 5-1, Equation 5-2, Equation 5-3,
Equation 5-4, and Equation 5-5 as references that will be used in expression definitions.

{du,['KDU 127 161/1 R1A/4']}

Equation 5-1: Erlang grammar - logical binding

{du,['KDU 137 930/1 P1B']}

Equation 5-2 : Erlang grammar - logical binding

{'KDU 127 161/1 R1A/4, [cpriport, cpriport, cpriport, cpriport, idlport, gpsoption]}

Equation 5-3 : Erlang grammar - I nterconnections

{'KDU 137 930/1 P1B/, [cpriport, cpriport, cpriport, cpriport, idlport, gpsoption]}

Equation 5-4 : Erlang grammar declaration

{cpriport, [du,radio, cpric]}

Equation 5-5: Erlang grammar — Valid Interconnection options

Table5-1: Levels of Grammar definition

Logical binding As mentioned in section 5.2.1.1.2, we have logically
grouped the devices with different PIDs. Referring to
Equation 5-1 and Equation 5-2 both PIDs ‘KDU 127
161/1 R1A/4’" and “KDU 137 930/1 P1B’* have ‘du’ as
their binding type’. The reason for this is that when we
later define what interconnections can be connected to
which device, i.e. ‘valid interconnection option’, it will
be easier if we can just mention a binding type, in this
case ‘du’, instead of giving each individual PID.

Interconnections Equation 5-3 provides the details for connection points
for a ‘KDU 127 161/1 R1A/4’ PID. To define a PID’s
interconnection we can specify multiple ‘cpriport’ but to
uniquely identify each connection port, we concatenate
each of ‘cpriport’ * with a letter from the English
alphabet. (For details see section 5.2.1.4.)

Valid Interconnection options This level of definition for our grammar indicates what
‘logical binding’ a connection point can connect to.
Equation 5-5 defines that a cpriport interconnection can
only connect to a du, radio or cpriport (logical bindings).

" This is an Ericsson radio base station (RBS) 6000 Digital Unit example product.
T «du” can be interpreted as “Device Unit”.

' “cpriport” means Common Public Radio Interface (CPRI™) port - see Section 2.4.

35

5.2.1.4 Grammar translation

After defining grammar, it was equally important to translate the grammar into such a
format that can be structured into objects, i.e., Erlang records. In Erlang a type definition is
very strict, so it was important to have getter and setter functions for all the objects created.
The translation of the grammar was divided into two parts:

1. Conversion of grammar into records and
2. Interfaces for records.

For the first part a parser was designed that performs the translation into records. This
parser only translates PIDs with their interconnection into Erlang records (See Equation 5-3).
As a device can have multiple ‘cpriport’ it is important to uniquely distinguish them, for this
we concatenate a letter from the English alphabet (A-Z). Equation 5-6 shows a conversion of
the grammar (PID with its interconnections) defined in Equation 5-3 into a Erlang record.

—record(KDU 127 161/1 R1A/4,
{cpriportA, cpriportB, cpriportC, cpriportD, idlport, gpsoption}).

Equation 5-6: Erlang grammar - record definition of a PID

Then second phase defines the getter and setter for interconnections that a specific PID
can use to connect to other devices. The restriction for getting any field (interconnection) for
a record (PID) is that records are atoms” which cannot be passed as a variable to get or set
any field in record. So getters and setter functions for all interconnection were mandatory to
define at compile time. Equation 5-7 shows a getter function generated for interconnection
‘cpriportA’ of PID ‘KDU 127 161/1 R1A/4’. Equation 5-8 shows the setter function
generated for interconnection ‘cpriportA’ of PID ‘KDU 127 161/1 R1A/4’. The getter and
setter functions are automatically generated for all the interconnections of all PIDs defined in
the grammar.

'KDU 127 161/1 R1A/4'(Record, cpriportA)
— Record#'KDU 127 161/1 R1A/4’. cpriportA

Equation 5-7: Erlang grammar —inter connection getter function

'KDU 127 161/1 R1A/4'(Record, cpriportA, Value)
— Record#'KDU 127 161/1 R1A/4'{cpriportA = Value}

Equation 5-8: Erlang grammar —inter connection setter function

Then the last phase defines the last level of a connection, i.e. what the interconnection can
be connected to. For example ‘cpriport’ on device-A can be connected to device-B via a
matching ‘cpriport’.

The recursive definition of a device and its interconnection acts as an input to the records
generation module. However, the definitions need to undergo a completeness test in order to
generate the corresponding records (See section 6.3.1 for more details). For example, if the
‘cpriport’ is not defined and it is being used in the interconnection of a PID, then the parser
will exit generate an error.

* atoms, http://www.erlang.org/doc/reference_manual/data_types.html

36

As the grammar and its parser is foundation component of the PeppesBodega-TF, so its
testing needs to be performed to verdict its proper functional behavior. We have developed
integrated testing in its design and also performed extensive testing with QuickCheck; see
section 6.3.2.2 for details.

5.2.2 Integration with existing architecture

This section describes how the newly developed PeppesBodega-TF was integrated into
the PeppesBodega-RMS architecture (see Section 4.2.6). We have integrated PeppesBodega-
TF into the existing PeppesBodega-RMS so that users do nof need to switch between two
different tools.

Figure 5-1 shows the extended and newly developed subsystems in the context of the
current PeppesBodega-RMS architecture. The PeppesBodega-TF architecture, in accordance
with our design goal of it being an extension of PeppesBodega-RMS’s design, has following
four components: (1) CLI, (2) Web UlI, (3) Core Application, and (4) Database.

Components (1, 2, and 4) were changed mainly due to the extension of the core
application (component 3). Each of the components 1, 2, and 4, will be analyzed in a
corresponding subsection with regard to the modifications made in it due to the extension of
component 3.

CLI WEB Ul CoreApplication Database

SR

\ frontend
Erlan g backend
.
bodega-
adm

Figure5-1: Architectural design of PeppesBodega-TF

52.2.1 CLI

As mentioned in Section 4.2.6.1, the CLI can be used for accessing the functionality
provided in the core application for the moderator’s debugging purposes. During the
implementation phase of PeppesBodega-TF, the CLI was extensively used to test the newly
implemented functionality. Only the working functionality was made usable via the web Ul.
The reason for not checking the functionality via the web Ul was that if the application
crashed, we had only limited opportunities to see the reason for the crash. Furthermore, using
the CLI required less effort to display the desired debugging information in the event of a
problem. At the end of the implementation phase, the non-functional testing was also done to
see if the implemented solution contains any bottlenecks when PeppesBodega-TF will be
actually deployed with bigger database than of today; see section 6.3.3 for more details.

37

It was also observed that there were some limiting factors regarding the web framework
and its interface with the dynamic connections in the topology configuration. The following
subsections will provide details of those limitations that hindered development of the web UL

5.2.2.2 Web Ul

As mentioned in Section 4.2.6.2, the web UI requires following four components: (1)
Yaws, (2) Frontend and backend controllers, (3) beard compiler, and (4) Validation checks.

Yaws is still being used as a web server as we saw no reason to change to another
webserver as no issues are identified that hindered the development of the Web UI. The
frontend and backend controllers were modified to handle the interfaces for the creation and
management of configurations; details internal to this extension are explained in Section
5.2.2.3. The beard compiler has been used without modifications. However, validation checks
have been extensively implemented based upon the new functionality added to the core
application.

The following four frontend views were created to interface to the new functionality
provided by the core application.

e Topology creation view
Figure 5-2 shows frontend view for creation of a topology. “Signum” refers to a
user-id of a particular user. The backend actions of ‘Topology creation view’ checks
for a valid topology name (i.e. a name consisting only of alphanumeric characters)
and valid signum (i.e. consisting only of alphabetic characters) and then on successful
validation the browser is redirected to the ‘Topology signum view’, while an
unsuccessful validation redirects the browser to an error page.

ERICSSON

Home » Topology

Create New Topology

Topology Name: Your Signum:

Create

Figure5-2: Create configuration

e Topology signum view
In this view all the topologies are displayed that have been created by a particular
signum. In Figure 5-3 two topologies ‘DualSTP’ and ‘Standardtopology’ have been

38

created by signum ‘eshamob’. The topologies listed in this view are hyperlinks to the
management page of the selected topology.

DualsSTP
Standardtoplogy

— Peppes
Eﬂ,ﬁm Bo%@g@

Home » Topology Configurations » eshamob

Figure5-3:

e Topology management view

After selection of a particular

options (See Figure 5-4):

Add STP/Devices

Edit Configuration

Topology signum view

topology for management, this view provides two

The ‘Add STP’ hyperlink provides the option to add
all the devices in a given STP. While the ‘Add DID’
hyperlink provides the option of adding a device
with a particular DID.

After successfully adding the devices needed to
form the desired topology, the topological
management view is then modified to include
hyperlinks to manage each of the included DIDs.

2 Peppes
E,.ﬁm Bo%%ga

Home » Topology

Select a device on the right to modity its configuration

DID1001 KDU 137 93011 P1B (DUS41) Remove
DID1000 KDU 127 1611 R1A/M4 (DUS41) Remove
» Add DID

» Add STP

Figure5-4:

Topology management view

39

The development of the next view for connection of interconnections between devices
was stopped due to the front-controller being able to handle large amounts of configuration
topology data. The development of a new front-controller was viewed as a time consuming
task that would have resulted in major deviation from the goals of this Master’s thesis. So a
decision was made that a new front-controller should be part of future work (see section 7.2).

e Topology textual views

In this view, the topological information developed in Topology management view is
displayed in two formats: (1) XML format and (2) Erlang-config format.

For the Erlang-config format HTML tags” were used for formatting purposes in beard
templates. In Figure 5-5 the topological information of configuration] is displayed in Erlang-
config format. Also this textual information can be exported to a file by using the ‘Export’
button.

-
Z Peppes

emesson 300E€00

Home » Configurations-cfg » configuration

configurationl Export

{DU1001",

{'cpripontA’,
{conndevname,'RU1002%}
{conndevport'cpriPortA}

}

{cpripontB’,
{conndevname,'RU1004}
{conndevport,‘cpriPortA}

}

{'cpriportC’,
{conndevname,'RU1006}
{conndevport cpriPortA}

}

{cpripontD’,
{conndevname,'RU1008%}
{conndevport'cpriPortA’}

}

{'cpripontE’,

{conndevname, RU10107}
{conndevport 'cpriPortA’}

}

{'cpripontF’,
{conndevname,RU1012}
{conndevport 'cpriPortA}

}

}

Figure5-5: Textual configuration - Erlang-config

" For more information about HTML tags see: http://www.w3schools.com/tags/

40

For the XML format, there were mainly two options: (1) to use the same approach that we
used for the Erlang-config format and (2) modification of the front-controller as the front-
controller of PeppesBodega-RMS only supported html encoding. Option 2 was selected as
this displays nicely formatted XML in a colored format that is easy to read. Figure 5-6
displays the topological information of configurationl in XML format. Additionally, this
textual information can be exported to a file using the ‘Export’ button.

Home » Configurations-xml » configuration1

configuration Export

<?xml version="1.0" encoding="UIF-£8"72>
<du>

<name>DU1001</name>

<co U
<conndevport>cpriForti</c

</port>

<porty
<nama>cpriportB</name>

<conndevname>! fconndevname>

<conndevporti>cpriPorthA</conndevport>
</port>
</du>

<du>
<name>DU1003</name>
<port>
<name>cpriporti</name>
<conndevname>RU.

<conndevport>cpriPortB</conndevport>
</port>
<port>
<name>cpriportB</name>
<conndevname>RU1004</conndevname>
<conndevport>cpriPortB</conndevport>

Figure 5-6: Textual configuration - XML

These results fulfil one of the goals of this Master’s thesis project, i.e. output a TEC for
the SUT in textual format. After the desired configuration is displayed via the Web Ul
interface the user can simply export the configuration as a text file. This textual file can now
be used by other tools to facilitate the desired testing.

5.2.2.3 Core Application

PeppesBodega -TF extended the two main APIs: bodega.erl and bodega adm.erl. As
mentioned in section 4.2.6.3, these API are used to modify the database. The implemented
functionality has two main functional components:

41

e Grammar — A detail discussion was provided in section 5.2.1

e Configuration - This component supports the creation of configuration (topological)
information. As described earlier the resulting configuration is saved in two formats:
erlang(cfg) and java(xml). These formats providing TEC input to the two different test
environments (see section 1.2) and provides a textual display in both formats.

Data structures are used extensively for organizing data in structured manner. Examples
of data structures include trees, sets, hash tables, queues, stacks, etc. The primary reason for
selection of a specific data structure for solving a complex problem is that a particular data
structure guarantees certain features and we can build a solution on top of existing (solution)
blocks. For examples, sets (implemented in different programming languages) implements
union, intersection, subset, size, iterate, searching, ... functionalities. Also some algorithms
optimize the execution time required for set operations. We will not provide details of data
structures and algorithms as this is a wide domain and each concept needs extensive
discussion. The interested reader is referred to Aho et al. [40] which explains data structures,
algorithms, and related topics with detailed discussions.

The selection of a data structure for encoding the configuration information was not an
easy decision because the selected data structure will serve as the foundation for the next
steps in the implementation. After analysing our needs (see section 1.4 and 2.5.2) two data
structures (trees and graphs) were selected. We implemented a directed tree based structure
for organizing the configuration information, but later when we tried to retrieve the
information the loading lead to an infinite recursion. We therefore concluded that since the
topological information was undirected, it was impossible to add and delete the saved
configuration information in a directed tree data structure using conventional tree grafting
and pruning operations. Also as there are multiple connections originating/terminating at a
single device (due to multiple interconnections — see section 5.2.1.1.2), a tree due to its
acyclic property (there exists only one route from one point to another) was not an
appropriate solution. Furthermore, a tree cannot have unconnected interconnections that
would be a valid configuration in our domain as a device may or may not be connected to
another device. After learning these lessons, we re-analysed our needs for a topological RMS
and found that an undirected graph better catered to all of our needs. The following are the
main features with respect to interconnections that we obtained by encoding our
configuration information in graphs:

Cyclic More than one interconnection can originate from and terminate at all
devices
Connected A device can have interconnection(s) which are not connected to any

other device’s interconnection

Undirected Regardless of the order of connections being made by specifying the
origin and destination interconnections, the outcome will remain same.
Thus a connection originating from interconnection A and terminating at
interconnection B is the same as a connection originating from
interconnection A and terminating at interconnection B.

This functional core application will be released for use within the company once it has
been thoroughly tested (See section 6.3).

42

5.2.2.4 Database

As mentioned in section 4.2.6, the Mnesia database is currently used by PeppesBodega-
RMS. In PeppesBodega-TF a new record ‘topology’ was added for structuring and a
corresponding Mnesia table was introduced for storing topological information. The existing
library for database transactions (addition/deletion and modification) to Mnesia tables was
extended to incorporate the transactions for the ‘topology’ Mnesia table.

5.2.3 Interfaces

The CLI interfaces were developed first and then the beard structure was used to provide
the web Ul. As mentioned earlier the CLI only addresses the need for an administrator to
invoke specific functionality, while the Web UI performs extensive validation before
performing any actions. This means that the ‘User group’ should not have the full
functionality of the CLI in order to avoid the risk of users performing operations that could
result in a corrupted database or crash the server. For these reasons, the CLI functionality is
only provided to the ‘Moderator’ for debugging and development purposes.

All the interfaces mentioned in section 5.2.2.2 were only for ‘User groups’. The
restriction of interconnections for an existing PID or a newly added PID need to be manually
added to the grammar file, then PeppesBodega-TF is compiled to reflect the changes. These
operations are only done by the ‘Moderator’.

43

6 Testing and Evaluation

This chapter describes the testing and evaluation of PeppesBodega-TF (as presented in
Chapter 5). We will evaluate to what extent the goals of the Master’s thesis project were
fulfilled and we will identify and analyze any discrepancies between the implemented
solution and desired solution (as was specified in Section 1.4). After this the implementation
of PeppesBodega-TF will be evaluated in terms of the characteristics of an RMS defined by
Kulkarni et al.[21]. Last but not least reliability testing and performance testing of the
topological information will be carried out.

6.1 Achievements and Discrepancies

In this section we will analyze the fulfillment of the goals (as defined in section 1.4) of
this Master’s thesis. Next we discuss the implementation that has been made in order to fulfill
these goals. Finally, we will see if there are some discrepancies between the implementation
and the proposed solution.

6.1.1 Achievements

The implementation and design of a topology aware RMS has been completed and details
of each implemented feature were provided in Chapter 5. The implemented solution has been
designed and implemented to flexible and it is easily expandable (see Section 5.2.1.2). The
following enhancements were made to the existing RMS during the implementation of the
proposed solution:

1. Improved security,

2. Restructured source code,

3. Improved frontend and backend controller, and
4. Removal of timeworn functionality.

6.1.1.1 Security

The credentials of administrators are now being processed using SHA-1 encryption. This
means that plain text versions of the credentials are no longer being stored, thus increasing
the security of the system.

6.1.1.2 Restructure of the source code

During the implementation phase, it was noticed that some of the parts of the source code
were not using the beard structure, but rather used another method to do the same thing.
Although this was not a problem in and of itself, in order to make the source code better
aligned with the rest of the source, the source code was converted to consistently us the beard
structure. This clearly increases the reusability of source code and allows direct
communication between different parts of the code.

6.1.1.3 Improved frontend and backend controllers

In section 6.1.1.2, the restructuring of the source code also helped us to modify the
frontend and backend controllers. This modification enabled us to remove unused code,
directly reducing future efforts to maintain the source code and increasing the maintainability
of the source code.

45

6.1.1.4 Removal of deprecated functionality

Identification and removal of outdated functionality was also done as part of this Master’s
thesis project.

6.1.2 Discrepancies

The implemented functionality is not yet completely available for all of the stake-holders
(see section 4.2.2) because of the lack of a complete web UI. A detailed discussion of this
was included in section 5.2.2.2.

The goal for providing detailed information about all of the devices in the LAB was
fulfilled to the desired extent. The major challenge that we faced and which caused us to
deviate from the goal of providing detailed information was the decision to not increase the
number of devices available for DIDs. An example of the problem is that we do not track all
the power distribution units despite the fact that there are quite a lot of them, as they were not
actually part of each STP. Because these devices do not have unique DIDs a decision was
made to not to include these devices into the extended RMS.

6.2 Analysis of the characteristics of
PeppesBodega-TF

In this section we will analyze the implemented PeppesBodega-TF according to the
metrics defined by Kulkarni et al.[21]. During the implementation phase, along with the
requirement fulfillment these metrics were kept in mind. It was observed that the existing
PeppesBodega-RMS implemented some of these metrics, but as the topological framework
was introduced the RMS’s functionality with respect to some of these metrics was also
extended. The metrics defined by Kulkarni et al.[21] can be divided into three categories:

1. Administrative operations,
2. Components of a topological RMS, and
3. Features of a topological RMS.

6.2.1 Administrative operations

As discussed in section 2.5.2.1, the RMS should be able to provide following three
essential operations to administrator: Monitor, Manage, and Control the RMS.

6.2.1.1 Monitor

In PeppesBodega-RMS the devices are used for testing purposes, thus monitoring should
not affect the ongoing tests using the devices. For this reason, monitoring of network
connected components was implemented in PeppesBodega-RMS by sending a ‘ping’ request
to those devices with one or more IP addresses. This monitoring technique only monitored if
the device was reachable or not. This technique was unable to completely monitor all of the
devices, as not all of the devices in the LAB had an Ethernet connection; hence monitoring
all of the devices was impossible using only this technique. In PeppesBodega-TF, no
additional monitoring technique was needed as the devices in each configuration were the
same and we could not perform any action other than checking the ‘ping’ status of devices
with Ethernet connections and that was already implemented.

46

6.2.1.2 Manage

In PeppesBodega-RMS after getting information, the management of a reachable device
required no changes for these devices, but for non-reachable devices the main reasons for a
device not being reachable was due to the device being in faulty condition, a problem in the
network, or because the device was powered off. In the case of a faulty device (due to a
hardware fault) the non-reachable device should be replaced. In the case of a faulty device
(due to a software fault) the device should have its software re-installed. A powered off
devices should be manually removed from the testing LAB after at most one week, i.e., the
device should be returned to the pool of available devices so that more effective use could be
made of it. In the case of network problems the network issue needed to be manually
identified and resolved. With the implementation of PeppesBodega-TF, the control of devices
has improved as now the administrator simply has to check if the non-reachable devices are
being used in any configuration that has other devices power-on in that configuration.
Consider an example configuration, configuration-1, consisting of two devices: device-A and
device-B. If device-A is non-reachable due to power-off then the administrator must look into
the configuration containing device-As. In this case the administrator looks at
configuration-1, if any of the devices in this configuration are powered-on then the
administrator can assume that device-A is powered on, otherwise this device-A should be
removed from the testing LAB, returning it to the pool of available devices. The overall
management process for a powered off device is illustrated in Figure 6-1.

As described above, PeppesBodega-TF does take advantage of the transitivity
information from the topology information in the RMS. A potential future enhancement
would be to monitor devices using the transitivity information in the topology database, i.c.,
if we have connectivity between two devices within a STP, then if we have network
connectivity to one of them — we can assume that the other devices is present — since it is part
of the STP.

47

) bing

device-B
RENOINE

no response response

Remove

from Powered-on

device
K / LAB

Figure 6-1: Device management of a power ed-off device

6.2.1.3 Control

PeppesBodega-RMS had a limited ability control the managed resources. Even though the
devices were grouped into STPs having a label, such as “used for test purpose-x”, the RMS
lacked control of the usage of these devices. Now that PeppesBodega-TF stores the
topological information of the devices in one or more STPs. This information can be used to
help the tester have greater controls over the devices because the system will generate an
error if someone else, mistakenly, defines an interconnection to a device that already has a
defined interconnection in another STP. For example, in configuration-X of Alice, if device-1
has interconnection port-A connected to interconnection port-B of device-2, and then if Bob
tries to define a connection for interconnection port-A of device-3 to interconnection port-A
of device-1 an error will be generated. This is shown in Figure 6-2.

48

device-2 device-1

Alice’s Step -1
OK

device-3 [port-B] [port-B]device-l

BOB’s Step -2

\ ERROR Y,

Figure 6-2: Control of devices

6.2.2 Components of a topological RMS

In this section we will analyse if PeppesBodega-TF has the basic components of a
topological managed RMS according to the criteria described by Kulkarni et al. We will use
the same approach as in section 6.2.1 due to some characteristics already being present in
PeppesBodega-RMS. Kulkarni identified the following essential components of a topological
RMS:

1. Plurality of nodes in the network,

Plurality of interconnections among these nodes,

A management system consisting of managed network resources stored in a database,
Database of managed network resources, and

Plurality of network administrators.

Nk

6.2.2.1 Plurality of nodes in the network

As mentioned in section 4.2, all of the devices in PeppesBodega-RMS are uniquely
identified by DIDs, i.e., their device identifiers. So this component already existed before the
development of PeppesBodega-TF. No specific enhancements were made for this component.
6.2.2.2 Plurality of interconnection among these nodes

Improvements to this component comprise the main contribution of this Master’s thesis
project. PeppesBodega-TF is implemented to provide the functionality for all (usually more

49

than one) interconnections between a device and another device. The detailed description of
this functionality was provided in section 5.2.

6.2.2.3 A management system consisting of managed network
resources stored in a database

This component refers to storing the data of each specific configuration. PeppesBodega-
RMS stored the data specific to device, STP, and booking information. A similar approach
was used in PeppesBodega-TF to store this data into a Mnesia database. In PeppesBodega-TF
this same database was also used for storing topological information (see Section 5.2.2.4 for
details).

6.2.2.4 Plurality of network administrators

As mentioned in section 4.2.2, there are local administrators for three regions of
stakeholders for PeppesBodega-RMS administration. The implementation of
PeppesBodega-TF enables more administrative usage by the User group, rather than
restricting these administrative functions to the Administrator group. This is because the
‘Moderator’ can define the possible interconnections (see Section 5.2.1.3) for each new
device PID (see Section 5.2.1.1.1) in PeppesBodega-TF database. Given these definitions
most of the topological information about a given configuration will be done by a member of
the User group in order to generate their desired TEC input.

6.2.3 Features of a topological RMS

In addition to administrative operations (see section 6.2.1) and components of the
topological RMS (see section 6.2.2), we will analyze if the implemented solution has
following essential features:

1. Modification of configuration data,
2. Visualization of “Node view”, and

3. Auto-update of “Node view” with addition of a new parent node.

6.2.3.1 Modification of configuration data

This feature is implemented and was discussed in Section 6.2.2.4 during discussion of
‘Plurality of network administrators’.

6.2.3.2 Visualization of “Node view”

This feature has not been implemented due to the limited duration of this Master’s thesis
project. We have made a suggestion about its implementation as part of future work (see
Section 7.2). However, the textual TEC (see Section 5.2.2.2 : Topology textual view)
contributes a good conceptual picture to understand the topology of a configuration.

6.2.3.3 Auto-update of “Node view” with addition of parent node

PeppesBodega-TF strongly supports this important feature. The core application uses
undirected graphs (as mentioned in section 5.2.2.3) as its primary data structure. This
guarantees that the information is updated for both devices when their interconnections are
connected.

50

6.3 Testing of PeppesBodega-TF

This Master’s thesis targets the ease of verification by providing a topological RMS (see
section 1.3). The development of PeppesBodega-TF is the result of this effort to ease the
verification process, but first PeppesBodega-TF itself needs to be tested.

Figure 6-3 shows the complete cycle of requirements’ delivery. As testing is mainly
dependent upon PeppesBodega-RMS, testing of each new step in the implementation of this
extended RMS along with legacy testing was very important. The functionality of the
PeppesBodega-TF is completely developed (in the alpha phase) and it fulfills the goals of this
Master’s thesis project. This implementation has also been tested at the module level (in the
beta phase). We will evaluate this implementation in the following two subsections.

Yet another important aspect is to test CLI interface along with the Web-UIL. As
mentioned in section 5.2.2.2 front-end controller is unable to handle the request to perform
‘edit configuration’ so system testing for Web-UI is not performed. After future work for the
front-end controller is done(see section 7.2), PeppesBodega-TF will then be released for the
target audience after delivery test (QuickCheck[35]) has been performed. This delivery test,
with its dependency for efficient front-end controller, remains as part of future work.

Function test
and legacy test

QuickCheck

Delivery test

Delivered

Figure 6-3: Requirement delivery plan

6.3.1 Test configuration

Currently, PeppesBodega-RMS contains 397 PIDs bound to 49 logical bindings and 745
devices grouped into 370 STPs. Use of PeppesBodega-RMS started to track this information
roughly a year ago, thus no statistical analysis can yet be made to predict the future state for
next year. According to LAB team, the number of devices will double in next year (as of
now) and preparation of a new LAB is currently taking place to accommodate these new
devices. This means that the implemented solution should be analyzed with atleast the size of
the data-set prediction for one year from now.

We have simulated a database of 1500 devices and randomly allocated devices to 750
STPs. Also these 1500 devices are associated with 800 PIDs which are bound to 100 logical
bindings. The implemented solution is mostly concerned supporting with the expected
number of devices, but the pre-requisite PIDs and logical bindings are also needed for the

51

creation of these devices. STPs are an integral part for the creation of a configuration for a
STP (See section 5.2.2.2), so simulation of STPs was necessary.

The computer used for the performance testing was a * HP EliteBook 8560w’ with a ‘Intel
2nd Gen Corei5 i5-2540M’ processor running at 2.6 GHz. This computer has 8 Gbytes of
memory with a clock speed of 1033 MHz and 320 Gbyte disk (model WD3200BEKT at
7200 RPM) connected via a SATA interface operating at 3 Gbps. The underlying operating
system was ‘SUSE Linux Enterprise 11’ and Erlang and Y aws were the only tasks running,
other than the OS internal services and tasks, during the time that the testing was taking
place.

6.3.2 Reliability testing

Reliability of software refers to its ability to produce the same result under the same
circumstances. In other words this software should have no side-effects[41]. However, in
practice this is very difficult to achieve. Of course the fewer the side-effects, the more
reliable the software can be. Another aspect of the reliability of software is its ability to
handle all of the desired use-cases, thus the software should be able to handle all the possible
correct and incorrect inputs and outputs the desired results (including errors) gracefully.

Based upon the discussion above, we will evaluate PeppesBodega-TF with respect to
following two criteria:

1) Validity: To verify that the software under test correctly handles the range of input in
accordance with the specification. To check this we will inspect the software if the
software contains any side-effect, i.e. if it behaves differently depending upon the
state of the software. This testing will be done to ensure that the implemented
functionality generates exactly same results for a given input.

2) Completeness: To verify that the software under test gracefully handles all possible
inputs even in cases outside of the specification.

6.3.2.1 Validity

As mentioned earlier PeppesBodega-RMS was designed following good software design
principles. One of those principles is the restriction of side-effects to a small number of
functional modules. This way of structuring the code limits the software bugs to only those
modules that have side-effects; hence it is easier to troubleshoot the resulting implementation
when any problem is found. PeppesBodega-TF also follows the same design principle.

As mentioned in section 4.2.6.1, the CLI mode is not available to the user group, so the
only way to use functionality is via the web Ul. Also as mentioned in section 4.2.6.2 the
view-logic contains the functionality that is provided via the web UI; this logic also provides
filters for input requests to the module’s functionality. So the validity of each input to the
system is provided by the view-logic and restrictions on user group providing invalid input to
functional module strengthens the software’s validity.

Equation 6-1 shows the entry point of a web Ul that provides the interface for adding a
new configuration. We have two test criterions for the creation of a new configuration:

1. Configuration name
2. Signum

Equation 6-2 and Equation 6-3 checks for configuration name to only have alpha-numeric
characters [A..Z a...z 0...9] and signum only contains characters from the alphabet [A...Z]. If

52

either criterion is not met, then the interface should prompt the user with an error description
and should not allow the user to proceed with the creation of a new configuration.

{is_valid_signum(Signum), is_valid_name(Name)}

Equation 6-1: Web Ul validation for configuration name and signum

(€C >= $aandalso C =< $z)orelse (C >= $A andalso C =< $Z) orelse (C >
= $0 andalso C =< $9)

Equation 6-2: Validation for alpha-numeric characters

(€C >= $aandalso C =< $z)orelse (C >= $A andalso C =< $Z)

Equation 6-3: Validation for alphabetic characters

The validation checks are not only limited to above mentioned checks as they are
apparently checking only the character input. The input of is valid signum (see Equation
6-1) is validated against x500; if and only if a signum exists in the x500 should the new
configuration be created. This is the last step that in the current implementation is required as
of now for signum validation to pass. Another aspect is that users have no restriction with
regarding to adding new configurations to any signum, restricting the users from creating a
new configuration for any signum other than their own remains as future work (See
section7.2).

The configuration names can be same for two users since when we write to the database
we concatenate the signum with the configuration name, thus making a unique name. This
means that if the configuration name is already defined for a signum, the interface will
prompt the user with an error message stating “Configuration already exists!!!” and will not
create a new configuration in the database.

6.3.2.2 Completeness

In the previous section we described how we checked the validity of all the inputs that are
provided to the core application. When it comes to proving that all the use cases are handled
successfully, the core application must undergo a completeness test. The core application of
PeppesBodega-TF revolves around the grammar for all provided functionality (see Section
5.2 for more details)

6.3.2.2.1 Integrated design test

As stated above that grammar must undergo a completeness test for the core application
to function properly, hence we have defined a recursive parser that checks for the definition
of all the logical bindings of a PID, its interconnections, and interconnection options.

Figure 6-4 shows the relationship between the different grammar definitions. The
grammar definitions have been explained in the context of PeppesBodega-TF in Section
5.2.1.3. The parser takes as input all the defined PIDs under a logical binding, and then
checks the definitions of its interconnections, then continues to check for interconnections
options.

* X500, http://www.x500standard.com/index.php?n=Main.HomePage, Last accessed : 2013-12-23

53

LOGICAL BINDING " PID
1 1.*
PID INTERCONNECTION
0..1 0..*
INTERCONNECTION
INTERCONNECTION > . OPTIONS
Figure 6-4: Recursive grammar parsing

If at any phase of the recursive loop fails for any PID belonging to logical binding, the
PeppesBodega-TF application is not started. In other words, the start-up of the
PeppesBodega-TF is the proof that the system is able to parse the correct input.

6.3.2.2.2 Fuzz testing with QuickCheck

To further check the completeness of the grammar and analyse the parser, we have used
QuickCheck to generate samples of the grammar to test two parts:

1. Grammar
2. Parser of the grammar

As mentioned above the parser of the grammar is working fine with the current logical
bindings, PIDs, interconnection, and interconnections options. However this is insufficient as
a satisfactory test verdict for the parser of grammar to be working fine, nor does it confirm if
the grammar produced is valid or not. To test this we have defined formal specifications of
logical bindings, PIDs, interconnection, and interconnection options. The complete code for
the QuickCheck module is provided in Appendix-C. We firstly define the rules for the
grammar that confirms the validity of the grammar. This means that we have control over
both the generation of valid and invalid grammars.

The generation of a valid grammar will be used to test if the parser fails with the defined
rules. The generation of an invalid grammar will be used to test the behaviour of the SUT.
We performed an extensive testing for this using QuickCheck. We checked all the rules that
could be defined for the input of the grammar in terms of logical bindings, PIDS,
interconnection, and interconnection options. These rules were then used multiple times to
generate a large grammar that we testing for validity with and without injecting faults.

QuickCheck has its own built-in APIs which provide certain functionalities, we will only
provide an overview of the functionality being used for testing the grammar. The intricate
details of using QuickCheck-APIs will not be discussed in detail, as this is a vast domain and
lies outside the scope of this Master’s thesis.

54

For generation of input for logical bindings, interconnections and PIDs, we completely
randomized the input as shown in Equation 6-4. The QuickCheck testing failed for one input
of a sentence in the grammar because the definition contained the level of grammar itself as
shown in Equation 6-5. The QuickCheck test failed and our analysis shows that the parser
entered a infinite recursive loop, hence it would never exit. The implementation of parser was
then changed for it to handle the case where the same name is used for definition of levels of
grammar (See Table 5-1 for details); an error “Error: Self-definition” is generated on console
followed by graceful exit.

atom() ->
frequency/(
[{0,?LET(Str, non_empty(list(char())), list to atom(Str))},
{9,7LET({Lc,Str},
{lowercase(), list(alphanumeric())},

list to atom([Lc|Str]))}]).

Equation 6-4: Random generation of grammar levels

Equation 6-5: Error grammar for same definition level

After analysing the failure of input for same input in definition of levels of grammar the
range of input for the number of logical bindings, interconnection, and PIDs was redefined as
shown in Equation 6-6. All the inputs are enumerated from 1 to 10 and for them (logical
bindings, interconnection, and PIDs) to be able to be distinguished them from each other we
have appended the initials from their names, for example logical binding: LB . As we are
randomly generating the grammar, this naming convention ensures that later-on it will be
easy to interpret the generated grammar.

55

logical binding() -> oneof([list to_atom("LB_ " ++ integer to list(X))
|| X <-lists:seq(1,10)]).

interconnection_level() -> oneof([list to atom("ICL " ++
integer _to list(X)) || X <- lists:seq(1,10)]).

product_identifier() ->

?LET({Prefix,Atom}, {oneof(["KDU ", "KRC "]), oneof([
list to_atom("PID_" ++ integer to list(X)) || X <- lists:seq(1,10)])},

list_to atom(lists:concat([Prefix, Atom]))).

Equation 6-6: Random generation of input for grammar

The inputs to the grammar have been defined in Equation 6-6. The next step is to define
the rules for a valid grammar. Equation 6-7 shows the rules for a valid grammar. Earlier we
have explained in Table 5-1 (in conjunction with explanation of Equation 5-1, Equation 5-2,
Equation 5-3, Equation 5-4, and Equation 5-5) that the logical binding holds a list of PIDs,
with each PID is associated with a list of interconnections, and each interconnection
associated to a list of logical bindings that it can be connected to. These specify the valid
rules for the generation of a grammar. Also as mentioned in the explanation of Figure 6-4 all
the definitions for PIDs, interconnections, and logical bindings must be defined. Any
deviation from these rules will generate an invalid grammar. In Equation 6-7 grammar is
generated from the rules mentioned above and then passed to the next step where again new
set of grammar is generated from the same set of logical bindings, interconnection level, and
product identifier. This provided an additional check for our analysis that “the parser is able
to handle same sentences in the grammar file”. This is of course a valid grammar case but it
should not add anything to the functional behaviour of parser.

56

rules(LBs) ->
?LET(
{LB, PIDs, ILs},
{logical binding(),
non_empty(list(product_identifier())),

non_empty(list(interconnection_level()))},

begin
[{LB,PIDs}]++
[pid(Pid,ILs) || Pid <- PIDs]++
[il(IL,LBs++[LB]) || IL <- ILs]
end).

Equation 6-7: Rulesfor valid grammar

We observe that the functional behaviour of parser is not affected by repetition of the
same sentences in the grammar file.

Equation 6-8 shows the generation of a grammar from a set of valid rules as defined in
Equation 6-7. QuickCheck also provides the possibility to have a user defined size for
grammar repetitive generation i.e. control of input size by macro function ‘?SIZED’ . If no
input is specified, then by default 100 testscases are run; in our case this causes the
generation of 100 different grammars.

57

grammar() ->
?LET(G, ?SIZED(Size, grammar(Size)),
lists:flatten(Q)).
grammar(N) when N =<0 ->
[;
grammar(N) ->
7LET(
Grammar, grammar(N - 2),
begin
LBs = logical bindings(Grammar),
Grammar ++ rules(LBs)

end).

Equation 6-8: Grammar generation

The test cases are executed against two properties

1. Valid grammar
2. Invalid grammar

A valid grammar is then provided as input to the parser to check if the parser correctly
outputs the record definitions and getter/setter functions (as mentioned in section 5.2.1.4), in
the case of failure QuickCheck will abort the ongoing testing and will output the grammar
used with the parser. This valid grammar check is shown in Equation 6-9.

prop_valid() ->
?FORALL(
G, grammar(),

complete(G) == true).

Equation 6-9: Valid grammar check

The invalidity of grammar is introduced by adding an invalid sentence to the valid
grammar in random pattern (start/middle and end of the generated grammar). In this way we

58

simulate a fault due to any kind of corruption in an existing valid grammar. The invalid
grammar check is shown in Equation 6-10.

prop_invalid() ->
7LET({{A1,A2},G}, {non_equal atoms(),grammar()},
?FORALL(
G1, shuffle(G+[{A1,[A2]}]),

complete(G1) == [{A2,false}])).

Equation 6-10: Invalid grammar check

6.3.2.2.3 Analysis

In section 6.3.2.2.1 we have integrated a simple test that confirms the well-formed
grammar and checks if the grammar is complete or not. In section 6.3.2.2.2 we have
developed a property based test bed for generating the grammar with all the inputs and tested
it with two properties, i.e. valid and invalid, against the parser’s functionality.

It was observed that even though we handled the subtle and obvious bugs some of
following bugs still remained, specifically.

e The definition of any level of the grammar was not handling the case where
grammar level was part of the list containing a relationship to another level of the
grammar. (See section 6.3.2.2.2)

e Definitions for repeated sentences were not tested, and
An empty grammar, even though it does not make sense, was not included in the
testing of parser.

Currently in the LAB setup there exist 49 logical bindings for 397 PIDS. The biggest
device configuration, in terms of interconnection, has 32 interconnections. We multiply all of
the current values (number of logical bindings, PIDs and interconnections) by a factor of 2 to
estimate future” state of the grammar. The size of the test cases was selected to be 500 and no
errors were observed when testing both valid and invalid grammars.

The results from the testing are satisfactory and no bugs were found. We do not claim that
the currently implementation is completely free of bugs, but we have attempted to perform
fuzzy testing in order to reach satisfactory level of testing for the implemented solution.

6.3.3 Performance testing

In the previous section, we evaluated the functional aspects of our implementation.
Nonetheless, the non-functional (responsiveness and concurrency) quality testing is also very
important. For example, Weng et al. [84] stated following a survey conducted by Microsoft’s

" Future, expectation for a year from now (See section 6.3.1).

59

Office development team that user complaints about what they perceived as bad performance
were almost as frequent as complaints about crashes. Perceptible performance or
responsiveness of an interactive tool can be described in terms of its latency of when
handling events[42]. A tool with low responsiveness (i.e. high latency of handing events) is
likely to induce anger, frustration, and annoyance of its user[43] and can also greatly
negatively affect user productivity[44]. That is why Milan Jovic and Matthias Hauswirth[45]
consider perceptible performance testing as an important part of the evaluation of an
interactive application.

We did not perform tests for the concurrency of our implemented solution, as tests have
been performed which compared yaws and apache concurrency[46]. As the test results for
concurrency of yaws indicate that yaws is able to handle 80,000 parallel sessions and that is
much greater than the current number of users of PeppesBodega-TF. A second reason for not
performing concurrency tests is that concurrency measurements takes a lot of time (and it was
not a core focus of this Master’s thesis) as many factors are involved in its calculation (such
as available processing power, latency, RAM, bandwidth, number of sockets etc).

In this section we will examine perceptible performance (i.e. specifically the latency of
handling events, such as the creation of a new configuration, loading, editing, etc.) of
PeppesBodega-TF. Additionally, this evaluation will help us in identifying performance
bottlenecks. The detection of performance bottlenecks is very important as it enables the
developer(s) to identify the part(s) of the system that is critical for improving the overall
performance (by modifying the identified part(s)) of the system to remove the bottleneck.

As Shneiderman [44] found the threshold of responsiveness to be around 100 ms for a
single event, therefore we are considering 100 ms as our threshold of responsiveness (i.e. if
handling of an event takes more than 100 ms then the implementation fails with respect to the
responsiveness criteria).

For evaluation, we will use the fprof " module to dump Erlang function calls (as the
implementation language is Erlang). The best feature of this profiling module is that it also
calculates time taken by its own function call, thus giving accurate measurements. The fprof
profiles any given function in three steps:

1. The tracer provides information about all the called functions, execution time,
processes scheduling, etc.

2. The profiler reads the trace files, simulates the execution call stack and
calculates raw profile data from this execution stack.

3. The analyzer sorts and filters the raw profile and then converts the output into a
readable text file.

The output of the ‘fprof” results in the three metrics:

CNT CNT is the total number of function calls during the trace.
ACC ACC is the accumulated time from the start of the trace to the end of
the trace.

" fprof is a profiler module that collects and analyzes the statistics about the execution of an Erlang
function. http://www.erlang.org/doc/man/fprof.html Last visited: 2013-12-10

60

OWN OWN is the sum of the execution time of the functions found in the
trace excluding the called functions, i.e., the time spent doing the
profiling.

We are mainly interested in the difference between ACC and OWN because this indicates
the total execution time of the actions performed by PeppesBodega-TF. We will first observe
whether the execution time has a predictable or random pattern. If it has a predictable pattern,
then we will only analyze the limits of the dataset in our analysis.

Following are the frequent operations that are to be executed by the users of
PeppesBodega-TF.

1. Create new configuration
2. Transactions of devices to configuration
3. Remove configuration

6.3.3.1 Create new configuration

Today each STP has a configuration file associated to it which defines the STP
interconnections. So we will analyze the implemented solution for the creating at least the
same number of configuration as we have forecast for the number of STPs. We have executed
the profile for 1000 configurations (more than the 750 STPs forecast for the next year).

Table 6-1 shows the trend of CNT, ACC, and OWN for 5 executions of creation of 100,
200, 300,... 1000 configurations. We observed that the time for creation of a configuration
increase as the number of existing configurations in the Mnesia database is increased. This is
normal behavior because the current implementation checks if the same key is used if so the
record is updated rather than creating a new record. So increasing existing configurations
increases the time required for creating next configuration.

We do not consider the update function to be bottleneck for the creation of new
configuration because it gives us a nice way to update the existing configuration when we
want to add/delete a device to a configuration, update connections between devices, etc.

Table 6-1 shows a calculation of the maximum, minimum, and deviation of CNT, ACC,
and OWN for the 5 executions of creating the different numbers of configurations. The
maximum time is the most relevant as the users are mostly concerned with the maximum
time that they have to wait for the output of a result after they have entered a request. The
minimum of each is used to calculate the expected deviation. We observe that for all three
criteria CNT, ACC, and OWN the deviation is lower than 100ms, hence there is no indication
of any performance bottle-neck.

The fitting curves for Figure 6-6 and Figure 6-7 are linear so we will calculate the
maximum time required for the creation of 901-1000 configurations that also includes the
time to check at-least 900 configuration records for the same key as the requested key for
901-1000 configurations.

61

l M j]) MAX MIN DEVIATION

R e T o e e T A i
o 2| s 3 | o 353 st] 36 g | 3] ol st o]] o]] 1 | 3
TR R e EEE
TR EE EEE EE LR
TG EEEEENEEEEE e EEEEE

001 24891(780f O15) 248%8[776{ Olo] 48%(/75(024] 24893| 784(037} 24898(782 631| 24898(784\ 637f 24891(17| 61Sf Jf Y 2

]
000 24981{ 8o1f 7251 24987f Sorf 735 24988(880f 70 24993(881 13| 24993(8B6| 73| 24993(8B6) 7o3f 24981f 861 JNof 12f L 2
100 25089) 9%(815{ 250821 992 814| 25078) 1007 817f 25087, 10201 815 25084f 1027) 8231 25089 078 992 814t 11

208 1070 907} 501

!
I 1077 0 904 891 2 21211000 897 19
!

=]

~ ~ | ~
(sl B=al =y |

) A
3335{ 1051] 984f 25348
5)

) y !)
334 104 9 0 973 2 982 25338 30 104 913
) 0 15409 1259) 1043) 25411)

45 1252) 1 154) 1048) 2

Table 6-1: fprof profilefor create configuration

62

Total time for calculations = ACC - OWN

=1259-1048
=211ms

Number of calculations = Creation of new configurations

=100
Responsiveness of a single operation = Total time for calculation / number of calculations
= 211/100
=2.11 ms

As 2.11ms is less than 100 ms the implemented solution will be able to successfully
create 1000 configurations (and a lot more) within the threshold of perceptibility as found by
Shneiderman in [44], hence we consider the system sufficiently responsive.

CINT
25600 -y
254200
-
25200 -f
25000 - * CNT
Linear (CNT)

24800 -
24600
24400 T v -

o 200 <00 s00 800 1000 1200

Figure 6-5: Create configuration - max CNT

63

ACC

1300
1200
1000

800

> ACC

S5 Linear (ACC)

|00

200

o v T T T T '
o 200 400 800 800 1000 1200
Figure 6-6: Create configuration - max ACC
OWN

1200
1000

800

>
600 * OWN
Linear (OWN)
400 -} — -
200
o T T T i T v
o 200 400 600 800 1000 1200
Figure 6-7: Create configuration - max OWN

6.3.3.2 Transactions of devices to configuration

There are two main data entities within PeppesBodega-TF that should affect the
performance evaluation of the implemented solution for transaction of devices in
configuration. These data entities for which variance can lead to interesting results are:
Devices and Configurations. For this reason, the dataset has been divided into two subsets:

1. Constant number of configurations with variable number of devices and
2. Variable number of configurations with constant number of devices.

The performance tests for above mentioned two data-sets have been performed in two
time intervals. In first interval the performance tests were executed only once and in second
interval performance test were executed five times to check the variance between different
executions.

64

6.3.3.2.1 Constant configuration with variable devices

Table 6-2 shows a profile for dataset-1; first interval, where the total number of
configurations (storing topological information) was constant and we made addition,
modification, and deletion transactions of varying devices to these configurations. Table 6-3
shows second interval for performing same operation as mentioned above for Table 6-2.

The results from the ‘fprof” for dataset-1, first interval, are plotted in Figure 6-8, Figure
6-9 and Figure 6-10. The results from ‘fprof” for dataset-1, second interval, are plotted in
Figure 6-11, Figure 6-12 and Figure 6-13.

As Table 6-2 and Table 6-3 show almost similar execution times for execution, but Table
6-3 contains values for the execution for 5 times. As mentioned earlier in this performance
testing the expected behavior is observed, thus we test the highest limits as users are most
concerned about the maximum time for the output. So we will consider the maximum value
for the largest configuration, i.e. last row of Table 6-3.

Total time for calculations = ACC - OWN

=203326 - 132665
= 70661 ms

Number of calculations = Number of devices/configurations * Total configurations *
number of transactions/configuration:

=100%49*3
=14 700

Responsiveness of a single operation = Total time for calculation / number of calculations

=70661 /14 700
=4.8068707 ms

As the maximum responsiveness (4.8 ms) is less than 100 ms the implemented solution
(with dataset-1 as input and future forecasted values of LAB equipment) is well below the
threshold of perceptibility as found by Shneiderman in [44], hence we consider the system
sufficiently responsive with regard to making changes to 49 different configurations.

65

Table 6-2:

fprof profilefor ‘ Transaction of devicesto configuration (dataset-1)'

Number of devices

Total number of

. . . . CNT ACC OWN
/ configuration configurations
10 49 637995 21606 14166
20 49| 1169233| 42902 27666
30 49] 1700776| 62454] 40876
40 491 2232170 79881 51721
50 49| 2763557| 99562| 65276
60 491 3294941) 117732] 76104
70 491 3826412] 137584] 89952
80 49| 4357728| 156153] 101684
90 491 4888647 171544] 112029
100 49] 53954128] 195486] 129061

66

devices 100 | Toal number o) 3 [) MAX MN DEVIATION

\confguratons| configuratons |CNT ACC (OWN A AC (OWN A (T (ACC A CNTACC JOWN
10 B 649584 4107) 16347 JALE 17484) 19570 29199 695512 29259 U127 16347} 44221 51321 5134
0 &) 1071125 4510) 31263 4T 19367) 34180 485 1077544} 50485 46510| 31263{ 081) 3975|4706
3 8] 1697500 65%1) 43538 67463 69166] 46174 1094 1703387} 7094 5961 435384805 5003 4697
Y 4 241841 Ba71d) 55138 34393 B6041] 57293 L 247037] 87974 B2714) 5138)3869| 5260{ 3290,
) &) 20583 100575 67521 103608 105268) 70104 106829 1710377} 106823 100573] 67522]3962] 42543632
b0 34841 121249 79064 1054 103380) 82150 513 35402125113 121249] 7906443081 38741 469
N 8] 334125 140S00] 931441 3043694/ 141399 10710 %5567 14439 46318) 144239 140500] 9314|3663 3739] 4390
) 4 Q784 158783104702 160487 1623101107781 164119 428478{ 164119 158783{ 104702 43481 5336 4672
% 9] 478415 174540} 115056 176021 1733018947 178994 A789781) 78994 L74540{113056{4093) 4454|5871
100 49 5178415 198166} 128592 199401 200949131554 2040 528033520470 198166{128590{ 4812 %_Em

Table 6-3:

fprof profile for 'Transactions of devicesto configuration (dataset-1)'

67

68

OWN - execution time (ms)

Figure 6-8:

ACC - execution time (ms)

Figure 6-9:

120000

OWN

100000

T / + OWN

——Linear (OWN)

/
20000

Transaction of devicesto configuration (dataset-1) - OWN with 49 devices

ACC
200000
180000
ssa000 .
140000 /
120000 /
100000 / * AcC

/ ——Linear (ACC)
80000

20000

o T T

o 20 40

T T 1

60 80 100

Transaction of devicesto configuration (dataset-1)- ACC with 49 devices

CNT
w 6000000
©
&)
5 |
=
2 //
4000000
=
[-
o
—_ 3000000 + CNT
g Linear (CNT)
=
—_— 2000000
=
L]
|_
s 1000000
(] /
o T T T T]
o 20 40 60 80 100
Figure 6-10: Transaction of devicesto configuration (dataset-1) - CNT with 49 devices
CINT
S000000
S000000 /.
4000000 /
3000000 / + CNT
/ Linear (CNT)
2000000 /
1000000 /
o T T T T T 1
o 20 40 50 80 100 120
Figure 6-11: Transaction of devicesto configuration (dataset-1) — max CNT with 49 devices

69

ACC

250000

200000 -

1S0000 -

+* ACC
Linear (ACC)

100000 -

50000 -

Figure 6-12: Transaction of devices to configuration (dataset-1) - max ACC with 49 devices

OWN

150000
140000
120000
100000

80000 +* OWN

Linear (OWMN)

40000

o 20 40 &0 80 100 120

Figure 6-13: Transaction of devicesto configuration (dataset-1) - max OWN with 49 devices

6.3.3.2.2 Variable number of configurations with a constant number of devices

Table 6-4 shows a profile for dataset-2, first interval, where the total number of devices
used in addition, modification, and deletion transactions were kept constant, but these actions
were performed on different numbers of configurations. For example, the first entry of Table
6-4 shows the case for 10 configurations where each configuration has 100 devices added,
modified, and deleted from all 10 configurations during the performance measurement. Table
6-5 shows second interval for performing same operation as mentioned above for Table 6-4.

The results from the ‘fprof” for dataset-2, first interval, are plotted in Figure 6-14, Figure
6-15 and Figure 6-16. We observe a sudden rise for OWN and ACC in the case of 40
configurations. However, if we consider the difference between both OWN and ACC, we see

70

that the execution time of the application is increasing linearly; hence this sudden rise could
be due to a high load on the processor by another running task. We have not observed this
kind of observation for any other of the performance test results but this is quite normal
behavior. The results from ‘fprof’ for dataset-2, second interval, are plotted in Figure 6-17,
Figure 6-18 and Figure 6-19.

Once again since the graphs are linear we will make our calculation based upon the last
row of the Table 6-5.

Total time for calculations = ACC - OWN

=361046 - 252688
= 108358 ms

Number of calculations = Number of devices/configurations * Total configurations *
number of transactions/configuration:

=100*100%*3
=30 000
Responsiveness of single operation = Total time for calculation / number of calculations
=108358 /30 000
=3.611933 ms

As the responsiveness (3.6 ms) is less than 100 ms the implemented solution (with
dataset-2 as input) falls below the threshold of perceptibility as found by Shneiderman in
[44], hence we consider the system sufficiently responsive with regard to making changes to
these different numbers of configurations with 100 devices.

In Table 6-4 and Table 6-5 the deviation from maximum and minimum CNT,ACC and
OWN is quite low so we do not consider it to indirect cause of any bottleneck (that might
occur in future).

Table 6-4: fprof profilefor ‘ Transaction of devicesto configuration (dataset-2)'

Numb.er of qewces Tota.l num!oer of CNT ACC OWN

/ configuration configurations
100 10] 1062931| 39449| 25465
100 20] 2125871 76837 50353
100 30] 3188302| 116134| 76174
100 40] 4251012 201747] 128768
100 501 5313685| 193112| 127494
100 60] 6376860 227639] 148345
100 700 7439321} 267706] 201595
100 80] 8502174} 305522] 222783
100 90] 9565127] 336117] 235506
100 100] 10587549| 378754| 244069

71

devces ! 4) MAX MIN DEVIATION

confguration - JAK OWN AC (OWN A (T (A (- (A OWN
100 1064276 40866 44 4419 31569 4502 1070718) 46502 1065%98] 42176 4590
10 22009 1813 414 82250 56097 83543 1134099 83543 2128869) 79392 44
100 3189312{117786 81307 10516 83167 134 3195833) 123740 3190950119429 4
100 Q50780 174419 1040 178995{124300 180705 425%00) 180705 54585176101 4562
100 5315495{ 203480 13333 107460 134762 J0%441 5301989200441 5316633203115 3%
100 6378116{229339 152512 134754/ 1540% 130742 6384072) 236742 6330105(231122 305
100 TA41168|26%49% 20576 173955 207286] THATTT| 275830 TH4T776{ 273830 TH42539 210834 4060
100 8303841307263 2659 3119571228270 38157 8509481313157 8505664308666 431
100 9366157]338060 40078 340107 141469 340% 9571949 3440% 9567404/ 339894 433
100 1045481235462 150214 35924351759 3612041253597) 10460834{ 3612041 293397 10453813{ 335983 3057

fprof profilefor ‘ Transaction of devicesto configuration (dataset-2)

72

OWN
300000
v
,E, 250000
@ >
=
e 200000 +*
=
.0
'5' 150000 - * OWN
8 * 4 Linear (OWN)
>
C!.J 100000
= //
50000 4%
(@) /
o T T . - .
o 20 40 60 80 100
Figure 6-14: Transaction of devicesto configuration (dataset-2) - OWN with 100 configurations

350000

300000

250000

200000

150000

100000

ACC - execution time (ms)

50000

o

ACC

+ ACC

Linear (ACC)

o

T T 1

60 80 100

Figure 6-15:

Transaction of devicesto configuration (dataset-2) - ACC with 100 configurations

73

7000000

5000000

3000000

2000000

1000000

CNT - number of function calls

CNT

+ CNT

Linear (CNT)

T T

60 80

io0

Figure 6-16:

Transaction of devicesto configuration (dataset-2) - CNT with 100 configurations

CNT
12000000
10000000 //“
8000000
coooonn // e
/ Linear (CNT)
4000000
2000000 ///
o T T T T 1
o 20 &0 80 100 120
Figure 6-17: Transaction of devicesto configuration (dataset-2) - max CNT with 100 configur ations

74

ACC

<00000 -

350000 -

300000 -t

250000 -|

200000 - *+ ACC

Linear (ACC)

150000 -

100000

SO000

Figure 6-18: Transaction of devicesto configuration (dataset-2) — max ACC with 100 configurations

300000

250000

200000

150000 +* OWN

Linear (OWN)

100000

So0o00

o 20 40 &0 80 100 120

Figure 6-19: Transaction of devicesto configuration (dataset-2) - max OWN with 100 configurations

6.3.3.3 Remove configuration

In section 6.3.3.1 we added 1000 configurations, and analysed the performance of
addition of the configuration. In this section we will perform deletion of the configuration
and observe the performance of deletion operation of configuration. In this section we have
performed deletion of devices 1-100,101-200,...900-1000. As the number of devices that
were deleted were the same so we were expecting that we will have a constant time with
some deviation. But our results proved our initial assumption to be wrong.

Table 6-6 shows profile for deletion of configuration. Row-1 of Table 6-6 indicates the
values of ACC, OWN and CNT for deletion of 1-100 configurations from Mnesia database.
We are deleting constant number of configurations in each step and observe a linear decrease
of ACC and OWN value with CNT being constant as shown from fitting curves in Figure
6-20, Figure 6-21 and Figure 6-22. The reason is that when the first 100 delete configuration

75

request is performed the Mnesia database has to traverse all the keys of the 1000
configurations; later-on the time will decrease as the size of database decreases.

For maximum time of ACC and CNT, we will perform addition

Total ACCinax = 27460 ms

Total OWN ax =11072 ms

Total time for calculation = Total ACCpax - Total OWNnax
=27460 - 11072
= 16388 ms

Number of calculations = 1000

Responsiveness of single operation = Total time for calculation / number of calculations
=16388 /1000
=16.388 ms

This value is higher than that from creation and transaction of devices for the
configuration, i.e. the calculations in sections 6.3.3.1 and 6.3.3.2 (respectively). The sole
reason for this increased time for a single deletion of configuration is that we are traversing
all the devices to delete the references to the deleted configuration. The responsiveness
(16.388 ms) is still less than 100 ms, so the implemented solution (with dataset-2 as input)
falls below the threshold of perceptibility as found by Shneiderman in [44]. Hence we
consider the system sufficiently responsive with regard to deletion of configurations with 100
(or more) devices.

76

Delete Conf

gurations

MAX

MIN

DEVIATION

(NT

AC

OWN

(NT

ACC

OWN

(NT

ACC

OWN

(NT

AC

OWN

(NT

AC

OWN

(NT

ACC

OWN

(NT

ACC

OWN

(NT

ACC

OWN

1-100

97661

30

1841

97665

3807

184

97664

3872

1850

97663

3868

1849

97664

3804

1850

47665

387

1850

97661

3864

1841

101-200

§7646

303

1708

87647

3619

1

87646

3618

mn

87646

3618

1716

87643

3015

1712

87647

303

Y

87643

3015

1708

201-300

17639

3528

1571

17642

3528

1574

17647

3525

1576

17644

35

1581

17639

3533

1581

17647

3533

1581

17639

352

1571

10

301-400

67632

3376

1441

67633

3380

1445

67637

3380

1448

67640

3384

1451

67642

3387

1455

67642

3387

1455

67632

3376

1441

10

1l

U

401-500

31647

289

140

57649

2891

138

57646

289

138

57643

2890

1233

57644

288

123)

57649

289

140

57643

2885

13)

[=n]

10

501-600

47636

213

1048

47640

2736

1052

47636

2132

1048

47636

2132

1049

47631

1131

1046

47640

2736

1052

47631

31

1046

=]

601-700

31642

U

909

37638

510

914

37643

2515

919

37643

518

922

37638

JAJA,

920

37643

AR

922

37638

510

909

_r

13

13

701-800

27638

1868

629

27642

1872

633

27646

18712

634

2650

1870

639

27649

1867

638

27650

181

639

27638

1867

629

12

10

801-900

176

1591

438

17618

1601

438

17611

1601

442

17621

1600

41

17626

1597

44

17626

1601

442

17617

1597

438

901-1000

7606

1433

206

7602

1431

208

7605

1439

208

7605

14371

207

1605

1436

202

1606

1439

208

7602

1433

202

o § = |

Table 6-6:

prof profiler for delete configurations

77

78

120000

100000

CNT

80000
60000 ® CNT
\\ Linear (CNT)
@000 5\.\
20000 \
o T - - - . .
200 400 s00 800 1000 1200
Figure 6-20: Delete configuration - max CNT

4500

ACC

3500

2500

2000

* ACC

Linear (ACC)

1500

1000

500

1000

1200

Figure 6-21:

Delete configuration - max ACC

2500
2000 -
&>
1500 - >
*+ OWN
Linear (OWN)
1000 -
C
S00 -
<+
o ’ 2 ;]
o 200 400 500 800 1000 1200

Figure 6-22: Delete configuration - max OWN

6.3.3.4 Summary of performance measurements

The maximum time to perform a transaction in all above cases (sections 6.3.3.1, 6.3.3.2,
and 6.3.3.3) is not more than 16.388 ms.

The transactions perform read and write operations on the Mnesia database and some
validation checks (See section 5.2.2.3 and section 6.3.2.1). As mentioned in section 4.2.6.4,
the Mnesia database in PeppesBodega-RMS is using Dets tables (that is disk storage), while
the remaining transactions are being done in the Erlang runtime system (that resides in the
RAM) so obviously the major portion of the transaction’s time in PeppesBodega-TF is due to
the Mnesia database query operations. We will therefore perform a simple test which will
perform common queries (add, update, delete, and read) to Mnesia database to calculate
average time of each query. In order to understand the time taken for each transaction we
have to consider the semantics of a transaction in the Mnesia database.

As discussed earlier, in each transaction queries to the database (requiring an update of
the disk) take more time than other operations in transaction. Figure 6-23 show the
maximum, minimum and average time for queries (add, read, update and delete) for given
rotational speed of the disk. The calculation of this time was also performed by fprof. The
average time for add, read, update and delete queries is 0.9694ms, 1.0862ms, 1.6344ms and
0.6674ms respectively. We verified this estimate by writing a simple program to perform
queries on the database. Based upon our analysis we conclude that the performance of
systems is dominated by operations of database, and as it lies within the threshold of
perceptibility as found by Shneiderman in [44] hence no bottlenecks occur.

79

Actualtime Actualtime Actualtime Actualtime
Testlteration {CNT| ACC | OWN | ACC- OWN Testlteration | CNT| ACC | OWN | ACC-OWN Test Iteraction | CNT| ACC | OWN' [ACC-OWN TestIteraction {CNT| ACC | OWN [ACC-OWN
; 1 (152 4612 | 1288 | 33U m 1 [47]5766] 0646 | 512 ¢ 1| B 1846 0% | 1,08 oLl (B3804 33
m 2 (151766 | 786 | 0 v 1 |ATI6R9| 661 | O m LB 0 m 1|3 185|185 0
3 (15163 |63 | 0 3 [A7{36841 0632 302 OF 3 B3| 1365 25 3o |14 186 | 1866 0
4 |152) 7457 593 | 158 AR T AR T N b [U[339]339(0 § || Q% 03 20
S (197136 |736| 0 S |aasas 0 S B3B38 0 S || 1818 0
Actual time Actual time Actual time Actual time
(NT| ACC | OWN [ACC-OWN (NT| ACC | OWN [ACC-OWN (NT| ACC | OWN |ACC-OWN (NT| ACC | OWN [ACC-OWN
MAX {152 766 | 766 | 33M MAX | 4716619 6619| 51 MAC | M) 40| 4T MAX {14333 [1895 | 33
MIN [151] 4612 | 1288 | 0 MIN | 47|3684{ 0632 0 MN (B8] 0% 0 MN (13184 | 0 | 0
AVG {151 6,6888 | 5,794 | 096% NG {47493 |329% | 1634 NG [23]3349) 2684 0667 NG [13{ 2318 1,295 | 1,0862
DBV [1[308]637| 33U DEV [0 {2935 5%87| 51 DV | 128641 3% | 22 DV | 1167|175 33
Figure 6-23: Queriesto Mnesia database

80

6.3.4 Test Coverage

In section 6.3.2 and 6.3.3 we have performed several tests to confirm the validity and
performance of the implemented solution. Yet another aspect of testing is to check the test
coverage, i.e. to check how much of the SUT is tested with the test cases. Thelnternational
Software Testing Qualifications Board (ISTQB) has defined three basic levels of test
coverage criteria

1. Statement coverage To measure the percentage of statements being
executed while performing tests

2. Decision coverage To measure the percentage of decision outcomes (for
example containing one or more conditions having
entry and exit at-least once).

3. Condition coverage To measure the percentage of each condition being
evaluated to both true and false

It is recommended to use combination of above mentioned basic levels of test coverage
criterion to perform rigorous test coverage. Two combinations of the basic levels of test
coverage that are being extensively used are:

4. Decision-condition Both the decision and condition coverage should be
coverage satisfied

5. Modified MC/DC is achieved with Decision-condition coverage
Condition/Decision but with following three condition also fulfilled:
coverage (MC/DC)

a) At least one test; if the atomic condition is
TRUE will change the decision outcome

b) At least one test; if the atomic condition is
FALSE will change the decision outcome

c) All the atomic condition have a) and b)
requirements

The author of this Master’s thesis has completed the ISTQB foundation level course[47].
Additionally, he has prepared for the technical test analyst and test manager
certifications[48]. This Master’s thesis provided the basic domain knowledge needed for
understanding of this section, however the interested reader is encouraged to see
references[47-48].

The level of coverage differs for different software systems. We will provide an example
to illustrate that test coverage for different software levels are defined separately. Airborne
environments use the ED-12B[49] standard for its software test coverage. According to this
standard the following five failure conditions are mapped to five software levels:

81

Failure Condition| DO-178B
Software
Level

Catastrophic A
Hazardous B
Major C
Minor D
No effect E

Figure 6-24: Failure conditions and softwar e levels of ED-12B, Adopted from[49]

According to the ED-12B standard the software level-A must undergo the MC/DC test
coverage, level-B must undergo decision coverage; MC/DC test coverage is optional, level-C
must undergo statement coverage and so-on for the rest of the levels.

The above example shows that the significance of test coverage increases from 1-
Statement coverage to 5-MC/DC coverage. Also different sub-systems of the software may
require different level of coverage.

We have researched the available options for the test coverage for Erlang programs. We
have found that Erlang has built-in tool cover” that provides statement, function, and module
coverage. Another open source tool smother’ is available for MC/DC coverage. These were
the options available to us for test coverage. The test coverage results for the test module
‘grammar_eqc’ are presented in Figure 6-25 and Figure 6-26 for Cover and Smother
respectively.

Analyzing the results from Figure 6-25 and Figure 6-26, we see that the tests are performed
with 100% statement coverage and 100% condition coverage. As mentioned earlier Smother
has the possibility to perform MC/DC coverage, but the results acquired from Smother do not
add much to analysis in terms of test coverage as the module itself did not have complex
conditions. Additionally, Cover and Smother indicated some unused code, i.e. code that was
never used. The red lines with 0 count (in cover, see Figure 6-25) and red/orange square
brackets (in smother, see Figure 6-26) are indications of unused code. The unused code has
now been removed from the module.

* Cover, http://www.erlang.org/doc/man/cover.html, Last accessed : 2013-12-29

T Smother, http://ramsay-t.github.io/Smother/, Last accessed : 2013-12-29

82

File generated from /home/eshamob/grammar_eqc.erl by COVER 2013-12-29 at 15:34:07

TR e

100.

100..

100..

-module (grammar_eqc).

-include_lib("egc/include/eqc.hrl”™).
-compile (export_all).

logical_binding() -> oneof ([list_to_atom(*LB_ " ++ integer_to_list(X)) || X =- lists:seq(1.49)]).
interconnection_level() -> oneof([list_to_atom("IL_ " ++ integer_to_list(X)) || X <- lists:seq(1,5*32)]).

product_identifier() ->

ALET({Prefix, Atom}, {oneof([*KDU =, "KRC "1}, oneof([list_to_atom("PID_ = ++ integer_to_list(X)) || X <- lists:seq(l,397*5)])},

list_to_atom(lists:concat([Prefix, Atom])})).

atom() ->
frequency (
[{0. PLET(5tr. non_eapty(list(char())). list_to_atom(Str))}.
{9, LET ({Lc, Str},
{lowercase(), list(alphanumeric())}.
list_to_atom([Lc|Strl))}).

alphanumeric() -> oneof([digit(),uppercase(),lowercase()]).
digit() -> oneof(lists:seq($0,$9)).

uppercase() -> oneof(lists:seq($a,$2)).

lowercase() -> oneof(lists:seq($a.$z)).

empty(L) ->
Lo==[].

rules(LBs) ->
LET(
{LB, PIDs. ILs}.
{logical_binding().
non_empty (list (product_identifier())),
non_empty (list (interconnection_level()))},
begin
[{LB.PIDs}]++
[pid(Pid,ILs) || Pid <- PIDs]++
[11(IL.LBs++[LB]) || IL <- ILs]
end).

pid(Pid,ILs) ->
[{Pid,nonempty_subset(ILs)}].

il(IL.LBs) ->
[{IL. nonempty_subset(LBs)}].

nonempty_subset(L) ->
PSUCHTHAT (Subset,

AET(Bs, [oneof([true,false]l) || _ <- lists:seq(l,length(L))].

[% || {X.B} =- lists:zip(L.Bs). Bl).
Subset /= []).

grammar() ->
PLET(G, ?SIZED(Size, grammar(Size)),
lists:flatten(G)).

grammar (N) when N =< 0 ->
gral;artH] ->

Grammar, grammar(N - 2),

begin
LBs = logical_bindings(Grammar),
Grammar ++ rules(LBs)

end).

logical_bindings(Grammar) ->
IL 11 {L._} <- Grammar, is_1b(L)].

is_lb(X) ->
case atom_to_list(X) of
“LB"4+_ -> true;
_ -> false
end.

non_equal_atoms() ->
PSUCHTHAT ({A1, A2}, {atom(), atom()}, Al /= A2).

prop_invalid() ->
PLET({{A1,A2},G}, {non_equal_atoms(),grammar()},
{

PFORALL
Gl, shuffle(Gw+[{AL, [A2]1}]),
complete(Gl) == [{A2,false}])).

prop_valid() ->
PFORALL(

G, grammar(),
complete(G) == true).

Figure 6-25: ‘cover' Statement coverage

83

-module (grammar_eqc).

-include_lib("eqc/include/eqe.hrl®).
-compile(2xport_all).

logical bmd:ng(] oneof ([list_to_atom("LB_ " 4+ integer_to_list(X)) || X <- lists:seq(1,49)]).
interconnaction 1e;re1() -> oneof ([list_to_atom("IL_ " ++ integer_to_list(X)) || X <- lists:seq(1,5*32)]).
product_: 1den‘t1f1er~t)
LET ({Prefix, Atom}, ist_to_atom("PID_ " ++ integer_to_list(X)) || X <- lists:seq(1,397+5)])},
atom ()} ->

115t_to_atom(1
frequency (

[{0,2ET(str, non ¢ Matched: 1666 times ¢r))),
{9, 2.ET({Lc,Str} « Non-Matched: N/A times
{lowerca
0Tl 1 e A e e e

a'lphanuler:.c{l -> oneof ([digit(),uppercase(), lowercase()]).
digiti(); -»ﬂoneof(llsts seq($0,$9)).

upper:ase-fli -> oneof (lists:seq($A.$2)).

'Lwercaset} -> oneof (lists:seq($a.$z)).

empty (L) ->
L==(].

rules(

e [L]

« Matched: 0 times
« Non-Matched: 0 times

When non-matched: 0%
sub-component coverage

¢ matched non-matched
LO N/A

= T

[{Pid, noneupty subset(ILs)}].

il(IC i8s) ->
[{IL, nonempty_subset (LBs)}].

nonelpty subset(’l,l
T(Subset,
?LET(3s, [oneof([true,false]l) || _ <- lists:seq(l.length(L))].
[X |] {X.B} <- lists:zip(L.Bs), B
Subset /= []).

grallarlﬂl =
7LET(

Grammar, grammar(N - 2),
begin
LBs = logical_bindings(Grammar),
Grammar ++ rules(LBs)
end).
logical_bindings (Grammar) ->
fL 1174L._} <- Grammar, is_lb(L)].

is_1b (%) ->
case atom_to_list(X) of
LB 4+ T -> true;
11> false
en

non_ "LB" 4+ _
. Al /= A2).

prop * Matched: 8432 times
% + Non-Matched: 0 times).grammar()},

“complete(Gl) == [{A2,false}])).
prop_valid(}} ->
PFORALL(

G, grammar(),
complete(G) == true).

Figure 6-26: ‘smother' MC/DC coverage

84

6.3.5 Testing of Web-UI

In section 6.3.2 and section 6.3.3 the core application logic was tested both from
reliability and performance perspective. Also stated in section 5.2.2.1 tests initially used the
CLI, rather than the Web-UI; the reason was that we want to separate the crashes of the core
logic from the beard template solution (if any). As section 6.3.2 and section 6.3.3 provided
satisfactory test results for the core logic, we will test the Web-UI.

The Web-UI was tested with the Selenium WebDriver [50] and WebClient in a Java
application. Selenium is used to automatically navigate for transactions (See section 5.2.2.2)
made on configurations and WebClient[51] is used to validate that the URL exists. We have
performed several tests to test the interfaces (create a configuration and modify a
configuration) described in section 5.2.2.2. The rest of the WEB-UI required some manual
actions from the CLI so these part of the user interface are not part of this test, but we
manually tested these interfaces and we experienced no problems whatsoever. The source
code for testing of WEB-UI can be found in Appendix-D.

We will not perform load testing because we feel satisfied with the performance” of yaws.

“performance, http://www.sics.se/~joe/apachevsyaws.html , Last accessed : 2013-12-15

85

7 Conclusions and Future work

In this chapter, the core of work done in this thesis is concluded in section 7.1. General
development experience during this thesis is also discussed in the same section. Section 7.2
highlights areas for future work. Finally, section 7.3 provides some reflections relevant to
domain of this Master’s thesis project.

7.1 Conclusions

This Master’s thesis was carried out at Ericsson AB. A topological RMS system is the
major contribution of this Master’s thesis project. The use of an RMS has a clear advantage
in terms of supporting the efficient utilization of resources and offers insights into the used
and unused resources of the LAB. However, the RMS also provides input to the test
environments. A topological RMS plays an important role by providing information about the
utilization of resources and increases the visibility of the interconnections between these
resources across the organization. In this way an alignment of TECs across different testing
levels can be done, therefore interpretation of different TECs in different testing levels is not
required, hence reducing the time it takes for a tester to be productive when switching
between different testing levels. This can also potentially decrease the time required to setup
a test environment by facilitating the reuse of a given test environment for testing on different
levels by different testers.

The goal of implementing a topological RMS system that delivers as an output the TEC
for a test environment has been successfully completed. The major challenges that we
encountered were the selection of a path towards the implementation. Initially we
encountered a major problem when we selected the wrong data structure for the topology
information (see Section 5.2.2.3). Erlang was previously used as the development language
for PeppesBodega-RMS and the implementation done as part of this thesis project, i.e.
PeppesBodega-TF, was also done in this language. Erlang was new to the author of this
Master’s thesis and detailed features of this language were unknown. The implementation
was modified from time to time as my knowledge of Erlang developed over time. The author
of this Master’s thesis was also new to web application development. Once again I would like
to thank my supervisor, Magnus Krongvist, for helping me develop my technical skills.

During the implementation of this Master’s thesis, the front-controller of PeppesBodega-
RMS was identified as a hindrance to the completion of the web UI for the management of
PeppesBodega-TF. Although the author of this Master’s thesis worked on modifications to
the front-controller for quite some time, a decision was made in conjunction with my
supervisor not to continue this development because it was taking too much time. This
resulted in only partially fulfilling the goal of a providing web Ul for management of
PeppesBodega-TF. In retrospect the time spent on the development of front-controller could
have better been used for development of a tool for visualization of the topology. As a result
these two parts are left as future work for the further development of PeppesBodega-TF.

This Master’s thesis contributes to the general development of a topological resource
management system. The author identified several choices that should not be adopted in the
development of a topological resource management system, such as the usage of a tree data
structure for encoding configuration data of the topology and the maintainability problem of
conventional methods (XML and Erlang-config) to define the grammar of the configuration
data of topologies. Furthermore, in this thesis, two classes of devices (self-forming and lazy:
see sections 2.3.1 and 2.3.2) specific to discovery of the network topologies were introduced.

86

Logical and physical topologies are two major geometric views of network topology. The
developers of a topological RMS should include support for both geometric views, even if
both views seem the same (as this need not be the case in the future).

As PeppesBodega-TF is extension to the PeppesBodega-RMS, the choices of tools were
derived from PeppesBodega-RMS. We did not have a dis::uss the advantages and
disadvantages of these choices because it would lead to a catch-22 situation.

7.2 Future work

This thesis was the first attempt towards integration of a topological RMS in
PeppesBodega-RMS. Obviously we cannot claim this first attempt is the optimal or ultimate
choice. Nor do we claim to have considered all the perspectives. Additionally, some of the
goals were only partially fulfilled due to the limited duration of this Master’s thesis project.
For all of these reasons there are areas to be explored where the existing design could be
modified and enhancements can be developed.

An essential future step is performing the delivery testing so that PeppesBodega-TF can
be released to the target groups. This testing requirement was described in Section 6.3.

The goal of providing a web Ul for administration of configuration data of the topology
was not completed due to lack of functionality in front-controller in conjunction with the
beard library. The front-controller needs to be able to handle requests in more efficient way.
Currently the data for the web Ul is transferred in a URL and in a topological RMS a large
data request is sent making this approach infeasible. As described in Section 5.2.2.2 the
implementation of the front-controller should be changed to efficiently send the data between
webpages. There are quite a number of different methods that could be used to do this,
including sending data in form-post/get methods, saving and retrieving session data, using
cookies, etc. We will not discuss in detail which method should be adopted and the reasons
for such a choice, because this requires a detailed investigation which was not possible within
the scope of this Master’s thesis project.

Visualization in general and particularly in the scope of a topological RMS serves an
important role for debugging purposes by expert users and reducing the learning curve of
novice users. PeppesBodega-TF lacks a visualization scheme, so it would be of great benefit
to implement such a visualization scheme. Although a visualization scheme was included in
the goals of this Master’s thesis project, there was not sufficient time to implement any
visualization scheme. However, we found several Erlang libraries for graphical visualization,
including gtknode®, wxErlang*, and Erlang-graphviz®, that could be candidates for this
visualization scheme. As we encode the configuration data of a topology as undirected
graphs, the best suited library would seem to be Erlang-graphviz.

" Catch-22, http://en.wikipedia.org/wiki/Catch-22 (logic) , Last accessed : 2013-12-15
T gtknode, https://code.google.com/p/gtknode/, Last accessed : 2013-12-15

' wxErlang , http://www.erlang.org/doc/man/wx.html , Last accessed : 2013-12-15

¥ Erlang-graphviz, https:/github.com/glejeune/erlang-graphviz, Last accessed : 2013-12-15

87

An interesting set of issues that should be addressed in future work is the migration of the
devices to IPv6 and the use of names to access devices, rather than fixed addresses. This
would address one of the limitations described in Section 4.2.5.4.

Another future extension of the system would entail the assignment of unique DIDs to all
devices that are maintained by the LAB. This would require the addition of these devices to
the relevant STPs in the RMS. For further discussion of devices without unique DIDs see
Section 6.1.2.

A security aspect should also be considered when the users can create the configurations
of other signum other than their own. One way of tracking what is being created of one’s
signum 1is to initiate an email to corresponding user. Also secure login mechanism should be
integrated via Ericsson corporate ID authentication and then one can only create
configuration for its own signum.

The choices of these programming paradigms were inherited from the design and
implementation of the existing PeppesBodega-RMS. While these choices were straight
forward, it was also important to understand the reasons why these programming paradigms
had been chosen. The selection of Erlang was due to the fact that its performance is far
superior to Java (one of the most widely used programming language today) [52]. The
selection of Yaws is also attributed to its better performance’ as compared to Apache[46].

An important lesson learned is that knowledge of the development tools is important
when devising a solution for a problem. During the implementation, the author frequently
implemented certain functions which could have been done in an easier way if more time had
been spent to acquire deeper knowledge of development tools. This was especially true for
Erlang, Yaws, and computer grammars. For example, we implemented the grammar using
our own format, but later we found out that the grammar could have been defined in yecc*
with much less effort. However, the learning curve of yecc is relatively high, so the
programmer has to make a conscious decision to learn how to use the proper tool rather than
using the ad hoc approach used in this Master’s thesis.

7.3 Reflections

This Master’s thesis was encouraged and motivated by MSV department at Ericsson AB.
During the course of this Master’s thesis project the author worked closely with the
verification engineers and software developers from different departments to gather the needs
for the topological resource management system that offers a scalable solution for all the
departments involved.

The social contribution of this Master’s thesis is the topological resource management
system which will be used within Ericsson AB after its successful deployment at MSV
department. Another social aspect of this Master’s thesis is that the grammar translation will

* Java, http://www.java.com/en/ , Last accessed : 2013-12-15

i performance, http://www.sics.se/~joe/apachevsyaws.html , Last accessed : 2013-12-15

*yece, http://www.erlang.org/doc/man/yecc.html , Last accessed : 2013-12-15

88

be made publically available in GitHub" for projects with limited time, as yecc has a greater
learning curve. The implemented solution (and proposed future work) in its complete form
will make an economic contribution as the execution time required for testing will be reduced
and also the learning curve reduction for fresh engineer - both of which will have an
economic benefit to Ericsson AB. The social and economic contributions stated above will
be benefitting Ericsson AB by this Master's thesis and will contribute to increasing
competitiveness in Swedish industry.

The ethical aspects were also considered pertaining to not a) disclose any kind of
confidential information of the Ericsson’s LAB equipment b) manage any data of a personal
nature whatsoever, and a generic model of topological resource management system is now
available to the research community via this thesis report. The information collected by
implemented topological resource management system contains only physical topologies
which may, when in place and executing in the final live environment, contain confidential
data (that will be managed by Ericsson’s confidential policy); but will not manage any data of
a personal nature.

* GitHub, “Powerful collaboration, code review, and code management for open source and private
projects”, https://www.github.com/, Last accessed : 2013-12-29

89

References

[1] B. B. Agarwal, M. Gupta, and S. P. Tayal, Software engineering & testing: an
introduction. Sudbury, Mass.: Jones and Bartlett Publishers, 2010, ISBN: 978-
0763782993.

[2] G. M. Parker, Cross-functional teams working with allies, enemies, and other
strangers. San Francisco, Calif.: Jossey-Bass, 2003, ISBN: 978-0787965600.

[3] B. Beizer, Software system testing and quality assurance. New York, NY, USA: Van
Nostrand Reinhold Co., 1984, ISBN: 0-442-21306-9.

[4] S. Naik, Software Testing and Quality Assurance. John Wiley & Sons, 2007, ISBN:
0471789119.

[5] R.D. Craig and S. P. Jaskiel, Systematic Software Testing. Artech House, 2002, ISBN:
9781580537926.

[6] M. Mazurkiewicz, ‘Gui test automation with swtbot’, Vaasan Ammattikorkeakoulu
University of Applied Sciences, 2010.

[7] A. Gutierrez Lopez, M. Viela, and 1. Manuel, Automated Telecommunication Software
Testing : An automated model generator for Model-Based Testing. Masters’s thesis,
KTH Royal Institute of Technology, School of Information and Communications

Systems,Communication Systems, Stockholm, Sweden: , 2012, Available at
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93852.
[8] ‘Examples of Test Oracles’. [Online]. Available:

http://www.testingeducation.org/k04/OracleExamples.htm. [Accessed: 14-August-
2013].

[9] ‘Comparison of project management software’, Wikipedia, the free encyclopedia, 15-
August-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Comparison of project management softwa
re&oldid=568593005. [Accessed: 15-August-2013].

[10] K. Horikiri and S. Kawabe, ‘Resource management system’, U.S. Patent 576515409-
June-1998Available at http://www.google.com/patents?id=DSEhAAAAEBAJ.

[11] J. C. Wu, ‘Automatic discovery of network elements’, U.S. Patent 518586009-
February-1993 Available at http://www.google.com/patents?id=4ZcXAAAAEBAJ.

[12] A. Sharon, R. Levy, Y. Cohen, A. Haiut, A. Stroh, and D. Raz, ‘Automatic network
topology analysis’, U.S. Patent 620512220-March-2001Available at
http://www.google.com/patents?id=YisGAAAAEBAJ.

[13] D. Chatwani, R. Subramanian, W. Chiang, J. Davar, A. Opher, and S. Sawant, ‘Method
for providing for automatic topology discovery in an ATM network or ...”, U.S. Patent
566410702-September-1997 Available at
http://www.google.com/patents?id=EEsiAAAAEBAJ.

[14] N. Migas, W. J. Buchanan, and K. A. McArtney, ‘Mobile agents for routing, topology
discovery, and automatic network reconfiguration in ad-hoc networks’, in Engineering
of Computer-Based Systems, 2003. Proceedings. 10th IEEE International Conference
and Workshop on the, 2003, pp. 200-206, DOI:10.1109/ECBS.2003.1194800.

91

[15] D. Knertser and V. Tsarinenko, Network Device Discovery, Master’s thesis. KTH
Royal Institute of Technology, School of Information and Communication Technology:
TRITA-ICT-EX-2013:90, June 2013, Available at
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123509.

[16] ‘Comparison of network diagram software’, Wikipedia, the free encyclopedia, 14-
August-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Comparison_of network diagram software&
0ldid=568516332. [Accessed: 03-September-2013].

[17] ‘Computer Networks Demystified | Network Topology’. [Online]. Available:
http://networking.layer-x.com/p020000-1.html. [Accessed: 05-September-2013].

[18] ‘Logical Vs. physical topology’. [Online]. Available:
http://thoughtl.org/nt100/module3/logical vs.html. [Accessed: 05-September-2013].

[19] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, ‘Topology management for
sensor networks: exploiting latency and density’, in Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking &, computing, New York,
NY, USA, 2002, pp. 135-145, DOI:10.1145/513800.513817, Available at
http://doi.acm.org/10.1145/513800.513817.

[20] J. Pan, L. Cai, Y. T. Hou, Y. Shi, and S. X. Shen, ‘Optimal base-station locations in
two-tiered wireless sensor networks’, IEEE Transactions on Mobile Computing, vol. 4,
no. 5, pp. 458-473, 2005, DOI:10.1109/TMC.2005.68.

[21] W. Hsuand A. S. Kulkarni, ‘Network topology management system through a database
of managed network resources including logical topolgies’, U.S. Patent US5848243
A08-December-1998.

[22] N. Chomsky, ‘Three models for the description of language’, IRE Transactions on
Information Theory, vol. 2, no. 3, pp. 113—-124, 1956, DOI:10.1109/TIT.1956.1056813.

[23] A. M. Natarajan, Theory of Automata & Formal Languages: As Per UPTU Syllabus.
New Age International, 2005, ISBN: 9788122417296.

[24] ‘'LL parser’. [Online]. Available:
http://www.princeton.edu/~achaney/tmve/wikil00k/docs/LL_parser.html. [Accessed:
04-October-2013].

[25] A. R. Hevner and S. Chatterjee, Design research in information systems theory and
practice. New York; London: Springer, 2010, ISBN: 1441956530 9781441956538,
Available at http://dx.doi.org/10.1007/978-1-4419-5653-8.

[26] ‘DESRIST: Design Science Research in Information Systems Overview’. [Online].
Available: http://www.desrist.org/desrist/. [Accessed: 31-October-2013].

[27] A.R.Hevner, S. T. March, J. Park, and S. Ram, ‘Design science in information systems
research’, MIS Q., vol. 28, no. 1, pp. 75-105, March 2004.

[28] ‘XML Technology - W3C’. [Online]. Available: http://www.w3.org/standards/xml/.
[Accessed: 12-August-2013].

[29] ‘Portable Network Graphics’. [Online]. Available: http://www.w3.org/Graphics/PNG/.
[Accessed: 12-August-2013].

[30] ‘Strangeloop - Acceptable website response times - Web Performance Optimization’.
[Online]. Available: http://www.strangeloopnetworks.com/resources/infographics/why-

92

luxury-websites-are-disappointing-chinese-consumers/acceptable-website-response-
times/. [Accessed: 27-August-2013].

[31] ‘Erlang Programming Language’. [Online]. Available: http://www.erlang.org/.
[Accessed: 10-October-2013].

[32] ‘beard’, GitHub. [Online]. Available: https://github.com/danabr/beard. [Accessed: 10-
October-2013].

[33] ‘mustache.erl’, GitHub. [Online]. Available: https://github.com/mojombo/mustache.erl.
[Accessed: 17-October-2013].

[34] ‘HTML Tutorial’. [Online]. Available: http://www.w3schools.com/html/. [Accessed:
17-October-2013].

[35] ‘QuviQ homepage’. [Online]. Available: http://www.quviq.com/index.html. [Accessed:
18-October-2013].

[36] ‘Erlang -- mnesia’. [Online]. Available: http://www.erlang.org/doc/man/mnesia.html.
[Accessed: 21-October-2013].

[37] ‘About BNF notation’. [Online]. Available: http://cui.unige.ch/db-
research/Enseignement/analyseinfo/AboutBNF.html. [Accessed: 25-November-2013].

[38] ‘BNF Notation for syntax’. [Online]. Available: http://www.w3.org/Notation.html.
[Accessed: 25-November-2013].

[39] ‘Notations for context-free grammars: BNF, Syntax Diagrams, EBNF’. [Online].
Available: http://www.cs.man.ac.uk/~pjj/bnf/bnf.html. [Accessed: 25-November-2013].

[40] A. V. Aho, J. E. Hopcroft, and Ullman, Data structures and algorithms. Reading,
Mass.: Addison-Wesley, 1983, ISBN: 0201000237 9780201000238.

[41] D. A. Turner, Research topics in functional programming. Addison-Wesley Pub. Co.,
1990, ISBN: 9780201172362.

[42] M. Jovic and M. Hauswirth, ‘Measuring the performance of interactive applications
with listener latency profiling’, 2008, p. 137, DOI:10.1145/1411732.1411751, Available
at http://sape.inf.usi.ch/publications/pppj08.

[43] B. Shneiderman and C. Plaisant, Designing the user interface: strategies for effective
human-computer interaction. Boston: Addison-Wesley, 2010, ISBN: 9780321537355
0321537351 9780321601483 0321601483.

[44] B. Shneiderman, ‘Response Time and Display Rate in Human Performance with
Computers’, ACM Comput. Surv., vol. 16, no. 3, pp. 265-285, September 1984,
DOI:10.1145/2514.2517.

[45] M. Jovic and M. Hauswirth, ‘Performance Testing of GUI Applications’, 2010, pp.
247-251, DOI:10.1109/ICSTW.2010.27, Available at
http://sape.inf.usi.ch/publications/testbeds10.

[46] ‘Apache vs. Yaws’. [Online]. Available: http://www.sics.se/~joe/apachevsyaws.html.
[Accessed: 15-December-2013].

[47] ‘Foundation Level Syllabus - ISTQB® International Software Testing Qualifications
Board’. [Online]. Available: http://www.istqgb.org/downloads/syllabi/foundation-level-
syllabus.html. [Accessed: 29-December-2013].

93

[48] ‘Advanced Level Syllabus - ISTQB® International Software Testing Qualifications
Board’. [Online]. Available: http://www.istgb.org/downloads/syllabi/advanced-level-

syllabus.html. [Accessed: 29-December-2013].

[49] T. K.Ferrell and U. D.Ferrel, ‘RTCA DO-178B/EUROCAE ED-12B’. [Online].
Available: http://www.davi.ws/avionics/TheAvionicsHandbook Cap 27.pdf.
[Accessed: 29-December-2013].

[50] ‘Selenium WebDriver’. [Online]. Available:
http://docs.seleniumhgq.org/projects/webdriver/. [Accessed: 30-December-2013].

[51] “WebClient (HtmlIUnit 2.13 API)’. [Online]. Available:
http://htmlunit.sourceforge.net/apidocs/com/gargoylesoftware/htmlunit/WebClient.html.

[Accessed: 30-December-2013].

[52] ‘Performance Measurements of Threads in Java and Processes in Erlang’. [Online].
Available: http://www.sics.se/~joe/ericsson/du98024.html. [Accessed: 15-December-

2013].

94

Appendices

A. BNF- Standard grammar

%% DU

%% Radio

%% KDU 127 161/1 R1A/4
%% KDU 137 930/1 P1B
%% KRC 118 75/1

%% CpriPort

%% IDLPort

%% GPSOption

%% PowerPort

%% IP

%% CPRIC

%% CPRI-2.5

%% CPRI-5

%% CPRI-10

KDU 127 161/1 R1A/4 | KDU 137 930/1 P1B

KRC 118 75/1

CpriPort CpriPort CpriPort CpriPort IDLPort GPSOption
CpriPort CpriPort CpriPort CpriPort IDLPort GPSOption
CpriPort CpriPort

undefined | DU | CPRIC | Radio

undefined | DU

undefined | on

undefined | IP

Integer

cpri-2.5 | cpri-5 | cpri-10
CpriPort CpriPort
CpriPort CpriPort
CpriPort CpriPort

95

B. BNF-Erlang grammar

[{du,['KDU 127 161/1 R1A/4']},

{du, ['KDU 137 930/1 P1B']},
{radio, ['KRC 118 75/1']},

{'KDU 127 161/1 R1A/4',[cpriport,cpriport,cpriport,cpriport,idlport, gpsoption]},
{'KDU 137 930/1 P1B', [cpriport,cpriport,cpriport,cpriport,idlport,gpsoption]},
{'KRC 118 75/1',[cpriport,cpriport]},
{cpriport, [undefined]},
{cpriport,[dul},

{cpriport,[cpric]},
{cpriport,[radio]},

{idlport, [undefined]},
{idlport,[du]},

{gpsoption, [undefined]},
{gpsoption,[on]},

{powerport, [undefined]},

{powerport, [ip]},

{ip, [integer]},

{cpric,['cpri-2.5"']},
{cpric,['cpri-5'1},
{cpric,['cpri-10']},
{'cpri-2.5",[cpriport,cpriport]},
{'cpri-5',[cpriport,cpriport]},
{'cpri-10',[cpriport,cpriport]}].

C. QuickCheck Testing

-module(grammar_eqc).

-include_lib("eqc/include/eqc.hrl").

-compile(export_all).

logical binding() ->
oneof ([list to_atom("LB_ " ++ integer_to list(X)) || X <- lists:seq(1,10)]).
interconnection_level() ->
oneof ([list_to_atom("ICL_ "++integer_to_list(X)) || X <- lists:seq(1,10)]).
product_identifier() ->
?LET({Prefix,Atom},
{oneof(["KDU ", "KRC "]),
oneof([list_to_atom("PID_ " ++ integer_to_list(X)) || X <- lists:seq(1,10)])},

97

list_to_atom(lists:concat([Prefix, Atom]))).

atom() ->
frequency (
[{@,?LET(Str, non_empty(list(char())), list_to_atom(Str))},
{9, ?LET({Lc,Str},
{lowercase(), list(alphanumeric())},

list_to_atom([Lc|Str]))}]).

alphanumeric() -> oneof([digit(),uppercase(),lowercase()]).
digit() -> oneof(lists:seq($0,$9)).
uppercase() -> oneof(lists:seq($A,%$2)).

lowercase() -> oneof(lists:seq(%$a,%$z)).

empty(L) ->
L==1[1].

rules(LBs) ->
PLET(

{LB, PIDs, ILs},

{logical_binding(),
non_empty(list(product_identifier())),
non_empty(list(interconnection_level()))},

begin

[{LB,PIDs}]++
[pid(Pid,ILs) || Pid <- PIDs]++
[i1(IL,LBs++[LB]) || IL <- ILs]
end).

pid(Pid,ILs) ->
[{Pid,nonempty_subset(ILs)}].

il(IL,LBs) ->
[{IL, nonempty_subset(LBs)}].

nonempty subset(L) ->
?SUCHTHAT (Subset,
?LET(Bs, [oneof([true,false]) || _ <- lists:seq(1,length(L))],
[x || {X,B} <- lists:zip(L,Bs), B]),
Subset /= []).

98

grammar() ->
?LET(G, ?SIZED(Size, grammar(Size)),
lists:flatten(G)).

grammar(N) when N =< @ ->
[1;
grammar(N) ->
PLET(
Grammar, grammar(N - 2),
begin
LBs = logical_bindings(Grammar),
Grammar ++ rules(LBs)

end).

logical_bindings(Grammar) ->

[L |] {L,_} <- Grammar, is_1b(L)].

is_1b(X) ->
case atom_to_list(X) of
"1b"++_ -> true;
_ -> false

end.

non_equal_atoms() ->

?SUCHTHAT ({A1,A2}, {atom(), atom()}, Al /= A2).

prop_invalid() -»>
?LET({{A1,A2},G}, {non_equal_atoms(),grammar()},
?FORALL(
Gl, shuffle(G++[{A1,[A2]}]),
complete(Gl) /= true)).

prop_valid() ->
?FORALL(
G, grammar(),

complete(G) == true).

D. Testing of Web-Ul

import java.10.I0Exception;

import java.net.MalformedURLException;

import org.openga.selenium.By;

import org.openga.selenium.wWebDriver;

import org.openga.selenium.webElement;

import org.openga.selenium.htmlunit.HtmlUnitDriver;

import com.gargoylesoftware.htmlunit.FailingHttpStatusCodeException;
import com.gargoylesoftware.htmlunit.wWebClient;

public class App {
public static void validate_status(String URL)
throws FailingHttpStatusCodeException, MalformedURLException,
I0Exception {
webClient webClient = new WebClient();
webClient.getPage (URL) . getWebResponse () .getStatusCode();
webClient.closeAllwindows();
}

public static void main(Stringl] args)
throws FailingHttpStatusCodeException, MalformedURLException,
I0Exception {

for (int 1 : new int[] { 1, 2, 3, 4, 5}) {
WebDriver driver = new HtmlUnitDriver();
String Create_configuration_url = "http://localhost:9090/topology*;
Validate_status(Create_configuration_url);
driver.get(Create_configuration_url);

webElement name = driver.findElement(By.name("name"));
WebElement signum = driver.findElement(By.name("signum"));
char ¢ = (char) (1 + 97);

name.sendKeys("conf" + c¢);

signum.sendKeys ("signum");

name.submit();

String Modify_configuration_url = driver.getCurrenturl();

for (int ii : new int[] { 1000, 1001, 1002, 1003, 1004 }) {
driver.get(Modify_configuration_url);
driver.findElement (By.name("adddid")).submit();
webElement id = driver.findElement(By.name("1d"));
1d.sendKeys(Integer.toString(11));

}

driver.close();

Figure 7-1: Web-UI testing with Selenium and WebClient

100

TRITA-ICT-EX-2014:1

www.kth.se

