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Abstract

The IP Multimedia Subsystem (IMS) framework is a Next Generation
Network (NGN) technology which enables telecommunication operators to
provide multimedia services over fixed and mobile networks. All of the IMS
infrastructure protocols work over IP which makes IMS easy to deploy on a
cloud platform. The purpose of this thesis is to analysis a novel technique of
“cloudifying” the OpenIMS core infrastructure. The primary goal of running
OpenIMS in the cloud is to enable a highly available and horizontally scalable
Home Subscriber Server (HSS). The resulting database should offer high
availability, and high scalability.

The prototype developed in this thesis project demonstrates a virtualized
OpenIMS core with an integrated horizontal scalable HSS. Functional and
performance measurements of the system under test (i.e. the virtualized
OpenIMS core with horizontally scalable HSS) were conducted. The results of
this testing include an analysis of benchmarking scenarios, the CPU utilization,
and the available memory of the virtual machines. Based on these results we
conclude that it is both feasible and desirable to deploy the OpenIMS core in
a cloud.
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Sammanfattning

IP Multimedia Subsystem (IMS) ramverk är ett Next Generation Network
(NGN) teknik som möjliggör teleoperatörer att erbjuda multimediatjänster via
fasta och mobila nät. Alla IMS infrastruktur protokollen fungera över IP som
gör IMS lätt att distribuera på ett moln plattform. Syftet med denna uppsats är
att analysera en ny teknik för “cloudifying” den OpenIMS kärninfrastrukturen.
Det primära målet med att köra OpenIMS i molnet är att möjliggöra en hög
tillgänglighet och horisontellt skalbara Server Home Subscriber (HSS). Den
resulterande databasen bör erbjuda hög tillgänglighet och hög skalbarhet.

Prototypen utvecklas i detta examensarbete visar en virtualiserad
OpenIMS kärna med en integrerad horisontell skalbar HSS. Funktionella och
prestanda mätningar av systemet under test (dvs. virtualiserade OpenIMS
kärnan med horisontellt skalbara HSS) genomfördes. Resultaten av detta
test inkluderar en analys av benchmarking scenarier, CPU-användning, och
tillgängligt minne för de virtuella maskinerna. Baserat på dessa resultat drar
vi slutsatsen att det är både möjligt och önskvärt att distribuera OpenIMS
kärnan i ett moln.
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Chapter 1

Introduction

This chapter presents the motivation, the problem description, and the goals of this
thesis project. This master’s thesis project took place at the Fraunhofer FOKUS
Competence Center NGNI, Berlin, Germany. We will refer to this center in the
remainder of the thesis simply as FOKUS. The overall structure of this thesis is
presented in Section 1.2.

1.1 Motivation

Mobile access to services such as telephony, Internet access, and short message
service (SMS) is increasing day by day, and today each mobile user expects the
same quality of experience as the end user experience when a using wired network
device. The large scale deployment of service resources involves a huge capital
expenditure in order to fulfill the service user’s demands, and telecommunication
(telecom) operators have major concerns about sustaining a large scale service
deployment. Therefore, researchers have proposed a novel solution, which not only
reduces the initial cost of deployment but also provides an easy way to scale the
service without any expensive modification to the infrastructure. Such a creative
solution has been shown using cloud computing in a recent master’s thesis by Isaac
Albarrán and Manuel Parras [1].

Cloud computing is a emerging Internet driven trend. Cloud computing is
based on virtualization technology and together with high bandwidth networks
provides a pool of computing resources and potentially a very large storage capacity.
Cloud computing achieves resource sharing for various types of services, such as
Infrastructure as a service (IaaS), Platform as a service (PaaS), Software as a service
(SaaS), etc. [2]

Creating the traditional telecom infrastructure involved a huge investment of
money, but today operators are facing a gradual decline in profits for strictly telecom
businesses. For this reason telecom operators want to offer a variety of broadband-
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based value-added services which could be profitable together with a change in the
traditional telecom operator model. Xu Lei, et al. [2], suggested that telecom
operators integrate cloud computing services with their existing telecom services to
create a new business. A. Roozbeh [3] have proposed that the increasing interest
in carrier clouds, also called embedded clouds, which integrate the computing
and storage resources in a distributed fashion with the network. G. Caryer, et
al. [4], proposed a solution based upon combining grid/cloud technology services
to deploy Next Generation Network (NGN) functionality. Jiann-Liang Chen, et
al. [5], presented a solution for offering high quality multimedia applications by
combing the IP Multimedia Subsystem (IMS) architecture with a cloud computing
infrastructure. Many researchers think that an IMS infrastructure can be deployed
on a large scale together with next-generation networks to fulfill the increasing
demands for Internet based services. Unfortunately, according to Makaya, et
al. the IMS core network components do not scale easily due to its complex
nature [6]. This thesis investigates a solution of how to combine the IMS core
architecture with a cloud computing infrastructure. P. Bellavista, et al. [7], have
proposed a novel cloud brokering system for IMS based services. They implemented
a solution that guarantees QoS for cloud based IMS service by dynamically
scaling-up/scaling-down server computing resources, and enabling services to
migrate across multiple cloud platforms.

A key part of this thesis project is to analyze a solution for the deployment of
an IMS core network infrastructure in a cloud computing architecture. X. Zhiqun,
et al. [8], have proposed the virtualization of the IMS core network and radio access
network (RAN) as an application of telco cloud. Tinniam V. Ganesh [9] proposed a
cloud architecture for an IMS infrastructure. In this proposal the IMS core network
components would be deployed on distributed cloud platforms either in public or
private clouds. The high level cloud-based architecture for such a IMS core network
framework is shown in Figure 1.1.

In an IMS network, the Home Subscriber Server (HSS) is a critical component
as it supports both user mobility and call control. Since the growth in the number
of subscribers and the data associated with these subscribers is increasing rapidly,
sufficient HSS data storage capacity is critical to an IMS system [10]. The HSS
data storage is not only critical in terms of having sufficient capacity, but also in
terms of having high availability. If a single HSS database instance can not handle
a sufficiently large number of simultaneously requests, then the delay in response
time would increase. As this delay due to the limited HSS database performance
may cause incoming requests to the HSS to be lost, this means that calls might
not be able to be set up or calls might be unable to be modified to support the
mobility of users and their terminals. In this thesis project, we investigate a solution
for horizontal scalability of the database underlying the HSS, in order to scale the
number of database instances. The goals of this scaling are to enhance both database
availability and performance. All of these goals are to be met while avoiding the need
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for large capital expenditures (CAPEX) or causing high operating costs (OPEX).
Cloud computing based telecom services will be significantly reduced the cost of
CAPEX and OPEX [8]. Cloud computing naturally fits these requirements since
the cloud operator pays the CAPEX and the telecom operator need only pay OPEX
proportional to their needs to support their customer’s current requirements.

Considerable efforts have been made to define an accurate load generator for
benchmarking the proposed solution. In the context of IMS benchmarking, where
millions of subscribers need to be supported scaling of the load generator itself
required. The benchmarking system needs to evaluate the system’s performance
when the number of active subscribers and the number of calls per second (CPS)
increases to very high values. George Din [12] presented a benchmark specification
implementation for a IMS system based on the Testing and Test Control Notation
Version 3 (TTCN-3) language from the ETSI. Niranjanan Kalaichejvan [13] in his
master thesis designed a S6a load application based on a distributed scheduling
architecture using Ericsson’s TITANSim [11] framework.1 S6a is a Diameter
interface between a Mobility Management Entity (MME) and the HSS in long term
evolution (LTE) networks. Kalaichejvan’s motivation was to design a highly scalable
load generator tool for testing a HSS as the system under test (SUT).

Dirk et al. [14], evaluated the performance of the core components of an
IMS network using an open source implementation of the IMS/NGN Performance
Benchmark Specification (i.e., IMS Bench SIPp [51]). In their evaluation of
the FOKUS OpenIMS core [42] performance, they configured all the IMS core
components on a single machine. In contrast in this thesis project, we will evaluate
the performance of a virtualized OpenIMS core with an integrated horizontally
scalable HSS database by using this same IMS Bench SIPp benchmarking tool.

Figure 1.1. High Level Cloud realization of an IMS Core Network Architecture

1TITANSim is a TTCN-3 tool
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1.2 Thesis outline
Chapter 1 described the motivation, problem description, and the goals of the thesis
project. Chapter 2 and Chapter 3 provides background information to ease the
reader’s understanding of the rest of this thesis. Chapter 2 gives an overview of
NGN and IMS. Chapter 3 summarizes the cloud computing paradigm. Chapter
4 describes the open source tools and technologies that were used for the test
environment. Chapter 5 specifies the core architecture of the system which was
designed as a solution to the thesis problem. Chapter 6 presents the evaluation
and performance testing of this proposed solution as the SUT. Finally, Chapter 7
concludes the thesis and suggests directions for future research.



Chapter 2

Overview of Next Generation Networks
and the IP Multimedia Subsystem

This chapter presents an overview of a next generation network’s infrastructure in
terms of both its architecture and the underlaying technologies.

2.1 Next Generation Network (NGN) Architecture
ITU-T has defined the term NGN as: “Next Generation Network is a
packet-based network able to provide telecommunication services and able to
make use of multiple broadband, QoS-enabled transport technologies and in which
service-related functions are independent from underlying transport-related
technologies”. Also according to the ITU-T, such a NGN provides unrestricted
access to networks and services based on user demand; and supports generalized
mobility, which permits reliable and ubiquitous delivery of services to users [17].

The ITU-T has identified the following fundamental characteristics of NGN [17]:

• Packet based transfer

• Partition of control functions among bearer capabilities, call/session, and
application/service

• Support for decoupling of service from transport and provisioning of open
interfaces

• Provides a variety of services, applications, and service-based mechanisms
including real time, streaming, and non-real time multimedia services

• Provides broadband capabilities with end-to-end QoS

• Interworking via open interfaces with legacy networks

• Generalized mobility
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• Unlimited access by users to different service providers

• Consolidates service characteristics for the same service as identified by the
user

• Convergence of services between fixed and mobile networks

• Transparency of service-related functions from underlying transport
technologies

• Provision of multiple last mile technologies

• Acquiescent with all regulatory requirements, for example regulations
concerning emergency communications, security, privacy, lawful interception,
etc.

The NGN architecture as described by Shuji Esaki, Akira Kurokawa, and
Kimihide Matsumoto in [18] is shown in Figure 2.1. The transport functions are
responsible for transferring multimedia streams over an IP network. The transport
control functions module assigns IP address and performs authentication. Service
control functions and application support functions & service support functions
enable support for functionality such as presence management. [18]

Figure 2.1. A vision of an NGN Architecture (Adapted from Figure 2 of [18])

The transport control functions accept a transport user profile, which includes
authentication and bandwidth (limitations) related information. The service control
function accepts a service user profile, which contains service related information
[18]. ITU-T Recommendation Y.2012 [19] defines three types of interfaces: the
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user-network interface (UNI), which is an interface to end-user functions; the
network-network interface (NNI), which is an interface to other networks; and the
application-network interface (ANI), which provides an interface to the third-party
application services.

2.2 IP based Fixed/Mobile Network Convergence

Convergence of fixed and mobile networks is an evolutionary trend in the
telecommunication industry. This convergence supports an intelligent IP-based
end-to-end network and enables end-user devices to seamlessly access services over
fixed or mobile networks. Figure 2.2 shows S. Dixit’s vision of NGN based upon all
IP-based fixed/mobile convergence.

Figure 2.2. A vision of an Fixed/Mobile network convergence (Adapted from Figure
3 of [21])

2.3 IP Multimedia Subsystem (IMS)

The IP Multimedia Subsystem began as an subsystem for Universal Mobile
Telecommunication Systems (UMTS) networks. This subsystem was designed to
deliver Internet Protocol based multimedia services to mobile subscribers. The IMS
specification was originally designed by the 3rd Generation Partnership Project
(3GPP) in their Release 5 standard. Further IMS functionality has been specified
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in subsequent 3GPP Releases [22].

IMS enables cellular network operators to provision interactive multimedia
services cost effectively by making use of IP networks. IMS uses the Session
Initiation Protocol (SIP) as a signaling protocol for initiating and managing
sessions. 3GPP collaborated with European Telecommunication Standard Institute
(ETSI) experts to ensure efficient re-use of Internet standards. Figure 2.3 depicts
the IMS architecture. This architecture is divided into three different layers:
service/application layer, IMS layer, and transport layer [23].

Figure 2.3. A vision of an simplified IMS Architecture

The IMS core architecture is divided into Call/Session Control Functions
(CSCFs) and a Home Subscriber Server (HSS). Each of these elements is described
further in the following sections.

2.3.1 Call/Session Control Functions (CSCFs)

The CSCFs play important roles in IMS. It is important to note that while the
functions of the various types of CSCFs are described separately, all of them could
be running on a single computer or distributed over multiple computers.

2.3.1.1 Proxy Call Secession Control Function (P-CSCF)

The P-CSCF is the entry point within an IMS network for IMS subscriber within
the access networks which are connected to this specific IMS. It acts as a proxy to
accept and serve requests from IMS compatible SIP user agents. The P-CSCF may
also act as a SIP user agent, this means that it may generate and terminate SIP
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transactions.

The Policy Decision Function (PDF) is a logical component of the P-CSCF,
but it may be implemented in a separate node. If the PDF is implemented in a
separate physical node, then the interface between the PDF and the P-CSCF is the
Gq interface standardized in TS 182 006 [20].

The P-CSCF forwards SIP register requests based on the subscriber’s home
domain name to the appropriate I-CSCF. These SIP register requests are received
from a IMS capable SIP user agent running on user equipment (UE). The P-CSCF
forwards SIP requests or responses from and to the UE. The P-CSCF forwards
SIP messages to the S-CSCF whose name was been received during the registration
procedure. (i.e., as part of the registration procedure the subscriber is assigned to
a S-CSCF).

The P-CSCF utilizes IPsec security associations for all communication with each
UE. The P-CSCF is also responsible for performing compression/decompression of
SIP messages [23].

2.3.1.2 Serving Call Secession Control Function (S-CSCF)

The Serving CSCF (S-CSCF) is a central component in IMS. It provides all of the
session control service mechanisms. It may also maintain session state as needed
by the network operator (i.e., the S-CSCF may be a statefull SIP proxy). An IMS
operator’s network may contain multiple S-CSCFs. Each of these may have different
functionality.

The S-CSCF accepts registration requests and processes these requests based
upon the registration information and its interaction with a location server. The
S-CSCF performs session control for all SIP sessions (via this specific IMS).

The S-CSCF may act as a SIP proxy server, as described in RFC 3261 [25], in
order to accept and forward SIP requests. It may act also like a SIP user agent, as
described in RFC 3261 [25], in order to independently terminate and generate SIP
transactions [23].

2.3.1.3 Interrogating Call Secession Control Function (I-CSCF)

The Interrogating CSCF (I-CSCF) is an entry/exit point for all SIP sessions destined
to another network operator or from a roaming subscriber currently located within
the service area of another IMS operator.

The I-CSCF assigns a S-CSCF based upon information obtained from the HSS
after a SIP registration request from a IMS subscriber’s SIP user agent.
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The I-CSCF is also responsible for routing SIP requests to the S-CSCF for SIP
requests received from another network and forwarding SIP requests and responses
to the S-CSCF [23].

2.3.2 Home Subscriber Server (HSS)

The Home Subscriber Server (HSS) is an evolution of the Global System for Mobile
Communication (GSM) Home Location Register (HLR) and Authentication Center
(AuC). The HSS provides a central database of subscriber information. This
database enables the IMS network entities to handle SIP sessions. The HSS performs
authentication and authorization of the subscriber and stores all of the subscription-
related information (i.e., the subscriber profile). The HSS also stores subscriber
location information.

An IMS network may contain multiple HSSs, but a particular subscriber’s user
profile information is stored in a single HSS [23].

2.3.2.1 Subscriber Location Function (SLF)

The Subscriber Location Function (SLF) in needed when multiple HSSs are used
within an IMS network. The SLF indicates which HSS stores a specific subscriber’s
user profile. The SLF is accessed via the Dx interface by the CSCFs and accessed
via the Dh interface by application servers (AS) [23].

2.3.3 User Identities

There are numerous identities that may be utilized within a IMS. The sections
below described two of these: a private user identity used by an IMS operator to
identify a subscriber and a public user identity (or identities) used by others to
initiate communication sessions with a subscriber.

2.3.3.1 Private User Identity

The home IMS operator assigns a unique permanent global identity known as
a private user identity to each of their subscribers. This identity is used for
registration, authorization, administration, and accounting purposes. According
to the 3GPP specifications [23] the private user identity shall take the form
of a Network Access Identifier (NAI) as described in RFC 2486 [26], such as
“user@ims-network-domain” [26].

2.3.3.2 Public User Identity

The public user identity/identities are used for initiating a communication session
between subscribers. There might be multiple public user identities per private user
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identity. According to the 3GPP specifications [23] each public user identifier shall
take the format of a SIP URL as described in RFC 3261 [25], i.e., “sip:user@ims-
network-domain” or a telephone URL “sip:+358-555-1234567;postd=@ims-network-
domain;user=phone” [25].





Chapter 3

Cloud Computing

This chapter presents emerging cloud computing technologies which are relevant to
this thesis.

3.1 Introduction

Computing is being reorganize according to a service model in which services are
commoditized and delivered to users. In this model, users access services based
on their demands irrespective of how (or where) the services are provisioned.
Numerous computing paradigms such as cluster computing, grid computing, and
more recently cloud computing, are designed to realize this utility computing
vision. Cloud computing is an evolution of several computing paradigms, such as
Internet delivery, Pay-per-Use-On-Demand utility computing, virtualization, grid
computing, distributed computing, storage elasticity, content outsourcing, and Web
2.0 [31, 32, 33]. The infrastructure referred to as a “cloud”, enables on demand
provisioning of services across the world [27].

There are numerous definitions of cloud computing [27, 28, 29]. According to
the U.S. National Institute of Standards and Technology (NIST) Definition of Cloud
Computing, NIST SP 800-145 [30]:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks,
servers, storage, applications, and services) that can be rapidly provisioned and
released with minimal management effort or service provider interaction. This cloud
model is composed of five essential characteristics, three service models, and four
deployment models.”

Cloud computing has created a variety of market opportunities for many
organizations [38]. A cloud provider considers specific QoS key performance
indicators (KPIs) with respect to fulfilling their customer’s demands. Figure 3.1
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shows a market-oriented vision of a cloud architecture.

Figure 3.1. Market-oriented vision of a Cloud Architecture (Adapted from Figure
3 of [27])

3.2 Cloud Computing Characteristics

A vision of cloud computing associated with the essential fundamental
characteristics described in NIST SP 800-145 is shown in Figure 3.2.

On-demand self-service: Consumers can automatically provision computing
capabilities based on demand without requiring human intervention with a cloud
service provider.

Broad network access: Consumers can easily access the capabilities from
different devices (e.g. mobile phones, tablets, laptops, and workstations) over a
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network.

Resource pooling: The cloud provider’s pool of physical hosts and virtual
resources are dynamically assigned and reassigned using a multi-tenant model,
to serve multiple consumers’ demands. Resource allocation is transparent to the
consumers, but consumers may specify location parameters such as county, state,
or a specific data center at a higher level of abstraction. This resource pooling
concept was illustrate in Figure 3.1.

Rapid elasticity: The cloud computing resources automatically dynamic scale
up and scale down based on consumer demand. Therefore, the service is available
to the consumers at any time without degrading the QoS that they experience.

Measured service: Cloud systems automatically control and optimize
resources based on consumers, demands, and required service types (such as storage,
processing, bandwidth, and number of active user accounts). The usage of all the
services are monitored, controlled, and reported transparently.

Figure 3.2. A vision of an Cloud Computing Essential Characteristics

3.3 Service Models

Cloud computing can support everything as a service (i.e. XaaS). These services
can be categorized into three different service models as described by NIST SP
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800-145 [30]. This cloud computing service model infrastructure is shown in Figure
3.3. These different service models will be described in the subsequent subsections.

Figure 3.3. A vision of an Cloud Computing Service Models (Adapted from Figure
1 of [33])

3.3.1 Software as a Service (SaaS)

SaaS enables on demand availability of software or an application to consumers
over the internet and makes this software accessible through either a web browser
or program interface. These software services are hosted transparently on a
cloud infrastructure. The consumer does not directly access the underlying cloud
provider’s infrastructure. SaaS is also called Application as a Service (AaaS).
Examples of SaaS providers are Salesforce Customer Relationships Management
(CRM) system, NetSuite, and Google Office Productivity application [30, 33, 2].

3.3.2 Platform as a Service (PaaS)

PaaS provides a development environment for the development of applications that
will be deployed in a cloud infrastructure. PaaS enables developers to develop
applications that are hosted as a service delivered by a cloud platform. The
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developers use the programming language, libraries, services, and tools made
available in the PaaS for their application development. The consumer do not
directly access the underlying cloud provider’s infrastructure. Examples of PaaS
providers are Facebook F8, Salesforge App Exchange, Google App Engine, Bunzee
connect, Windows Azure, IBM Websphere Cloudburst, Force.com, and Amazon
EC2 [30, 33, 2, 34].

3.3.3 Infrastructure as a Service (IaaS)
In IaaS the cloud service provider delivers processing, storage, networks, and other
computing resources to the consumer elastically on demand. The user pays for
only the resources that as they use. The consumer can select their operating
system, storage, and deployed applications; as well as having limited access to
networking components. The consumers do not control the underlying cloud
provider’s infrastructure. Examples of IaaS providers are Amazon Web Services,
GoGrid, MossoRackspace, MSP On-Demand, and masterIT. Sometimes IaaS is also
referred to as Hardware as a Service (HaaS) [30, 33, 2].

IaaS can be further divided into three subcategories [34]:

• Computing as a Service (CaaS),

• Storage as a Service (SaaS), and

• Database as a Service (DaaS).

3.4 Deployment Models
The cloud computing service model infrastructure can be deployed using the four
different deployment models described by NIST SP 800-145 [30]. Figure 3.4 shows
a vision of a these cloud computing deployment models. The subsections below
describe each of these deployment models.

3.4.1 Private cloud
In a private cloud the cloud infrastructure provisions resources within an enterprise
or organization encompassing multiple consumers. A private cloud is owned,
control, managed, and operated by an enterprise or organization. There may even
be a combination of organization and third-party offerings. The private cloud’s
resources may be on or off premises and firewall protects the private cloud from
access by others [30, 34, 35].

3.4.2 Community cloud
In a community cloud the cloud infrastructure is designed for multiple organizations
of a specific user community that have common concerns, such as mission,
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security requirements, policy, and compliance considerations. The community cloud
infrastructure can be control, managed, and owned by one or more organizations or
a third-party [30, 34].

3.4.3 Public cloud

A public cloud’s cloud computing resources are available for use by the general
public and accessible through standard APIs over the Internet. The public cloud
may be the property of an organization, such as a business, an academic institution,
or a government, or combination of them and the cloud can be managed by the
organization itself [30, 34, 35].

3.4.4 Hybrid cloud

A hybrid cloud infrastructure is a combination of two or more distinct
deployment models (such as private, community, or public) that persist as new cloud
infrastructure. The hybrid cloud remains bounded by standardized technologies
that ensure portability of data and applications, such as cloud bursting for load
balancing between cloud infrastructures [30, 34].

Figure 3.4. Cloud Computing Deployment Models
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3.5 Scalability and Elasticity

The prime aim of the cloud computing is provisioning of nearly infinite scalability.
The cloud architecture can scale using two different approaches to serve consumer’s
demands: vertically or horizontally. These two approaches are as illustrated in
Figure 3.5 and described in the subsections below.

3.5.1 Vertical Scaling

Vertical scaling deploys more powerful computing resources to accommodate the
demand. This scale-up approach usually works well, but involves either a huge
capital expenditure or the demand may exceed the available capacity before the
new more powerful computing resource is deployed.

3.5.2 Horizontal Scaling

The traditional scale-out approach gradually scales computing resources in small
chunks to accommodate the demand. Most large-scale business organizations
employ a service-oriented design by following this scale-out approach. However,
horizontal scaling requires monitoring of demand on a regular basis and then scaling
the infrastructure to serve the demand.

Figure 3.5. Automated Cloud Elasticity (Adapted from Figure 2 of [36])
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3.5.3 Cloud Elastically

Elasticity is one of the essential characteristics of the cloud computing. Cloud
computing’s on-demand automated elasticity enables more optimal utilization of
the computing infrastructure’s resources and aligns the dynamic scale-up and
scale-down of resources with actual demand. Figure 3.5 illustrate the concept of
automated elasticity.

(a) Over-provisioning

(b) Under-provisioning Case A (c) Under-provisioning Case B

Figure 3.6. Over-provisioning (the orange shows wasted resources) and Under-
provisioning (Adapted from Figure 2 of [37])

When a cloud engineer enables elasticity in an application service, there are two
possible scenarios that can occur:

Over-provisioning: In an over-provisioning scenario, if the service operator
predicts the maximum demand correctly, then capacity is wasted during non-peak
times. This means, resources are wasted as shown by the shared area in Figure
3.6(a). However, this approach guarantees QoS even during peak hours. [37]

Under-provisioning: In an under-provisioning scenario, the service operator
does not take into account the potential revenue loss due to failing to serve the user
demand which is shown by the shaded area of Figure 3.6(b). This means, that the
service operator provides poor QoS during peak hours due to the service demand
exceeding the actual capacity.
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Furthermore, after suffering poor QoS, some of the users start to leave the site
permanently until the peak user demand equals the actual capacity. Again users
start to receive acceptable QoS, as shown in Figure 3.6(c). [37]





Chapter 4

Tools and Technologies

This chapter presents an overview of the open source technologies that are used for
setting up the test environment for the proposed SUT.

4.1 Virtualization Technologies
Virtualization enables a computer to run one or more virtual machines.
Virtualization technologies enable energy-efficient computing, and more optimal
hardware utilization of processors, memory, and storage resources. Virtualization
technologies enable the creation and execution of virtual machines, providing
virtualized storage, networks, and virtualizing applications.

A hypervisor is used as the underlying virtualization technology. This hypervisor
is a computer program that enables the user to create and run a pool of virtual
machines on top of a physical machine. The physical machine on which this
hypervisor is running virtual machines is known as a host machine. Figure 4.1
shows the high level architecture of this virtualization.

Figure 4.1. High Level Virtualization Architecture

There are many virtualization tools such as Virtual Machine Manager (VMM),
VMware, VirtualBox, and etc. In this project, the Virtual Machine Manager is used

23
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as an virtualization technology to setup the test environment for the SUT.

4.1.1 Virtual Machine Manager (VMM)
The Virtual Machine Manager (VMM) application (from http://virt-manager.org/)
is a graphical user interface (GUI) for creating and managing virtual machines.
It provides a summery view of the running virtual machines, showing their
performance and resource utilization statistics [39]. Figure 4.2 depicts the VMM
stack and VMM’s supporting tools are:

Virt-Install: A tool which enables install operating systems into virtual
machines. It also provides a GUI for VM creation.

Virt-Clone: A tool for cloning an existing inactive virtual machine. It copies
the disk images to create a new configuration. It is also possible to clone the disk
image using the GUI.

Virt-Image: A tool for installing operating systems based on pre-defined image.

Virt-Viewer: A lightweight interface with graphical display of the virtualized
guest OS.

Figure 4.2. Representation of VMM stack with QEMU (Adapted from Figure 1 of
[40])

4.2 OpenIMS Core
OpenIMS Core is an open source implementation of IMS’s core components (Call
Session Control Functions (CSCFs) and Home Subscriber Server (HSS)) according
to the 3GPP standard [23]. OpenIMS Core was developed by Fraunhofer Institute
FOKUS [42].
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The high level architecture of OpenIMS Core is shown in Figure 4.3. The
OpenIMS Core’s CSCFs are based on a SIP Express Router (SER) [44]. SER is
an open source SIP server widely used to implement Voice over IP (VoIP) services,
even for a large VoIP infrastructure. Each CSCF component was developed so that
it acts as an independent node in the IMS architecture. The implemented CSCF
components are P-CSCF, S-CSCF, and I-CSCF (these were described in Section
2.3.1).

Figure 4.3. A vision of an OpenIMS Core Architecture (Adapted from the figure
shown in [43])

As seen from Figure 4.3, the P-CSCF communicates with a UE via the Gm
interface, and the CSCFs communicate with each other via the Mw interface. HSS
communicates with the I-CSCF and S-CSCFs via the Cx interface over Diameter
and with Application Servers (ASs) via the Sh interface.

4.2.1 Modules use to realize the OpenIMS CSCFs

The main modules of OpenIMS CSCFs are described in the following subsections.

4.2.1.1 CDiameterPeer (CDP)

The CDP component is used for realm routing based on the fully qualified domain
name (FQDN) of the destination host. CDP enables efficient bidirectional Diameter
communication for SER.
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4.2.1.2 IMS Service Control (ISC)

ISC provides an interface that connects the S-CSCFs with application servers. It
also enables access to an IMS network through a P-CSCF via a SIP-to-IMS gateway
by providing an authentication translation mechanism.

4.2.2 Modules of FOKUS HSS (FHoSS)

The OpenIMS Core uses the FOKUS HSS to store user profiles, along with
authentication & authorization information, and user location information.
Additionally, FHoSS provides a web-based management console. The high level
architecture of FHoSS is shown in Figure 4.4. The FOKUS HSS architecture is
divided into two main layers: Diameter Interface Layer and Data Access Layer.

4.2.2.1 Diameter Interface Layer (DIL)

The core module of the FHoSS is a HssDiameterStack implementation, which is
written entirely in Java. It uses the DiameterPeer object to send requests to other
elements and retrieves responses via a CommandListener object. FHoSS supports
three types of interfaces: Sh, Cx, and Zh. These interface implementations can be
found in the de.fhg.fokus.cx, de.fhg.fokus.sh, and de.fhg.fokus.zh packages.

4.2.2.2 Data Access Layer (DAL)

DAL is based on the Hibernate persistence framework. FHoSS uses MySQL as a
backend database to store operational data. The DAL implementation can found
in the de.fhg.fokus.hss.model package. DAL utilize the Java Database Connectivity
(JDBC) driver, hence any database that has a JDBC driver could be used.

Figure 4.4. Highe Level FHoSS Architecture (Adapted from the figure shown in
[41])
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4.3 HAProxy Load Balancer
HAProxy is a open source layer 4 and layer 7 load balancer which provides high
availability and high performance for TCP and HTTP-based applications. HAProxy
distributes the workload across a set of servers in order to optimize resource usage
and maximize performance.

The front-end applications that depend on a backend database can easily scale
by utilizing many parallel connections to the database. HAProxy provides throttling
of connections towards one or more database servers and prevents overloading of
a single server with too many requests (thus it acts as a database transaction
monitor). All front-end clients connect to the HAProxy instance, and then the
HAProxy forwards the client’s request to one of the available database servers based
on the selected load-balancing scheme. Currently, HAProxy supports different load
balancing mechanisms, specifically: roundrobin (rr), static-rr, leastconn, source, url,
url_pram, hdr, and rdp-cookie [45].

In this project, HAProxy load balancing is employed in-front of a MySQL cluster
to transparently distribute the front-end client’s requests to the MySQL servers in
the cluster.

4.4 MySQL Cluster Technology
The architecture of a MySQL cluster is designed to accommodate all dimensions
of scalability. The MySQL cluster architecture supports the following fundamental
characteristics of scalability [46]:

• Auto-sharding for write-scalability,

• Real-time responsiveness,

• Active / active geographic replication,

• Online scaling and schema upgrades,

• SQL and NoSQL interfaces, and

• 99.99% availability.

Figure 4.5 shows the high level architecture of MySQL cluster which supports
high write scalability across multiple SQL, and NoSQL APIs. The MySQL cluster
architecture consist of three types of nodes which collectively provide service to the
end application:

Data Nodes: The data nodes are responsible for managing data storage
and access to data. MySQL cluster technology by default provides automatic
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transparent partitioning/sharding, load balancing, replication, failover, and self-
healing of tables across different data nodes.

Application Nodes: The application nodes are the front-end of the
MySQL cluster nodes which provide connectivity to the backend data nodes.
MySQL cluster provides a standard SQL interface, including connectively with
different programming languages and frameworks such as NoSQL (memcached),
REST/HTTP, C++ (NDB-API), Java, and Java Persistence API (JPA).

Management Nodes: The management nodes are used to manage the
MySQL cluster configuration and to provide arbitration in the event of a network
partition.

Figure 4.5. MySQL cluster Architecture (Adapted from Figure 1 of [46])

4.5 IMS Bench SIPp
IMS Bench SIPp is an open source implementation of a test system designed
by Intel Cooperation in accordance with the IMS/NGN Performance Benchmark
specification ETSI TS 186 008 [47, 48, 49]. It is an extended version of an earlier
open source SIP traffic generator, with built-in default scenario files to handle a
large number of users. The following default scenario files are available [51]:

• Successful call,
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• Successful messaging,

• Registration,

• De-registration, and

• Re-registration.

Figure 4.6 shows a high level architectural overview of IMS Bench SIPp, which
consist of a test system and a IMS SUT. The test system consist of a manager and
one or more SIPp traffic generator instances, which originate IMS events such as
registration and de-registration, session set-up or tear-down, and messaging to the
SUT. The IMS SUT responds to these events. Additionally, we utilizes one or more
system monitoring agents for monitoring CPU and memory utilization. The brain
of the IMS benchmark test system is a collection of traffic set scenarios, associated
with the probability of occurrence in the set of test procedures, which resemble the
load on the test system that might occur in the real world [51, 50].

Figure 4.6. High Level Architecture of IMS Bench SIPp (Adapted from Figure 2 of
[50])

The IMS Bench SIPp test system offers the following benefits [51]:

• Supports concurrent execution of call session setup, registration, de-registration,
and instant messaging scenarios.

• Supports random selection of scenarios with a defined probability of
occurrence for each type of scenario (e.g. 30% calling, 30% registration, 20%
messaging, 10% de-registration, and 10% re-registration).

• The number scenario attempts to follow a Poisson distribution per unit time.
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• Supports random selection of users from a pool of users that are suitable for
a particular scenario.

The SIPp logical component of IMS Bench SiPp test system can be run on one
or more machines. The SIPp instance originates scenario attempts and each has its
own static set of users. A manager is responsible for configuring the SIPp instances,
monitoring the failure rate in order to stop the benchmark, and logging (CPU and
MEM) utilization of the SUT as reported by monitoring agents. Figure 4.7 shows
the high level internal architecture of the IMS Bench SIPp test system.

Figure 4.7. High Level Internal Architecture of IMS Bench SIPp (Adapted from
the figure shown in [51])

In this project, IMS Bench SIPp scenarios are employed for performance
evaluation of the SUT. Specifically, the registration scenario will be used to test
HSS horizontal elastic scalability. SIPp clients originate registration requests to
the SUT (the OpenIMS core), and then wait for a registration success (or failure)
response.

4.6 Zabbix
Zabbix is an enterprise-class open source monitoring solution which supports the
following advanced monitoring features [52]:

Monitor Everything: Supports agent-less monitoring of network devices,
databases, hardware monitoring, and provides a centralized web-based monitoring
system. It accurately gathers KPIs and statistics.
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Enterprise Ready: Zabbix is specifically designed to provide highly available,
high performance optimized monitoring for a large-scale distributed environment.

Pro-active Monitoring: Zabbix provides improved service quality by sending
notification messages via email, SMS, or Jabber for each notable event. Remote
commands can be sent to Zabbix to reduce operating cost by avoiding downtime.

Capacity Planning: Capacity planning is done in order to plan for business
growth and to predict the future resource need, while avoiding wasting resources.

4.6.1 Zabbix Server
The Zabbix Server is a central component to which Zabbix agents and proxies report
data on the availability and integrity of a system that is being monitored. The
functionality of the Zabbix server is divided into three components: Zabbix server,
web front-end, and database storage. All of the configuration information is stored
in the database, which the Zabbix server and the web front-end interact with. The
Zabbix server web interface enables creation of a group of hosts and configuration
of each host according to a predefined template. Zabbix also provides a mechanism
for auto registration and auto discovery of the new hosts in a particular network.

4.6.2 Zabbix Agent
The Zabbix agent is a process that is deployed on a monitored host to actively
monitor local resources and applications. The Zabbix agent locally gathers system
information, then sends this data to the Zabbix server encoded in a JSON format.
Zabbix agents can perform two types of monitoring: passive and active.

In passive monitoring, the Zabbix server sends data, for example, the CPU load
of a virtual machine, to a Zabbix agent which forwards this measurement to a
Zabbix server.

In active monitoring, the Zabbix agent first retrieves a list of items to monitor
from a Zabbix server. Afterwords, the Zabbix agent will periodically send the latest
values of these monitored items to the Zabbix server.

Whether to perform passive or active monitoring is configured by selecting the
respective “Zabbix agent” or “Zabbix agent (active)” item types.





Chapter 5

System Architecture Design

This chapter presents all the use case scenarios which were considered when in
designing the testbed system’s architecture.

5.1 IMS Core Virtualization
The virtualization of OpenIMS core consist of two steps, which are described in
subsections 5.1.1, and 5.1.2. Furthermore, the highly available and highly scalable
database system’s architecture design for FHoSS database system is described in
Section 5.2.

5.1.1 OpenIMS core Virtualization
This section describes the virtualization of the OpenIMS Core. After creating and
instantiating virtual machines on a host machine, all the OpenIMS core nodes
(P-CSCF, S-CSCF, I-CSCF, and FHoSS) are deployed on separate VMs. In this
scenario, all of the FHoSS components (DIL, DAL, and MySQL database) are
running on a single VM. At this point, all of the OpenIMS core has been virtualized.
The installation and configuration of an OpenIMS core are described in Appendix
A. Figure 5.1 illustrates the virtualized high level OpenIMS core architecture. The
functional testing of a virtualized OpenIMS core will be described in Section 6.1.

Figure 5.1. High Level Virtualized OpenIMS Architecture

33
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5.1.2 OpenIMS core with virtualization of FHoSS layers

This scenario describes the virtualization of the FHoSS layers. FHoSS is divided
into two main layers, as was described in Section 4.2.2. DIL acts as a front-end
interface to handle the Cx Diameter interface traffic and DAL acts as a back-end
interface to communicate with the database via a JDBC driver. Figure 5.2 shows
the high level internal architecture of FHoSS.

Figure 5.2. FHoSS High Level Internal Architecture

The previous section described the virtualization of OpenIMS core. In this
section, we describe the virtualization of each of the FHoSS components. Both
FHoSS DIL and DAL are running on a single VM, but the MySQL database
runs on another VM. In this way, FHoSS’s front-end diameter interface and
the actual MySQL database are virtualized independently. Virtualizing the
MySQL database provides a way to horizontally scale the database underlying
FHoSS. In order to do this we must configure the VM’s IP address in both the
files “DiameterPeerHSS.xml” and ‘hss.properties” (i.e., for the Diameter Engine
and tomcat processes, respectively). The Hibernate persistence framework, an
implementation of DAL, is running on the same VM on which DIL is running.
We explicitly specify the MySQL database VM’s IP address <ip address> in the
“hibernate.properties” parameter (hibernate.connection.url=jdbc:mysql:
//<ip address>:3306/hss_db). We utilize the default MySQL TCP port. The
resulting high-level architecture is shown in Figure 5.3, which illustrates the
complete virtualization of all of the OpenIMS core components, including the
FHoSS.
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Figure 5.3. High Level Virtualized OpenIMS Core including HSS planes

Now that we have successfully deployed and configured the OpenIMS core
components into different VMs, the functional testing of the fully virtualized
OpenIMS core components can be performed, as will be described in Section 6.1.

5.2 FHoSS database system with high availability and
high scalability

FHoSS uses a MySQL database as its backend database technology to store each
subscriber’s data. The traditional MySQL database technology uses “MyISAM”
as an storage engine. Typically MyISAM resides on the same machine where
the MySQL server is running, thus, the database’s performance does not scale
well. In contrast, the FHoSS database architecture will be designed to ensure high
availability (by avoiding a single point of failure) and high scalability (in order to
enhance the performance of the database system).

The concept of high availability, and a high scalability solution for MySQL
database systems is described in the following subsections.

5.2.1 High availability and high scalability

A system that ensures full time availability without any loss or degradation of service
is know as a high availability system [56]. A highly available system typically consist
of redundant software and hardware resources that delivers the service at any time,
despite the failure of individual service nodes [53].

According to S. Galiano [53], high availability can be achieved by introducing
either active redundancy or passive redundancy. Active redundancy ensures
the service’s availability by forming a cluster of service nodes that are running



36 CHAPTER 5. SYSTEM ARCHITECTURE DESIGN

concurrently. Passive redundancy is based on the master/slave architecture concept.
The master is in the active state and acts as the primacy service node, while a slave
is in passive/hot standby state and acts a secondary backup service node. The slave
will be substituted for the master when the master node fails.

Active redundancy can be achieved by creating a cluster that consists of a pool of
service nodes running in parallel, along with a load balancing mechanism. The load
balancing system is used on top of the cluster nodes to provide a single access point
to the system. This type of architecture ensures the high availability and high
scalability of a system. The load balancing mechanism distributes the workload
across multiple service nodes, enabling high availability, and while also ensuring
high scalability as new service nodes cab be added to the cluster without any major
modifications. However, the load balancer might introduce a single point of failure
to whole system architecture.

Passive redundancy can be achieved by setting up a backup service node in
conjunction with open source packages, such as Red Hat Piranha, UltraMonkey,
heartbeat plus ldirectord, heartbeat plus mon, and Keepalived [54].

To avoid introducing a single point of failure, we can merge both the active
and passive redundancy approaches. This combined approach should provide high
availability, and high scalability of the overall system. Figure 5.4 illustrates the
high level architecture of such a highly available and highly scalable system.

Both active and passive architectural topologies will be analyzed in the context
of the MySQL database.

Figure 5.4. High level architecture of a highly available and highly scalable system
(Adapted from the figure shown in [54])
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5.2.2 MySQL database replication

MySQL supports two types of replication models, which are explained in the
following subsections. MySQL’s replication models are based on a master/slave
architecture, i.e., one server acts a master and one or more server act as slaves [55].

5.2.2.1 Asynchronous replication

MySQL supports one way asynchronous replication, which means that the data is
replicated from one MySQL database server (the master) to one or more MySQL
database servers (slaves). Asynchronous replication introduces a delay in the actual
copying of data from one server to another server.

5.2.2.2 Synchronous replication

In synchronous replication, data is committed to one to more machines
simultaneously. This type of commit is commonly known as “two-phase commit”.
Synchronous replication is a native characteristic of MySQL’s cluster technology.

Figure 5.5 illustrates the concept of asynchronous and synchronous replication.
Replication offers the benefits of performance, ease of use, and reliability. As a
result:

• A high available system can be designed to transparently switch incoming
requests to a slave server in the event of a master server fails. This is typically
achieved by using an passive redundancy approach as described in Section
5.2.1.

• A faster response time can be achieved by distributing the load over both the
master and slave database servers, thus all of these servers can be used for
processing client queries. The load balancer priovides a single entry point to
the database system. This configuration is typically based upon using active
redundancy approaches, as described in Section 5.2.1.

(a) Asynchronous replication

(b) Synchronous replication

Figure 5.5. MySQL Replication Techniques (Adapted from Figure 1 of [55])
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Table 5.1 illustrates a comparison of the MySQL database technologies.

Table 5.1. MySQL Architecture Comparison (Adapted from Figure 5 of [55])

Requirements MySQL Replication MySQL Cluster
Availability

Automated IP Fail Over No No
Automated DB Fail Over No Yes
Typical Fail Over Time Varies <3 secs
Auto Resynch of Data No Yes
Geographic Redundancy Yes MySQL Replication

Scalability
Built-in Load Balancing MySQL Replication Yes

Read Intensive Yes Yes
Write Intensive No Yes

# of Nodes per Cluster Master/Slave(s) 255
# of Slaves Dozens for Reads Dozens for Reads

5.2.3 Migration of a MySQL database to a MySQL Cluster
The MySQL cluster architecture was designed to meet the throughput and response
time requirements of a large database system. MySQL cluster technology provides
built-in support for synchronous replication, automatic load balancing across data
nodes, data partitioning across data nodes, and automatic fail over. Designing a
system by using MySQL cluster as the underlying database technology delivers high
availability, high scaleability, and high reliability.

MySQL cluster technology is designed to support horizontal scalability of a
database on three levels: application nodes (MySQL server) nodes, data storage
nodes, and management nodes. MySQL cluster technology separates the application
and data nodes and uses an “NDBCLUSTER” as an storage engine. In this way, a
MySQL cluster stores its data on the data nodes, while the application nodes execute
on separate machines. The advantage of a MySQL cluster is that it automatically
provides transparent auto-sharding of the tables and load balancing across the data
nodes, which enables the database to support horizontal scalability.

MySQL cluster technology allows on-line scaling of both database performance
and capacity by adding additional application and data nodes, in turn enabling up
and down scaling of the number of cluster nodes. The migration from a MySQL
native database to a MySQL cluster provides high availability and high scalability of
the database. The high level migration architecture from MySQL to MySQL cluster
is shown in Figure 5.6. The installation and configuration of a MySQL cluster are
described in Appendix B.
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Figure 5.6. High level migration architecture of MySQL to a MySQL cluster

5.2.4 Integration of the FHoSS Diameter Interface Layer and a
MySQL Cluster

This subsection describes the integration of the FHoSS Diameter interface layer
and a MySQL cluster. The front-end Diameter interface of FHoSS connects to
the database by opening connections to one of the application nodes of a MySQL
cluster through FHoSS’s data access interface. Active redundancy is achieved by
using multiple application nodes of a MySQL cluster to ensure high availability of
MySQL daemons. If an application node fails, the FHoSS data access interface
layer reconnects to another application node within a MySQL cluster. Therefore,
instead of connecting again and again to the application nodes, a smart solution
is to use a load balancer in front of the application nodes of a MySQL cluster.
The load balancer transparently distributes traffic sent via the FHoSS Diameter
interface layer over the application nodes of a MySQL cluster.

The advantage of this load balancing mechanism are:

• Enables the FHoSS Diameter interface layer node to connect to a MySQL
cluster via a single IP address (the address of the load balancer). The MySQL
cluster topology is hidden behind the load balancer.

• SQL query requests are load balanced over the available application nodes of
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a MySQL cluster.

• Adding or removing applications nodes of a MySQL cluster can be done
without any changes to the FHoSS ‘hibernate.properties” configuration file,
because the load balancer’s IP address is configured as the address of the
database (as seen by the front end).

• The load balancer provide automated IP fail over for a MySQL cluster.

The HAProxy load balancer is placed between the FHoSS Diameter interface
node and the MySQL cluster in order to provides a single entry point to the
MySQL cluster. The HAProxy load balancer technology was described in Section
4.3. The HAProxy load balancer acts a front-end to the backend MySQL server
application nodes. Without the HAProxy the FHoSS Diameter interface could easily
over-load a single database with many concurrent connections. The overall high level
integration architecture of the FHoSS Diameter interface layer and MySQL cluster
as an horizontal scalable database technology is shown in Figure 5.7.

However, the use of a load balancer creates a single point of failure for the
MySQL daemons. In the event a load balancer fails, access to MySQL cluster
architecture will be unavailable. Therefore, we utilize passive redundancy at the
load balancer layer in order to avoid the load balancer becoming a single point of
failure. Further details of this solution to this problem are described in subsection
5.2.4.1.
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Figure 5.7. High Level Integration Architecture of FHoSS diameter interface layer
and MySQL Cluster
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5.2.4.1 HAProxy with Keepalived

One of the major goals of this thesis project was to designed a highly available and
scalable database system architecture. MySQL cluster technology provides a high
availability and scalability database. The use of a single HAProxy load balancer
instance in front of a MySQL cluster creates a single point of failure for the entire
database system, as if the HAProxy load balancer fails, then there is no longer
access to the MySQL cluster.

To avoid a single point of failure, a passive architecture is used in conjunction
with an open source software package as an solution to produce a high availability
HAProxy load balancer. There are several open source software packages that
ensure the high availability of a load balancer service. One method used in a
passive mode was described by MySQL [55], while S. Galiano [53] used a Linux
heartbeat to ensure high availability of the database service. In [55], a MySQL
asynchronous replication method is combined with a Linux heartbeat using a
master/slave (passive) architecture for high availability of MySQL servers. In our
project, we are using another open source daemon “Keepalived” [57], to ensure high
availability of the load balancer service. The keepalived daemon provides robust
facilities for load balancing and high availability for a Linux system.

In a passive system architecture two instance of the HAProxy load balancer
together with a Keepalived daemon are running on two separate virtual machines,
one pair acts as a master and the other pair acts as a slave (backup). Keepalived
implements a Virtual Router Redundancy Protocol (VRRP) for failover [58]. The
two VRRP instances monitor and synchronize their states. Both HAProxy load
balancer instances share a single virtual IP address, hence there will only be one
load balancer visible to the outside world at any one time. If the master HAProxy
load balancer node crashes, then the backup HAProxy load balance (slave) node
automatically takes over the load via the virtual IP address and resumes load
balancing. Figure 5.8 illustrates the high level passive architecture of the load
balancer integrated with the FHoSS Diameter interface layer and a MySQL cluster.

Keepalived offers several benefits while adopting a passive architecture for high
availability of HAProxy load balancer. These benefits are:

• Open source software,

• Easy to configure,

• No separate hardware or networking is required,

• Automatic management of a single virtual IP address, and

• The Virtual IP address enables transparent fail over from one active load
balancer instance to another when employing a passive architecture.
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Figure 5.8. High level passive architecture of a HAProxy load balancer integrated
with the FHoSS Diameter interface layer and a MySQL cluster
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The keepalived configuration file for the master and slave nodes are shown in
Listing 5.1 and Listing 5.2, respectively. Both nodes (master and slave) have an
identical virtual IP address <ip address>. This virtual IP address was configured
in the FHoSS “hibernate.properties” file.

Listing 5.1. Example of an Keepalived Configuration for Master Node
vrrp_script chk_haproxy {

script ‘‘killall -0 haproxy ’’
interval 2
weight 2

}

vrrp_instance VI_1 {
interface eth0
state MASTER
virtual_router_id 51
priority 101
virtual_ipaddress {

<ip address >
}
track_script {

chk_haproxy
}

}

Listing 5.2. Example of an Keepalived Configuration for Slave Node
vrrp_script chk_haproxy {

script ‘‘killall -0 haproxy ’’
interval 2
weight 2

}

vrrp_instance VI_1 {
interface eth0
state MASTER
virtual_router_id 51
priority 100
virtual_ipaddress {

<ip address >
}
track_script {

chk_haproxy
}

}



Chapter 6

Testing and Evaluation

This chapter presents the functional testing of the virtualized OpenIMS core
components and a performance evaluation using the virtualized OpenIMS core
testbed infrastructure.

6.1 Functional Testing of OpenIMS Core Virtualization
The functional testing of the OpenIMS Core mainly focused on testing the
virtualized OpenIMS Core within the testbed environment that we setup. This
functional testing involves testing of the registration, de-registration, and call setup
procedures between two IMS subscribers. In functional testing, all three use cases
described in Sections 5.1.1, 5.1.2, and 5.2.4 were tested using the registration,
de-registration, and call setup scenarios defined in IMS Bench SIPp. In each of
the testbeds which were used, all of the components were configured and deployed
on separate virtual machines. The specification of these virtual machine in terms
of RAM and CPU is shown in Table 6.1.

Table 6.1. Virtual Machine Specification

Type Amount
RAM 512 MB

CPU Cores 1

The testbeds for OpenIMS core virtualization for functional testing are shown
in Figures 6.1, 6.2, and 6.3. In the testbed shown in Figure 6.1 only the OpenIMS
core nodes are virtualized. The OpenIMS core with a virtualized MySQL database
testbed is shown in Figure 6.2. In this second testbed, the MySQL database is
running on a separate virtual machine, which enables further visualization of FHoSS.
The testbed for a OpenIMS core integrated with a MySQL cluster is shown in Figure
6.3. In this third testbed, a MySQL cluster is deployed and integrated with FHoSS
via a HAProxy load balancer. The MySQL cluster configuration is shown in Table

45
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6.2. Each of the MySQL cluster nodes was configured to execute on separate virtual
machines.

Figure 6.1. Virtualized OpenIMS core testbed

Figure 6.2. Virtualized OpenIMS core with MySQL DB virtualization testbed
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Figure 6.3. Virtualized OpenIMS core with integration of MySQL cluster testbed

Table 6.2. MySQL Cluster Configuration

Node Type Number of Nodes
Data Node 2
MySQL Node 2

Management Node 1

In [59], OpenIMS core functionality was tested with SIP based soft phones,
which are KPhone and Open SIP Client. For all of the functional testing use cases,
an open source SIP based soft phone [60], called myMonster Telco Communicator
Suit, was used to test the basic SIP methods.Two default users (Alice and Bob)
were configured by using the myMonster client. First, Alice and Bob register with
the OpenIMS core, then both originate a voice call to each other. After sometime,
one or the other ends the voice call and un-registers from the OpenIMS core. All
the running testbed VMs on a single physical machine are shown in Figure 6.4.
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Figure 6.4. VMM screen of testbed VMs

6.1.1 IMS registration

IMS registration involves an exchange of messages between a user agent and a
registrar as shown in Figure 6.5. In the testbed, the myMonster client acts as a
user agent and the virtualized OpenIMS core acts as a registrar.

Figure 6.5. Basic IMS registration procedure (Adapted from Figure 2.1 of [61])

During registration, both clients (Alice and Bob) send a SIP Register request
to the OpenIMS core and wait for a 200 OK registration response, which indicates
that the client has successfully registered with the IMS core. Figure 6.6 illustrates
the sequence diagram of the IMS registration procedure. An example of a SIP
REGISTER request message is shown in Listing 6.1.
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Figure 6.6. IMS registration sequence diagram

Listing 6.1. Example of a SIP REGISTER request

REGISTER sip:open -ims.test SIP /2.0
Call -ID: 4 b2cee039c17f776ec86467645ae5105@192 .168.122.10
CSeq: 10 REGISTER
From: ‘‘Alice ’’ <sip:alice@open -ims.test >; tag =1008
To: ‘‘Alice ’’ <sip:alice@open -ims.test >
Via: SIP /2.0/ UDP 192.168.122.10:5060;
branch = z9hG4bK6c680698f13aa51d35c8725089ebc376333030
Max - Forwards : 20
Expires : 3600
Authorization : Digest username =‘‘alice@open -ims.test ’’,
realm=‘‘open -ims.test ’’,nonce=‘‘’’, response =‘‘’’,
uri=‘‘sip:open -ims.test ’’
Contact : ‘‘Alice ’’ <sip: alice@192 .168.122.10:5060 >;
+sip. instance =d9f148fa -96e8 -49f8 -bec1 - b5e787b5c021
User -Agent: monster Version : 0.9.25
Content - Length : 0
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6.1.2 IMS call setup
The IMS Call Setup procedure involves an exchange of messages between a caller
and a callee as shown in Figure 6.7. In the testbed, Alice either acts as a caller and
Bob acts as a callee or vice versa. After successful registration by both Alice and
BoB, both user agents will able to receive a voice call (or initiate a voice session) by
accepting a SIP INVITE from the other user agent. The call setup session sequence
diagram is shown in Figure 6.8. An example of a SIP REGISTER request message
is shown in Listing 6.2.

Figure 6.7. Basic IMS Call Setup Procedure (Adapted from Figure 3.1 of [61])

Listing 6.2. Example of a SIP INVITE Request
INVITE sip:alice@open -ims.test SIP /2.0
Call -ID: 4 b2cee039c17f776ec86467645ae5105@192 .168.122.10
CSeq: 1 INVITE
From: ‘‘Alice ’’ <sip:alice@open -ims.test >; tag =1008
To: ‘‘Bob ’’ <sip:bob@open -ims.test >
Via: SIP /2.0/ UDP 192.168.122.10:5060;
branch = z9hG4bK6c680698f13aa51d35c8725089ebc376333030
Max - Forwards : 70
Contact : ‘‘Alice ’’ <sip: alice@192 .168.122.10:5060 >;
Route: <sip:pcscf.open -ims.test :4060; transport =udp >,
<sip: orig@scscf .open -ims.test :6060; lr >
Allow: INVITE ,ACK ,CANCEL ,BYE ,MESSAGE ,PRACK , UPDATE
P-Preferred - Identity : <sip:alice@open -ims.test >
Privacy : none
Require : precondition
Supported : 100 rel , precondition ,early - session
P-Access -Network -Info: IEEE -802.11
User -Agent: monster Version : 0.9.25
Content - Length : 674
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Figure 6.8. IMS Call sequence diagram
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6.1.3 Functional testing results
The following are the results we had achieved after performing the functional testing
of IMS cloud testbed:

• Two user profiles for Alice and Bob was created by using an “myMonster”.
Configuration of the IMS network for creating user profiles is described in
Appendix G.1. Alice and Bob had successfully performed registration to
OpenIMS cloud network. Figure 6.9 shows the Alice and Bob myMonster
client window after successfully registration.

(a) Alice Registration (b) Bob Registration

Figure 6.9. myMonster Registration windows

Wireshark (http://www.wireshark.org) is one of world’s foremost open source
network protocol analyzer. Wireshark was used in this thesis project for
analyzing SIP and Diameter protocol messages. Figure 6.10 shows the
Wireshark trace of the SIP registration messages.
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Figure 6.10. Wireshark Trace of SIP Registration messages
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• After successfully registered, Alice initiates audio call to Bob, and waits for
Bob to accept the incoming call. Figure 6.11(a) illustrates the myMonster
outgoing call window. Bob receives an incoming call from Alice. Figure
6.11(b) illustrates the myMonster incoming call window. Bob can accept or
reject the Alice’s call.

(a) Outgoing Call (b) Incoming Call

Figure 6.11. myMonster outgoing and incoming call windows

Bob accepts an Alice’s call by pressing accept button, then a session between
Alice and Bob is created, the resultant windows are shown in Figure 6.12.
Alice or Bob can terminate the session by just closing their windows.

(a) Alice’s Call Session (b) Bob’s Call Session

Figure 6.12. myMonster outgoing and incoming call session windows
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Figure 6.13 shows the Wireshark trace of the SIP INVITE messages.

Figure 6.13. Wireshark Trace of SIP INVITE messages
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6.2 Performance Evaluation
Performance testing on a telecommunication platform implies the simulation of
realistic scenarios. This section described the performance testing that was
conducted by using an IMS Bench SIPp test system.

6.2.1 TestBed description
The hardware specification of physical machine used for realizing an IMS cloud
testbed is presented in Table 6.3. The operating system of all the virtual machines
was Ubuntu Server 12.04.2 LTS. All virtual machines of the IMS cloud testbed were
interconnected via in the same private network.

Table 6.3. Physical Machine Hardware Specification

Components Description
Processor Intel® Xeon® W3530 @ 2.80 GHz CPU 1596 MHz

Memory 12 GB (3 * 4 GB) DDR3 @ 1600 MHz
Hard Disk ST3320413AS SATA 320 GB 7200 rpm

For the purpose of real time monitoring of KPIs (CPU usage, Memory, etc.)
of the SUT virtual machines during each benchmark run, the Zabbix server was
configured on a separate VM and a Zabbix agent was installed in every SUT VM,
and these Zabbix agents transmit the latest KPI data of each VM to the Zabbix
server.The Zabbix (server and agent) configuration is described in Appendix E.
KIP data was collected at Zabbix server node. After the completion of benchmark
testing, all the data within the simulated range of timestamps was fetched using
scripts [62] in a format of “csv” files. The KPI plots were generated from these
“csv” files using MATLAB.

The test system, consisted of a single virtual machine running the IMS bench
manager instance and a single SIPp load generator instance. The instructions
for running such a manager and SIPp are described in Appendix C. To perform
benchmarking, 10,000 subscribers were created in the FHoSS database using a
built-in script. All 10,000 subscribers have generated names (public/private user
identity) ranging from subs000000 to subs999999 and are in the IMS domain named
“open-ims.test”. Figure 6.14 shows the FHoSS management console. Additionaly,
the following performance parameters was enabled for a MySQL cluster:

• Auto-sharding

• Ndb_cluster_connection_pool = 4
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Figure 6.14. FHoSS Management Console

6.2.2 Report Generation Tool

The IMS Bench SIPp built-in tool was used for report generation of our performance
benchmarking. Report generation scripts were executed after completing each
benchmark test to create a complete summery of the benchmark results in Microsoft
Hypertext Archive (MHT) and HyperText Markup Language (HTML) formats.
During benchmark testing data was automatically collected in the form of “.csv”
files by the manager. The commands shown in Listing 6.3 fetch the results collected
during the benchmarking test, and than generate the actual report.

Listing 6.3. Report generation commands
pwd
/root/ ims_bench / ims_bench_7
../ scripts / getResults .pl
../ scripts / doReport .pl -r report .xml -c ../ scripts / reportConfig .xml
-i ims_bench .xml
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6.2.3 Benchmark Simulation Setting
The SUT’s performance was analyzed for the three different IMS cloud testbed
setups described above with respect to the parameter: Scenarios Attempts Per
Second (SAPS). Different scenarios with a defined probability of occurrence are
initiated during each benchmarking step. The probabilities of each scenario were
configured in the benchmark configuration file (i.e. “manager.xml”). Figure 6.15
shows the manager benchmark configuration setting that was used for all the three
IMS cloud setups that were tested.

The pre-registration phase of the benchmarking test was configured to start
at a rate of 5 cps until a maximum of 300 subscribers were registered during the
pre-registration phase. The constant distribution was used for scenario initiation
over time and the maximum global of Inadequately Handled Scenarios (IHS) was
set to 10%. If the number of actual IHS exceeds 10% the testing would be stopped
and an indication that an error had occurred would be output.

The stir phase of the benchmarking test was configured to start with a single
instantaneous increase in rate of calls to 10 cps. The duration of this step-
wise was 300 seconds, Poisson distribution was used for scenarios (registration,
re-registration, de-registration, call session, and message) initiation over time, and
the maximum global IHS was again limited to 10%.

The benchmark run phase of the test was configured to start with a calling
rate of 15 cps, followed by 5 steps which increased the calling rate by 5 cps at
each step. Poisson distribution was used for scenarios (registration, re-registration,
de-registration, call session, and message) initiation over time and the IHS threshold
of 1% of (registration, re-registration, de-registration, call session, and message)
scenario was used instead of maximum global IHS. Therefore, the benchmark
execution automatically stopped when the average percentage of IHS in any scenario
exceeded the threshold of 1%.

The scenarios in both stir and benchmark run phases were configured with a
defined probability of occurrence, specifically the registration scenario of 30%, the
re-registration scenario of 3%, the call session scenario of 20%, the de-registration
scenario of 7%, and the message scenario of 40%. Additionally, the scenario
percentages was chosen by the author and the percentage are not suggested in
ETSI’s IMS/NGN Performance Benchmark specification.
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Figure 6.15. Manager benchmark configuration file
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6.2.4 Analysis of first testbed scenario
The testbed setup for benchmark testing is shown in Figure 6.16.

Figure 6.16. First Testbed Topology

The key summary of the benchmarking results for the first testbed topology
is shown in Table 6.4. Each step of the benchmarking test is categorized by the
request load, the effective load, the global IHS (the global IHS is defined as the
sum of all the IHS for this step divided by the number of scenario attempts for
this step), the scenario’s IHS (number of IHS of this step divided by the number
of scenario attempts for this step), the CPU utilization, and the available memory.
The requested and effective loads are expressed in SAPS, and the available memory
in megabytes (MB).

Table 6.4. Summary of Benchmarking Test

Pre-reg Step - 1 Step - 2 Step - 3 Step - 4 Step - 5
Requested Load 5 15 20 25 30 35
Effective Load 4.90 15.37 19.89 24.68 30.04 35.33

Ratio ims_reg % 100.00 28.76 30.12 29.75 29.97 30.68
Ratio ims_uac % 0.00 9.83 9.89 9.98 9.71 10.09
Ratio ims_dereg % 0.00 6.47 6.99 6.97 7.30 6.88
Ratio ims_msgc % 0.00 52.03 50.44 50.43 49.87 49.55
Ratio ims_rereg % 0.00 2.91 2.55 2.87 3.16 2.81
SIPP CPU mum 21.09 23.01 23.45 23.57 22.14 25.00
SIPP MEM mum 69.49 68.15 70.61 70.55 69.80 72.93
IHS ims_reg % 0.00 0.00 0.00 0.00 0.12 0.17

IHS ims_dereg % 0.00 0.00 0.00 0.00 0.00 0.15
IHS ims_msgc % 0.00 0.00 0.00 0.00 0.00 0.04
global IHS % 0.00 0.00 0.00 0.00 0.04 0.08
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Moreover, the IHS percentage mentioned in Table 6.4 is not the IHS per seconds
(average), but rather IHS is the number of failures for a step divided by the number
of scenario attempts for this step.

6.2.4.1 Analysis of CPU Usage and Available Memory

Figure 6.17(a) depicts that the number of SAPS gradually increases from
pre-registration phase to step-5 together with the CPU utilization of test system’s
VM. It can be seen that the test system (manager and SIPp instance) utilized
approximately 25% of CPU on average during the benchmarking execution. The
test system VM specification was described in Table 6.1. Figure 6.17(b) shows that
the test system consumes varying amounts of VM memory during the execution of
each phase of the benchmarking test.

(a) CPU utilization

(b) Available memory

Figure 6.17. CPU utilization and available memory of the Test System’s VM

The SUT VM’s CPU utilization is shown in Figure 6.18(a). It can be perceived
that the CPU usage of the FHoSS VM increases gradually and reached up to 40%
of the CPU on average during the benchmarking. The average CPU usage of
P-CSCF, I-CSCF, and S-CSCF VMs does not increase and their average CPU usage
is less than 20%. Figure 6.18(b) illustrates that all the SUT VMs consumes memory
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during the benchmarking except that the I-CSCF VM node has constant memory
utilization. Moreover, we see that the amount of available memory in the case of the
VM executing the FHoSS decreases abruptly and almost becomes constant because
of the virtual memory usage of JAVA application (FHoSS) running was reached to
the limit.
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Figure 6.18. CPU utilization and available memory of the SUT VMs

6.2.4.2 Analysis of Calling Scenario

IMS benchmark specification provides information about the calling scenario during
the benchmark execution. Figure 6.19 shows the delay in milliseconds between the
caller sending a SIP INVITE request and a callee receiving the corresponding ACK
message. The x-axis represents the execution time (in seconds from the start) of
benchmarking. The y-axis represents the number of SAPS on a linear scale (on the
left vertical axis) and the delay on a logarithmic scale of 0.1 to 100 milliseconds
(on the right vertical axis). It can be observed that the mean delay is in the range
of 5 to 10 milliseconds during the entire duration of the benchmarking execution,
thus we can conclude that the delay does not increase with an increase in number
of SAPS during each phase of this benchmarking.
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Figure 6.19. Session Setup Time

The delay in milliseconds between the caller sending a SIP INVITE request and
the callee receiving a SIP INVITE request is shown in Figure 6.20. The x-axis
represents the execution time (in seconds since the start) of benchmarking. The
y-axis represents the number of SAPS on a linear scale (on the left vertical axis)
and the delay on a logarithmic scale of 0.01 to 100 milliseconds (on the right vertical
axis). It can be observed that the mean delay is in the range of 1 to 5 milliseconds
during the entire duration of the benchmarking execution, thus we can conclude
that the delay does not increase with an increase in number of SAPS during each
phase of this benchmarking.

Figure 6.20. Session Initiation transversal time

The delay in milliseconds between the first BYE and the corresponding 200 OK
is illustrated in Figure 6.21. The x-axis represents the execution time (in seconds
since the start) of benchmarking. The y-axis represents the number of SAPS on a
linear scale (on the left vertical axis) and the delay on a logarithmic scale of 0.1 to
1000 milliseconds (on the right vertical axis). It can be observed that the mean delay
is in the range of 1 to 5 milliseconds during the entire duration of the benchmarking
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execution, thus we can conclude that the delay does not increase with an increase
in number of SAPS during each phase of this benchmarking.

Figure 6.21. Delay Between BYE and 200 OK

6.2.4.3 Analysis of Message Scenario

IMS benchmark specification includes a message scenario. The delay in milliseconds
between the sending of a message and the corresponding 200 OK is shown in Figure
6.22. The x-axis represents the execution time (in seconds since the start) of
benchmarking test. The y-axis represents the number of SAPS on a linear scale (on
the left vertical axis) and the delay on a logarithmic scale of 0.1 to 1000 milliseconds
(on the right vertical axis). It can be observed that the mean delay is in the range
of 1 to 5 milliseconds during the entire duration of the benchmarking execution,
thus we can conclude that the delay does not increase with an increase in number
of SAPS during each phase of this benchmarking.

Figure 6.22. Message Transmission time
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6.2.4.4 Analysis of Registration Scenario

IMS benchmark specification includes a registration scenario. The delay between
the first SIP REGISTER request and the 401 Unauthorized response is shown for all
the benchmark phases in the registration use case during the benchmark is shown
in Figure 6.23. The x-axis represents the execution time (in seconds since the start)
of benchmarking test. The y-axis represents the number of SAPS on a linear scale
(on the left vertical axis) and the delay on a logarithmic scale (on the right vertical
axis). It can be observed that the mean delay is in the range of 20 to 50 milliseconds
during the entire duration of the benchmarking execution.

Figure 6.23. Time of the first register transaction

Figure 6.24 depicts the delay between the second REGISTER message and the
corresponding 200 OK message in the registration scenario. The x-axis represents
the execution time (in seconds since the start) of benchmarking test. The y-axis
represents the number of SAPS on a linear scale (on the left vertical axis) and the
delay on a logarithmic scale of 0.1 to 1000 milliseconds (on the right vertical axis).
It can be observed that the mean delay is in the range of 20 to 40 milliseconds
during the entire duration of the benchmarking execution.

Figure 6.24. Time of the second register transaction
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6.2.5 Analysis of second testbed scenario

The testbed setup for this second testbed scenario for benchmark testing is shown
in Figure 6.25.

Figure 6.25. Second Testbed Topology

A summery of the benchmarking test results for second testbed topology is
shown in Table 6.5. The terms of the table are explained in Section 6.2.4.

Table 6.5. Summary of Benchmarking Test

Pre-reg Step - 1 Step - 2 Step - 3 Step - 4 Step - 5
Requested Load 5 15 20 25 30 35
Effective Load 4.90 14.65 19.97 25.00 30.28 35.31

Ratio ims_reg % 100.00 29.25 30.06 30.04 29.31 29.87
Ratio ims_uac % 0.00 11.00 9.66 10.11 10.45 10.19
Ratio ims_dereg % 0.00 7.17 6.56 6.98 7.61 7.03
Ratio ims_msgc % 0.00 50.01 51.41 49.64 49.76 49.84
Ratio ims_rereg % 0.00 2.57 2.30 3.22 2.87 3.07
SIPP CPU mum 21.27 23.10 23.75 23.96 23.26 24.66
SIPP MEM mum 69.85 70.78 70.56 67.27 73.93 71.21
IHS ims_reg % 0.00 0.00 0.00 0.00 0.08 0.53
IHS ims_rereg % 0.00 0.00 0.00 0.00 0.00 0.34
global IHS % 0.00 0.00 0.00 0.00 0.02 0.17
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6.2.5.1 Analysis of CPU Utilization and Available Memory

The CPU utilization of the test system is shown in Figure 6.26(a). The number
of SAPS gradually increases during the benchmark. The test system’s VM
specification was described in Table 6.1. The test system’s free memory during
the benchmark’s execution is shown in Figure 6.26(b).

(a) CPU utilization

(b) Available memory

Figure 6.26. CPU utilization and available memory of the Test System’s VM

Figure 6.27(a) depicts the CPU utilization of the SUT’s VMs. It can be seen
that the CPU usage of the FHoSS-Layers and MySQL-DB VM increase gradually
and CPU usage is less than 40% during the benchmarking. MySQL-DB node has
visible peaks of greater than 40% average CPU utilization. The CPU usage of
P-CSCF, I-CSCF, and S-CSCF VMs CPU usage is less than 20% on average.
The memory consumption of the SUT’s VM during the benchmark’s execution are
shown in Figure 6.27(b). It can be observed that the FHoSS-Layer’s VM consumes
abruptly and almost becomes constant because of the virtual memory usage of JAVA
application (FHoSS) running was reached to the limit.
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Figure 6.27. CPU utilization and available memory of SUT’s VMs

6.2.5.2 Analysis of Calling Scenario

The delay in milliseconds between the caller sending a SIP INVITE request and the
callee receiving the corresponding ACK message is depict in Figure 6.28. The x-axis
represents the execution time (in seconds since the start) of the benchmarking test.
The y-axis represents the number of SAPS on a linear scale (on the left vertical
axis) and the delay on a logarithmic scale of 0.1 to 1000 milliseconds (on the right
vertical axis). It can be observed that the mean delay is in the range of 5 to 10
milliseconds during the entire duration of the benchmarking execution.

Figure 6.28. Session Setup Time

Figure 6.29 illustrates the delay in milliseconds between the caller sending
a SIP INVITE request and the callee receiving the corresponding SIP INVITE
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request. The x-axis represents the execution time (in seconds since the start) of
the benchmarking test. The y-axis represents the number of SAPS on a linear
scale (on the left vertical axis) and the delay on a logarithmic scale of 0.01 to 1000
milliseconds (on the right vertical axis). It can be observed that the mean delay is
in the range of 1 to 5 milliseconds during the entire duration of the benchmarking
execution.

Figure 6.29. Session Initiation transversal time

Figure 6.30 depicts the delay between the first BYE and the corresponding 200
OK message. The x-axis represents the execution time (in seconds since the start) of
benchmarking test. The y-axis represents the number of SAPS on a linear scale (on
the left vertical axis) and the delay on a logarithmic scale of 0.1 to 100 milliseconds
(on the right vertical axis). It can be observed that the mean delay is in the range
of 1 to 5 milliseconds during the entire duration of the benchmarking execution.

Figure 6.30. Delay Between BYE and 200 OK
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6.2.5.3 Analysis of Message Scenario

The delay in milliseconds between the SIP Message and the corresponding 200 OK
response is shown in Figure 6.31. The x-axis represents the execution time (in
seconds since the start) of benchmarking test. The y-axis represents the number
of SAPS on a linear scale (on the left vertical axis) and the delay on a logarithmic
scale of 0.1 to 1000 milliseconds (on the right vertical axis). It can be observed that
the mean delay is in the range of 1 to 5 milliseconds during the entire duration of
the benchmarking execution, thus we can conclude that the delay does not increase
with an increase in the number of SAPS during each phase of this benchmarking.

Figure 6.31. Message Transmission time

6.2.5.4 Analysis of Registration Scenario

The delay in milliseconds between the first SIP REGISTER request and the 401
Unauthorized message for all the benchmark phases in the registration use case
during benchmark execution is shown in Figure 6.32. The x-axis represents the
execution time (in seconds since the start) of benchmarking test. The y-axis
represents the number of SAPS on a linear scale (on the left vertical axis) and
the delay on a logarithmic scale of 0.1 to 10000 milliseconds (on the right vertical
axis). It can be observed that the mean delay is in the range of 30 to 80 milliseconds
during the entire duration of the benchmarking execution.
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Figure 6.32. Time of the first register transaction

The delay in milliseconds between the second REGISTER and the 200 OK
message in the registration scenario is shown in Figure 6.33. The x-axis represents
the execution time (in seconds since the start) of benchmarking test. The y-axis
represents the number of SAPS on a linear scale (on the left vertical axis) and the
delay on a logarithmic scale of 0.1 to 1000 milliseconds (on the right vertical axis).
It can be observed that the mean delay is in the range of 40 to 60 milliseconds
during the entire duration of the benchmarking execution.

Figure 6.33. Time of the second register transaction
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6.2.6 Analysis of third testbed scenario
The testbed setup for this third testbed scenario for benchmark testing is shown in
Figure 6.34.

Figure 6.34. Third Testbed Topology

A summery of the benchmarking test for the third testbed topology is shown in
Table 6.6. The terms in this table were explained in Section 6.2.4.
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Table 6.6. Summary of Benchmarking Test

Pre-reg Step - 1 Step - 2 Step - 3 Step - 4 Step - 5
Requested Load 5 15 20 25 30 35
Effective Load 4.90 15.42 20.19 24.60 29.99 34.76

Ratio ims_reg % 100.00 29.89 30.59 29.57 29.62 29.70
Ratio ims_uac % 0.00 10.17 9.56 9.51 9.96 9.98
Ratio ims_dereg % 0.00 7.08 6.73 7.33 7.41 6.70
Ratio ims_msgc % 0.00 49.95 49.85 50.20 49.79 50.51
Ratio ims_rereg % 0.00 2.90 3.27 3.38 3.22 3.12
SIPP CPU mum 28.32 27.98 28.53 28.66 30.54 30.40
SIPP MEM mum 75.58 77.82 73.11 74.68 74.45 74.07
IHS ims_reg % 0.00 0.00 0.06 0.00 0.00 0.00

IHS ims_dereg % 0.00 0.34 0.54 0.00 0.00 0.48
IHS ims_msgc % 0.00 0.00 0.00 0.06 0.00 0.00
IHS ims_rereg % 0.00 0.00 0.00 0.44 0.00 0.00
global IHS % 0.00 0.02 0.06 0.05 0.00 0.03

6.2.6.1 Analysis of CPU Utilization and Available Memory

The CPU utilization of the test system is shown in Figure 6.35(a). The number of
SAPS gradually increases during the benchmark. The test system’s free memory
decreases during the benchmark’s execution is shown in Figures 6.35(b).

(a) CPU Utilization

(b) Available Memory

Figure 6.35. CPU utilization and available memory of Test System’s VM
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Figure 6.36(a) illustrates the CPU usage of P-CSCF, I-CSCF, and S-CSCF VMs.
The CPU usage of the P-CSCF, I-CSCF, and S-CSCF is less than 20% on average
except for S-CSCF which has one peak of greater than 50%. The CPU usage of the
FHoSS Layers and HAProxy load balancer nodes VM is shown in Figure 6.36(b) and
the average CPU usage is less than 40%. The HAProxy load balancer backup node
has three peaks which indicates that some of the incoming requests are handled by
the backup node. Figure 6.36(c) depicts the CPU utilization of the MySQL cluster
nodes. Cluster front-end MySQL server nodes has an average CPU utilizaition of
less than 60% and the average CPU usage of the management node is less than
20%. The data storage node’s CPU utilization gradually increases, but remains less
than 90% of CPU usage on average. The data nodes have high CPU utilizaition
because of high number of input/output (I/O) waiting requests, which is shown in
Figure 6.36(d). Additionaly, each data node have separate disk storage created by
the hypervisor on a physical machine hard disk.
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(b) CPU utilization of FHoSS Layers and LBs
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(c) CPU utilization of MySQL cluster nodes

10 20 30 40 50 60 70
15

20

25

30

35

40

45

Number of Measurements

IO
 W

a
it
 %

VMs IO Wait Percentage

 

 

DataNode−1

DataNode−2

(d) CPU I/O wait of MySQL cluster nodes

Figure 6.36. CPU utilization of SUT’s VMs
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Figure 6.37(a) illustrates the available memory of the CSCFs, FHoSS Layers,
and HAProxy load balancer (LB) VMs. It can be noted that the load balancer
VMs does not consume memory during the benchmarking execution. The available
memory of the MySQL cluster nodes is shown in Figurer 6.37(b), which indicates
that cluster nodes does not consumes memory during the benchmarking execution.
However, MySQL cluster nodes (management, data storage, and MySQL server)
VMs have the 512 MB, 2048 MB, and 1024 MB installed memory (respectively).
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Figure 6.37. Available memory of SUT VMs

6.2.6.2 Analysis of Calling Scenario

The delay in milliseconds between the caller sending a SIP INVITE request and
callee receiving the corresponding ACK message is shown in Figure 6.38. The
x-axis represents the execution time (in seconds since the start) of benchmarking
test. The y-axis represents the number of SAPS on a linear scale (on the left vertical
axis) and the delay on a logarithmic scale of 0.1 to 1000 milliseconds (on the right
vertical axis). It can be observed that the mean delay is in the range of 5 to 60
milliseconds during the entire duration of the benchmarking execution.
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Figure 6.38. Session Setup Time

The delay in milliseconds between the caller sending a SIP INVITE request
and the callee receiving the corresponding SIP INVITE request is shown in Figure
6.39. The x-axis represents the execution time (in seconds since the start) of
benchmarking test. The y-axis represents the number of SAPS on a linear scale
(on the left vertical axis) and the delay on a logarithmic scale of 0.01 to 1000
milliseconds (on the right vertical axis). It can be observed that the mean delay is
in the range of 1 to 30 milliseconds during the entire duration of the benchmarking
execution.

Figure 6.39. Session Initiation transversal time

Figure 6.40 illustrated the delay between the first BYE and the corresponding
200 OK message. The x-axis represents the execution time (in seconds since the
start) of benchmarking test. The y-axis represents the number of SAPS on a linear
scale (on the left vertical axis) and the delay on a logarithmic scale of 0.1 to 1000
milliseconds (on the right vertical axis). It can be observed that the mean delay is
in the range of 1 to 30 milliseconds during the entire duration of the benchmarking
execution. It can be seen that in step 5 bezier curve start declining, but the mean
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and the standard deviation are higher in step 5 due to the spread out of data over
large range of values. The statistical analysis is described in Section 6.2.8.3.

Figure 6.40. Delay Between BYE and 200 OK

6.2.6.3 Analysis of Message Scenario

The delay in milliseconds between the SIP Message and the 200 OK message is
shown in Figure 6.41. The x-axis represents the execution time (in seconds since
the start) of benchmarking test. The y-axis represents the number of SAPS on
a linear scale (on the left vertical axis) and the delay on a logarithmic scale of
0.1 to 1000 milliseconds (on the right vertical axis). It can be observed that the
mean delay is in the range of 1 to 40 milliseconds during the entire duration of the
benchmarking execution.

Figure 6.41. Message Transmission time
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6.2.6.4 Analysis of Registration Scenario

The delay in milliseconds between the first SIP REGISTER request and the 401
Unauthorized message for all the benchmark phases in the registration use case
during benchmark execution is shown in Figure 6.42. The x-axis represents the
execution time (in seconds since the start) of benchmarking test. The y-axis
represents the number of SAPS on a linear scale (on the left vertical axis) and
the delay on a logarithmic scale of 0.1 to 1000 milliseconds (on the right vertical
axis). It can be observed that the mean delay is in the range of 80 to 160 milliseconds
during the entire duration of the benchmarking execution.

Figure 6.42. Time of the first register transaction

The delay in milliseconds between the second REGISTER and the corresponding
200 OK message in the registration scenario is shown in Figure 6.43. The x-axis
represents the execution time (in seconds since the start) of benchmarking test.
The y-axis represents the number of SAPS on a linear scale (on the left vertical
axis) and the delay on a logarithmic scale of 0.1 to 1000 milliseconds (on the right
vertical axis). It can be observed that the mean delay is in the range of 130 to 190
milliseconds during the entire duration of the benchmarking execution.

Figure 6.43. Time of the second register transaction
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6.2.7 QoS Analysis of IMS Registration Request Delay (RRD)
The registration request delay (RRD) is the time interval from when the user agent
originates the initial SIP REGISTER message to the intended registrar, until the
corresponding 200 OK message is received, indicating a successful registration.
RRD is expressed in units of milliseconds [63]. The contributions to RRD are
illustrated in Figure 6.44. RRD is the sum of two time intervals t1 and t2, where
t1 is the time interval from sending the first SIP REGISTER request until a 401
Unauthorized response is received and t2 is the time interval from sending the second
SIP REGISTER request until the corresponding 200 OK message is received. In
this thesis project, we employed the IMS Bench SIPp test system to measure the
RRD.

Figure 6.44. Registration request delay (Adapted from Section 4.1 Figure of [63])
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The difference in RRD measurements of three testbed scenarios will be described
with the help of Figures 6.45, 6.46 and 6.47. In the first testbed scenario, MySQL
database resides at level zero as shown in Figure 6.45, while in second testbed
scenario the MySQL database resides at level one as shown in Figure 6.46, which
results in the RRD being higher than measured in first testbed scenario. Figure 6.44
showed an example of RRD for the second testbed case. The subscriber’s data is at
level three in the third testbed scenario as shown in Figure 6.47, which results in a
RRD greater than the other two scenarios. The impact of higher RRD was visible
in the analysis of the registration scenarios. Table 6.7 summarizing the mean RRD
values that were measured for the three different testbeds. However, this increased
delay of the registration request results from that system’s improved ability to scale
the FHoSS database instances horizontally.

Table 6.7. Summary of mean RRD measurements

Step Requested
Load

TestBed - 1
Mean RRD

(msec)

TestBed - 2
Mean RRD

(msec)

TestBed - 3
Mean RRD

(msec)
Pre-reg 5 60.52 91.36 216.42

1 15 57.87 87.61 235.38
2 20 59.32 94.90 251.29
3 25 62.38 95.60 261.63
4 30 64.60 103.81 274.20
5 35 70.90 124.35 339.75

Figure 6.45. Subscriber’s data level of first testbed

Figure 6.46. Subscriber’s data level of second testbed
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Figure 6.47. Subscriber’s data level of third testbed
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6.2.8 Statistical Analysis of Calling Scenario
This section described the statistical analysis of calling scenario of three different
testbeds.

6.2.8.1 Statistical Analysis of Session Setup Time

The statistical analysis of the delay in milliseconds between the caller sending a
SIP INVITE request and callee receiving the corresponding ACK message of three
different testbeds are shown in Tables 6.8, 6.9, and 6.10 respectively.

Table 6.8. Session Setup Time of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 6.00 3.09 3.72 52.70
2 20 6.49 7.17 3.47 114.31
3 25 5.84 2.25 3.55 46.77
4 30 6.85 14.04 3.12 253.49
5 35 6.65 8.95 3.11 142.13

Table 6.9. Session Setup Time of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 5.93 8.80 3.20 181.92
2 20 6.16 8.57 3.19 185.02
3 25 5.87 4.10 3.40 85.95
4 30 6.20 5.59 3.22 94.54
5 35 7.01 16.85 2.92 336.33

Table 6.10. Session Setup Time of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 6.40 6.27 3.16 81.89
2 20 8.84 14.41 3.38 151.07
3 25 12.33 22.31 3.04 198.71
4 30 19.05 36.14 2.92 364.03
5 35 56.70 111.25 2.93 814.83
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6.2.8.2 Statistical Analysis of Session Initiation Transversal Time

The statistical analysis of the delay in milliseconds between the caller sending a
SIP INVITE request and callee receiving the corresponding SIP INVITE request of
three different testbeds are shown in Tables 6.11, 6.12, and 6.13 respectively.

Table 6.11. Session Initiation Transversal Time of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 2.25 2.63 1.06 48.53
2 20 2.41 4.15 1.20 85.25
3 25 2.16 2.02 1.16 43.93
4 30 2.21 3.06 0.93 72.92
5 35 2.35 3.97 0.87 73.36

Table 6.12. Session Initiation Transversal Time of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 2.39 8.09 1.00 179.10
2 20 2.14 1.88 1.09 30.70
3 25 2.07 1.73 0.96 37.46
4 30 2.19 2.68 1.02 45.31
5 35 2.68 10.77 0.85 254.39

Table 6.13. Session Initiation Transversal Time of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 2.47 4.20 0.93 76.22
2 20 3.77 10.68 1.04 130.10
3 25 5.05 14.12 1.01 147.25
4 30 7.45 19.41 0.94 181.15
5 35 27.68 78.19 0.96 652.31
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6.2.8.3 Statistical Analysis of Delay Between BYE and 200 OK

The statistical analysis of the delay in milliseconds between the first BYE and the
corresponding 200 OK message of three different testbeds are shown in Tables 6.14,
6.15, and 6.16 respectively.

Table 6.14. Delay Between BYE and 200 OK of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 3.79 11.00 1.53 232.70
2 20 3.09 1.16 1.36 16.34
3 25 3.26 3.88 1.35 93.98
4 30 3.48 4.87 1.32 91.63
5 35 3.89 11.24 1.19 292.33

Table 6.15. Delay Between BYE and 200 OK of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 3.03 1.13 1.41 17.00
2 20 3.15 2.27 1.38 35.53
3 25 3.19 7.18 1.38 196.44
4 30 3.41 6.25 1.39 162.74
5 35 3.56 7.06 1.39 207.49

Table 6.16. Delay Between BYE and 200 OK of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 3.82 6.85 1.38 76.73
2 20 5.98 19.58 1.33 246.58
3 25 8.46 42.63 1.24 972.34
4 30 16.97 53.33 1.28 758.63
5 35 24.45 93.23 1.52 973.82
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6.2.9 Statistical Analysis of Message Scenario
The statistical analysis of the delay in milliseconds between the SIP Message and
the 200 OK message of three different testbeds are shown in Tables 6.17, 6.18, and
6.19 respectively.

Table 6.17. Message Transmission time of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 3.68 16.06 1.29 607.26
2 20 3.23 3.78 1.14 186.94
3 25 3.11 1.42 1.40 39.66
4 30 3.50 9.13 1.21 248.82
5 35 3.63 8.97 1.36 282.32

Table 6.18. Message Transmission time of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 3.42 11.55 1.34 361.96
2 20 3.00 2.05 1.15 82.54
3 25 2.98 2.22 1.24 57.44
4 30 3.18 3.97 1.14 95.39
5 35 3.51 9.36 1.22 361.15

Table 6.19. Message Transmission time of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 3.59 6.02 1.31 116.93
2 20 4.86 15.00 1.22 453.31
3 25 6.32 17.27 1.35 245.67
4 30 10.22 28.08 1.24 370.54
5 35 36.58 110.57 1.36 1041.87
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6.2.10 Statistical Analysis of Registration Scenario
This section described the statistical analysis of registration scenario of three
different testbeds.

6.2.10.1 Statistical Analysis of Time of the first register transaction

The statistical analysis of the delay in milliseconds between the first SIP REGISTER
request and the 401 Unauthorized message of three different testbeds are shown in
Tables 6.20, 6.21, and 6.22 respectively.

Table 6.20. Time of the first register transaction of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 29.20 23.64 12.49 336.83
1 15 34.07 40.87 7.82 680.29
2 20 31.10 42.31 7.96 834.17
3 25 32.78 39.26 7.58 674.00
4 30 38.23 80.82 7.57 1212.49
5 35 43.05 70.62 7.50 609.80

Table 6.21. Time of the first register transaction of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 39.52 19.72 19.81 171.04
1 15 41.65 58.99 11.54 837.69
2 20 47.58 95.09 13.32 1225.46
3 25 46.54 64.81 12.48 874.32
4 30 52.50 192.12 12.92 7535.91
5 35 71.39 329.99 11.41 7841.55

Table 6.22. Time of the first register transaction of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 81.68 26.57 35.04 237.88
1 15 93.09 41.50 32.26 428.31
2 20 100.57 52.10 34.30 617.31
3 25 106.78 60.56 35.47 556.75
4 30 114.33 61.98 31.11 841.24
5 35 151.18 109.30 33.30 978.65
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6.2.10.2 Statistical Analysis of Time of the second register transaction

The statistical analysis of the delay in milliseconds between the second REGISTER
and the corresponding 200 OK message of three different testbeds are shown in
Tables 6.23, 6.24, and 6.25 respectively.

Table 6.23. Time of the second register transaction of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 31.32 14.77 17.13 165.99
1 15 23.80 21.02 11.05 385.22
2 20 28.22 29.02 10.97 651.40
3 25 29.60 23.82 11.04 759.73
4 30 26.37 32.00 11.17 655.29
5 35 27.85 32.96 10.87 607.15

Table 6.24. Time of the second register transaction of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 51.84 9.08 28.17 104.10
1 15 45.96 33.63 18.29 892.87
2 20 47.32 24.04 18.51 480.69
3 25 49.06 32.59 17.82 842.86
4 30 51.31 33.73 17.94 583.50
5 35 52.96 31.75 17.94 634.33

Table 6.25. Time of the second register transaction of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 134.74 23.71 57.37 243.48
1 15 142.29 41.99 48.34 567.60
2 20 150.72 45.27 60.74 553.33
3 25 154.85 51.86 57.66 606.63
4 30 159.87 52.14 50.97 781.67
5 35 188.57 91.10 63.42 1025.61
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6.2.11 Statistical Analysis of Registration Scenario Retransmissions
Retransmissions occur when the corresponding response of an SIP request is not
received within a defined period. The SIP standard timeout defines that the first
retransmission takes place when a SIP request has been sent and the response is
not received in 500 milliseconds [64]. The number of retransmissions per second for
the registration scenario for all the three testbeds is illustrated in Tables 6.26, 6.27,
and 6.28 respectively.

Table 6.26. Registration scenario retransmissions of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 0.00 0.00 0.00 0.00
1 15 0.07 0.51 0.00 6.00
2 20 0.07 0.56 0.00 6.00
3 25 0.01 0.18 0.00 3.00
4 30 0.18 0.89 0.00 11.00
5 35 0.17 0.55 0.00 4.00

Table 6.27. Registration scenario retransmissions of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 0.00 0.00 0.00 0.00
1 15 0.02 0.15 0.00 2.00
2 20 0.06 0.52 0.00 6.00
3 25 0.04 0.31 0.00 3.00
4 30 0.10 0.47 0.00 5.00
5 35 0.41 1.04 0.00 7.00

Table 6.28. Registration scenario retransmissions of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 0.00 0.00 0.00 0.00
1 15 0.01 0.13 0.00 2.00
2 20 0.01 0.11 0.00 1.00
3 25 0.06 0.46 0.00 5.00
4 30 0.05 0.37 0.00 5.00
5 35 0.48 1.75 0.00 15.00
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6.2.12 Statistical Analysis of Calling Scenario Retransmissions
The number of retransmissions per second for the calling scenario for all the three
testbeds is illustrated in Tables 6.29, 6.30, and 6.31 respectively.

Table 6.29. Calling scenario retransmissions of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 0.00 0.00 0.00 0.00
2 20 0.00 0.00 0.00 0.00
3 25 0.00 0.00 0.00 0.00
4 30 0.00 0.00 0.00 0.00
5 35 0.00 0.00 0.00 0.00

Table 6.30. Calling scenario retransmissions of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 0.00 0.00 0.00 0.00
2 20 0.00 0.00 0.00 0.00
3 25 0.00 0.00 0.00 0.00
4 30 0.00 0.00 0.00 0.00
5 35 0.00 0.06 0.00 1.00

Table 6.31. Calling scenario retransmissions of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

1 15 0.00 0.00 0.00 0.00
2 20 0.00 0.00 0.00 0.00
3 25 0.00 0.00 0.00 0.00
4 30 0.00 0.06 0.00 1.00
5 35 0.13 0.82 0.00 9.00
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6.2.13 Statistical Analysis of IHS percentage
The percentage of IHS for all three testbed cases are shown in tables 6.32, 6.33,
and 6.34 respectively. It can be observed that the mean percentage of IHS does not
reached the defined threshold of 1% for each steps of all three testbed cases.

Table 6.32. IHS per use_case percentage of first testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 0.00 0.00 0.00 0.00
1 15 0.00 0.00 0.00 0.00
2 20 0.00 0.00 0.00 0.00
3 25 0.00 0.00 0.00 0.00
4 30 0.05 0.39 0.00 3.70
5 35 0.07 0.47 0.00 5.41

Table 6.33. IHS per use_case percentage of second testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 0.00 0.00 0.00 0.00
1 15 0.00 0.00 0.00 0.00
2 20 0.00 0.00 0.00 0.00
3 25 0.00 0.00 0.00 0.00
4 30 0.03 0.33 0.00 3.45
5 35 0.15 1.02 0.00 12.50

Table 6.34. IHS per use_case percentage of third testbed

Step Requested
Load Mean Standard

Deviation Minimun Maximum

Pre-reg 5 0.00 0.00 0.00 0.00
1 15 0.06 0.64 0.00 8.33
2 20 0.04 0.44 0.00 5.56
3 25 0.05 0.45 0.00 4.55
4 30 0.00 0.00 0.00 0.00
5 35 0.03 0.26 0.00 2.94



Chapter 7

Conclusions and Future Work

This discusses all the results obtained in this master’s thesis project. Additionally,
some suggested future work to build upon this master thesis project is suggested in
order to continue to enhance the system. Moreover, some required reflections are
presented in Section 7.3.

7.1 Conclusions

The test infrastructure has been designed to analyzed the impact of virtualization
of an IMS core network. The FHoSS database infrastructure has been enhanced in
order to offer high availability and high scalability. Additionally, a solution has been
proposed to synchronize the MySQL cluster by integrating a HAProxy load balancer
in a passive architecture in order to meet the requirements of high availability and
high scalability.

Functional testing has been performed after successfully deploying and
configuring a OpenIMS core with an integrated MySQL cluster acting as a FHoSS
database. All of the virtual machines have been placed on top of a hypervisor
on a single physical machine. A SIP based soft phone “myMonster” was used
for functional testing. Performance testing of virtualized IMS testbed has been
conducted using an open source implementation of ETSI’s IMS/NGN Performance
Benchmark specification (i.e. the IMS Bench SIPp test system). The results of the
performance testing would be better, if the testing shall be performed by deploying
all the testbed components on separate computing resources connected with high
speed network.

When deploying and configuring the testbed, most of the problems were related
to the configuration of the OpenIMS core components, IMS Bench SIPp, and
Zabbix configuration. The FHoSS was written entirely in JAVA with a focus
on conformance rather than performance as stated in [41]. An open questions
is what would the performance be for an implementation written with a focus on
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performance.

7.2 Future Work
This master’s thesis project analyzed the virtualization of OpenIMS core,
integrated the FHoSS MySQL database with MySQL cluster technology (in order to
synchronize a horizontally scalable database), and the system performance was
evaluated. Future work should examine a IMSaaS solution. Figure 7.1 shows
the high level IMS network cloud architecture. The following specific areas for
enhancement are suggested:

• Investigate and implement a load balancing mechanism for the IMS network.
In [65], they proposed a SIP based load balancing solution between the
P-CSCF and UE. In this approach the load balancer acts as a SIP proxy
for the IMS network. The load balancing provides the scalability of P-CSCF
IMS core component.

• Investigate and implement a load balancing solution for I-CSCF and S-CSCF
core components of IMS. It might be useful to use a software defined network
(SDN) approach to load balancing for I-CSCF and S-CSCF. In [66] and
[67], they proposed OpenFlow based load balancing for different services.
OpenFlow is an open source implementation of SDN. A similar approach could
be used to implement a load balancing mechanism to improve the scalability of
I-CSCF and S-CSCF components.

• Investigate and implement a Cx diameter interface load balancing mechanism
in order to improve the HSS front-end diameter layer scalability. There are
many proposed solutions [68, 69, 70] related to the HSS front-end diameter
interface scalability.

• Perform testing of a complete IMS network scalability realized over a large
scale cloud infrastructure, such as BoneFIRE (http://www.bonfire-project.
eu).

http://www.bonfire-project.eu
http://www.bonfire-project.eu
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Figure 7.1. High level Cloud realization of an IMS network architecture

7.3 Required Reflections
This master’s thesis project enhanced my knowledge and skills regarding
scientific report writing with appropriate references and citations, and I learned
about a number of open source technologies which were used to setup the testbed
environment. This thesis project presents an solution for database scalability using
MySQL cluster technology, hence the FHoSS has the potential to be deployed
over a large scale IMS cloud network. The proposed solution provides a greater
number of potential benefits in terms of economic aspect. The project testbed was
deployed using an open source technologies that can help reduce the deployment
cost of future IMS realizations. This could have large economic impact by enabling
the deployment of an open source technologies based solution. Considering the
limitations of the thesis work, the proposed future work motivates the further
enhancement of the system.
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Appendix A

Installation and Configuration of an
OpenIMS Core

A.1 Prerequisites

First prepare the environment by installing the following packages.

sudo apt-get install debhelper cdbs lintian build-essential fakeroot devscripts pbuilder
dh-make debootstrap dpatch flex libxml2-dev libmysqlclient15-dev sun-java6-jdk ant
docbook-to-man

A.2 Installation and Configuration of CSCFs

A.2.1 Get the Source Code

Create a new directory “ser_ims” at a default location “/opt/OpenIMSCore”.
Afterwords, get the source code which is available at http://svn.berlios.de/
svnroot/repos/openimscore/.

cd /opt/OpenIMSCore
mkdir ser_ims
svn checkout http://svn.berlios.de/svnroot/repos/openimscore/ser_ims/trunk ser_ims

A.2.2 Compile

Go inside the directory “ser_ims” and compile the source code by executing the
make libs install command.

cd ser_ims
make install-libs all
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A.2.3 Configure

First copy all the *.xml, *.cfg and *.sh files from “ser_ims/cfg/” to “/opt/OpenIM-
SCore”. Afterwords, use the “configurator.sh” to configure with specific IP address
and Domain name. By default all the components are configured with “127.0.0.1”
and “open-ims.test”.

cp ser_ims/cfg/*.cfg .
cp ser_ims/cfg/*.xml .
cp ser_ims/cfg/*.sh .

A.3 Installation and Configuration of HSS

A.3.1 Get the Source Code

First create a new directory “FHoSS” at a default location “/opt/OpenIMSCore”.
Afterwords, get the source code which is available at http://svn.berlios.de/
svnroot/repos/openimscore/.

cd /opt/OpenIMSCore
mkdir FHoSS
svn checkout http://svn.berlios.de/svnroot/repos/openimscore/FHoSS/trunk FHoSS

A.3.2 Compile

First set the environment variable “JAVA_HOMA” and go inside the directory
“FHoSS”. Afterwords, build the binaries from source by executing the following
command.

cd FHoSS
ant compile deploy

A.3.3 Configure

For configuration of Home Subscriber Server (HSS), first create a MySQL database
using the following scripts and populate it with the default configuration.

pwd
/opt/OpenIMSCore
mysql -u root -p < FHoSS/scripts/hss_db.sql
mysql -u root -p < FHoSS/scripts/userdata.sql
mysql -u root -p < ser_ims/cfg/icscf.sql

At this point, MySQL database is configured and working properly. Now
take a look into the HSS configuration files which exists inside the directory

http://svn.berlios.de/svnroot/repos/openimscore/
http://svn.berlios.de/svnroot/repos/openimscore/
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“FHoSS/deploy/”.

DiameterPeerHSS.xml : It provides a peer configuration parameters such as
FQDN, Realm, Acceptor Port or Authorized identifiers.

hibernate.properties : It provides a hibernate configuration parameters; by
default MySQL server was configured on a local host (127.0.0.1:3306) and hibernate
connect to MySQL server via JDBC connector.

hss.properties : It provides a configuration parameter that is relevant to the
FHoSS web interface.

log4j.properties : It provides a logging configuration.

A.4 DNS Server Configuration
Modify the DNS server zone file according to the IP addresses of CSCFs and HSS,
by default all the components are configured with localhost. First copy the zone
file “open-ims.dnszone” into “/etc/bind/” directory.

cp ser_ims/cfg/open-ims.dnszone /etc/bind/

Add the following piece of lines into the file “/etc/bind/named.local”

zone “open-ims.test” IN {
type master;
file “/etc/bind/open-ims.dnszone”;
notify no;
};

Afterwords, run the DNS server by executing the following command.

/etc/init.d/bind9 start

Furthermore, add the following lines into a file “/etc/resolv.conf” to ensure DNS
server working properly,

search open-ims.test
domain open-ims.test

A.5 Run the OpenIMS Core
After successful installation and configuration of an OpenIMS core, start the
OpenIMS core components by exciting the following scripts.
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pwd
/opt/OpenIMSCore
./pcscf.sh
./icscf.sh
./scscf.sh
FHoSS/deploy/startup.sh



Appendix B

Installation and Configuration of
MySQL Cluster

B.1 Download MySQL Cluster Software
MySQL cluster is an Open Source software and can be downloaded the latest version
of MySQL cluster software form a site http://www.mysql.com/downloads/cluster/
according the operating system.

B.2 Installation and Configuration of Management Node
This step described the installation and configuration of Management node of a
MySQL cluster.

B.2.1 Installation of Management Node
Locate the MYSQL cluster software that you have downloaded, and step up the
management node environment.

pwd
/net/u/mum/Downloads
mv mysql-cluster-gpl-7.2.12-linux2.6-x86_64.tar.gz /usr/local
adduser mysql
addgroup mysql
cd /usr/local
tar xvfz mysql-cluster-gpl-7.2.12-linux2.6-x86_64.tar.gz
ln -s mysql-cluster-gpl-7.2.12-linux2.6-x86_64 mysql-cluster
cd mysql-cluster
chown -R mysql:mysql /usr/local/mysql-cluster/

At this point, you have downloaded and step up the management node, the
configuration of management node described in next Section.
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B.2.2 Configuration of Management Node
The management node stores and manage the global configuration file named as
“config.ini” of a MySQL cluster, which describes all the information of the MYSQL
cluster about the number of management nodes, MySQL server nodes and data
nodes. The example of configuration file is shown in Figure B.1. In this example,
one management node, two data nodes and 2 MySQL nodes are configured for a
cluster. Create a “config” directory and a config.ini file using a editor.

pwd
/usr/local/mysql-cluster
mkdir config
cd config
vim config.ini

Figure B.1. Example of an Global Configuration of a MySQL Cluster
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B.3 Installation and Configuration of Data Node
The data node installation configuration steps are described in this section.

B.3.1 Installation of Data Node
Download the MySQL cluster software if you are using separate virtual machine.

pwd
/net/u/mum/Downloads
mv mysql-cluster-gpl-7.2.12-linux2.6-x86_64.tar.gz /usr/local
adduser mysql
addgroup mysql
cd /usr/local
tar xvfz mysql-cluster-gpl-7.2.12-linux2.6-x86_64.tar.gz
ln -s mysql-cluster-gpl-7.2.12-linux2.6-x86_64 mysql-cluster
cd mysql-cluster
chown -R mysql:mysql /usr/local/mysql-cluster/
sudo apt-get install libaio1

B.3.2 Configuration of Data Node
The MySQL cluster data nodes doesn’t have a separate configuration file, but you
have to install the database tables by exacting the following command for only first
time.

scripts/mysql_install_db –user=mysql Ðdatadir=/usr/local/mysql-cluster/data/m_data

It is important that datadir has the same path, which is specified in the
“config.ini” file of the management node.

B.4 Installation and Configuration of Application Node
The installation and configuration of application nodes are described in this section.

B.4.1 Installation of Application Node
Download the MySQL cluster software if you are using separate virtual machine.

pwd
/net/u/mum/Downloads
mv mysql-cluster-gpl-7.2.12-linux2.6-x86_64.tar.gz /usr/local
adduser mysql
addgroup mysql
cd /usr/local
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tar xvfz mysql-cluster-gpl-7.2.12-linux2.6-x86_64.tar.gz
ln -s mysql-cluster-gpl-7.2.12-linux2.6-x86_64 mysql-cluster
cd mysql-cluster
chown -R mysql:mysql /usr/local/mysql-cluster/
sudo apt-get install libaio1

B.4.2 Configuration of Application Node
The application nodes of MySQL manages a local configuration file named
as “my.cnf”, which contains the MySQL cluster parameters and mainly the
management node address in order to figured out number of data nodes are
participating in the MySQL cluster. The Figure B.2 shows an example of local
configuration of a MySQL cluster. Create a directory and a “my.cnf” file using a
editor.

pwd
/usr/local/mysql-cluster/data
mkdir s_data
scripts/mysql_install_db –user=mysql Ðdatadir=/usr/local/mysql-cluster/data/s_data
mkdir config
cd config
vim my.cnf

Figure B.2. Example of an Local Configuration of a MySQL Cluster

B.5 Starting of an MYSQL Cluster
MySQL Cluster nodes are started in the following order. The following step applies
to all the cluster nodes. First, login into the Virtual machine where cluster nodes
are installed using the ssh command.
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ssh VM_IP_Address

After login into the Virtual machine. Go inside the directory. It is important to
start the cluster nodes as a “root”.

cd /usr/local/mysql-cluster

B.5.1 Starting of Management Server and Client

Management server is started by executing the following command;

bin/ndb_mgmd –initial -f /usr/local/mysql-cluster/config/config.ini
–configdir=/usr/local/mysql-cluster/config

After executing the above command, the following message will displayed on the
terminal window.

MySQL Cluster Management Server mysql-5.5.28 ndb-7.2.12

After words, start the management client by executing the following command;

bin/ndb_mgm –ndb-connectstring=mgmd:1186

It will start the Management client and enter into the management console,
where you can manage all the MySQL cluster nodes including management server.

B.5.2 Starting of Data Node

Data nodes are started by executing the following command;

bin/ndbd –ndb-connectstring=mgmd:1186

After started, the following messages will displayed on the terminal window.

2013-04-24 12:17:04 [ndbd] INFO – Angel connected to ’mgmd:1186’
2013-04-24 12:17:04 [ndbd] INFO – Angel allocated nodeid: 2

B.5.3 Starting of MYSQL Server Node

MySQL daemon is started by executing the following command;

bin/mysqld_safe –defaults-extra-file=/usr/local/mysql-cluster/config/my.cnf
–datadir=/usr/local/mysql-cluster/data/s_data/ –basedir=/usr/local/mysql-cluster
–lc-messages-dir="/usr/local/mysql-cluster/share/english/" &
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B.6 MySQL Client User Privileges Configuration
Login into MySQL server node on another terminal using ssh. Run the MySQL
client locally by executing the following command and set the user privileges for
the remote access.

pwd
/usr/local/mysql-cluster/bin/mysql

It will open the mysql console. Add the root users by exciting the following
commands,

mysql> GRANT USAGE ON *.* TO root@’%’ IDENTIFIED BY ’password’;
mysql> GRANT USAGE ON *.* TO root@’IP_Address_MySQL_Server_Node_1’
IDENTIFIED BY ’password’;
mysql> GRANT USAGE ON *.* TO root@’IP_Address_MySQL_Server_Node_2’
IDENTIFIED BY ’password’;

It is important to specify the MySQL Server Nodes IP address and the
“password” that needs to be used for MySQL client.

mysql> GRANT ALL PRIVILEGES ON *.* TO root@’%’;
mysql> GRANT ALL PRIVILEGES ON *.* TO root@’IP_Address_MySQL_Server_1’
mysql> GRANT ALL PRIVILEGES ON *.* TO root@’IP_Address_MySQL_Server_2’

Also, add a haproxy user by executing the following command, if in case you
are using HAProxy load balancer.

mysql> GRANT USAGE ON *.* TO haproxy@’%’;
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Installation and Configuration of IMS
Bench SIPp

C.1 Pre-requisites
You have to install the following necessary packages:

• Make sue you have installed gcc-4.4 C++ compiler.

• Install the GSL library for the random number generation for the statistical
distributions. GSL library can be download from http://www.gnu.org/
software/gsl and compiled from sources by executing the following com-
mands:

pwd
/root/gsl-1.9/
./configure
make
make install
echo /usr/local/lib/ »/etc/ld.so.conf

• Install the Perl XML and Gnuplot for to able to use benchmark configuration
using the menu-driven tool and the report generation tool, execute the
following commands for installation:

Perl XML::Simple module can be downloaded from
http: // search. cpan. org/ dist/ XML-Simple/
pwd
/root/XML-Simple/
perl -MCPAN -e shell
install XML::Simple
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make install
quit

Gnuplot 4.2 can be downloaded from http://gnuplot.sourceforge.net/
pwd
/root/gnuplot-4.2.0/
./configure –without-x
make
make install

C.2 Download the IMS Bench SIPp source
IMS Bench SIPp is an open source software released under the GNU GPL license
and can be downloaded from the subversion repository at:

svn co https://sipp.svn.sourceforge.net/svnroot/sipp/sipp/branches/ims_bench ims_bench

C.3 Build IMS Bench SIPp source tree
Execute the following commands in order to build the manager and SIPp:

pwd
/root/ims_bench/
make rmtl
make ossl
make mgr

C.4 Configuration of IMS Bench SIPp
The test system for a benchmark run can be configured using an menu driven
user interface and automatically generate all the necessary execution scripts and
configuration files. Run the following built-in perl script:

pwd
/root/ims_bench/
./scripts/ims_bench.pl

After executing the above command, You have see the IMS Benchmark
configuration main menu as shown in Figure C.1
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Figure C.1. IMS benchmark configuration menu

Press ’1’ to go inside the test system menu and configured the manager and
SIPp TS instance IP addresses. Figure C.2 shows an example of the test system
configuration. Press ’q’ to return to main menu.

Figure C.2. Test system configuration menu

Press ’2’ to go inside the SUT setup menu and configured the P-CSCF VM IP
address. Figure C.3 shows an example of the SUT configuration. Press ’q’ to return
to main menu.
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Figure C.3. SUT configuration menu

Press ’5’ to go inside the user provisioning menu and configured the public
and private user identities. Figure C.4 shows an example of the user provisioning
configuration. Press ’q’ to return to main menu.

Figure C.4. User provisioning menu

Press ’q’ to generate the configuration files and execution scripts in the directory
named “ims_bench_7”.

C.5 Run Benchmark Test

All the benchmarking configuration files and execution scripts are exist inside the
directory named ‘ims_bench_7”. Go inside to the directory, edit the manager
configuration “manager.xml” file and run the manager by executing the following
commands:

pwd
/root/ims_bench/Ims_becnh_7
../manager -f manager.xml
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Above command runs the manager, open the new terminal and execute the
following commands to run the SIPp instance.

pwd
/root/ims_bench/Ims_becnh_7
./run_1.sh

After running manger and SIPp client, click on the manager terminal and press
’e’ to start the benchmarking test.





Appendix D

Installation and Configuration of Zabbix

D.1 Installation of Zabbix Agent

The Zabbix agent can be installed on a Ubuntu machine by executing the following
command.

sudo apt-get install zabbix-agent

D.2 Configuration of Zabbix Agent

Edit the Zabbix agent configuration “/etc/zabbix/zabbix_agentd.conf”. Modify
“Server” with the IP address of the Zabbix server machine and specify the hostname
of the Zabbix agent machine in the “Hostname” line and then restart the Zabbix
agent.

sudo vim /etc/zabbix/zabbix_agentd.conf
Server=<Zabbix server ip address>
Hostname=zabbix-agent-hostname
sudo vim /etc/init.d/zabbix_agentd.conf restart

D.3 Installation of Zabbix server

The Zabbix server can be installed on a Ubuntu virtual machine by executing the
following command.

sudo apt-get install zabbix-server-mysql
sudo apt-get install zabbix-frontend-php
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D.4 Access to Zabbix web console
Zabbix web console can be accessed using a favoite browser by entering the zabbix
server IP address in the following url. Log in with default setting, the username
“Admin” and the password “zabbix”.

http://<zabbix server ip address>/zabbix

D.5 Configuration of auto-registration
Create an action for auto-registration of the hosts. Go to the following tabs from
with zabbix web console:

Configuration > Actions > Create action

Afterwords, enter the action name like “registration”, select the event source to
“auto registration” and attached the action operation with “Template_Linux” for
the default items. Figure D.1 illustrates an example of Auto-registration of hosts.

Figure D.1. Example of an auto-registration of hosts

After auto-registration, click on the hosts tab which indicates the registered
hosts. Figure D.2 illustrates an example of an automatic registered hosts.

Configuration > Hosts
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Figure D.2. Example of an automatic registered hosts





Appendix E

Installation and Configuration of
HAProxy

E.1 Installation of HAProxy
The HAProxy can be installed on a Ubuntu machine by executing the following
command:

sudo apt-get install haproxy

E.2 Configuration of HAProxy
Edit the HAProxy configuration “/etc/haproxy/haproxy.cfg” based upon the
requirement. Example of an HAProxy configuration for our project is shown in
Figure E.1.
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Figure E.1. Example of an HAProxy configuration



Appendix F

Installation and Configuration of
Keepalived

F.1 Installation of Keepalived
The Keepalive can be installed on a Ubuntu machine by executing the following
command.

sudo apt-get install -y keepalived

F.2 Configuration of Keepalived
This section described the configuration setting for the Keeplaived.

F.2.1 Kernel Binding
Execute the following command on the terminal, which tells the kernel to allow non-
local IP address binding into the hosts. The following kernel binding configuration
step should be performed on both load balancner machines.

echo "net.ipv4.ip_nonlocal_bind = 1" » /etc/sysctl.conf

F.2.2 Keepalived Configuration
The example of an Keepalived configuration “/etc/keepalived/keepalived.conf”
is shown in Figure ??. In this example the virtual IP is configured with
“192.168.122.122”. The virtual IP must be within the same network of the load
balancer virtual machine.
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(a) Keepalived master node configuration

(b) Keealived backup node configuration

Figure F.1. Example of an Keepalived Configuration
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F.2.3 Verification of Keepalived
Verify the status of the Keepalived by executing the following command on both
machines.

ip a | grep -e inet.*eth0





Appendix G

Miscellaneous

G.1 myMonster Preference Setting
The preference setting of myMONSTER client for creating user profile is shown in
Figure G.1.

Figure G.1. Preference Setting
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