
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

S H A R I Q M O B E E N

 A Topologically Aware Resource
Management System

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Shariq Mobeen

mobeen@kth.se

2014-01-15

Master’s Thesis

MSV-RBS Department at Ericsson

Examiner: Professor Gerald Q. Maguire Jr.
Industrial Supervisor: Magnus Kronqvist

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology

Stockholm, Sweden

A Topologically Aware Resource
Management System

i

Abstract
As companies fight for market share whoever is able to bring products to market faster

has an advantage over their competitors. Therefore it is absolutely essential to constantly
evaluate and optimize processes to achieve shorter time-to-market for products.

These optimizations have to be carried out in all parts of a company. This thesis describes
one such attempt made by a Swedish telecommunication vendor focused on enabling a
resource management system to gain a greater understanding of the resources available
during testing. This system manages all of the hardware utilized by the users, software
testers, within one particular part of the organization and aids users by automatically
converting the information stored in its database into a configuration file that will later be
used in the testing framework’s execution environment. Unfortunately, the current version of
this resource management system lacks semantic understanding of the information necessary
to automatically generate the configuration file, leaving a rather large part of the
configuration file to be manually entered by the testers, a rather time-consuming task. The
inability to completely automate the process means that the testing process is slower, more
error prone, and increases the work needed for a new engineer to become a productive
software tester.

In order for the resource management system to automatically generate the configuration
file it needs to know not only which resources it is managing, but must also how these
resources are interconnected, i.e. the topology of the resources. For this reason this thesis
describes how to make the resource management system topologically aware, thus making
verification of the System under Test (SUT) more efficient and mitigating the problems
mentioned above. This thesis does not deal with the intricate details of how to automatically
extract the topology, as this is inherently domain specific and thus difficult to generalize.
Rather, this thesis focused on how to allow users to custom-build their desired topology by
defining a set of rules that restrict how resources can be interconnected.

The goal of providing functionality for storing and retrieving topological information
from database has been successfully achieved, and the resulting code has been integrated into
the existing resource management system. However, the functionality has not yet been
delivered because of a limitation in our front controller that stops us from providing an
efficient web interface to our tool. After delivery the implemented solution is expected to
remove most manual work related to test configuration and therefore also reduce the learning
curve for new engineers.

Keywords: Topology, Resource Management System, SUT, Testing

iii

Sammanfattning
När företag slåss om marknadsandelar har de som kan leverera produkter till marknaden

snabbare en fördel över sina konkurrenter. Det är därför av högsta vikt att kontinuerligt
utvärdera och optimera processer för att produkten snabbare skall nå marknaden..

Dessa optimeringar måste utföras inom samtliga områden inom ett företag. Denna uppsats
beskriver ett sådant försök av ett svenskt telekombolag att stärka ett resurshanteringssystem
för att uppnå en högre förståelse för de resurser den hanterar. Detta system hanterar samtlig
hårdvara för användare (mjukvarutestare) inom en del av organisationen. Det hjälper
användarna att automatiskt konvertera informationen i sin databas till en konfigurationsfil
som används i testramverkets exekveringsmiljö. Tyvärr saknar den nuvarande versionen den
semantiska förståelsen av dess data för att kunna automatiskt generera konfigurationsfilen,
vilket tvingar användaren att manuellt ägna sig åt denna tidskrävande uppgift. Oförmågan att
inte kunna automatisera fullt ut innebär att den övergripande testprocessen är långsammare,
mer felbenägen och ökar tiden det tar för en ny ingenjör att komma igång och bli en
produktiv mjukvarutestare.

För att resurshanteringssystemet ska kunna generera konfigurationsfilen automatiskt
krävs inte bara kunskap om vilka resurser den hanterar utan också hur dessa är
sammankopplade. Det vill säga hur de topologiskt relaterar till varandra. Den här uppsatsen
beskriver därför hur ett resurshanteringssystem kan bli topologiskt medvetet och därigenom
åstadkomma en mer effektiv testning av produkten och därmed överkomma de tidigare
nämnda problemen. Denna uppsats inte gå in på detaljer om hur man extraherar den
topologiska strukturen av resurser eftersom detta i sin natur är domänspecifikt och därigenom
svårt att generalisera. Fokus istället ligga på hur man kan tillåta användare att bygga önskad
topologi genom att definiera regler för hur olika resurser kan sammankopplas.

Målet vi satte upp med att kunna lagra och inhämta topologisk information från en
databas har med framgång integrerats i det existerande resurshanteringssystemet. Ändringen
är dock ännu inte fullt ut levererad på grund av en begränsning i vår nuvarande front
controller som hindrar oss från att på ett effektivt sätt koppla samman vårt nya verktyg med
ett webbgränsnitt. Efter leverans förväntas den implementerade lösningen eliminera större
delen av det manuella arbete som tidigare krävts i samband med konfiguration av testmiljön,
och därigenom även minska inlärningskurvan för nya ingenjörer.
Nyckelord: Topologi, Resurshanteringssystem, SUT, Testning

v

Acknowledgements
First of all, Thanks to ALLAH, the most merciful and most beneficent for giving me

wisdom and allowing me to complete this thesis.

I would like to express my gratitude to Professor Gerald Q. Maguire Jr. for his
assistance & supervision. His invaluable guidance helped us in all the difficulties we faced in
the progress of this thesis project. I would like to give special thanks to my supervisor
Magnus Kronqvist for helping me to develop my technical skills and for his continuous
guidance and encouragement throughout this thesis process.

I wish to express my special thanks to Ahmed Kamal Mirza (Late), Muhammad Muaaz,
and Waqas Liaqat Ali for their moral support and guidance during my study period. I also
wish to express my gratitude to Abdul Rahim and Muhammad Fahad for their valuable
recommendations of how to improve this thesis.

Last but not least, I want to acknowledge & express gratefulness to my family who
showed great patience and endured with me throughout all.

vii

Table of Contents
Abstract ... i

Sammanfattning ... iii

Acknowledgements .. v

Table of Contents ... vii

List of Figures ... ix

List of Tables ... xi

List of acronyms and abbreviations .. xiii

1 Introduction ... 1

1.1 Problem definition .. 1
1.2 Context of Study .. 1
1.3 Motivation .. 3
1.4 Objectives and Challenges ... 3
1.5 Target Audience ... 6
1.6 Contributions .. 6
1.7 Outline .. 7

2 Basic Concepts and Background Study .. 9

2.1 Basics of Testing .. 9

2.1.1 Levels of Testing ... 9
2.1.2 Types of testing techniques ... 10

2.2 Taxonomy of Test development ... 11
2.3 Resource Management System (RMS) .. 12

2.3.1 Self-forming systems ... 12
2.3.2 Lazy systems ... 12
2.3.3 Network visualization software ... 13

2.4 Common Public Radio Interface (CPRI™) .. 14
2.5 Network topology management system ... 14

2.5.1 Applications of Topological Resource Management Systems ... 15
2.5.2 Network topology management system through a database of managed network resources

including logical topologies ... 16

2.6 Grammar .. 17

2.6.1 Recursively enumerable grammar (Type-0) ... 17
2.6.2 Context-sensitive grammar (Type-1) .. 17
2.6.3 Context-free grammar (Type-2) .. 18
2.6.4 Regular grammar (Type-3) ... 18

3 Methodology .. 19

3.1 Awareness of problem .. 20
3.2 Suggestion/solution .. 20
3.3 Development .. 21
3.4 Evaluation .. 21
3.5 Conclusion ... 22

viii

4 “Pe

4.1

4.1
4.1

4.2

4.2
4.2
4.2
4.2
4.2
4.2

5 Pep

5.1
5.2

5.2
5.2
5.2

6 Tes

6.1

6.1
6.1

6.2

6.2
6.2
6.2

6.3

6.3
6.3
6.3
6.3
6.3

7 Con

7.1
7.2
7.3

Referenc

Appendi

 BNA.

 BNB.

 QuC.

 TesD.

eppesBodega”

Old-PB-Sys

1.1 Inform
1.2 Limita

PeppesBod

2.1 Develo
2.2 Stake-h
2.3 Access
2.4 Web ba
2.5 Salient
2.6 Archite

ppesBodega E

Existing de
Design Tran

2.1 Develo
2.2 Integra
2.3 Interfa

sting and Eva

Achieveme

1.1 Achiev
1.2 Discrep

Analysis of

2.1 Admin
2.2 Compo
2.3 Featur

Testing of P

3.1 Test co
3.2 Reliab
3.3 Perform
3.4 Test Co
3.5 Testing

nclusions and

Conclusion
Future work
Reflections

ces

ices

NF-Standard g

NF-Erlang gra

ickCheck Te

sting of Web-

” RMS

stem

mation Bank
tions

ega-RMS

opment
holders
s rights
ased views
t Features of P
ectural design

Extended RM

sign
nsition

opment tools a
ation with exis
aces

aluation

nts and Discre

vements
epancies

f the character

istrative opera
onents of a top
res of a topolo

PeppesBodega

onfiguration ...
ility testing

rmance testing
overage
g of Web-UI ...

d Future wor

ns
k
s

......................

......................

grammar

ammar

sting

-UI

......................

......................

......................

......................

......................

......................

......................

......................

......................
PeppesBodega
n of PeppesBo

MS’s Topologi

......................

......................

and design
sting architect
......................

......................

epancies

......................

......................

ristics of Pepp

ations
pological RMS
ogical RMS

a-TF

......................

......................
g
......................
......................

rk

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

.....................

.....................

......................

.....................

.....................

.....................

.....................
a-RMS

odega-RMS

ical Framewo

......................

......................

.....................
ture
.....................

......................

......................

.....................

.....................

pesBodega-TF

.....................
MS

.....................

......................

.....................

.....................

.....................

.....................

.....................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

ork

......................

......................

......................

......................

......................

......................

......................

......................

......................

F

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

............ 23

............ 23

............ 24

............ 24

............ 25

............ 25

............ 25

............ 25

............ 26

............ 27

............ 29

............ 33

............ 33

............ 33

............ 33

............ 37

............ 43

............ 45

............ 45

............ 45

............ 46

............ 46

............ 46

............ 49

............ 50

............ 51

............ 51

............ 52

............ 59

............ 81

............ 85

............ 86

............ 86

............ 87

............ 88

............ 91

............ 95

............ 95

............ 97

............ 97

.......... 100

ix

List of Figures
Figure 1-1: Work flow and Team interaction model ... 2

Figure 1-2: STP view in PeppesBodega-RMS .. 4

Figure 1-3: Create a new empty topological configuration ... 4

Figure 1-4: Populating a topological configuration ... 5

Figure 1-5: Generation of a configuration file ... 6

Figure 2-1: Testing levels [5, 6] .. 10

Figure 2-2: Black-box testing vs. White-box testing[5] ... 11

Figure 2-3: Network Visualization Software Adopted from [16] .. 13

Figure 2-4: Logical versus Physical topology [18] .. 15

Figure 3-1: Research methodology of Design Science Research (Adapted from [27]) 20

Figure 3-2: The development model followed to construct the artifact(s) ... 21

Figure 4-1: Old-PB-System Architecture .. 24

Figure 4-2: Device view in PeppesBodega-RMS .. 26

Figure 4-3: Architectural Design of PeppesBodega-RMS ... 30

Figure 5-1: Architectural design of PeppesBodega-TF ... 37

Figure 5-2: Create configuration ... 38

Figure 5-3: Topology signum view ... 39

Figure 5-4: Topology management view ... 39

Figure 5-5: Textual configuration - Erlang-config .. 40

Figure 5-6: Textual configuration - XML .. 41

Figure 6-1: Device management of a powered-off device ... 48

Figure 6-2: Control of devices ... 49

Figure 6-3: Requirement delivery plan .. 51

Figure 6-4: Recursive grammar parsing .. 54

Figure 6-5: Create configuration - max CNT .. 63

Figure 6-6: Create configuration - max ACC .. 64

Figure 6-7: Create configuration - max OWN ... 64

Figure 6-8: Transaction of devices to configuration (dataset-1) - OWN with 49 devices 68

Figure 6-9: Transaction of devices to configuration (dataset-1)- ACC with 49 devices 68

Figure 6-10: Transaction of devices to configuration (dataset-1) - CNT with 49 devices 69

Figure 6-11: Transaction of devices to configuration (dataset-1) – max CNT with 49 devices 69

Figure 6-12: Transaction of devices to configuration (dataset-1) – max ACC with 49 devices 70

Figure 6-13: Transaction of devices to configuration (dataset-1) - max OWN with 49 devices 70

Figure 6-14: Transaction of devices to configuration (dataset-2) - OWN with 100 configurations 73

Figure 6-15: Transaction of devices to configuration (dataset-2) - ACC with 100 configurations 73

Figure 6-16: Transaction of devices to configuration (dataset-2) - CNT with 100 configurations 74

Figure 6-17: Transaction of devices to configuration (dataset-2) - max CNT with 100 configurations 74

x

Figure 6-18: Transaction of devices to configuration (dataset-2) – max ACC with 100 configurations 75

Figure 6-19: Transaction of devices to configuration (dataset-2) - max OWN with 100 configurations 75

Figure 6-20: Delete configuration - max CNT .. 78

Figure 6-21: Delete configuration - max ACC .. 78

Figure 6-22: Delete configuration - max OWN ... 79

Figure 6-23: Queries to Mnesia database .. 80

Figure 6-24: Failure conditions and software levels of ED-12B, Adopted from[49] 82

Figure 6-25: 'cover' Statement coverage ... 83

Figure 6-26: 'smother' MC/DC coverage ... 84

Figure 7-1: Web-UI testing with Selenium and WebClient ... 100

xi

List of Tables
Table 2-1: Testing Terminology ... 11

Table 5-1: Levels of Grammar definition ... 35

Table 6-1: fprof profile for create configuration .. 62

Table 6-2: fprof profile for ‘Transaction of devices to configuration (dataset-1)' .. 66

Table 6-3: fprof profile for 'Transactions of devices to configuration (dataset-1)' 67

Table 6-4: fprof profile for ‘Transaction of devices to configuration (dataset-2)' .. 71

Table 6-5: fprof profile for ‘Transaction of devices to configuration (dataset-2) .. 72

Table 6-6: prof profiler for delete configurations ... 77

xiii

List of acronyms and abbreviations
CPP Connectivity Packet Platform

DID Device Identifier

DSR Design Science Research

DU I&V Digital Unit Integration and Verification

FT Function Test

JCAT Java Common Automated

JCT Joint Common Test

LAB Laboratory

MIS Management Information System

MSV Maintenance and System Verification

NCI Node Common Infrastructure

png portable network graphics

RBS Radio Base Station

RMS Resource Management System

ST System Test

STP System Test Plant

SUT System Under Test

SW Software

TF Topological Framework

TEC Test Environment Configuration

XML extensible markup language

1

1 Introduction
This chapter presents a general introduction and gives the basic background knowledge

required to understand this Master’s thesis. Next it describes the motivation for this thesis
project. Then, it summarizes the expected contributions in the field of testing that should
result from this thesis project. Finally, the chapter concludes with a description of the
structure of rest of thesis.

1.1 Problem definition
In the Maintenance and System Verification (MSV) - Radio Base Station (RBS) System

verification department, each RBS is tested at the system level. During system verification,
the RBS is tested both using regression testing (to ensure that it meets legacy requirements)
and feature testing (to lead market trends by providing novel features).

Testing of a lot of different types of Test Environment Configurations (TECs) in
conjunction with different RBS nodes requires a large amount of effort and time. Time and
effort are both critical attributes in the quality of testing of the system under test (SUT). If
more time is spent testing, then better quality of testing can be ensured (assuming that the
additional testing time is spent testing a larger number of test cases which cover more of the
system’s functionality). However, the time required to input the TECs into a test environment
is generally ignored. This leads to increased efforts on the part of the verification engineer,
with time spent unnecessary on preparation/debugging of the testing environment which may
even lead to an unreliable pass/failure verdict in the testing results.

Another problem is that currently the focus on testing is from the laboratory (LAB)
administration’s point of view. The LAB administration needs to keep track of the equipment
which is owned and ensure effective utilization of this equipment (for power consumption
saving and because this equipment is expensive). Bodega is the database providing the basis
for the Resource Management System (RMS) used by the LAB administration. Although this
RMS has addressed the problems of tracking and equipment utilization very adequately, there
are still major opportunities for efficiency enhancements that this thesis project hopes to
contribute to. Not all but many of the pieces of equipment need more structured and detailed
information to assist not only the LAB administration to work effectively. Additionally, this
data can also provide greater insight for the test teams enabling them to increase the
automation of their test environment.

1.2 Context of Study
This thesis project is being carried out at Ericsson AB, Kista, Sweden in the MSV - RBS

System verification department. In this Master’s thesis the word “department” always refers
to the “MSV – RBS System verification department”. This department consists of two test
teams: microCPP (Connectivity Packet Platform) and Node Common Infrastructure (NCI)
system test (NCI-ST) team (NCI-1 and NCI-2). To be more specific this thesis project is
carried out in the NCI I-2 test team. The NCI -test teams perform Black-Box testing of
software (SW) (see section: 2.1.2 for details). The NCI team consists of a NCI function-test
(NCI-FT) (see section: 2.1.1 for details) team and a NCI-Design team. Figure 1-1 shows a
model of the interactions between these teams.

2

In th
in the d

NCI
section
function
framew
are then

The
features
Automa
(see Ch
an inter

The
also use
stored i
purpose
JCT/JC

* The

is j

L
Te

he context o
department,

I can be co
2.1 for deta

n-test level
work for test
n delivered

e NCI-ST te
s, but on th
ated (JCAT
hapter 4 for
rnal tool use

e LAB Team
es the Pepp
in the Pepp
es either dir

CAT framew

ere is no relat
just a coincid

 NCI

LAB
eam

Figure

of this Mas
but rather o

onsidered a
ails). NCI-D
by NCI-FT

ting implem
as a black-b

eam is curr
e side has s

T). Both the
details) for

ed within th

m is respons
pesBodega
pesBodega
rectly (to ac

w).

tionship betw
dence that their

MSV- RB

NCI - FT

NCI - Des

1-1: Wor

ter’s Thesis
only on thos

as two cros
Design deve
T. The NCI

mented featu
box to the N

rently using
started porti
e JCT and J
r retrieving
he MSV dep

sible for the
RMS to sto
RMS is th

ccess device

een Pepesbod
r names are si

BS

T

ign

N

m

rk flow and Te

s project we
se details re

ss-functiona
elops certain
I-FT team u

ures. After t
NCI-ST team

g JCT as a
ing the test
JCAT test f
information

partment and

e physical in
ore informa

hen used by
e informatio

dega (http://ww
imilar.

delivers

NCI-ST

microCPP

eam interaction

e will not fo
levant to th

al teams: N
n features a
uses Joint C
testing at a f
m.

test framew
environme

frameworks
n about the
d has not be

nstallation o
ation about
y NCI-FT a
on) or indire

ww.pepesbod

T

n model

ocus on the
is Master’s

NCI-FT and
and they are
Common T
functional l

work for te
nt from JCT
s use the Pe
SUT. Pepp

een made pu

of devices in
the device

and NCI-ST
ectly (to ex

ega.se/) and P

Testing fram

JCT fram

JCAT fram

Peppes Bod

 hierarchy o
Thesis proj

d NCI-Desi
e initially te
Test (JCT) a
level, these

esting imple
T to Java C
eppesBodeg

pesBodega-R
ublically av

n the lab. Th
es. The info
T teams for
xecute test c

PeppesBodega

meworks

mework

mework

dega

of teams
ject.

ign (see
sted at a
as a test
features

emented
Common
ga-RMS
RMS* is

vailable.

his team
ormation
r testing
cases via

a-RMS. It

3

1.3 Motivation
As discussed earlier the time and effort spent during the testing process plays a key role in

determining the quality of testing of the SUT. The ability to perform testing using different
test equipment depends on both the location & availability of the test equipment & SUT; and
the topology of the interconnection of this equipment that is needed to perform the desired
tests on the SUT. The motivation for this thesis project is to provide a hassle-free
environment to the MSV – RBS System verification department. Also, the results should ease
the LAB setup process, both from an administrative point of view and for verification
purposes.

The above discussion establishes the need for a topology aware RMS system which will
contain comprehensive details about the SUT as administered by the LAB team.

1.4 Objectives and Challenges
The main goal of this Master’s Thesis project is to design, develop, and evaluate a

topology aware RMS system that will provide efficient TECs and efficiently use &
administer the LAB’s equipment. The specific goals of this Master’s thesis are:

• Design and implement a topological RMS that outputs a TEC for the SUT in a textual
format (in the scope of this Master’s thesis this format will be: JCT-config (Erlang) or
JCAT-config (extensible markup language (XML)) and in a graphical format, such as
portable network graphics (png);

• To provide a detailed view of all of the relevant LAB equipment for administrative
purposes ; and

• To evaluate the tool that is produced.

In order to achieve these goals, the biggest challenge is expected to be gathering the
requirements from all of the departments using the existing PeppesBodega-RMS. The
remaining challenges include collecting data about the LAB equipment and their
interconnections in order to specify their topology.

Figure 1-2 shows the current picture of devices booked in a System Test Plant (STP).
The devices have two interfaces for performing action i.e. IP (referred to Ethernet in Figure
1-2) and Serial connection (referred to RS232 in Figure 1-2) connection. An IP connection
has an IP address associated to it and used for sending commands to the device. The serial
connection is a TCP connections and physical realized over an Ethernet connection to a
switch with multiple ports; this interface is used for debugging purposes. The STP
information shown in Figure 1-2 lacks any information about how the four devices (identified
by Device Identifiers - DIDs) are connected to each other. This topological information is
critical for the verification engineers for their test oriented tasks. For example: “Checking the
delay measurement” for the connection between device-A and device-B requires information
such as (1) type of connection between them, (2) length of interconnection (cable connecting
the devices), and other delay calculation information which depends on topological
information.

4

As
testing
Master’
configu
The aim
configu
other). F
new con

Afte
be inclu
interfac
an exist
and dev
to utiliz
from ST
STP-1 a

NEW

Conf

User

discussed a
of intercon

’s thesis pro
uration corre
m of the pr
uration by s
Figure 1-3
nfiguration

er creation o
uded from t
ce should be
ting STP. F

vice-3; and
ze all devic
TP-2 (devic
and device-

W CONFIGUR

figuration N

r ID

Figu

above this
nnections or
oject ‘topolo
esponds to
roject is to
electing the
shows a pro
‘Configura

Figure 1-3

of a new co
the main da
e capable o
For exampl
STP-2 cont
ces (device-
ce-4, devic
-4 (from ST

RATION

Name

ure 1-2: S

topologica
r to setup c
ogy’ and ‘co
a specific in
realize a us

e devices th
oposed inter
ation1’ is cre

3: Create

onfiguration
atabase in o
f including
e, consider
ains device
-1, device-2
e-5, or dev

TP-2) are b

STP view in Pe

al informati
connections
onfiguration
nterconnect
ser interfac

hat are to be
rface for cre
eated for us

 a new empty t

n, the device
order to carr
 a complete
the case w

e-4, device-5
2, and devi
vice-6). Fig
eing added

Crea

Confi

A

eppesBodega-R

on is very
s between t
n’ will be u
tion topolog
ce that will
e interconn
eating an em
ser ‘Alice’.

topological con

es included
ry out a par
e STP or a

where STP-
5, and devic
ce-3) from
ure 1-4 sho
to the ‘Co

ate

iguration1

Alice

RMS

important
he devices.

used alternat
gy of a sele
enable a u

ected with
mpty topolo

nfiguration

together w
rticular test
single stand
1 contains
ce-6; then it
STP-1 and

ows that al
nfiguration

when it co
. In context

atively, as ev
ected set of
user to crea
the SUT (a

ogy. In Figu

with the SUT
oriented ta

dalone devi
device-1, d
t should be
d any single
ll of the de
n-1’ for user

omes to
t of this
very test
devices.
te a test

and each
ure 1-3 a

T should
ask. This
ice from

device-2,
possible
e device

evices in
r ‘Alice’

5

(in the configuration created in Figure 1-3).

Figure 1-4: Populating a topological configuration

Figure 1-5 shows the formation of a configuration. The aim of this interface is to provide
a user with the ability to define the interconnections between any two components. This
basically involves the following five important items of information:

1. DID of first device
2. Port of first device that needs to be connected
3. DID of second device
4. Port of second device which is connected to first device
5. Information about this interconnection

It is also important to note that if device-1’s port-1 is connected to device-2’s port-1, then
the information about this interconnection should be the same when seen from device-2’s
perspective. For this purpose the functionality of undirected graphs will suffice for the
objectives of this Master’s thesis (See details in Chapter 5).

As mentioned in section1.2 there are two frameworks being used for test automation: JCT
(written in Erlang*) and JCAT (written in Java). JCT requires input in Erlang (cfg) format,
whereas JCAT needs input in XML format. To cater to the needs of all of the teams it is
important to provide the user with the ability to generate either an XML or Erlang
configuration file.

* For further information about the Erlang programming language see: http://www.erlang.org/

CONFIGURATION-1_ALICE Devices

STP-1 A
D
D device-4 STP

Device

device-1

device-2

device-3

device-4

 See
Figure 1-5

6

1.5
This

RBS Sy
teams, a
test arch
verifica
project

1.6
This

followin

•

•
•
•
•

This
related
domain

The
visualiz
any phe

Ge

Targe
s results of
ystem verifi
and LAB a
hitects (for

ation depart
to assist the

Contr
s Master’s
ng the beha

Restructure

Store/retr
Provide h
Enable ef
Align TE

s master’ th
to testing

n specific kn

e idiom “U
zation in un
enomenon,

CONFIGUR

<<device-

enerate con

Figu

et Aud
f this thesis
fication dep
administratio

example, e
tments mig
em in efficie

ributio
thesis con

avioral aspec

ed the Peppe

rieve topolo
hassle-free i
fficient utili

EC informat

hesis also c
and to bui

nowledge fo

Use a pictur
nderstanding
namely tex

RATION-

-

nfiguration f

ure 1-5: G

ience
project wil
artment (he
on team. Th
enabling the
ght utilize t
ently perfor

ons
ntributes to
cts of this R

esBodega R

ogical inform
input for ge
ization of us
tion for all t

contributes
ild a found
or the target

re. It's wor
g complex
xtual and gr

file

Generation of a

ll assist the
ere after the
he thesis sh
em to desig
the researc
rming testin

o an existi
RMS:

RMS:

mation
eneration of
sed/unused
teams using

to facilitat
dation for n
t departmen

rth a thous
concepts. T
raphical rep

a configuration

verification
e “target” d
hould also p
gn better an
h, findings

ng and for a

ing Peppes

f TECs
resources

g this RMS

ting underst
new verific

nt.

sand words”
There are tw
presentation

n file

n engineers
department),
provide add

nd more com
, and salie
dministrativ

sBodega RM

tanding of
cation engin

” explains
wo basic me
. Tools for

X

E

s within the
, function t
ditional insi
mplete tests
ent features
ve purposes

MS by mo

the basic c
neers by pr

the import
eans for ex
analysis ca

XML

Erlang

MSV –
test (FT)
ights for
s). Other
 of this

s.

odifying

concepts
roviding

tance of
xplaining
an either

7

generate textual details or graphical visualizations. Unfortunately in many cases presenting
information in only a textual format makes it quite difficult to digest the concept, while in
other cases a graphical representation is insufficient for understanding the idea behind the
concept. Moreover, having only a graphical representation may not provide the input
necessary for other processes (in our case the need for a TEC). For these reasons this thesis
project provided will utilize textual representation and emphasize the need for graphical
representation.

1.7 Outline
The thesis is organized into six chapters. Following this introduction chapter, Chapter 2

provides the basic concepts and terminology of testing (providing a foundation for rest of the
thesis), then reviews some of the relevant literature within the domain of RMS in general and
a topology based RMS in particular. Architectural details of the existing PeppesBodega-RMS
are given in Chapter 3. Chapter 4 explains the methodology adopted to achieve the goals
stated in Section 1.4. Chapter 5 explains the design and gives implementation details of the
proposed topology based RMS (here after referred to as the PeppesBodega-TF (Topological
Framework)). Chapter 6 describes the testing (functional and non-functional) and evaluation
of a prototype of the PeppesBodega-TF. Chapter 7 concludes the thesis and suggests future
work.

9

2 Basic Concepts and Background Study
This chapter provides a comprehensive background concerning the two major subjects of

this thesis: testing and resource management systems (RMSs). Testing has been further
divided into two subsections, with Section 2.1 introducing the concepts that are critically
important for readers who have no or limited background in testing; whereas section 2.2
focuses on explaining the terminology of the testing domain. Section 2.3 provides
information to give the reader a basic understanding of approaches to better utilize resources
when testing as well as how to reduce the overhead in doing so. Section 2.5 introduces the
basics of a network topology resource management system. Finally, section 2.6 introduces
the basics of formal grammars.

2.1 Basics of Testing
If you ask ten different verification engineers, it is quite possible that all of them define

and interpret “testing” in their own way. However, with respect to software all of the
definitions will highlight the belief that testing is used to find bugs in the software in order to
assure better software quality. A concise and one of the most accurate definitions is provided
by B.B. Agarwal, et al.:

“Testing is the major quality-control measure used during software development.
Its basic function is to detect errors in the software. Thus, the goal of testing is to
uncover requirement, design, and coding errors in the program” [1].

Testing is generally performed in two organizational structures[2]:

1. An independent development team and a separate independent test team; or
2. A team consisting of testers and developers, i.e., a cross functional team.

The concept of cross-functional teams has been gaining attention within a large number
of organizations over the past several decades[2]. We will not compare which organizational
structure is better, as this is outside of the scope of this Master’s thesis. However, for the
purposes of this thesis project we need to be able to support both organizational structures.

2.1.1 Levels of Testing
Software testing depends upon the scope (or levels [3, 4]) and the time plan usually

follows the categorized order (see Figure 2-1):

1. Unit Testing,
2. Integration Testing,
3. System Testing, and
4. Acceptance Testing.

Each of these levels of testing will be described further detail in the following paragraphs.
These descriptions will follow the chronologic order generally used for testing; hence it will
start with unit testing and end with acceptance testing.

10

Figure 2-1: Testing levels [5, 6]

2.1.1.1 Unit Testing
Unit testing (component testing or function testing) is used to test isolated parts of

modules, units, or modules of software. This type of testing is usually performed by the
developer of each particular software unit.

2.1.1.2 Integration Testing
After unit testing, the isolated units that are intended to work together are grouped

together and verification is performed on these groups (as built from these units). This is done
to verify that the communication within a particular group of units works as expected.

2.1.1.3 System Testing
System testing is done after integration of a complete system has been performed. A

system test is the first stage in which the system is tested against specific system
requirements. Verification performed in this stage that does not require knowledge of the
software’s design is referred to as black box testing. This thesis project is mainly being
carried out within a department which focuses on this level of testing.

2.1.1.4 Acceptance testing
Acceptance testing is an important test phase because this level of testing will analyze if

the quality of the software of the whole system is sufficient to deliver the system to
customers.

2.1.2 Types of testing techniques
Testing can be performed using either of following two techniques[5]:

1. Black-box testing or
2. White-box testing

In black box testing input (as a stimulus) is given to a system, and then the result is
matched with the expected (required) output. If the result matches the expected output, then
the test is said to be passed – otherwise the test is said to be failed. In white-box testing we
are concerned with both the test result and whether the software worked properly or not. In
the case of white-box testing we have access to the source code for the software and can
analyze the test results in terms of execution paths through the code. In the target department,
system testing is performed using black-box testing.

Unit testing

Integration testing

System testing

Acceptance testing

11

Figure 2-2: Black-box testing vs. White-box testing[5]

2.2 Taxonomy of Test development
This section will provide the reader with the testing terminologies generally used in

automated test environments[6, 7]. We will describe desirable properties of the commonly
used terminologies and their interpretation in the target department (if not explicitly specified
otherwise). The most important terms are given along with a brief description in Table 2-1.
Table 2-1: Testing Terminology

Test Oracle The test oracle provides a verdict for the failure or passing of the
software application under test[8]. In the target department this is
referred to as a “Requirement specification” by the system-design team
and as a “Test Specification” by the test team.

Test case A test case is the basic unit of an automated test suite. A particular test
case is designed to produce an output which will be checked by a test
oracle (requirement specification). Some of the desirable properties of
test cases are:

• Must have a single test oracle,
• Created using a modular approach,
• Designed in a structured way to facilitate its easy maintenance,

and
• Be well documented.

Test Suite Test cases are combined together into a test suite targeting a common
area of interest.

Test
Specification

See explanation of Test Oracle.

Test Scope The test scope defines the amount of testing performed to reach a test
verdict which satisfies the pass criteria.

Test Coverage For a given test case or test suite the degree of test coverage specifies the
fraction of the complete set of features of a given SUT that are tested.

Legacy testing A “regression test” is performed in order to see if a newly added feature
causes errors in previously working release(s).

y = 4 ? x = 2

y = 4 y = 2x x = 2

Unknown Equation versus Known Equation

12

2.3 Resource Management System (RMS)
Resource management has always been an important part of any large organization and

even small groups of people working together may need to perform resource management in
order to efficiently achieve a goal of common interest. A number of software packages have
been developed to automate and assist in resource allocation (one of the main objectives for
creating and using a RMS)[9]. Horikiri et al. provided a generalized definition of an RMS:

“A resource management system, of the type wherein processes are applied to
real resources, which are resources previously input into a computer system that
performs information processing, to obtain new resources, includes a plurality of
context maintaining units that respectively establish a correspondence with
attributes”.[10]

In Section 1.4 we noted that a focal point of this Master’s thesis project is the storage and
retrieval of topological information concerning a SUT to or from a RMS. In terms of this
topology formation RMSs can be categorized into two distinct classes: Self-forming
(intelligent) systems and Lazy (unintelligent) systems.

To the best of my knowledge after carrying out a detailed literature review, these two
classes have not been classified using these specific terms in any scientific literature.
However, from a research perspective these categories have been prevalent under different
names (see the discussion in Sections 2.3.1 and 2.3.2). The reason for this categorization in
the context of this Master’s thesis is provided in the following discussion of these systems.

2.3.1 Self-forming systems
Systems that consist entirely of intelligent* devices are called ‘self-forming systems’. A

significant body of research has been devoted to gathering resource information via different
communication methods within a network of such devices[11–15]. All of these methods have
their own advantages and disadvantages in terms of performance, capacity, completeness, etc.
For example, Migas et al. attempted to finding route information, topology information, etc.
with the help of static and mobile agents that crawl the network to obtain the information
necessary for reconfiguration of an ad hoc network [14]. Although this method automatically
obtains information available within the network, it injects extra traffic within the network.
This extra traffic may not be problematic when bandwidth is not a scarce resource, but the
method still has capacity implications.

As the devices registered in the PeppesBodega RMS are not intelligent, we will not
further study this approach. However, in the future this approach might be relevant if the
devices that are being registered are intelligent.

2.3.2 Lazy systems
Systems that consist of at least one non-intelligent device are called “Lazy systems”. The

reason why they are called lazy is that they do not automatically provide any configuration
information (for example, they do not provide any information concerning their

* Intelligent devices are devices that are able to sense their environment and can contribute to achieve a

specific goal. For example, gathering information about the topology of a system.

intercon
Master’

2.3.3
A n

specific
program
systems
2.3.1) a
a detaile

In F
goals (a
Master’
Topolog
topolog
topolog
connect

nnection to
’s thesis pro

3 Netw
number of p
c needs, suc
ms can eithe
s - section 2
approaches
ed overview

Figure 2-3 th
as stated in
’s thesis ref
gy” refers t

gy of the S
gical inform
tions (in ter

opology). T
oject.

work vi
programs f
ch as for de
er be used
2.3.2) or ut
for creating

w of some e

Figure 2-3:

he cells mar
section 1.4)

fers to appli
to providin

SUT. The c
mation, in t
rms of their

This domain

sualiza
for network
esigning an
by manuall
tilize autom
g diagrams b
examples of

Network V

rked with re
) of this Ma
ication mark
ng the users
olumn mar
the target
length, dela

n is applic

tion so
k visualizati
nd generatin
ly entering

matic/semi-a
by sensing

f such softw

Visualization S

ed rectangle
aster’s thesi
ked “No” in
s of the ap
rked “Cabli
department
ay, and type

cable to th

ftware
ion have be
ng different

information
automatic (s
their own e

ware.

Software Adop

es are applic
s. Network
n this table.
pplication w
ing” is also
t this conce
e).

e devices

een develop
types of ne

n to create
self-forming
environment

pted from [16]

cable to a to
Discovery,
The colum

with the op
o important
erns inform

considered

ped, each t
etworks[16
diagrams (

g systems -
t. Figure 2-

ool which m
in the scop

mn marked “
ption to cha
t in the do

mation abou

13

in this

targeting
]. These
(for lazy
- section
3 shows

meets the
pe of this
“Change
ange the
main of
ut cable

14

2.4 Common Public Radio Interface (CPRI™)
In order to facilitate the interconnection of radio equipment a number of vendors

(including Ericsson, Huawei, NEC, NSN and Alcatel-Lucent) have defined a common
scheme for specifying the internal interfaces associated with a radio base station.

The CPRI specification is defined for the communication between Radio Equipment
control (REC) and Radio Equipment (RE). The specification of CPRI covers layer 1 and 2 of
OSI model. The layer 1 (physical layer) supports communication both over electrical (local
radio units) and optical cable (remote radio units). Layer 2 (Data link layer) supports
flexibility and scalability. This standardization has provided a platform to cross-use the
products from different vendors. We will not provide details of this protocol as this is not
intrinsic ally of interest for this Master’s thesis. The readers who are interested can find
detailed information about its history, specification and ongoing activities at
http://www.cpri.info/index.html. The CPRI specification is relevant in this thesis only
because we will refer to CPRI ports (see for example section 5.2.1.3)

2.5 Network topology management system
The schematic description of a network of nodes and their interconnections is referred to

as a “network topology”[17]. A network topology can be categorized into two sub-categories
based on a geometrical view: a physical topology and a logical topology.

A physical topology refers to the physical placement of nodes and their interconnections
(via cables, fiber, etc.). In computer networks, physical topology refers to the physical layout,
i.e., the locations of the computer and the cabling between the computers.

In contrast, a logical (signaling) topology refers to the path followed by a signal from one
node to another node in the network. The logical topology mostly is the same as the physical
topology. However, in some cases software can introduce differences between the logical and
physical topology. In other cases the hardware within the nodes are responsible for the
mismatch between the logical and physical topologies. This (difference between the logical
and physical topologies) should not be taken as a fault in the network because logical
topologies are typically generated for a specific purpose.

Figure 2-4 presents a scenario where the logical topology is different from physical
topology. In the physical topology (shown on the left side of Figure 2-4) the computers are
connected to a central hub. The physical topology only indicates that the data packet will be
sent to all the other computers. However, if we want to know if “the data packet will be sent
simultaneously out all of the ports” or “will travel around a ring and be consecutively sent to
all the ports”, we have to look inside the hub (i.e., we must know how the input and output
ports are interconnected). This information which tells us the signaling path, in this case the
path a data packet will traverse, is referred as a logical topology.

2.5.1

Top
their ow
scenario
network

2.5.1.
Sch

energy
sleep m
neighbo
transitio

2.5.1.

Pan
operatin
approac
sensor n
respons
specific
then cre
stream
better m

In b
informa
specific

1 Appl
Manage

pology resou
wn domain
os, where w
k in order to

.1 Cons
hurger et al.
in a sensor

mode and th
oring node
ons of the se

.2 Effici
lifetime

n et al. [20]
ng lifetime
ch, a two-ti
nodes. The
sibility of e
c area wher
eates a loca
format. Pas

manage the n

both of th
ation about
c goal.

Figur

lication
ement
urce manag

n requireme
we see gath
o achieve a

ervation
[19] utilize
network. In
e sensor no
s. Topolog
ensor nodes

ient util
e
also utilized
in the case

iered wirele
sensor nod
ach sensor

re it resides
al view of
ssing topolo
network; th

he above s
the topolog

re 2-4: Lo

ns of To
System

gement syst
ents. The fo
ering of inf
specific goa

n of ener
ed the conc
n their appro
odes only en
gical inform
s.

lization

d informatio
e of battery
ess sensor

des were ph
node is to
) in a raw f
the area an
ogy inform

hus increasin

cenarios, w
gy of resour

ogical versus P

opologic
ms

tems have b
following tw
formation a
al.

rgy in a s
ept of topo
oach, the se
nter wake m
mation is n

of reso

on about a s
y powered
network co

hysically pla
capture, en
format to an

nd sends thi
mation to the

ng the netw

we see tha
rces in the

hysical topolog

cal Reso

been utilized
wo subsecti
about the to

sensor n
logical reso

ensor nodes
mode when
needed to

ources t

system’s top
wireless se
onsists of m
aced in clus
ncode, and t
n applicatio
is to the ba
e base stati
ork’s opera

at both of
network ca

gy [18]

ource

d in differen
ions describ
pology of t

etwork
ource manag
’ activity is
data needs
plan the w

to incre

pology to in
nsor netwo

many base
sters around
transmit sen
on node. Th
ase station i
ons helps t
ting lifetim

the approa
n be used t

nt fields, ea
be two app
the resource

gement to c
s tuned to m

to be forw
wakeup an

ease ne

ncrease a ne
ork nodes.

stations an
d base statio
nsor data (f
he applicati
in a compo
the base sta

me.

aches to g
to achieve a

15

ach with
plication
es in the

conserve
maximize

arded to
nd sleep

twork

etwork’s
In their

nd many
ons. The
from the
on node

osite bit-
ations to

gathering
a system

16

2.5.2 Network topology management system through a
database of managed network resources including
logical topologies

Kulkarni et al. [21] presented a RMS for computer networks along with specific methods
for maintaining complex relationships in this network of computer elements. This
architecture used a simple database to store node information, type information, and view
data. The views are specific to the context of each node’s information. For example, adding
or removing a parent of a child node will change the views of both nodes.

This system was specifically designed for computer networks for management and
control purposes. The system was designed to provide the capability for visualization of
computer networks. As mentioned above, there are two types of topologies (logical and
physical). This system was capable of meeting the needs for maintenance of both physical
and logical topologies in the database by applying a new data model. Physical and logical
databases were stored in separate Management Information Server (MIS) databases. Users of
this system were restricted to accessing the data through the database containing the physical
topology. Consistency is maintained via a consistency application that is present in both
(physical and logical) databases.

2.5.2.1 Salient Features of a Network RMS
Over the past few decades there has been an enormous expansion in computer networks

and at the same time these networks are becoming more and more complex. The invention by
Kulkarni et al. still holds an important position as it was not specific to a particular computer
network. Their invention is still applicable for most network domains because it generalizes
the services that a RMS could provide. The following are the essential operations that
network administrators (i.e., management users) usually require:

Monitor Monitoring the network is important for calculating performance and capacity
metrics. How efficiently resources within the system are utilized can be
evaluated. Unusual behavior of resources can also be detected by statistical
methods appropriate for the specific domain of the system under consideration.

Manage Monitoring of resources creates an opportunity for administrators to find an
alternative way to utilize these resources in order to increase the system’s
efficiency.

Control The control part of the RMS ensures that the managed resources follow a
specified behavior.

2.5.2.2 Components of a topological managed RMS
The work of Kulkarni et al. introduced important components in the topological managed

RMS:

1. Plurality of nodes in the network
2. Plurality of interconnection among these nodes
3. A management system consisting of managed network resources stored in a database
4. Database of managed network resources including:

a. Definition of “Network nodes”
b. “Node types” associated with network nodes
c. “Node view” associated with network nodes

17

5. Plurality of network administrators

2.5.2.3 Specifications of a topological managed RMS
Apart from inheriting salient features of a network RMS (see section 2.5.2.1), the work of

Kulkarni et al. also provided following features that result from cross-communication among
the components (see section 2.5.2.2):

1. Network administrators should have the option to modify the database with
information about the managed network;

2. Network administrators should be able to visualize the “Node view” as extracted from
the database of the managed network; and

3. The “Node view” should be updated when node attributes change. For example, if a
parent is added to the attribute of a node, then this parent relationship can be used to
create a new “Node view”.

2.6 Grammar
In any programming language, we have a set of rules to write expressions in the language,

which will then be translated by the compiler into machine language instructions to perform
the requested operations.

The set of rules in formal language theory is known as a ‘grammar’. A grammar G can be
defined as tuple of four items: G = {N, T, P, S} where N = Finite set of non-terminals, T =
Finite set of terminals, P = Finite set of production rules, and S = a start symbol.

Chomsky [22] described a hierarchy of grammars with four classes of formal grammars:

1) Recursively enumerable grammar (Type-0),
2) Context-sensitive grammar (Type-1),
3) Context-free grammar (Type-2), and
4) Regular grammar (Type-3).

Type-1, Type-2, and Type-3 grammars are differentiated by the way the production rules
are setup for them. An explanation of these production rules are provided in their respective
subsections below. We will not go into the details of these grammars, as it requires quite a
detailed explanation of all the concepts involved. However Chomsky[22] and Natarajan [23]
explain automata theory and relevant topics in detailed.

2.6.1 Recursively enumerable grammar (Type-0)
In this grammar, there exists a Turing machine, for which production rules are defined

such that the machine will enumerate all possible words from the alphabets of the language.

2.6.2 Context-sensitive grammar (Type-1)
A context-sensitive grammar or type-1 grammar has production rules of form: ߚܣߙ	 → ߚߛߙ
Where A is a non-terminal and α, β, γ are the strings from the set of terminals and

non-terminals. Also the following restrictions are made:

α → empty or non-empty

β → empty or non-empty

γ → must be non-empty

18

2.6.3 Context-free grammar (Type-2)
Context-free grammars form the theoretical foundation for most programming languages,

even though the syntax is restricted to context-sensitive name resolution for declaration and
scope of code. Type-2 grammars have production rules of form: ܣ	 → ߛ

Where A is a non-terminal and γ is string from the set of terminal and non-terminals. γ
can be empty or non-empty. A parser is often utilized for the subset of type-2 grammars for
easy parsing. LL parser[24] is an example of a parser which utilizes the subset of context-free
grammars.

We have utilized this approach in the implementation of the solution proposed in this
Master’s thesis. The reason for choosing this approach is that we needed a flexible approach
that can be easy maintained in the future despite increase in the number and types of devices
in the LAB.

2.6.4 Regular grammar (Type-3)
Regular grammar can be implemented in two ways: right-regular or left-regular

grammars.

Right-regular In this case the regular grammar is restricted to having a single
non-terminal on left side and the right side consists only of a single
terminal; which can be followed by single non-terminal in the case of a
right-regular grammar.

Left-regular In this case the regular grammar has a single terminal on right side and can
possibility be preceded by a single non-terminal.

This grammar classification is extensively applied to regular expressions. Regular
expressions are frequently used for specifying searching patterns and defining the lexical
structure of programming languages – both are applications of regular grammars.

19

3 Methodology
The scientific research methodology used in this thesis project is based on a set of

analytical techniques and perspectives (or logically formulated steps) to investigate a given
phenomenon, to acquire new knowledge, and to correct & integrate existing knowledge.

The goal of this Master’s thesis project is to design, develop, and evaluate a topology
aware RMS system that will address the need to efficiently generate a TEC and enable
efficient administration of the LAB’s equipment. Therefore, this thesis has adopted the
Design Science Research (DSR) approach, because DSR involves designing novel artifacts to
analyze and understand the behavior of given aspects of information systems[25].

In addition to positivist and interpretive perspectives, DSR is considered is yet another set
of analytical techniques or perspectives for performing research in information systems[26].
Henver et al. describe the process of DSR as “Design science ... creates and evaluates IT
artifacts intended to solve identified organizational problems”[27]. Wherein the artifacts are
defined as “innovations that define the ideas, practices, technical capabilities, and products
through which the analysis, design, implementation, management, and use of information
systems can be effectively and efficiently accomplished”[27].

We will create new artifacts to extend the PeppesBodega RMS in order to achieve the
goals stated in Section 1.4. The underlying process of this Master’sthesis is derived from the
general methodology of DSR as shown in Figure 3-1.

The process (shown in Figure 3-1) begins with an Awareness of problem. The knowledge
about the problem space is acquired during this phase, and the scope of the problem area is
delimited during this phase. The suggestion/solution phase follows immediately after the
Proposal (i.e., an output of the Awareness of problem phase). A tentative design is
formulated after building knowledge concerning the problem space. The tentative design is
implemented during a development phase. However, the techniques for implementation vary
depending on the design specification of the artifact(s) to be constructed. Once constructed,
the artifact is evaluated during the Evaluation phase according to the Proposal; deviations
from expectations (both quantitative/qualitative) are carefully noted and tentatively
explained. The Conclusion phase is considered as the finale of a specific research effort. The
results obtained, knowledge gained, and the facts learned during whole process are the
outputs of this phase.

In following subsections, we will give an overview of the methodology to be utilized in
solving the problem stated earlier in this thesis (in the scope of design science research).

20

3.1

in

In th
system.
enginee
utilized
order t
adminis
informa
testing.

3.2

so

The
develop
efficien
equipm
requirem
PeppesB

Figure 3-

Awar
 “Problem

nterest lies”

his Master’
 As discus

ers can start
d for testing
o reconfigu
stration’s vi
ation in ord

Sugg
“The obj

olutions to i

e solution to
pment, and e
ntly generat

ment. Apart
ments, for e
Bodega RM

-1: Resea

reness
m space is

” [27].

s thesis, ou
ssed in sec
t actual test
(here after

ure the tes
iew, not all

der to enabl

estion
jective of d
important a

o the proble
evaluation o
ting TECs

from this
example to

MS. Other n

arch methodolo

 of pro
defined by

ur environm
ction 1.1, t
ting and the
referred to

sting enviro
 but most o

le efficient

n/solut
design-scien
nd relevant

em that thi
of a topolog
and will e

s functional
gather requ

non-function

ogy of Design S

oblem
the environ

ment of inter
there is a
ere can also
as a STP) c

onment bef
of the equip
utilization

tion
nce researc
t business p

s Master’s
gy aware RM
enable well
l requirem

uirements fr
nal requirem

Science Resear

nment for w

rest is a topo
long lead
o be a mism
causing freq
fore continu
pment needs
of this equi

ch is to de
roblems”[2

thesis proje
MS system
l managed
ent, we ha

rom all the d
ments inclu

rch (Adapted f

which the ph

ological res
time befor

match of th
quent interru
uing testing
s more stru
ipment and

evelop tech
27].

ect will add
that will ad
administrat

ave import
departments

ude collectin

from [27])

henomenon

source mana
re new ver
he group of
uptions in te

ng. From th
uctured and
d to enable

hnology-bas

dress is the
ddress the n
tion of the
tant non-fu
s using the
ng data con

of

agement
ification

f devices
esting in
he LAB
detailed
efficient

ed

e design,
needs for
e LAB’s
unctional

existing
ncerning

the LA
topolog
requirem

In th
extende
informa
the grap
framew
purpose
lower th

3.3
We

suggest
space (a
Next th
fulfill t
extensio
details)
prototyp
similar
design,

3.4
The

perform

* As

its
RM

AB’s equipm
gy informat
ments.

his Master’
ed to provi
ation will b
phical outpu

works JCT a
es: (1) so th
he learning

Deve
followed a

ted tentative
as explaine

he design sp
these requir
on of the pr

are perfor
pe. This is
cycle of re
and testing

Fig

Evalu
e evaluation
med during

noted in secti
s potential int
MS.

ment and t
tion * . The

s thesis pro
ide topolog
e presented
ut format. T

and JCAT a
hat an exper
curve for n

elopme
an iterative
e design. T

ed in section
pecifications
rements. A
rototype de
rmed to exa

an iterative
equirement
g of the prot

gure 3-2:

uation
n of the art
Evaluation

ion 2.3.2 the c
terconnections

their potent
 evaluation

oject, the cu
gy informat
d in XML [2
The textual
s input for t
rienced user
ew verificat

ent
e-waterfall m
The function
n 3.1) are e
s (as explain

As a result,
eveloped in
amine if th
e model, th
elicitation,
otype.

The developm

tifacts deve
phase. The

current equipm
s, hence this

tial interco
n (see sect

urrent web f
tion in text
28] for the
information
their TECs
r can easily

ation engine

model (as
nal and non
elaborated d
ned in secti

a function
previous p

here is any
hus in every

modificati

ment model foll

eloped as c
ese artifacts

ment does not
information m

onnections
tion 3.4) i

framework
tual and gr
textual outp

n in XML f
. The visual

y debug con
ers.

shown in F
n-functional
during the r
ion 3.2) are
nal prototyp
hases(s). Fi
gap betwe

y iteration
on of the d

owed to constr

constructed
s are evalua

directly prov
must be manu

in order to
s part of o

(PeppesBod
raphical rep
put format a
format will b
l representa
figuration p

Figure 3-2)
l requireme
requirement
proposed a

pe is devel
inally, tests
en the spec
the develop

design, impl

ruct the artifac

during dev
ated on the

ide informatio
ually extracte

o manually
our non-fu

dega RMS)
presentation
and as png
be used by
ation will se
problems an

) to implem
ents of the p
ts elicitation
and implem
loped whic

s (see Chapt
cifications
pment unde
lementation

ct(s)

velopment p
basis of fo

on about the d
ed and entered

21

y extract
unctional

) will be
ns. This
[29] for
two test

erve two
nd (2) to

ment the
problem
n phase.

mented to
ch is an
ter 6 for
and this
erwent a
n of this

phase is
ollowing

device and
d into the

22

criteria: reliability and comparative analysis. Chapter 6 of this report provides the details of
the evaluation of the artifacts constructed during this Master’s thesis project.

3.5 Conclusion
The conclusion phase is the finale of this (Master’s thesis project’s) research effort.

Chapter 6 and Chapter 7 presents the results obtained, the knowledge acquired, and the facts
learned during this Master’s thesis project.

23

4 “PeppesBodega” RMS
As discussed in Section 2.3, a RMS has an important position in the effective utilization

of resources in terms of both cost and time. When it comes to system level testing, it is nearly
impossible to avoid using a RMS to track information for the different SUTs used by
different verification engineers.

The target department felt there was a need for a new RMS system, but planned the
transition to this new RMS in two distinct phases:

“Old-PB-System” This RMS was developed as a result of the initial needs of the LAB
team to manage device information, which was previously done
using a piece of paper or a simple text file (containing device
information). This manual method resulted in a non-trivial task to
perform on a daily basis.

“PeppesBodega” This new RMS replaced the “Old-PB-System” and was introduced
as a requirement by Micheal Thomsson*. He provided a detailed
description of the requirements for the PeppesBodega RMS.

4.1 Old-PB-System
The “Old-PB-System” was a simple RMS system that consisted of:

• a single HTML file that realized a graphical interface for its users,
• a text file that served as a database, and
• two Linux commands (sed† and awk‡) were used to perform data manipulation of the

information about devices in database.

Figure 4-1 shows the architecture of the Old-PB-System.

* Micheal D. Thomsson, Project Manager for DU I&V Department at Ericsson AB
† sed, a stream editor, http://www.gnu.org/software/sed/manual/sed.html
‡ awk, pattern scanner/processor, http://www.gnu.org/software/gawk/manual/gawk.html

24

Figure 4-1: Old-PB-System Architecture

4.1.1 Information Bank
In this design a single HTML file was used to store the device data. The device data was

limited to the following information: Name of the device, IP address of the device, and Serial
number of the device.

To load the data into the HTML page the standard Linux sed and awk commands were
used. This design supported only two needs of the LAB team: (1) tracking all the devices in
the lab and (2) manual allocation of IP address to each device from an IP address pool.

4.1.2 Limitations
The design of the Old-PB-System had quite a lot of problems and included the following

limitations:

• Insufficient information for design and test teams
Verification engineers and software developers were unable to see the detailed
information about the devices in order to see if they suited task specific requirements.

• No time-limitation for booking

Once a device was booked, it was booked forever. Even if the person who made the
booking would be away for a long period of time, no-one else could utilize this
device. Due to this a series of problem occurred. Initially there was an increase in the
number of unusable devices, and then new devices were ordered even though an
existing device could have been reused. From the LAB’s team point of view, this was
a complete disaster from both space and cost perspectives.

Text file

Presentation Application service Database

Linux sed/awk
HTML Document

(Web UI)

25

• Slow response time
The load time for several hundred devices on the webpage took approximately 40
seconds. According to Jakob Nielsen *, a web usability consultant, no more than 10
seconds is acceptable for a website’s visitor to retain his/her interest[30].

4.2 PeppesBodega-RMS
PeppesBodega-RMS is the current RMS. It is used extensively by both the design and test

teams at the target department. It is a robust, scalable, and easily maintainable solution which
addressed the limitations of the previous system (details of how it did this will be explained
in subsequent subsections). Currently this RMS is being extensively used by the LAB team
(see section 1.2) for administrative purposes and also by the design and test teams for task
oriented purposes.

4.2.1 Development
PeppesBodega-RMS was developed in Erlang†. OTP‡ was generally used in development

of its web-framework. beard[32] is one of the essential components that was created in order
to provide dynamic content selection via the web-interfaces.

4.2.2 Stake-holders
PeppesBodega-RMS provides services to three different graphical regions: Sweden,

China, and Croatia. All three regions have their own local administrators and users.

4.2.3 Access rights
Users of PeppesBodega-RMS can be divided into two user groups based upon the actions

performed on certain content in the database:

• Administrator group
This group is further divided into two subgroups

Local Administrator A local administrator has the relevant permissions to
modify the information concerning devices/STPs
local to a particular region. For example, the local
administrator for Sweden can only modify
device/STP information for the LAB’s devices
located in Sweden

Super Administrator A super administrator has the relevant permissions to
modify information about devices/STP globally (i.e.,
in any region). A super administrator can modify the
view content for all devices/STPs. These changes

* Jakob Nielsen, http://www.nngroup.com/people/jakob-nielsen/
† Erlang, http://www.erlang.org
‡ OTP, “OTP is set of Erlang libraries and design principles providing middle-ware to develop these

systems”.[31]

26

•

4.2.4
The

and STP

4.2.4.
A ‘

used to
free-tex
the first
devices

In F
not boo
type. A
between

* AN

User group
Members o
actions they

4 Web
ese are the tw
P view. The

.1 Devic
device’ is a

o display a
xt search bo
t ten entries
s that match

Figure 4-2, t
oked by any
Additionally
n them and

ND, http://www

p
of this group
y can perfor

b based
wo major v
ese are furth

ce view
an atomic i
list of dev

ox is used to
s are shown,
 the search

Figu

the search c
y user. Sear
y, different
each of diff

w.exploratoriu

de
ad
m
in
(s
w
4.
re

p have no pe
rm are to bo

views
iews that di

her explaine

item in the
ices and th

o search for
, however fr
criteria. Fig

re 4-2: D

criteria ‘ava
rch criteria

search cri
ferent searc

um.edu/lc/sea

epend up
dministrator

maintenance
ncludes trou
see section 4

with updates
.2.1 for de
equested fea

ermissions t
ook or cance

isplay infor
ed in the fol

 PeppesBod
heir associa

devices wh
from a drop-
gure 4-2 sho

evice view in P

ailable’ will
can be used

iteria can b
ch criteria w

arch/boolean.h

on a ch
rs. A mo

of the
ubleshootin
4.2.5 for de
s of the de
etails) being
atures, etc.

to modifica
el their boo

mation via
llowing para

dega-RMS
ted informa

hich match
-down optio
ows a snaps

PeppesBodega-

l display all
d to find av
be combine

will have AN

html , Last vis

hange requ
oderator is

PeppesBo
ng of malfu
etails), upda
evelopment
g used, dev

tion any dev
king of a ST

the web int
agraphs.

database. T
ation. In th
a given strin
on the user i
hot of the d

-RMS

l the device
vailable dev
ed with a
ND* boolean

ited : 2013-12

quest from
s responsi

odega-RMS
unctioning
ating the fra

tools (see
velopment

evice/STP. T
TP.

terface: devi

The device
he device v
ng. By defa
is able to se
device view

es that are c
vices of a p
space char

n logic.

2-23

m local
ble for

which
features

amework
section
of new

The only

ice view

view is
iew, the
ault only
ee all the
.

currently
articular
racter in

27

4.2.4.2 STP view
One or more devices are grouped together to form an ‘STP’. The resulting STP is

bookable by any user. The concept of a STP was introduced so that device(s) can be booked
by a particular user for a specific purpose. An STP consists of the following four important
components:

• List of devices,
• Booking purpose,
• Booking time (period), and
• Booking user.

The ‘List of devices’ refers to a subset of all the devices that will be reserved for the
‘Booking User’ who has booked the STP for a specific ‘Booking purpose’ for a specified
‘Booking time’ (period). The default booking time (period) is two weeks. The ‘Booking time’
(period) ensures that the ‘Booking User’ has control of these devices for the specified time
frame. After this time period expires the status of these devices automatically returns to the
“Available” state.

4.2.5 Salient Features of PeppesBodega-RMS
PeppesBodega-RMS is being used extensively in the NCI and MSV-RBS-NCI

departments (See section 1.2) for administration of the devices maintained by the LAB team.
These departments have both common and domain specific tasks which need to be
performed. For example, NCI uses the information about devices to perform function tests,
whereas MSV-RBS-NCI utilizes the same information to perform system tests. However, the
configuration files needed by NCI and MSV-RBS-NCI are different and contain domain
specific information. The PeppesBodega-RMS serves as the backbone of the testing
processes in these departments.

The PeppesBodega-RMS has the following salient features (each of which will be
described further in the following paragraphs):

1. Device tracking,
2. Concept of STP,
3. Device booking,
4. IP address pool management,
5. Storage Inventory,
6. Database backup,
7. Email subscription,
8. Naming Convention,
9. Lab-Scan System, and
10. Requirement-Request portal.

4.2.5.1 Device tracking
Within the PeppesBodega-RMS, each device is uniquely identified by a unique device

identifier (DID).

4.2.5.2 Concept of STP
A STP is the smallest bookable unit for the PeppesBodega-RMS. A STP must contain at

least one device. For a device to be bookable by a user it must be part of a STP and then this
STP can be booked. It is important to note that the set of devices in a STP is typically very
stable, since these devices are used together to conduct a specific type of test.

28

4.2.5.3 Device booking
As mentioned above devices cannot be booked until the device is part of an STP. Device

booking is done in terms of a STP for the following reasons:

• The SUT for a specific purpose usually consists of more than one device, i.e. it is
easier to book a single STP for testing a SUT rather than separately booking several
devices. Consider a SUT which requires device1, device2, and device3, it is more
convenient to book one STP rather than separately booking these three devices.

• Managing a STP is far easier than managing individual devices. If you need another
device to test the SUT, then you simply add the device to the STP. Once the testing
task is finished, then all of the devices in the STP can be made available by simply
unbooking the STP. For a similar test the STP can be rebooked by another person.

• Each STP has associated with it a set of comments that can be used to identify the
purpose for which this STP can be used.

4.2.5.4 IP address pool management
In a large network, such as Ericsson’s internal network, efficient utilization of IP address

space* is important. Due to the consumption of a large number of IP addresses by the many
devices within the LAB, it was very important to automatically track the IP addresses
allocated to devices and free up unused IP addresses.

Public IP address space is being used for the LAB’s devices rather utilizing a private IP
address space because it is preferred to keep the LAB environment as close to the customers’
environment as possible; for example, for vulnerability tests. Additionally, when the SUT is
installed it will generally be in an environment with statically assigned IP addresses, rather
than a networked environment with a dynamic host configuration protocol server; hence it is
better to test the devices with such a configuration.

4.2.5.5 Storage Inventory
Devices in a storage area are part of a reserved STP (specifically STP-003). This STP is

non-bookable and it is not visible to members of the ‘User Group’, rather it is only visible to
the ‘Administrator Group’. Within the ‘Administrator group’, the local administrators have
their own reserved STPs and these STPs do not overlap with each other.

4.2.5.6 Database backup
A backup of the database is taken at regular intervals. Thus if the database is corrupted or

unavailable for any reason, the database can be recovered from the backup. Additionally,
there are cases when it is necessary to know what device information was available on a
particular date in the past.

The database backup is stored only on a single disk, at least from the moderator’s
perspective. But internally within the network team, the separate replicas are maintained and
data is safely preserved even in the case of a failure of a primary disk.

The shortcoming of this database backup approach is that there is no mechanism which
can cater for the scenario when information was entered in the database since the last backup

* Specifically addresses from the IPv4 address space.

29

and then the database is corrupted. In this case the information lost cannot be recovered by
any known means in the currently implemented system, i.e., there is no journaling or log file
to keep track of changes to the database.

4.2.5.7 Email subscription
An email subscription is available to a ‘Booking user’. This user will be sent email twice

before a booking expires for a particular STP. The first email is sent three days prior to the
expiration of the booking period and a second email is sent on the last day of booking period.
In this way the booking user is notified that if no actions are performed, the booking will
expire. Before the booking expires the user can rebook the STP for a new time period.

4.2.5.8 Naming Convention
For effective communication to take place among different departments concerning a

particular product, the naming convention should be consistent. The PeppesBodega-RMS
defines naming conventions for all the devices. This information is used during the process of
selecting and installing software on a particular type of device. A department can search in
the device view to find information about all of the devices of a specific type, and then if
necessary a suitable non-booked device can be selected for inclusion in the STP.

4.2.5.9 Lab-Scan System
The PeppesBodega-RMS saves information in two phases. In the first phase information

is saved in the database and in the second phase a text file (specifically the TEC) is generated.
This text file is currently used for two purposes:

• To create an installation script for a particular device and
• In the test environment (JCT and JCAT) this file is used to automate the generation of

test instructions for this particular device.

4.2.5.10 Requirement-Request portal
Change requests and new functionality requests are handled via a web portal. All the

stakeholders (see section 4.2.2) can submit requirements. The impact of these potential
changes analyzed by a moderator who considers the estimated implementation details
(technical architecture needs and deliverable artifacts) to meet the requirements of the
proposed change. Then an estimate of the time that will be required to make this change is
calculated and provided to the department responsible for the RMS to prioritize their
implementation of these requirements.

4.2.6 Architectural design of PeppesBodega-RMS
This section describes the overall architecture design of PeppesBodega-RMS that is

relevant for the proposed extension of it in this Master’s thesis. The following are the main
components of the PeppesBodega-RMS architecture (as shown in Figure 4-3): (1) Command
line interface (CLI), (2) Web User Interface (UI), (3) Core Application, and (4) Database.

30

4.2.6.
The

via a co
modera
the fun
section
user int
motivat

4.2.6.
Pep

As yaw
handle
fact tha
perform
dynami
Templa

The
the web
function
isolated
indepen
templat

* For

CLI

Erlang
Shell

.1 CLI
e functionali
ommand lin
ator, no-one
nctionality i

4.2.6.3). A
terface (GU
tion behind

.2 Web
ppesBodega-
ws supports

web reques
at this resu

mance, calle
ic-content s
ate file and (

e template fi
bpage and
ns used in
d via the tem
ndent of na
te in Englis

r details about

WE

frontend

bear
Templa
Soluti

Figure 4-

ity impleme
ne interface
e else can u
is available

As the CLI i
UI) would b

users using

UI
-RMS is cu
the dynam

sts. At first
ulted in a
ed beard [32
selection. T
(2) a View-

file is used t
does not c
the templat

mplate, whi
atural langu
sh, Swedish

t YAWS see h

EB UI

Yaws

d

V
a
l
i
d
a
t
e

rd
ate
ion

backend

3: Archit

ented in the
(CLI) by th
se the CLI.
via the tw

is not easy
be more con
g a WEB UI

urrently run
mic-content

mustache [
slow respo

2] was deve
The beard te

logic file.

o provide th
contain any
tes for data
ch has the a

uage bounda
h, Chinese,

http://hyber.or

bode
V

bode
-

adm

tectural Design

e PeppesBod
he moderato
. The CLI i

wo core app
to interact

nvenient to
I in PeppesB

nning on Ya
web applic

[33] was us
onse times,
eloped and
emplate sol

he structure
y embedded
a input via
advantage t
aries, i.e., t
, etc. The

rg/ .

Core

ega

ega

m

e

b

ca

n of PeppesBod

dega-RMS
or for debug
is accessed
plications: b
with; a too
use than a

Bodega-RM

aws (Yet an
cation, we n
sed as a tem
, a similar
is now use

lution work

e of the cont
d logic. The

templates.
hat the tem
the same vi
framework

Applicatio

email

Timeline

booking

ancellation

.

dega-RMS

(see section
gging purpo
via an Erla

bodega and
l with an in
simple CL

MS rather tha

nother webs
needed a te

mplate solut
template s

ed for creat
ks with two

tent (in HTM
e view-logi
The result
plate, if nee
iew logic c
under disc

n

db_My

.

db_M

n 4.2.5) can
oses. Other
ang shell, w
d bodega-ad
nteractive g

LI; and that
an using a C

server) web
emplate sol
tion, but du
solution wi
ting webpag
o input file

ML [34] for
ic file cont
is that the

eded, can b
can be used
cussion has

D

ySQL

Mnesia

be used
than the

where all
dm (See
graphical

was the
CLI.

bserver*.
lution to
ue to the
ith high
ges with
es: (1) a

rmat) on
tains the

logic is
e reused
d with a
s used a

Mnesia

MySQL

Database

31

separate directory structure for both view-logic and template files. Also the naming
convention corresponding to view-logic and template is kept the same with two different
extensions used in order to distinguish them from each other.

As discussed above PeppesBodega-RMS is using beard for its dynamic content selection
and as the requirements increased so did the pattern catalogues (see section 4.2.6.3). There
was a need for a front-controller to make the design sufficiently efficient that we can shift
between different patterns by changing only a single entry point. The front-controller has
been further divided into front-end and back-end parts. The front-end and back-end parts
together provide the interface for different functional and non-function requirements (see
section 4.2.5); some of the most important requirements were listed in section 4.2.6.3.

The input to the core application is firstly validated by the web UI module. This
restriction of having the actual functionality and validation functionality in a separate place
makes it easier to locate the bug in the event of a problem.

4.2.6.3 Core Application
As discussed in section 4.2.3, there are two access-rights groups, i.e. administrator group

and user group. Based upon the functionality of both the groups and their ability to change
the state of PeppesBodega-RMS, two APIs were developed:

1. bodega.erl
2. bodega_adm.erl

In general, states are very important to consider when it comes to efficient design
techniques. QuickCheck [35] is an efficient property-based testing tool, which provides the
user with the state of the SUT when a fault occurs. This in-turn is only possible if the
implementation and the structure the code design utilized as few side-effects as possible and
where side-effects are used they should be limited to only a few specific areas; although the
use of functional programming languages (such as Erlang) restricts the usage of side-effects.
PeppesBodega-RMS was carefully designed such that the use of side-effects is limited to
only certain specific places.

The API ‘bodega.erl’ is responsible for the all of the actions performed by the user group,
whereas the ‘bodega_adm.erl’ API provides the functionality for all actions that can be
performed by the administrator group. The allowed state-changes available for members of
the user group are the booking and unbooking of devices, while the allowed state-changes for
the administrator group include all the possible state-changes in PeppesBodega-RMS (see
section 4.2.5)

4.2.6.4 Database
A state-change in PeppesBodega-RMS is handled in two different ways (either state-

change-independent or state-change-dependent), depending upon what has been changed and
where the changes have occurred.

A state-change-independent state-change that is done locally is written directly to the
database. This type of state-change is not an input to any test oriented task and is only used to
administer the device usage information, such as booking and unbooking. Once this action
has been performed, the new data is written to the database.

A state-change-dependent state-change is also done locally on the system but is not
written directly to the database. The state-change remains local to the system, until a ‘lab-
scan’ is performed and then the state-change is pushed to the database. This type of state-

32

change is used in test oriented tasks, such as installation of devices, test case execution, etc.
The reason for this dependency is to ensure that the contents of the database are readily
available to the user when performing a test oriented task; this is achieved by storing the
database in a user-readable format each time a lab-scan is performed.

Initially the core application was developed to support MySQL; later it was decided to
shift to Mnesia [36] as all the RMS development was in Erlang, hence it was logical to use an
Erlang based database in order to be consistent with the development tools. Today there is
still support for MySQL, but Mnesia is the only database (actively) used in this framework as
it caters for all the needs for PeppesBodega-RMS. In Mnesia the backend database storage
can be either Ets* or Dets†. Ets tables resides in Erlang runtime system where as Dets are
stored on disk. This reflects lower read/write time of Ets as compared to Dets. The selection
of usage of Ets and Dets is done as a property‡ provided during the creation of table in
Mnesia database. In PeppesBodega-RMS Dets are being used.

* Ets, http://www.erlang.org/doc/man/ets.html, Last accessed : 2013-12-28
† Dets, http://www.erlang.org/doc/man/dets.html, Last accessed : 2013-12-28
‡ property, {disc_only_copies, nodes()} refers to dets, {ram_copies, nodes()} refer to both ets whereas

{disc_copies, nodes()} refers both to ets and dets. http://www.erlang.org/doc/man/mnesia.html, Last
accessed : 2013-12-28

33

5 PeppesBodega Extended RMS’s
Topological Framework

PeppesBodega Extended RMS’s topological framework is the artifact constructed (in this
Master’s thesis) to solve the problem stated in section1.1. DSR was adopted as a
methodology throughout this Master’s thesis project to create PeppesBodega Extended RMS
- topological framework (TF). To simplify the naming we will refer to this artifact as
PeppesBodega-TF in the remainder of this thesis.

5.1 Existing design
Chapter 4 explained the design transitions (section 4.1 and section 4.2) of PeppesBodega-

RMS; it also stated different reasons for why a new solution was implemented to extend the
existing PeppesBodega-RMS

PeppesBodega-RMS has been catering very well to the needs of all the involved
departments when it comes to the functions expected of an ordinary RMS system, e.g. device
tracking, efficient use of IP-pool and storage inventory etc. But the requirements for a
topological RMS emerged, not only to contribute to even more structured information being
available about each of the devices, but also to increase the efficiency of test automation.

5.2 Design Transition
PeppesBodega-TF should facilitate the activities of the different teams (see section 1.2)

by providing more and better structured information about the devices and hence provide
greater control over test automation. PeppesBodega-TF is expected to successfully fulfill all
the objectives (stated in section 1.4) and to solve all the problems described earlier in this
thesis.

The following subsections describe the step-by-step processes that this Master’s thesis
project employed to implement the desired solution.

5.2.1 Development tools and design
The development of PeppesBodega-TF has utilized the same development tools and

followed the same design principle as PeppesBodega-RMS (see section 4.2). The reason for
these being the same is that the artifact created in this Master’s thesis project (PeppesBodega-
TF) is not a standalone web-framework; but rather it is an extension of the existing
PeppesBodega-RMS. So we found it fairly logical and convenient to use the same
development tools and design principles. However, there are some new concepts introduced.
Each of these new concepts will be discussed in following subsections.

5.2.1.1 Device Definition
In order to explain the following subsection, first we need to define the devices in the

LAB and how they can be connected to each other. As the system verification domain is very
broad in the MSV-NCI department, it is difficult to explain all possible configurations in the
context of this topological RMS. Before explanation of any configurations, the relevant
background definitions are needed. The configuration explanation will be developed during
the explanation in each relevant subsection (See section 4.2.6.3).

34

5.2.1.1.1 Devices
As mentioned in section 4.2.5.1, each device is uniquely identified by a unique device

identifier (DID) to keep track of the devices for LAB administration purposes. As of today
these DIDs are not used inside a TEC; but there exists a plan for automating the device
information for the convenience of verification engineers and to avoid conflicts with
mismatches of information due to human error.

The devices (identified by DIDs) are associated with product identifiers (PIDs). A device
associated with a PID guarantees that the device has certain specific functional features. More
than one device can have same PID. PIDs (in Ericsson AB) have the same meaning as models
of a particular appliance (in real life).

5.2.1.1.2 Interconnection
Each device has some connection points* with which other devices can connect to it;

these connection points are referred as interconnections. We have logically grouped together
the devices that have some common functionality (although having different PIDs) and
having common interconnections. This concept of logically combining different devices on a
‘device type’ level will be discussed in section 5.2.1.4.

5.2.1.2 Grammar selection
PeppesBodega-RMS was built following quite good programming practices, of which the

most noteworthy was avoiding hardcoded values in the source code. The Erlang config files
are used as input to different processes in order to avoid hardcoded values being written in
multiple places.

For the PeppesBodega-TF it was decided not to use the Erlang config files; but rather we
opted for a computer grammar based solution. The reason for selecting a computer grammar
was that we needed a scalable solution for definition of devices and their possible
interconnections; and some of the inherent features of the selected grammar (e.g. allowed
structure, composition of expressions, etc.) were helpful during the implementation.

To specify the definition of devices and their possible interconnections, we have selected
a context-free grammar. As context-free grammars are extensively used for type definitions
in programming languages, a similar approach was adopted to provide the foundation blocks
used in the proposed solution.

As the SUT being used in the target department is being tested internally (see section 1.2)
the grammar is domain specific. This Master’s thesis proposes a special grammar translation
that can also be used externally.

5.2.1.3 Grammar definition
After selecting the grammar, the definition of the grammar was done in BNF[37–39] (in

Erlang format). The BNF in its standard format and its interpretation in Erlang format (as
relevant to this Master’s thesis domain) can be found in Appendix A.

* These connection points include both physical connectors and logic connectors (for example, an IP

address, protocol, and port number).

35

We will explain three grammar expressions (with different levels); the rest of the
grammar also follows the same principle. See Equation 5-1, Equation 5-2, Equation 5-3,
Equation 5-4, and Equation 5-5 as references that will be used in expression definitions. {݀ݑ, {[′4/ܣ1ܴ	161/1	127	ܷܦܭ′]

Equation 5-1 : Erlang grammar - logical binding {݀ݑ, [′KDU	137	930/1	P1B′]}
Equation 5-2 : Erlang grammar - logical binding {′ܷܦܭ	127	161/1	4/ܣ1ܴ′, ,ݐݎ݋݌݅ݎ݌ܿ] ,ݐݎ݋݌݅ݎ݌ܿ ,ݐݎ݋݌݅ݎ݌ܿ ,ݐݎ݋݌݅ݎ݌ܿ ,ݐݎ݋݌݈݀݅ {[݊݋݅ݐ݌݋ݏ݌݃

Equation 5-3 : Erlang grammar - Interconnections {′KDU	137	930/1	P1B′, ,ݐݎ݋݌݅ݎ݌ܿ] ,ݐݎ݋݌݅ݎ݌ܿ ,ݐݎ݋݌݅ݎ݌ܿ ,ݐݎ݋݌݅ݎ݌ܿ ,ݐݎ݋݌݈݀݅ {[݊݋݅ݐ݌݋ݏ݌݃
Equation 5-4 : Erlang grammar declaration {ܿݐݎ݋݌݅ݎ݌, ,ݑ݀] ,݋݅݀ܽݎ {[ܿ݅ݎ݌ܿ

Equation 5-5: Erlang grammar – Valid Interconnection options

Table 5-1: Levels of Grammar definition

Logical binding As mentioned in section 5.2.1.1.2, we have logically
grouped the devices with different PIDs. Referring to
Equation 5-1 and Equation 5-2 both PIDs ‘KDU 127
161/1 R1A/4’* and ‘'KDU 137 930/1 P1B’* have ‘du’ as
their binding type†. The reason for this is that when we
later define what interconnections can be connected to
which device, i.e. ‘valid interconnection option’, it will
be easier if we can just mention a binding type, in this
case ‘du’, instead of giving each individual PID.

Interconnections Equation 5-3 provides the details for connection points
for a ‘ܷܦܭ 127 161/1 PID. To define a PID’s ’4/ܣ1ܴ
interconnection we can specify multiple ‘cpriport’ but to
uniquely identify each connection port, we concatenate
each of ‘cpriport’ ‡ with a letter from the English
alphabet. (For details see section 5.2.1.4.)

Valid Interconnection options This level of definition for our grammar indicates what
‘logical binding’ a connection point can connect to.
Equation 5-5 defines that a cpriport interconnection can
only connect to a du, radio or cpriport (logical bindings).

* This is an Ericsson radio base station (RBS) 6000 Digital Unit example product.
† “du” can be interpreted as “Device Unit”.
‡ “cpriport” means Common Public Radio Interface (CPRI™) port - see Section 2.4.

36

5.2.1.4 Grammar translation
After defining grammar, it was equally important to translate the grammar into such a

format that can be structured into objects, i.e., Erlang records. In Erlang a type definition is
very strict, so it was important to have getter and setter functions for all the objects created.
The translation of the grammar was divided into two parts:

1. Conversion of grammar into records and
2. Interfaces for records.

For the first part a parser was designed that performs the translation into records. This
parser only translates PIDs with their interconnection into Erlang records (See Equation 5-3).
As a device can have multiple ‘cpriport’ it is important to uniquely distinguish them, for this
we concatenate a letter from the English alphabet (A-Z). Equation 5-6 shows a conversion of
the grammar (PID with its interconnections) defined in Equation 5-3 into a Erlang record. −ࢁࡰࡷ)܌ܚܗ܋܍ܚ	૚૛ૠ	૚૟૚/૚	ࡾ૚࡭/૝,{ۯܜܚܗܘܑܚܘ܋, ,۰ܜܚܗܘܑܚܘ܋ ,۱ܜܚܗܘܑܚܘ܋ ,۲ܜܚܗܘܑܚܘ܋ ,ܜܚܗܘܔ܌ܑ .({ܖܗܑܜܘܗܛܘ܏

Equation 5-6: Erlang grammar - record definition of a PID

Then second phase defines the getter and setter for interconnections that a specific PID
can use to connect to other devices. The restriction for getting any field (interconnection) for
a record (PID) is that records are atoms* which cannot be passed as a variable to get or set
any field in record. So getters and setter functions for all interconnection were mandatory to
define at compile time. Equation 5-7 shows a getter function generated for interconnection
‘cpriportA’ of PID ‘KDU 127 161/1 R1A/4’. Equation 5-8 shows the setter function
generated for interconnection ‘cpriportA’ of PID ‘KDU 127 161/1 R1A/4’. The getter and
setter functions are automatically generated for all the interconnections of all PIDs defined in
the grammar. ′ࢁࡰࡷ	૚૛ૠ	૚૟૚/૚	ࡾ૚࡭/૝ᇱ(ࢊ࢘࢕ࢉࢋࡾ, →(࡭࢚࢘࢕࢖࢏࢘࢖ࢉ .′૝/࡭૚ࡾ	૚૟૚/૚	૚૛ૠ	ࢁࡰࡷ′#ࢊ࢘࢕ࢉࢋࡾ ࡭࢚࢘࢕࢖࢏࢘࢖ࢉ

Equation 5-7: Erlang grammar – interconnection getter function ′۹۲܃	૚૛ૠ	૚૟૚/૚	܀૚ۯ/૝′(܌ܚܗ܋܍܀, ,ۯܜܚܗܘܑܚܘ܋ (܍ܝܔ܉܄ 	→ ۯܜܚܗܘܑܚܘ܋}′૝/ۯ૚܀	૚૟૚/૚	૚૛ૠ	܃۹۲′#܌ܚܗ܋܍܀ = {܍ܝܔ܉܄
Equation 5-8: Erlang grammar – interconnection setter function

Then the last phase defines the last level of a connection, i.e. what the interconnection can
be connected to. For example ‘cpriport’ on device-A can be connected to device-B via a
matching ‘cpriport’.

The recursive definition of a device and its interconnection acts as an input to the records
generation module. However, the definitions need to undergo a completeness test in order to
generate the corresponding records (See section 6.3.1 for more details). For example, if the
‘cpriport’ is not defined and it is being used in the interconnection of a PID, then the parser
will exit generate an error.

* atoms, http://www.erlang.org/doc/reference_manual/data_types.html

As t
testing
integrat
section

5.2.2
This

the Pep
TF into
differen

Figu
current
with ou
four com

Com
applicat
corresp
compon

5.2.2.
As

provide
implem
implem
The rea
crashed
the CLI
problem
see if t
actually

CLI

Erlan

She

the gramma
needs to be
ted testing
6.3.2.2 for

2 Inte
s section de

ppesBodega
o the existin
nt tools.

ure 5-1 sho
PeppesBod

ur design go
mponents: (

mponents (
tion (comp
onding sub
nent 3.

.1 CLI
mentioned

ed in the c
mentation ph
mented funct
ason for no
d, we had on
I required l

m. At the en
the implem
y deployed w

WI

ng

ell

ar and its p
e performed
in its desig
details.

egration
escribes ho
-RMS archi
ng PeppesB

ows the ext
dega-RMS a
oal of it bein
(1) CLI, (2)

1, 2, and
ponent 3). E
section with

Figure 5

in Section
core applic
hase of Pepp
tionality. O
ot checking
nly limited o
less effort t
nd of the im
ented solut
with bigger

WEB UI

frontend

backend

parser is fou
d to verdict
gn and also

n with e
w the newl
itecture (see

Bodega-RM

tended and
architecture
ng an exten
 Web UI, (3

4) were ch
Each of th
h regard to

5-1: Arch

4.2.6.1, th
cation for
pesBodega-
nly the wor

g the functi
opportunitie
to display t

mplementatio
tion contain
database th

bodega
adm

bodega

undation co
t its proper

performed

existing
ly develope
e Section 4

MS so that u

newly dev
e. The Pepp
nsion of Pep
3) Core App

hanged ma
he compone

the modific

hitectural desig

he CLI can
the moder
-TF, the CL
rking functi
onality via
es to see the
the desired
on phase, th
ns any bott
han of today

Core Ap

a-

gram

co

a

omponent of
functional

d extensive

g archit
ed PeppesB
.2.6). We h

users do no

veloped sub
pesBodega-T
ppesBodega
plication, an

ainly due t
ents 1, 2, a
cations mad

gn of PeppesBo

n be used fo
ator’s debu

LI was exte
ionality was

the web U
e reason for
debugging

he non-func
lenecks wh
y; see sectio

plication

mmar

onfiguration

f the Peppe
behavior. W
testing with

ecture
Bodega-TF w
have integra
t need to sw

systems in
TF architec
a-RMS’s de
nd (4) Datab

to the exte
and 4, will
de in it due

odega-TF

for accessin
ugging pur
nsively use
s made usab
UI was that
r the crash.
information
tional testin

hen PeppesB
on 6.3.3 for

db_Mnes

esBodega-T
We have de
h QuickCh

was integra
ated PeppesB
witch betw

the contex
cture, in acc
esign, has fo
base.

ension of t
l be analyz
to the exte

ng the funct
rposes. Dur
ed to test th
ble via the
t if the app
Furthermor
n in the ev
ng was also
Bodega-TF
more detail

Data

Mnsia

37

F, so its
eveloped
eck; see

ated into
Bodega-

ween two

xt of the
cordance
ollowing

the core
zed in a
nsion of

tionality
ring the

he newly
web UI.
plication
re, using

vent of a
 done to
will be

ls.

abase

nesia

38

It w
and its
subsect

5.2.2.
As

Yaws, (

Yaw
webserv
frontend
manage
5.2.2.3.
have be
applicat

The
provide

•
F

•

was also obs
interface w
ions will pr

.2 Web
mentioned
(2) Frontend

ws is still b
ver as no i
d and backe
ement of co
 The beard
een extensi
tion.

e following
ed by the co

Topology c
Figure 5-2
user-id of a
for a valid
and valid si
validation
unsuccessfu

Topology s
In this view
signum. In

served that
with the dyn
rovide detai

UI
in Section

d and backe

being used
issues are i
end control
onfiguration
compiler ha

ively imple

four front
ore applicati

reation view
2 shows fro
a particular

topology n
ignum (i.e.
the browse

ul validation

ignum view
w all the to
Figure 5-3

there were
namic conne
ls of those l

4.2.6.2, th
end controll

as a web
identified th
lers were m
ns; details
as been use

emented ba

end views
on.

w
ontend view

user. The b
name (i.e. a
consisting o
er is redir
n redirects t

Figure 5-2:

w
opologies ar
3 two topol

some limit
ections in th
limitations t

he web UI
lers, (3) bea

server as w
hat hindere

modified to
internal to
d without m

ased upon t

were creat

w for creati
backend act
a name con
only of alph

rected to th
the browser

Create c

are displaye
ogies ‘Dua

ting factors
he topology
that hindere

requires fo
ard compiler

we saw no
ed the deve
handle the
this extens

modification
the new fun

ted to inter

ion of a top
tions of ‘To

nsisting only
habetic char
he ‘Topolo
r to an error

onfiguration

ed that have
lSTP’ and

regarding t
y configurat
ed developm

llowing fou
r, and (4) V

reason to
lopment of
interfaces f
sion are ex
ns. However
nctionality

face to the

pology. “Si
opology cre
y of alphan
racters) and
ogy signum
r page.

e been crea
‘Standardto

the web fra
tion. The fo

ment of the w

ur compone
Validation ch

change to
f the Web
for the crea
xplained in
r, validation
added to t

e new funct

ignum” ref
eation view
numeric cha
d then on su
m view’, w

ated by a p
opology’ ha

amework
ollowing
web UI.

ents: (1)
hecks.

another
UI. The
tion and
Section

n checks
the core

tionality

fers to a
’ checks
aracters)

uccessful
while an

articular
ave been

•

created by
managemen

Topology m
After selec
options (Se

Add

Edit

signum ‘esh
nt page of th

management
ction of a p
ee Figure 5-

d STP/Devic

t Configura

F

hamob’. Th
he selected

Figure 5-3:

t view
particular t
-4):

ces

h
w

ation A

m
h

Figure 5-4:

he topologie
topology.

Topology

topology fo

The ‘Add S
all the devi
hyperlink p
with a parti

After succ
form the
managemen
hyperlinks

Topology m

es listed in t

y signum view

or managem

STP’ hyperl
ces in a giv
provides th
icular DID.

essfully ad
desired

nt view is
to manage e

anagement vie

this view ar

ment, this v

link provide
ven STP. W
he option o

dding the d
topology,

s then mo
each of the

ew

re hyperlink

view provi

es the optio
While the ‘Ad

of adding a

devices ne
the top

odified to
included D

39

ks to the

des two

n to add
dd DID’
a device

eeded to
pological

include
IDs.

40

The
was sto
topolog
task tha
decision

•
In t

displaye

For
templat
config f
button.

* For

e developme
opped due t
gy data. The
at would ha
n was made

Topology te
this view, t
ed in two fo

the Erlang
tes. In Figur
format. Als

r more inform

ent of the n
o the front-
e developm
ave resulted
e that a new

extual views
the topolog
ormats: (1) X

g-config for
re 5-5 the to
so this textu

Figure

mation about H

next view f
-controller b

ment of a ne
in major d
front-contr

s
gical inform
XML forma

rmat HTML
opological i
ual informa

e 5-5: Tex

HTML tags see

for connect
being able

ew front-con
deviation fro
roller should

mation deve
at and (2) E

L tags* wer
information

ation can be

xtual configur

e: http://www

tion of inte
to handle la
ntroller was
om the goal
d be part of

eloped in T
Erlang-confi

re used for
n of configu
e exported t

ation - Erlang-

w.w3schools.co

rconnection
arge amoun
s viewed as
ls of this M

f future work

Topology ma
g format.

formatting
ration1 is d
to a file by

-config

om/tags/

ns between
nts of confi
s a time con

Master’s thes
k (see sectio

anagement

 purposes i
displayed in

using the

devices
guration
nsuming
sis. So a
on 7.2).

view is

in beard
n Erlang-
‘Export’

For
used fo
controll
this dis
displays
textual

The
the SU
interfac
be used

5.2.2.
Pep

mention
function

the XML f
or the Erlan
ler of Pepp
splays nicel
s the topol
information

ese results f
UT in textua
ce the user c
d by other to

.3 Core
ppesBodega
ned in secti
nality has tw

format, there
ng-config fo
pesBodega-R
ly formatte
logical info
n can be exp

Fi

fulfil one of
al format. A
can simply
ools to facili

Applicat
-TF exten

ion 4.2.6.3,
wo main fun

e were main
ormat and (
RMS only s
d XML in
rmation of
ported to a f

igure 5-6:

f the goals o
After the d
export the c
itate the des

tion
nded the tw

these API
nctional com

nly two opti
(2) modifica
supported h
a colored

f configurat
file using th

Textual conf

of this Mas
desired con
configuratio
sired testing

wo main AP
are used to

mponents:

ions: (1) to
ation of the
html encodi
format tha

tion1 in XM
he ‘Export’

figuration - XM

ster’s thesis
nfiguration
on as a text
g.

PIs: bodega
o modify th

use the sam
e front-cont
ing. Option

at is easy to
ML format.
button.

ML

project, i.e
is displaye
file. This t

a.erl and b
he database

me approach
troller as th
n 2 was sel
to read. Fig
. Additiona

e. output a T
ed via the W
textual file c

bodega_adm
e. The imple

41

h that we
he front-
ected as
gure 5-6
ally, this

TEC for
Web UI
can now

m.erl. As
emented

42

• Grammar – A detail discussion was provided in section 5.2.1
• Configuration - This component supports the creation of configuration (topological)

information. As described earlier the resulting configuration is saved in two formats:
erlang(cfg) and java(xml). These formats providing TEC input to the two different test
environments (see section 1.2) and provides a textual display in both formats.

Data structures are used extensively for organizing data in structured manner. Examples
of data structures include trees, sets, hash tables, queues, stacks, etc. The primary reason for
selection of a specific data structure for solving a complex problem is that a particular data
structure guarantees certain features and we can build a solution on top of existing (solution)
blocks. For examples, sets (implemented in different programming languages) implements
union, intersection, subset, size, iterate, searching, … functionalities. Also some algorithms
optimize the execution time required for set operations. We will not provide details of data
structures and algorithms as this is a wide domain and each concept needs extensive
discussion. The interested reader is referred to Aho et al. [40] which explains data structures,
algorithms, and related topics with detailed discussions.

The selection of a data structure for encoding the configuration information was not an
easy decision because the selected data structure will serve as the foundation for the next
steps in the implementation. After analysing our needs (see section 1.4 and 2.5.2) two data
structures (trees and graphs) were selected. We implemented a directed tree based structure
for organizing the configuration information, but later when we tried to retrieve the
information the loading lead to an infinite recursion. We therefore concluded that since the
topological information was undirected, it was impossible to add and delete the saved
configuration information in a directed tree data structure using conventional tree grafting
and pruning operations. Also as there are multiple connections originating/terminating at a
single device (due to multiple interconnections – see section 5.2.1.1.2), a tree due to its
acyclic property (there exists only one route from one point to another) was not an
appropriate solution. Furthermore, a tree cannot have unconnected interconnections that
would be a valid configuration in our domain as a device may or may not be connected to
another device. After learning these lessons, we re-analysed our needs for a topological RMS
and found that an undirected graph better catered to all of our needs. The following are the
main features with respect to interconnections that we obtained by encoding our
configuration information in graphs:

Cyclic More than one interconnection can originate from and terminate at all
devices

Connected A device can have interconnection(s) which are not connected to any
other device’s interconnection

Undirected Regardless of the order of connections being made by specifying the
origin and destination interconnections, the outcome will remain same.
Thus a connection originating from interconnection A and terminating at
interconnection B is the same as a connection originating from
interconnection A and terminating at interconnection B.

This functional core application will be released for use within the company once it has
been thoroughly tested (See section 6.3).

43

5.2.2.4 Database
As mentioned in section 4.2.6, the Mnesia database is currently used by PeppesBodega-

RMS. In PeppesBodega-TF a new record ‘topology’ was added for structuring and a
corresponding Mnesia table was introduced for storing topological information. The existing
library for database transactions (addition/deletion and modification) to Mnesia tables was
extended to incorporate the transactions for the ‘topology’ Mnesia table.

5.2.3 Interfaces
The CLI interfaces were developed first and then the beard structure was used to provide

the web UI. As mentioned earlier the CLI only addresses the need for an administrator to
invoke specific functionality, while the Web UI performs extensive validation before
performing any actions. This means that the ‘User group’ should not have the full
functionality of the CLI in order to avoid the risk of users performing operations that could
result in a corrupted database or crash the server. For these reasons, the CLI functionality is
only provided to the ‘Moderator’ for debugging and development purposes.

All the interfaces mentioned in section 5.2.2.2 were only for ‘User groups’. The
restriction of interconnections for an existing PID or a newly added PID need to be manually
added to the grammar file, then PeppesBodega-TF is compiled to reflect the changes. These
operations are only done by the ‘Moderator’.

45

6 Testing and Evaluation
This chapter describes the testing and evaluation of PeppesBodega-TF (as presented in

Chapter 5). We will evaluate to what extent the goals of the Master’s thesis project were
fulfilled and we will identify and analyze any discrepancies between the implemented
solution and desired solution (as was specified in Section 1.4). After this the implementation
of PeppesBodega-TF will be evaluated in terms of the characteristics of an RMS defined by
Kulkarni et al.[21]. Last but not least reliability testing and performance testing of the
topological information will be carried out.

6.1 Achievements and Discrepancies
In this section we will analyze the fulfillment of the goals (as defined in section 1.4) of

this Master’s thesis. Next we discuss the implementation that has been made in order to fulfill
these goals. Finally, we will see if there are some discrepancies between the implementation
and the proposed solution.

6.1.1 Achievements
The implementation and design of a topology aware RMS has been completed and details

of each implemented feature were provided in Chapter 5. The implemented solution has been
designed and implemented to flexible and it is easily expandable (see Section 5.2.1.2). The
following enhancements were made to the existing RMS during the implementation of the
proposed solution:

1. Improved security,
2. Restructured source code,
3. Improved frontend and backend controller, and
4. Removal of timeworn functionality.

6.1.1.1 Security
The credentials of administrators are now being processed using SHA-1 encryption. This

means that plain text versions of the credentials are no longer being stored, thus increasing
the security of the system.

6.1.1.2 Restructure of the source code
During the implementation phase, it was noticed that some of the parts of the source code

were not using the beard structure, but rather used another method to do the same thing.
Although this was not a problem in and of itself, in order to make the source code better
aligned with the rest of the source, the source code was converted to consistently us the beard
structure. This clearly increases the reusability of source code and allows direct
communication between different parts of the code.

6.1.1.3 Improved frontend and backend controllers
In section 6.1.1.2, the restructuring of the source code also helped us to modify the

frontend and backend controllers. This modification enabled us to remove unused code,
directly reducing future efforts to maintain the source code and increasing the maintainability
of the source code.

46

6.1.1.4 Removal of deprecated functionality
Identification and removal of outdated functionality was also done as part of this Master’s

thesis project.

6.1.2 Discrepancies
The implemented functionality is not yet completely available for all of the stake-holders

(see section 4.2.2) because of the lack of a complete web UI. A detailed discussion of this
was included in section 5.2.2.2.

The goal for providing detailed information about all of the devices in the LAB was
fulfilled to the desired extent. The major challenge that we faced and which caused us to
deviate from the goal of providing detailed information was the decision to not increase the
number of devices available for DIDs. An example of the problem is that we do not track all
the power distribution units despite the fact that there are quite a lot of them, as they were not
actually part of each STP. Because these devices do not have unique DIDs a decision was
made to not to include these devices into the extended RMS.

6.2 Analysis of the characteristics of
PeppesBodega-TF

In this section we will analyze the implemented PeppesBodega-TF according to the
metrics defined by Kulkarni et al.[21]. During the implementation phase, along with the
requirement fulfillment these metrics were kept in mind. It was observed that the existing
PeppesBodega-RMS implemented some of these metrics, but as the topological framework
was introduced the RMS’s functionality with respect to some of these metrics was also
extended. The metrics defined by Kulkarni et al.[21] can be divided into three categories:

1. Administrative operations,

2. Components of a topological RMS, and

3. Features of a topological RMS.

6.2.1 Administrative operations
As discussed in section 2.5.2.1, the RMS should be able to provide following three

essential operations to administrator: Monitor, Manage, and Control the RMS.

6.2.1.1 Monitor
In PeppesBodega-RMS the devices are used for testing purposes, thus monitoring should

not affect the ongoing tests using the devices. For this reason, monitoring of network
connected components was implemented in PeppesBodega-RMS by sending a ‘ping’ request
to those devices with one or more IP addresses. This monitoring technique only monitored if
the device was reachable or not. This technique was unable to completely monitor all of the
devices, as not all of the devices in the LAB had an Ethernet connection; hence monitoring
all of the devices was impossible using only this technique. In PeppesBodega-TF, no
additional monitoring technique was needed as the devices in each configuration were the
same and we could not perform any action other than checking the ‘ping’ status of devices
with Ethernet connections and that was already implemented.

47

6.2.1.2 Manage
In PeppesBodega-RMS after getting information, the management of a reachable device

required no changes for these devices, but for non-reachable devices the main reasons for a
device not being reachable was due to the device being in faulty condition, a problem in the
network, or because the device was powered off. In the case of a faulty device (due to a
hardware fault) the non-reachable device should be replaced. In the case of a faulty device
(due to a software fault) the device should have its software re-installed. A powered off
devices should be manually removed from the testing LAB after at most one week, i.e., the
device should be returned to the pool of available devices so that more effective use could be
made of it. In the case of network problems the network issue needed to be manually
identified and resolved. With the implementation of PeppesBodega-TF, the control of devices
has improved as now the administrator simply has to check if the non-reachable devices are
being used in any configuration that has other devices power-on in that configuration.
Consider an example configuration, configuration-1, consisting of two devices: device-A and
device-B. If device-A is non-reachable due to power-off then the administrator must look into
the configuration containing device-As. In this case the administrator looks at
configuration-1, if any of the devices in this configuration are powered-on then the
administrator can assume that device-A is powered on, otherwise this device-A should be
removed from the testing LAB, returning it to the pool of available devices. The overall
management process for a powered off device is illustrated in Figure 6-1.

As described above, PeppesBodega-TF does take advantage of the transitivity
information from the topology information in the RMS. A potential future enhancement
would be to monitor devices using the transitivity information in the topology database, i.e.,
if we have connectivity between two devices within a STP, then if we have network
connectivity to one of them – we can assume that the other devices is present – since it is part
of the STP.

48

Figure 6-1: Device management of a powered-off device

6.2.1.3 Control
PeppesBodega-RMS had a limited ability control the managed resources. Even though the

devices were grouped into STPs having a label, such as “used for test purpose-x”, the RMS
lacked control of the usage of these devices. Now that PeppesBodega-TF stores the
topological information of the devices in one or more STPs. This information can be used to
help the tester have greater controls over the devices because the system will generate an
error if someone else, mistakenly, defines an interconnection to a device that already has a
defined interconnection in another STP. For example, in configuration-X of Alice, if device-1
has interconnection port-A connected to interconnection port-B of device-2, and then if Bob
tries to define a connection for interconnection port-A of device-3 to interconnection port-A
of device-1 an error will be generated. This is shown in Figure 6-2.

response

ping

NO

 device-A

device-B

Powered-on
device

 Monitor

no response

Remove

from

LAB

 Start

 End

YES

Response

49

Figure 6-2: Control of devices

6.2.2 Components of a topological RMS
In this section we will analyse if PeppesBodega-TF has the basic components of a

topological managed RMS according to the criteria described by Kulkarni et al. We will use
the same approach as in section 6.2.1 due to some characteristics already being present in
PeppesBodega-RMS. Kulkarni identified the following essential components of a topological
RMS:

1. Plurality of nodes in the network,
2. Plurality of interconnections among these nodes,
3. A management system consisting of managed network resources stored in a database,
4. Database of managed network resources, and
5. Plurality of network administrators.

6.2.2.1 Plurality of nodes in the network
As mentioned in section 4.2, all of the devices in PeppesBodega-RMS are uniquely

identified by DIDs, i.e., their device identifiers. So this component already existed before the
development of PeppesBodega-TF. No specific enhancements were made for this component.

6.2.2.2 Plurality of interconnection among these nodes
Improvements to this component comprise the main contribution of this Master’s thesis

project. PeppesBodega-TF is implemented to provide the functionality for all (usually more

device-2

port-A

device-1 port-B port-B

port-A

device-3

port-A

device-1 port-B

port-A

port-B

Alice’s Step -1

 OK

BOB’s Step -2

 ERROR

50

than one) interconnections between a device and another device. The detailed description of
this functionality was provided in section 5.2.

6.2.2.3 A management system consisting of managed network
resources stored in a database

This component refers to storing the data of each specific configuration. PeppesBodega-
RMS stored the data specific to device, STP, and booking information. A similar approach
was used in PeppesBodega-TF to store this data into a Mnesia database. In PeppesBodega-TF
this same database was also used for storing topological information (see Section 5.2.2.4 for
details).

6.2.2.4 Plurality of network administrators
As mentioned in section 4.2.2, there are local administrators for three regions of

stakeholders for PeppesBodega-RMS administration. The implementation of
PeppesBodega-TF enables more administrative usage by the User group, rather than
restricting these administrative functions to the Administrator group. This is because the
‘Moderator’ can define the possible interconnections (see Section 5.2.1.3) for each new
device PID (see Section 5.2.1.1.1) in PeppesBodega-TF database. Given these definitions
most of the topological information about a given configuration will be done by a member of
the User group in order to generate their desired TEC input.

6.2.3 Features of a topological RMS
In addition to administrative operations (see section 6.2.1) and components of the

topological RMS (see section 6.2.2), we will analyze if the implemented solution has
following essential features:

1. Modification of configuration data,

2. Visualization of “Node view”, and

3. Auto-update of “Node view” with addition of a new parent node.

6.2.3.1 Modification of configuration data
This feature is implemented and was discussed in Section 6.2.2.4 during discussion of

‘Plurality of network administrators’.

6.2.3.2 Visualization of “Node view”
This feature has not been implemented due to the limited duration of this Master’s thesis

project. We have made a suggestion about its implementation as part of future work (see
Section 7.2). However, the textual TEC (see Section 5.2.2.2 : Topology textual view)
contributes a good conceptual picture to understand the topology of a configuration.

6.2.3.3 Auto-update of “Node view” with addition of parent node
PeppesBodega-TF strongly supports this important feature. The core application uses

undirected graphs (as mentioned in section 5.2.2.3) as its primary data structure. This
guarantees that the information is updated for both devices when their interconnections are
connected.

6.3
This

section
verifica

Figu
depende
extende
PeppesB
Master’
beta pha

Yet
mention
‘edit co
front-en
target a
with its

6.3.1
Cur

devices
roughly
next ye
now) an
devices
the data

We
STPs. A
binding
number

Testi
s Master’s t
1.3). The

ation proces

ure 6-3 sho
ent upon Pe
ed RMS al
Bodega-TF
’s thesis pro
ase). We wi

another im
ned in secti
onfiguration
nd controlle
audience aft
 dependenc

1 Test
rrently, Pepp
s grouped in
y a year ago
ear. Accordi
nd preparat

s. This mean
a-set predict

have simu
Also these 1
gs. The imp
r of devices

Custom

ng of P
thesis targe
developmen

ss, but first P

ows the co
eppesBodeg
long with l
is complete

oject. This i
ill evaluate

mportant a
ion 5.2.2.2

n’ so system
er is done(s
ter delivery
cy for efficie

F

t config
pesBodega-
nto 370 STP
o, thus no st
ing to LAB
tion of a ne
ns that the i
tion for one

ulated a dat
1500 device
plemented
s, but the p

r
mer

Peppes
ts the ease
nt of Peppe
PeppesBode

mplete cyc
ga-RMS, tes
legacy test
ely develop
implementa
this implem

aspect is to
front-end c

m testing for
ee section 7
test (Quick

ent front-en

Figure 6-3:

uration
-RMS conta
Ps. Use of P
tatistical an

B team, the
ew LAB is
mplemented

e year from n

abase of 15
es are assoc
solution is

pre-requisite

requests

sBode
of verificat
esBodega-T
ega-TF itsel

cle of requi
sting of eac
ting was ve
ped (in the a
ation has als
mentation in

o test CLI
controller is
r Web-UI is
7.2), Peppe
kCheck[35]

nd controller

Requiremen

n
ains 397 PI
PeppesBode
nalysis can y
 number of

s currently
d solution s
now.

500 devices
ciated with
s mostly c
e PIDs and

Delivered

Requirem

ga-TF
tion by prov
TF is the re
lf needs to b

irements’ d
ch new step
ery importa

alpha phase)
so been test
n the follow

interface
s unable to
s not perform
sBodega-TF
]) has been
r, remains a

nt delivery pla

Ds bound t
ega-RMS st
yet be made
f devices w
taking plac

should be an

s and rando
800 PIDs w
oncerned s
logical bin

imple
ent

viding a top
esult of this
be tested.

delivery. As
p in the imp
ant. The fu
) and it fulfi
ted at the m
ing two sub

along with
handle the
med. After
F will then
performed.

as part of fut

n

to 49 logica
tarted to tra
e to predict

will double
ce to accom
nalyzed wit

omly alloca
which are bo
supporting
ndings are a

Function t
and legacy

ement
A

B

D

QuickChe

pological RM
s effort to

s testing is
plementation
unctionality

fills the goal
module leve
bsections.

h the Web
request to
future work
be released

. This deliv
uture work.

al bindings
ack this info

the future
in next yea

mmodate th
th atleast the

ated devices
ound to 100
with the e

also needed

test
y test

Alpha phase

Beta phase

Delivery test

eck

51

MS (see
ease the

s mainly
n of this
y of the
ls of this
el (in the

-UI. As
perform
k for the
d for the
very test,

and 745
ormation
state for
ar (as of
ese new
e size of

s to 750
0 logical
expected
d for the

e

t

52

creation of these devices. STPs are an integral part for the creation of a configuration for a
STP (See section 5.2.2.2), so simulation of STPs was necessary.

The computer used for the performance testing was a ‘ HP EliteBook 8560w’ with a ‘Intel
2nd Gen Core i5 i5-2540M’ processor running at 2.6 GHz. This computer has 8 Gbytes of
memory with a clock speed of 1033 MHz and 320 Gbyte disk (model WD3200BEKT at
7200 RPM) connected via a SATA interface operating at 3 Gbps. The underlying operating
system was ‘SUSE Linux Enterprise 11’ and Erlang and Yaws were the only tasks running,
other than the OS internal services and tasks, during the time that the testing was taking
place.

6.3.2 Reliability testing
Reliability of software refers to its ability to produce the same result under the same

circumstances. In other words this software should have no side-effects[41]. However, in
practice this is very difficult to achieve. Of course the fewer the side-effects, the more
reliable the software can be. Another aspect of the reliability of software is its ability to
handle all of the desired use-cases, thus the software should be able to handle all the possible
correct and incorrect inputs and outputs the desired results (including errors) gracefully.

Based upon the discussion above, we will evaluate PeppesBodega-TF with respect to
following two criteria:

1) Validity: To verify that the software under test correctly handles the range of input in
accordance with the specification. To check this we will inspect the software if the
software contains any side-effect, i.e. if it behaves differently depending upon the
state of the software. This testing will be done to ensure that the implemented
functionality generates exactly same results for a given input.

2) Completeness: To verify that the software under test gracefully handles all possible
inputs even in cases outside of the specification.

6.3.2.1 Validity
As mentioned earlier PeppesBodega-RMS was designed following good software design

principles. One of those principles is the restriction of side-effects to a small number of
functional modules. This way of structuring the code limits the software bugs to only those
modules that have side-effects; hence it is easier to troubleshoot the resulting implementation
when any problem is found. PeppesBodega-TF also follows the same design principle.

As mentioned in section 4.2.6.1, the CLI mode is not available to the user group, so the
only way to use functionality is via the web UI. Also as mentioned in section 4.2.6.2 the
view-logic contains the functionality that is provided via the web UI; this logic also provides
filters for input requests to the module’s functionality. So the validity of each input to the
system is provided by the view-logic and restrictions on user group providing invalid input to
functional module strengthens the software’s validity.

Equation 6-1 shows the entry point of a web UI that provides the interface for adding a
new configuration. We have two test criterions for the creation of a new configuration:

1. Configuration name
2. Signum

Equation 6-2 and Equation 6-3 checks for configuration name to only have alpha-numeric
characters [A..Z a…z 0...9] and signum only contains characters from the alphabet [A...Z]. If

53

either criterion is not met, then the interface should prompt the user with an error description
and should not allow the user to proceed with the creation of a new configuration. {(࢓࢛࢔ࢍ࢏ࡿ)࢓࢛࢔ࢍ࢏࢙_ࢊ࢏࢒ࢇ࢜_࢙࢏, {(ࢋ࢓ࢇࡺ)ࢋ࢓ࢇ࢔_ࢊ࢏࢒ࢇ࢜_࢙࢏

Equation 6-1: Web UI validation for configuration name and signum 		(࡯	 >= 	࡯	࢕࢙࢒ࢇࢊ࢔ࢇ	ࢇ$	 =< 	࡯)	ࢋ࢙࢒ࢋ࢘࢕(ࢠ$	 >= 	࡯	࢕࢙࢒ࢇࢊ࢔ࢇ	࡭$	 =< 	࡯)	ࢋ࢙࢒ࢋ࢘࢕	(ࢆ$	 >= 	$૙	࢕࢙࢒ࢇࢊ࢔ࢇ	࡯	 =< 	$ૢ)
Equation 6-2: Validation for alpha-numeric characters (࡯	 >= 	࡯	࢕࢙࢒ࢇࢊ࢔ࢇ	ࢇ$	 =< 	࡯)	ࢋ࢙࢒ࢋ࢘࢕(ࢠ$	 >= 	࡯	࢕࢙࢒ࢇࢊ࢔ࢇ	࡭$	 =< (ࢆ$	

Equation 6-3: Validation for alphabetic characters

The validation checks are not only limited to above mentioned checks as they are
apparently checking only the character input. The input of is_valid_signum (see Equation
6-1) is validated against x500*; if and only if a signum exists in the x500 should the new
configuration be created. This is the last step that in the current implementation is required as
of now for signum validation to pass. Another aspect is that users have no restriction with
regarding to adding new configurations to any signum, restricting the users from creating a
new configuration for any signum other than their own remains as future work (See
section7.2).

 The configuration names can be same for two users since when we write to the database
we concatenate the signum with the configuration name, thus making a unique name. This
means that if the configuration name is already defined for a signum, the interface will
prompt the user with an error message stating “Configuration already exists!!!” and will not
create a new configuration in the database.

6.3.2.2 Completeness
In the previous section we described how we checked the validity of all the inputs that are

provided to the core application. When it comes to proving that all the use cases are handled
successfully, the core application must undergo a completeness test. The core application of
PeppesBodega-TF revolves around the grammar for all provided functionality (see Section
5.2 for more details)

6.3.2.2.1 Integrated design test
As stated above that grammar must undergo a completeness test for the core application

to function properly, hence we have defined a recursive parser that checks for the definition
of all the logical bindings of a PID, its interconnections, and interconnection options.

Figure 6-4 shows the relationship between the different grammar definitions. The
grammar definitions have been explained in the context of PeppesBodega-TF in Section
5.2.1.3. The parser takes as input all the defined PIDs under a logical binding, and then
checks the definitions of its interconnections, then continues to check for interconnections
options.

* X500, http://www.x500standard.com/index.php?n=Main.HomePage, Last accessed : 2013-12-23

54

Figure 6-4: Recursive grammar parsing

If at any phase of the recursive loop fails for any PID belonging to logical binding, the
PeppesBodega-TF application is not started. In other words, the start-up of the
PeppesBodega-TF is the proof that the system is able to parse the correct input.

6.3.2.2.2 Fuzz testing with QuickCheck
To further check the completeness of the grammar and analyse the parser, we have used

QuickCheck to generate samples of the grammar to test two parts:

1. Grammar
2. Parser of the grammar

As mentioned above the parser of the grammar is working fine with the current logical
bindings, PIDs, interconnection, and interconnections options. However this is insufficient as
a satisfactory test verdict for the parser of grammar to be working fine, nor does it confirm if
the grammar produced is valid or not. To test this we have defined formal specifications of
logical bindings, PIDs, interconnection, and interconnection options. The complete code for
the QuickCheck module is provided in Appendix-C. We firstly define the rules for the
grammar that confirms the validity of the grammar. This means that we have control over
both the generation of valid and invalid grammars.

The generation of a valid grammar will be used to test if the parser fails with the defined
rules. The generation of an invalid grammar will be used to test the behaviour of the SUT.
We performed an extensive testing for this using QuickCheck. We checked all the rules that
could be defined for the input of the grammar in terms of logical bindings, PIDS,
interconnection, and interconnection options. These rules were then used multiple times to
generate a large grammar that we testing for validity with and without injecting faults.

QuickCheck has its own built-in APIs which provide certain functionalities, we will only
provide an overview of the functionality being used for testing the grammar. The intricate
details of using QuickCheck-APIs will not be discussed in detail, as this is a vast domain and
lies outside the scope of this Master’s thesis.

LOGICAL BINDING PID
1 1..*

PID INTERCONNECTION
0..1 0..*

INTERCONNECTION INTERCONNECTION
OPTIONS 0..1 1..*

55

For generation of input for logical bindings, interconnections and PIDs, we completely
randomized the input as shown in Equation 6-4. The QuickCheck testing failed for one input
of a sentence in the grammar because the definition contained the level of grammar itself as
shown in Equation 6-5. The QuickCheck test failed and our analysis shows that the parser
entered a infinite recursive loop, hence it would never exit. The implementation of parser was
then changed for it to handle the case where the same name is used for definition of levels of
grammar (See Table 5-1 for details); an error “Error: Self-definition” is generated on console
followed by graceful exit.

Equation 6-4: Random generation of grammar levels

Equation 6-5: Error grammar for same definition level

After analysing the failure of input for same input in definition of levels of grammar the
range of input for the number of logical bindings, interconnection, and PIDs was redefined as
shown in Equation 6-6. All the inputs are enumerated from 1 to 10 and for them (logical
bindings, interconnection, and PIDs) to be able to be distinguished them from each other we
have appended the initials from their names, for example logical binding: LB_. As we are
randomly generating the grammar, this naming convention ensures that later-on it will be
easy to interpret the generated grammar.

atom() ->

 frequency(

 [{0,?LET(Str, non_empty(list(char())), list_to_atom(Str))},

 {9,?LET({Lc,Str},

 {lowercase(), list(alphanumeric())},

 list_to_atom([Lc|Str]))}]).

{a,[a,b,c]}

56

Equation 6-6: Random generation of input for grammar

The inputs to the grammar have been defined in Equation 6-6. The next step is to define
the rules for a valid grammar. Equation 6-7 shows the rules for a valid grammar. Earlier we
have explained in Table 5-1 (in conjunction with explanation of Equation 5-1, Equation 5-2,
Equation 5-3, Equation 5-4, and Equation 5-5) that the logical binding holds a list of PIDs,
with each PID is associated with a list of interconnections, and each interconnection
associated to a list of logical bindings that it can be connected to. These specify the valid
rules for the generation of a grammar. Also as mentioned in the explanation of Figure 6-4 all
the definitions for PIDs, interconnections, and logical bindings must be defined. Any
deviation from these rules will generate an invalid grammar. In Equation 6-7 grammar is
generated from the rules mentioned above and then passed to the next step where again new
set of grammar is generated from the same set of logical bindings, interconnection level, and
product identifier. This provided an additional check for our analysis that “the parser is able
to handle same sentences in the grammar file”. This is of course a valid grammar case but it
should not add anything to the functional behaviour of parser.

logical_binding() -> oneof([list_to_atom("LB_ " ++ integer_to_list(X))
|| X <- lists:seq(1,10)]).

interconnection_level() -> oneof([list_to_atom("ICL_ " ++
integer_to_list(X)) || X <- lists:seq(1,10)]).

product_identifier() ->

 ?LET({Prefix,Atom}, {oneof(["KDU ", "KRC "]), oneof([
list_to_atom("PID_ " ++ integer_to_list(X)) || X <- lists:seq(1,10)])},

 list_to_atom(lists:concat([Prefix, Atom]))).

57

Equation 6-7: Rules for valid grammar

 We observe that the functional behaviour of parser is not affected by repetition of the
same sentences in the grammar file.

Equation 6-8 shows the generation of a grammar from a set of valid rules as defined in
Equation 6-7. QuickCheck also provides the possibility to have a user defined size for
grammar repetitive generation i.e. control of input size by macro function ‘?SIZED’ . If no
input is specified, then by default 100 testscases are run; in our case this causes the
generation of 100 different grammars.

rules(LBs) ->

 ?LET(

 {LB, PIDs, ILs},

 {logical_binding(),

 non_empty(list(product_identifier())),

 non_empty(list(interconnection_level()))},

 begin

 [{LB,PIDs}]++

 [pid(Pid,ILs) || Pid <- PIDs]++

 [il(IL,LBs++[LB]) || IL <- ILs]

 end).

58

Equation 6-8: Grammar generation

The test cases are executed against two properties

1. Valid grammar
2. Invalid grammar

A valid grammar is then provided as input to the parser to check if the parser correctly
outputs the record definitions and getter/setter functions (as mentioned in section 5.2.1.4), in
the case of failure QuickCheck will abort the ongoing testing and will output the grammar
used with the parser. This valid grammar check is shown in Equation 6-9.

Equation 6-9: Valid grammar check

The invalidity of grammar is introduced by adding an invalid sentence to the valid
grammar in random pattern (start/middle and end of the generated grammar). In this way we

grammar() ->

 ?LET(G, ?SIZED(Size, grammar(Size)),

 lists:flatten(G)).

grammar(N) when N =< 0 ->

 [];

grammar(N) ->

 ?LET(

 Grammar, grammar(N - 2),

 begin

 LBs = logical_bindings(Grammar),

 Grammar ++ rules(LBs)

 end).

prop_valid() ->

 ?FORALL(

 G, grammar(),

 complete(G) == true).

59

simulate a fault due to any kind of corruption in an existing valid grammar. The invalid
grammar check is shown in Equation 6-10.

Equation 6-10: Invalid grammar check

6.3.2.2.3 Analysis
In section 6.3.2.2.1 we have integrated a simple test that confirms the well-formed

grammar and checks if the grammar is complete or not. In section 6.3.2.2.2 we have
developed a property based test bed for generating the grammar with all the inputs and tested
it with two properties, i.e. valid and invalid, against the parser’s functionality.

It was observed that even though we handled the subtle and obvious bugs some of
following bugs still remained, specifically.

• The definition of any level of the grammar was not handling the case where
grammar level was part of the list containing a relationship to another level of the
grammar. (See section 6.3.2.2.2)

• Definitions for repeated sentences were not tested, and
• An empty grammar, even though it does not make sense, was not included in the

testing of parser.

Currently in the LAB setup there exist 49 logical bindings for 397 PIDS. The biggest
device configuration, in terms of interconnection, has 32 interconnections. We multiply all of
the current values (number of logical bindings, PIDs and interconnections) by a factor of 2 to
estimate future* state of the grammar. The size of the test cases was selected to be 500 and no
errors were observed when testing both valid and invalid grammars.

The results from the testing are satisfactory and no bugs were found. We do not claim that
the currently implementation is completely free of bugs, but we have attempted to perform
fuzzy testing in order to reach satisfactory level of testing for the implemented solution.

6.3.3 Performance testing
In the previous section, we evaluated the functional aspects of our implementation.

Nonetheless, the non-functional (responsiveness and concurrency) quality testing is also very
important. For example, Weng et al. [84] stated following a survey conducted by Microsoft’s

* Future, expectation for a year from now (See section 6.3.1).

prop_invalid() ->

 ?LET({{A1,A2},G}, {non_equal_atoms(),grammar()},

 ?FORALL(

 G1, shuffle(G++[{A1,[A2]}]),

 complete(G1) == [{A2,false}])).

60

Office development team that user complaints about what they perceived as bad performance
were almost as frequent as complaints about crashes. Perceptible performance or
responsiveness of an interactive tool can be described in terms of its latency of when
handling events[42]. A tool with low responsiveness (i.e. high latency of handing events) is
likely to induce anger, frustration, and annoyance of its user[43] and can also greatly
negatively affect user productivity[44]. That is why Milan Jovic and Matthias Hauswirth[45]
consider perceptible performance testing as an important part of the evaluation of an
interactive application.

We did not perform tests for the concurrency of our implemented solution, as tests have
been performed which compared yaws and apache concurrency[46]. As the test results for
concurrency of yaws indicate that yaws is able to handle 80,000 parallel sessions and that is
much greater than the current number of users of PeppesBodega-TF. A second reason for not
performing concurrency tests is that concurrency measurements takes a lot of time (and it was
not a core focus of this Master’s thesis) as many factors are involved in its calculation (such
as available processing power, latency, RAM, bandwidth, number of sockets etc).

In this section we will examine perceptible performance (i.e. specifically the latency of
handling events, such as the creation of a new configuration, loading, editing, etc.) of
PeppesBodega-TF. Additionally, this evaluation will help us in identifying performance
bottlenecks. The detection of performance bottlenecks is very important as it enables the
developer(s) to identify the part(s) of the system that is critical for improving the overall
performance (by modifying the identified part(s)) of the system to remove the bottleneck.

As Shneiderman [44] found the threshold of responsiveness to be around 100 ms for a
single event, therefore we are considering 100 ms as our threshold of responsiveness (i.e. if
handling of an event takes more than 100 ms then the implementation fails with respect to the
responsiveness criteria).

For evaluation, we will use the fprof * module to dump Erlang function calls (as the
implementation language is Erlang). The best feature of this profiling module is that it also
calculates time taken by its own function call, thus giving accurate measurements. The fprof
profiles any given function in three steps:

1. The tracer provides information about all the called functions, execution time,
processes scheduling, etc.

2. The profiler reads the trace files, simulates the execution call stack and
calculates raw profile data from this execution stack.

3. The analyzer sorts and filters the raw profile and then converts the output into a
readable text file.

The output of the ‘fprof’ results in the three metrics:

CNT CNT is the total number of function calls during the trace.

ACC ACC is the accumulated time from the start of the trace to the end of
the trace.

* fprof is a profiler module that collects and analyzes the statistics about the execution of an Erlang

function. http://www.erlang.org/doc/man/fprof.html Last visited: 2013-12-10

61

OWN OWN is the sum of the execution time of the functions found in the
trace excluding the called functions, i.e., the time spent doing the
profiling.

We are mainly interested in the difference between ACC and OWN because this indicates
the total execution time of the actions performed by PeppesBodega-TF. We will first observe
whether the execution time has a predictable or random pattern. If it has a predictable pattern,
then we will only analyze the limits of the dataset in our analysis.

Following are the frequent operations that are to be executed by the users of
PeppesBodega-TF.

1. Create new configuration
2. Transactions of devices to configuration
3. Remove configuration

6.3.3.1 Create new configuration
Today each STP has a configuration file associated to it which defines the STP

interconnections. So we will analyze the implemented solution for the creating at least the
same number of configuration as we have forecast for the number of STPs. We have executed
the profile for 1000 configurations (more than the 750 STPs forecast for the next year).

Table 6-1 shows the trend of CNT, ACC, and OWN for 5 executions of creation of 100,
200, 300,… 1000 configurations. We observed that the time for creation of a configuration
increase as the number of existing configurations in the Mnesia database is increased. This is
normal behavior because the current implementation checks if the same key is used if so the
record is updated rather than creating a new record. So increasing existing configurations
increases the time required for creating next configuration.

We do not consider the update function to be bottleneck for the creation of new
configuration because it gives us a nice way to update the existing configuration when we
want to add/delete a device to a configuration, update connections between devices, etc.

Table 6-1 shows a calculation of the maximum, minimum, and deviation of CNT, ACC,
and OWN for the 5 executions of creating the different numbers of configurations. The
maximum time is the most relevant as the users are mostly concerned with the maximum
time that they have to wait for the output of a result after they have entered a request. The
minimum of each is used to calculate the expected deviation. We observe that for all three
criteria CNT, ACC, and OWN the deviation is lower than 100ms, hence there is no indication
of any performance bottle-neck.

The fitting curves for Figure 6-6 and Figure 6-7 are linear so we will calculate the
maximum time required for the creation of 901-1000 configurations that also includes the
time to check at-least 900 configuration records for the same key as the requested key for
901-1000 configurations.

62

T
able 6-1:

fprof profile for create configuration

Tota

Num

Res

As
create 1
Shneide

al time for c

mber of calc

sponsivenes

2.11ms is
1000 config
erman in [44

calculations

culations =

 =

s of a single

less than 1
gurations (an
4], hence w

Fig

s = ACC - O

 = 1259 - 1
 = 211 ms

Creation of

= 100

e operation

100 ms the
nd a lot mor

we consider t

ure 6-5: C

OWN

1048

f new config

= Total tim

= 211 / 10

= 2.11 ms

implement
re) within t
the system

Create configu

gurations

me for calcul

0

ted solution
the threshol
sufficiently

uration - max C

lation / num

n will be ab
d of percep

y responsive

CNT

mber of calc

able to succ
ptibility as f
e.

63

ulations

cessfully
found by

64

6.3.3.
The

perform
configu
Devices

The
time int
interval
executio

.2 Trans
ere are two
mance eval
uration. The
s and Confi

1. Constan
2. Variabl

e performan
tervals. In f
l performan
ons.

Figu

Figu

sactions
o main da
luation of
ese data en
gurations. F

nt number o
le number o

nce tests for
first interva
nce test wer

ure 6-6: C

ure 6-7: C

of devic
ata entities

the imple
ntities for w
For this reas

of configura
f configurat

r above me
al the perfor
re executed

Create configu

Create configu

ces to co
within Pe

emented so
which varia
son, the data

ations with v
tions with c

entioned tw
rmance test
d five times

uration - max A

ration - max O

onfigurat
eppesBodeg
olution for
ance can le
aset has bee

variable num
constant num

wo data-sets
s were exec
 to check t

ACC

OWN

tion
ga-TF that
r transactio
ead to inter
en divided in

mber of dev
mber of dev

 have been
cuted only o
the variance

should af
on of dev
resting resu
into two sub

vices and
vices.

n performed
once and in
e between d

ffect the
vices in
ults are:
bsets:

d in two
n second
different

65

6.3.3.2.1 Constant configuration with variable devices
Table 6-2 shows a profile for dataset-1; first interval, where the total number of

configurations (storing topological information) was constant and we made addition,
modification, and deletion transactions of varying devices to these configurations. Table 6-3
shows second interval for performing same operation as mentioned above for Table 6-2.

The results from the ‘fprof’ for dataset-1, first interval, are plotted in Figure 6-8, Figure
6-9 and Figure 6-10. The results from ‘fprof’ for dataset-1, second interval, are plotted in
Figure 6-11, Figure 6-12 and Figure 6-13.

As Table 6-2 and Table 6-3 show almost similar execution times for execution, but Table
6-3 contains values for the execution for 5 times. As mentioned earlier in this performance
testing the expected behavior is observed, thus we test the highest limits as users are most
concerned about the maximum time for the output. So we will consider the maximum value
for the largest configuration, i.e. last row of Table 6-3.

Total time for calculations = ACC - OWN

 = 203326 - 132665
 = 70661 ms

Number of calculations = Number of devices/configurations * Total configurations *
number of transactions/configuration:

 = 100*49*3
 = 14 700

Responsiveness of a single operation = Total time for calculation / number of calculations

 = 70661 / 14 700
 = 4.8068707 ms

As the maximum responsiveness (4.8 ms) is less than 100 ms the implemented solution
(with dataset-1 as input and future forecasted values of LAB equipment) is well below the
threshold of perceptibility as found by Shneiderman in [44], hence we consider the system
sufficiently responsive with regard to making changes to 49 different configurations.

66

Table 6-2: fprof profile for ‘Transaction of devices to configuration (dataset-1)'

Number of devices
/ configuration

Total number of
configurations

CNT ACC OWN

10 49 637995 21606 14166
20 49 1169233 42902 27666
30 49 1700776 62454 40876
40 49 2232170 79881 51721
50 49 2763557 99562 65276
60 49 3294941 117732 76104
70 49 3826412 137584 89952
80 49 4357728 156153 101684
90 49 4888647 171544 112029

100 49 53954128 195486 129061

T
able 6-3:

fprof profile for 'T
ransactions of devices to configuration (dataset-1)'

67

68

Figure 6-8

Figure 6-

8: Transa

9: Transa

action of device

action of devic

es to configura

ces to configura

ation (dataset-1

ation (dataset-

1) - OWN with

-1)- ACC with

h 49 devices

49 devices

Figure 6-1

Figure 6-11:

10: Transa

: Transacti

action of devic

ion of devices t

ces to configura

to configuratio

ation (dataset-

on (dataset-1) –

1) - CNT with

– max CNT wi

49 devices

ith 49 devices

69

70

6.3.3.2.2
Tab

used in
were pe
6-4 sho
modifie
6-5 sho

The
6-15 an
configu

Figure 6-12:

Figure 6-13:

2 Variable
ble 6-4 show

addition, m
erformed on
ows the cas
ed, and dele
ws second i

e results from
nd Figure 6
urations. Ho

: Transacti

Transacti

e number of
ws a profile
modification
n different n
e for 10 co

eted from al
interval for

m the ‘fpro
6-16. We o

owever, if w

ion of devices t

ion of devices t

f configura
e for dataset
n, and deleti
numbers of
onfiguration
l 10 configu
performing

of’ for datas
observe a s

we consider

to configuratio

to configuratio

ations with
t-2, first int
ion transact
configurati

ns where ea
urations dur
g same oper

set-2, first in
sudden rise
the differen

on (dataset-1) –

on (dataset-1) -

a constant
terval, wher
tions were k
ions. For ex
ach configu
ring the per
ration as me

nterval, are
 for OWN
nce between

– max ACC wi

- max OWN wi

number of
re the total
kept constan
xample, the
ration has 1
rformance m
entioned abo

plotted in F
and ACC

n both OWN

ith 49 devices

ith 49 devices

f devices
number of

nt, but these
first entry o
100 devices

measuremen
ove for Tab

Figure 6-14
in the cas

N and ACC

f devices
e actions
of Table
s added,
nt. Table
le 6-4.

4, Figure
se of 40

C, we see

71

that the execution time of the application is increasing linearly; hence this sudden rise could
be due to a high load on the processor by another running task. We have not observed this
kind of observation for any other of the performance test results but this is quite normal
behavior. The results from ‘fprof’ for dataset-2, second interval, are plotted in Figure 6-17,
Figure 6-18 and Figure 6-19.

Once again since the graphs are linear we will make our calculation based upon the last
row of the Table 6-5.

Total time for calculations = ACC - OWN

 = 361046 - 252688
 = 108358 ms

Number of calculations = Number of devices/configurations * Total configurations *
number of transactions/configuration:

 = 100*100*3
 = 30 000

Responsiveness of single operation = Total time for calculation / number of calculations

 = 108358 / 30 000
 = 3.611933 ms

As the responsiveness (3.6 ms) is less than 100 ms the implemented solution (with
dataset-2 as input) falls below the threshold of perceptibility as found by Shneiderman in
[44], hence we consider the system sufficiently responsive with regard to making changes to
these different numbers of configurations with 100 devices.

In Table 6-4 and Table 6-5 the deviation from maximum and minimum CNT,ACC and
OWN is quite low so we do not consider it to indirect cause of any bottleneck (that might
occur in future).

Table 6-4: fprof profile for ‘Transaction of devices to configuration (dataset-2)'

Number of devices
/ configuration

Total number of
configurations

CNT ACC OWN

100 10 1062931 39449 25465
100 20 2125871 76837 50353
100 30 3188302 116134 76174
100 40 4251012 201747 128768
100 50 5313685 193112 127494
100 60 6376860 227639 148345
100 70 7439321 267706 201595
100 80 8502174 305522 222783
100 90 9565127 336117 235506
100 100 10587549 378754 244069

72

 T
able 6-5:

fprof profile for ‘T
ransaction of devices to configuration (dataset-2)

F

Figure 6-14:

Figure 6-15:

Transaction

Transactio

n of devices to

n of devices to

configuration

o configuration

(dataset-2) - O

n (dataset-2) - A

OWN with 100

ACC with 100

0 configuration

configuration

73

ns

s

74

Fi

Figure 6-16:

gure 6-17:

Transactio

Transaction o

on of devices to

of devices to co

o configuration

onfiguration (d

n (dataset-2) - C

dataset-2) - ma

CNT with 100

ax CNT with 10

configurations

00 configuratio

s

ons

Fig

Fig

6.3.3.
In s

addition
and obs
perform
were de
some de

Tab
values o
We are
of ACC
6-20, Fi

gure 6-18:

gure 6-19:

.3 Remo
section 6.3
n of the con
serve the pe

med deletion
eleted were
eviation. Bu

ble 6-6 show
of ACC, OW
deleting co

C and OWN
igure 6-21

Transaction o

Transaction o

ove conf
.3.1 we ad
nfiguration
erformance
n of device
e the same
ut our result

ws profile f
WN and CN

onstant num
N value wit
and Figure

of devices to co

of devices to co

figuratio
dded 1000
. In this sec
of deletion

es 1-100,10
so we were
ts proved ou

for deletion
NT for dele

mber of conf
th CNT bei
6-22. The r

onfiguration (d

onfiguration (d

n
configurat

ction we w
n operation
01-200,…90
e expecting
ur initial ass

n of configu
etion of 1-1
figurations i
ing constan
reason is th

dataset-2) – ma

dataset-2) - max

tions, and
will perform

of configur
00-1000. A
g that we w
sumption to

uration. Row
00 configu
in each step

nt as shown
hat when the

ax ACC with 1

x OWN with 1

analysed th
m deletion o

ration. In th
As the numb
will have a
o be wrong.

w-1 of Tabl
rations from

p and observ
from fittin

e first 100 d

00 configurati

100 configurati

he perform
of the confi
his section w
ber of devi
constant tim

le 6-6 indic
m Mnesia d
ve a linear d
ng curves in
delete confi

75

ions

ions

mance of
guration
we have
ices that
me with

cates the
database.
decrease
n Figure
guration

76

request is performed the Mnesia database has to traverse all the keys of the 1000
configurations; later-on the time will decrease as the size of database decreases.

For maximum time of ACC and CNT, we will perform addition

Total ACCmax = 27460 ms

Total OWNmax = 11072 ms

Total time for calculation = Total ACCmax - Total OWNmax

 = 27460 – 11072

 = 16388 ms

Number of calculations = 1000

Responsiveness of single operation = Total time for calculation / number of calculations

 = 16388 / 1000

 = 16.388 ms

This value is higher than that from creation and transaction of devices for the
configuration, i.e. the calculations in sections 6.3.3.1 and 6.3.3.2 (respectively). The sole
reason for this increased time for a single deletion of configuration is that we are traversing
all the devices to delete the references to the deleted configuration. The responsiveness
(16.388 ms) is still less than 100 ms, so the implemented solution (with dataset-2 as input)
falls below the threshold of perceptibility as found by Shneiderman in [44]. Hence we
consider the system sufficiently responsive with regard to deletion of configurations with 100
(or more) devices.

T
able 6-6:

prof profiler for delete configurations

77

78

Fig

Fig

gure 6-20: D

gure 6-21: D

Delete configu

Delete configu

uration - max C

uration - max A

CNT

ACC

6.3.3.
The

and 6.3

The
validati
the Mne
the rem
RAM) s
the Mn
perform
average
have to

 As
the dis
maximu
rotation
average
0.6674m
queries
systems
percept

.4 Summ
e maximum
.3.3) is not

e transaction
ion checks (
esia databa

maining tran
so obviousl

nesia databa
m common
e time of ea

consider th

discussed e
k) take m
um, minimu
nal speed of
e time for a
ms respecti

on the da
s is domin
ibility as fo

Figu

mary of
time to per

more than 1

ns perform
(See section
se in Peppe

nsactions ar
ly the major
ase query o

queries (ad
ach query.
he semantics

earlier, in e
more time t

um and ave
f the disk. T

add, read, up
vely. We v

atabase. Ba
ated by op

ound by Shn

ure 6-22: D

perform
rform a tran
16.388 ms.

read and w
n 5.2.2.3 an
esBodega-R
e being don
r portion of
perations. W
dd, update,
In order to
s of a transa

each transac
than other
erage time f
The calcula
pdate and d
verified this
sed upon o
perations of
neiderman in

Delete configur

ance me
nsaction in

write opera
nd section 6

RMS is usin
ne in the E

f the transac
We will the

delete, an
o understand
action in the

ction querie
operations

for queries
ation of this
delete querie
s estimate b
our analysi
f database,
n [44] henc

ration - max O

easureme
all above c

ations on th
6.3.2.1). As

ng Dets tabl
Erlang runtim

tion’s time
erefore perf
d read) to
d the time
e Mnesia da

es to the dat
in transac

(add, read,
s time was
es is 0.9694
by writing
s we concl
 and as it
e no bottlen

OWN

ents
cases (sectio

he Mnesia d
s mentioned
es (that is d
me system
in PeppesB

form a simp
Mnesia da
taken for e

atabase.

tabase (requ
ction. Figu
, update an
also perfor

4ms, 1.0862
a simple p
lude that th

lies within
necks occur

ons 6.3.3.1,

database an
d in section
disk storage
(that reside

Bodega-TF i
mple test wh
atabase to c
each transac

uiring an up
ure 6-23 sh
nd delete) fo
rmed by fpr
2ms, 1.6344

program to
he perform
n the thres
r.

79

6.3.3.2,

nd some
4.2.6.4,

e), while
es in the
is due to
hich will
calculate
ction we

pdate of
how the
or given
rof. The
4ms and
perform

mance of
shold of

80

Figure 6-23:
Q

ueries to M
nesia database

81

6.3.4 Test Coverage
In section 6.3.2 and 6.3.3 we have performed several tests to confirm the validity and

performance of the implemented solution. Yet another aspect of testing is to check the test
coverage, i.e. to check how much of the SUT is tested with the test cases. TheInternational
Software Testing Qualifications Board (ISTQB) has defined three basic levels of test
coverage criteria

1. Statement coverage To measure the percentage of statements being
executed while performing tests

2. Decision coverage To measure the percentage of decision outcomes (for
example containing one or more conditions having
entry and exit at-least once).

3. Condition coverage To measure the percentage of each condition being
evaluated to both true and false

It is recommended to use combination of above mentioned basic levels of test coverage
criterion to perform rigorous test coverage. Two combinations of the basic levels of test
coverage that are being extensively used are:

4. Decision-condition
coverage

Both the decision and condition coverage should be
satisfied

5. Modified
Condition/Decision
coverage (MC/DC)

MC/DC is achieved with Decision-condition coverage
but with following three condition also fulfilled:

a) At least one test; if the atomic condition is
TRUE will change the decision outcome

b) At least one test; if the atomic condition is
FALSE will change the decision outcome

c) All the atomic condition have a) and b)
requirements

The author of this Master’s thesis has completed the ISTQB foundation level course[47].
Additionally, he has prepared for the technical test analyst and test manager
certifications[48]. This Master’s thesis provided the basic domain knowledge needed for
understanding of this section, however the interested reader is encouraged to see
references[47-48].

The level of coverage differs for different software systems. We will provide an example
to illustrate that test coverage for different software levels are defined separately. Airborne
environments use the ED-12B[49] standard for its software test coverage. According to this
standard the following five failure conditions are mapped to five software levels:

82

Acc
coverag
must un

The
Stateme
require

We
have fo
coverag
the opti
‘gramm
respecti

Analyzi
with 10
has the
add mu
conditio
never u
bracket
now bee

* Cov
† Sm

Figure

cording to t
ge, level-B m
ndergo state

e above ex
ent coverag
different le

have resea
ound that Er
ge. Another
ions availab

mar_eqc’ ar
ively.

ing the resu
00% stateme

possibility
uch to analy
ons. Additio
used. The r
s (in smoth
en removed

ver, http://ww

mother, http://r

6-24: Failu

the ED-12B
must underg
ement cover

xample show
ge to 5-MC/
evel of cove

arched the a
rlang has bu
r open sourc
ble to us fo
re presented

ults from Fi
ent coverag
to perform
ysis in term
onally, Cov
ed lines wi

her, see Figu
d from the m

ww.erlang.org/

ramsay-t.githu

ure conditions

B standard t
go decision
rage and so-

ws that the
/DC covera
rage.

available op
uilt-in tool c
ce tool smo
or test cove
d in Figur

igure 6-25 a
ge and 100%
MC/DC co

ms of test c
ver and Smo
ith 0 count
ure 6-26) ar

module.

/doc/man/cove

ub.io/Smother/

s and software

the softwar
n coverage;
-on for the r

e significan
age. Also di

ptions for th
cover* that
other† is ava
erage. The
re 6-25 an

and Figure
% condition
overage, but
coverage as
other indica
 (in cover,

are indicatio

er.html, Last a

r/, Last accesse

levels of ED-1

re level-A m
MC/DC tes
rest of the le

nce of test
ifferent sub

he test cove
provides sta
ailable for M
test covera
d Figure 6

6-26, we se
n coverage.
t the results

the modul
ated some u

see Figure
ons of unuse

accessed : 201

ed : 2013-12-2

2B, Adopted fr

must underg
st coverage
evels.

t coverage
b-systems of

rage for Erl
atement, fun
MC/DC cov
ge results f

6-26 for C

ee that the t
As mention
acquired fr
e itself did

unused code
e 6-25) and
ed code. Th

13-12-29

29

from[49]

go the MC/
is optional,

increases
f the softw

rlang progra
unction, and
verage. The
for the test

Cover and S

tests are pe
ned earlier S
rom Smothe

d not have c
e, i.e. code t
d red/orange
he unused c

/DC test
, level-C

from 1-
are may

ams. We
d module
ese were

module
Smother

erformed
Smother

er do not
complex
that was
e square
code has

FFigure 6-25: 'cover' Stattement coveragge

83

84

FFigure 6-26: 'smother' MMC/DC coveragge

85

6.3.5 Testing of Web-UI
In section 6.3.2 and section 6.3.3 the core application logic was tested both from

reliability and performance perspective. Also stated in section 5.2.2.1 tests initially used the
CLI, rather than the Web-UI; the reason was that we want to separate the crashes of the core
logic from the beard template solution (if any). As section 6.3.2 and section 6.3.3 provided
satisfactory test results for the core logic, we will test the Web-UI.

The Web-UI was tested with the Selenium WebDriver [50] and WebClient in a Java
application. Selenium is used to automatically navigate for transactions (See section 5.2.2.2)
made on configurations and WebClient[51] is used to validate that the URL exists. We have
performed several tests to test the interfaces (create a configuration and modify a
configuration) described in section 5.2.2.2. The rest of the WEB-UI required some manual
actions from the CLI so these part of the user interface are not part of this test, but we
manually tested these interfaces and we experienced no problems whatsoever. The source
code for testing of WEB-UI can be found in Appendix-D.

We will not perform load testing because we feel satisfied with the performance* of yaws.

*performance, http://www.sics.se/~joe/apachevsyaws.html , Last accessed : 2013-12-15

86

7 Conclusions and Future work
In this chapter, the core of work done in this thesis is concluded in section 7.1. General

development experience during this thesis is also discussed in the same section. Section 7.2
highlights areas for future work. Finally, section 7.3 provides some reflections relevant to
domain of this Master’s thesis project.

7.1 Conclusions
This Master’s thesis was carried out at Ericsson AB. A topological RMS system is the

major contribution of this Master’s thesis project. The use of an RMS has a clear advantage
in terms of supporting the efficient utilization of resources and offers insights into the used
and unused resources of the LAB. However, the RMS also provides input to the test
environments. A topological RMS plays an important role by providing information about the
utilization of resources and increases the visibility of the interconnections between these
resources across the organization. In this way an alignment of TECs across different testing
levels can be done, therefore interpretation of different TECs in different testing levels is not
required, hence reducing the time it takes for a tester to be productive when switching
between different testing levels. This can also potentially decrease the time required to setup
a test environment by facilitating the reuse of a given test environment for testing on different
levels by different testers.

The goal of implementing a topological RMS system that delivers as an output the TEC
for a test environment has been successfully completed. The major challenges that we
encountered were the selection of a path towards the implementation. Initially we
encountered a major problem when we selected the wrong data structure for the topology
information (see Section 5.2.2.3). Erlang was previously used as the development language
for PeppesBodega-RMS and the implementation done as part of this thesis project, i.e.
PeppesBodega-TF, was also done in this language. Erlang was new to the author of this
Master’s thesis and detailed features of this language were unknown. The implementation
was modified from time to time as my knowledge of Erlang developed over time. The author
of this Master’s thesis was also new to web application development. Once again I would like
to thank my supervisor, Magnus Kronqvist, for helping me develop my technical skills.

During the implementation of this Master’s thesis, the front-controller of PeppesBodega-
RMS was identified as a hindrance to the completion of the web UI for the management of
PeppesBodega-TF. Although the author of this Master’s thesis worked on modifications to
the front-controller for quite some time, a decision was made in conjunction with my
supervisor not to continue this development because it was taking too much time. This
resulted in only partially fulfilling the goal of a providing web UI for management of
PeppesBodega-TF. In retrospect the time spent on the development of front-controller could
have better been used for development of a tool for visualization of the topology. As a result
these two parts are left as future work for the further development of PeppesBodega-TF.

This Master’s thesis contributes to the general development of a topological resource
management system. The author identified several choices that should not be adopted in the
development of a topological resource management system, such as the usage of a tree data
structure for encoding configuration data of the topology and the maintainability problem of
conventional methods (XML and Erlang-config) to define the grammar of the configuration
data of topologies. Furthermore, in this thesis, two classes of devices (self-forming and lazy:
see sections 2.3.1 and 2.3.2) specific to discovery of the network topologies were introduced.

87

Logical and physical topologies are two major geometric views of network topology. The
developers of a topological RMS should include support for both geometric views, even if
both views seem the same (as this need not be the case in the future).

As PeppesBodega-TF is extension to the PeppesBodega-RMS, the choices of tools were
derived from PeppesBodega-RMS. We did not have a discuss the advantages and
disadvantages of these choices because it would lead to a catch-22* situation.

7.2 Future work
This thesis was the first attempt towards integration of a topological RMS in

PeppesBodega-RMS. Obviously we cannot claim this first attempt is the optimal or ultimate
choice. Nor do we claim to have considered all the perspectives. Additionally, some of the
goals were only partially fulfilled due to the limited duration of this Master’s thesis project.
For all of these reasons there are areas to be explored where the existing design could be
modified and enhancements can be developed.

An essential future step is performing the delivery testing so that PeppesBodega-TF can
be released to the target groups. This testing requirement was described in Section 6.3.

The goal of providing a web UI for administration of configuration data of the topology
was not completed due to lack of functionality in front-controller in conjunction with the
beard library. The front-controller needs to be able to handle requests in more efficient way.
Currently the data for the web UI is transferred in a URL and in a topological RMS a large
data request is sent making this approach infeasible. As described in Section 5.2.2.2 the
implementation of the front-controller should be changed to efficiently send the data between
webpages. There are quite a number of different methods that could be used to do this,
including sending data in form-post/get methods, saving and retrieving session data, using
cookies, etc. We will not discuss in detail which method should be adopted and the reasons
for such a choice, because this requires a detailed investigation which was not possible within
the scope of this Master’s thesis project.

Visualization in general and particularly in the scope of a topological RMS serves an
important role for debugging purposes by expert users and reducing the learning curve of
novice users. PeppesBodega-TF lacks a visualization scheme, so it would be of great benefit
to implement such a visualization scheme. Although a visualization scheme was included in
the goals of this Master’s thesis project, there was not sufficient time to implement any
visualization scheme. However, we found several Erlang libraries for graphical visualization,
including gtknode† , wxErlang‡, and Erlang-graphviz§ , that could be candidates for this
visualization scheme. As we encode the configuration data of a topology as undirected
graphs, the best suited library would seem to be Erlang-graphviz.

* Catch-22, http://en.wikipedia.org/wiki/Catch-22_(logic) , Last accessed : 2013-12-15
† gtknode, https://code.google.com/p/gtknode/, Last accessed : 2013-12-15
‡ wxErlang , http://www.erlang.org/doc/man/wx.html , Last accessed : 2013-12-15
§ Erlang-graphviz, https://github.com/glejeune/erlang-graphviz, Last accessed : 2013-12-15

88

An interesting set of issues that should be addressed in future work is the migration of the
devices to IPv6 and the use of names to access devices, rather than fixed addresses. This
would address one of the limitations described in Section 4.2.5.4.

Another future extension of the system would entail the assignment of unique DIDs to all
devices that are maintained by the LAB. This would require the addition of these devices to
the relevant STPs in the RMS. For further discussion of devices without unique DIDs see
Section 6.1.2.

A security aspect should also be considered when the users can create the configurations
of other signum other than their own. One way of tracking what is being created of one’s
signum is to initiate an email to corresponding user. Also secure login mechanism should be
integrated via Ericsson corporate ID authentication and then one can only create
configuration for its own signum.

The choices of these programming paradigms were inherited from the design and
implementation of the existing PeppesBodega-RMS. While these choices were straight
forward, it was also important to understand the reasons why these programming paradigms
had been chosen. The selection of Erlang was due to the fact that its performance is far
superior to Java* (one of the most widely used programming language today) [52]. The
selection of Yaws is also attributed to its better performance† as compared to Apache[46].

An important lesson learned is that knowledge of the development tools is important
when devising a solution for a problem. During the implementation, the author frequently
implemented certain functions which could have been done in an easier way if more time had
been spent to acquire deeper knowledge of development tools. This was especially true for
Erlang, Yaws, and computer grammars. For example, we implemented the grammar using
our own format, but later we found out that the grammar could have been defined in yecc‡
with much less effort. However, the learning curve of yecc is relatively high, so the
programmer has to make a conscious decision to learn how to use the proper tool rather than
using the ad hoc approach used in this Master’s thesis.

7.3 Reflections
This Master’s thesis was encouraged and motivated by MSV department at Ericsson AB.

During the course of this Master’s thesis project the author worked closely with the
verification engineers and software developers from different departments to gather the needs
for the topological resource management system that offers a scalable solution for all the
departments involved.

The social contribution of this Master’s thesis is the topological resource management
system which will be used within Ericsson AB after its successful deployment at MSV
department. Another social aspect of this Master’s thesis is that the grammar translation will

* Java, http://www.java.com/en/ , Last accessed : 2013-12-15
† performance, http://www.sics.se/~joe/apachevsyaws.html , Last accessed : 2013-12-15
‡ yecc, http://www.erlang.org/doc/man/yecc.html , Last accessed : 2013-12-15

89

be made publically available in GitHub* for projects with limited time, as yecc has a greater
learning curve. The implemented solution (and proposed future work) in its complete form
will make an economic contribution as the execution time required for testing will be reduced
and also the learning curve reduction for fresh engineer - both of which will have an
economic benefit to Ericsson AB. The social and economic contributions stated above will
be benefitting Ericsson AB by this Master's thesis and will contribute to increasing
competitiveness in Swedish industry.

The ethical aspects were also considered pertaining to not a) disclose any kind of
confidential information of the Ericsson’s LAB equipment b) manage any data of a personal
nature whatsoever, and a generic model of topological resource management system is now
available to the research community via this thesis report. The information collected by
implemented topological resource management system contains only physical topologies
which may, when in place and executing in the final live environment, contain confidential
data (that will be managed by Ericsson’s confidential policy); but will not manage any data of
a personal nature.

* GitHub, “Powerful collaboration, code review, and code management for open source and private

projects”, https://www.github.com/, Last accessed : 2013-12-29

91

References
[1] B. B. Agarwal, M. Gupta, and S. P. Tayal, Software engineering & testing: an

introduction. Sudbury, Mass.: Jones and Bartlett Publishers, 2010, ISBN: 978-
0763782993.

[2] G. M. Parker, Cross-functional teams working with allies, enemies, and other
strangers. San Francisco, Calif.: Jossey-Bass, 2003, ISBN: 978-0787965600.

[3] B. Beizer, Software system testing and quality assurance. New York, NY, USA: Van
Nostrand Reinhold Co., 1984, ISBN: 0-442-21306-9.

[4] S. Naik, Software Testing and Quality Assurance. John Wiley & Sons, 2007, ISBN:
0471789119.

[5] R. D. Craig and S. P. Jaskiel, Systematic Software Testing. Artech House, 2002, ISBN:
9781580537926.

[6] M. Mazurkiewicz, ‘Gui test automation with swtbot’, Vaasan Ammattikorkeakoulu
University of Applied Sciences, 2010.

[7] A. Gutierrez Lopez, M. Viela, and I. Manuel, Automated Telecommunication Software
Testing : An automated model generator for Model-Based Testing. Masters’s thesis,
KTH Royal Institute of Technology, School of Information and Communications
Systems,Communication Systems, Stockholm, Sweden: , 2012, Available at
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-93852.

[8] ‘Examples of Test Oracles’. [Online]. Available:
http://www.testingeducation.org/k04/OracleExamples.htm. [Accessed: 14-August-
2013].

[9] ‘Comparison of project management software’, Wikipedia, the free encyclopedia, 15-
August-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Comparison_of_project_management_softwa
re&oldid=568593005. [Accessed: 15-August-2013].

[10] K. Horikiri and S. Kawabe, ‘Resource management system’, U.S. Patent 576515409-
June-1998Available at http://www.google.com/patents?id=DSEhAAAAEBAJ.

[11] J. C. Wu, ‘Automatic discovery of network elements’, U.S. Patent 518586009-
February-1993Available at http://www.google.com/patents?id=4ZcXAAAAEBAJ.

[12] A. Sharon, R. Levy, Y. Cohen, A. Haiut, A. Stroh, and D. Raz, ‘Automatic network
topology analysis’, U.S. Patent 620512220-March-2001Available at
http://www.google.com/patents?id=YisGAAAAEBAJ.

[13] D. Chatwani, R. Subramanian, W. Chiang, J. Davar, A. Opher, and S. Sawant, ‘Method
for providing for automatic topology discovery in an ATM network or ...’, U.S. Patent
566410702-September-1997Available at
http://www.google.com/patents?id=EEsiAAAAEBAJ.

[14] N. Migas, W. J. Buchanan, and K. A. McArtney, ‘Mobile agents for routing, topology
discovery, and automatic network reconfiguration in ad-hoc networks’, in Engineering
of Computer-Based Systems, 2003. Proceedings. 10th IEEE International Conference
and Workshop on the, 2003, pp. 200–206, DOI:10.1109/ECBS.2003.1194800.

92

[15] D. Knertser and V. Tsarinenko, Network Device Discovery, Master’s thesis. KTH
Royal Institute of Technology, School of Information and Communication Technology:
TRITA-ICT-EX-2013:90, June 2013, Available at
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-123509.

[16] ‘Comparison of network diagram software’, Wikipedia, the free encyclopedia, 14-
August-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Comparison_of_network_diagram_software&
oldid=568516332. [Accessed: 03-September-2013].

[17] ‘Computer Networks Demystified | Network Topology’. [Online]. Available:
http://networking.layer-x.com/p020000-1.html. [Accessed: 05-September-2013].

[18] ‘Logical vs. physical topology’. [Online]. Available:
http://thought1.org/nt100/module3/logical_vs.html. [Accessed: 05-September-2013].

[19] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and M. Srivastava, ‘Topology management for
sensor networks: exploiting latency and density’, in Proceedings of the 3rd ACM
international symposium on Mobile ad hoc networking & computing, New York,
NY, USA, 2002, pp. 135–145, DOI:10.1145/513800.513817, Available at
http://doi.acm.org/10.1145/513800.513817.

[20] J. Pan, L. Cai, Y. T. Hou, Y. Shi, and S. X. Shen, ‘Optimal base-station locations in
two-tiered wireless sensor networks’, IEEE Transactions on Mobile Computing, vol. 4,
no. 5, pp. 458–473, 2005, DOI:10.1109/TMC.2005.68.

[21] W. Hsu and A. S. Kulkarni, ‘Network topology management system through a database
of managed network resources including logical topolgies’, U.S. Patent US5848243
A08-December-1998.

[22] N. Chomsky, ‘Three models for the description of language’, IRE Transactions on
Information Theory, vol. 2, no. 3, pp. 113–124, 1956, DOI:10.1109/TIT.1956.1056813.

[23] A. M. Natarajan, Theory of Automata & Formal Languages: As Per UPTU Syllabus.
New Age International, 2005, ISBN: 9788122417296.

[24] ‘LL parser’. [Online]. Available:
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/LL_parser.html. [Accessed:
04-October-2013].

[25] A. R. Hevner and S. Chatterjee, Design research in information systems theory and
practice. New York; London: Springer, 2010, ISBN: 1441956530 9781441956538,
Available at http://dx.doi.org/10.1007/978-1-4419-5653-8.

[26] ‘DESRIST: Design Science Research in Information Systems Overview’. [Online].
Available: http://www.desrist.org/desrist/. [Accessed: 31-October-2013].

[27] A. R. Hevner, S. T. March, J. Park, and S. Ram, ‘Design science in information systems
research’, MIS Q., vol. 28, no. 1, pp. 75–105, March 2004.

[28] ‘XML Technology - W3C’. [Online]. Available: http://www.w3.org/standards/xml/.
[Accessed: 12-August-2013].

[29] ‘Portable Network Graphics’. [Online]. Available: http://www.w3.org/Graphics/PNG/.
[Accessed: 12-August-2013].

[30] ‘Strangeloop - Acceptable website response times - Web Performance Optimization’.
[Online]. Available: http://www.strangeloopnetworks.com/resources/infographics/why-

93

luxury-websites-are-disappointing-chinese-consumers/acceptable-website-response-
times/. [Accessed: 27-August-2013].

[31] ‘Erlang Programming Language’. [Online]. Available: http://www.erlang.org/.
[Accessed: 10-October-2013].

[32] ‘beard’, GitHub. [Online]. Available: https://github.com/danabr/beard. [Accessed: 10-
October-2013].

[33] ‘mustache.erl’, GitHub. [Online]. Available: https://github.com/mojombo/mustache.erl.
[Accessed: 17-October-2013].

[34] ‘HTML Tutorial’. [Online]. Available: http://www.w3schools.com/html/. [Accessed:
17-October-2013].

[35] ‘QuviQ homepage’. [Online]. Available: http://www.quviq.com/index.html. [Accessed:
18-October-2013].

[36] ‘Erlang -- mnesia’. [Online]. Available: http://www.erlang.org/doc/man/mnesia.html.
[Accessed: 21-October-2013].

[37] ‘About BNF notation’. [Online]. Available: http://cui.unige.ch/db-
research/Enseignement/analyseinfo/AboutBNF.html. [Accessed: 25-November-2013].

[38] ‘BNF Notation for syntax’. [Online]. Available: http://www.w3.org/Notation.html.
[Accessed: 25-November-2013].

[39] ‘Notations for context-free grammars: BNF, Syntax Diagrams, EBNF’. [Online].
Available: http://www.cs.man.ac.uk/~pjj/bnf/bnf.html. [Accessed: 25-November-2013].

[40] A. V. Aho, J. E. Hopcroft, and Ullman, Data structures and algorithms. Reading,
Mass.: Addison-Wesley, 1983, ISBN: 0201000237 9780201000238.

[41] D. A. Turner, Research topics in functional programming. Addison-Wesley Pub. Co.,
1990, ISBN: 9780201172362.

[42] M. Jovic and M. Hauswirth, ‘Measuring the performance of interactive applications
with listener latency profiling’, 2008, p. 137, DOI:10.1145/1411732.1411751, Available
at http://sape.inf.usi.ch/publications/pppj08.

[43] B. Shneiderman and C. Plaisant, Designing the user interface: strategies for effective
human-computer interaction. Boston: Addison-Wesley, 2010, ISBN: 9780321537355
0321537351 9780321601483 0321601483.

[44] B. Shneiderman, ‘Response Time and Display Rate in Human Performance with
Computers’, ACM Comput. Surv., vol. 16, no. 3, pp. 265–285, September 1984,
DOI:10.1145/2514.2517.

[45] M. Jovic and M. Hauswirth, ‘Performance Testing of GUI Applications’, 2010, pp.
247–251, DOI:10.1109/ICSTW.2010.27, Available at
http://sape.inf.usi.ch/publications/testbeds10.

[46] ‘Apache vs. Yaws’. [Online]. Available: http://www.sics.se/~joe/apachevsyaws.html.
[Accessed: 15-December-2013].

[47] ‘Foundation Level Syllabus - ISTQB® International Software Testing Qualifications
Board’. [Online]. Available: http://www.istqb.org/downloads/syllabi/foundation-level-
syllabus.html. [Accessed: 29-December-2013].

94

[48] ‘Advanced Level Syllabus - ISTQB® International Software Testing Qualifications
Board’. [Online]. Available: http://www.istqb.org/downloads/syllabi/advanced-level-
syllabus.html. [Accessed: 29-December-2013].

[49] T. K.Ferrell and U. D.Ferrel, ‘RTCA DO-178B/EUROCAE ED-12B’. [Online].
Available: http://www.davi.ws/avionics/TheAvionicsHandbook_Cap_27.pdf.
[Accessed: 29-December-2013].

[50] ‘Selenium WebDriver’. [Online]. Available:
http://docs.seleniumhq.org/projects/webdriver/. [Accessed: 30-December-2013].

[51] ‘WebClient (HtmlUnit 2.13 API)’. [Online]. Available:
http://htmlunit.sourceforge.net/apidocs/com/gargoylesoftware/htmlunit/WebClient.html.
[Accessed: 30-December-2013].

[52] ‘Performance Measurements of Threads in Java and Processes in Erlang’. [Online].
Available: http://www.sics.se/~joe/ericsson/du98024.html. [Accessed: 15-December-
2013].

App

A.
%% D

%% R

%% K

%% K

%% K

%% C

%% I

%% G

%% P

%% I

%% C

%% C

%% C

%% C

pendic

 BNF.
DU

Radio

KDU 127 161/

KDU 137 930/

KRC 118 75/1

CpriPort

IDLPort

GPSOption

PowerPort

IP

CPRIC

CPRI-2.5

CPRI-5

CPRI-10

ces

F-Stan

/1 R1A/4

/1 P1B

1

ndard
::= KDU 127

::= KRC 118

::= CpriPor

::= CpriPor

::= CpriPor

::= undefin

::= undefin

::= undefin

::= undefin

::= Integer

::= cpri-2.5

::= CpriPort

::= CpriPort

::= CpriPort

95

gram
161/1 R1A/

75/1

rt CpriPort

rt CpriPort

rt CpriPort

ned | DU |

ned | DU

ned | on

ned | IP

5 | cpri-5

t CpriPort

t CpriPort

t CpriPort

mar
4 | KDU 137

 CpriPort C

 CpriPort C

CPRIC | Rad

| cpri-10

 930/1 P1B

priPort IDL

priPort IDL

io

LPort GPSOpt

LPort GPSOpt

tion

tion

B.
 [{d

 {du

 {ra

 {'K

 {'K

 {'K

 {cp

 {cp

 {cp

 {cp

 {id

 {id

 {gp

 {gp

 {po

 {po

 {ip

 {cp

 {cp

 {cp

 {'c

 {'c

 {'c

C.
-mod

-inc

-com

logi

 on

inte

 on

prod

 ?L

 BNF.
du,['KDU 127

u,['KDU 137

adio,['KRC 1

KDU 127 161/

KDU 137 930/

KRC 118 75/1

priport,[und

priport,[du]

priport,[cpr

priport,[rad

dlport,[unde

dlport,[du]}

psoption,[un

psoption,[on

owerport,[un

owerport,[ip

p,[integer]}

pric,['cpri-

pric,['cpri-

pric,['cpri-

cpri-2.5',[c

cpri-5',[cpr

cpri-10',[cp

 Qui.
dule(grammar

clude_lib("e

mpile(export

ical_binding

neof([list_

erconnection

neof([list_

duct_identif

LET({Prefix,

{oneof(["KD

 oneof([li

F-Erla
7 161/1 R1A/

930/1 P1B']

118 75/1']},

/1 R1A/4',[c

/1 P1B',[cpr

1',[cpriport

defined]},

]},

ric]},

dio]},

efined]},

},

ndefined]},

n]},

ndefined]},

p]},

},

-2.5']},

-5']},

-10']},

cpriport,cpr

riport,cprip

priport,cpri

ickChe
r_eqc).

eqc/include/

t_all).

g() ->

_to_atom("LB

n_level() ->

_to_atom("IC

fier() ->

,Atom},

DU ", "KRC "

ist_to_atom(

ang g
/4']},

]},

,

cpriport,cpr

riport,cprip

t,cpriport]

riport]},

port]},

iport]}].

eck Te

/eqc.hrl").

B_ " ++ inte

>

CL_ "++integ

"]),

("PID_ " ++

97

ramma

riport,cpri

port,cpripo

},

estin

eger_to_lis

ger_to_list

integer_to

r

port,cpripo

rt,cpriport

g

t(X)) || X

(X)) || X <

_list(X)) |

rt,idlport,

,idlport,gp

<- lists:se

- lists:seq

| X <- list

gpsoption]}

psoption]},

eq(1,10)]).

q(1,10)]).

ts:seq(1,10)

},

)])},

98

 list_to_atom(lists:concat([Prefix, Atom]))).

atom() ->

 frequency(

 [{0,?LET(Str, non_empty(list(char())), list_to_atom(Str))},

 {9,?LET({Lc,Str},

 {lowercase(), list(alphanumeric())},

 list_to_atom([Lc|Str]))}]).

alphanumeric() -> oneof([digit(),uppercase(),lowercase()]).

digit() -> oneof(lists:seq($0,$9)).

uppercase() -> oneof(lists:seq($A,$Z)).

lowercase() -> oneof(lists:seq($a,$z)).

empty(L) ->

 L == [].

rules(LBs) ->

 ?LET(

 {LB, PIDs, ILs},

 {logical_binding(),

 non_empty(list(product_identifier())),

 non_empty(list(interconnection_level()))},

 begin

 [{LB,PIDs}]++

 [pid(Pid,ILs) || Pid <- PIDs]++

 [il(IL,LBs++[LB]) || IL <- ILs]

 end).

pid(Pid,ILs) ->

 [{Pid,nonempty_subset(ILs)}].

il(IL,LBs) ->

 [{IL, nonempty_subset(LBs)}].

nonempty_subset(L) ->

 ?SUCHTHAT(Subset,

 ?LET(Bs, [oneof([true,false]) || _ <- lists:seq(1,length(L))],

 [X || {X,B} <- lists:zip(L,Bs), B]),

 Subset /= []).

99

grammar() ->

 ?LET(G, ?SIZED(Size, grammar(Size)),

 lists:flatten(G)).

grammar(N) when N =< 0 ->

 [];

grammar(N) ->

 ?LET(

 Grammar, grammar(N - 2),

 begin

 LBs = logical_bindings(Grammar),

 Grammar ++ rules(LBs)

 end).

logical_bindings(Grammar) ->

 [L || {L,_} <- Grammar, is_lb(L)].

is_lb(X) ->

 case atom_to_list(X) of

 "lb"++_ -> true;

 _ -> false

 end.

non_equal_atoms() ->

 ?SUCHTHAT({A1,A2}, {atom(), atom()}, A1 /= A2).

prop_invalid() ->

 ?LET({{A1,A2},G}, {non_equal_atoms(),grammar()},

 ?FORALL(

 G1, shuffle(G++[{A1,[A2]}]),

 complete(G1) /= true)).

prop_valid() ->

 ?FORALL(

 G, grammar(),

 complete(G) == true).

100

D.

 Tes. sting

Figure 7-1

of We

1: Web-U

eb-UI

UI testing with Selenium and WebClient

www.kth.se

TRITA-ICT-EX-2014:1

