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Abstract
    Today's  Internet  usage  is  changing  from  host-to-host  communication  to  user-to-content 
interaction which proves a challenge for Internet Service Providers (ISPs). Repeated requests lead 
to  transfers  of large amounts  of traffic  containing the same content  often over  costly  inter-ISP 
connections. Content Distribution Networks (CDNs) contribute to solving this issue, but do not 
directly  address  the  problem.  This  thesis  project  explores  how content  based  addressing  could 
minimize inter-ISP traffic due to repeated requests for content by caching content within the ISP's 
network. We implemented CCNx 0.6.0 in a network testbed in order to simulate scenarios with 
multiple ISPs interconnected to each other. This testbed is used to illustrate how caching of popular 
content minimizes inter-ISP traffic as well as how content independence minimizes the effect of 
other  network  problems such as  link  failures  and congestion.  These tests  shows that  the  large 
overhead of the CCNx implementation due to the additional headers brings a 16% performance 
reduction compared to Hypertext  Transfer Protocol (HTTP) transfers.  However,  these tests  also 
shows that  the cost  from the inter-ISP traffic  of CCNx transfers  are  constant  regardless of  the 
number of repeated requests, due to content caching in the ISP's network. As soon as there is more 
than one request for the same content there is a gain in using CCNx rather than HTTP for content 
transfer.

Abstrakt
    Dagens användning av internet ändrar form från dator-till-dator kommunikation till användare-
till-innehålls interaktion vilket innebär nya utmaningar för internetleverantörer vilka måste överföra 
stora  mängder  upprepade  förfrågningar  av  innehåll  via  kostsamma  länkar  mellan 
internetleverantörer. Lösningar som innehållsdistribuerande nätverk (Content Distribution Network) 
hjälper idag till men addresserar inte kärnan av problemet. Det här examensarbetet undersöker hur 
innehållsbaserad addressering kan minimera mängden trafik mellan internetleverantörer genom att 
cachning, att lagra kopior av innehåll, i internetleverantörers nätverket. I det här examensarbetet 
implementerade  vi  CCNx  0.6.0  i  en  testbädd  för  att  simulera  scenarion  med  nätverk  mellan 
internetleverantörer. Denna testbädd används för att illustrera hur cachning av populärt innehåll kan 
minimera trafik mellan internetleverantörer samt hur innehållets oberoende av plats även hjälper till  
med  andra  problem  i  nätverket  såsom  länkfel  och  stockning.  Dessa  test  visar  att  CCNx 
implementationen  har  stor  overhead  information  på  grund  av  ytterligare,  extra  headers  vilket 
medför en 16% reducering i prestanda jämfört med överföringar som använder Hypertext Transfer 
Protocol (HTTP). Vidare visar dessa tester även att kostnaden från trafik mellan internetleverantörer 
är  konstant  oberoende  av  antalet  upprepade  förfrågningar,  på  grund av  cachning  av  innehåll  i 
internetleverantörens nätverk. Så snart det finns fler än en begäran för samma innehåll finns det en 
vinst i att använda CCNx istället för HTTP för överföringar av innehåll.
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1. Introduction
    Today's Internet architecture, based on the TCP/IP protocol stack, was developed as a means for  
endpoints (also known as hosts) to communicate with each other on a global scale. However, usage 
of the Internet has evolved from host-to-host communication to user-to-content interaction in recent 
years. This change is also mirrored in a change in traffic patterns. This change in both traffic and 
traffic patterns is causing problems, especially for the Internet service providers (ISPs). 

    Different solutions have been proposed, but unfortunately they do not directly address the issue. 
For  example,  many  websites  with  large  amounts  of  content  use  Content  Distribution  Network 
(CDN) solutions (such as Akamai), to reduce the load on their servers and to reduce the bandwidth 
required for their network connectivity. Akamai does this by placing servers near the consumers and 
by exploiting the Domain Name System (DNS) to redirect the user to the most suitable (hopefully 
local) server. In this way the user's requests will be distributed over different servers, thus the traffic 
will be distributed across these different servers and different portions of the Internet. However, a 
closer analysis of the traffic shows that many times the large amount of content distribution traffic is 
actually due to a relatively small  amount of data being sent to many different users. Thus,  the 
bandwidth (particularly of backbone links) is used in an ineffective way. Furthermore, it is up to 
Akamai to locate the copies of content and their servers in such a way as to optimize the load over 
their servers and the traffic on their links to the different ISPs.

    This phenomenon of many users requesting particular items of content combined with the ever-
increasing demand for bandwidth by customers and ever higher Internet penetration rates provides a 
real  challenge  for  ISPs  as  they  attempt  to  manage  their  networks  and  external  links  to  other 
networks. Akamai's “State of the Internet”  [1] report shows that the average connection speed in 
Sweden, as observed by Akamai, increased by 7.2% over the time period Q3 2010 to Q3 2011. 
Increased traffic to the ISP from peers (either at peering points or via private links) costs money, 
therefore ISPs would like to minimize the  repeated transfer of the same content, hence reducing 
their peering traffic while still satisfying all (or most) of their customers. Deploying content based 
addressing technologies can help reduce traffic between ISPs, as well as reduce the ISP's required 
investment in their own infrastructure.

    This  report  assumes  a  knowledge  of  the  reader  equal  to  a  Bachelor's  degree  in  computer 
networks. To fully understand the background of this thesis, the reader is encouraged to read the 
PARC technical paper “Networking Named Content” [2], as this thesis project was inspired by this 
technical paper.

1.1 Introduction to content based addressing

    The main idea behind content based addressing is to address content instead of addressing hosts, 
thus  separating  content  from its  location.  In  this  approach  content  is  addressed  using  names, 
typically  consisting  of  a  provider  name,  content  name,  and  version.  As  content  traverses  the 
network, routers and hosts either cache the location(s) where they can find a copy of the content or 
cache an actual copy of the content, enabling future requests for that content to be delivered by any 
node that currently holds a copy of the content  [2]. This enables the use of multiple sources and 
multiple destinations natively by the network (i.e.,  creating a multi-path topology to access the 
content). 
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    This means that network designers needs to consider this change in how content is addressed and 
how it is delivered when designing and building networks. For example, a network designer must 
decide whether (and which) routers cache locations or cache named content (and what content) in 
order to design effective networks. A frequently requested subset of content could be cached close 
to  the users,  while  awareness  of  a  larger  subset  of  less  frequently requested content  would be 
cached at  higher  capacity  backbone or  data-centers,  which in  turn know the location of  rarely 
requested content (the rest of the content on the Internet) via external links. This would lead to 
faster and cheaper delivery of popular content with the worst case scenario of content retrieved 
from the source, a transfer similar in speed and cost to traditional methods of addressing content by 
location, resulting in “win or no loss” with respect to performance and the resources needed to 
satisfy the users' requests.

    The basic difference between addressing content by name and addressing content by location is 
demonstrated in  Figure 1 and  Figure 2, where dotted arrows represents requests for content and 
continuous arrows represents transfers of content. In Figure 2 the content is uniquely identified by 
its  Uniform Resource Locator (URL),  meaning that every request for this content can only be 
satisfied by that host. In Figure 1 content is uniquely identified by its name (perhaps as encoded in a 
Uniform Resource Name (URN)), meaning that any node with a copy of this content can satisfy the 
request. 
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1.2 Content Centric Networking

    Content Centric Networking (CCN)[3] is a project at Palo Alto Research Center Incorporated 
(PARC) utilizing content based addressing.  It  is  part  of the Named Data Networking[4] project 
funded as part of the U. S. National Science Foundation's (NSF's) Future Internet Architecture[5] 
program. CCN is designed to be implemented on top of or alongside TCP/IP, so that it will work 
with  the current  networks.  Content  is  made available  by repositories  announcing the  names of 
content they serve to adjacent routers, who in turn distribute this information into the network via 
the Interior Gateway Protocol (IGP). 

    A user who wants some specific content sends out an interest packet[2] on all available interfaces, 
containing the name of the content, known as a ContentName[2]. A router receiving an interest 
packet checks if the content is available in its buffer memory, called a ContentStore[2]. If so, then 
the ContentStore can deliver the content directly to the user. The content matches the request if the 
ContentName in the interest is a prefix to the ContentName in the ContentStore. If the content is not 
available, then the router checks if it matches its list of previously sent, unanswered interests stored 
in a Pending Interest  Table (PIT[2]) to ensure that a duplicate interest  is  not forwarded. If  the 
request is in the PIT, then the router adds this new interest to the existing entry in the PIT. If no 
matches  are  found  in  the  ContentStore  or  PIT,  then  the  router  checks  its  CCN  Forwarding 
Information Base (FIB) to see if it  knows any other node that might have the content available  
(longest match lookup is used in cases of multiple matching entries), if so it forwards the interest to  
them and adds an entry to the PIT with this information. If the router does not have a copy of the 
content and does not know where to find one, then the interest is simply discarded; the requesting 
application is itself responsible for re-expressing interest if it is not satisfied (as well as dealing with 
cases where packets are lost in the network). This process is illustrated in Figure 3.

   When the name of the content is matched the node sends the content as an authenticated data 
packet[2] back on the interface that the interest arrived on. Nodes receiving the data packet should 
check if it has any entries in its PIT matching the content, if so, then the data packet should also be 
forwarded to the interface that this interest arrived on. The ContentStore stores a copy of the content 
if desired. When all of the content has been received, the PIT entry is removed.

    Content is transferred backward across the chain of nodes that the interest packet traversed, with 
each CCN capable node storing either  a  copy of  the content  or  the location it  came from and 
removing PIT entries until the content is delivered to the application who initiated the request for 
this content. Any future request for this content can then be served by any of the nodes who have 
cached a copy in their ContentStore, making the network an efficient content delivery network. 

    The most suitable cache replacement policies in a content caching network are Least Recently 
Used (LRU) and Least Frequently Used (LFU). LRU replacement keeps track of the time when the 
entry was last  used and replaces entries that have been in the cache the longest without being 
requested; thus content that is requested often will stay in the cache. LFU keeps track of the number 
of times an entry has been requested and replaces entries that have the least amount of requests;  
thus content that is requested many times will stay in the cache. 

    This caching of course raises all of the traditional questions of a cache: How long should the 
entry be cached? How do we know if the cache entry is (still) valid? When should we clear the  
cache entries? How many cache entries should  we maintain? Who can add and delete entries in the 
cache? Is the cache persistent across reboots? What content should we cache? What content should 
not be cached? How do we determine what content to cache? 
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        As with peer-to-peer (p2p) networks and applications, there is also the issue of how to deal 
with freeloaders, nodes that use resources from other nodes but do not share their own resources 
with other nodes (these resources might be space on a hard drive, network bandwidth, and so on), 
resulting in  a lower total  amount of resources being available  to nodes in the network (in  p2p 
applications the set of nodes in the p2p network is known as a swarm). Adding countermeasures to 
discourage  freeloaders  (such  as  requirements  to  offer  a  minimum cache  size,  perform content 
sharing, or similar) could cause more harm than gain by adding extra (unnecessary) complexity to 
the  implementation.  Freeloaders  could  prove  to  be  a  non-issue  depending  on  their  impact  on 
network performance in well designed networks. Understanding this issue is therefore a prominent 
subject of further studies. 
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1.2.1 CCN Name structure

    A name in CCN is always hierarchically constructed in order to allow aggregation of names. A 
name consists of components. Each component is an arbitrary number of octets that are binary 
encoded[2]. Names in human readable format use delimiters (for convenience the character / to 
make the name similar to URIs) between components, but these delimiters are not part of binary 
encoded names. 

    A name can be divided into two parts: the first specifying a user or application supplied name and 
the latter a version and segment of the content. Although the two parts are technically not different, 
a user will generally only care about the information in the first part (what he/she interprets as the 
“name”),  while  the  version  and segmentation  information  is  useful  for  applications  to  identify 
specific portions of the content. To be able to uniquely identify content with an exact same name, an 
implicit last component containing a SHA256 digest, a cryptographic hash, of the packet is added, 
although this is never transferred since it can be computed at any node. 

    Since the CCN name tree is lexicographically ordered, interest packets can utilize relationships to 
address content relative to a known entry by using traversal rules, such as Next or RightMostChild  
(the LeftMostChild traversal rule is used by default).  For example , in Figure 4, an interest packet 
could request ccnx:/Example.com/Articles/Article1/ RightMostChild  to address the first segment of 
the second (latest) version of this content (this occurs since the second version is the rightmostchild, 
the  first  segment  according  to  the  default  traversal  rule  LeftMostChild).  Seg2  could  then  be 
retrieved using this  information and the  next  traversal rule and so forth.   A segment could,  for 
example, have a starting block number or position to playback in a sequence of audio packets. Seg2 
could also be computed if  the segmentation convention is  known by the application.  A simple 
example of this could be: By adding the number of blocks in Seg1 to Seg1's starting block position 
we know the segment offset for Seg2, assuming the segments are non-overlapping.
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1.2.2 CCN and TCP/IP protocol stack

    One of the strengths of the TCP/IP protocol stack is the concept that every node runs the Internet 
Protocol  (IP)  and this  is  the only thing that  every node  needs to  have in common in order to 
communicate using these protocols. Protocols above IP are specific to applications and protocols 
below IP are specific to links. IP handles the global connectivity, by routing and transferring IP 
packets across links. The operations at the IP layer are invisible to the applications. The idea is that 
every application uses IP, and IP knows how to utilize every link, the so called “Everything over IP 
– IP over everything” paradigm. 

    CCN adopts  and simplifies this  concept,  every node has only the content  chunk format  in 
common. As long as all nodes route and forward content chunks, this can be scaled to a global level  
like IP. As in TCP/IP, protocols above content are specific to applications while protocols below 
content are specific to links. Links in this concept are not limited to physical links, but rather are 
simply connections to other nodes, as we can utilize any link available to us (including “links” to 
other local applications). In a sense, the CCN protocol stack can be described similar to TCP/IP as 
“Everything  over  content  chunks  –  content  chunks  over  everything”.  These  two  stacks  are 
illustrated in Figure 5

   One of the major differences between the CCN and TCP/IP protocol stacks is the introduction of 
the strategy layer in the CCN stack. This layer is described in section 1.2.3.
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1.2.3 CCN strategy layer

    In an IP FIB, entries points to a single destination identified by an IP address and are associated 
with  an interface.  In  an CCN FIB,  entries  may point  to  multiple  destinations  as  there may be 
multiple sources (or multiple paths to the same source, the important thing is that the content can be 
found via the associated interface) available. The strategy layer[2] provides strategies on a per-entry 
basis about how these sources should be queried. This provides fine-grained control over the use of 
the interfaces and allows CCN to choose the best of these sources based on network conditions or 
user  specified  preferences.  The  strategy  layer  can  react  to  changes  in  the  available  interfaces, 
determine the best interface, and switch to forwarding packets over this interface if desired. 

    For example, in a mobile phone we might prefer to use the Wireless LAN (WLAN) interface 
over the costly cellular network interface. During a voice call, we can use WLAN access-points as 
they become available when we move around, but use the cell network where no WLAN access is 
available, without interrupting our voice call. 

    This network-aware, multi-path transfer ensures implicit resilience and load-balancing between 
flows in the network. Today resilience and load-balancing can be provided by routing protocols, the 
transport protocol Stream Control Transmission Protocol (SCTP) and protocols such as the Cisco 
Hot  Standby Router  Protocol  (HSRP)[6] which  enables  multiple  routers  to  appear  as  a  single, 
virtual router to the hosts of the network. Providing resilience and load-balancing at a separate 
strategy layer has the advantages of making this functionality transparent to higher level protocols, 
working with any arbitrary higher level protocol without explicit configuration as well as being 
separately configurable.

1.2.4 CCNx – An implementation of CCN

    An early open source implementation of CCN called the CCNx project developed working code 
in 2009. Since then this code has been further developed. The primary and original contributors of 
this code were the PARC CCN team. This code implements a CCN overlay network running on top 
of TCP/IP in order to demonstrate the ideas underlying CCN and to facilitate research in the field.  
The implementation uses the User Datagram Protocol (UDP) for transfer. 

    The source code and documentation is available from www.ccnx.org. The code includes the main 
CCNx daemon, ccnd, which handles node behavior and CCN routing, as well as programs to run a 
repository, ccnr, on the local machine onto which content can be inserted. The repository is used for 
persistent storage of Content Objects and can be loaded either as a tree-structure of folders in the 
local file system or manually file by file. It also includes a control program for ccnd, ccndc, which 
is used to set up CCN routing. Ccndc can be run in two ways: As a command to add or remove 
static  entries  in  the CCNx FIB or as a daemon that  dynamically  creates  routes based on DNS 
Service (SRV) records (DNS SRV records contains the location and port number of servers for a 
specific service, in this case CCNx nodes). Routes, routing information, and statistics about the 
cache can be viewed using the ccnd webserver via port 9695 (http://localhost:9695).

    Several  test  programs are  also included in the source  distribution  that  utilizes  CCNx. The  
programs that are useful for a simple file transfer are listed in Listing 1.

7
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Listing 1: CCNx test programs useful for file transfer.

• Name: ccnputfile
Description: Publishes a local file as CCN content in the local repository. 
Syntax: ccnputfile <uri> <file> 
Example: ccnputfile ccnx:/file1 /home/user/file1

• Name: ccngetfile
Description: Retrieves CCN content and stores it to a local file
Syntax: ccngetfile <uri> <file>
Example: ccngetfile ccnx:/file1 /home/user/file1 

• Name: ccnls
Description: Lists all the CCN content available in the local ccnd cache at one level past the 
given name prefix.
Syntax: ccnls <prefix>
Example: Following the example in Figure 4 on page 5, ccnls ccnx:/Example.com/Articles/ 
would yield Article1.
Alternatives: The program ccnlsrepo does the same thing and has the same syntax as ccnls, 
except it lists content available in the local repository instead of the ccnd cache.

• Name: ccndc
Description: Controls the CCN FIB in the ccnd. Further information is given in section 
1.2.4.
Syntax: ccndc <add/del> <uri> <udp/tcp> <host> 
Example: ccndc add ccnx:/ udp 192.168.1.5
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2. Background
    This  chapter  presents  proposed  architectures  with  similar  design  goals  as  CCN  and  their 
fundamental  differences  in  order  to  illustrate  different  approaches  to  content-networking.  The 
chapter also presents the request-routing mechanisms used by CDN networks as these networks 
currently provide one of the major ways of efficiently distributing content that is desired by large 
numbers of users. The chapter also presents work done on content-centric networks related to the 
specific inter-ISP problem that this thesis project focuses on.

2.1 Content Distribution Networks

    The  Content  Distribution  Network (CDN) approach  to  content  delivery  is  based  on  CDN 
providers placing clusters of servers in the ISP's network close to the users who will request this  
content. These servers replicate selected parts of the CDN's customer's website so that static content 
can be delivered by the CDN operator, for example images, script files, videos, files, and so on. 
These static parts of the websites are often much larger in size than the dynamic parts, which are 
usually text. 

    When web servers are clustered together, they are geographically in the same place, hence a user 
in Europe visiting a website in North America will experience the one-way delay as the content is 
transferred between the continents, as well as potentially experiencing lower transfer speed due to 
bottlenecks in all the networks along the path from the website to the user. Additionally, the delay in 
the reverse path may also reduce the transfer rate, due to the flow control mechanisms that TCP 
implements.  

    When users browse a CDN assisted web page only a small subset of the web page actually comes 
from the website itself, the rest is delivered by the CDN provider who redirects the user to their  
servers instead. If these servers can be located close to the user, then the content can be delivered 
with lower delay and at a higher transfer speed. The methods for redirecting requests for a web page 
to nearby servers is described in section 2.2. Due to the server's location inside the ISP's network,  
transferring the content from these CDN servers also reduces the load on inter-ISP links. [7]

    One of the major downsides of the CDN approach is that each of the CDN providers must have  
their  own  network  of  servers  inside  the  ISP's  network  infrastructure.  Furthermore,  new  CDN 
providers will have to place servers all around the world before they can begin to offer  services to  
websites, requiring a major investment. This creates a closed market where only a small number of 
major companies can compete.

2.2 Content Request mechanisms

    Directing content requests  to  the most  suitable (hopefully  local)  cache is  one of the major 
mechanisms  of  CDN  networks.  RFC  3568  “Known  Content  Network  Request-Routing 
Mechanisms”[8] specifies several content network request-routing mechanisms, specifically DNS 
request-routing, transport-layer request-routing, and application-level request-routing. Each of these 
will be described in more detail in subsections below.
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2.2.1 DNS request-routing

    DNS request-routing is very common due to the flexibility of the DNS system. In this method a 
DNS server returns different records based on the location of the user, hence redirecting users to 
caches close to them. “Close” is frequently computed in terms of  Time To Live (TTL) values in the 
DNS request packets. This method can also be used to balance load over a number of servers and 
therefore  provides  both  load  balancing  and  server  redundancy.  One  of  the  downsides  of  this 
approach is  the recursive nature of the DNS system. In order to achieve the desired spread of 
requests recursion  must be disabled and the time the answer can be cached must be short, otherwise 
groups of users (of uncontrollable size) may be directed to the same server. This of course increases 
the load on the DNS server, which must answer all DNS queries itself. While this can be facilitated 
by using  a  more  powerful  DNS server,  disabling recursion and limiting caching defeats[9] the 
original intentions of scalability and performance in the domain name system.

2.2.2 Transport-layer request-routing

    Transport-layer request-routing provides more parameters upon which the decision to which 
server the user is directed can be made. Every user's first request is directed to the same server via  
the DNS record, which in turn determines a suitable server based on the client's IP address and port. 
This balancing is one-way only, the requests for content are sent to the original server which directs  
these requests to nearby servers which deliver the content to the user. This approach could be used 
in combination with DNS request-routing for faster load balancing as DNS entries persist for some 
time in the hosts and the spread of requests across content-servers can change quite often and very 
quickly.

2.2.3 Application-level request-routing

    Application-level  request-routing  examines  the  application-layer  header  and  is  similar  to 
transport-layer request-routing in the sense that the original request always go toward the same 
server.  This  server,  or  special  nodes  along  the  network  path,  replaces  embedded  references  to 
objects in content being delivered to point to suitable alternative servers. 

    The redirection decision is made based on either a specific URL or, in the case of websites the  
decision  can  be made based on HTTP header  fields  such as  language,  user  agent,  or  cookies. 
Because the decision can be made on a per-object basis different choices can be made for different 
objects, allowing different  servers to handle different portions of objects or different languages. 
One of the downsides of this is that webpages that have been altered should not be cached, as 
entries in the cache may point to servers that are no longer available or are no longer the preferred 
choice. This means that the node that alters the webpage must also  add the header line <META 
HTTP-EQUIV=”pragma” CONTENT=”no-cache”> to the HTML header of the webpage. This tells 
the user's web-browser to not cache the page, but rather always get the page from the source.  
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2.3 Breadcrumbs

    In content caching networks, a breadcrumb is a small cache entry that records the (most recent)  
origin and destination of content that passes through the node instead of caching a copy of the 
content.  The advantages of breadcrumbs is described by E. J. Rosensweig and J. Kurose in ther 
paper “Breadcrumbs: efficient, best-effort content location in cache networks”[10]. These authors 
also present a way to search  for content using their method called Best-Effort  Content Search 
(BECONS). This method is described as a best-effort attempt to locate copies in the caches of the  
network (where it may or may not be found). However, if a search fails the content can always be 
found at (or near) the source. 

    As  content  traverses  the  network,  it  leaves  a  trail  of  breadcrumbs  from the  source  to  the 
requesting host(s). New requests for this content can try to locate this trail as the request is routed  
towards the source. The request follows this trail in either direction (upstream towards the source 
means a guaranteed hit, but downstream might be faster) until it finds a node with a cached copy of  
the content.

2.4 Data-Oriented Network Architecture

    The Data-Oriented Network Architecture (DONA) described  by Koponen, et al.  [11] aims to 
improve content delivery by using flat names instead of domain names. These flat names consists of 
a cryptographic hash of the publisher's public key and a label chosen by the publisher. These names 
are therefore not human-readable (although the label could be), but can be bound by the user to a 
name of their own choosing. The idea is that these bindings should be made via webpages, social 
media  sites,  or  contacts  in  a  contact  list.  While  the  content  itself  is  authenticated,  the  binding 
between a user's name for an object and the underlying flat name for an object is not. Because of 
this,  an  attacker  could  perform a  substitution  attack  by  returning  malicious  couplings,  thereby 
substituting the attacker's malicious content for the authentic content.

    This architecture relies on resolution handlers (RH) that implement an anycast primitive among 
themselves. These RHs keep track of the location of copies of content. Requests for content are 
routed among these RHs until a copy is found (for example, in a CDN server). The RH then returns 
the location of the copy to the user who retrieves the content via traditional IP transfer.

    DONA exploits the location-independence of flat names, but does not in itself provide storage of 
content. Content must be published somewhere (a website or in a CDN) before it can be registered 
with an RH. Subsequently the RH can return a server's address in response to a user's  content 
request(s). In this sense,  the DONA approach is essentially  a CDN content locator mechanism 
rather than a content caching network. 
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2.5 Related work

    In “Active ISP Involvement in Content-Centric Future Internet“[12], Islam and Grégoire discuss 
ways of  evolving current  CDN networks  in  collaboration with  ISPs to  create  a  content-centric 
delivery system using surrogates to accelerate the adoption of content-centric architectures. In their 
proposed architecture users are directed to surrogates, located close to the user at the edge of the 
network via a webinterface which is capable of displaying any HTML5 supported content (such as 
video or audio). The surrogate fetches the requested content directly from content providers or from 
other surrogates using a content-centric network connected via a Virtual Private Network (VPN). 
The surrogate places the content in its local cache and makes the content available via a webserver. 
Thus  CDN  providers  can  implement  efficient  content-delivery  to  their  surrogates  while  this 
processing is transparent to the user, who only interacts with a webserver using the standard HTTP 
based  webarchitecture. The advantage of this approach is that it allows the ISP's backbone network 
to  adopt  a  content-centric  network  architecture  while  this  change  is  transparent  to  the  ISP's 
customers as they do not have to update either their hardware or software.

    In “Performance Measurement of Name-Centric Content Distribution Methods” [13], Yuan and 
Crowley measure the performance of CCNx and compare it with HTTP-caching when downloading 
files. They conclude that the implementation of CCNx  (specifically the version released March 8, 
2011) lacks optimization. However, this paper was written over a year ago and during this time 
CCNx has been under constant development. Thus we will be interested to see if this development 
has changed the performance of the latest CCNx implementation (released on April 22, 2012).

    The original CCN paper “Networking Named Content” [2] measure how CCNx performs versus 
TCP when distributing  a  file  over  a  bottlenecked network.  This  paper  concludes  that  the  total 
download time for a single file increases linearly with the number of simultaneously downloading 
clients in the case of TCP, while the time required remains constant independent of the number of 
simultaneously downloading clients when using CCNx. 

    In “Flow-aware traffic control for a content-centric network” [14], Oueslati, Roberts, and Sbihi 
proposes a traffic control framework based on per-flow fair bandwidth sharing. They conclude that 
a TCP-like (additive increase, multiplicative decrease) congestion control mechanism implemented 
as a maximum window of pending interests is sufficiently effective to make up for the lack of CCN 
specific congestion control. The current traffic control in CCN (one interest packet returns one data 
packet)  might  be  sufficient  in  the  small-scale  testbeds  we are  using,  however  this  might  need 
additional mechanisms when tests (or operations) are conducted on a larger scale. 

    In “Routing policies in named data networking”[15],  DiBenedetto, Papadopoulos, and Massey 
explore the changes in inter-domain routing from a economic perspective when comparing border 
gateway  protocol  (BGP)  policies  to  policies  in  future  content-centric  architectures.  While 
economics  is  not  a  focus  of  this  thesis  project  this  paper  is  interesting  because  the  authors 
discussion how policies that are not possible (or desired) today may change how an ISP considers 
transit traffic. In section 4.2 of this paper these authors present a scenario where two ISPs similar in 
size and volume of traffic collaborate by sharing their cached content between each other over a 
link with limited connectivity (i.e., they can only reach each other through this link) in order to 
achieve a lower operating cost than if they were to get the content from other providers. Because of 
this sharing the two ISPs increase the amount of content each ISP has (virtually) cached, while 
reducing the amount of money they have to pay their peers. This sharing may or may not reduce the 
speed with which they can deliver this content, but it can reduce the time before the first packets of 
the content are delivered.
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3. Implementation, Testing, and Analysis
    In this chapter we introduce the topologies and setup of the network testbed used to demonstrate 
CCNx in an environment with multiple ISPs. We describe the four tests that we performed, what we 
are measuring, how we accomplish this, and what we want to achieve in each test.  Finally, we 
described the analysis of the data resulting from these tests.

3.1  Topology of a single network testbed

    The testbed topology consists of three ISPs: ISP1, ISP2, and ISP3. Each ISP has one router 
through which they are connected to each other by a single (direct) inter-ISP link. ISP1 has 4 hosts 
connected to the router of ISP1. The content publisher is simulated by inserting our content at the 
router of ISP2. Network links inside the ISPs are 1 Gb/s links while the bandwidth of the inter-ISP 
links is 10 Mb/s. The testbed has two different configurations, shown in Figure 6 and Figure 7. The 
main purpose of Topology 1 is to evaluate  caching  of content and content transfer with  multiple 
destinations. The main purpose of Topology 2 is to evaluate content transfer when there are multiple 
alternative sources for the content.
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Figure 7: Testbed Topology 1 Figure 6: Testbed Topology 2



3.2 Tests and measurements

    We will be performing four tests: test A, test B, test C, and test D. For test A we recreate the  
measurements performed by Jacobson, et al, as described in section 6.2 of the paper “Networking 
named  content”  [2].  This  test  measures  the  performance  when  multiple  hosts  simultaneously 
retrieve the same file from a server over a bottlenecked link when the transfer is done using both 
CCN and TCP. The test measures the amount of time until the last host has successfully downloaded 
the same 6MB file over a 1 Gb/s network with a 10 Mb/s bottleneck link to the content publisher.  
This test utilizes the program cURL[16] to connect to an HTTP server in order to transfer the file. 
For CCN this content was pre-staged into the CCN daemon by requesting the file locally so that we 
only  measure  communication  costs,  since  the  actual  CCN  content  is  normally  dynamically 
generated upon request.

    For test B we utilize the same topology to transfer a larger 50MB file to one of the hosts. The 
transfer is done in the same way as in test A. We also perform a single HTTP transfer of the same 
file to the same host, in order to compare  TCP and CCN measurements. This test measures the 
amount  of  data  and packets  transferred  on the  inter-ISP link  in  order  to  evaluate  what  impact 
content based addressing could have on the traffic between ISPs. 

    For test C and test D we add another ISP, ISP 3, to evaluate the multi-path capability of CCN.  
The content is  prerequested at  ISP3, thus ISP1 has two places to retrieve the content from via 
identical links. As in test B, we transfer a 50MB file simultaneously to the hosts. During test C we 
also examine the behavior of CCNx when a HTTP transfer of a 6MB file is started from ISP2 to 
ISP1. The transfer is started in the middle of the test and completed during the test. The goal of this  
test is to see if we can utilize the link with the greatest available bandwidth, in order to achieve load  
balancing between alternative sources of content.

    During test D we are simulate link failure over the inter-ISP links by disconnecting the network 
cable, waiting a few seconds seconds and then reconnecting the network cable. We do this first on 
the link between ISP2 and ISP1 and later on the link between ISP1 and ISP3. The goal of this test is  
to achieve an uninterrupted transfer in the event of a link failure when there are alternative sources 
for the content.

3.3 Testbed implementation and routing

    As  CCNx is  an  overlay  implementation  we are  using  workstations  with  multiple  network 
interfaces as routers; thus making them act as CCNx capable routers by running the CCNx daemon.

    The hosts are implemented in VMware Workstation 8.0  [17] as virtual machines running the 
Linux based operating system Ubuntu 12.04 LTS[18].

   CCN routing is achieved using static routes in order to route the whole CCN namespace (ccnx:/) 
to the directly connected nodes; thus the hosts in ISP1 can find all content via adjacent hosts or the 
ISP1 router and the ISPs routers can find content via each other. The prefix ccnx:/ matches all  
content (as the shortest match), and is therefore similar in CCNx to the IP default route.  

    IPv4 routing is achieved using static routes and by enabling IPv4 forwarding of packets on the  
workstations acting as routers. This forwarding is not needed by CCNx to forward packets, but it is 
needed to forward the HTTP requests and responses.
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3.4 Tools

    In order to perform these measurements we use the packet analyzer Wireshark[19] to capture 
packets during our tests. Wireshark can store the captured packets in the well-known “.pcap” format 
for later use in other packet visualizers, although we will use the built in tools in Wireshark to  
generate graphs of our results. To generate these graphs we use filters to select the desired traffic 
based on specific parameters. For CCNx traffic we use the IPv4 source and destination addresses 
together with UDP port 9695, as this is the port that CCNx uses to transfer interest and data packets.

    For the HTTP transfers in these tests we are using the well-known Apache[20] HTTP server 
implementation  and  GNU Wget[21].  Wget  is  a  command  line  HTTP,  HTTPS,  and  FTP client 
included in many Linux distributions.

    In order to create files of specific size we utilize the Unix program “dd”, which copies raw data  
from a file to another file. The special Linux-file /dev/zero, which returns null characters when read, 
is used as input file to create a file of specific size containing only zeros. In retrospect, it might have 
been  better  to  use  the  Linux-file  /dev/random  to  generate  random  bits  instead  of  the  zeroes 
generated by /dev/zero.

15



3.5 Test A – Content transfer with multiple receivers

    For this test we implement Topology 1 (see Figure 7 on page 13) on a single workstation running 
all the virtual machines in Topology 1. A 6 MB file is created in the root directory of the webserver  
using the command “dd if=/dev/zero of=/var/www/file1.dat bs=1M count=6”. This file is loaded 
(four times, incrementing the number in the name of the content) into the ccnd using the command 
“ccnputfile ccnx:/file1.dat /var/www/file1.dat” to ensure that the same file is used in both the CCNx 
and HTTP transfers. 

    The goal of this test is to illustrate the advantages of the content caching and multiple destination 
transfer in CCNx in an inter-ISP scenario where the inter-ISP link is a bottleneck for the transfers. 

3.5.1 Method

    The hosts retrieves the file over HTTP using the command “wget  http://192.168.2.2/file1.dat” 
and over CCNx using the command “ccngetfile ccnx:/file1.dat”. Wireshark running on the router of 
ISP1 captures the packets of the transfers and the transfer time is determined based on this capture. 

    The transfer time for the HTTP transfers is based on the duration of the flow of TCP packets from 
ISP2 to ISP1, and the transfer time for the CCNx transfer is based on the duration of the flow of 
UDP packets with destination port 9695 from ISP2 to ISP1. We conclude that once the content is 
received at ISP1 it is delivered with nominal delay over the gigabit links from the cache (either by 
the router of ISP1 or the other hosts). 

    This test is performed in 4 stages, with one, two, three, and four hosts in ISP1 requesting content.  
The resulting transfer times are displayed in Figure 8. Table 1 on page 17 contains the transfer times 
(rounded to a precision of 0.5 seconds) for both of the protocols for each of these four stages. The 
test was performed once. 
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Figure 8: Test A: Time for hosts to download a 6MB file using CCNx and HTTP
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Table 1: Time for hosts to download a 6 MB file using CCNx and HTTP

Number of 
hosts

CCNx HTTP

1 5.5s 5.0s

2 5.5s 10.0s

3 5.5s 15.0s

4 5.5s 20.5s

3.5.2 Analysis

    As seen in Figure 8, the caching capability of the nodes in the network causes the content to be 
transferred  only  once  over  the  bottleneck  link  between  ISP1  and  ISP2  when  the  content  is 
transferred using CCNx. In transfers using HTTP on the other hand, each host has to get the content 
from the source at ISP2, i.e. the content crosses the bottleneck link multiple times. 

    Because of this, the transfer time and the load on the inter-ISP link increases roughly linearly (the 
transfer time f(x) can be described as f(x) = 5x where x is the number of hosts, i.e. the transfer time  
increases  by  a  constant  5  seconds  for  each  additional  requesting  host) with  the  number  of 
simultaneously downloading hosts when using HTTP; while the transfer time and the load on the 
inter-ISP link is constant regardless of the number of simultaneously downloading hosts when using 
CCNx.

    As long as a copy of this content remains cached (i.e. due to being requested frequently or many 
times) in the ISP's network the cached copy can be used to serve future requests for this content,  
without  additional  costs  of  transfers  over  the  inter-ISP connection(s).  These  transfers  are  also 
potentially faster as the source is (local) closer to the user. As soon as there is more than one request 
for this content (if the content is still in the ISP's cache) there is a significant gain to both the ISP 
and the ISP's customers by using CCNx over HTTP for content delivery.

    In a scenario where there is a CDN provider present in the ISP's network capable of serving 
requests for this content, HTTP gains some of the content caching advantages. The content would 
only cross the inter-ISP link once (from the content provider to the CDN server(s)) and transfers 
could also potentially be faster due to the local source. The disadvantages of this scenario is that it 
requires  explicit  configuration  and  only  improves  the  content  delivery  of  the  CDN  provider's 
customer's content (websites), whereas a CCNx solution would not require configuration other than 
network setup (allowing for easier expansion of the network's cache capacity by simple adding 
storage to  existing nodes or adding new nodes  to  the network)  and could handle any arbitrary 
content. 
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3.6 Test B – Comparison of CCNx and HTTP transfer

    For this test we implement Topology 2 in a virtual environment on a single workstation running 
all the virtual machines from Topology 2 (though ISP3 is not used in this particular setup). A 50 MB 
file is created in the root directory of the webserver and loaded as CCNx content into the ccnd of 
the router of ISP2.

    The goal of this test is to determine the transport efficiency of CCNx compared to HTTP when 
there is only a single request for some particular content. This setup is the worst case scenario for a 
CCNx transfer as the content must be retrieved from the original source.

3.6.1 Method

     The content was transferred via both CCNx and HTTP from the router of ISP2 to the host in the 
same way as in Test A. The test was run only once. Packets were captured by the router of ISP1.  
The results are displayed in Figure 9 and Figure 10. Table 2 on page 19 shows the statistics of these 
two transfers, where Transferred bytes is calculated as transfer time * bandwidth, IP packet size as 
transferred bytes / number of IP packets, user data per packet as filesize / number of IP packets, and 
overhead per packet as packet size – user data size.
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Figure 9: Test B: Bandwidth in bits per second of inter-ISP traffic from ISP2 to ISP1 during the  
transfer of a single 50 MB file using CCNx and HTTP

Figure 10: Test B: Number of IP packets per second of inter-ISP traffic from ISP2 to ISP1 during  
the transfer of a single 50 MB file using CCNx and HTTP



Table 2: Statistics of inter-ISP traffic from ISP2 to ISP1 during the transfer of a single 50 MB file  
using CCNx and HTTP

Transfer 
time (s)

IP packets 
per 

second

 Number of 
IP packets

 Transferred 
bytes

IP packet size 
(byte)

User data (byte) 
per packet

Overhead 
(byte) per 

packet

CCNx 50 988 49391 62.5*10⁶ 1265 1012 253

HTTP 42 822 34543 52.5*10⁶ 1520 1447 73

3.6.2 Analysis

    As seen in Figure 9, CCNx utilizes the available bandwidth on the link just as well as TCP which 
is famous for “filling the pipe”. The time to transfer a 50 MB file over a 10 mbit/s link is 50 seconds 
using CCNx and 42 seconds using HTTP. As both transfers fully utilize the available bandwidth, we 
conclude that the transfer efficiency of a single-destination transfer using CCNx is 84% (42 / 50) of 
that of HTTP. As seen in Figure 10, the number of IP packets sent per second for the CCNx transfer 
is about 988, while this value is about 822 for the HTTP transfer. This is due to the smaller packet 
size seen in the CCNx transfer compared to the HTTP transfer. However, as seen in Test A, once 
there is more than one request for some particular content there is a gain in using CCNx over HTTP. 

     The overlay implementation of CCNx is  a disadvantage in this because of the additional IP and 
UDP headers in addition to the CCNx header leads to a higher overhead than HTTP, as the later 
only  has  the  overhead  of  IP and  TCP headers.  The  CCNx overhead  is  calculated  to  be  20% 
(overhead per packet / packet size, 253/1265) while the HTTP overhead is 4.8% (73/1520). The 
roughly 16% penalty in using CCNx rather than HTTP is due to the larger overhead in the CCNx 
overlay implementation which in turn also increases the number of packets needed to transfer the 
same amount of content compared to the HTTP transfer.
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3.7 Test C – Multiple transfers

    For this test we use the same setup as in Test B, a virtual implementation of Topology 2 running  
on a single workstation. 

Method

    A 50 MB file is created (in the same way as in Test A) in the root directory of the webserver on 
the router of ISP2 and loaded as content into the ccnd. The content is transferred to the router of 
ISP3 using CCNx before the test. As a result ISP1 now has two alternative sources for this content 
over two identical links.

    The file  is  transferred to  the host  using CCNx. All  times referred to  are  approximate to  a 
precision of 0.5. After 15 seconds, a HTTP transfer of a 6 MB file is initiated from ISP2 to ISP1. 
The HTTP transfer finishes in 5.5 seconds, about the same time as in Test A. During this time the 
CCNx content is transferred over the (other) link to ISP3; thus allowing the CCNx transfer to finish 
in 50 seconds, the same time as in test B. Details of the various transfers are shown in Figure 11. 
The statistics of these transfers are shown in Table 3.

    This test is further analyzed together with Test D in section 3.9.

Table 3: CCNx transfer from two alternative sources with a HTTP transfer occurring over one of  
the links during the test.

Number of packets Percentage of content traffic

Link to ISP2 20016 37.2 %

Link to ISP3 33813 62.8 %
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Figure 11: Test C: CCNx transfer from two alternative sources with a HTTP transfer occurring over  
one of the links during the test.



3.8 Test D - Resilience

    For this test we implement Topology 2 on an identical, physical topology. The routers are each 
implemented as virtual machines on a workstation of their own and the physical network interfaces 
of  the  workstation  are  bridged  together  with  corresponding  network  interfaces  on  the  virtual 
machine. The host is implemented on a laptop running the operating system Ubuntu 11.04 and the 
CCNx implementation.

Method

    For this test we used the same setup as in Test C, a 50 MB file was created (in the same way as in  
Test A) in the root directory of the webserver on the router of ISP2, this file was also loaded as 
content into the ccnd. The content is transferred to the router of ISP3 using CCNx before the test. As 
a result ISP1 now has two alternative sources for this content over two identical links.

    The file is transferred to the host using CCNx. All times referred to are approximate. After 10 
seconds the link to ISP2 is disconnected and reconnected after 10 seconds. Then 10 seconds after 
the first link failure, the link to ISP3 is disconnected and reconnected after 8 seconds. The results 
are displayed in Figure 12. In this figure, the red and green graphs shows the distribution of traffic 
between the two available sources (links), and the black graph shows the traffic towards the host 
from the router of ISP1. As there is always at least one available source throughout the test, the 
transfer was not interrupted by the link failures. Although we can see in Figure 12 that there is a dip 
in the content traffic just following the link being disconnected. There is a possibility that these dips 
in content traffic were caused by overloading the Central  Processing Unit  (CPU) of the virtual 
machines running as routers as we noticed the CCNx implementation occasionally maxed out the 
CPU capacity of their guest as well as host operating system. 

    Note also that there is a tradeoff in the traffic between the incoming link from ISP2 and ISP3 
before the link is  disconnected to ISP2. Similarly there is  a tradeoff in the traffic  between the 
incoming link from ISP3 and ISP2 before the link to ISP3 is disconnected. This tradeoff in the 
distribution between the link to ISP2 and the link to ISP3 is not equal and will change if the test is 
reset and performed again, as this is a result of the strategy layers continuously making decisions 
during the transfer. 
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Figure 12: Test D: CCNx transfer from two alternative sources with a (non-overlapping) link  
failure occurring once for both links 



3.9 Analysis of Test C and Test D

    These two tests show the advantages of having multiple available sources for content. The inter-
ISP links available to ISP1 in the tests are equal (identical in bandwidth), and no other traffic is  
flowing through the testbed network; therefore the strategy layer at router of ISP1 could potentially 
choose either of the two links towards the peering ISPs as the best source. Note that it would seem 
more beneficial  to use both links simultaneously (increasing the total  transfer rate to the user), 
however I have not found a way of doing so.

    When we look at test C we see that the strategy layer adapts to the HTTP transfer over the link 
between ISP1 and ISP2 by choosing the other link to ISP3 as the best link. The result is that the  
performance of neither transfer is affected and both transfers finish in their expected times. 

    Looking at test D we see that the strategy layer adapts to the link failures by choosing the 
available source as the best source. The switches between sources are done with minimal delay, as 
reactions in the strategy layer are triggered by events such as changes to the interfaces' state,  this 
change in source does not affect the performance of the transfer in the test which finish in roughly 
the  expected  times.  Similarly,  the  failover  time  for  SCTP as  measured  by  J.  Eklund  and  A. 
Brunstrom[22] is between 422ms and 874ms depending on the maximum retransmit threshold.

    Also interesting is that no interruptions occur which might affect higher level protocols or cause 
issues that would be visible to the user (i.e. no aborted file transfers, no interrupted or delayed 
phone  calls,  and  so  on).  This  resilience  at  the  network  layer  can  be  provided  by  the  routing 
protocols in the TCP/IP model, but is associated with some additional delay in adapting as the 
changes to the routing tables have to propagate throughout the network. If this delay is too large it  
might cause higher level protocols to attempt to recover (or break the the connection entirely if a 
recovery is not possible), causing delays or interruptions in the ISP's customer's service.

    3.10 Cache size, peer traffic, and reliability

    Imagine a scenario with 5 ISPs interconnected in a full mesh, i.e. each ISP directly connected to 
the other ISPs through a single link. Users in one ISP (the producer) produce over time a lot of 
content that the users of the other ISPs are interested in. The cache size of the ISPs directly affect 
their peer traffic as well as the reliability of the peer traffic as described in the following paragraphs. 

    With a large cache the ISPs will minimize their peer traffic because requested popular content 
will not be removed from the cache, due to multiple alternative sources for content at the other ISPs 
as  users  from  different  ISPs  might  request  specific  content  at  different  times  there  is  an 
improvement in  reliability. 

    With a small cache the ISPs will frequently remove moderately requested content from their 
cache, which results in additional peer traffic from new (repeated) requests which potentially also 
reduces transfer speed and increases the delay as experienced by the customer, as compared to a 
local source. The content is also less likely to be found at the other ISPs, hence lowering the number 
of possible alternative sources for content and as a result reducing reliability.

    A large cache might naturally seem to be the better solution, but as the amount of content grows 
the subset of content that the ISP can cache decreases. On another note, this is not the purpose of a 
cache. The cache of an ISP is most efficient when it keeps the content currently most requested by 
the ISP's customers (i.e., the currently most popular content) cached. How large an efficient cache 
is, and how large the subset of popular content is, might have to be analyzed and considered by each 
ISP as it might differ depending on the ISP's size, number of customers, and so on. 
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    Some evaluation of the benefits of caching or lack thereof can be seen in the recent Master's 
thesis by Manxing Du [23].

    This leads to a trade off between the cost for storage for the cache and the cost for downstream 
peer traffic. Having a large cache might be a costly investment for the ISP, but could potentially 
increase the quality of the service they offer to their customers if they are able to serve a larger 
portion of their content requests from this cache. Servicing a larger number of requests from this 
cache might also enable the ISP able to offer their customers effectively greater bandwidth while 
avoiding increasing the ISP's inter-ISP traffic. 

    ISPs that focuses on hosting or co-location services could benefit more from a large cache by 
offering to cache all of their customer's content as a service so that a minimal load is put on the 
customer's servers. By guaranteeing that the customer's content remains cached the customer's cost 
for hosting might shift from server or bandwidth capacity to cache space within the ISP's network, 
potentially lowering the customer's costs for hosting while maintaining their capacity to serve their 
customer's requests. 
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4. Conclusion
    The demand for higher Internet speeds and greater Internet penetration rates leads to increasing 
costs  for  inter-ISP traffic  for  ISPs.  By basing  addressing  of  content  on  names  rather  than  the 
content's location, content becomes location independent. 

    This project has shown that such addressing can reduce an ISP's inter-ISP traffic by caching the 
content, enabling new requests for this content to be served from a local cache without additional 
costs for inter-ISP traffic, as compared to addressing by location which causes inter-ISP traffic to 
increase linearly with repeated requests.

    We have shown that even though CCNx transfers of new content suffers some performance loss 
compared to a TCP transfer because of the overhead from additional headers, there is a potential  
gain to the ISP for caching this content if there are additional requests for this content before it is 
removed from the cache.

    We have shown the benefits of transfers of named content when multiple alternative sources are 
available, decreasing the load on the original source and increasing resilience against link failures 
by  switching between sources  without  interruptions  or  major  delay.  CCNx also  provides  load-
balancing by using the currently best available source for the content. These advantages provide 
better quality of service to the ISP's customers as well as better supporting mission-critical services 
such as phone calls.

4.1 Future work

    A suggestion for further work in this area would be to further investigate the CCNx strategy layer  
in order to exploit multiple sources simultaneously in order to potentially increase transfer rates of 
inter-ISP transfers. It might also be interesting to look at strategies for cache policies and size, as 
well as ways of financing the cache for the ISP.

4.2 Required reflections

    The work done in this thesis project investigates how changing the underlying infrastructure of 
our ISPs' networks to accommodate for the changes in how we use the Internet today compared to 
what the TCP/IP protocol stack was originally designed for. The quality and availability of Internet 
service  is  an  important  part  of  todays  society  and  the  ever  increasing  demand.  The  changes 
investigated  in  this  thesis  project  could  effectively  reduce  the  load  on  the  backbone  Internet 
infrastructure overall, allowing for higher available bandwidth to more users. 

    One of the strengths of the Internet is that anyone, even someone who knows nothing about 
computers, can browse the web and access content on the Internet. This new way of addressing 
content follows the URI format that users are used to, because of this the user will not be confused 
or require additional education following this change. In fact, the user might not even be aware of 
these changes. While these new protocols can be automatically installed into the user's operating 
system with little to no interaction from the user via updates, something that could prove to be a 
problem is  the user's  home router.  Updating router  firmware to  support these new protocols  is 
possible, but is often a rather complicated process for an inexperienced user. This could mean an 
additional expense to the users who might have to buy a new home router.

24



    The additional storage required in an ISP's infrastructure in order to provide a cache of suitable  
size is currently already present in their networks in the form of CDN operator's servers. Since the 
CDN operator's business model of efficient content delivery is solved elsewhere it is natural for 
them to  adapt  to  reformulate  their  business  model  around  the  new problem of  storage  space. 
Because of this, the transition to content based addressing does not require major investments from 
the ISPs and CDN operators who adapt will not be going out of business.
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