
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

K O N S T A N T I N O S V A G G E L A K O S

 Optimizing Enterprise Resource
Planning systems for

mobile applications

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Optimizing Enterprise Resource Planning systems for
mobile applications

Konstantinos Vaggelakos

Master of Science Thesis

Communication Systems
School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

May 30, 2013

Examiner: Professor Gerald Q. "Chip" Maguire Jr.

c© Konstantinos Vaggelakos, May 30, 2013

Abstract

Growing enterprises have growing amounts of information. Making sure
that this information is easily accessible to its employees is not an easy
task. For this task Enterprise Resource Planning (ERP) systems come in
handy. However, the ERP systems contain lots of information and may
be too complex to handle this information or may be too slow in sharing
this information within the organisation. This thesis introduces a new
solution for how mobile applications can connect to an ERP system by
exploiting database synchronisation, which allows the employees to get
the information wherever they are without the need to directly access the
ERP system.

There are three important questions in this thesis: how the ERP works,
how to build a mobile application and, how to build a back end? By
combining answers to these questions a whole system is built which
is production ready and can copy data between the ERP system and
the back end and show the information in a mobile application. The
overarching goals were to build a system that could extract data from
the ERP system into a proprietary back end and a mobile application
that could synchronise with the back end. However, synchronisation
between the mobile application and the back end was not implemented
due to lack of time. The back end had to be able to scale up to 500
concurrent users and respond within 3 seconds, both of these goals
were achieved. The mobile application that was built to display the
information to the end user was built with usability in mind, since
Netlight wanted a straightforward application that anyone could use. The
mobile application was shown to have good usability.

The results of this thesis project show that building systems around
ERPs, instead of inside them, gives these systems the ability to scale,
improved the implementation time, and reduced the company’s maintenance
efforts.

i

Sammanfattning

Växande företag får mer och mer information. Att kunna se till att
den informationen blir enkelt tillgänglig för alla inom företaget är inte
nödvändigtvis lätt. Det är ofta det som affärssystem kan användas till,
dock innehåller affärssystem väldigt mycket information och kan vara för
komplexa för att enkelt kunna hantera information man är intresserad
av. Det kan även uppstå problem i prestanda i och med storleken
på affärssystemet. I det här examensarbetet föreslås ett nytt sätt för
hur mobila applikationer kan integreras med affärssystem genom att
synkronisera mot dess databas, vilket tillåter anställda att komma åt
informationen vart de än befinner sig

I det här examensarbetet finns det tre olika delar som är intressanta,
hur affärssystemet fungerar, hur man bygger en mobilapplikation och hur
man bygger ett back end. Genom att kombinera kunskapen från ovan
nämnda delar, byggdes systemet som är redo för produktion och kan
synkronisera data från affärssystemet till back endet, samt att visa upp
informationen i mobilapplikationen. De översiktliga målen var att bygga
ett system som kunde extrahera data från affärssystemet till ett eget byggt
back end och en mobilapplikation som kunde synkronisera med detta
back end. Dock blev synkroniseringen mellan mobilapplikationen och
back endet aldrig implementerat. Back endet skulle även kunna skala
upp till 500 samtidiga användare och då kunna svara inom 3 sekunder,
vilket man lyckades med. Mobilapplikationen som byggdes för att visa
information byggdes med användbarhet i tankarna, eftersom Netlight
ville ha en enkel mobilapplikation som vem som helst skulle kunna
använda. Mobilapplikationen analyserades fram till att vara användarvänlig.

Detta examensarbete visar på att det går att bygga system runt
affärssystem istället för att bygga dem i affärssystemen, vilket möjliggör
att systemet kan skala upp bättre, mindre tid för implementation samt
mindre underhåll.

iii

Acknowledgements

First of all I would like to thank all the people that have been helpful in
the making of this thesis project.

I would like to especially thank my two supervisors at Netlight, Håkan
Andersson and Per Carlsson for putting a lot of effort into helping me and
making sure that the project was successful.

Last but not least I would like to thank Professor Gerald Q. "Chip"
Maguire Jr. for helping me form my report and giving me great feedback.

v

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Problem Context . 2
1.3 Problem description . 3
1.4 Goals . 3
1.5 Scope . 5
1.6 Structure of this thesis . 6

2 Background 7
2.1 Related work . 7

2.1.1 OpenMobster integrations platform 7
2.1.2 Synchronisation mechanisms 8

2.2 Current trends . 8
2.2.1 Mobility . 9
2.2.2 Scalability . 9
2.2.3 Database scalability 10

2.3 Mobile application . 11
2.3.1 Usability . 12

2.3.1.1 Do not make the user think 12
2.3.1.2 How we really use the web 13
2.3.1.3 Designing pages for scanning not reading . 14
2.3.1.4 Omit needless words 14

2.3.2 Back end connection 15
2.3.2.1 Request-response pattern 16
2.3.2.2 Synchronisation pattern 16

2.3.3 Local cache . 17
2.3.3.1 Synchronisation fundamentals 17
2.3.3.2 Fast synchronisation 18
2.3.3.3 Slow synchronisation 18

vii

viii Contents

2.3.3.4 Database transaction log 18
2.3.3.5 Repository based synchronisation 19
2.3.3.6 Keeping a local database 19

2.4 Back end . 20
2.4.1 Back end application server 20
2.4.2 Node.js application server 22
2.4.3 Databases . 23

2.4.3.1 Traditional SQL databases 23
2.4.3.2 NoSQL databases 24
2.4.3.3 Sharding or horizontal splits 25

2.4.4 Authentication . 26
2.4.5 Representational state transfer 27

2.4.5.1 JavaScript Object Notation 29
2.5 Information source . 29

2.5.1 Enterprise resource planning systems 30
2.5.2 Exporting data from an information source 30

2.6 Programming paradigms . 32
2.6.1 Overview . 32
2.6.2 Object oriented programming 32

2.6.2.1 Abstraction 33
2.6.2.2 Encapsulation 33
2.6.2.3 Inheritance 33
2.6.2.4 Polymorphism 34

2.6.3 Model View Controller 34
2.6.3.1 Model . 35
2.6.3.2 View . 35
2.6.3.3 Controller . 35
2.6.3.4 Communcation between the domains . . . 35

2.6.4 Object relational mapping 36
2.6.4.1 ORM implementations 37
2.6.4.2 ORM optimisation strategies 38

2.6.5 Event-driven computing from a Node.js perspective 39

3 Method 41
3.1 Methodology . 41

3.1.1 Methodology . 41
3.1.2 Measurement framework 42

3.2 Design . 43
3.2.1 System architecture . 44

Contents ix

3.2.2 Mobile application . 46
3.2.3 Back end application 47
3.2.4 Database drivers . 47
3.2.5 Database cluster . 48
3.2.6 Synchronisation module 48

3.3 Implementation . 49
3.3.1 Back end application 49
3.3.2 Database setup . 51
3.3.3 Mobile application synchronisation 52
3.3.4 Database drivers . 53
3.3.5 Synchronisation mechanism 54

3.4 Test setup . 54
3.4.1 Measurement tools . 55
3.4.2 Set up . 55

4 Results 57
4.1 Employee with id 404 . 58

4.1.1 Default settings . 58
4.1.2 No analysis . 60
4.1.3 Socket fix . 61
4.1.4 Socket fix and no analysis 63
4.1.5 Socket fix and clustering 64
4.1.6 Socket fix, no analysis and clustering 66
4.1.7 Local benchmark, socket fix, no analysis and clustering 67

4.2 Employees list - page 0 . 69
4.2.1 Default parameters . 69
4.2.2 No analysis . 71
4.2.3 Socket fix . 73
4.2.4 Socket fix and no analysis 75
4.2.5 Socket fix, no analysis and cluster 77

5 Analysis 81
5.1 Goal and requirements analysis 81

5.1.1 Mobile application . 83
5.1.1.1 Analysis of the resulting mobile application 83

5.1.2 Back end . 88
5.1.2.1 Performance 89
5.1.2.2 Scalability . 91
5.1.2.3 Security . 92

x Contents

5.1.3 Information source . 92
5.1.3.1 Integration with the ERP 93
5.1.3.2 Understanding ERPs 93

5.2 System analysis . 94

6 Conclusions 97
6.1 Conclusions . 97
6.2 Future work . 99

6.2.1 What has been left undone? 99
6.2.2 Insights and suggestions for further work 100
6.2.3 Required reflections 101

Bibliography 103

A Requirements specification 109

B Measurement script 117

List of Figures

2.1 Fundamental view of data synchronisation model 17
2.2 Core Data is middleware between the (persistent) storage

and the application to make it simpler to handle data 20
2.3 Back end architecture, inside the internal network. 21
2.4 Scaled up back end. 22
2.5 Figure of how local services depend on an authentication

store to authenticate users. 27
2.6 Simple overview of inheritance 34
2.7 Model View Controller communication example 36

3.1 Conceptual system architecture. The figure shows how the
parts connect to each other. 45

3.2 Back end application structure, from an MVC point of view. 51
3.3 Mobile app synchronisation flow scheme. 53
3.4 A model of the test setup, with internal components 56

4.1 Apache benchmarking results 59
4.2 CPU and memory consumption during test 59
4.3 Apache benchmarking results 60
4.4 CPU and memory consumption during test 61
4.5 Apache benchmarking results 62
4.6 CPU and memory consumption during test 62
4.7 Apache benchmarking results 63
4.8 CPU and memory consumption during test 64
4.9 Apache benchmarking results 65
4.10 CPU and memory consumption during test 65
4.11 Apache benchmarking results 66
4.12 CPU and memory consumption during test 67
4.13 Apache benchmarking results 68
4.14 CPU and memory consumption during test 68

xi

xii List of Figures

4.15 Apache benchmarking results 70
4.16 CPU and memory consumption during test 71
4.17 Apache benchmarking results 72
4.18 CPU and memory consumption during test 73
4.19 Apache benchmarking results 74
4.20 CPU and memory consumption during test 75
4.21 Apache benchmarking results 76
4.22 CPU and memory consumption during test 77
4.23 Apache benchmarking results 78
4.24 CPU and memory consumption during test 79

5.1 Mind map of the goals and requirements set up for this
thesis project . 82

5.2 Screenshot of the mobile application with a list of employees. 84
5.3 Screenshot of the mobile application with a list of clients. . 85
5.4 Screenshot of the mobile application with the search field

for clients. 86
5.5 Screenshot of the mobile application with the map zoomed

out. 87
5.6 Screenshot of the mobile application with the map zoomed

in. 88

List of Tables

2.1 JSON example, which represents an array with two objects 29

4.1 Test server specifications . 57
4.2 Results from apache bench, with default parameters 58
4.3 Results from apache bench, no analysis 60
4.4 Results from apache bench, with socket fix enabled 61
4.5 Results from apache bench, with socket fix enabled and

analysis disabled . 63
4.6 Results from apache bench, with socket fix and clustering

enabled . 64
4.7 Results from apache bench, with socket fix enabled, analysis

disabled and clustering . 66
4.8 Results from apache bench, running the benchmark locally

with socket fix enabled, analysis disabled and clustering . . 67
4.9 Results from apache bench, default parameters 69
4.10 Results from apache bench, no analysis 72
4.11 Results from apache bench, socket fix 74
4.12 Results from apache bench, socket fix and no analysis . . . 76
4.13 Results from apache bench, socket fix, no analysis and

clustering enabled . 78

xiii

List of Acronyms and
Abbreviations

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

CPU Central Processing Unit

CRUD Create, Read, Update, Delete

ERP Enterprise Resource Planner

HTTP Hypertext Transfer Protocol

IT Information Technology

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MSSQL Microsoft SQL

MVC Model View Controller

NPM Node Packaged Modules

ORM Object-Relational Mapping

RAM Random Access Memory

RDBMS Relational Database Management System

SQL Structured Query Language

SSIS SQL Server Integration Services

xv

xvi List of Acronyms and Abbreviations

SWOT Strengths, Weaknesses, Opportunities, and Threats

UI User Interface

URI Uniform Resource Identifier

Chapter 1

Introduction

This chapter begins in section 1.1 with an introduction to the problem
considered in this thesis and gives an overview of the context in which
this project was done in section 1.2. Section 1.3 introduces the specific
problem that is addressed in this thesis project. The goals for the thesis
project are described in section 1.4. In section 1.5, the scope of the thesis
project is delineated. Section 1.6 describes the structure of this thesis.

1.1 Overview

This thesis project was conducted at Netlight, a consulting firm. Netlight
has their roots in information technology (IT) consulting and provides
consultants for different kinds of problems within IT. Netlight has grown
as a firm and has expanded globally. Growing as a company has
its advantages and disadvantages. Given Netlight’s way of managing
their consultants, one can clearly see that it is always important to help
each consultant and keep the company (logically) together, rather than
scattered. Netlight values these two objectives very highly. However, as
a growing company, it is getting harder and harder to keep track of the
employees and to know what coworkers are doing.

Consulting firms tend to send consultants to do external jobs and
then have problems backing them up with the competence of the whole
firm. As companies grow, it is known to be harder to keep the company
manageable and to keep the company’s identity. This is due to the fact
that there are multiple entities to keep track of. Keeping better track
of these entities or a subset of them is something that was desired by
Netlight.

1

2 Chapter 1. Introduction

To accomplish this Netlight wanted a mobile application to help their
employees keep track of each other and to enable employees to know
what other employees are up to. To achieve this and to implement it in
practice, there are three things that need to be taken into consideration.
The first is the mobile application itself, which will be used by the
employees to keep track of their coworkers. The second is the back
end, which will server the application with the data. The third is the
information source where information is gathered in order to later be
sent to the mobile application. This thesis project will go into the details
of each of these three parts, but will focus primarily on the back end
(more about this in section 2.4) and the connection between this back end
and the actual information source.

1.2 Problem Context

Current trends and technologies, include increasing adoption of cloud
computing, smartphones, and a combination of both. Mobility has
become a much higher priority than it was earlier, as can be seen in a
recent Cisco report[1], where it is shown that there has been an increase
in mobile internet usage over time. In combination with this trend
there is also an increase in the size and adoption of cloud computing
infrastructures [2], which implies that mobility and intelligence, along
with access to information on the fly are needed wherever employees are
and whenever these employees need access to this information. Scalability
is also an issue in rapidly growing enterprises, hence this is another
property of the cloud that we desire.

To build something for the future it is important to examine the
existing trends and consider how these trends will affect a specific project
over time. This implies that the project as a whole needs to be cognisant
of the relevant trends. However, this is not necessarily a major problem,
since the mobile application itself already has mobility we need to design
and implement a system keeps up with the predicted trends. Therefore
the most important focus in this thesis project is how the information
source and back end can scale together.

The information source in this case is an Enterprise Resource Planning
system (also called ERP). However, ERP systems as built today do not
necessarily meet the expected future demands, especially when it comes
to supporting mobility and scalability.

1.3. Problem description 3

1.3 Problem description

ERP software handles information, which spans across different functions
within an enterprise [3]. However, utilising an ERP system to handle all
information and communication may not be the best way forward for
an enterprise. As mentioned previously there is a paradigm shift in the
way we want to work today compared with earlier years, were we see
more mobility and more of cloud concepts. Therefore, it is interesting
to understand how an ERP should operate with respect to this paradigm
shift and how the ERP system impact on the business can be improved.

ERP systems often consist of huge databases filled with all sorts of
information. This large collection of information has its advantages and
disadvantages. One of the most obvious advantages is that business
intelligence is stored in one place, therefore integration of multiple
different systems is not needed when handling intelligence which would
otherwise span across different systems. However, keeping everything in
one huge system makes it much harder to manage this information and
providing the relevant information to an employee within the company
is increasingly difficult. This implies that even though the ERP systems
stores everything in one database, only a small fraction of the information
is needed at any point in time. To query an ERP for a small piece
of information is probably going to be increasingly difficult due to the
fact that the ERP’s database is normalised (more about this in Chapter
2). Due to the fact that the ERP database is normalised and consistent,
there may be problems with scalability and minimising response times.
Another important factor when it comes to the ERP system’s databases
is that many ERP systems are pretty old and do not have or do not use
techniques to optimising information searching.

1.4 Goals

The overall goal of this thesis project is to build a system to be used by
Netlight’s employees in order to get information from the ERP system.
Although the project has many different goals, the most important goals
will be clearly identified. The focus of this thesis project will be directed
towards these important goals.

The goals are divided into different subgoals which associate to each
of the three major questions. Below is a short description of each goal

4 Chapter 1. Introduction

and its subgoals:

1. Core functionality The system should fulfil the requirements set
by Netlight. The core functionality is defined in the requirements
specifications that can be found in Appendix A. The requirements
specified in this requirements document have different priorities.
All of the the level 1 priority requirements are essential for this
thesis project and will be implemented.

2. Build for the future: The system should be built for the future,
assuming that the current trends continue. For this goal it is
interesting to understand what the current trends are and consider
how these trends can be addressed in this thesis project.

3. Mobile application

(a) Easy to use: This goal is very important to achieve in order for
the actual result to be useful. The idea is that the prototype
developed during this thesis project will be good enough to
deploy into production. This goal includes understanding
what ease of use implies and how it can be measured.

(b) Synchronise the application with the back end: Implement a
synchronisation mechanism that will be used by the application
to talk to the back end. Since the information source (the
ERP system), holds all the data, it is expected that most of
the communications traffic will flow from the information
source to the mobile application. Therefore, the proposed
synchronisation mechanism will cache data in the mobile
application. The subgoal includes understanding how synchronisation
can support the expected usage scenarios and how to evaluate
if the user’s performance is increased or decreased as a result
of the use of their mobile application.

4. Back end goals A back end should be implemented with the
following properties:

(a) Scalability: Since the results of this thesis project might be
interesting to corporations larger than Netlight and since the
whole project has a goal to build for the future, scalability
is essential. To build a scalable system it is important to

1.5. Scope 5

first define what this implies and to understand how scalable
system are built today.

(b) Speed: The back end will serve a mobile application used by
many users, each of which have to be served within a bounded
time frame. The exact time duration will be investigated
further. It is important to understand how long a user will
wait before quitting the application.

5. Information source goals

(a) Get the desired information: The information source (in this
case an ERP system) will have all information that is needed
for the system to be built in this thesis project. Therefore,
it is important to investigate what alternative methods can
be used to extract the relevant data from this ERP system.
This subgoal includes understanding the differences between
these alternatives and measuring them in order to determine
which is most effective for the expected use cases. It is also
important to investigate, what different architectures could be
utilised when extracting the data, especially those that can do
so quickly.

(b) Integration with the ERP system: ERP systems are used
in different ways within enterprises, thus it is interesting to
understand how the proposed synchronisation application can
be integrated 1 with the ERP system since these systems hold
all of the relevant information. This will require understanding
how an ERP system works and what the integration options
are. Investigating and solving these issues will give us a
clear picture of how the system could be built in the most
appropriate way.

1.5 Scope

The overall scope of this thesis project includes each part of the project as
described above, therefore there is a different scope for each part of the
project. We go into details of how we can extract information from an ERP

1The term integration in this thesis will imply that two systems are unified even
though information does not necessarily flow in both directions.

6 Chapter 1. Introduction

system, including the different ways of copying data to other systems.
Measurements will be done of the different ways of extracting the desired
information from the ERP system and how to transfer information to
the back end. The result of these measurements will indicate how the
prototype should be integrated into the particular ERP system used at
Netlight, by identifying the best alternative for the particular case of
creating a back end to serve the prototype mobile application. This thesis
will go into depth concerning each of the different methods and provide
information about the different methods, especially their advantages and
disadvantages. The scope of this thesis includes suggesting a way to
integrate with ERP systems in order to extract information for these
mobile applications, while accommodating the expected current trends.
This thesis project will not go into details about different kinds of ERP
systems, but rather will give a practical view of how one specific ERP
system works in this case examined within this thesis project.

1.6 Structure of this thesis

Chapter 1 describes the problem and its context. Chapter 2 provides
the background necessary to understand the problem and the specific
knowledge that the reader will need to understand the rest of this thesis.
Chapter 3 describes the goals, metrics, and solution proposed in this
thesis project. Chapter 4 depicts the results from this thesis project. The
solution is analysed and evaluated in Chapter 5. Finally, Chapter 6 offers
some conclusions and suggests future work.

Chapter 2

Background

This chapter will introduce the underlying theories which this thesis
project is based on. Section 2.1 briefly introduces related work which this
thesis project touches upon. Section 2.2 describes some relevant current
trends. Section 2.3 presents some important information about how to
build a successful mobile application by understanding user behaviours.
Section 2.4 presents a number of different technologies and paradigms
that are essential to understand in order to know how the back end
should be built. Section 2.5 explains what an ERP system is and how
synchronisation can be done between an ERP system and another system.
Section 2.6 explains some important programming paradigms that are
used in the creation of the prototype solution proposed in this thesis
project.

2.1 Related work

This section provides information about two related works, one master
thesis made by Shitian Long in section 2.1.2 and one product called
OpenMobster in section 2.1.1.

2.1.1 OpenMobster integrations platform

OpenMobster is an open source framework that provides means for
building a back end to connect mobile platforms directly to an ERP
system [4]. This framework minimises the development costs for how
to get the data in the mobile phones, since it provides methods for
the most common operations such as create, read, update and delete

7

8 Chapter 2. Background

(CRUD). OpenMobster also provides a framework for the clients side,
which include the most common mobile platforms. There are a couple of
advantages that come with the use of a framework such as OpenMobster:

Saves development time. The time spent on developing a back end and
the communication between back end and the mobile application
can be reduced, since most of the needed development already
exists in the framework.

Includes synchronisation. The OpenMobster frameworks provide
means for synchronising the data from the back end to the mobile
application. This makes the mobile application usable offline, by
utilising its local store.

Push notifications. By telling the mobile application when new data
exists, this framework makes sure that no unnecessary time is spent
on polling for new information.

2.1.2 Synchronisation mechanisms

Shitian Long wrote a master’s thesis about database synchronisation
between devices[5]. In his thesis the focus was on designing a repository
based SQLite database synchronisation mechanism. The proposed
synchronisation mechanism supported rollbacks since it was repository
based and required minimal computational power since the synchronisation
was not done in real time. His conclusions can be useful, depending on
the requirements set for the synchronisation mechanism in the context of
our thesis project. Nevertheless, his thesis was an inspiration with regard
to understanding and defining synchronisation patterns (as seen in section
2.3.3.1).

2.2 Current trends

Current trends are used to understand how the future might look and
what can be done to exploit these trends. Accurately predicting the future
is very important from a market analysis perspective. Building a product
that will actually generate a positive return requires knowledge of the
current trends and how these trends might be used to predict the future.
When one understands where the market is heading, then a plan can be

2.2. Current trends 9

made to follow the expected trends and thus maximise your return. The
details of doing so will depend on what return is required or desired. This
section will introduce two trends that are important for this thesis project,
in order to better grasp where these current trends might be heading.
These two trends are mobility and scalability.

2.2.1 Mobility

Mobility is something that has always been appreciated, however until
recently wireless connectivity was not sufficient in many areas for users to
expect connectivity where ever they are. However, today users expect that
they can be mobile and still use their applications. Mobile smartphones
have given mobility a new face, as almost anything can be done from such
a mobile device nowadays. This has paid off for many users find that their
mobile device is useful. Internet usage via mobile phones, as shown in
KPCB’s analysis of internet trends [6], continues to increase. There is also
a trend toward more and more mobile broadband subscriptions, which
suggests that people who have a mobile phone want to use this phone to
access the Internet, rather than simply to talk or utilise short messages.
Between 2010 and 2011 there was an increase in the number of active
mobile broadband subscriptions from 11.2% to 15.7% [7]. The trend in
mobile phone broadband subscriptions suggests where we are heading
in the near future.

2.2.2 Scalability

According to the statistics in section 2.2.1, the number of active mobile
phone subscriptions and the number of mobile broadband subscriptions
are both increasing. Based on these statistics, future systems might want
to exploit this trend, hence it is important for these future systems to scale
up in order to cope with all of the new mobile devices that are connecting
to the Internet. It is important to provide scalability in a service so that
more users can utilise the service and the service can continue to support
the users. However, to understand scalability we must first define it.
There are actually two common uses of the word scalability. One use of
the term is that the system can handle more workload without adding any
extra resources to the system [8]. The other use of the word concerns the
ability to add resources to the system to handle the increased workload.

10 Chapter 2. Background

Having scalability ensures that the system will not fail as the system
continues to grow, independent of the way this load grows. Having
an assurance of scalability, can reduce the risk of a system, product, or
service. Therefore developers must consider how their system, product,
or service might behave when it is scaled (up or down). It is important
to keep in mind that scalability cannot be calculated, unless the system
actually scaled (up or down), which implies that you already know how
it will behave. Below are some guidelines that can be followed in order
to get a hint of how well a system scales [8]:

1. Looking at the performance of different resources as the load varies.
Characterise the performance as O(n), O(n2), O(n log n), etc. We can
learn how the system scales by checking how adding (or removing)
resources changes the system’s response time and if the systems
scales with addition (removal) of resources as required.

2. Identify any bottlenecks in the mechanisms utilised by the system.
Also identify if there is any scaling design architecture violations in
the system.

3. Perform a Strengths, Weaknesses, Opportunities, Threats (SWOT)
analysis on the system from a scalability point of view. Strengths
are that growth would be handled well by the system. Weaknesses
are that growth that would not be handled well by the system.
Opportunities are how well the system can adapt to new technologies
or handle changes in workload. Threats are how the system does
not adapt to new technologies or handle changes in workload.

2.2.3 Database scalability

System administration has become a bigger problem than it was earlier.
This is due to the fact that the number of users and their expectations are
growing which can lead to an unpredictable spike in server utilisation
due to correlations in the demands of these users. This problem was
addressed in the case of serving static files such as music, video, and web
pages by introducing Content Delivery Networks (CDNs) [9]. Sharing
static content by distributing it across different CDNs ensures that spikes
in requests for this content are handled better as there are multiple
servers which can server these requests. CDNs can also be distributed
geographically to better handle static content delivery across continents.

2.3. Mobile application 11

However, the web is becoming increasingly dynamic and provides
increasingly personalised web pages for each user [9]. As a result there
is an increasing need to serve dynamic content to these users. These
personalised pages are frequently based on previous experience and
user preferences. CDNs are not a good way to serve dynamic content
since they simply cache static content. Therefore there is trend to scale
databases to support applications which provide dynamic content.

In combination with the above, data volumes are growing faster than
ever, with a 40% growth rate per annum (measured during 2011) [10]. In
order for databases to meet such demands, these databases have to face
new challenges such as those described in[10], specifically

1. Scaling write operations. Write operations are harder to handle
than reading because reading does not modify the contents of the
database, while write operations either have to be synchronised
across instances of the database or one has to relax the Atomicity,
Consistency, Isolation, and Durability (ACID) database properties -
for example by allowing eventual consistence.

2. Real-time user experience. Scaling up databases implies challenges
in how the servers communicate with each other. That is why the
real-time user experience and expectations have to be considered
when building systems.

3. Continuous service uptime. Availability is really important in
today’s web, without it huge losses can occur (where these losses
can be financial or information losses).

4. Reduce barriers to entry. Increasing complexity in the database
may result in the need for more complex application solutions. It
is therefore important to keep in mind that the barriers to entry
should still be kept low in order to attract application developers,
this requires using more scalable database solutions.

2.3 Mobile application

This section explains the technologies that could be used for the mobile
application that will be developed in this thesis project and to further
investigate how the different parts contribute to a complete solution. For
each major part (usability, back end connection, and local cache) there

12 Chapter 2. Background

is a description which gives a deeper understanding of the problems or
challenges that may occur. This section will focus on mobile application
development utilising Apple’s iOS [11] for the mobile specific parts of
the application. This operating system was chosen because Netlight
specifically requested a mobile application running on iOS.

2.3.1 Usability

Usability is important as we wish to have the users feel comfortable
accessing their information via a mobile phone, otherwise they will not
make use of the application. There were 11.1% more mobile devices
sold in 2011 compared to 2010 [12]. Since users have more and more
information to take in they need to improve how they do so. In addition,
more and more people are using their mobile phones to browse for
information. However, a mobile phone introduces a lot of challenges in
terms of showing this information in a suitable way. As a result usability
has become a major requirement for mobile applications.

The following paragraphs will go into greater depth concerning some
of the guidelines described by Krug in [13]. These guidelines are based
only on Krug’s view of usability. Some argue that Krug’s view of
usability is narrow and does not consider the fact that different people
with different backgrounds (such as culture and language) might think
or see things differently [14].

2.3.1.1 Do not make the user think

The first and most important guideline mentioned in [13] is to not make
users think too much. Here it is important to understand that everything
has to feel almost obvious, even to someone that has not seen anything
like it before. The question is then, what makes us think? Or what
makes us think for too long? The selection of words that are used in
an application are very important. It is important to allow the user to
understand the information that the application want to convey to the
user. However, at the same time it is also important that the message is
concise and does not make the user think twice before understanding.
A good example presented in [13], is a button for job listings. Where
there are three button labeled: Jobs, Employment opportunities, and Job-
o-Rama. From left to right these increase in requirement for thoughts,
which might not be necessary. It is important to reduce the thinking

2.3. Mobile application 13

required for each piece of information that is presented. This applies
not only to labels, but to the design elements themselves, such as user
interface elements (UI elements). UI elements need to have a clear
distinction between them so that the user is not confused with how to
navigate within the application.

Taking into account the things mentioned above it is important to
understand that it might be impossible to have everything be self-evident.
For instance if the application introduces new things it is important
that those things are at least self-explanatory [13]. This means that the
information should be nearly instantaneous recognisable.

2.3.1.2 How we really use the web

According to a study made by Nielsen Norman Group [15] 79% of users
always scan any new page of information instead of reading it word by
word. The question is why do users skim through information, rather
than read the whole of it? One explanation is that users are often in a
hurry, which implies that they try to save time. Krug has said: “Web
users tend to act like sharks: They have to keep moving, or they will
die” [13]. This behavior might be something that most designers do not
realise, however it seems to be important as previous research has shown.
There is another optimisation, users only read what they actually need to
read. This is based upon the assumption that there is no or little value in
reading something that the user does not consider to be interesting. As
a result users scan information that they find interesting. This scanning
and prioritising is something that the users are actually good at according
to Krug, however this is not proven in his work [13].

According to Krug users choose the first reasonable choice, and not
the most optimal choice. This is also known as a satisficing strategy,
a combination between satisfying and sufficing [16]. The satisficing
strategy in the case of usability implies that the user tries the first
reasonable choice, rather than the optimal choice. This is due to the fact
that making the wrong choice generally does not have a severe penalty
to the user, in the event of a wrong choice the user simply goes back and
tries again. A possible explanation for this behavior could be that users
do not really care to understand how things works as long as they work.
When they do work, then the user tends to stick with their earlier choice.

14 Chapter 2. Background

2.3.1.3 Designing pages for scanning not reading

Having a clear visual hierarchy implies that relationships are clear
between the elements in the UI. It is important to understand what
elements belong and what element do not. Below are three important
points Krug suggest in order to have a clear visual hierarchy [13]:

1. The more important the more prominent. The more important
headings should for instance either be larger, bolder, in some
distinctive colour, or set off by more white space.

2. Logical relationships are also visual ones. Group things that are
similar by putting them together under a heading or in a well
defined area.

3. Nesting visual components to show hierarchy. Just as in newspapers,
in a UI there are headings with subsections, which are all part of a
bigger hierarchy making it easier for the user to find what they
need.

Without considering the above mentioned points, all text would be the
same and would have the same spacing around it. What this means in
practice is that when a user scans for information, they need to be able
to identify what is important, hence try to understand how things are
organised.

2.3.1.4 Omit needless words

According to William Strunk Jr. in his book "The Elements of Style":
“Vigorous writing is concise. A sentence should contain no unnecessary
words, a paragraph no unnecessary sentences, for the same reason that a
drawing should have no unnecessary lines and a machine no unnecessary
parts” [17]. There are often more words than needed in most user
interfaces. Getting rid of the needless words can give the following effect:

• Reducing the noise level of the UI.

• Makes the useful content more prominent.

• Makes the UI more compact, which allows the users to see more
useful information at the same time.

2.3. Mobile application 15

One way to recognise needless words is to look for something called
happy talk [13], which is a paragraph of text that starts with something
like "Welcome to ...". Happy talk is just like small talk, in other words it is
content free, the main purpose is to fill up space or time. However, users
do not have time for either small talk or happy talk, therefore these kinds
of text should be avoided.

Instructions are also needless if the application itself is self-explanatory.
Therefore one should always strive towards instruction free applications,
however if there is a need to explain something, then the explanation
should be kept to a bare minimum.

2.3.2 Back end connection

In order for the mobile application to be able to get the information that
the application will display to the user, the application needs to get that
data from somewhere. This is where the back end connection module
comes in. There are different ways of getting data into a mobile phone.
No matter which method is actually used there are a couple of important
issues that have to be considered. Since the mobile phone has limited
battery power and limited connectivity it is extra important to optimise
the communication with the back end. A study made by Aaron Carroll
and Gernot Heiser, shows that the most power consumption in all phones
tested, occurred during network connectivity or phone calls, and that the
amount of power consumed depended on the phone [18]. Therefore it is
important that the mobile application’s back end connection is optimised
in terms of the time used and the amount of data that is transferred. The
back end will remove all unnecessary spaces (also called minifying) and
will only send relevant data, but may include pointers to where new or
additional data can be fetched.

As mentioned previously there are different ways of getting the
information into the phone, such as representational state transfer (REST)
web service (more about REST services in section 2.4.5) The two different
communication patterns that will be introduced are request-response and
synchronisation patterns. The subsections below give a description of
both, together with their advantages and disadvantages according to [19].

16 Chapter 2. Background

2.3.2.1 Request-response pattern

The request-response pattern is used in an on demand fashion. When
information is needed it is requested and the requested information is
provided in a response.

Advantages. The main advantage of the request-response pattern is
that the mobile application only fetches the information which is
needed for the present view. In other words, the data is optimised
to the current view and whenever the user wants new information,
i.e. when switching views, the mobile application will send a new
request and get the corresponding data back in a response. Another
big advantage is that the mobile application can always be served
the latest information from the back end.

Disadvantages. One of the biggest disadvantages is that the request-
response pattern requires both the mobile application and the back
end to have connectivity. Therefore any offline action needs to be
cached in order to work, however such caching belongs more to the
synchronisation pattern.

2.3.2.2 Synchronisation pattern

In a synchronisation pattern while the mobile application has connectivity
to the back end it will synchronise its local copy of all information needed
by the mobile application. This implies that the mobile application keeps
all information locally. To be able to manage this information locally there
needs to be a good structure of the data internally in the application.

Advantages. The main advantage of utilising a synchronisation pattern
is that the application can be used offline, since all information
is stored locally. Keeping all information locally implies that
connectivity is somewhat optimised, which is an important factor
for mobile applications as previously mentioned.

Disadvantages. Since the information is stored by the mobile application
itself, there is a need to locally manage and interpret this information.
The mobile application must take some of the responsibility for
handling this information, which could have been done by the
server when utilising a request-response pattern. Another big
disadvantage is the fact that the synchronised information might be

2.3. Mobile application 17

out of date, depending on the information. Having a synchronisation
pattern complicates the back end communication, but in some cases
might have a greater advantages than disadvantages.

2.3.3 Local cache

Keeping a local cache in the phone would utilise the synchronisation
pattern described in section 2.3.2. A local cache implies keeping all
the data locally in the storage of the mobile phone. As mentioned in
the description of the synchronisation pattern, there are downsides to
keeping a local cache. This section will try to describe these problems
further and investigate how they can be solved, for the mobile application.
Most of the information for these following sections is based upon the
master’s thesis of Shitan Long [5].

2.3.3.1 Synchronisation fundamentals

The synchronisation process maintains data consistency among sources
and targets. To do this there are different paradigms and methods.
However, we are only interested in one of these paradigms, specifically
synchronisation between the mobile application and the back end,
when many sources have one target with which they wish to remain
synchronised, as described in [5]. This paradigm is depicted in figure
2.1.

Figure 2.1: Fundamental view of data synchronisation model

18 Chapter 2. Background

The paradigm of one target and multiple sources is very common
when it comes to code versioning. In the case of a source code control
system most developers have a very clear picture of what the source is
and what the target is. The sources can be seen as clients and the target is
the server. This implies that the clients synchronise with the server rather
than the opposite.

2.3.3.2 Fast synchronisation

Fast synchronisation is often used when there is only one source. In fast
synchronisation the target uses synchronisation flags or time stamps, in
order to mark what has been edited since the last synchronisation with
the source. When a source performs a fast synchronisation against its
target, it starts by comparing the synchronisation flags or time stamps to
see what differs. Depending on what kind of changes there are (additions,
modifications, deletions, etc) the source will behave accordingly. After the
synchronisation is complete, the synchronisation flags will be reset, in
order to prepare for the next synchronisation. In order for this method of
synchronising to work there needs to be extra features added to the target
to be able to handle multiple sources. This is necessary because the fast
synchronisation mechanism needs to keep track of the synchronisation
flags for all sources.

2.3.3.3 Slow synchronisation

Slow synchronisation occurs when the sources copy the target’s database
to compute the differences. This method is of course not the fastest,
as the name suggests. However, this method might be useful in some
cases, especially where there are multiple targets and/or sources. Also
this is more useful when many changes where made in between each
synchronisation. To make this as efficient as possible the device with
the most CPU power or CPU time should calculate the difference,
thus making the computation as fast as possible. This method of
synchronisation might need optimisation in order to be feasible as it is
not optimal with regard to network traffic and processor utilisation.

2.3.3.4 Database transaction log

Synchronisation based on a database transaction log can be done by
sending the sources the transaction log since the last time they synchronised

2.3. Mobile application 19

with the target. This way only changes will be sent across the network
and only the updates will be applied to the source or target. However, this
requires additional storage for storing the transaction logs on the source.
If there are a few changes, then this approach has many advantages.

2.3.3.5 Repository based synchronisation

In repository based synchronisation the most common solution is to
have one dedicated target that holds all the information about the
synchronisation. When a device wants to synchronise it will contact
the dedicated target (which might also be the central repository) get the
changes and update its copy of the data. This method is primarily used
for source code version controlling. It can be used with binary files as
well, but often this is handled by updating the whole file. This method is
not very suitable for a big database, i.e., treating the whole database as a
single binary file.

2.3.3.6 Keeping a local database

In order to store all the data in the mobile application there is a need to
keep the data in a very manageable way. Operations such as searching,
filtering, and sorting are common when managing even local data, which
implies that there needs to be some management involved to simplify the
process. Core Data [20] is a framework provided inside the iOS Software
Development Kit (SDK). This framework allows storing and management
of data in a manageable way. Core Data allows for object oriented (more
about the object oriented coding pattern in section 2.6.2) control of data.
This means that all objects are handled as classes or models (more about
models in the Model-View-Controller pattern in section 2.6.3).

Core Data handles all communication with a lower level persistent
store, making this lower level storage invisible to the mobile application
itself. Core Data is middleware between the models in the mobile
application and the storage, which simplifies the mobile application as
the application does not need to care about the details of the storage.
Core Data can use a database, such as Sqlite3 [21], as a persistent store. In
other words Core Data will set up and manage the lower level database,
for example an sqlite3 database, including tables, indexing, associations,
etc. Figure 2.2, shows how Core Data sits in between the application and
the storage.

20 Chapter 2. Background

Figure 2.2: Core Data is middleware between the (persistent) storage and
the application to make it simpler to handle data

2.4 Back end

This section explains and further investigates the technologies used in the
back end. These sections will explain how the back end works and why
this particular technology was chosen, as well as how this technology has
been used in this thesis project.

2.4.1 Back end application server

The back end application server is the component that will provide
the mobile application with information. The back end server will
communicate with the actual database via a connection within the
company’s internal network. The back end server will be located behind
a fire wall, but will be available to the users through the internet. None of
the internal information sources used by the back end application server
will be directly exposed to internet access.

The back end application collects the information that it needs and
generates a response to the mobile application’s request(s). The back end
can be seen as a central element in the system. Figure 2.3 shows where
the back end server is positioned within the whole system architecture.

2.4. Back end 21

Figure 2.3: Back end architecture, inside the internal network.

Since the back end server will be responsible for responding to all
clients it is important, that this server has scalability, thus the back end
may need to be scaled up and if so this should be able to be done without
problems. However, as mentioned in section 2.2.3 this may mean that the
database supporting the back end has to be scalable as well depending
on where the load of the system is. Figure 2.4 shows a back end which
has been scaled up in order to meet higher load requirements, by either
adding more back end servers, more database servers or both. What is
important to understand here is that the application running in the back
end server and the databases supporting this back end application with
dynamic content, also needs to be scaled.

22 Chapter 2. Background

Figure 2.4: Scaled up back end.

2.4.2 Node.js application server

There are many different ways of writing an application back end.
However, in this thesis Node.js [22] was chosen. Node.js is a server side
scripting language used by Yahoo!, Microsoft, and many more. Below are
some of the advantages with Node.js:

Simplicity. Node.js is based on javascript, which is the 11th
most common programming language [23]. This implies that
more documentation, more example code, and more people know
javascript and they may be able to help during the development
process or continue the project further.

Fast development time. Node.js comes with its own package handler
called Node Packaged Modules (NPM). NPM provides an easy
way to integrate open source components. With NPM and some
javascript knowledge any developer can quickly start to develop
with Node.js.

Performs well with many concurrent requests. Node.js is based
on the event-driven programming paradigm and is by far the
most successful language using the event-driven programming
paradigm[24]. Event-driven computing has its advantages and
disadvantages (more about this in section 2.6.5), however it is very

2.4. Back end 23

efficient for handling many concurrent requests which is required
for our back end application.

Using javascript for the server side use is not very common, since
javascript needs a javascript interpreter to run. Node.js provides a
javascript interpreter (Google’s V8 javascript engine) as well as various
C libraries to be able to do system calls [25]. Node.js is essentially a
wrapper which is written based on Google’s V8 javascript engine. This
way Javascript can be used in the back end as it can do the necessary
system calls that the back end will need to do, such as opening a socket,
writing to a file, reading from a database, etc.

2.4.3 Databases

There are different types of databases. Each of which have their own
advantages and disadvantages, therefore it is important to understand
the different types of databases that are available in order to choose the
one that is the best for a given situation. In this section an introduction
to a number of different databases will be given in order to give a better
understanding of how they work and to identify when they should be
used.

2.4.3.1 Traditional SQL databases

Traditional SQL databases or relational databases work in a very structured
way and often go under the name Relational Database Management
System (RDBMS). There are many different RDBMSs, however in this
section the focus will be on the fundamental concepts that they all have
in common. Below are some fundamental concepts that a RDBMS has
compared to a file system[26]:

1. Database schemas are not file sets. A database schema defines
relationships between entities, compared to a normal file set. SQL in
it self does not define how the underlying storage is to be handled,
but simply assumes that the physical storage is contiguous. Before
SQL or RDBMSs the applications themselves had to handle relations
between files, however today that is usually done in a database.

2. Tables are not files. Tables are not files, however they have
similarities. A table is defined by a database schema and multiple

24 Chapter 2. Background

tables cannot have the same names just as in file systems, however
tables are not physically stored in the same way that physical files
are stored in a physical file system. This means that tables can be
virtual (such as a database view, which is a virtual representation of
a selection of information).

3. Rows in a database are not necessarily records. Rows in a database
are not necessarily records, meaning that only the application can
make sense of the information stored in a database row, thus making
it a database record.

4. Database columns are not necessarily fields. The database has
columns which only together with an application makes them into
fields. Columns can have a computed value when accessed by an
application.

2.4.3.2 NoSQL databases

Due to the need for scalable databases there have been a number of
systems designed to provide horizontal scalability (i.e. scaling the
database over multiple servers), unlike traditional databases which have
little or no support for horizontal scalability. Most Not Only SQL or
Not relational SQL (NoSQL) databases were designed with scalability in
mind, which makes them interesting for this thesis project. Below are six
key features of a NoSQL database [27]:

1. Ability to scale horizontally. The ability to scale horizontally,
which essentially means distributing the database over multiple
servers, is a key feature.

2. Replication and distribution. Able to replicate and distribute (also
called partition) data over multiple servers.

3. Call level interface. NoSQL databases need another way of
managing the data, which is not SQL.

4. Weaker concurrency model. Most NoSQL databases have a weaker
concurrency model than the ACID transactions of a relational
database. In other words there is no ACID guarantee with most
NoSQL databases since updates only eventually propagate across
different instances of the database.

2.4. Back end 25

5. Efficient use of distributed indexes and RAM. NoSQL databases
need to have an efficient model for a distributed index and Random
Access Memory (RAM) management.

6. Dynamically add new attributes. NoSQL databases should be
able to dynamically add new attributes. This breaks the traditional
relational model which is very structured compared to a NoSQL
model.

There are different NoSQL databases with different ways of storing
their data. Below is a list of three different types of NoSQL databases
along with their advantages and disadvantages [27] [28]:

Key-value databases. Key-value databases store values together with
an indexed key to be able to easily find every object that is persistly
stored the database. Generally key-value databases provide functionality
for replication, versioning, locking, transactions, and sorting. However,
they only support one index or key and only one type of object.

Document databases. Document databases, store documents as defined
by the application. Document databases provide indexing of all
documents and a simple query mechanism. Unlike key-value
databases, document databases provide support for secondary
indexes and multiple types of objects within one database.

Graph databases. In graph databases the data is stored as a graph. Each
node represents an entity (or object) and each vector represents a
relationship. Both nodes and vectors have properties associated
with them to define the node itself or the relationship between
the nodes. Graph databases are advantageous to use when there
are many relations between nodes, such as a social network or the
network of all links that connect pages on the web. Graph databases
allow an application to traverse from node to node, which means
that all connecting information can easily be found. Compared to
a relational database, where all relations between two entities are
defined in different tables.

2.4.3.3 Sharding or horizontal splits

Sharding or also know as horizontal splitting of data is a technique
to spread data across instances of databases. [29] Sharding is done

26 Chapter 2. Background

automatically by some databases such as MySQL cluster and MongoDB,
where the data will spread across different instances of the cluster. The
reason why one would want to shard their data onto different instances is
the performance gain that might come with it. Scaling database servers is
not an easy task, sometimes it is even impossible to keep the performance
at a desired level. An important factor concerning sharding is how the
data is partitioned. Since the data by definition is stateful, the partitioning
logic has to be defined. Without suitable partitioning logic the database
cluster will have problems adding nodes, as the data will need to be
repartitioned.

2.4.4 Authentication

Today’s enterprises make use of many internal systems. Most of
these system require authentication since the information might be
confidential. Authentication is quite a problem since it makes it hard
to integrate all systems together. A solution to this is to have all
authentication information in the same place, which is how authentication
is handled in many enterprises today [30]. An example scenario of how
this might look is depicted in figure 2.5. The back end server which is to
be added to the internal system needs to utilise the existing authentication
store, rather than keeping information about the users locally in its own
database. The authentication store usually is a Microsoft Active Directory,
which is based on the Lightweight Directory Access Protocol (LDAP).
It is therefore important that the authentication component of the back
end application supports integration with an LDAP store. Having a
setup with one central authentication store, makes it easier for users to
authenticate, since their authentication information is the same across all
systems.

2.4. Back end 27

Figure 2.5: Figure of how local services depend on an authentication store
to authenticate users.

2.4.5 Representational state transfer

Representational state transfer (REST) is a software architecture that
outlines how different components of a distributed system interact with
each other [31]. Two important terms in REST are the resources and their
representations. Resources are objects of information that are requested
by a client, whether the client is a machine or a human makes no
difference. However, the representation may be changed depending on
whether a machine or human is making the request, since machines
interpret resources in a different way than humans. A resources in REST
needs to be identifiable with an universal descriptors, therefore each
resource has a universal resource identifier (URI). When a client wants
to operate on a resource the client sends a request to the server with

28 Chapter 2. Background

a specific URI, which corresponds to a resource. The server will then,
depending on the client, send back a representation of the resource.

An important aspect of web services that implement RESTful architectures
is that upon receiving a resource, the client should have enough information
from a response, to perform different actions of that resource on the
server. It is important that the service provides hyperlinks in order to
allow the client to move to the next stage.

Hypertext Transfer Protocol (HTTP) is a protocol which is often used
in combination with RESTful web services. Using HTTP the client can
specify the URI for the resource that it wants to operate on. HTTP
supports different kinds of operations, which are then interpreted by the
server to perform different actions. Below is a list of different methods,
which are interesting for RESTful services and how they are described in
RFC 2616 [32]:

GET. This method implies that the client wants to fetch information
which is identified by the URI in the HTTP request. The information
returned should be the value from the data-producing process as an
entity.

POST. The POST method is used when the server is to accept a new
subordinate entity as a new entity with the resource specified in the
URI. However, it is up to the server to decide what to do with the
information posted in the request to the server. If the server accepts
the new subordinate entity, it is also assigned a URI.

PUT. When a client request contains a PUT message it is asking the
server to store an entity under the specified URI. If the specified
URI already exists this operation should be handled as an update to
that entity.

DELETE. The DELETE method is sent by a client to requests that the
server remove the entity located at URI.

The REST protocol will specify the communication between the
components in the architecture. However, it does not specify how the data
should be presented. When two machines need to communicate, the only
important thing is the information itself. There are plenty of different
data formats to specify how the data is formatted and interpreted by
both sides. In this thesis the focus will be on a format called JavaScript
Object Notation (more about JSON in section 2.4.5.1).

2.5. Information source 29

2.4.5.1 JavaScript Object Notation

JavaScript Object Notation (JSON) is a lightweight data format that is
language independent, however it is a subset of the JavaScript language
[33]. JSON has two structures: collections and ordered lists. A structure
in JSON is basically a key-value pair, it is similar to an object in most
programming languages. An ordered list is similar to an array in most
programming languages and is essentially a list with collections.

The key-value pairs in a collections are separated by a colon and the
pairs are separated by commas. Each collection is encapsulated within a
left and right brace, whereas the lists are encapsulated in left and right
brackets. Listing 1 shows an example with one array of items at the top
level (using the square brackets) and two objects within that array using
braces.

[H]

1 [
2 {
3 name: "Object 1",
4 value1: "abc",
5 value2: "def"
6 },
7 {
8 name: "Object 2",
9 value1: "123",

10 value2: "456"
11 },
12]

Table 2.1: JSON example, which represents an array with two objects

2.5 Information source

This section explains the technologies and terms related to what is
referred to in this thesis as the information source. Each section will
provide deeper technological background information of topic that might
be interesting or important for this thesis project.

30 Chapter 2. Background

2.5.1 Enterprise resource planning systems

What we know and what we do with knowledge is essentially what
a business consists of. Intelligence is really important to keep secure
and manageable, if an enterprise can not manage these two essential
activities it is hard to provide value for their owners, which in turn
might lead to a failure of the business. As companies grow in the
normal course of operations one might expect that the amount of
intelligence grows, which could imply that manageability becomes
harder. If manageability becomes harder, inefficiency increases, hence
the business is less competitive towards its competitors. Until recently
many companies had many separate information systems that were not
integrated with each other [34]. These systems typically focused on one
specific business area only. For a company to efficiently achieve its goals
it must share data among all of its business areas [34]. Leaving the task
of sharing information between these separate systems to humans can
be very inefficient, as it not only takes more time but also increases
the risk of data errors. Therefore systems called Enterprise Resource
Planning systems (ERP). These systems provide enterprises with a tool
to manage their resources. Today it might seem obvious that businesses
have software that manages all business areas in an integrated fashion.
However, an integrated ERP system was not feasible until the 1990s
because of its complexity in both hardware and software [34]. ERP
systems evolved as a result of the following three things [34]:

1. Advancements in hardware and software technology;

2. The development of a vision where all information system are
integrated; and

3. Companies structural shift from an functional focus to business
process focus.

2.5.2 Exporting data from an information source

There are several different ways to export data from an information
source such as an ERP system. This sections explains several of
these different ways of exporting information and their advantages and
disadvantages.

Since ERP systems store their information in a database, exporting
data from an ERP system requires extracting the data from a database.

2.5. Information source 31

The choice of database might differ from ERP to ERP, however in this
thesis the focus will be on an ERP named Agresso [35]. Agresso stores
its information in a Microsoft SQL server, hence the focus will be on how
to export data from a relational database such as Microsoft SQL Server
[36]. Agresso stores its information in 1900 different tables and uses 300
views to be able to show the information that is usually requested. The
database utilises no referential constraints and most of the identifying
fields are characters rather than numbers. The structure of the database
is not optimised for performance, as strings are longer than a numeric
identifier could be, resulting in more time spent to comparing values
when searching.

There are basically two ways of exporting data automatically: using a
custom built application or using predefined tools for system integration.
The next question is when the exporting of data needs to occur, based
on the answer of this question, the exportation strategy might change.
Below is a list explaining the advantages and disadvantages with the two
approaches and how they might apply to different needs regarding when
the export needs to occur:

1. Custom built application. Building a custom application implies
building the common bridge between two systems. The application
should understand how the source relates to the destination. In
other words, the application needs to know every destination for
every source. The more structured the mapping from source to
destination, the easier it is to build the application. The advantage
of a custom built application for extracting the data is that the
application has full control over the process, however full control
may imply more work must be done. A custom application
approach might be better to run between updates to the information
source, depending on how the information source works.

2. Predefined tools. Predefined tools can extract data from an
information source, however they may not work as well as a custom
application. The problem with these tools is that they were designed
to fit a general need. In reality the needs may vary and the more
the needs vary the more general tools become less useful. The
advantage of a predefined tool is that the development time is a lot
less than for a custom application. One such tool is Microsoft’s SQL
Server Integration Services (SSIS), which is used to build integration
services between systems. SSIS works by defining a flow of tasks to

32 Chapter 2. Background

execute, where you define the parameters for these tasks and you
can package this definition into a complete package which can be
deployed and run. The advantage with an integration tool like SSIS
is the ability to manage the integration process such as filtering data,
sorting data, handle errors and successful runs.

2.6 Programming paradigms

This section presents some information about the programming paradigms
used in this thesis project. This section will introduce why these specific
programming paradigms are important, when they are used, and how.

2.6.1 Overview

To solve a programming problem in the best way there is a need to
understand what paradigms exist in order to choose the correct one
for each specific problem [37]. Peter Van Roy states: “A programming
paradigm is an approach to programming a computer based on a
mathematical theory or a coherent set of principles” [37]. A paradigm
can support a set of concepts and it is the combination of these concepts
that determines whether it is efficient or not for a specific set of problems.
However, the choice of paradigm can be limited due to the programming
language that is chosen. A programming language might be chosen for
many different reasons, but it should support the programming paradigm
that is most suitable to the solve the problem. That is why it is good to
use a programming language that supports many different programming
paradigms, which makes it better all around [37].

2.6.2 Object oriented programming

There are four basic tenets of object oriented programming: abstraction,
encapsulation, inheritance, and polymorphism[38]. The following sections
will go deeper into each of these basic tenets and give an explanation as
to what they are and how they work.

2.6. Programming paradigms 33

2.6.2.1 Abstraction

When problems become complex, there is a need to divide them up to
make them easier to solve, which is exactly what abstraction helps to do.
For instance if you look in a radio, it has a tuner, an antenna, a volume
control, etc. In order to use this radio the user does not need to know
or understand exactly how the antenna captures radio waves or how the
radio then transforms that into electrical signals through a process of
filtering and converting it into sound[38]. The user of the radio often
wants to be able to use the radio without being a radio expert, hence the
radio presents a user interface which abstracts the complexity behind its
components by providing the user with only a volume knob and a tuning
dial, in order for the user to pick the station. When using abstraction it is
important to understand what to show the user and what to hide.

2.6.2.2 Encapsulation

In non-object oriented programming languages such as C, there are
data objects called structs. Structs are basically defined sets of data,
which in practice means that variables can be bundled together to
form an object or an entity. However, C structs do not have built-
in encapsulation. Encapsulation or information hiding, is similar to
abstraction, but encapsulation is the mechanism by which abstraction
is implemented [38]. In other words encapsulation is the mechanism
that controls or restricts access to internal data within an object. This
allows for the object to control its internals and protect them from being
corrupted by other classes using them.

2.6.2.3 Inheritance

Inheritance is a concept where a child (also called a derived) class inherits
behaviours of a parent (also called a base) class. Figure 2.6 illustrates how
base classes are related to their derived classes.

The reasons why inheritance is desirable or needed in object oriented
programming are extensibility and code reuse[38]. As shown in figure
2.6, the relationships between child and parent objects can be explained
with "is-a" or "kind-of". However, there are other kinds of relationships
such as a composition, where the object is not necessarily "kind-of" but
rather "has-a". This means that an object can include or refer to another
object in order to be complete. In this way the code is reused and is

34 Chapter 2. Background

Figure 2.6: Simple overview of inheritance

more extensible. C++ supports multiple inheritance, which implies that
a child class has multiple parents. However, it is unusual to use multiple
inheritance, since it can cause a lot of trouble with for instance identical
function names[38].

2.6.2.4 Polymorphism

Polymorphism allows objects to assume different forms. When calling
a method on an object, we pass in parameters and get a response back.
With a polymorphic object the important thing is that a specific behaviour
exists, disregarding the object’s class, as this object can be any arbitrary
class [38]. There are two different polymorphism types: parametric
polymorphism and overloading. Parametric polymorphism allows the
user to choose the parameter type when calling a method [39]. The
parameters can be of a certain type, depending on how they are defined
in the method definition. This implies that parametric polymorphism is
generic in the sense that it only needs to be compiled once for all implicit
types. Overloading occurs when an object has two methods of the same
name, but they are distinguished by the types of the parameters. [38]

2.6.3 Model View Controller

The Model View Controller (MVC) pattern is today a widely used pattern
within object oriented programming [40]. The pattern consists of three
parts: the model, the view, and the controller. The idea behind the MVC
pattern is to split up presentation logic, business logic, and business
models. Below we go deeper into each part of this pattern and the

2.6. Programming paradigms 35

communication between them.

2.6.3.1 Model

The model domain in the MVC pattern represents the application data
and business rules. According to Liu in [41], the model domain should
theoretically handle a real-world process. The model itself will consist of
a set of classes which support to implement the process. Deacon states in
[40] that a model should live as long as the process lives.

2.6.3.2 View

The view domain in the MVC pattern represents a view of a model. In
object oriented programming each model will have a set of view classes to
show the model itself, which are often graphical. The view is the model’s
graphical representation and it is therefore important that the view knows
at least the structure of the model itself in order to represent it visually
[40].

2.6.3.3 Controller

The controller is the domain in the MVC pattern which will handle user
input to manipulate the view[40]. Even though it might not be completely
true, the controller can be seen as the input whilst the view can be seen as
the output. Just as the model does not know about its view, the views do
not know about any of the controllers. A controller is a managerial part
of the application which causes the model to perform some computation
and then show the computation’s output using a view[41].

2.6.3.4 Communcation between the domains

The division between the domains in the MVC pattern makes it quite
clear what each domain should do, which abstracts the problem of
handling all or parts of them at the same time. However with this
division, there is now a need to have some kind of communication
between the domains. If the models changes, then the view needs to
be updated in order to represent the model in the correct way. Similarly
if the view has been triggered by the controller to do something, then the
model might need to compute something in order to update its internal
information. The communication between the domains is event driven,

36 Chapter 2. Background

which implies that every time one domain wants to notify another it will
generate an event [40].

Below is an example based on figure 2.7 showing communication
flowing in both directions[41] [40]:

1. View to model. A user clicks on a button to reload a table with
information. The view will generate an event which invokes a
method in the controller. The controller accesses the correct model
and executes the reload method.

2. Model to view. A model has been invoked to reload its information.
It will do what ever is necessary for this particular model and
generating a new view. When the model is done and has updated
its information it will generate an event which lets all interested
views know of the change.

Figure 2.7: Model View Controller communication example

2.6.4 Object relational mapping

Many applications today store their data that needs to be persistent in
some sort of persistent store. This means that the application itself needs

2.6. Programming paradigms 37

a way to communicate with that store in order to store its objects. Section
2.3.3.6 described how Core Data can be utilised in a mobile application to
provide persistent (or non-persistent) storage of objects. A persistent store
is often a database, where the data can be stored and managed. Object
relational mapping (ORM) is an automated way of placing persistent
objects in a relational database using information about these objects and
their relationships. Basically what ORM does is handle the connection
between the application and the store. This implies handling the structed
query language (SQL) for the application, thus abstracting away the
problem of writing proprietary SQL.

ORM consists of four components [42]:

1. An Application Programming Interface (API) for basic creation,
reading, updating, and deleting of objects that are persistently
stored.

2. An API or a language that can create queries to operate on the
classes and properties of objects.

3. A way of defining each object and mapping them together.

4. A way for the ORM to perform dirty checking, lazy association
(more about these in 2.6.4.2), or other such optimisations.

2.6.4.1 ORM implementations

An ORM can be implemented in different ways depending on how hard
the coupling should be between the object and the persistent store. Below
are four different paradigms used in ORM implementations [42]:

1. Pure relational. The application is built around fully relational
models and SQL-based relational models. A pure relation ORM
implementation is often slower, less maintainable, and not as
portable, compared to writing queries in SQL optimised for the
specific situation. However, a pure relational ORM can be really
useful for a smaller system, because all mapping and handling of
objects is handled by the ORM.

2. Light object mapping. With light object mapping the objects are
manually mapped to a relational table. This implies that there is a
need to manually write code to map each object to its corresponding
database entity.

38 Chapter 2. Background

3. Medium object mapping. In the medium object mapping paradigm
the SQL code needed to handle the objects is built at compile time or
at run time. This means that there is a SQL code generator running
that uses the defined mappings, however this code generator is only
invoked when needed. Medium object mapping is a basic way of
implementing an ORM and many ORM implementations support
this paradigm. This kind of mapping is good when portability is
needed, especially between different persistent stores.

4. Full object mapping. Full object mapping means that the persistence
layer supports composition, inheritance, and polymorphism (see
section 2.6.2 for a better explanation of these terms). It also means
that the implementation has transparent support for optimised
strategies.

2.6.4.2 ORM optimisation strategies

This section describes two different ORM optimisation strategies that are
commonly used in ORM implementations. These optimisation strategies
are important to understand in order to have a good picture of how ORM
actually works. Optimisation is often important since one of the biggest
problems with ORMs is that associations need to be handle efficiently.
These two optimisation strategies are explained [42]:

1. Dirty checking. Dirty checking occurs when the ORM implementation
checks for updates in an object in order to know when to update
the persistent store. There are two ways of doing this, one way
is interception and the other way is inspection. The interception
method intercepts the assignment of an object’s properties, hence
interception knows when an update happens. The inspecting
method will check the object’s value at the end of a transaction and
compare it to a local snapshot of the object to see if the object needs
updating.

2. Lazy association. An object might have an associated object. One
problem that ORM implementations have to solve is how to load the
associated objects. Lazy association is a strategy which fetches the
associated objects only when they are first accessed. This strategy
has its advantages and disadvantages, while optimising the fetching
of the object itself it takes longer time for fetching associated objects.

2.6. Programming paradigms 39

2.6.5 Event-driven computing from a Node.js perspective

Node.js which was described in section 2.4.2 is based on JavaScript. In
JavaScript events have always been in the core of the language, rather than
a side effect [24]. JavaScript has always dealt with user interaction, such
as "onclick" or "onmouseover" events, which are all triggered by the user.
In other words JavaScript reacts to an act. Node.js utilises this feature
of the JavaScript language, to make the execution non-blocking. Non-
blocking implies that the code will never wait for the method to return,
but rather the specific operation runs independently and either emits an
event when it is done or calls a callback. Since the non-blocking code will
run separately, we need a way for the flow of the execution to find its
way back to the next instruction in the flow. The use of callbacks is very
common in Node.js, because of the support for non-blocking calls in the
system libraries.

Essentially what happens when Node.js is executing its code is to
first run through the code and set up the events that will listen for
changes. When this is done, Node.js does not exit, unlike a non-event-
driven program. A non-event-driven program will execute the code until
it is finished, while Node.js waits and listens for an event to occur and
continue the execution from the callback or event listener.

Event-driven programming is beneficial when there are lots of slow
operations (such as I/O) to be handled. Node.js will handle these
operations in the background and asynchronously call the callback when
the operation is completed. A good example is to think of a restaurant,
where you tell the waiter what you want and the waiter tells the chef
what to start cooking. In the meantime while the food is being prepared,
the waiter goes to the next customer and solicits their order. When the
chef is done cooking an event will be generated, telling the waiter that it
is time to serve the customer.

An important concept in all this is that the code that is written for
Node.js is run in a single thread. Taking the example into account, the
restaurant only has one waiter. This implies that if the Node.js code (or
the waiter) gets stuck at one customer, then the other customers will have
to wait. [24]

Chapter 3

Method

This chapter presents the methodology used as well as the method and
execution of the thesis project. Section 3.1 describes the methodology
and the measuring framework developed for this thesis project. Section
3.2 presents the design of the system and the responsibilities each part has
of the overall design. Section 3.3 describes how the system was actually
implemented, considering the goals and the design. Section 3.4 shows
the test set up and describes how the performance of the system was
measured.

3.1 Methodology

This section describes the framework for how the performance measurements
and evaluation were done. First the methodology used is described in
section 3.1.1. The framework is not only used to describe the metrics for
performance, but this framework is also used to define the goals of this
project - as described in section 3.1.2.

3.1.1 Methodology

The methodology used in this thesis project is a combination of two
different methods: quantitative and qualitative. The question that is
asked in this thesis requires answers and measurements that combine
both quantitative and qualitative analysis.

The qualitative analyses will be done based on the background
information gathered, whereas the quantitative analyses will be done
by setting up a test system and measuring the performance. Using the

41

42 Chapter 3. Method

framework as support for the analyses, conclusions will be drawn as to
whether the defined goals were achieved or not (the actual analyses are
in Chapter 5).

Having qualitative and quantitative analysis together, covers both
sides of the assessment of the proposed system. Together with the
conclusions drawn, we will clarify what has been done and what remains
to be done (see section 6.2). The suggested future work (section 6.2) will
give future researchers a better ability to build upon this thesis work.

3.1.2 Measurement framework

In order to build a measurement framework it is important to first
understand our goals, because the measurement framework’s only purpose
is to measure whether we have achieved our goals. Below a short
description is given of each goal and how it should be measured:

1. Core functionality (goal 1.a). The core functionality concerns the
correct implementation of features as requested by Netlight. The
core functionality of the system was defined together with the
product owner in order to make sure that the end system provides
the required functionality. This goal will be measured in a qualitative
way, i.e., as to whether the required functionality exists or not.

2. Build a system for the future (goal 1.b). Building a system for
the future is hard to measure, since predicting the future is hard,
hence, the measurement will be simplified. Given that the system
is following the current trends specified in 2.2, the system will be
measured as if it was built for the future (i.e., by applying a load
that might be expected in the future).

3. Mobile application is easy to use (goal 2.a). This goal will be
measured by performing a usability test with a group of five people.
According to Jakob Nielsen, five users is sufficient and more users
will not give a much better result [43]. Based on the results of this
usability test, an analysis will be done to conclude how easy the
mobile application is to use.

4. The mobile application should maintain synchronisation with the
back end (goal 2.c). This goal requires less analysis, than the goals
above. To achieve this goal synchronisation should be maintained

3.2. Design 43

between the local cache in the mobile application and the back
end. The criteria for this synchronisation mechanism is that it
synchronises periodically faster than the back end synchronises with
the ERP.

5. Scalability in the back end (goal 3.a). A qualitative analysis (based
on the definition of scalable systems in section 2.2.2) of the back end
should be done in order to ensure that all components are scalable
as needed. This goal will be considered to be achieved if all the
components in the back end can scale.

6. Sufficient speed in the back end (goal 3.b). Having a fast enough
back end to serve the mobile application will help users not to lose
interest, as otherwise they might not use the application. In order to
achieve and analyse this qualitative goal, there needs to be a limit to
which we can compare the performance. The limit has been set at 3
seconds, because of the requirements given by Netlight. However,
according to Jakob Nielsen, everything that takes between 2 and 10
seconds is sufficient to avoid the need to show a loading screen [44].
It is also important that the system can deliver this performance
under a load of 500 concurrent users, as this is also a requirement
set by Netlight (appendix A).

7. Get the information from the ERP (goal 4.a). In order to
measure this qualitative goal it is important to understand what
qualities make a synchronisation module better. Better in this
sense concerns two factors: time to implement and performance.
Performance concerns how long it takes to synchronise the data and
the downtime of the system, as both are important factors in order
to understand how well the synchronisation performs.

8. Integration with ERP (goal 4.b). If the thesis includes options for
different forms of integration and describes some of the issues of
integrating the back end with an ERP, this goal will be considered
to be fulfilled.

3.2 Design

This section introduces the design of the system as a whole and then
describes each of its parts. The design will conceptually describe the

44 Chapter 3. Method

entire system, in order to give a better understanding of how all the parts
of the system connect to each another. This section also introduces and
describes each part’s responsibility and functionality.

3.2.1 System architecture

Figure 3.1 shows the conceptual system architecture, which will be the
focus of this thesis project. All of the parts that are defined in the
conceptual system architecture, play a specific role. The leftmost part
of the architecture is the mobile application, which is described in section
3.2.2. The back end itself is in the middle of the architecture. The back
end application is described in section 3.2.3. The database drivers and
what role they play are discussed in section 3.2.4. The database cluster’s
role in the architecture and its performance are described in section 3.2.5.
The rightmost module in the back end is the synchronisation mechanism,
which is described in section 3.2.6. The ERP section of the system
architecture describes how the synchronisation module in the back end
is connected to the ERP’s back end repository, which is used for storing
information.

3.2. Design 45

Figure 3.1: Conceptual system architecture. The figure shows how the
parts connect to each other.

46 Chapter 3. Method

3.2.2 Mobile application

The mobile application will act as a client to the system. The role
of the mobile application, is to help the users navigate within the
information in order to find the information that they are looking for.
The mobile application must meet both functional goals (i.e., providing
specific required functions) and certain performance goals. How the
mobile application performs with regard to fetching the relevant data
is also important, because the mobile application must fetch the data
and present this data to the user. There are three major parts of
the mobile application. The first part is the module called "app front
end". This is an essential part of the application as it provides the user
interface (UI). The app front end needs to fulfil requirements regarding
the UI and show the information in such a way that the user can
easily navigate and find the information that they need. The second
part of the mobile application is the synchronisation module. The
synchronisation module is responsible for determining how and when the
information should be stored or fetched and from where the application
should get the information. In other words the synchronisation module
is responsible for handling pre-fetching of information that might be
used. When the user then wants to access the information it is up
to the synchronisation module to determine from which source to
fetch the information (i.e., the local cache - implemented by the local
repository - or the remote back end). An important thing to note for
the synchronisation module is the problem of handling revisions (more
about synchronisation fundamentals in section 2.3.3.1). Lastly the local
repository stores information persistently. The local repository is fed
by the synchronisation module. The local repository needs to store the
information, so that when the synchronisation module asks for it the
local repository can deliver. However, the local repository does not have
an obligation to deliver information, but rather it has to be able to tell
the synchronisation module that it does not have the information, which
was searched for and therefore that the synchronisation module should
get this information from the back end. As long as the modules follow
this logic the information should be correctly synchronised between the
mobile application and the back end, under the assumption that correct
revision logic is implemented (to ensure that changes to the data in the

3.2. Design 47

back end propagate to the local repository as described in 3.3.3).

3.2.3 Back end application

The role of the back end application is to serve the mobile application
or any other devices that might be used in the future. It does this by
providing a REST API, which is a common standard and therefore allows
easy integration for different clients based upon different platforms (more
about the REST protocol in section 2.4.5). This API is well defined and
known to the mobile application and any other clients. A client uses this
API to fetch specific information by crafting suitable URIs.

Since the role of the back end application is to extract information
from the underlying storage subsystem and delivering it to any (authenticated
and authorised) client, it is essential that the back end application can do
this with good performance in order to achieve the goals stated earlier.
The back end application needs to be able to scale up to handle incoming
requests during peak times. Also since the main client in this system will
be a mobile application, there is a need to make the system responsive
enough to avoid users losing interest. This implies that the back end
application needs to keep the response below a bounded amount of time
(as stated in the requirements this is 3 seconds). Therefore the back end
application, as a provider of information for incoming requests needs to
meet the desired response times.

3.2.4 Database drivers

The database drivers are connected to the back end application and are
responsible for helping the back end application get the actual data from
the underlying storage, such as a database cluster. Depending on the
underlying database cluster the database drivers will differ. However,
all database drivers provide an interface for the back end application to
talk to the database cluster in a simple way. In this thesis, the focus
will be on database drivers with built in ORM functions (see section
2.6.4.2 for more information on how ORMs work). This implies that the
database drivers will be responsible for most of the querying to fetch and
store information. However, not all of the responsibility is given to the
ORM, since there will be problems with normalised tables, where custom
queries need to be written by hand.

48 Chapter 3. Method

3.2.5 Database cluster

The database cluster acts as the repository storage for the system’s back
end. In order to be able to support a larger number of users the database
back end cluster will have to be able to be replicated or sharded across
multiple servers, thus we propose using a database cluster (more about
this in section 2.4.3.3). Having a database cluster might actually decrease
performance depending on the structure of the cluster. The ability of the
cluster to scale is essential.

The role of the database cluster is not only to store the information
that the system will use, but also to deliver it in the fashion that is
required. The performance of the database is therefore crucial for this, as
the database must be able to deliver information to the mobile application
within the specified bounded time. Understanding the database cluster’s
performance is important as well, in order to be able to draw conclusions
and see that the database does not become a bottleneck in the delivery of
data to the mobile clients.

3.2.6 Synchronisation module

In this thesis project the system is supposed to extract a subset of
information from the ERP system to the back end, which means that
the synchronisation module will only do copying (reading) from the ERP
system. This information is to be accessible via the mobile application.
The mobile application communicates with the back end application,
which in turn gets the information from the back end database cluster.
In order for the correct subset of information from the ERP repository
to reach the back end database cluster and later be provided to the
mobile application, there is a need for a synchronisation module in
the back end. The role of the synchronisation module in the back
end is to synchronise the information from the ERP to the back end
database cluster. Depending on the delay requirements for updating
the information this synchronisation module needs to have varying
performance. It is important that the information updates from this
synchronisation module meets these requirements, otherwise there is
no point in extracting the information. The role of the synchronisation
module may differ, depending on the system’s requirements. However,
in this thesis the focus will not be in how synchronisation delays affect
the value of the system, but rather to explain how the synchronisation is

3.3. Implementation 49

done.

3.3 Implementation

This section will describe how the system was implemented. The goals
stated earlier affected the design decisions and the functionality and
performance of the implementation has to meet Netlight’s requirements.
The implementation itself consists of different parts. Each part is further
described in one of the following sections. The back end application
implementation is described in section 3.3.1. How the databases were set
up is described in section 3.3.2. The mobile application synchronisation
mechanism is described in the section 3.3.3. The database drivers layer
is described in section 3.3.4. The synchronisation between the back end
database of the ERP and the back end application server is described in
section 3.3.5.

3.3.1 Back end application

Figure 3.2 shows how the back end is designed and how this design
guided the implementation. The figure depicts how the MVC concept
applies to the implementation of the back end application (more about
MVC in section 2.6.3). The flow of the back end begins with the mobile
application or any other REST capable client requesting a resource using
a specific URI. The request is delivered to a HTTP server. The back end
application running in this HTTP server passes the request on to the
(request) router, which is responsible for selecting the correct controller
to handle the request. The selection is based on the request URI, in this
case the decision is based on the type of resource that is requested. In
this implementation the view is not very visual, but the view is still the
part of the application that triggers the application to respond based on
an interaction with a user or machine.

In practice a request to http://host:port/employees/1, will go to the
controller which handles "employees" requests. The application is built in
such a way that each resource type has its own controller. The controller
is registered in the (request) router. By implementing the application in
this way, an arbitrary number of different types of resources can easily
be added and the application will simply scale up. The controller is
responsible for handling the request and making sure that the requested

50 Chapter 3. Method

information reaches the user. The controller will utilise the ORM to fetch
the data based on the type of resource that was requested.

The ORM consists of models and a database connection (more about
ORM in section 2.6.4.2). The controller calls the model, which contains the
query methods needed to fetch a specific instance of a resource. However,
this is not always possible, since the ORM cannot provide all the custom
queries that the application might want to run. Therefore the ORM
provides methods for executing SQL queries. The ORM will maintain
a connection to the underlying back end database to execute the queries
in order to fetch data and return it to the controller.

Finally the controller will format the data in a structured and
consistent way in the responder module and send it back to the client
that initiated the request.

3.3. Implementation 51

Figure 3.2: Back end application structure, from an MVC point of view.

3.3.2 Database setup

The back end database holds the extracted subset of data that was earlier
extracted from the ERP system’s database. One important aim is that the
database should scale up easily, because in this way the ERP database
does not have to scale up in order to serve this subset of data. For this
reason the back end database should be chosen so that it can scale easily.
In this initial implementation only a single MySQL server is used. MySQL
already allows for clustering databases, which implies that if the system
needs to scale in the future, additional database nodes can be added.

52 Chapter 3. Method

3.3.3 Mobile application synchronisation

Due to the limited time available for this project the mobile application
synchronisation part of the system has not been implemented, but a
solution will be proposed below. Synchronising data within the mobile
application is not a simple task and the details of this will be left to future
work. In this section we present one way of doing so which would fit the
needs of this project.

Figure 3.3 shows the overall flow of the synchronisation. When the
application starts, an initial request will be sent to the server. This request
will contain an indication of what data has already been synchronised,
preferably using ids. The response will contain all ids that have been
added after the ids specified in the request. The application will then
sort the ids in this response, placing the ids for information that will be
needed sooner first 1. This way the application can focus on getting the
latest information that is mostly like to be needed. The next step is for the
application to decide if it is crucial that a piece of data is updated or not.
Based on the above mentioned decision, the data will either be returned
to the caller based on what is in the local store or wait until the data has
been synchronised into the local store. It is important to note that no data
has yet been returned to the user. Now the background synchronisation
starts, based on the sorted queue of ids. The background synchronisation
should request only one or a couple of resource(s) at a time, because of
the following reasons:

1. Do not lose connectivity. We do not want to lose network
connectivity when synchronising bigger chunks of data.

2. Scales is size. If the size of the data to be synchronised is big, the
risk of encountering a transmission failure is higher.

3. Measure progress. It is easier to manage and understand how much
work has been done and how much is left. A progress bar can also
be shown to the user to show how much work that is left before
they can start using the application or until the synchronisation is
finished.

Once a resource has been synchronised to the local store, it should be
taken off the queue.

1The application needs to know which information that needs to be requested first.

3.3. Implementation 53

Figure 3.3: Mobile app synchronisation flow scheme.

3.3.4 Database drivers

The database driver is a module from NPM (see section 2.4.2 for more
information) and is called Sequelize.js [45]. The database driver is not
only a network connection to the database server, but it is also a complete
ORM. Sequelize.js is open source and is still under development, and
therefore some work had to be done in order to modify it to better fit the
needs of this thesis project better.

54 Chapter 3. Method

3.3.5 Synchronisation mechanism

There is a need to copy the information from the ERP with the system’s
back end database (in this case the MySQL server). The copying does not
have any real time requirements, as we assume that nightly copying is
sufficient.

There are different ways of doing this copying, but Netlight requested
the use of SSIS (described in section 2.5.2), since they already have other
systems running SSIS packages and thus the integration would be easy.
The SSIS package does two things:

1. Truncates the database tables. This truncation is done in order to
clear all data from the tables, but to keep their structure.

2. Copies data from the ERP. The ERP has custom built database views
of the data that are needed in the back end database. Every time
the SSIS package runs, the data which has already been formatted
correctly is copied into the back end database.

The whole process takes about 10 seconds, which is an acceptable
downtime for the back end system. The predicted usage of the mobile
application during night time, when the SSIS package is run is almost
non-existent. However, a problem that might occur is that as the data
grows in the ERP, then it is going to take longer to refresh the back end
database. If reduced downtime becomes essential and more data is to be
copied, then a solution could be to do partial updates, thus minimising
the risk of information not being available to the end users.

3.4 Test setup

This section focuses on how the test system was set up, in order to
measure the performance of the system. The information generated will
be used in the analysis and from the analysis conclusions will be drawn.
Section 3.4.1 describes what tools were used in order to run the tests and
how each tool works. Section 3.4.2 describes the system set up for the
testing and how the tools are connected to each other in order to build a
complete testing system.

3.4. Test setup 55

3.4.1 Measurement tools

In order to be able to measure the different aspects of the system to ensure
that it meets the requirements, there is a need for a number of different
tools. These tools will be used primarily for quantitative measurements,
but can also be applied in the qualitative analysis. Below is a list of
different measurements and the tools that will be used for measuring the
different parameters (these parameters are needed for later analysis):

top Top is a standard unix application to measure CPU and memory
utilisation. Top will be used to make sure that the hardware
of the system is not the bottleneck. It is important to have a
good understanding of how the hardware behaves, especially when
making a qualitative analysis of the system’s behaviour. Top will be
used to collect data about how the system performs in practice.

free Free is a linux application which measures how much memory the
system is currently using. For our performance tests, free enables
us to measure the amount of memory that is needed when running
the application. However, one important thing to keep in mind is
that free will show the system memory usage and is not application
specific. When using free in system tests, recording the starting
values is important in order to understand how much memory the
application is actually using.

Apache benchmark Apache benchmark is a tool for benchmarking
a web server [46]. You can specify how many connections and
how many requests the stress testing should include. The apache
benchmark will output the minimum, mean, median, and maximum
time it took process a request. Using these results should give us
an idea of how the system can handle a given amount of load. It
is important to measure the response times as a function of load
so that we can ensure that the system will keep the user’s interest.
If the response time is too long, then the user will quit using the
application.

3.4.2 Set up

The test system was set up as depicted in figure 3.4. There are two servers
used in this test setup to be able to measure the bandwidth coming in and

56 Chapter 3. Method

out of the back end server without adding the load of the testing software
to this server. The tools described in section 3.4.1, were mostly run in the
back end server, where the measurements need to be run. In the back end
server a measurement script was created, which uses top and free. The
script is in Appendix B.

The test server will be running Apache benchmark in order to stress
the back end server. Different tests will be done to measure performance
when fetching different resources with different parameters, to see how
the back end handles different loads. The results will be gathered
in comma separated files and will be analysed by looking at graphs
generated from this data.

Figure 3.4: A model of the test setup, with internal components

Chapter 4

Results

The results presented in this chapter are results from the quantitative
tests. The results are described briefly in this chapter and are then
further analysed Chapter 5. The measurements shown here were done
on a virtual server with the specifications listed in listing 4.1. The
measurements are done using different parameters to see how the system
handles different loads. The below list explains these parameters:

1. No analysis. No analysis indicates that the server has turned off its
analysis, such as statistics gathering, to optimise performance.

2. Socket fix. Socket fix indicates that the operating system of the
test server has been configured to recycle and reuse sockets. This
implies that the system will allow the use of sockets that are in
the TIME_WAIT state. A socket enters the TIME_WAIT state after
closing its connection [47]. The system sets the state of the socket to
TIME_WAIT in case delayed packets might reach the system later.
After a while the socket is removed.

3. Cluster. Cluster is a Node.js module which enables the back end to
initiate multiple processes when using multiple processor cores.

Table 4.1: Test server specifications

Operating system Ubuntu server 12.04
CPU 4 cores @ 2.66 Ghz
Memory (RAM) 2048 MB

57

58 Chapter 4. Results

The following sections focus on what resources were being utilised.
All of the following results are based on 500 concurrent connections 1

and in total 50,000 requests.

4.1 Employee with id 404

In this section the results for fetching information about employee with
the ID number 404 will be shown. The response size for this resource was
68 bytes.

4.1.1 Default settings

These are the results from running the benchmark with default settings,
implying that analysis module is enabled, socket fix is not applied and no
clustering is enabled. Table 4.2 shows the response times when running
the benchmarks with the settings mentioned above. As we can see both
in table 4.2 and in figure 4.1, some of the responses take more than 3
seconds. However the fastest response is 12 milliseconds. Figure 4.2
shows the CPU and memory consumption during this benchmark.

Table 4.2: Results from apache bench, with default parameters

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 167 30 15071
Processing 12 599 356 27987
Waiting 11 578 356 27986
Total 12 766 415 27993

1The number of concurrent connections are increased over time, which might give
the back end a slight advantage in the results.

4.1. Employee with id 404 59

Figure 4.1: Apache benchmarking results

Figure 4.2: CPU and memory consumption during test

60 Chapter 4. Results

4.1.2 No analysis

These are the results from running the benchmark without the analysis
module. As we can see in table 4.3, the slowest response was over 31
seconds and the fastest was in 3 milliseconds. Figure 4.3 shows all
the response times for the benchmark. Figure 4.4 shows the CPU and
memory consumption during the benchmark.

Table 4.3: Results from apache bench, no analysis

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 440 13 31067
Processing 1 129 42 17588
Waiting 1 123 41 13402
Total 3 569 70 31210

Figure 4.3: Apache benchmarking results

4.1. Employee with id 404 61

Figure 4.4: CPU and memory consumption during test

4.1.3 Socket fix

These are the results from running the benchmark with only the socket
fix applied. Table 4.4 shows the response times when running the
benchmarks with the settings mentioned above. As we can see both
in table 4.4 and in figure 4.5, the slowest response takes more than 61
seconds. However the fastest response is 13 milliseconds. Figure 4.6
shows the CPU and memory consumption during this benchmark.

Table 4.4: Results from apache bench, with socket fix enabled

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 412 15 31195
Processing 2 394 241 61171
Waiting 2 380 240 53644
Total 13 806 297 61188

62 Chapter 4. Results

Figure 4.5: Apache benchmarking results

Figure 4.6: CPU and memory consumption during test

4.1. Employee with id 404 63

4.1.4 Socket fix and no analysis

These are the results from running the benchmark with socket fix enabled
and without the analysis and clustering module. Table 4.5 lists some of
the statistically interesting response times from this benchmark. Figure
4.7 shows all of the response times in a graph. Figure 4.8 shows a graph
over the CPU and memory consumption during this benchmark.

Table 4.5: Results from apache bench, with socket fix enabled and analysis
disabled

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 308 10 32292
Processing 1 106 35 12617
Waiting 1 103 35 12614
Total 2 414 54 32314

Figure 4.7: Apache benchmarking results

64 Chapter 4. Results

Figure 4.8: CPU and memory consumption during test

4.1.5 Socket fix and clustering

These are the results from running the benchmark with the socket fix and
clustering module enabled. Table 4.6 gives us the statistical results from
running the benchmark with the above mentioned settings. Figure 4.9
presents all the response times in a graph. Figure 4.10 shows the CPU
and memory consumption during the benchmark.

Table 4.6: Results from apache bench, with socket fix and clustering
enabled

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 424 12 31092
Processing 2 395 58 38843
Waiting 1 342 57 30635
Total 2 820 87 43163

4.1. Employee with id 404 65

Figure 4.9: Apache benchmarking results

Figure 4.10: CPU and memory consumption during test

66 Chapter 4. Results

4.1.6 Socket fix, no analysis and clustering

These are the results from running the benchmark with the socket fix
applied, without any analysis and with clustering module enabled. In
table 4.7, we can see the minimum, mean, median and max values of the
response times in milliseconds. Figure 4.11 depicts all of the response
times in a graph. The CPU and memory consumption for this benchmark
are shown as a graph over time in figure 4.12.

Table 4.7: Results from apache bench, with socket fix enabled, analysis
disabled and clustering

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 327 11 31118
Processing 1 71 8 19123
Waiting 0 67 8 19122
Total 2 398 22 31119

Figure 4.11: Apache benchmarking results

4.1. Employee with id 404 67

Figure 4.12: CPU and memory consumption during test

4.1.7 Local benchmark, socket fix, no analysis and clustering

These are the results from running the a benchmark locally (not to a
machine on the network) with the socket fix applied, without any analysis
and with clustering module enabled. Table 4.8 gives us the statistical
results from running the benchmark with the above mentioned settings.
Figure 4.13 presents all the response times in a graph. Figure 4.14 shows
the CPU and memory consumption during the benchmark.

Table 4.8: Results from apache bench, running the benchmark locally with
socket fix enabled, analysis disabled and clustering

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 1 0 47
Processing 1 155 142 519
Waiting 1 155 141 519
Total 1 156 143 519

68 Chapter 4. Results

Figure 4.13: Apache benchmarking results

Figure 4.14: CPU and memory consumption during test

4.2. Employees list - page 0 69

4.2 Employees list - page 0

In this section the results for fetching the list of employees for page 0 will
be shown. Page 0 implies 10 employee entries in this case. This resource
was 3110 bytes.

4.2.1 Default parameters

These are the results from running the benchmark with default settings,
implying that analysis module is enabled, socket fix is not applied and no
clustering is enabled. As we can see in table 4.9, the slowest response was
10 seconds and the fastest was in 252 milliseconds. Figure 4.15 shows all
the response times for the benchmark. Figure 4.16 shows the CPU and
memory consumption during the benchmark.

Table 4.9: Results from apache bench, default parameters

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 14 1 7010
Processing 228 2908 2923 3544
Waiting 228 2908 2922 3544
Total 252 2923 2926 9668

70 Chapter 4. Results

Figure 4.15: Apache benchmarking results

4.2. Employees list - page 0 71

Figure 4.16: CPU and memory consumption during test

4.2.2 No analysis

These are the results from running the benchmark without the analysis
module. In table 4.10, we can see the minimum, mean, median and max
values of the response times in milliseconds of this benchmark. Figure
4.17 depicts all of the response times in a graph sorted by the fastest
response time. The CPU and memory consumption for this benchmark
are shown as a graph over time in figure 4.18.

72 Chapter 4. Results

Table 4.10: Results from apache bench, no analysis

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 10 1 3027
Processing 169 1908 1908 5120
Waiting 169 1908 1907 5120
Total 187 1918 1912 6122

Figure 4.17: Apache benchmarking results

4.2. Employees list - page 0 73

Figure 4.18: CPU and memory consumption during test

4.2.3 Socket fix

These are the results from running the benchmark with only the socket
fix applied. Figure 4.19 shows the results in response times from running
this benchmark. Table 4.11 shows the minimum, mean, median and
maximum response times. Figure 4.20 shows how much CPU and
memory was consumed during this benchmark.

74 Chapter 4. Results

Table 4.11: Results from apache bench, socket fix

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 28 1 8600
Processing 154 2993 2991 4093
Waiting 153 2992 2990 4092
Total 176 3020 2994 11805

Figure 4.19: Apache benchmarking results

4.2. Employees list - page 0 75

Figure 4.20: CPU and memory consumption during test

4.2.4 Socket fix and no analysis

These are the results from running the benchmark with socket fix enabled
and without the analysis and clustering module. In figure 4.21 we can see
all of the response times for this benchmark. Table 4.12 tells us that the
maximum total time for a response was about 10.6 seconds, while the
lowest maximum response time was 218 milliseconds. Figure 4.22 shows
the CPU and memory consumption during this benchmark.

76 Chapter 4. Results

Table 4.12: Results from apache bench, socket fix and no analysis

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 17 1 8613
Processing 191 1903 1912 5497
Waiting 190 1902 1912 4620
Total 218 1920 1915 10606

Figure 4.21: Apache benchmarking results

4.2. Employees list - page 0 77

Figure 4.22: CPU and memory consumption during test

4.2.5 Socket fix, no analysis and cluster

These are the results from running the benchmark with the socket
fix applied, without any analysis and with clustering module enabled.
Figure 4.23 shows the resulting response times from running the benchmark
with the above mentioned settings. Table 4.13 shows that the maximum
response time was under 37 seconds, while the fastest response time was
in 8 milliseconds. Figure 4.24 shows the CPU and memory consumption
for this benchmark.

78 Chapter 4. Results

Table 4.13: Results from apache bench, socket fix, no analysis and
clustering enabled

Min (ms) Mean (ms) Median (ms) Max (ms)
Connect 0 178 4 15034
Processing 7 767 510 36734
Waiting 7 719 509 20930
Total 8 945 599 36735

Figure 4.23: Apache benchmarking results

4.2. Employees list - page 0 79

Figure 4.24: CPU and memory consumption during test

Chapter 5

Analysis

This chapter focuses on analysing the results of the tests reported in
the previous chapter and assessing the more qualitative goals. Section
5.1 considers each goal and analysing each goal separately. Section 5.2
analyses the system as a whole. The focus in section 5.2 is primarily on
how the different components work together.

5.1 Goal and requirements analysis

Figure 5.1 shows a mind map of all of the goals and requirements. The
figure will be the basis for analysing whether we have achieved the goals
and met the original requirements. The branches are coloured green,
yellow, or red. These indicate wether the goal has been fully fulfilled
(green), partially fulfilled (yellow), or not fulfilled at all. Each goal will
be analysed separately together with the results from the measurement
framework. Section 5.1.1 will analyse the goals for the mobile application.
Section 5.1.2 will analyse the back end and the goals for it. Section 5.1.3
will go through the goals for the information source in this thesis project.

81

82 Chapter 5. Analysis

Figure 5.1: Mind map of the goals and requirements set up for this thesis
project

5.1. Goal and requirements analysis 83

5.1.1 Mobile application

The goals for the mobile application consist mostly of the functional
requirements for the mobile application. These goals had different
priorities as assigned, collaboratively with Netlight. All of the four
priority 1 goals were achieved, as well as one priority 2 goal (search for
coworkers on a map). The user can easily navigate within the mobile
application and see where coworkers are and have been in the past, along
with a search function.

Another major branch of the mobile application’s goals was synchronisation
with back end. The design for how this mechanism should be built
is outlined in section 3.3.3. However, no practical implementation was
done, therefore this goal was not fully fulfilled. Moreover, the solution
suggested does not solve the problem when there is a lot of data to be
synchronised. The proposed synchronisation mechanism assumes that
the initial request will return a successful response, because if it does not
then no data is returned to the user. This is of course not a good offline
scheme, but rather is a scheme for caching data locally and updating it on
the fly. Given this design the mobile application should have much faster
loading times (depending on how much it needs to synchronise each
time), since it will actively try to fetch data before the user has requested
it.

The third and last goal of the mobile application was to build an easy
to use mobile application. In order to understand what a user friendly
application implies, information had to be gathered about usability
and mobile application design. This goal was partially fulfilled since
information and knowledge were gathered and the mobile application
was built with usability in mind. However, more information could be
gathered regarding how to design mobile applications. The design and
usability knowledge is based upon a usability book which focuses mostly
on web experience rather than mobile applications. Another part of this
goal was to complete a usability study with five people, however there
was not sufficient time to do so and therefore this analysis is purely based
on the writer’s own opinions, rather a focus group’s.

5.1.1.1 Analysis of the resulting mobile application

Looking at figure 5.2, we can see a simple list of employees. According
to usability as defined in section 2.3.1.3, views should be designed to

84 Chapter 5. Analysis

be scanned not read. This implies that the application should have a
clear visual hierarchy, in order quickly convey the desired information.
In the figure we can see that the visual hierarchy is very clear with one
employee in each row, with a corresponding profile picture, which makes
it easy to scan since there is literally no reading required. The employee
list directly defines where an employee is currently working, by stating
that under their name. However, there is nothing saying that the label
under an employees name is their current position. This is according
to what was stated in section 2.3.1.4, where needless words should be
removed. On the contrary section 2.3.1.1, states that the user should not
have to think in order to understand. These are two separate sides that
would in practice have to be tested with a focus group in order to get a
better understanding how the result should look like.

Figure 5.2: Screenshot of the mobile application with a list of employees.

5.1. Goal and requirements analysis 85

Figure 5.3 shows a screenshot of the list of clients. This list is very
similar to the previously discussed list of employes, however this list is
even better from a usability perspective. This list strictly follows a design
where the material is to be scanned rather than read, which is exactly for
what is needed for a big list. The list has icons to its left, which tells the
user whether there are multiple people or just one person working at the
specific client. This gives a very fast, scannable view of the information.
However, this view is not ideal from a usability point of view. The clients
names are written text, but could have been something that represents
that client, such as a logo. The usability would have increased, if we can
assume that these companies’ logos are known to the user.

Figure 5.3: Screenshot of the mobile application with a list of clients.

The search bars which exist at the top of the above mentioned lists can
be seen in figure 5.4. The search bar is not visible by default, as the user

86 Chapter 5. Analysis

has to scroll upwards above the list of clients. However, in order to give
a hint, when the content is loaded the search bar is visible for a fraction
of a second before it slides up and hides itself. A focus group could give
more insight in how usable this feature is.

Figure 5.4: Screenshot of the mobile application with the search field for
clients.

The last two screens are the map view, where coworkers can find each
other on a map as depicted in figure 5.5 (zoomed out) and figure 5.6
(zoomed in). This screen is mostly straightforward, the user can see small
icons representing humans at locations on a map. Since many of the
employees at Netlight are located near a small number of positions, such
as in the city of Stockholm, the map will become very crowded with small
icons. Therefore clustering functionality was added, such as depicted in
figure 5.5, where the icon represents multiple coworkers at one location.

5.1. Goal and requirements analysis 87

As the user zooms in on the map, the icon which represents a group of
people is split into single icons when the user has zoomed in sufficient to
view each of the group’s members. The core functionality of this screen is
very easily implemented and understood, however something that might
not be so straightforward to implement is the ability to click the icons
to get further details about one specific employee. However, this is a
standard behavior in the iOS operating system, thus the probability of
users understanding this feature higher.

Figure 5.5: Screenshot of the mobile application with the map zoomed
out.

88 Chapter 5. Analysis

Figure 5.6: Screenshot of the mobile application with the map zoomed in.

5.1.2 Back end

The back end had a lot of goals and requirements, mostly because this
is the point that integrates with the rest of the IT infrastructure of the
company. If the back end has poor performance or poor security, then
the back end might not be allowed to run at all, therefore the back end
needs to meet a certain standard of both performance and security. On
the other hand if it performs well, other client platforms might connect
to it in the future, such as Android or Windows phones. There are three
main categories of goals that were set for the back end: performance,
scalability, and security. The following sections go through each of these
goals and analyses them in depth.

5.1. Goal and requirements analysis 89

5.1.2.1 Performance

The performance goal has one main requirement that has to be met,
which is that the response has to be generated in no more than 3 seconds
- even while the system is heavily loaded. The load specified in the
requirements is 500 concurrent connections. Since the requirements are
not explicit, we assume that if the response time is no more than 3 seconds
95% of the time, then the goal is met.

The plots in chapter 4 shows the back end’s performance with
different parameters, in order to get an understanding of how the back
end can handle different loads. There are three items of information
shown for each run that was made: the statistics generated, the response
times for this number of requests, and the CPU and memory load on the
back end. There were in total 12 different runs, which were both local
and remote and they varied with respect to 4 parameters: the resource
that is fetched, analysis in the back end, socket fix, and clustering.

The results for each run shows the connect, processing, waiting, and
total time in milliseconds. The definitions of these times are as follows:

Connect time. The connect time is the time it takes for the apache
benchmark to open a connection to the back end.

Processing time. The processing time is the time it took for the server
to generate a response.

Waiting time. The waiting time is the time between the last sent byte
of the apache benchmark and the first received byte from the back
end.

Total time. The total time from the beginning of the connection until the
connection is closed.

The plots for each run were based on the total time for each request
and are not serially sorted - but rather sorted on total time, thus the
maximum total time is the rightmost value, whereas the minimum is the
leftmost value.

As we can see the maximum values are much higher than the mean
and median values. This applies for all runs except for the local run. The
local run differs in that it is more normally distributed, hence the median
and mean are closer than they are when running the bench remotely. We

90 Chapter 5. Analysis

can also see that the CPU is used more than during the local benchmark
compared to the remote benchmarks.

This phenomena can be explain by observing the virtual machine
host. The bench mark was run on one physical machine with two
virtual machines (except for the run which was local). In between the
two virtual machines is a virtual switch. The virtual router handles the
traffic that goes from and to the virtual machines running on that host.
When observing the virtual machine host during the remote benchmarks
compared to the local benchmark, one can see that the virtual switch
is utilising the CPU at its maximum during remote benchmarking, as
compared to no CPU usage when benchmarking occurs locally. Running
the benchmark locally does not require the virtual machine utilise the
virtual switch, therefore the distribution of response times is smoothed.

The CPU utilisation has three different measures: idle, system and
user percentages. The idle percentage is the fraction of CPU that is
utilised when the computer is idling (i.e., not working), the system
percentage is the fraction of the CPU used when the operating system
is executing and the user percentage is the fraction of the CPU used by
user applications. The back end was started by a user and thus it is
a user process. A factor that seems to apply to all benchmarks is the
fact that not using clustering in the back end does not allow the CPU
utilisation to exceed 25% of the total CPU utilisation. This is of course
only natural since the processor has four cores and without clustering
the back end is only running on one core. Enabling clustering gives a
bit better performance as it allows the back end to utilise all four cores.
However, due to the fact that the virtual switch was limiting traffic, the
CPU resources of all four cores were not fully utilised.

Another interesting factor is the memory utilisation, which is of
course important in order to know what the requirements will be for
a production server. Running the benchmark seems to increase the
system memory utilisation by about 50-200MB. There also seems to be
a correlation between disabling the analysis in the back and and lower
memory consumption. This could be due to less operations being queued
up in the back end, for storing analytics. However, this is not always
the case as it seems also to depend on the resource that is targeted. It
seems that targeting a smaller resource, for example a specific employee
rather than a list, results in higher system memory utilisation. This can
be explained by the fact that the smaller resource is faster to load and
thus the ratio between time spent on analytics and time spent on loading

5.1. Goal and requirements analysis 91

the resource is higher with a smaller resource.
Applying the socket fix does not seem to have made a big difference.

This can be due to two different reasons (1) the socket fix was not
properly configured or there were other limitations in the system which
were not changed or (2) because the socket fix is simply not needed
as the system recycles sockets fast enough anyway, as 500 concurrent
connections are not that many after all (in comparison to the nearly 10
times this number of available sockets - on a machine which is only
supporting this application).

The most important question to answer is whether the back end
fulfilled its goal to deliver 95% of the responses within 3 seconds.
Although looking at the results which were run remotely and did not
perform as well as they could due to the virtual switch in the virtual host,
we can see that with the right tweaks the back end can deliver responses
within the time frame. As we can see in figure 4.11, around 98% of the
responses are within 3000ms.

5.1.2.2 Scalability

Analysing the scalability of the system is important for multiple reasons,
such as following the current trends and building a system for the future.
As Netlight is a growing company, it is important to understand what a
scalable system is and how to build one. Section 2.2.2 defined a set of
steps in order to check the scalability of the system.

The first step was to characterise the system’s performance as a
function of resources, which means understanding how much more of
a resource needs to be added or removed to see any difference in system
performance. In the test runs the resources were the same during
all benchmarks and therefore we need additional benchmarking to be
conclusive in this step. The second step is to identify bottlenecks in the
system and identify scaling design architecture violations. An obvious
bottleneck is the virtual switch, however it is part of the virtual host.
Another bottleneck in the system is the analysis module, which collects
statistics for the back end. Disabling this module increased performance
for all benchmarks. Running the back end without the clustering module
makes the design unscalable, since clustering allows multiple machines
to be clustered (or to utilise CPU cores). However, an alternative solution
would be to add external load balancers in front of the back end system.
Next a SWOT analysis of the back end was done. Given that the databases

92 Chapter 5. Analysis

are scalable and the clustering module is in use, one of the strengths of
this system is that it would probably scale quite well. However, we can
only really know if we try to scale the system and examine its scaling,
based on step 1. One of the weaknesses of the system is that profile
pictures of the employees are proxied (without being cached) through
the back end, which creates a dependency upon another system. This
implies that if this back end were to scale and the other dependent system
did not scale, then performance issues would probably arise. Due to the
popularity of Node.js the opportunities of adapting to new technologies
is not a problem, since the community is very active and often writes
modules to adapt to new technologies. One threat in the back end is the
analytics module, as it seems to fail to handle the work load when under
pressure. This is something that needs to be kept in mind when running
the back end with the analysis enabled.

Another important part of the back end scalability is the database.
However, as already mentioned in section 2.4.3.3, the database that is used
is able to scale horizontally hence providing scalability for the database.

5.1.2.3 Security

The information that is in the mobile application is business critical and
must not leak to anyone outside the company. This was the foundation
for which the two goals of security were based upon. The first goal is
utilises a strong authentication mechanism, which is implemented and
integrated into the local active directory that stores the authentication
information. The connection from the back end to the active directory is
explained in section 2.4.4.

The second goal was to have only encrypted communication between
the mobile application and the back end. This goal was met by setting
up an proxy in front of the back end which only allows encrypted
connections and to and from the mobile application. This proxy forwards
the requests to the back end.

5.1.3 Information source

The information source goals consisted of two subgoals, which were
the actual integration with the ERP system and understanding the ERP
system. The goals discussed in this part of the analysis are only for the

5.1. Goal and requirements analysis 93

practical parts of the thesis, rather than theoretical analysis which will be
discussed in section 5.2.

5.1.3.1 Integration with the ERP

The integration with the ERP system utilises an SSIS package, which
runs every night. In order to get an understanding of whether this
synchronisation is sufficient we must first know the time frame of changes
to the information that is being synchronised. In our case the information
does not need to be updated more frequently than every night, and thus it
is acceptable to have this infrequent synchronisation. However, according
to the measurement framework (from section 3.1.2) there is another aspect
which concerns how long the back end is unavailable. The integration of
the data from the ERP system is done by first truncating all database
tables in the back end and then filling them up with information. Due
to method of synchronisation the back end will be unavailable during
this synchronisation process with the ERP system. Although this aspect
is important, no goal was set by Netlight as to how much uptime the
back end part of the system had to have. In practice the back end will be
useless for a few seconds during night time, which is outside of normal
work hours for most of the employees.

5.1.3.2 Understanding ERPs

Another goal for this thesis project was to better understand ERP systems,
particularly how they store their data and what alternatives there are for
integration. This goal is probably the hardest one to quantify, however
we can analyse what was actually done to achieve the integration. As
we can see in section 2.5.2, we can have a pretty clear understanding of
how the data is stored by looking into the structure of the database. This
information tells us how data is connected in the database. However,
which it turns out that the data is not highly connected as the database
is quite normalised as we can see in the number of tables. Additionally,
all of the logic for combining data seems to be outside of the database,
probably in the proprietary Agresso application. This makes it very
difficult to understand what the data means, as we would need to
examine the proprietary application or the documentation of this ERP
system. Taking into account that the essential parts needed to implement
the integration were understood, we deem this goal is fulfilled.

94 Chapter 5. Analysis

5.2 System analysis

ERP systems are often big systems, since they can contain all of the
data needed to run a business. One might expect that the bigger the
business the more information to keep track of. What this implies is that
many people or systems need to work with the ERP system, since the
ERP model is essentially to maintain all the information, even if you
subsequently distribute the database back ends. Due to the size and
complexity of ERP systems there are huge complications when it comes to
scaling them. Some of the complications that can occur are listed below:

Licensing. Based on the business model of the ERP system, licensing
complication might arise. For example, having to pay for extra
licenses for each server that is running the ERP or paying based
upon the number of users that can access the ERP.

Scalability. Scaling these system might not even be possible or might
be so complex that scaling is really hard to achieve. Scaling ERP
systems is not only about buying better hardware, but performing
maintenance on the system. This is one of the disadvantages of
having a central node on which a business depends.

New features. Integrating or implementing new features into the ERP
system often requires a lot of work. Since the whole business is
dependent on the central ERP system, anything that could break
it puts the whole business at risk. What this means in practice
is that there is a huge requirement for testing in such a manner
as to not break anything, setting up frameworks for maintenance,
and keeping track of dependencies. In bigger organisations this
can take years to accomplish. However, the tests can be done
on a mirrored version of the ERP system’s database, allowing the
production database to run normally.

Given the above, it might be interesting to think of other strategies
for utilising ERP systems. An alternative strategy is to do as is done in
this thesis project, where the system is running outside the ERP system
itself and this system simply works with a copy of the data from the ERP
system. Some of the advantages to building systems around ERP systems
in this manner are:

Safer. Building the system around the ERP instead of within it can add
an extra layer of security. For example, if the system that is outside

5.2. System analysis 95

the ERP system breaks, it does not necessarily affect the ERP system.
In the case of the system built for this thesis project, the system
only reads from the ERP system’s database. The worst thing that
can happen is that the system cannot read from the ERP system’s
database anymore, then this external system may fail to function -
but it will not cause a failure of the ERP system. Building the system
outside follows the abstraction pattern (explained in section 2.6) and
has the advantages that comes with this abstraction pattern.

Scalability. Building a system which handles one specific task outside
the ERP system makes it more manageable, as it does not necessarily
have as many dependencies as an ERP system. Another advantage
when it comes to scalability is that the system built outside does
not have to have the same underlying database as the ERP system
itself, which can allow better scalability. The obvious advantage
is the fact that scaling a subset of the ERP system compared to
scaling the whole ERP system should be more cost effective and
more optimised, however this needs to be tested in order to be
proven.

No restrictions. Implementing new features or licensing are not issues
when building the system outside the ERP system, since this
development is independent of the ERP system.

There are many advantages as for building the system outside of the
ERP rather than on the inside, however this external implementation
requires that the integration options are suitable for the specific system
that is being built. For instance a system which requires real time updates
of the data, requires a tighter integration with the ERP system, which can
get quite complex. A suggestion for building real time synchronisation is
to have a direct feed from the database logs which include all operations
and then calculate the difference that need to be made to the system
outside. Depending on if data needs to be processed before extracted,
this solution might be too slow for a real time system.

Chapter 6

Conclusions

Section 6.1 discusses the conclusions drawn based on the previous results
and analysis. Section 6.2 describes some ideas for future work as well as
explains further in detail what has been left undone.

6.1 Conclusions

The work done in this thesis project involved a number of different areas,
that are quite separate in terms of the problems that needed to be solved.
In this thesis project there were two main parts: the work requested by
Netlight and the theory necessary to perform this work and to evaluate
it. The work itself needed to satisfy a number of requirements and we
measured the performance of the resulting implementation to determine
if we meet these requirements.

The requirements set for this thesis project by Netlight were important
to have, as they frequently identified a direction to follow, especially when
some of these requirements had lower priority. However, there are some
complications that occurred with regard of these requirements as the
definition of these requirements need more care than initially ought. The
requirements defines the common platform between the product owner
and the people working in the project. A lesson learned during this thesis
project is that requirements are hard to completely specify at the start of a
project. At some point in time the product owner and the people working
on the project may have common thoughts and opinions, however, over
time this can change. This implies is that it is important to have good
communication and feedback paths to the product owner in order to
maintain a common platform. It is also important that the requirements

97

98 Chapter 6. Conclusions

are prioritised and maybe even to reprioritise these requirements as
necessary during the project. Continuous communication is key to keep
a common vision of the objectives.

Mobile applications require a certain level of usability in order to
actually be used, as the user has to see value in spending time using the
application. Building a mobile application that provides a high quality
user experience, requires a lot of planning and thought. User interfaces
need to be understandable without being descriptive, which requires
knowledge and understanding of how the human brain works and reacts
to different actions, colours, and behaviours. In combination with this
the mobile application also has to bring added value to the user and the
work that this user needs to carry out. It is important to balance the
time spent on developing the application to bring value and functionality
versus the time spent on making the application usable. Depending on
the user group for the application, this balance could be towards either
one of these sides. This balance can be better understood by looking at
the time frame and by carrying out a user study, in order to understand
what the user’s needs are and how experienced the users are with similar
applications or interfaces. With this in mind, one might also want to read
and understand what usability implies and how others have defined it in
their research, as this could provide additional input when achieving a
great user experience.

There are more aspects to building a mobile application than its
interface, such as the back end connection and how well the application
performs on the user’s phone, such as if it drains the battery rapidly
or not. As discussed in section 2.3.2, the network connection is one
of the most important parts to optimise in order to create a mobile
application that is usable for long periods of time each day. Therefore
the communication between the mobile application and the server was
designed to send only necessary information to minimise the network
load. We have assumed that by doing this the system should perform
better and achieve the performance goals. however neither of these
have actually been shown. Another lesson learned when performing
the performance tests is that a lot of time needs to be spent in order
to understand what it is that the test is showing. Without understanding
the test set up and what is really happening it is hard to draw any useful
conclusions. An important thing to remember when performing tests is
to not make assumptions. Assumptions can create confusion, and when
doing larger system tests with a lot of components it may be hard to not

6.2. Future work 99

make assumptions, especially with regard to making the tests realistic
. However, an understanding is needed to what is important to know
and what is less important as this helps produce usable results from the
test. The way the back end was built in this thesis project had more
advantages than disadvantages (as specified in section 5.2), which makes
it interesting to continue the research in building a system around an
ERP system. Integrating with ERP systems can be a really hard problem
to solve, and requires planning ahead, as well as knowledge about how
the ERP system is designed. However, once the integration is in place,
there are many advantages for scaling and maintenance of these external
systems, which can be attractive in the long term.

6.2 Future work

Section 6.2.1, lists what has been left undone. All of these tasks need to
be completed in order to complete this thesis project. Except for what
needs to be done finish this thesis project, section 6.2.2 gives insight and
suggestions for what could be done in the future.

6.2.1 What has been left undone?

Looking at the system and how it behaves most of the requirements
are fulfilled, except for one practical point which is the synchronisation
between the mobile application and the back end. This synchronisation
is important to better understand in order to estimate how well this
type of system could scale and to understand the implications this
synchronisation can have on the system. The synchronisation could
also be redesigned in order to allow changes in the mobile phone to be
propagated back to the back end, however no such changes are made
in the mobile application developed in this thesis and is therefore not
needed. In order to better understand the synchronisation we should
compare the way it is done today (loading data on request) with having
a local synchronisation from the back end to the mobile application.
This could be implemented by using an existing framework such as
OpenMobster (described in section 2.1.1). Perhaps the comparison could
utilise the measurement framework developed in this thesis project.
Another important aspect of this synchronisation is to get a better
understanding of the data flows that work best with the synchronisation

100 Chapter 6. Conclusions

pattern suggested in this thesis project and to suggest improvements.
Since the synchronisation pattern has not been tested in practice, it is
important to test the design to see what limitations it might have.

The next obvious thing is to continue working on the functional
requirements of the mobile application set by Netlight. There are a
couple of requirements with different priorities and these should be
implemented in prioritised order. However, some of the requirements
are quite vague and might need more iterations o the requirements
specification.

This thesis project lacks a comparison between the time to integrate
with an ERP system as compared to the time it takes to implement
functionality directly in the ERP system. Further analysis of this is
necessary to address the problem which this thesis project initially set
out to solve.

6.2.2 Insights and suggestions for further work

Building a system that uses a small subset of data copied from an ERP
system requires knowledge of how that data gets in to the ERP and how
it is stored, as well as how it is maintained. If one of these aspects are
unknown, then a problem may occur in a system that is built based on the
data from the ERP system. When building systems that will utilise the
data from the ERP system one should develop a dependency graph. The
dependency graph should include dependencies from the ERP system to
the system built around it. Using this dependency graph decisions can
be made for when to upgrade the systems around the ERP system or to
upgrade the ERP system itself.

If the integration is based on the database transactions logs the
knowledge of how data comes in to the ERP could be handled directly in
the integration, which would decide how to handle such data. However,
it is still important to understand how the data is entered to the ERP,
to understand what kind of data, and what format that will enter the
database. By integrating this way the system does not go down when
the synchronisation runs, but rather synchronises in real time. Two
things that should be considered concerning this for the future are, how
database transaction logs can be filtered and how the logic can be built in
order to arrange data in the system outside the ERP. If such a integration
can be built for an arbitrary back end database then systems could be
integrated in a standardised way. This is where it might get interesting

6.2. Future work 101

to use NoSQL databases, as some of them scale better than relational
databases as the relaxation of the ACID properties may be acceptable.
When the flexible bridge has been made a comparison to the use of a
direct connection to the ERP system’s database should be made. Based on
this comparison conclusions can be drawn as to whether building systems
in the way suggested in this thesis project is truly worth while.

6.2.3 Required reflections

In this thesis project we proposed a way of how to utilise mobile phones
to spread information from within an internal ERP system. The work
done in this thesis is expected to have an impact in further development
of utilising mobile phones to distribute information, especially through
internal systems. Allowing more and more information in mobile phones,
the mobile phone trend is boosted upon, by providing more functionality
and thus creating more value. However, this also encourages the users
of the mobile phones to take in more information than what is already
done. The impact on human lives considering the overflow of information
available is something to keep in mind when further developing systems
like the one done in this thesis project.

The information that is stored in the internal ERP system is spread
in the mobile phone application, which enables any user to extract
sensitive business information. This is an important factor because of
the risks that this implies and might even need to be considered in the
employment contract, making sure that sensitive information does not
leave the company through the mobile phone. It is therefore important to
understand the impact of spreading such information.

In this thesis project, the impact is potentially going to connect
Netlight together by allowing to know more about their coworkers and
what history they have. This may enable more internal communication
which could make the employees feel more connected to the company
and their coworkers.

Bibliography

[1] Cisco, “Cisco visual networking index: Global mobile data
traffic forecast update, 2012-2017,” January 2013. [Online].
Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf

[2] ——, “Cisco global cloud index: Forecast and
methodology, 2011 2016,” January 2013. [Online].
Available: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns1175/Cloud_Index_White_Paper.pdf

[3] H. Mendelson, “Erp overview,” January 2013. [Online]. Available:
http://faculty.ist.psu.edu/yen/421/erp.pdf

[4] “Openmobster platform services.”

[5] S. Long, “Database synchronization between devices: A new
synchronization protocol for sqlite databases,” Master’s thesis,
KTH, School of Information and Communication (ICT), Stockholm,
May 2011, TRITA-ICT-EX-2011:88. [Online]. Available: http:
//urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-46712

[6] M. Meeker, “Internet trends,” February 2013. [Online].
Available: http://s3.amazonaws.com/kpcbweb/files/58/KPCB_
Internet_Trends_2012_FINAL.pdf?1340750868

[7] MobiThinking, “Global mobile statistics 2012 - mobile broadband,”
February 2013. [Online]. Available: http://mobithinking.com/
mobile-marketing-tools/latest-mobile-stats/b#mobilebroadband

[8] C. B. Weinstock and J. B. Goodenough, “On system scalability,
performance-critical systems,” School of Computer Science Carnegie

103

http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns1175/Cloud_Index_White_Paper.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns1175/Cloud_Index_White_Paper.pdf
http://faculty.ist.psu.edu/yen/421/erp.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-46712
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-46712
http://s3.amazonaws.com/kpcbweb/files/58/KPCB_Internet_Trends_2012_FINAL.pdf?1340750868
http://s3.amazonaws.com/kpcbweb/files/58/KPCB_Internet_Trends_2012_FINAL.pdf?1340750868
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/b#mobilebroadband
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/b#mobilebroadband

104 Bibliography

Mellon University Pittsburgh, PA 15213, Tech. Rep. CMU/SEI-2006-
TN-012, March 2006. [Online]. Available: http://www.sei.cmu.edu/
reports/06tn012.pdf

[9] C. Garrod, “Putting the scalability into database scalability
services,” School of Computer Science Carnegie Mellon University
Pittsburgh, PA 15213, Tech. Rep. CMU-CS-08-150, August 2008.
[Online]. Available: http://reports-archive.adm.cs.cmu.edu/anon/
2008/CMU-CS-08-150.pdf

[10] MySQL, “Guide to scaling web databases
with mysql cluster,” February 2013. [Online].
Available: ftp://ftp.heanet.ie/mirrors/sourceforge/b/bi/
bibbleitm/doc/MySQL_Cluster_Scaling_Web_Databases.pdf

[11] “ios,” February 2013. [Online]. Available: http://www.apple.com/
ios/what-is/

[12] MobiThinking, “Global mobile statistics 2012 -
mobile device shipment,” February 2013. [Online].
Available: http://mobithinking.com/mobile-marketing-tools/
latest-mobile-stats/a#phone-shipments

[13] S. Krug, Don’t Make Me Think! Second edition. New Ruders
publishing, 2006. ISBN 978-0321344755

[14] Amsterdamned, “Amazon book review: Usability - for americans,”
May 2013. [Online]. Available: http://www.amazon.co.uk/
Dont-Make-Me-Think-Usability/dp/0321344758/ref=sr_1_1?s=
books&ie=UTF8&qid=1360753169&sr=1-1

[15] J. Nielsen, “How users read on the web,” January
2013. [Online]. Available: http://www.nngroup.com/articles/
how-users-read-on-the-web/

[16] H. A. Simon, Models of Man: Social and Rational- Mathematical Essays
on Rational Human Behavior in a Social Setting. Wiley, 1957.

[17] W. S. Jr. and E. B. White, The Elements of Style, Third Edition.
Macmillan, 1979.

[18] A. Carroll and G. Heiser, in 2010 USENIX Annual Technical Conference
(USENIX ATC ’10).

http://www.sei.cmu.edu/reports/06tn012.pdf
http://www.sei.cmu.edu/reports/06tn012.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-150.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2008/CMU-CS-08-150.pdf
ftp://ftp.heanet.ie/mirrors/sourceforge/b/bi/bibbleitm/doc/MySQL_Cluster_Scaling_Web_Databases.pdf
ftp://ftp.heanet.ie/mirrors/sourceforge/b/bi/bibbleitm/doc/MySQL_Cluster_Scaling_Web_Databases.pdf
http://www.apple.com/ios/what-is/
http://www.apple.com/ios/what-is/
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#phone-shipments
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#phone-shipments
http://www.amazon.co.uk/Dont-Make-Me-Think-Usability/dp/0321344758/ref=sr_1_1?s=books&ie=UTF8&qid=1360753169&sr=1-1
http://www.amazon.co.uk/Dont-Make-Me-Think-Usability/dp/0321344758/ref=sr_1_1?s=books&ie=UTF8&qid=1360753169&sr=1-1
http://www.amazon.co.uk/Dont-Make-Me-Think-Usability/dp/0321344758/ref=sr_1_1?s=books&ie=UTF8&qid=1360753169&sr=1-1
http://www.nngroup.com/articles/how-users-read-on-the-web/
http://www.nngroup.com/articles/how-users-read-on-the-web/

Bibliography 105

[19] E. Katz, “How to write online mobile apps consuming sap
back end systems,” January 2103. [Online]. Available: http:
//scn.sap.com/docs/DOC-30760

[20] A. Inc., “Introduction to core data programming
guide,” February 2013. [Online]. Available: http:
//developer.apple.com/library/mac/#documentation/cocoa/
Conceptual/CoreData/cdProgrammingGuide.html

[21] Unknown, “About sqlite,” February 2013. [Online]. Available:
http://www.sqlite.org/about.html

[22] J. In.c, “Node.js,” April 2013. [Online]. Available: http://nodejs.org/

[23] Tiobe, “Tiobe programming community index for february 2013,”
February 2013. [Online]. Available: http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html

[24] T. Hughes-Croucher and M. Wilson, Node Up and Running. O’Reilly
Media, Inc, USA, 2012. ISBN 978-1-4493-9858-3

[25] K. Duuna, “Analysis of node.js platform web application security,”
Master’s thesis, TALLINN UNIVERSITY OF TECHONOLGY
Faculty of Information Technology Department of Computer
Science.

[26] J. Celko, Joe Celko’s SQL for Smarties Advanced SQL Programming
Fourth edition. Morgan Kaufmann, 2011. ISBN 978-0123820228

[27] R. Cattell, “Scalable SQL and NoSQL data stores,” February 2013.
[Online]. Available: http://www.cattell.net/datastores/Datastores.
pdf

[28] S. Batra and C. Tyagi, “Comparative analysis of relational and
graph databases,” International Journal of Soft Computing and
Engineering (IJSCE), vol. 2, no. Issue-2, May 2012. [Online]. Available:
http://www.ijsce.org/attachments/File/v2i2/B0625042212.pdf

[29] R. Shoup, “Scalability best practices: Lessons from ebay,”
May 2013. [Online]. Available: http://www.infoq.com/articles/
ebay-scalability-best-practices

http://scn.sap.com/docs/DOC-30760
http://scn.sap.com/docs/DOC-30760
http://developer.apple.com/library/mac/#documentation/cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/library/mac/#documentation/cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://developer.apple.com/library/mac/#documentation/cocoa/Conceptual/CoreData/cdProgrammingGuide.html
http://www.sqlite.org/about.html
http://nodejs.org/
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.cattell.net/datastores/Datastores.pdf
http://www.cattell.net/datastores/Datastores.pdf
http://www.ijsce.org/attachments/File/v2i2/B0625042212.pdf
http://www.infoq.com/articles/ebay-scalability-best-practices
http://www.infoq.com/articles/ebay-scalability-best-practices

106 Bibliography

[30] H. V. Ltd., “Sso and ldap authentication,” February
2013. [Online]. Available: http://www.authenticationworld.com/
Single-Sign-On-Authentication/SSOandLDAP.html

[31] S. Chen, “The concept of representational state transfer (rest),”
February 2013. [Online]. Available: http://ceit.uq.edu.au/system/
files/fileupload/the_concept_of_representational_state_transfer.pdf

[32] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol – HTTP/1.1,”
vol. RFC 2616 (Draft Standard), June 1999. [Online]. Available:
http://tools.ietf.org/html/rfc2616

[33] Unknown, “Introducing json,” February 2013. [Online]. Available:
http://www.json.org

[34] E. F. Monk and B. J.Wagner, “Concepts in enterprise resource
planning.”

[35] Agresso, “Unit4 agresso.” [Online]. Available: http://www.
unit4agresso.se/

[36] Microsoft, “Microsoft SQL server,” May 2013. [Online]. Available:
http://www.microsoft.com/en-us/sqlserver/default.aspx

[37] P. V. Roy, “Programming paradigms for dummies: What every
programmer should know,” February 2013. [Online]. Available:
http://www.info.ucl.ac.be/~pvr/VanRoyChapter

[38] J. Hamilton, Object-Oriented Programming. O’Reilly Media, Inc, USA,
2002.

[39] Unknown, “Parametric polymorphism,” February 2013. [Online].
Available: http://www.pmg.lcs.mit.edu/papers/thetaref/node8.
html

[40] J. Deacon, “Model-view-controller (MVC) architecture,” February
2013. [Online]. Available: http://www.jdl.co.uk/briefings/MVC.pdf

[41] W. Liu, “Mvc model-view-controller,” February 2013. [Online].
Available: http://www.cs.toronto.edu/~wl/csc309/handouts/
mvc-rest-gdata.pdf

http://www.authenticationworld.com/Single-Sign-On-Authentication/SSOandLDAP.html
http://www.authenticationworld.com/Single-Sign-On-Authentication/SSOandLDAP.html
http://ceit.uq.edu.au/system/files/fileupload/the_concept_of_representational_state_transfer.pdf
http://ceit.uq.edu.au/system/files/fileupload/the_concept_of_representational_state_transfer.pdf
http://tools.ietf.org/html/rfc2616
http://www.json.org
http://www.unit4agresso.se/
http://www.unit4agresso.se/
http://www.microsoft.com/en-us/sqlserver/default.aspx
http://www.info.ucl.ac.be/~pvr/VanRoyChapter
http://www.pmg.lcs.mit.edu/papers/thetaref/node8.html
http://www.pmg.lcs.mit.edu/papers/thetaref/node8.html
http://www.jdl.co.uk/briefings/MVC.pdf
http://www.cs.toronto.edu/~wl/csc309/handouts/mvc-rest-gdata.pdf
http://www.cs.toronto.edu/~wl/csc309/handouts/mvc-rest-gdata.pdf

Bibliography 107

[42] C. Bauer and G. King, Hibernate in Action. Manning Publications,
2005.

[43] J. Nielsen, “How many test users in a usability study?” March
2013. [Online]. Available: http://www.nngroup.com/articles/
how-many-test-users/

[44] ——, “Response times: The 3 important limits,” March
2013. [Online]. Available: http://www.nngroup.com/articles/
response-times-3-important-limits/

[45] S. Depold, “Sequelize,” May 2013. [Online]. Available: http:
//www.sequelizejs.com/documentation

[46] A. S. Foundation, “ab - apache http server benchmarking tool,”
May 2013. [Online]. Available: http://httpd.apache.org/docs/2.2/
programs/ab.html

[47] “Tcp connection states and netstat output,” May 2013, article
ID: 137984. [Online]. Available: http://support.microsoft.com/kb/
137984

http://www.nngroup.com/articles/how-many-test-users/
http://www.nngroup.com/articles/how-many-test-users/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.nngroup.com/articles/response-times-3-important-limits/
http://www.sequelizejs.com/documentation
http://www.sequelizejs.com/documentation
http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://support.microsoft.com/kb/137984
http://support.microsoft.com/kb/137984

Appendix A

Requirements specification

109

	

	

	
TEL	 +46	 8	 616	 99	 40	
ORG	 NR	 556575-‐6227	
WWW.NETLIGHT.SE	

NETLIGHT	 CONSULTING	 AB	
BIRGER	 JARLSGATAN	 7	

111	 45	 STOCKHOLM	

	

	

Koala – Requirements

specification
Stockholm	 2012-‐05-‐31	

This	 document	 contains	 specifications	 of	 all	 the	 requirements	 for	 the	 project	 “Koala”.	 	

	

PAGE	 1	 	

ANGE	 FÖRETAGETS	 ADRESS]	
	

	

1 Introduction
This	 section	 describes	 the	 project,	 its	 purpose	 and	 also	 the	 scope	 of	 this	 document.	

1.1 Project overview
The	 project,	 which	 goes	 under	 the	 name	 “Koala”,	 is	 part	 of	 a	 thesis	 work	 done	 by	 Konstantinos	
Vaggelakos.	 Koala	 will	 be	 an	 application	 where	 employees	 can	 see	 where	 Netlight	 has	 worked	
before	 and	 where	 Netlight	 employees	 are	 seated	 today.	 The	 idea	 behind	 the	 project	 was	 born	
when	 realizing	 that	 this	 was	 valuable	 information	 to	 know.	

1.2 Purpose
The	 purpose	 of	 this	 document	 is	 to	 explain	 the	 thoughts	 and	 values	 for	 each	 requirement	 set	 out	
for	 the	 project	 and	 also	 to	 serve	 as	 an	 explanatory	 tool	 for	 understanding	 what	 the	 Koala	 project	 is	
about.	

1.3 Scope
This	 document	 will	 define	 the	 requirements	 specification	 for	 this	 product.	 This	 will	 especially	 be	
done	 more	 extensively	 for	 the	 core	 components	 of	 the	 system.	 The	 scope	 of	 this	 document	
reaches	 as	 far	 as	 briefly	 explaining	 the	 product	 and	 its	 core	 concept,	 however	 this	 document	 is	 to	
strictly	 define	 the	 product	 itself.	

2 Product description
A	 product	 description	 in	 context	 will	 be	 given	 in	 the	 following	 section.	

2.1 Core concept
The	 core	 concept	 of	 this	 project	 is	 to	 deliver	 a	 mobile	 application	 that	 will	 help	 Netlight	
employees	 to	 better	 find	 and	 keep	 track	 of	 each	 other.	 This	 includes	 having	 an	 idea	 of	 what	
companies	 they	 are	 seated	 at	 as	 well	 as	 were	 Netlight	 employees	 have	 been	 seated	 in	 the	 past.	
This	 will	 provide	 the	 employees	 with	 a	 better	 consciousness	 of	 Netlight	 as	 well	 as	 providing	 a	
unified	 feeling	 across	 the	 company.	 	

2.2 Product context
The	 product	 does	 not	 have	 a	 clear	 connection	 to	 any	 other	 project	 maintained	 by	 Netlight	 today.	
Netlight’s	 internal	 systems	 keep	 all	 information	 needed	 to	 get	 the	 information	 that	 the	
application	 will	 provide.	 However,	 this	 is	 not	 easily	 accessible	 especially	 for	 employees	 working	
out	 of	 the	 Netlight	 office.	 As	 mentioned	 Koala	 will	 work	 together	 with	 internal	 systems	 in	 order	
to	 provide	 the	 information	 needed,	 more	 specifically	 the	 internal	 system	 Agresso.	

PAGE	 2	 	

ANGE	 FÖRETAGETS	 ADRESS]	
	

	

2.3 Use cases
The	 use	 cases	 for	 the	 product	 will	 depend	 in	 what	 department	 they	 work,	 however	 this	 can	 be	 a	
bit	 generalized	 to	 get	 an	 idea	 for	 how	 the	 system	 can	 be	 used	 by	 different	 processes.	

1. BC	
a. Contact	 with	 companies	 can	 be	 handled	 through	 people	 that	 are	 working	 or	 have	

worked	 at	 a	 certain	 company.	
b. The	 system	 can	 be	 used	 to	 get	 a	 better	 understanding	 as	 for	 what	 have	 been	 done	

or	 not,	 which	 in	 turn	 can	 be	 used	 for	 producing	 showcases.	
2. DC	

a. Talk	 to	 co-‐workers	 that	 are	 working	 or	 have	 worked	 at	 a	 certain	 company,	 to	 get	
a	 kick-‐start	 of	 a	 project.	

b. See	 where	 your	 co-‐workers	 are	 located	 to	 have	 lunch	 with	 them,	 or	 have	 a	
discussion.	

3. CC	
a. Get	 an	 understanding	 for	 where	 co-‐workers	 are	 located,	 to	 easily	 plan	 a	 trip	 to	 a	

company.	

2.4 Assumptions
Below	 is	 a	 list	 with	 all	 assumption	 made	 to	 make	 this	 project	 work:	

1. Agresso	 will	 keep	 the	 history	 about	 its	 employees	 as	 well	 as	 continuously	 be	 updated	 with	
new	 information	 in	 the	 future.	

2. Future	 versions	 of	 Agresso	 are	 integrated	 with	 Koala	 in	 case	 the	 newer	 versions	 change	 in	
a	 way	 to	 affect	 Koala.	

3. Server	 space	 is	 available	 for	 the	 back	 end	 to	 be	 running.	 	
4. The	 mobile	 application	 is	 updated,	 if	 dependencies	 are	 broken	 in	 future	 versions	 of	 the	

mobile	 operating	 system.	

3 Requirements
Requirements	 section	 will	 define	 the	 priorities	 as	 well	 as	 explain	 all	 requirements	 within	
each	 category.	

3.1 Priorities definition
The	 following	 priority	 definitions	 are	 intended	 to	 give	 a	 better	 understanding	 of	 the	 importance	
of	 each	 requirement,	 throughout	 the	 requirements	 section.	

LEVEL	 DEFINITION	

1	 This	 priority	 level	 is	 a	 “must	 have”,	 which	 implies	 that	 it	 is	 a	 core	 component	 in	 the	 product	 	

2	
Priority	 level	 2	 means	 that	 it	 will	 bring	 real	 value	 to	 the	 product,	 however	 it	 cannot	 be	 counted	
as	 a	 core	 component.	

3	 Level	 3	 are	 requirements	 will	 bring	 value,	 however	 not	 as	 much	 as	 compared	 to	 a	 level	 2.	 	

PAGE	 3	 	

ANGE	 FÖRETAGETS	 ADRESS]	
	

	

3.2 Functional
REQ.	 NR.	 PRIORITY	 REQUIREMENT	

1	 1	 The	 user	 should	 be	 able	 to	 see	 where	 their	 coworkers	 are	 working	 at	
the	 moment.	

2	 1	
The	 user	 should	 be	 able	 to	 search	 for	 coworkers	 by	 looking	 in	 a	 list.	 	

3	 1	
The	 user	 should	 be	 able	 to	 search	 for	 coworkers	 by	 searching	 for	 a	
coworkers	 name	 or	 searching	 for	 a	 company	

4	 1	 The	 user	 should	 be	 able	 to	 view	 their	 coworkers	 past	 to	 see	 where	
they	 have	 been	 working,	 as	 a	 Netlight	 consultant.	

5	 1	 The	 user	 should	 be	 able	 to	 search	 for	 a	 company	 and	 see	 if	 Netlight	
has	 been	 working	 there	 before	 and	 whom	 that	 has	 worked	 there.	

6	 2	
The	 user	 should	 be	 able	 to	 search	 for	 coworkers	 by	 looking	 on	 a	 map.	

7	 2	 The	 user	 should	 be	 able	 to	 look	 for	 people	 that	 have	 worked	 with	 a	
certain	 kind	 of	 technology.	 This	 will	 be	 based	 on	 Linkedin	 data.	

8	 2	 The	 user	 should	 be	 able	 to	 look	 for	 their	 coworkers’	 connections.	 	

9	 2	

The	 user	 should	 be	 aware	 of	 Netlight	 and	 be	 able	 to	 see	 “fun	 facts”.	
These	 fun	 facts	 are:	 Companies	 where	 Netlight	 have	 the	 most	
consultants,	 the	 people	 that	 have	 worked	 in	 Netlight	 for	 the	 longest	
time,	 people	 that	 are	 newly	 hired	 and	 statistics.	

10	 2	 Find	 coworkers	 based	 on	 which	 Netlight	 office	 they	 are	 seated	 (such	
as	 Stockholm	 office,	 Oslo	 office,	 etc).	

11	 3	 Find	 coworkers	 based	 on	 which	 market	 they	 are	 currently	 working	 in.	

12	 3	 Add	 gamification	 to	 the	 app,	 where	 connections	 and	 use	 of	
connections	 are	 rewarded,	 especially	 female	 connections.	

13	 3	 The	 user	 should	 be	 able	 to	 request	 lunch	 to	 another	 coworker.	

14	 3	 The	 user	 should	 be	 able	 to	 insert	 information	 in	 the	 application,	 like	 a	
wiki	 to	 build	 a	 more	 complete	 information	 base.	

3.3 UI and usability

PAGE	 4	 	

ANGE	 FÖRETAGETS	 ADRESS]	
	

	

The	 application	 should	 follow	 the	 design	 of	 Netlight’s	 branding.	 This	 means	 that	 the	 application	
needs	 to	 follow	 a	 specific	 colour	 scheme,	 as	 well	 as	 having	 Netlight	 logotypes	 and	 graphics.	
Overall	 the	 application	 should	 have	 a	 “Netlight	 feeling”	 to	 it.	

The	 interface	 should	 also	 be	 easy	 to	 use	 and	 not	 require	 any	 previous	 knowledge	 to	 use	 the	
functionality	 in	 a	 beneficial	 way.	 Documentation	 of	 the	 application	 itself	 will	 not	 be	 written	 as	 it	
should	 be	 straightforward	 to	 use.	

3.4 Performance
The	 performance	 requirements	 of	 Koala	 are	 the	 following:	

1. When	 requesting	 information	 from	 the	 system,	 it	 should	 not	 take	 more	 than	 3	 seconds	
2. 500	 simultaneous	 users	 should	 be	 able	 to	 use	 the	 system	 at	 the	 same	 time.	

3.5 Maintainability

3.5.1 MONITORING
Monitoring	 should	 be	 enabled,	 all	 around	 the	 clock.	 All	 components	 should	 be	 monitored	 in	 the	
back	 end,	 including	 the	 web	 server	 and	 database.	

3.5.2 MAINTENANCE
Except	 for	 upgrading	 or	 continuing	 development	 the	 system	 should	 be	 self-‐sufficient.	

3.6 System integration
Koala	 is	 going	 to	 extend	 and	 build	 upon	 the	 ERP	 Agresso.	 	

Note:	 TBD	 how	 this	 is	 going	 to	 be	 done	 exactly.	

3.7 Security
Note:	 This	 is	 not	 decided,	 what	 follows	 is	 a	 suggested	 plan	 for	 securing	 the	 system.	

3.7.1 PROTECTION
The	 communication	 between	 Koala	 application	 and	 the	 backend	 is	 going	 to	 be	 encrypted	 using	
SSL	 over	 HTTP	 (also	 called	 HTTPS).	 This	 provides	 server-‐side	 authenticity	 and	 confidentiality.	
Together	 with	 this	 the	 back	 end	 is	 going	 to	 log	 all	 operation	 requests	 coming	 in.	

3.7.2 AUTHORIZATION AND AUTHENTICATION
Since	 the	 data	 that	 will	 be	 available	 in	 the	 Koala	 application	 and	 the	 system	 attached	 to	 the	
backend	 called	 Agresso	 contain	 confidential	 information	 there	 is	 a	 need	 to	 authenticate	 and	
authorize	 the	 user.	 A	 module	 in	 the	 backend	 will	 do	 the	 handling	 of	 authentication	 and	

PAGE	 5	 	

ANGE	 FÖRETAGETS	 ADRESS]	
	

	

authorization	 together	 with	 Agresso.	 A	 user	 will	 only	 get	 a	 response	 when	 authenticated	 and	
authorized.	

	

Appendix B

Measurement script

117

118 Appendix B. Measurement script

1 #!/bin/bash
2 dateTime=$(date +"%m_%d_%Y_%H_%M")
3 OUTFILE=log_$dateTime.csv
4

5 function getTop
6 {
7 top -b -n 2 | grep Cpu | tail -n 1
8 }
9

10 function getSysLoad
11 {
12 echo $1 | awk ’{print $3}’ | sed ’s/%sy,//’
13 }
14

15 function getUsrLoad
16 {
17 echo $1 | awk ’{print $2}’ | sed ’s/%us,//’
18 }
19

20 function getIdle
21 {
22 echo $1 | awk ’{print $5}’ | sed ’s/%id,//’
23 }
24

25 function getMemoryUsage
26 {
27 free -m | awk ’/^Mem:/{print $3}’
28 }
29

30

31 for i in {0..10000}
32 do
33 top=$(getTop)
34 sys=$(getSysLoad "$top")
35 usr=$(getUsrLoad "$top")
36 idle=$(getIdle "$top")
37 memory=$(getMemoryUsage)
38 timeSecond=$(date +"%T")
39 echo "$timeSecond,$sys,$usr,$idle,$memory" >> $OUTFILE
40 done

Listing 1: Measurement script used to measure the server cpu and
memory utilisation during tests

www.kth.se

TRITA-ICT-EX-2013:89

	Introduction
	Overview
	Problem Context
	Problem description
	Goals
	Scope
	Structure of this thesis

	Background
	Related work
	OpenMobster integrations platform
	Synchronisation mechanisms

	Current trends
	Mobility
	Scalability
	Database scalability

	Mobile application
	Usability
	Do not make the user think
	How we really use the web
	Designing pages for scanning not reading
	Omit needless words

	Back end connection
	Request-response pattern
	Synchronisation pattern

	Local cache
	Synchronisation fundamentals
	Fast synchronisation
	Slow synchronisation
	Database transaction log
	Repository based synchronisation
	Keeping a local database

	Back end
	Back end application server
	Node.js application server
	Databases
	Traditional SQL databases
	NoSQL databases
	Sharding or horizontal splits

	Authentication
	Representational state transfer
	JavaScript Object Notation

	Information source
	Enterprise resource planning systems
	Exporting data from an information source

	Programming paradigms
	Overview
	Object oriented programming
	Abstraction
	Encapsulation
	Inheritance
	Polymorphism

	Model View Controller
	Model
	View
	Controller
	Communcation between the domains

	Object relational mapping
	ORM implementations
	ORM optimisation strategies

	Event-driven computing from a Node.js perspective

	Method
	Methodology
	Methodology
	Measurement framework

	Design
	System architecture
	Mobile application
	Back end application
	Database drivers
	Database cluster
	Synchronisation module

	Implementation
	Back end application
	Database setup
	Mobile application synchronisation
	Database drivers
	Synchronisation mechanism

	Test setup
	Measurement tools
	Set up

	Results
	Employee with id 404
	Default settings
	No analysis
	Socket fix
	Socket fix and no analysis
	Socket fix and clustering
	Socket fix, no analysis and clustering
	Local benchmark, socket fix, no analysis and clustering

	Employees list - page 0
	Default parameters
	No analysis
	Socket fix
	Socket fix and no analysis
	Socket fix, no analysis and cluster

	Analysis
	Goal and requirements analysis
	Mobile application
	Analysis of the resulting mobile application

	Back end
	Performance
	Scalability
	Security

	Information source
	Integration with the ERP
	Understanding ERPs

	System analysis

	Conclusions
	Conclusions
	Future work
	What has been left undone?
	Insights and suggestions for further work
	Required reflections

	Bibliography
	Requirements specification
	Measurement script

