
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

L U C I A N O R U B I O R O M E R O

 A Dynamic Adaptive HTTP Streaming
Video Service for Google Android

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

A Dynamic Adaptive HTTP Streaming Video Service
for Google Android

Master of Science Thesis

Luciano Rubio Romero
lrr@kth.se

Academic supervisor: Gerald Q. Maguire Jr.

Industrial supervisor: Thorsten Lohmar

School of Information and Communication Technology (ICT)
Royal Institute of Technology (KTH)

Stockholm, Sweden

 October 6, 2011

mailto:lrr@kth.se

To dad.

i

Abstract

Adaptive streaming approaches over Hypertext Transfer Protocol (HTTP), such as Apple’s HTTP
Live streaming (HLS) and Microsoft’s Live Smooth Streaming, have recently become very popular.
This master’s thesis project developed and evaluated several media rate adaptation algorithms
optimized for mobile networks with a client running on Google’s Android operating system.
The deployed service supports HLS and the emerging ISO/IEC MPEG standard called Dynamic
Adaptive Streaming over HTTP (MPEG-DASH).

Live media was the focus of the evaluation, since this content can not be cached in advance
at the user’s device, hence the quality of the user’s experience will be affected by the currently
available bandwidth which the user can utilize. Experiments were performed for multiple
scenarios illustrating different network capabilities, especially various amounts of bandwidth
available to the user.

This project has produced an implementation of HTTP-based adaptive streaming. This
implementation follows the MPEG standard and enables robust and smooth playback of live
video content via Google’s Android devices. Results of the experiments have shown that the
proposed adaptation mechanisms efficiently utilize the available bandwidth of the network. A
clear conclusion of this thesis is that adaptive streaming will in fact enable substantial numbers
of users to enjoy live media streaming to their devices.

Keywords: HTTP, live, video, streaming, MPEG-DASH, Android.

iii

Sammanfattning

Adaptiv strömning metoder över Hypertext Transfer Protocol (HTTP), till exempel Apples
HTTP Live streaming (HLS) och Microsoft Live Smooth Streaming, har nyligen blivit mycket
populära. Detta examensarbete utvecklas och utvärderas flera medier algoritmer anpassning
av överföringshastigheten optimerad för mobila nätverk med en klient som körs på Googles
Android-operativsystem. Systemet kommer att överväga HLS och den framväxande ISO/IEC
MPEG-standarden som kallas Dynamisk Adaptiv Strömmande över HTTP (MPEG-DASH).

Direktsendning media var i fokus för utvärderingen, eftersom detta innehåll inte kan
cachas i förväg på användarens enhet, därmed kvaliteten på användarens upplevelse
kommer att påverkas av den aktuella tillgängliga bandbredden som användaren kan utnyttja.
Experimenten utfördes för flera scenarier illustrerar olika nätverksfunktioner, särskilt olika
mängder bandbredden tillgänglig för användaren.

Detta projekt har producerat ett genomförande av HTTP-baserade adaptiva strömning. Denna
implementering följer MPEG-standarden och möjliggör robusta och smidig uppspelning av
direktsänd video innehåll via Googles Android-enheter. Resultat av experiment har visat att
den föreslagna anpassningsmekanismer effectivt sätt utnyttja den tillgängliga bandbredden i
nätverket. En tydlig slutsats i denna avhandling är att adatptive strömning faktiskt kommer att
möjliggöra ett stort antal användare att njuta direktsänd medieströmning till sina enheter.

Keywords: HTTP, live, video, strömning, MPEG-DASH, Android.

v

Acknowledgments

I am enormously grateful to Gerald Q. Maguire Jr. for his highly valuable comments and advice,
which have contributed immensely to this master’s thesis project. I would like to acknowledge
Thorsten Lohmar for giving me the opportunity to realize this project at Ericsson in Aachen,
Germany. Thorsten has provided me with thoughtful suggestions and guidance (which can be
found throughout this thesis).

I am greatly thankful to my co-workers at Ericsson for their remarkable contributions and
support: Thomas Johansson, Magued Sedra, Thorsten Dudda, Duong ’James’ Quoc Trong, Peng
Wang, Burcu Hanta, and Jairo Alfonso García Luna.

I would like to thank my friends from Toledo and my colleagues at the university, especially
Urko Serrano Badiola, Sergio Gayoso Fernández, and Sergio Floriano Sánchez from the Royal
Institute of Technology (KTH) and Federico Navarro Rodríguez and Ricardo Oña Martínez-
Albelda from the Technical University of Madrid (UPM) for sharing their magnificent experience,
enthusiasm, and liveliness with me. Their friendship is gratefully acknowledged. Special thanks
goes to Reyes Albo Sánchez-Bedoya for her innumerable advice during my studies.

Finally, I would like to express my infinite gratitude to my mother and my brother for their
outstanding support in Spain and abroad. And Kathleen Streit, with love.

Contents

List of Acronyms and Abbreviations xi

List of Tables xiii

List of Figures xv

List of Code Listings xix

List of Algorithms xxi

1 Introduction 1
1.1 The problem and motivation . 2
1.2 Goals . 4
1.3 Scope . 4
1.4 Audience . 4
1.5 Organization of the thesis . 4

2 Background 7
2.1 Traditional streaming . 7

2.1.1 Real-Time Transport Protocol (RTP) . 7
2.1.2 Real-Time Streaming Protocol (RTSP) . 8

2.2 Progressive download . 8
2.3 Adaptive streaming . 8

2.3.1 Transcoding . 9
2.3.2 Scalable encoding . 9
2.3.3 Stream switching . 10

2.4 HTTP-based adaptive streaming . 11
2.4.1 Why HTTP? . 11
2.4.2 Apple’s HTTP Live Streaming (HLS) . 12
2.4.3 Microsoft’s Live Smooth Streaming (LSS) . 13
2.4.4 Adobe’s HTTP Dynamic Streaming . 14
2.4.5 MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) 14

2.5 Video CODECs . 16
2.5.1 Video frames . 16
2.5.2 Decoding and presentation time-stamps . 17
2.5.3 H.263 . 17
2.5.4 H.264/MPEG-4 AVC . 17
2.5.5 VP8 . 18

2.6 Audio CODECs . 18
2.6.1 MP3 . 18
2.6.2 Advanced Audio Coding (AAC) . 18
2.6.3 Vorbis . 18

2.7 Container formats . 19
2.8 Quality video levels . 19
2.9 Video on-demand and live streaming . 20
2.10 Google’s Android operating system . 20

2.10.1 Media formats supported on Android . 21
2.10.2 Adaptive protocols over HTTP supported on Android 22

2.10.2.1 Apple-HLS support . 22

vii

viii CONTENTS

2.10.2.2 Microsoft-LSS support . 22
2.10.2.3 Adobe-HDS support . 23

2.11 Comparison among the different HTTP-based adaptive solutions 23

3 Related work 25

4 Design and implementation 27
4.1 Content preparation . 27

4.1.1 Transcoder module . 28
4.1.2 Segmenter and combiner modules . 28
4.1.3 Indexing module . 29

4.2 Synchronization between server and client . 29
4.3 HTTP Servers . 31

4.3.1 On-demand server . 31
4.3.2 Live server . 31

4.4 Client . 32
4.4.1 Features . 33
4.4.2 Adaptation mechanisms . 33

4.4.2.1 Aggressive adaptive mechanism . 34
4.4.2.2 Conservative adaptive mechanism 34
4.4.2.3 Mean adaptive mechanism . 35

4.4.3 Module characterization . 36
4.4.3.1 Activities . 37

4.4.4 Player module . 38
4.4.4.1 Video surface management . 39
4.4.4.2 Implementation . 41

4.4.5 Parser module . 43
4.4.5.1 DOM and SAX . 44
4.4.5.2 Implementation . 44

4.4.6 Segment-downloader module . 48
4.4.6.1 Implementation . 49

4.4.7 Rate adaptation module . 51
4.4.7.1 Implementation . 51

4.4.8 Transcoder module . 52
4.4.8.1 Implementation . 53

4.4.9 Timer module . 56
4.4.9.1 Implementation . 56

4.5 Network emulator . 57
4.5.1 Emulator requisites . 57
4.5.2 Dummynet . 58

5 Evaluation 61
5.1 Experimental environment . 61

5.1.1 Experimental devices . 62
5.1.2 Content source . 62
5.1.3 Segmentation schemas . 62
5.1.4 Selection of media quality levels . 62
5.1.5 Input and output characterization . 64
5.1.6 Metrics . 66

5.1.6.1 Weighted functions . 66
5.1.6.2 Bandwidth utilization . 67
5.1.6.3 Bandwidth efficiency . 67
5.1.6.4 Buffering efficiency . 68
5.1.6.5 Segment-fetch efficiency . 68
5.1.6.6 Segment-retry efficiency . 68
5.1.6.7 End-to-end latency . 69

CONTENTS ix

5.1.6.8 Active efficiency . 69
5.1.6.9 Start-up efficiency . 69
5.1.6.10 Reaction efficiency . 69

5.1.7 Network scenarios . 70
5.2 Scenario 1: long-term variations of the available bandwidth 71

5.2.1 Performance of the adaptation mechanisms 71
5.2.1.1 Impact on the metrics . 72

5.2.2 Performance with different duration segments 73
5.2.2.1 Impact on the metrics . 74

5.2.3 Analysis of the end-to-end latency . 75
5.2.4 Discussion . 76

5.3 Scenario 2: short-term variations of the available bandwidth 76
5.3.1 Performance of the adaptation mechanisms 77

5.3.1.1 Impact on the metrics . 78
5.3.2 Performance with different duration segments 79

5.3.2.1 Impact on the metrics . 80
5.3.3 Analysis of the end-to-end latency . 81
5.3.4 Discussion . 81

5.4 Scenario 3: peaks in the available bandwidth . 82
5.4.1 Performance of the adaptation mechanisms 82

5.4.1.1 Impact on the metrics . 83
5.4.2 Performance with different duration of segments 84

5.4.2.1 Impact on the metrics . 85
5.4.3 Analysis of the end-to-end latency . 86
5.4.4 Discussion . 86

5.5 Scenario 4: troughs in the available bandwidth . 87
5.5.1 Performance of the adaptation mechanisms 87

5.5.1.1 Impact on the metrics . 88
5.5.2 Performance with different duration segments 89

5.5.2.1 Impact on the metrics . 90
5.5.3 Analysis of the end-to-end latency . 91
5.5.4 Discussion . 91

5.6 Effects of packet loss . 92
5.6.1 Impact on the metrics . 92
5.6.2 Discussion . 93

5.7 Evaluation with real live events . 93
5.7.1 Impact on the metrics . 94
5.7.2 Discussion . 95

6 Conclusions 97
6.1 Discussion . 97
6.2 Future work . 98

Bibliography 101

A Demonstration of the client’s application 107
A.1 Graph generator . 107
A.2 Logging system . 107
A.3 Overview of the client’s GUI . 108

A.3.1 Adding media sources . 108
A.3.2 Importing multiple media sources . 108
A.3.3 Searching for media sources . 109
A.3.4 Modifying and deleting media sources . 109
A.3.5 Opening a media source . 110
A.3.6 Playback during the streaming session . 110

B FFmpeg capabilities 115

x CONTENTS

C Integration of FFmpeg libraries using the Android NDK 117

Trivia 119

List of Acronyms and Abbreviations

3GPP 3rd Generation Partnership Project

AAC Advanced Audio Coding

AVC Advanced Video Coding

BP Baseline Profile

CBP Constrained Baseline Profile

CDN Content Delivery Network

CODEC COmpressor-DECompressor

CPU Central Processing Unit

DF Delivery Format

DOM Document Object Model

DSS Darwin Streaming Server

DTS Decoding Time-Stamp

DVM Dalvik Virtual Machine

GOP Group Of Pictures

GUI Graphical User Interface

HDS Adobe’s HTTP Dynamic Streaming

HLS Apple’s HTTP Live Streaming

HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

IPTV Internet Protocol Television

ISO International Organization for Standardization

ITU International Telecommunication Union

JNI Java Native Interface

JVM Java Virtual Machine

LGPL Lesser General Public License

LSS Microsoft’s Live Smooth Streaming

MEGACO Media Gateway Control Protocol

MF Manifest File

MIME Multipurpose Internet Mail Extensions

MMUSIC Multiparty Multimedia Session Control (Working Group)

MS IIS Microsoft Internet Information Services

xi

MPD Media Presentation Description

MPEG Moving Picture Experts Group

MPEG-DASH MPEG Dynamic Adaptive Streaming over HTTP

M2TS MPEG-2 Transport Stream

MVC Multiview Video Coding

NAT Network Address Translation

NTP Network Time Protocol

OHA Open Headset Alliance

OS Operating System

PCM Pulse-Code Modulation

PIFF Protected Interoperable File Format

PTS Presentation Time-Stamp

QSS QuickTime Streaming Server

RAP Random Access Point

RTMP Real Time Messaging Protocol

RTP Real-time Transport Protocol

RTCP RTP Control Protocol

RTSP Real Time Streaming Protocol

SAX Java’s Simple API for XML

SCCP Skinny Call Control Protocol

SDK Software Development Kit

SIP Session Initiation Protocol

SNTP Simple Network Time Protocol

SVC Scalable Video Coding

TCP Transmission Control Protocol

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Universal Resource Locator

VCEG Video Coding Experts Group

VLC VideoLan Player

WAN Wide Area Network

WAVE Waveform Audio File Format

XML Extensible Markup Language

xii

List of Tables

2.1 Major differences among H.264 Constrained Baseline Profile (CBP), Baseline Profile
(BP) and Main Profile (MP). 18

2.2 Video and audio CODECs supported in several container formats (2011, August).
Information collected from [2, 43, 70, 72]. 19

2.3 Google’s Android version history. 21
2.4 Android supported video CODECs and container formats. Extracted from [6]. 21
2.5 Android supported audio CODECs and container formats. Extracted from [6]. 22
2.6 Comparison among Microsoft-LSS, Apple-HLS, and MPEG-DASH. Extracted from [1,

55, 59] . 23

4.1 Additional MIME types needed for the Apache HTTP server. 31
4.2 Sample set of representation lists, assuming three quality levels (denoted by bw1, bw2,

and bw3) and 10s-long segments. 44
4.3 Supported attributes for the MPD tag in MPEG-DASH. 45
4.4 Supported attributes for the Period tag in MPEG-DASH. 46
4.5 Supported attributes for the Representation tag in MPEG-DASH. 46
4.6 Supported attributes for the SegmentInfo tag in MPEG-DASH. 46
4.7 Supported attributes for the URL tag in MPEG-DASH. 46
4.8 Supported attributes for the URLTemplate tag in MPEG-DASH. 47
4.9 Supported tags for extended M3U playlists. 47
4.10 Supported attributes for the EXT-X-STREAM-INF tag. 47
4.11 Playlist example. 49
4.12 NTP settings. 56

5.1 Specifications of devices employed in the experiments. Extracted from [63]. 62
5.2 Segmentation schemas. 62
5.3 Official Android’s encoding recommendations for low and high quality video.

Extracted from the Android’s developer site [6]. 63
5.4 Set of fixed parameters used in all representations. 63
5.5 Set of media representation levels generated on the streaming server. 63
5.6 Input parameters. 64
5.7 Output parameters. 65
5.8 The metrics that will be used for our evaluation. 66
5.9 Computed metrics under network scenario 1 for aggressive, conservative, and mean

adaptive mechanisms. 73
5.10 Metrics comparison under network scenario 1 for 5s-long, 10s-long and 20s-long

segments. 75
5.11 Metrics comparison under network scenario 2 for aggressive, conservative, and mean

adaptive mechanisms. 79
5.12 Metrics comparison under network scenario 2 for 5s-long, 10s-long and 20s-long

segments. 81
5.13 Metrics comparison under network scenario 3 for aggressive, conservative, and mean

adaptive mechanisms. 83
5.14 Metrics comparison under network scenario 3 for 5s-long, 10s-long, and 20s-long

segments. 85
5.15 Metrics comparison under network scenario 4 for aggressive, conservative, and mean

adaptive mechanisms. 89
5.16 Metrics comparison under network scenario 4 for 5s-long, 10s-long, and 20s-long

segments. 91

xiii

5.17 Input parameters. 92
5.18 Metrics comparison under different probability of packet losses. 92
5.19 Characteristics offered by the Eurosport channel over Apple-HLS. 93
5.20 Metrics comparison in a real live event. 94

B.1 FFmpeg supported audio CODECs. Extracted from [13]. 115
B.2 FFmpeg supported container formats. Extracted from [13]. 115
B.3 FFmpeg supported video CODECs. Extracted from [13]. 116

xiv

List of Figures

1.1 Network traffic expected for different devices. Laptops and smartphones lead traffic
growth. Extracted from [24] (published in February 2011). 1

1.2 Estimate of the type of traffic to/from smartphone. Extracted from [24] (published in
February 2011). 2

1.3 A simplified example of adaptive streaming offered to end-users. 2
1.4 Android official logos. 3
1.5 Worldwide smartphone sales to end users by Operating System in the first quarter of

2011. Extracted from [33] (May 2011). 3

2.1 Transcoding approach for adaptive streaming. Adapted from [23]. 9
2.2 Scalable encoding approach for adaptive streaming. Adapted from [23]. 9
2.3 Stream switching approach for adaptive streaming. Adapted from [23]. 10
2.4 Stream switching example over time. 10
2.5 Client contract adaptation. Network delays are omitted for simplicity. 11
2.6 Alternate index files to offer different streams. Adapted from [11]. 13
2.7 HTTP Live streaming architecture. Adapted from [11]. 13
2.8 MPD simplified structure. Adapted from [69, figure 4]. 15
2.9 Client contract adaptation example in MPEG-DASH. Network delays are omitted for

simplicity. 16
2.10 Distribution of frames in a video stream. Every group of pictures is constituted by one

I-frame and several P-frames, and optionally B-frames. 17
2.11 Distribution of Android platform versions (as of July 2011). Extracted from [7]. 21

4.1 System architecture. 27
4.2 Modules for content preparation. A media file is indicated as input. R different

representations are generated, producing n segments for each original segment. An
index file is also produced as output. 28

4.3 (a) Communication among client, server and NTP server pool. (b) A simple SNTP
request. 30

4.4 NTP packet header. Relevant fields for the synchronization procedure are shown
highlighted. 30

4.5 Characterization of the Live server. Tshi f t represents the indexes of segments within
the available shifting time, n the number of segments for one representation. 32

4.6 Overview of the client’s application modules. The dashed line separates the device’s
hardware resources from the client’s application (software). 36

4.7 Activity orientation. 37
4.8 Activities of the client application. 38
4.9 Sequence of events produced in the player module. 39
4.10 Surface view binding. 40
4.11 Binding problem. 40
4.12 State diagram of Android’s media player. Note that setDataSource() can only be

called from the Idle status. Figure adapted from [8]. 42
4.13 Communication between the segment-downloader and the rate-adaptation modules.

Dashed lines represent requests whereas normal lines represent notifications. 49
4.14 Media container conversion performed in the transcoder module. It provides

compatibility with Apple-HLS. 53
4.15 FFmpeg conversion interface. 55

xv

4.16 Dummynet introduces one or more pipes and queues in the protocol stack. Packets
are intercepted and delayed according to the set of network rules. Adapted from [21,
figure 3]. 58

4.17 Pipes and queues, the basic elements of Dummynet. Adapted from [20, figure 3]. . . . 59

5.1 Evaluation environment with three different parametrized components (shown in gray). 61
5.2 Frame samples from Sintel encoded at different bit-rates. 64
5.3 Example of a available bandwidth function (bwavai l (t)) and the representation

levels depicted in the left hand figure. The maximum available bandwidth function
(b̃w avai l (t)) is depicted on the right hand figure, truncated at the maximum
representation level (rR = 2 Mb/s) . 65

5.4 Weighted functions. wlong (t) weights metrics over the whole session T , whereas
wshor t (t) is more suitable to weight delays and short intervals. 67

5.5 Reaction times. 70
5.6 Network scenarios emulated during the evaluation. All of them produce variations in

the available bandwidth. 70
5.7 Series of Dummynet pipes for the first network scenario. 71
5.8 Performance of the aggressive mechanism over the scenario 1. 71
5.9 Performance of the conservative mechanism over the scenario 1. 72
5.10 Performance of the mean mechanism over the scenario 1. 72
5.11 Graphical comparison under network scenario 1 for aggressive, conservative, and

mean adaptive mechanisms. 73
5.12 Performance of the conservative mechanism over the scenario 1 with a segment

duration of 5 s. 74
5.13 Performance of the conservative mechanism over the scenario 1 with a segment

duration of 20 s. 74
5.14 Graphical comparison under network scenario 1 for 5s-long, 10s-long, and 20s-long

segments. 75
5.15 End-to-end latency throughout the session for scenario 1. 76
5.16 Series of Dummynet pipes for the second network scenario. 77
5.17 Performance of the aggressive mechanism over the scenario 2. 77
5.18 Performance of the conservative mechanism over the scenario 2. 78
5.19 Performance of the mean mechanism over the scenario 2. 78
5.20 Graphical comparison under network scenario 2 for aggressive, conservative, and

mean adaptive mechanisms. 79
5.21 Performance of the conservative mechanism over the scenario 2 with a segment

duration of 5 s. 79
5.22 Performance of the conservative mechanism over the scenario 2 with a segment

duration of 20 s. 80
5.23 Graphical comparison under network scenario 2 for 5s-long, 10s-long and 20-seconds

long segments. 80
5.24 End-to-end latency throughout the session for scenario 2. 81
5.25 Series of Dummynet pipes for the third network scenario over time. 82
5.26 Performance of the aggressive mechanism over the scenario 3. 82
5.27 Performance of the conservative mechanism over the scenario 3. 83
5.28 Performance of the mean mechanism over the scenario 3. 83
5.29 Graphical comparison under network scenario 3 for aggressive, conservative, and

mean adaptive mechanisms. 84
5.30 Performance of the conservative mechanism over the scenario 3 with a segment

duration of 5 s. 84
5.31 Performance of the conservative mechanism over the scenario 3 with a segment

duration of 20 s. 85
5.32 Graphical comparison under network scenario 3 for 5s-long, 10s-long, and 20-

seconds long segments. 85
5.33 End-to-end latency throughout the session for scenario 3. 86
5.34 Series of Dummynet pipes for the fourth network scenario. 87

xvi

5.35 Performance of the aggressive mechanism over the scenario 4. 87
5.36 Performance of the conservative mechanism over the scenario 4. 88
5.37 Performance of the mean mechanism over the scenario 4. 88
5.38 Graphical comparison under network scenario 4 for aggressive, conservative, and

mean adaptive mechanisms. 89
5.39 Performance of the conservative mechanism over the scenario 4 with a segment

duration of 5 s. 89
5.40 Performance of the conservative mechanism over the scenario 4 with a segment

duration of 20 s. 90
5.41 Graphical comparison under network scenario 4 for 5s-long, 10s-long, and 20-

seconds long segments. 90
5.42 End-to-end latency throughout the session for scenario 4. 91
5.43 Graphical comparison under different probability of packet losses. 93
5.44 Graphical comparison of metrics in a real live event. 94

A.1 Available graphs in the client’s application. 107
A.2 Adding media sources. 108
A.3 Searching for media sources. 109
A.4 Modifying and deleting media sources. 109
A.5 Selection of the session parameters. 110
A.6 Dynamic graphs. 110
A.7 Sample of playback using the conservative mechanism over the scenario 1. 111
A.8 Sample of playback using the conservative mechanism over the scenario 2. 111
A.9 Sample of playback using the conservative mechanism over the scenario 3. 112
A.10 Sample of playback using the conservative mechanism over the scenario 4. 112

xvii

List of Code Listings

2.1 Example of an extended M3U playlist which contains three 10-seconds-long media
segments. 12

2.2 Example of an extended M3U playlist which contains several sub-playlists,
consequently providing alternate stream at different qualities. 12

2.3 Microsoft-LSS manifest sample. 14
2.4 MPD example. Optional elements and attributes are omitted for simplicity. 15
4.1 FFmpeg command line used in the transcoder module. Note the fixed parameters

defined in the first line: frame rate, resolution, aspect ratio, and GOP size. 28
4.2 Parameters used for H.264 encoding at Baseline Profile. Note that the coder attribute

is set to 0 to restrict to H.264 Baseline Profile. 28
4.3 NHML example file produced by MP4box. 29
4.4 DashResource abstract class. 31
4.5 Simplified version of the Android manifest XML-file. 38
4.6 Listener launched when video surface is ready. 40
4.7 Fragment of the activity’s initialization method onCreate(). 41
4.8 Procedure to handle the next media segment to be played. 41
4.9 Setting the next data source of the MediaPlayer instance. 41
4.10 Listener triggered when the media segment is loaded. 43
4.11 Listener triggered after playback completion. 43
4.12 Termination of background tasks. 43
4.13 DASH parser constructor. 45
4.14 Java method to parse an MPD file. 45
4.15 XMLHandler private class, it overrides SAX methods to parse supported MPD tags. It

parses attributes and transforms them into Java objects and lists of segments. 45
4.16 Java method to parse an extended M3U playlist (.m3u8). 48
4.17 Main method of the segment-downloader module. 49
4.18 Opening a valid HTTP connection. 50
4.19 Procedure to download a new media segment. 50
4.20 Java methods used to switch the representation level. 51
4.21 Switch-up method. Increase the selected representation level. The number of steps to

increase is passed as a parameter. 51
4.22 Adaptation Java method. It selects the appropriate representation level for each

algorithm. 52
4.23 C function which throws a Java exception via JNI. 53
4.24 A particular set of native functions defined in the FFmpeg class. 54
4.25 Initialization native function. 54
4.26 Parsing native function to obtain conversion parameters. 54
4.27 Convert native function. 55
4.28 Java conversion method. 55
4.29 Request NTP time. 56
4.30 NTP initialization. 57
4.31 A simple pipe created in Dummynet. The pipe bidirectionally limits the network traffic

to 2 Mb/s and induces a packet delay of 1000 ms. 58
4.32 A more complete example of pipes in Dummynet. Incoming network traffic is limited

to 512 kb/s with a delay of 32 ms and 1% probability of error; whereas the outcoming
traffic is limited to 256 kb/s, 100 ms of packet delay, and 5% of packet loss. 59

5.1 Extended M3U playlist retrieved from the Eurosport’s HTTP server. 94
A.1 Summary log file. 108
C.1 Integration script. 117

xix

C.2 Android makefile (Android.mk). 118

xx

List of Algorithms

1 Aggressive adaptive algorithm. 34

2 Conservative adaptive algorithm. 35

3 Mean adaptive algorithm . 36

xxi

Chapter 1

Introduction

”The important thing is the diversity
available on the Web.”

– Tim Berners-Lee

Today streaming is a very popular technology by which multimedia content is delivered
continuously from a server to end-users1. Streaming methods are constantly being improved
since the network capabilities and usage scenarios are quite heterogeneous. The creation of
techniques which automatically provide the best possible quality to consumers has become a
important challenge [48]. By means of the widely used Hypertext Transfer Protocol (HTTP) [31]
which is the de facto protocol of today’s Internet, new streaming approaches have been
developed [48, 55, 59, 69].

Recent studies [24] have shown the crescent diversity of end-user devices. Mobile phones have
become immensely popular in the recent years, since they have been significantly enhanced,
providing Internet-based services over wireless and broadband connections. Smartphones offer
capabilities similar to modern computers, as they run more sophisticated operating systems than
regular cellphones (allowing the installation of third-party applications). Figure 1.1 illustrates
predictions for the next several years in terms of network traffic, suggesting that there will be a
considerable increase mobile traffic (estimated to represent the 26.6% of the total network traffic
in 2015).

2011 2012 2013 2014 20152010

6000

7000

Petabytes per Month

5000

4000

3000

2000

1000

Other portable devices (7,1%)

M2M (4,7%)

Home gateways (5,8%)

Smartphones (26,6%)

Laptops and netbooks (55,8%)

Figure 1.1: Network traffic expected for different devices. Laptops and smartphones lead traffic
growth. Extracted from [24] (published in February 2011).

Video data has unequivocally become the predominant type of content transferred by mobile
applications. As shown in figure 1.2, video traffic is expected to grow exponentially in the next
several years, prevailing (66%) over web (20.9%) and peer-to-peer (6.1%) traffic.

1Other approaches [3] employ peer-to-peer overlay networks to provide multimedia content.

1

2 CHAPTER 1. INTRODUCTION

2011 2012 2013 2014 20152010

6000

7000

Petabytes per Month

5000

4000

3000

2000

1000

VoIP and gaming (1,9%)
M2M (4,7%)

P2P (6,1%)

Web/data (20,9%)

Video (66,4%)

Figure 1.2: Estimate of the type of traffic to/from smartphone. Extracted from [24] (published in
February 2011).

1.1 The problem and motivation

The immense variety of end-user devices operating under heterogeneous mobile networks leads
to an interesting challenge: produce dynamic and automatized adaptation between producers
and consumers, to deliver the best possible quality of content. Multiple constraints are present in
the process of content delivery, such as network rate fluctuations or the client’s own capabilities.
For instance, end-users’ devices can be limited by display resolution, maximum video bit-rate, or
supported media formats. This master’s thesis project focuses on portable devices and considers
these limitations.

Figure 1.3 exemplifies the adaptation for similar clients which experience different limitations
in the underlying communication network, hence the amount of data supplied per unit time to
these clients differ. In this context, adaptive streaming [48] represents a family of techniques
which addresses the problem of the difference in the data provided to different clients. By
means of layered media content and adaptation mechanisms, end-users can perceive the most
appropriate level of quality given their current constraints [23]. The most popular adaptive
techniques will be introduced in the next chapter (section 2.3).

Streaming
Server

Media
content

Consumers

Client

Client

Client

Network

media
segment

Figure 1.3: A simplified example of adaptive streaming offered to end-users.

In the particular case of live video streaming (that is, non-previously recorded media) there
is still a need to evaluate different adaptive solutions under a variety of conditions in wireless
networks. Reusing existing protocols to create Content Delivery Networks (CDN) [25] would

1.1. THE PROBLEM AND MOTIVATION 3

provide enormous advantages to those wishing to offer live streaming services, as they could take
advantage of the optimizations that have been made to efficiently support these protocols and
the large investment in the existing infrastructures.

Multiple operating systems (OSs) have been developed for smartphones. Android (explained in
detail in section 2.10) is an open-sourced code based mobile OS developed by Google (Android’s
official logos are depicted in figure 1.4). Recent statistics [33] have shown that Android is the
predominant mobile operating system (36% worldwide) followed by Symbian (27.4%), Apple’s
iOS (16.8%), RIM (12.9%), and Windows Mobile (3.6%) (figure 1.5a). Furthermore, Android is
expected to be deployed in almost the 50% of smartphones sold in 2012, followed by Apple’s iOS
(figure 1.5b).

Android
official logo

Android 2.3 logo
(Gingerbread)

Android 3.0 logo
(Honeycomb)

Figure 1.4: Android official logos.

Android
(36%)

Symbian
(27,4%)

RIM
(12,9%)

iOS
(16,8%)

Windows
Mobile
(3,6%)

Other
(3,3%)

(a) May 2011

Symbian
(5%)

RIM
(13%)

iOS
(19%)

Windows
Mobile
(11%)

Other
(3%)

Android
(49%)

(b) 2012 estimation

Figure 1.5: Worldwide smartphone sales to end users by Operating System in the first quarter of 2011.
Extracted from [33] (May 2011).

At the moment there are few adaptive streaming services for Google’s Android, despite
Apple Inc. having published and implemented a protocol known as HTTP Live Streaming
(HLS) [59] already supported in Apple’s mobile phones (the well-known family of iPhone devices).
Furthermore, Apple-HLS is in the process of becoming an Internet Engineering Task Force (IETF)
standard. Other parties, such as the ISO/IEC Moving Picture Experts Group (MPEG), have
proposed a standard (that is still in development) for adaptive streaming over HTTP, known as
Dynamic Adaptive Streaming over HTTP (DASH) [69].

4 CHAPTER 1. INTRODUCTION

1.2 Goals

This master’s thesis project is motivated by the following goals:

1. Proposal and evaluation of different adaptive mechanisms on the client’s side which are
able to converge to the maximum sustainable bit-rate. These mechanisms specify the
client’s application logic, providing efficient use of the available bit-rate in the network.
Different procedures will be considered to optimize the use of available bandwidth and
studying potential disadvantages.

2. Evaluation of system aspects in heterogeneous network scenarios where network bit-rate,
packet delay, packet lost, video quality levels, segment durations, and other aspects differ.
This leads to an analysis of potential benefits of the adaptive mechanisms, since they will
diverge in terms of performance under different conditions.

In order to achieve these goals, the following tasks are defined in this project:

• Design of a service which supports the fundamental aspects of Apple-HLS and
MPEG-DASH. The system produces different quality video levels and segments the media
content into small segments which are offered to clients.

• Implementation of a prototype client as an application for Google’s Android operating
system. Achieving this goal requires that we identify what development resources are
available for Android and select which of these resources we will use. This leads to an
extensive study of the capabilities of the Android’s native media framework, Stagefright,
focusing on live video content. In particular, to analyze which media formats and
streaming protocols are natively supported by Stagefright.

• Definition of multiple metrics to analyze during the evaluation. The evaluation will include
efficiency, performance, delays, and bandwidth utilization. These metrics have to be
defined conveniently in order to efficiently compare the adaptive mechanisms.

1.3 Scope

This project intends to evaluate the performance of different adaptive mechanisms under single
end-user scenarios. Therefore, the scalability of the system (i.e., multiple users requesting media
content) is not covered by this master’s thesis project.

The network communication in this project is based on HTTP and uses TCP as the transport
protocol, since it provides reliable byte stream delivery and congestion avoidance mechanisms.
The advantages or disadvantages of using other transport protocols are not considered in this
work.

1.4 Audience

Software engineers and Android developers interested in adaptive media content delivery could
benefit from this master’s thesis project. In this work, the most recent adaptive streaming
standards (using HTTP as a delivery protocol) have been considered.

1.5 Organization of the thesis

Chapter 2 presents the relevant background, introducing different streaming techniques and the
adaptive protocols which have been recently published, such as Apple’s HTTP Live Streaming,
Microsoft’s Live Smooth Streaming, Adobe’s HTTP Dynamic Streaming, and MPEG Dynamic

1.5. ORGANIZATION OF THE THESIS 5

Adaptive Streaming over HTTP. In addition, the capabilities of the Android operating system
are introduced, focusing on media formats, coders/decoders (CODECs), and adaptive protocols
which are supported in Stagefright.

Chapter 3 summarizes the previous work which has been done in the area of the adaptive
streaming, including simulations under heterogeneous network restrictions, performance of the
different adaptive protocols, and proposals of adaptation mechanisms.

Chapter 4 explains on detail the proposed system architecture which has been designed and
implemented during this master’s thesis project.

Chapter 5 covers the overall evaluation performed for the system architecture explained in
chapter 4. This chapter includes the definition of the metrics utilized, the input and output
parameters, and the results achieved.

Chapter 6 presents a discussion of the results achieved in chapter 5 and the conclusions.
Finally, the limitations of this master’s thesis project are considered and presented as future work.

Chapter 2

Background

”Any sufficiently advanced technology is
indistinguishable from magic.”

– Arthur C. Clarke

There are three main methods to deliver multimedia: traditional streaming (section 2.1),
progressive download (section 2.2), and adaptive streaming (section 2.3). Section 2.4 describes
the evolution of adaptive streaming, using HTTP as a delivery protocol. The most popular
implementations of this technique are explained in detail in the following subsections: Apple’s
HTTP Live Streaming in section 2.4.2, Microsoft’s Live Smooth Streaming in section 2.4.3, Adobe’s
HTTP Dynamic Streaming in section 2.4.4, and MPEG Dynamic Adaptive Streaming over HTTP in
section 2.4.5. Two different types of services can be provided: video on-demand or live streaming
(section 2.9).

The most relevant video and audio CODECs are described in sections 2.5 and 2.6 respectively,
whereas container formats are described in section 2.7. Android operating system capabilities
are explained in section 2.10, mainly focusing on the media framework and supported CODECs.

Finally, a brief comparison of the different streaming approaches is presented at the end of the
chapter (section 2.11).

2.1 Traditional streaming

Traditional streaming [48, p. 113-117] requires a stateful protocol which establishes a session
between the service provider and client. In this technique, media is sent as a series of packets.
The Real-Time Transport Protocol (RTP) together with the Real-Time Streaming Protocol (RTSP)
are frequently used to implement such service.

2.1.1 Real-Time Transport Protocol (RTP)

The Real-Time Transport Protocol (RTP) [65] describes a packetization scheme for delivering
video and audio streams over IP networks. It was developed by the audio-video transport working
group of the IETF in 1996.

RTP is an end-to-end, real-time protocol for unicast or multicast network services. Because
RTP operates over UDP it is suitable for multicast distribution, while all protocols that are built
on top of TCP can only be unicast. For this reason RTP is widely used for distributing media
in the case of Internet Protocol Television (IPTV), as the Internet service provider can control
the amount of multicast traffic that they allow in their network and they gain quite a lot from
the scaling which multicast offers. For a streaming multimedia service RTP is usually used in
conjunction with RTSP, with the audio and video transmitted as separate RTP streams.

The RTP specification describes two sub-protocols which are the data transfer protocol (RTP)
and the RTP Control Protocol (RTCP) [65, section 6]:

1. RTP is used for transferring multimedia data utilizing different CODECs along with time-
stamps and sequence numbers. These time-stamps and sequence numbers allow the

7

8 CHAPTER 2. BACKGROUND

receiver to detect packet loss and perform reordering when necessary and synchronize
media streams, among other operations.

2. RTCP specifies the control information for synchronization and quality of service
parameters that may be sent. This protocol should use a maximum 5% of the overall
bandwidth.

Optionally RTP can be used with a session description protocol or a signalling protocol such as
H.323, the Media Gateway Control Protocol (MEGACO), the Skinny Call Control Protocol (SCCP),
or the Session Initiation Protocol (SIP).

RTP neither provides a mechanism to ensure timely delivery nor guarantees quality of service
or in-order delivery. Additionally, there is no flow control provided by the protocol itself, rather
flow control and congestion avoidance are up to the application to implement.

2.1.2 Real-Time Streaming Protocol (RTSP)

The Real-Time Streaming Protocol (RTSP) [66] is a session control protocol which provides an
extensible framework to control delivery of real-time data. It was developed by the multiparty
multimedia session control working group (MMUSIC) of the IETF in 1998. RTSP is useful for
establishing and controlling media sessions between end points, but it is not responsible for the
transmission of media data. Instead, RTSP relies on RTP-based delivery mechanisms. In contrast
with HTTP1, RTSP is stateful and both client and server can issue requests. These requests can be
performed in three different ways: (1) persistent connections used for several request/response
transactions, (2) one connection per request/response transaction or (3) no connection.

Some popular RTSP implementations are Apple’s QuickTime Streaming Server (QSS) (also
its open-sourced version, Apple’s Darwin Streaming Server (DSS)) and RealNetworks’ Helix
Universal Server.

2.2 Progressive download

Progressive download is a technique to transfer data between server and client which has become
very popular and it is widely used on the Internet. Progressive download typically can be
realized using a regular HTTP server. Users request multimedia content which is downloaded
progressively into a local buffer. As soon as there is sufficient data the media starts to play. If the
playback rate exceeds the download rate, then playback is delayed until more data is downloaded.

Progressive download has some disadvantages: (1) wasteful of bandwidth if the user decides
to stop watching the video content, since data has been transferred and buffered that will not
be played, (2) no bit-rate adaptation, since every client is considered equal in terms of available
bandwidth and, (3) no support for live media sources.

2.3 Adaptive streaming

Adaptive streaming [48, p. 141-155] is a technique which detects the user’s available bandwidth
and CPU capacity in order to adjust the quality of the video that is provided to the user, so as
to offer the best quality that can be given to this user in their current circumstance. It requires
an encoder to provide video at multiple bit rates (or that multiple encoders be used) and can be
deployed within a CDN to provide improved scalability. As a result, users experience streaming
media delivery with the highest possible quality.

1Actually, cookies can be used to make HTTP stateful [12]. In addition, HTTP 1.1 can use persistent connections as a
performance improvement [31, section 8.1].

2.3. ADAPTIVE STREAMING 9

Techniques to adapt the video source’s bit-rate to variable bandwidth can be classified into
three categories: transcoding (section 2.3.1), scalable encoding (section 2.3.2), and stream
switching (section 2.3.3).

2.3.1 Transcoding

By means of transcoding it is possible to convert raw video content on-the-fly on the server’s side.
To match a specific bit-rate we transcode from one encoding to another. A block diagram of this
technique is depicted in figure 2.1. The main advantage of this approach is the fine granularity
that can be obtained, since streams can be transcoded to the user’s available bandwidth.

Raw
content

Transcoder

Controller

adaptive
streaming

encoding
parameters

Figure 2.1: Transcoding approach for adaptive streaming. Adapted from [23].

However, there are some serious disadvantages that are worth pointing out. First of all, the
high cost of transcoding, which requires adapting the raw video content several times for several
requests for different quality. As a result scalability decreases since transcoding needs to be
performed for every different client available bandwidth. Due to the computational requirements
of a real-time transcoding system, the encoding process is required to be performed in
appropriate servers, in order to be deployed in CDNs.

2.3.2 Scalable encoding

Using a scalable CODEC standard such as H.264/MPEG-4 AVC (described in detail in
section 2.5.4), the picture resolution and the frame rate can be adapted without having to
re-encode the raw video content [42]. This approach tends to reduce processing load, but it is
clearly limited to a set of scalable CODEC formats. A block diagram of this technique is depicted
in figure 2.2.

Raw
content

Scalable
encoder

Controller

Scalable
video

encoding
parameters

adaptive
streaming

Figure 2.2: Scalable encoding approach for adaptive streaming. Adapted from [23].

Nevertheless, deployment into CDNs is complicated in this approach because specialized
servers are required to implement the adaptation logic [23].

10 CHAPTER 2. BACKGROUND

2.3.3 Stream switching

The stream switching approach encodes the raw video content at several different increasing
bit-rates, generating R versions of the same content, known as video levels. As shown in
Figure 2.3, an algorithm must dynamically choose the video level which matches the user’s
available bandwidth. When changes in the available bandwidth occur, the algorithm simply
switches to different levels to ensure continuous playback.

Raw
content

Encoder

Controller

D
e
m
u
x
e
r

video levels

l1

l2

lR

level i

.

.

.

.

.

.
adaptive
streaming

Figure 2.3: Stream switching approach for adaptive streaming. Adapted from [23].

The main purpose of this method is to minimize processing costs, since no further processing
is needed once all video levels are generated. In addition, this approach does not require a
specific CODEC format to be implemented, that is, it is completely CODEC agnostic. In contrast,
storage and transmission requirements must be considered because the same video content is
encoded R times (but at different bit-rates). Note that the quality levels are not incremental,
therefore only one substream has to be requested. The only disadvantage of this approach is the
coarse granularity since there is only a discrete set of levels. Additionally, if there are no clients
for a given rate there is no need to generate this level; however, this only costs storage space at
the server(s) and not all servers need to store all levels of a stream.

Figure 2.4 illustrates the stream switching approach over time, assuming that all segments
have the same duration and the switching operations are performed after each segment has
been played (not partially). Segments at different video qualities are requested to be played in
a sequence. The number of levels and the duration of the segments are flexible and become part
of the system’s design choices.

time

quality
levels

R

segment
duration

segment 1 segment N

Figure 2.4: Stream switching example over time.

2.4. HTTP-BASED ADAPTIVE STREAMING 11

2.4 HTTP-based adaptive streaming

Recently a new solution for adaptive streaming has been designed, based on the stream switching
technique (explained in section 2.3.3). It is an hybrid method which uses HTTP as a delivery
protocol instead of defining a new protocol.

Video and audio sources are cut into short segments of the same length (typically several
seconds). Optionally, segments can be cut along a video Group of Pictures (explained in
section 2.5.1), thus every segment starts with a key frame, meaning that segments do not have
past/future dependencies among them. Finally, all segments are encoded in the desired format
and hosted on a HTTP server.

Clients request segments sequentially and download them using HTTP progressive download.
Segments are played in order and since they are contiguous, the resulting overall playback is
smooth. All adaptation logic is controlled by the client. This means that the client calculates the
fetching time of each segment in order to switch-up or switch-down the bit-rate. A basic example
is depicted in figure 2.5, where the feedback controller represents the switching logic applied on
the client side. Thicker arrows correspond to transmission of an actual data segment.

Client Server

GET: Manifest fileUser clicks on
video content

Manifest
Manifest file

gets parsed
sends Manifest

sends video
level l(s0)

sends video
level l(si)

GET: si, l(si)

feedback
controller

GET: s0, l(s0)request segment s0
at bitrate l(s0)

request segment si
at bitrate l(si)

level

Figure 2.5: Client contract adaptation. Network delays are omitted for simplicity.

2.4.1 Why HTTP?

HTTP is widely used in the Internet as a delivery protocol. Because HTTP is so widely used HTTP-
based services avoid NAT and firewall issues. Because (1) the client initiated the TCP connection
from behind the firewall or Network Address Translation (NAT) or (2) because holes for HTTP
have been purposely opened through the firewall or NAT service. The NAT or firewall will allow
the packets from the HTTP server to be delivered to the client over a TCP connection or SCTP
association (for the rest of this thesis we will assume that TCP is used as the transport protocol
for HTTP). Additionally because HTTP uses TCP it automatically gets in order reliable byte stream
delivery and TCP provides extensive congestion avoidance mechanisms. HTTP-based services
can use the existing HTTP servers and CDN infrastructures.

Finally, the streaming session is controlled entirely by the client, thus there is no need for
negotiation with the HTTP server, as clients simply open TCP connections and choose an initial

12 CHAPTER 2. BACKGROUND

content bit-rate. Then clients switch among the offered streams depending on their available
bandwidth.

2.4.2 Apple’s HTTP Live Streaming (HLS)

In May 2009 Apple released a HTTP-based streaming media communication protocol (Apple-
HLS) [10, 11, 29, 52, 59] to transmit bounded and unbounded streams of multimedia data. Apple-
HLS is based on the Emblaze Network Media Streaming technology which was released in 1998.
According to this specification, an overall stream is broken into a sequence of small HTTP-based
file downloads, where users can select alternate streams encoded at different data rates. Because
the HTTP clients request the files for downloading this method works through firewalls and proxy
servers (unlike UDP-based protocols such as RTP which require ports to be opened in the firewall
or require use of an application layer gateway).

Initially, users download an extended M3U playlist which contains several Uniform Resource
Identifiers (URIs) [14] corresponding to media files, where each file must be a continuation of
the encoded stream (unless it is the first one or there is a discontinuity tag which means that
the overall stream is unbounded). Each individual media file must be formatted as an MPEG-2
transport stream [43] or a MPEG-2 audio elementary stream.

Listing 2.1 illustrates a simple example of an extended M3U playlist where the entire stream
consists of three 10-seconds-long media files. Listing 2.2 provides a more complicated example,
where there are different available bandwidths and each entry points to an extended M3U sub-
playlist file (depicted in figure 2.6 on page 13).

Listing 2.1: Example of an extended M3U playlist which contains three 10-seconds-long media
segments.

1 #EXTM3U
2 #EXT-X-MEDIA-SEQUENCE:0
3 #EXT-X-TARGETDURATION:10
4 #EXTINF:10,
5 http://www.example.com/segment1.ts
6 #EXTINF:10,
7 http://www.example.com/segment2.ts
8 #EXTINF:10,
9 http://www.example.com/segment3.ts

10 #EXT-X-ENDLIST

Listing 2.2: Example of an extended M3U playlist which contains several sub-playlists, consequently
providing alternate stream at different qualities.

1 #EXTM3U
2 #EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=1280000
3 http://www.example.com/low.m3u8
4 #EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=2560000
5 http://www.example.com/mid.m3u8
6 #EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=7680000
7 http://www.example.com/hi.m3u8
8 #EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH=65000,CODECS="mp4a.40.5"
9 http://www.example.com/audio-only.m3u8

The overall process performed in an Apple-HLS architecture is shown in figure 2.7 on page 13.
From the server’s side, the protocol operates as follows: (1) the media content is encoded at
different bit-rates to produce streams which present the same content and duration (but with
different quality), (2) each stream is divided into individual files (segments) with approximately
equal duration, (3) a playlist file is created which contains an URI for each media file indicating
its duration (the playlist can be accesed through an URL), and (4) further changes to the playlist
file must be performed atomically.

From the client’s side, the following actions take place: (1) selection of the media file which
shall be played must be made and (2) periodically reload the playlist file (unless it is bounded). It

2.4. HTTP-BASED ADAPTIVE STREAMING 13

is necessary to wait a period of time before attempting to reload the playlist. The initial amount
of time to wait before re-loading the playlist is set as the duration of the last media file in the
playlist. If the client reloads the playlist file and the playlist has not changed, then the client
waits a period of time proportional to the duration of the segments before retrying: 0.5 times the
duration for the first attempt, 1.5 times the duration for the second and 3.0 times the duration in
further attempts.

index
file

.m3u8

index
file

.m3u8

index
file

.m3u8

index
file

.m3u8

Alternate A

Alternate B

Alternate C

media
segment
.ts

media
segment
.ts

media
segment
.ts

Figure 2.6: Alternate index files to offer different streams. Adapted from [11].

Stream
segmenter

Internet

Media
encoder

Audio/Video
inputs

Client

Server HTTP server

index file
.m3u8

media
segment
.ts

HTTP

Figure 2.7: HTTP Live streaming architecture. Adapted from [11].

2.4.3 Microsoft’s Live Smooth Streaming (LSS)

In 2009, Microsoft Corporation released its approach [53, 55, 74] for adaptive streaming over
HTTP. Microsoft’s Live Smooth Streaming (LSS2) format specification is based on the ISO Base
Media File Format and standardized as the Protected Interoperable File Format (PIFF) [19],
whereas the manifest file is based on the Extensible Markup Language (XML) [18] (a simplified
example is shown in listing 2.3).

Microsoft provides a Smooth Streaming demo3 which requires the Silverlight plug-in [54] to
be installed. In this online application, the available bandwidth can be easily adjusted within a
very simple user interface. A network usage graph is dynamically displayed as well as the adapted
video output.

2Although Microsoft has not adopted an official acronym for Live Smooth Streaming, it will be referred as LSS in this
master’s thesis.

3Experience Smooth Streaming. http://www.iis.net/media/experiencesmoothstreaming.

http://www.iis.net/media/experiencesmoothstreaming

14 CHAPTER 2. BACKGROUND

Listing 2.3: Microsoft-LSS manifest sample.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <SmoothStreamingMedia MajorVersion="2" MinorVersion="0" Duration="2300000000"
3 TimeScale="10000000">
4 <Protection>
5 <ProtectionHeader SystemID="{9A04F079-9840-4286-AB92E65BE0885F95}">
6 <!-- Base 64 Encoded data omitted for clarity -->
7 </ProtectionHeader>
8 </Protection>
9 <StreamIndex Type = "video" Chunks = "115" QualityLevels = "2" MaxWidth = "720"

10 MaxHeight = "480" TimeScale="10000000" Name="video"
11 Url ="QualityLevels({bitrate},{CustomAttributes})/Fragments(video={start_time})">
12 <QualityLevel Index="0" Bitrate="1536000" FourCC="WVC1"
13 MaxWidth="720" MaxHeight="480" CodecPrivateData = "...">
14 <CustomAttributes>
15 <Attribute Name="Compatibility" Value="Desktop" />
16 </CustomAttributes>
17 </QualityLevel>
18 <QualityLevel Index="5" Bitrate="307200" FourCC="WVC1"
19 MaxWidth="720" MaxHeight="480" CodecPrivateData="...">
20 <CustomAttributes>
21 <Attribute Name="Compatibility" Value="Handheld" />
22 </CustomAttributes>
23 </QualityLevel>
24 <c t ="0" d="19680000" />
25 <c n ="1" t="19680000" d="8980000" />
26 </StreamIndex>
27 </SmoothStreamingMedia>

2.4.4 Adobe’s HTTP Dynamic Streaming

Adobe’s HTTP dynamic streaming (HDS) approach enables on-demand and live streaming and
it supports HTTP and Real Time Messaging Protocol (RTMP) [4]. It uses different format
specifications for media files (Flash Video or F4V, based on the standard MPEG-4 Part 12) and
manifests (Flash Media Manifest or F4M). In order to deploy Adobe’s solution it is necessary
to set up a Flash Media Streaming Server [37] which is a proprietary and commercial product.
Additionally, users need to install Adobe’s Flash Player.

2.4.5 MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH)

MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH) is a protocol presented by a joint
working group [69] of Third Generation Partnership Project (3GPP) and MPEG. This protocol has
recently been considered to become an ISO standard [1, 2]. MPEG-DASH defines a structure
similar to Microsoft-LSS for adaptive streaming supporting on-demand, live, and time-shifting4

viewing, but it proposes changes in the file formats, defining a XML-based manifest file.

MPEG-DASH introduced the concept of media presentation. A media presentation is a
collection of structured video/audio content:

• A media presentation consists of a sequence of one or more periods which are consecutive
and do not overlap.

• Each period consists of one or more representations of the same media content. Periods
have an assigned start time which is relative to start of the media presentation.

4Time-shifting involves recording content to a storage medium to be watched at a later time that is more suitable for
the user.

2.4. HTTP-BASED ADAPTIVE STREAMING 15

• Each representation5 specifies a video quality profile consisting of several parameters such
as bandwidth, encoding, and resolution. Representations contain one or more segments,
represented by Universal Resource Locators (URLs).

• Segments contain fragments of the actual video content.

A Media Presentation Description (MPD) schema is an XML-based file which contains the
whole structure of a media presentation introduced above. A simplified version is depicted in
figure 2.8, and listing 2.4 provides a concrete example.

MPD

Program info

Period(P)

Period(1)

Representation

SegmentInfo

.

.

.

Period

Representation(1)

Representation(R)

.

.

.

SegmentInfo

URL(1)

URL(N)

.

.

.

Figure 2.8: MPD simplified structure. Adapted from [69, figure 4].

Listing 2.4: MPD example. Optional elements and attributes are omitted for simplicity.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <MPD minBufferTime="PT10S">
3 <Period start="PT0S">
4 <Representation mimeType="video/3gpp; codecs=263, samr" bandwidth="256000" id="256">
5 <SegmentInfo duration="PT10S" baseURL="rep1/">
6 <InitialisationSegmentURL sourceURL="seg-init.3gp"/>
7 <Url sourceURL="seg-1.3gp"/>
8 <Url sourceURL="seg-2.3gp"/>
9 <Url sourceURL="seg-3.3gp"/>

10 </SegmentInfo>
11 </Representation>
12 <Representation mimeType="video/3gpp; codecs=mp4v.20.9" bandwidth="128000" id="128">
13 <SegmentInfo duration="PT10S" baseURL="rep2/">
14 <InitialisationSegmentURL sourceURL="seg-init.3gp"/>
15 <Url sourceURL="seg-1.3gp"/>
16 <Url sourceURL="seg-2.3gp"/>
17 <Url sourceURL="seg-3.3gp"/>
18 </SegmentInfo>
19 </Representation>
20 </Period>
21 </MPD>

The MPEG-DASH protocol specifies the syntax and semantics of the MPD, the format of
segments, and the delivery protocol (HTTP). Fortunately, it permits flexible configurations to
implement different types of streaming services. The following parameters can be selected
flexibly: (1) the size and duration of the segments (these can be selected individually for each
representation), (2) the number of representations and (3) the profile of each representation (bit-
rate, CODECs, container format, etc).

Regarding the client’s behaviour, it can flexibly: (1) decide when and how to download
segments, (2) select appropriate representation, (3) switch representations and, (4) select the

5Note that representation is a synonym of quality level or bit-rate level in the context of this master’s thesis project.
The three terms will be used indistinctly.

16 CHAPTER 2. BACKGROUND

transport of the MPD file, which could also be retrieved by other means, rather than only through
HTTP.

Figure 2.9 on page 16 exemplifies the communication between server and client in a
MPEG-DASH streaming service. First the client retrieves the MPD file and afterwards it
sequentially requests the media segments. In every period a representation level is selected,
based on the fetching times and other parameters determined by the client.

Client Server

GET /rep-1/s-1 HTTP/1.1

GET /mpd HTTP/1.1

HTTP/1.1 200 OK

HTTP/1.1 200 OK

GET /rep-.../s-2 HTTP/1.1

HTTP/1.1 200 OK

GET /rep-.../s-n HTTP/1.1

HTTP/1.1 200 OK

selects video content

MPD gets parsed sends MPD

requests segment s-1
of representation-1

sends segment s-1
of representation-1

adapts to adequate
representation

requests segment s-2
of representation-i

adapts to adequate
representation

requests segment s-n
of representation-k

sends segment s-2
of representation-i

sends segment s-n
of representation-k

adapts to adequate
representation

period-1

period-2

...

...

Figure 2.9: Client contract adaptation example in MPEG-DASH. Network delays are omitted for
simplicity.

2.5 Video CODECs

This section describes a number of aspects of video coders and decoders that are relevant to a
reader of this thesis.

2.5.1 Video frames

Compressed video standards only encode full frame data for certain frames, known as key frames,
intra-frames or simply I-frames. The frames which follow a key frame, predicted frames or
P-frames, are encoded considering only the differences with the preceding frame, resulting in
less data being needed to encode these subsequent frames. Videos whose frame information
changes rapidly require more key frames than a slowly changing visual scene. An example of the
relationship between several frames is shown in figure 2.10.

Bidirectional encoding is also possible by means of Bi-predictive frames (B-frames). B-frames
consider both previous and subsequent frame differences to achieve better compression.

A Group of Pictures (GOP) consists of one I-frame followed by several P-frames and optionally,
B-frames. Lowering the GOP size (key frame interval) can provide benefit: using more frequent
key frames helps to reduce distortion when streaming in a lossy environment. However, a low
GOP size increases the media file size since key frames contain more bits than predictive frames.

2.5. VIDEO CODECS 17

I-frame P-frame P-frame B-frame I-frame

time

P-frame...

Group of pictures (GOP)

...

Figure 2.10: Distribution of frames in a video stream. Every group of pictures is constituted by one
I-frame and several P-frames, and optionally B-frames.

2.5.2 Decoding and presentation time-stamps

Decoding Time-stamp (DTS) is used to synchronize streams and control the rate at which frames
are decoded. It is not essential to include a DTS in all frames, since it can be interpolated
by the decoder. In contrast, the Presentation Time-stamp (PTS) indicates the exact moment
when a video frame has to be presented at the decoder’s output. PTS and DTS only differ when
bidirectional coding is used (i.e., when B-frames are used).

2.5.3 H.263

H.263 [44] is a low-bit-rate video compression standard designed for videoconferencing,
although is widely used in many other applications. It was developed by the ITU-T Video Coding
Experts Group (VCEG) in 1996. H.263 has been supported in Flash video applications and widely
used by Internet on-demand services such as YouTube or Vimeo.

H.263 bit-rates range from 24 kb/s to 64 kb/s. Video can be encoded and decoded to this format
with the free LGPL-licensed libavcodec library (part of the FFmpeg project [13]).

2.5.4 H.264/MPEG-4 AVC

H.264/MPEG-4 Part 10 [42] or Advanced Video Coding (AVC) is the successor of H.263 and other
standards such as MPEG-2 and MPEG-4 Part 2. H.264 is one of the most commonly used formats
for recording, compression, and distribution of high definition video. H.264 is one of the CODECs
supported for Blu-ray discs. H.264 was developed by the ITU-T Video Coding Experts Group
together with ISO/IEC MPEG in 2003. It is supported in Adobe’s Flash Player and Microsoft’s
Silverlight. Therefore, multiple streaming Internet sources such as Vimeo, YouTube, and the
Apple iTunes Store follow the H.264 standard.

H.264 specifies seventeen profiles which are oriented to multiple types of applications. The
Constrained Baseline Profile (CBP) is the most basic one, followed by the Baseline Profile (BP) and
the Main Profile (MP) in increasing order of complexity. CBP and BP are broadly used in mobile
applications and videoconferencing. Additionally, these are the only H.264 profiles supported
by Android’s native media framework. Table 2.1 summarizes the major differences among these
three profiles.

One of the most recent features added to the H.264 standard is Scalable Video Coding
(SVC) [42, Annex G]. SVC enables the construction of bitstreams which contain sub-bitstreams,
all conforming the standard. In addition, Multiview Video Coding (MVC) [42, Annex H] offers an
even more complex composition of bitstreams, allowing more than one view point for a video
scene6.

6Mainly used for stereoscopic 3D video encoding.

18 CHAPTER 2. BACKGROUND

Table 2.1: Major differences among H.264 Constrained Baseline Profile (CBP), Baseline Profile (BP)
and Main Profile (MP).

Feature CBP BP MP

Android support Yes Yes No

Flexible macro-block ordering (FMO) No Yes No

Arbitrary slice ordering (ASO) No Yes No

Redundant slices (RS) No Yes No

B-frames No No Yes

CABAC entropy coding No No Yes

2.5.5 VP8

VP8 is a video compression format originally created by On2, but eventually released by Google in
2010 after they purchased On2. VP8 was published with a BSD-license, therefore it is considered
to be an open alternative to H.264.

VP8 encoding and decoding can be performed by the libvpx library [70]. Moreover, the
FFmpeg team released a ffvp8 decoder on July, 2010.

2.6 Audio CODECs

This section describes a number of aspects of audio coders and decoders that are relevant to a
reader of this thesis.

2.6.1 MP3

MP3 [17, 36, 39] (published as MPEG-1 and MPEG-2 Audio Layer III) has undoubtedly become
in the last decade the de facto audio CODEC due to its use in multiple media services and digital
audio players. MP3 is a patented digital audio encoding format which reduces the amount of
data required since it discards the less audible components to human hearing, i.e., it implements
a lossy compression algorithm.

2.6.2 Advanced Audio Coding (AAC)

Advanced Audio Coding (AAC) [17] is an ISO/IEC standardized audio compression format which
provides lossy compression encoding. It is supported in a extensive variety of devices. AAC is part
of the MPEG-2 [40] and MPEG-4 [41] specifications. AAC was designed to be the successor of the
MP3 format. A later extension defines the High-Efficiency Advanced Audio Coding (HE-AAC).

Three default profiles are defined [40]: Low Complexity (LC), Main Profile (MP), and Scalable
Sample Rate (SSR). In conjunction with the Perceptual Noise Substitution and 45 Audio Object
Types [41], new profiles are defined, such as the High Efficiency AAC Profile (HE-AAC and
HE-AAC v2) and the Scalable Audio Profile. The latter utilizes Long Term Prediction (LTP).

2.6.3 Vorbis

Vorbis [72] is a free and open audio CODEC meant to replace patented and restricted formats
such as MP3 (section 2.6.1). Vorbis provides a lossy compression encoding over a wide range of
bit-rates. It has been shown to perform similar to MP3 [22].

2.7. CONTAINER FORMATS 19

2.7 Container formats

A container is a meta-format which wraps any kind of media data, resulting in a single file.
Containers are used to interleave different data types, for instance video streams, subtitles,
and even meta-data information. A vast variety of container formats has been developed,
presenting different features and limitations. The most important multimedia containers are
briefly introduced below.

• MP4 (.mp4) is a popular container format defined in the MPEG-4 Part 14 standard. It
supports almost any kind of media data. Typically an MP4 container contains video and
audio streams encoded with H.264 and AAC, respectively.

• 3GP (.3gp) [2] is widely utilized on 3G mobile phones. 3GP is defined as an extension of
MPEG-4 Part 12. 3GP normally stores video streams encoded with either MPEG-4 Part 2,
H.263, or H.264 and audio streams with either AAC (LC profile) or HE-AAC.

• MPEG Transport Stream (.ts) is defined in the MPEG-2 Part 1 standard and generally used
in digital television broadcast systems.

• Ogg (.ogg) is an open container format developed by the Xiph.Org Foundation. Ogg
generally combines the Theora and Vorbis CODECs.

• WebM [70] (.webm) is a recently released open, royalty-free container format based on the
Matroska container. WebM has gained noteworthy popularity, since it has been adopted as
one of the most suitable formats for the Web content (although HTML 5, the predominant
markup language for web pages, is defined as being CODEC-agnostic [38, section 4.8.6])
due to its patent-free and open nature. Consequently, only open-source CODECs are
recommended: video streams are encoded with VP8 and audio streams with Vorbis (these
introduced in section 2.5.5 and section 2.6.3, respectively).

Table 2.2 provides a comparison between the container formats explained above, in terms of
supported audio and video CODECs.

Table 2.2: Video and audio CODECs supported in several container formats (2011, August).
Information collected from [2, 43, 70, 72].

Format H.263 H.264 MPEG-4 VP8 MP3 AAC HE-AAC Vorbis

3GP Yes Yes Yes No No Yes Yes No

MP4 Yes Yes Yes No Yes Yes Yes Yes

MPEG-TS No Yes Yes No Yes Yes Yes No

Ogg No No No No No No No Yes

WebM No No No Yes No No No Yes

2.8 Quality video levels

Video and audio content can be offered at multiple representations (quality levels) to adequate
to different types of end-users. It is a well-known fact that end-users are affected by a wide
variety of restrictions in terms of network capabilities, screen resolutions, and media formats
supported, among other limitations. The more representations provided on the server’s side, the
better granularity characterizes the system, since a wider variety of alternative versions of media
content is served. Nevertheless, the creation of multiple quality levels incurs a higher cost in
terms of processing time, storage requirements, and CPU consumption. The following encoding
parameters are especially relevant when defining a representation level:

20 CHAPTER 2. BACKGROUND

Video bit-rate (kb/s) rate of information in the video stream.

Frame rate (fps) frequency of frame presentation, measured as frames per second.

Audio bit-rate (kb/s) rate of information in the audio stream.

Audio channels stereo (2) or mono (1).

Sampling rate (Hz) number of samples per second taken from a signal.

GOP size number of frames which follow a key-frame.

Resolution (pixels) size of a video image (frame).

Except for the GOP size, increasing any of these parameters leads to a higher quality audio or
video output, consequently incurring a larger file size (requiring more bits to be transmitted).

2.9 Video on-demand and live streaming

There are two different ways to use streaming techniques. In the first one, video on-demand,
users request media files which have been previously recorded and compressed and are stored
on a server. Today this technique has become very popular, with YouTube being the most
popular website offering on-demand streaming. The alternative is live streaming which enables
an unbounded transmission where media is generated, compressed, and delivered on the fly.
In the case of live streaming there may or not may be a concurrent recording (which could be
transmitted later on-demand).

Both streaming techniques may offer the user basic video control functions such as pause,
stop, and rewind. Additionally, for on-demand streaming there may be the possibility of issuing
a fast-forward command. Note that fast forward is only possible when the media files are stored,
thus the future content is known. Of course it is also possible for the system to implement the
possibility of a fast-forward command if the user has paused the playback, but this will be limited
to moving forward to the recently generated portion of the content.

2.10 Google’s Android operating system

Android is an operating system specially designed for mobile devices. It is mainly developed and
supported by Google Inc., although other members of the Open Handset Alliance (OHA) have
collaborated in its development and release. Table 2.3 reviews Android’s version history.

Android is based on a modified version of the Linux kernel and its applications are normally
developed in the Java programming language7. However, Android has not adopted the official
Java Virtual Machine (JVM), meaning that Java Byte code can not be directly executed. Instead,
applications run on the Dalvik Virtual Machine (DVM), a JVM-based virtual machine specifically
designed for Android. DVM is optimized for mobile devices, which generally have CPU
performance and memory limitations. In addition, DVM makes more efficient use of battery
power.

Applications are usually released via the Android Market, Google’s official online store.
Nevertheless, publication of the applications is not restricted, allowing installation from any
other source. Figure 2.11 shows the current distribution of Android versions based on the
operating system of the devices that have recently accessed the Android Market. As shown,
Android’s newer versions (the 3.x branch) are only slowly being adopted, for example Honeycomb
still represents less than 1% of the overall of Android devices, while Froyo the predominate version
(running on almost 60% of the devices that access the Android Market).

7The Android Development Kit (SDK) is freely available from the developers site: http://developer.android.
com/sdk.

http://developer.android.com/sdk
http://developer.android.com/sdk

2.10. GOOGLE’S ANDROID OPERATING SYSTEM 21

Table 2.3: Google’s Android version history.

Version Codename Release date Linux kernel version

1.0 None 23 September 2008 Unknown

1.1 None 9 February 2009 Unknown

1.5 Cupcake 30 April 2009 2.6.27

1.6 Donut 15 September 2009 2.6.29

2.0/2.1 Eclair 26 October 2009 2.6.29

2.2 Froyo 20 May 2010 2.6.32

2.3 Gingerbread 6 December 2010 2.6.35

2.4 Ice Cream Sandwich Not released Unknown

3.0 Honeycomb 22 February 2011 2.6.36

3.2 Honeycomb 15 July 2011 2.6.36

Android 2.3.x
Gingerbread

Android 3.x
Honeycomb

Android 2.1
Eclàir

Android 2.2
Froyo

Android 1.x
59,4%

18,6%

17,5%

3,6%

(0,9%)

Figure 2.11: Distribution of Android platform versions (as of July 2011). Extracted from [7].

2.10.1 Media formats supported on Android

Android supports several multimedia formats and CODECs [28, p 195-250], including H.263
and H.264. Table 2.4 and Table 2.5 summarize respectively the video and audio CODECs and
container formats that are supported. For media playback, only the decoding capabilities are
relevant (encoding is typically used for recording purposes).

Table 2.4: Android supported video CODECs and container formats. Extracted from [6].

CODEC Encoding Decoding Container format

H.263 Yes Yes 3GPP (.3gp) and MPEG-4 (.mp4)

H.264 No
(supported from 3.0

onwards)

Yes 3GPP (.3gp) and MPEG-4 (.mp4)
Only Baseline Profile (BP)

MPEG-4 No Yes 3GPP (.3gp)

VP8 No No
(supported from 2.3.3

onwards)

WebM (.webm)

22 CHAPTER 2. BACKGROUND

Table 2.5: Android supported audio CODECs and container formats. Extracted from [6].

CODEC Encoding Decoding Container format

AAC LC/LTP Yes Yes 3GPP (.3gp) and MPEG-4 (.mp4, .m4a)

HE-AAC v1 No Yes 3GPP (.3gp) and MPEG-4 (.mp4, .m4a)

HE-AAC v2 No Yes 3GPP (.3gp) and MPEG-4 (.mp4, .m4a)

MP3 No Yes MP3 (.mp3)
Mono and stereo 8-320 kb/s constant (CBR) or variable bit-rate
(VBR)

Vorbis No Yes Ogg (.ogg)

PCM/WAVE No Yes WAVE (.wav)

2.10.2 Adaptive protocols over HTTP supported on Android

Android’s media framework natively supports streaming over RTP and RTSP. Unfortunately,
the majority of Android versions do not support any of the adaptive protocols over HTTP
mentioned earlier. Only Honeycomb features Apple-HLS natively. During the development
of this master’s thesis project there was no media player for Android supporting the recent
MPEG-DASH standard. This section explores the existing compatibilities with regard to Apple-
HLS, Microsoft-LSS, and Adobe-HDS.

2.10.2.1 Apple-HLS support

At the moment there are a few implementations of Apple-HLS for Android:

• NexPlayer™ was released in September 2010 by Nextreaming Corp. They claim to support
Apple’s adaptive streaming approach. Unfortunately, neither the application nor detailed
features are publicly available at their website.

• VPlayer is a commercial video player available from the Android Market8. Unfortunately,
VPlayer is not compatible with all Android devices.

• Daroon Player is a free video player developed by Daroonsoft and offered from the Android
market9. It supports a wide variety of media formats and streaming protocols, including
RTSP and Apple-HLS.

2.10.2.2 Microsoft-LSS support

Microsoft’s adaptive streaming approach for Android is not available yet officially, although
Microsoft has indicated that they soon plan to support it through a Silverlight10 browser plug-in
soon. However, the open-source implementation of Silverlight for Unix-based operating systems
(Moonlight), has been experimentally ported to Android11.

8A free trial of VPlayer 0.9.9 can be downloaded from https://market.android.com/details?id=me.abitno.
vplayer.t.

9Daroon Player 1.0.1 is available from https://market.android.com/details?id=com.daroonsoft.player.
10Silverlight is a Microsoft’s application framework for creating rich Internet applications, with features similar to

Adobe’s Flash.
11More information can be found at http://jeffreystedfast.blogspot.com/2011/04/moonlight-on-

android.html.

https://market.android.com/details?id=me.abitno.vplayer.t
https://market.android.com/details?id=me.abitno.vplayer.t
https://market.android.com/details?id=com.daroonsoft.player
http://jeffreystedfast.blogspot.com/2011/04/moonlight-on-android.html
http://jeffreystedfast.blogspot.com/2011/04/moonlight-on-android.html

2.11. COMPARISON AMONG THE DIFFERENT HTTP-BASED ADAPTIVE SOLUTIONS 23

2.10.2.3 Adobe-HDS support

The Adobe Flash 10.1 plug-in for browsers is available12 for Android 2.2, although it is only
compatible with a limited variety of Android devices13. The plug-in supports RTP and RTSP
streaming, HTML progressive download, Adobe’s Flash Streaming, and Adobe-HDS.

2.11 Comparison among the different HTTP-based adaptive solutions

Table 2.6 summarizes the main features of the most relevant HTTP-based adaptive streaming
solutions: Microsoft-LSS, Apple-HLS, and MPEG-DASH.

Table 2.6: Comparison among Microsoft-LSS, Apple-HLS, and MPEG-DASH. Extracted from [1, 55, 59]

Feature Microsoft-LSS Apple-HLS MPEG-DASH

Specification Proprietary Proprietary Standard

Video on demand Yes Yes Yes

Live Yes Yes Yes

Delivery protocol HTTP HTTP HTTP

Origin server MS IIS HTTP HTTP

Media container MP4 MPEG-TS 3GP or MP4

Supported video CODECs Agnostic H.264 Agnostic

Recommended segment duration (s) 2 10 flexible

End-to-end latency (s)
(variable, depending on the size of
segments)

> 1.5 30 > 2

File type on server Contiguous Fragmented Both

In order to implement a functional live streaming service for Android, all the limitations of the
operating system must be considered, as well as the possibility of deploying a compatible server.
We explicitly considered the following:

• Adobe’s and Microsoft’s solutions are proprietary and both require specialized servers.
Such approaches increase cost and decrease the openness of the resulting service.

• Apple-HLS intends to be a IETF standard, but its specification (regarding CODEC
and container format of segments) is strict enough to consider a straightforward
implementation for Android. Although H.264 is a fully supported CODEC on Android,
MPEG-TS as a container format is only included in Android version 3.0 (codenamed
Honeycomb) and onwards. Therefore, a file conversion is required to support Apple-HLS.

• MPEG-DASH is an emerging adaptive HTTP streaming standard which is flexible enough
to be implemented in devices with Android built-in.

12Detailed features and requirements can be read at http://kb2.adobe.com/cps/860/cpsid_86018.html.
13Certified devices are listed at Adobe’s official site http://www.adobe.com/flashplatform/certified_

devices.

http://kb2.adobe.com/cps/860/cpsid_86018.html
http://www.adobe.com/flashplatform/certified_devices
http://www.adobe.com/flashplatform/certified_devices

Chapter 3

Related work

”If you wish to make an apple pie from
scratch, you must first invent the
universe.”

– Carl Sagan

Extensive work has been carried out in the area of adaptive streaming over HTTP (i.e., using
HTTP as a delivery protocol). Multiple rate adaptation mechanisms have been proposed and
experiments have been performed under different network conditions. An extensive evaluation
of adaptive streaming, including live sources under heterogeneous network rates, has been
carried out in [26], although using RTP and RTSP as delivery protocols.

In [62] the media segmentation procedure has been utilized to provide a HTTP streaming
server with dynamic advertisement splicing. Unfortunately, the evaluation only included
experiments under homogeneous bit-rate conditions, therefore no rate-adaptation was
performed in either server or client.

The fundamental capabilities of the 3GPP’s MPEG-DASH standard have been demonstrated
in [69], pointing out the most significant properties of the media presentation descriptor (MPD or
simply manifest file). Long-session experiments for both on-demand and live video content were
performed, featuring advertisement insertion. An experimental comparison between Apple’s
HLS and MPEG-DASH over an HSPA network has been carried out in [67], although only on-
demand content was considered.

The benefits of the Scalable Video Coding (SVC) (an extension of H.264/MPEG-4 AVC [42,
Annex G]) in a MPEG-DASH environment are demonstrated in [64]. Media content is divided
into SVC layers and time intervals. By means of this H.264 extension, storage requirements and
congestion at the origin server are claimed to be reduced. SVC in conjunction with Multiple
Descriptor Coding (MDC) were tested over a peer-to-peer (P2P) video on-demand system
in [3]. An initial adaptation algorithm is suggested, based on the client’s display resolution,
bandwidth, and processing power. During playback, a progressive quality adaptation is carried
out, monitoring the buffer state and analyzing the change of download throughput during the
buffering process.

In [57] a MPEG-DASH prototype is presented as a plug-in for the VideoLan player 1.2.0
(VLC). A novel rate adaptation algorithm for MPEG-DASH was proposed in [49], using a
smoothed throughput measurement (based on the segment fetch time) as the fundamental
metric. Therefore, the algorithm can be implemented at the application layer since it does not
consider TCP’s round-trip time (RTT). Upon detecting that the media bit-rate does not match
the current end-to-end network capacity, an mechanism for conservative up-switching and
aggressive down-switching of representations is invoked.

A pre-fetching approach for user-generated content video is presented in [45]. It predicts a
set of videos which are likely to be watched in the near future and downloads them before they
are requested. The benefits of the pre-fetching scheme are compared with a traditional caching
scheme are demonstrated in a number of different network scenarios.

An intensive experiment on rate-adaptation mechanisms of adaptive streaming is presented
in [5]. Three different players (OSMF, Microsoft Smooth Streaming, and Netflix) are evaluated
in a broad variety of scenarios (both on-demand and live) with both persistent and short-term

25

26 CHAPTER 3. RELATED WORK

changes in the network’s available bandwidth and shared bottleneck links. J. Yao, et al. [73]
carried out an empirical evaluation of HTTP adaptive streaming under vehicular mobility.

An experimental analysis of HTTP-based request-response streams compared to classical TCP
streaming is presented in [46]. It is claimed that the HTTP streams are able to scale with the
available bandwidth by increasing the chunk size or the number of concurrent streams.

A Quality Adaptation Controller (QAC) for live adaptive video streaming which employs
feedback control theory is proposed in [23]. Experiments with greedy TCP connections are
performed over the Akamai High Definition Video Server (AHDVS), considering bandwidth
variations and different streams which share a network bottleneck.

Evensen, et. al. [27] present a client scheduler that distributes requests for video over multiple
heterogeneous interfaces simultaneously. Segments are divided into smaller sub-segments. They
experimented with on-demand and quasi-live streaming. Evaluations have been performed over
three different types of streaming: on-demand (assuming infinite buffer, only limited by network
bandwidth), live streaming with buffering (the whole video is not available when streaming
starts), and live streaming without buffering. The last scenario considers liveness as the most
important metric, thus segments are skipped if the stream lags too far behind the broadcast.

An elaborated comparison between Apple’s HLS on iPhone and RTP on Android 1.6 is
presented in [61]. In particular, the impact of packet delay and packet loss are evaluated with
respect to the start-up delay and playback, as well as TCP traffic fairness.

From previous work in the area of adaptive streaming we can deduce that there is still a lack of
evaluation on mobile devices, especially those using the most recent standards (such as MPEG-
DASH, introduced in section 2.4.5) for the particular case of live content sources. This master’s
thesis aims to fill the gap by deploying a full service for mobile devices, providing an extensive
evaluation (over a set of heterogeneous network scenarios similar to the experiments carried
out in [5]) with different adaptation mechanisms (also described as feedback controllers). These
mechanisms are substantially based on the algorithms proposed in [23, 49, 67], although some
enhancements have been made, specifically: (1) a mechanism to discard segments upon abrupt
reduction of the network’s available bit-rate, and (2) a procedure to lower the selected media
quality on the client’s side in case of a buffer underflow.

Chapter 4

Design and implementation

”Simplicity is the prerequisite for
reliability”

– Edsger W. Dijkstra

This chapter explains each of the elements of the overall system (depicted in figure 4.1).
The most important entities are the server and the client which are explained in section 4.3
and section 4.4, respectively. Communication between these two entities flows over HTTP. The
advantages of using HTTP were described in chapter 2. Synchronization of the client and server
are described in section 4.2.

Live

server

On-demand

server

Content
preparationClient

Media
files

Network
emulator

NTP
server pool

HTTP/1.1

SNTPSNTP HTTP servers

Internet

Figure 4.1: System architecture.

Two types of servers have been deployed depending on the nature of content: one of the
servers provides video on-demand (section 4.3.1) and the other offers live video (section 4.3.2).
As, explained in chapter 2, the media content needs to be encoded and segmented to satisfy the
specifications of the MPEG-DASH standard and Apple-HLS (see section 2.4.5 and section 2.4.2
respectively). This procedure is represented by the content preparation module, which is
characterized in section 4.1.

In reality, network traffic conditions are susceptible to change. A network emulator is described
in section 4.5. This network emulator enables controlled experiments to be performed with
different bit-rates, various delays, and different packet loss rates.

4.1 Content preparation

Figure 4.2 depicts the modules which multiplex the input media content into different quality
streams followed by a segmentation procedure. The transcoder part and the selection of the
R representations are explained in section 4.1.1, followed by the segmentation, combiner, and
indexing parts in sections 4.1.2 and 4.1.3, respectively. The overall output will be pushed to the
HTTP servers as is explained in sections 4.3.1 and 4.3.2.

27

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

Segmenter
1:n

Inspector
and

combiner

Index generator

n

n

R

1

...

Transcoder
1:R R

1
...Input n

n

R

1

...
Output

(segments)

Output
(manifest)

Figure 4.2: Modules for content preparation. A media file is indicated as input. R different
representations are generated, producing n segments for each original segment. An index file is also
produced as output.

4.1.1 Transcoder module

The transcoder module is responsible for generating different quality levels, as described in
section 2.8. This module receives a media file as input (containing a video and audio stream, at
least one of them is required to be present), then produces from the audio/video stream several
files encoded at different bit-rates. Audio and video are combined using the MP4 container
format. This module is implemented as a BASH script and relies on the FFmpeg [13] and x264 [71]
libraries1. Listing 4.1 and listing 4.2 illustrate the use of the ffmpeg command and the x264
parameters applied, in order to satisfy the H.264 Baseline Profile (introduced in the CODECs
section on page 16).

Listing 4.1: FFmpeg command line used in the transcoder module. Note the fixed parameters defined
in the first line: frame rate, resolution, aspect ratio, and GOP size.

1 ffmpeg -i $INPUT -y -r 25 -s 480x320 -aspect 3:2 -g 25 \
2 -acodec libfaac -ab $ABITRATE -ac $CHANNELS -ar $SAMPLE_RATE \
3 -vcodec libx264 $X264_PARAMS -b $VBITRATE -bufsize $VBITRATE -maxrate $VBITRATE \
4 -async 10 -threads 0 -f $FILE_FORMAT -t $CLIP_DURATION $OUTPUT

Listing 4.2: Parameters used for H.264 encoding at Baseline Profile. Note that the coder attribute is set
to 0 to restrict to H.264 Baseline Profile.

1 X264_PARAMS=-coder 0 -flags +loop+mv4 -cmp 256 -subq 7 -trellis 1 -refs 5 -bf 0 -wpredp 0
2 -partitions +parti4x4+parti8x8+partp4x4+partp8x8+partb8x8 -flags2 -wpred-dct8x8
3 -me_range 16 -g 25 -keyint_min 25 -sc_threshold 40 -i_qfactor 0.71 -qmin 10
4 -qmax 51 -qdiff 4

4.1.2 Segmenter and combiner modules

The segmenter module receives a set of media files encoded at different bit-rates and splits
them into several segments (with similar features to those described in [51]). In addition, an
initialization segment is also generated as an output. The initialization segment provides the
meta-data2 which describes the media content, without including any media data. Furthermore,
it supplies the timing information (specifically the DTS and PTS, as defined in section 2.5.2) of
every segment.

This module reads the different parts or boxes of the container format and separates the file
into several pieces of approximately the same duration (this duration is passed in as an input
parameter). It attempts GOP alignment between all the input files, that is, segments always start
with a key-frame3 and the breaking point is the same for all representations.

1The FFmpeg capabilities can be found in the appendix B.
2In 3GPP’s terminology, the ftyp box, moov box and optionally the pdin box.
3This is an assumption for this prototype. MPEG-DASH supports segments which do not start with a key-frame.

4.2. SYNCHRONIZATION BETWEEN SERVER AND CLIENT 29

Several tools can be used to analyze the structure of a media file. In particular, MP4box4 is able
to list all the elements of a container format in a NHML file (an XML-based type for multiplexing
purposes), indicating which samples are a Random Access Points (RAPs) and which are not.
Listing 4.3 shows a sample NHML output from MP4box.

Listing 4.3: NHML example file produced by MP4box.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <NHNTStream version="1.0" timeScale="25" streamType="4" objectTypeIndication="33"
3 specificInfoFile="..." width="480" height="320" trackID="1"
4 baseMediaFile="..." >
5 <NHNTSample DTS="0" dataLength="1082" isRAP="yes" />
6 <NHNTSample DTS="1" dataLength="11" />
7 ...
8 <NHNTSample DTS="25" dataLength="413" isRAP="yes" />
9 ...

10 <NHNTSample DTS="4644" dataLength="413" isRAP="yes" />
11 ...
12 </NHNTStream>

Sequentially, the combiner module produces segments that can be played on Stagefright. To
enable this it transforms all the chunks into self-contained files taking the header information
from the initialization segment. Since the live stream will consist of several self-contained
segments, there is no need to modify the DTS or PTS.

4.1.3 Indexing module

An index of all the segments generated in the previous steps must be pushed to the HTTP servers.
This module inspects the segments that have been produced and generates an ordered list (MPD)
which satisfies the MPEG-DASH standard guidelines. Two different types of MPDs are created:

Standard form provides a full file, containing all the representation levels and a list of available
segments for each one (i.e., all URIs).

Template form provides a shorter file. It uses the Urltemplate tag, indicating the index bounds
(startIndex and endIndex). This type of manifest is especially useful in the
case of live content, since fewer modifications must be done for every MPD
update.

4.2 Synchronization between server and client

In the particular case of live video content, it is useful if both server and client have the same sense
of time. Synchronization in this context means that provider and consumer sides communicate
with an external time server to set their clocks to the same accurate time base. Compared to
a non-synchronized scheme, clients do not need to make so many queries to the server (HTTP
requests) since the clients knows in advance when new content will be available.

Synchronization is achieved by means of the Simple Network Time Protocol (SNTP) [56],
which is based on the Network Time Protocol (NTP). Fortunately, many NTP public servers
are freely available on the Internet. The NTP Pool project5 has been selected for this purpose
because it provides a pool of free NTP servers operating on a reasonable-use basis. Indeed, the
implementation of this prototype follows the recommendations of [56, sec. 10] to perform a fair
use of the time servers, thus periodic requests are never performed more frequently than every
30 seconds. Figure 4.3 (a) depicts the relation between client, server, and the NTP pool.

4MP4box. Available from: http://gpac.wp.institut-telecom.fr/mp4box
5The pool.ntp.org project is a virtual cluster of timeservers which provides reliable NTP service. Available from http:

//www.pool.ntp.org.

http://gpac.wp.institut-telecom.fr/mp4box
http://www.pool.ntp.org
http://www.pool.ntp.org

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

Client Server

NTP server
(pool)

HTTP

SNTP SNTP

t0

t1

t2

t3

Client/Server NTP server

(a) (b)

Figure 4.3: (a) Communication among client, server and NTP server pool. (b) A simple SNTP request.

Figure 4.4 depicts the header of a NTP packet. There are three fields needed for the simplest
synchronization: time-stamp of client’s request (Originate Timestamp field), time-stamp of
the client’s request arrival at the time server (Receive Timestamp field), and a time-stamp of
when the server’s response was transmitted (Transmit Timestamp). The rest of header fields
(such as Poll, Stratum, and Precision) and are not considered here for simplicity (for further
details see [56]).

OriginateTimeStamp (64 bits)

ReceiveTimeStamp (64 bits)

TransmitTimeStamp (64 bits)

0

24

32

40

0 317 15 23

Figure 4.4: NTP packet header. Relevant fields for the synchronization procedure are shown
highlighted.

The synchronization procedure (shown in figure 4.3 (b)) is performed in this prototype as
follows:

1. The NTP server receives the request and adds the time when the request was received (t1)
to the Receive Timestamp header field.

2. A response is sent with a new time-stamp (t2) indicated in the Transmit Timestamp
header field.

3. The client receives the response and computes the offset (To f f set) that should be applied
to its local time.

The offset (To f f set) (between the machine’s local time and the NTP time) and round-trip-time
(RTT) (path delay between the client and NTP server) can be determined as:

To f f set =
(t1 − t0)+ (t2 − t3)

2
(4.1)

RT T = (t3 − t0)− (t2 − t1) (4.2)

4.3. HTTP SERVERS 31

Both HTTP client and HTTP server will add their respective offset to their local time (note that
offset can be a negative quantity). In particular, the HTTP client’s request time becomes t0 +
To f f set . For the HTTP client’s operations that need an absolute time reference, the offset is simply
added to the result of a Java method System.currentTimeMillis() invocation.

4.3 HTTP Servers

Two types of HTTP servers have been deployed in this architecture. The first server is suitable
only for video on-demand, whereas the second server serves content from live sources. Each of
these servers is briefly explained in the following sections.

4.3.1 On-demand server

An Apache [47] HTTP server acts as video on-demand server. Apache has been selected because
it is robust and easy to deploy on Gnu/Linux machines. The purpose of this server in our
architecture is simple: this HTTP server provides a list of manifest files which contain URLs for
the segments generated for every representation. Table 4.1 lists the Multipurpose Internet Mail
Extensions (MIME) [32] types that needed to be added to the Apache configuration. These types
are added to the Apache’s configuration file (httpd.conf).

Table 4.1: Additional MIME types needed for the Apache HTTP server.

Type MIME type File extension

DASH manifest video/vnd.3gpp.mpd .3gm

DASH video segment audio/vnd.3gpp.segment .3gs

Apple-HLS playlist application/x-mpegURL .m3u8

Apple-HLS video segment video/MP2T .ts

4.3.2 Live server

We have decided to use Twisted [30] is an event-driven networking engine written in Python [35],
licensed under the MIT license6, because it supports a wide variety of protocols and it contains
multiple resources to deploy a simple web server. The live server is based on a content-loop
server developed previously at Ericsson GmbH. The content-loop server has been modified to
satisfy the requirements of the system architecture proposed in this chapter.

HTTP responses are generated by an abstract class which extends Twisted’s Resource type. A
simplification of this class is shown in listing 4.4.

Listing 4.4: DashResource abstract class.

1 class DashResource(resource.Resource):
2
3 def returnSuccess(self, request, content, contentType):
4 ... // Set HTTP headers
5 request.setHeader(’Content-Length’, "%d" % len(content))
6 request.setResponseCode(http.OK)
7 request.write(content)
8 request.finish()
9

10 def returnFailed(self, request, error):
11 request.setResponseCode(404)
12 request.write(error)
13 request.finish()

6The conditions of a MIT license can be found in http://www.opensource.org/licenses/mit-license.php.

http://www.opensource.org/licenses/mit-license.php

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

The live server receives all media segments and manifest files that have previously been
generated (as explained in section 4.1) and prepares a live source. In our prototype, live content
is provided by looping several clips and numbering all segments by means of the mathematical
modulo function to produce an unbounded stream of content. Segments requested with a index
greater than the available segments are automatically pointed to an existing segments modulo
the total number of segments, thus providing an infinite loop of video content. Segments are
numbered with an arbitrary length integer. The behaviour of the server is summarized as follows:

1. Server starts. The server inspects all the representations and segments in order to generate
the first manifest file. This MPD has the attribute type set to Live, indicating that the
availability of segments is limited (in time - i.e., that they have to be requested within a
bounded period of time) and susceptible to change (i.e., asking for a given segment number
at a later time might result in a different segment of media content).

2. A set of segments is offered according to the available shifting time or window, indicated
in the server configuration. The server calculates when the next update will occur, this
primarily depends on the segments’ duration. When the duration of one segment has
elapsed, a new update is executed.

3. If a HTTP request is received from a client, the overloaded Twisted method render(self,
request) is invoked. Different situations will arise depending on the client’s request and
server’s state:

a) If the client is requesting the MPD file, then the server simply responses with the last
updated XML content in this file.

b) If the client is requesting a media segment numbered with an index i (as depicted in
figure 4.5). The server checks whether the segment i belongs to the set of available
segments:

• If this segment is within the available shifting time, then the server performs
the modulo operation and replies with a satisfactory HTTP response (code 200),
starting the transmission of the segment.

• Otherwise, the server replies with a HTTP unsatisfactory response (code 404)
and a simple message. There are two possible situations in which situation may
occur: the client requests the segment too soon (segment not available yet) or the
segment was requested too late (segment no longer available).

mod ni ji ∈ Tshift
yes

no

HTTP 200

HTTP 404

Figure 4.5: Characterization of the Live server. Tshi f t represents the indexes of segments within the
available shifting time, n the number of segments for one representation.

4.4 Client

In this architecture, an Android application acts as the client. Android cellphones have sufficient
capabilities to provide video playback and perform communication over HTTP.

4.4. CLIENT 33

4.4.1 Features

The client developed in this master’s thesis project has the following features:

• Media adaptation by means of several bit-rate algorithms (section 4.4.2). The optimal
representation level is selected depending on the network’s restrictions/performance.

• Supports the MPEG-DASH protocol, as summarized in section 2.4.5. In particular, this
client is compatible with the manifest files (MPD) that the server produces.

• Minimal support for Apple-HLS (section 2.4.2), more specifically it is compatible with
Apple’s extended playlists (.m3u8) and conversion of the MPEG-TS container format to the
3GP/MP4 formats supported on Android (a complete list of Android supported CODECs
and media formats were listed in table 2.4 on page 21).

• Handling of HTTP connections occurs as background tasks, thus preventing interruptions
of the media player.

• Database management of content sources, as indicated by the URL of MPDs or extended
M3U playlists.

• Automated search of manifest files.

• A rich Graphical User Interface (GUI) is provided. During playback, the client displays
dynamic plots which provide accurate information about the actual bandwidth utilization
or when segments are downloaded. A full-screen mode is automatically launched when
the cellphone is turned to a landscape orientation.

4.4.2 Adaptation mechanisms

The adaptation mechanisms proposed in this master’s thesis project follow three requirements:

1. Playback shall not be stopped (i.e. buffer underflow should be avoided).

2. Optimal use of network resources, selecting the highest possible bit-rate level while
meeting requirement 1.

3. Switching to the appropriate quality level should be performed as rapidly as possible.

If any of these requirements is not satisfied, this indicate an erroneous use of the available
bandwidth. If the first requirement is not met, this indicates that the choice of representation
level selected was overestimated. As a result, the time it will take to download the next
segment will be longer than the segment’s own duration, leading to playback interruptions if
the representation level is not reduced. Not fulfilling the second requirement indicates that
the representation level has been underestimated. In this case, the user of this client will not
experience the best possible quality - however, they will be able to watch/listen to the content at
less than the highest possible quality. The third requirement involves a design choice: when
switching events may occur. In our implementation, the adaptation mechanism is always
invoked right after segments are downloaded (buffered). Therefore, all the proposed mechanisms
are equally fast, but provide different criteria for the appropriate quality level.

Three adaptation mechanisms has been proposed: aggressive adaptation, conservative
adaptation, and mean adaptation. Details of these three mechanisms are explained in the
following subsections.

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.4.2.1 Aggressive adaptive mechanism

The aggressive mechanism is defined in algorithm 1. This mechanism has the following
characteristics:

• The starting quality level is the level with the lowest bandwidth requirement.

• Selection of the lowest representation level occurs when the playlist (buffer) is empty.

• Multiple step switching, i.e., the selected quality level can be adjusted drastically up and
down upon termination of the algorithm, since the switching operations are contained in
a while loop.

The aggressive mechanism determines the optimal quality level considering only the last
throughput measurement τ. The selected quality level is increased when the last throughput
measurement is greater than the current representation’s bit-rate. Otherwise, the quality level is
decreased.

Algorithm 1: Aggressive adaptive algorithm.

Data: Last throughput measurement τ, playlist P , ordered array of representations r with
size |r | = R, current representation index rcur r

begin

if |P | = 0 then
Switch-down to minimum: rcur r ←− 0

else
if τ> r [rcur r] then

while r [rcur r +1] < τ and rcur r < R −1 do
Switch-up one level: rcur r ←− rcur r +1

else
while r [rcur r −1] > τ and rcur r > 0 do

Switch-down one level: rcur r ←− rcur r −1

This mechanism is referred to as aggressive because it provides a rapid change in behaviour in
its response to bandwidth fluctuations. Nonetheless, problems may arise with this algorithm due
to short-term bit-rate peaks. Since it will try to switch level, the increased bandwidth might not be
available for all of the next segment’s download, hence the client will not have time to download
the new segment. The expected advantages and disadvantages of the aggressive mechanism are:

Advantage best utilization of available bandwidth.

Disadvantage high sensitivity to changes in available bandwidth. This could lead to selection of
too high quality level (due to bit-rate peaks).

4.4.2.2 Conservative adaptive mechanism

The conservative mechanism (specified in algorithm 2) is based on the aggressive mechanism
(described in section 4.4.2.1). However, it enhances the selection of the quality level by adding
a sensitivity parameter which is applied to the last measured throughput τ. Consequently, the
client becomes less sensitive to the available network bit-rate, resulting in a more conservative
selection of the representation level. In this mechanisms, a sensitivity of the 70% is applied (note
that a sensitivity of 100% will produce the same behaviour as the aggressive mechanism). As a
result, the expected advantages and disadvantages of the conservative mechanism are:

4.4. CLIENT 35

Advantage this algorithm avoids pauses while providing a continuous playback experience,
since the selected quality level is systematically slightly below the optimal.

Disadvantage by underestimating the available network bit-rate, this algorithm leads to a
non-optimal bandwidth utilization and less than the highest possible quality.

Algorithm 2: Conservative adaptive algorithm.

Data: Last throughput measurement τ, playlist P , ordered array of representations r with
size |r | = R, current representation index rcur r

begin

Sensi t i vi t y ←− 0.7

if |P | = 0 then
Switch-down to minimum: rcur r ←− 0

else
τ′ ←− τ×Sensi t i vi t y
if τ′ > r [rcur r] then

while r [rcur r +1] < τ′ and rcur r < R −1 do
Switch-up one level: rcur r ←− rcur r +1

else
while r [rcur r −1] > τ′ and rcur r > 0 do

Switch-down one level: rcur r ←− rcur r −1

4.4.2.3 Mean adaptive mechanism

The mean mechanism is built upon the aggressive mechanism (described in section 4.4.2.1).
Using this mechanism the optimal quality level decision is based upon the arithmetic mean7

of the last three throughput measurements (see algorithm 3). The overall behaviour is similar to
the adaptive mechanism proposed in [67] where the last five measurements were considered. In
the mean mechanism the throughput average is calculated based on the last three measures (τ1,
τ2, and τ3) In addition, a high sensitivity parameter is applied to the throughput average. The
expected advantages and disadvantages of the mean mechanism are:

Advantage better utilization of bandwidth compared to the aggressive and the conservative
mechanism in the long-term. Reduced sensitivity to bit-rate peaks and troughs.

Disadvantage longer reaction time when there is a large bit-rate variation. Selection of the
appropriate quality level might be performed in several switching steps.

7Another statistical operation such as the median could have been used. However, the median is less sensitive than
the mean to extreme fluctuations. Consider the following example: the last three throughput measurements are 100 kb/s,
200 kb/s and 300 kb/s. The mean and median of the ordered list {100,200,300} are both 200 kb/s. If the next measurement
is, for instance, 600 kb/s, the ordered list is updated to {100,200,600}, where the mean is increased to 300 kb/s and the
median has not changed.

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

Algorithm 3: Mean adaptive algorithm

Data: Last 3 throughput measurements τ1, τ2, and τ3, playlist P , ordered array of
representations r with size |r | = R, current representation index rcur r

begin

Sensi t i vi t y ←− 0.95

τmean ←− τ1+τ2+τ3
3

if |P | = 0 then
Switch-down to minimum: rcur r ←− 0

else
τ′mean ←− τmean ×Sensi t i vi t y
if τ′mean > r [rcur r] then

while r [rcur r +1] < τ′mean and rcur r < R −1 do
Switch-up one level: rcur r ←− rcur r +1

else
while r [rcur r −1] > τ′mean and rcur r > 0 do

Switch-down one level: rcur r ←− rcur r −1

4.4.3 Module characterization

Figure 4.6 illustrates the modules which constitute the client’s application. A dashed line
separates the prototype from the cellphone’s external resources, such as the available memory
(external storage) and the user interface. The user interface represents the user’s interaction with
the device’s buttons and (where available) touch-screen.

Player

Segment
downloader

Transcoder

Playlist

Parser

Rate
adaptation (logic)

Representation
playlists

Screen

External
storage

buffer

load

write

update URLs BW

read

init update

read

show

Timer
log event

init

Hardware Software

Figure 4.6: Overview of the client’s application modules. The dashed line separates the device’s
hardware resources from the client’s application (software).

The client’s functionality can be summarized as follows. The player module (described in
section 4.4.4) starts the application and manages the video controller and graphical resources,
in particular, the Android surface where the video is displayed. The parser module (described
in section 4.4.5) is launched and it transforms the index file or manifest file into several
representation playlists, each one corresponding to a determined quality level. If the parsing
procedure is successfull, this module periodically checks for manifest updates as a background
task.

4.4. CLIENT 37

Next the segmeter-downloader module (described in section 4.4.6) starts to request the media
segments over HTTP using persistent connections. A query is sent to the rate-adaptation module
(described in section 4.4.7) after each download. The rate-adaptation module is responsible for
selecting the most appropriate quality level depending on the network conditions. Consequently,
the transcoder module performs a media conversion when necessary, as was explained in
section 4.1.1.

Segments successfully downloaded into the buffer are added to a primary playlist (described
in section 4.4.6), which enumerates the received pieces of content. Changes in the playlist will be
constantly monitored by the player module.

The timer module (described in section 4.4.9) calculates the timing of all the events which take
place in the system. This information is essential for the evaluation described in the next chapter.

4.4.3.1 Activities

In Android terminology, an activity is an application component that provides a graphical
interface, listening to the user’s interaction. Activities are analogous to windows in typical
computer applications as they provide graphical components (such as text or buttons) and can
be opened or closed in a specific order.

Activities are controlled by several listeners: onCreate() is the most important method, as
this method is invoked at the beginning of the activity. The remaining listeners (onResume(),
onStop(), onPause(), onRestart(), and onDestroy()) have been adapted to satisfy the
desired behaviour of the application8. In particular these methods:

• Stop the background tasks (threads) when the user exits the application.

• Handle the device’s orientation changes, i.e., when the user turns the cellphone more than
90 degrees. Two orientations are defined in Android: landscape (horizontal) and portrait
(vertical), as illustrated in figure 4.7.

onConfiguration
Changed()

Media player
portrait orientation

Media player
landscape orientation

09:00

09:00

Dynamic plot
surface

(XYPlot)
Video surface
(surfaceView)

Buffer bar
(ProgressBar)

Video surface
(surfaceView)

Buffer bar
(ProgressBar)

Figure 4.7: Activity orientation.

Three activities have been designed in this prototype, see figure 4.8. The first activity, depicted
on the left of the figure, displays a list of manifest files. The user can easily add, modify and

8Detailed information about these Java methods and the states of an activity can be found at
http://developer.android.com/reference/android/app/Activity.html.

http://developer.android.com/reference/android/app/Activity.html

38 CHAPTER 4. DESIGN AND IMPLEMENTATION

remove entries using the GUI components (Android’s contextMenu). When an element of the
list is selected, the second activity is started. This step is only used for our evaluation, since it
selects the proposed adaptive algorithms (these algorithms will be introduced in section 4.4.7).
The last activity handles the actual media playback, displaying both the video and dynamic plots
on the screen. A demonstration of the GUI can be found in the appendix A.

All activities have to be described in the AndroidManifest.xml file, as shown in the simplified
in listing 4.5. Lines 5-8 indicate the first activity to be launched when the application is
started (ContentSelection activity). In addition, the Android OS permissions required for the
application need to be specified. In our case these permissions are:

• WRITE_EXTERNAL_STORAGE: to write into the MicroSD card (the location of the buffer in
this prototype).

• INTERNET: to open a HTTP communication with the servers, described in section 4.3.

Listing 4.5: Simplified version of the Android manifest XML-file.

1 <?xml version="1.0" encoding="utf-8"?>
2 <manifest xmlns:android="http://schemas.android.com/apk/res/android">
3 <application>
4 <activity android:name="ContentSelection">
5 <intent-filter>
6 <action android:name="android.intent.action.MAIN" />
7 <category android:name="android.intent.category.LAUNCHER" />
8 </intent-filter>
9 </activity>

10 <activity android:name="RateAlgorithmSelection"/>
11 <activity android:name="Player"/>
12 </application>
13 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
14 <uses-permission android:name="android.permission.INTERNET" />
15 </manifest>

List activity Activity Activity

Media content
selection

Media content
settings

Media player

Video surface

Dynamic plot
surface

Buffer bar

.

.

.

Media info

Adaptation profile

Plot settings

Start

Media content
(identified by manifest URI)

Media content

Media content

Media content

content
selected

back

start
playback

back

error

Figure 4.8: Activities of the client application.

4.4.4 Player module

The player module is the essential and main component of the application. It manages the
playback of the media segments, displaying the video stream on the screen. Figure 4.9 depicts the

4.4. CLIENT 39

set of actions performed in this module. Initially the module creates two background tasks with
the following purposes: (1) periodically parse the manifest file (to be performed by the parsing
module, explained in detail in section 4.4.5) and (2) download the media fragments (performed
by the segment-downloader module, described in section 4.4.6).

init UI
elements

parse
manifest

segments on
playlist?

prepare and
play

segment

init
segment

downloader

init
manifest
updater

yes

nosurfaceView
ready

init
resources cleaner

onCompletion()

onError()

Figure 4.9: Sequence of events produced in the player module.

The player module examines a generated playlist of buffered segments (which is regularly
updated by the segment-downloader module). The player continues this processing until the
main activity is closed.

4.4.4.1 Video surface management

A video surface is the main element of a video player. This surface is represented as a
SurfaceView element in the Android framework. The media files will be played (i.e., displayed)
on this surface. The process of binding a video surface with to instance of a Android
MediaPlayer object takes place in four steps (as depicted in figure 4.10):

1. The surface is created in an Activity and its surface holder is created. The type of the
surfaceHolder must be SURFACE_HOLDER_PUSH_BUFFERS in order to play audio and video,
otherwise video will not be shown on the screen.

2. This holder starts three listeners:

a) surfaceCreated: triggered when the surface is ready.

b) surfaceChanged: detects surface changes, for instance a change in its size (which
could result in a change in video resolution).

c) surfaceDestroy: launched when the activity which holds the surface ends.

3. When surfaceCreated() is invoked, the holder can be bound to an instance of a
MediaPlayer object. At this point it is possible to start loading a media file. Listing 4.6
shows how the first segment will be prepared in a new thread.

4. Binding between the surface and the Android media player is done.

40 CHAPTER 4. DESIGN AND IMPLEMENTATION

Video surface

SurfaceHolder

getHolder()

addCallback()

SURFACE_TYPE
PUSH_BUFFERS

surfaceCreated()

surfaceChanged()

surfaceDestroy()

MediaPlayer

setDisplay()

Java instance

Java instance

SurfaceView

binding

1

2

3

4

Figure 4.10: Surface view binding.

Listing 4.6: Listener launched when video surface is ready.

1 public void surfaceCreated(SurfaceHolder holder) {
2 mediaPlayer.setDisplay(holder); // SurfaceHolder binding
3 new Thread(new Runnable() { // Start segment handling as background task
4 @Override
5 public void run() {
6 Looper.prepare();
7 playHandler = new Handler();
8 playHandler.post(nextSegment);
9 Looper.loop();

10 }
11 }).start();
12 }

Different techniques were studied in order to load different video segments concurrently.
By means of creating more than one instance of the MediaPlayer class, it may be possible
to prepare several video segments at the same time. However, this approach is not suitable
because of the unique binding condition, i.e., only one instance of MediaPlayer can be attached
to a surfaceHolder (as depicted in figure 4.11). The Java method setDisplay() can only

Video surface

SurfaceView

SurfaceHolderMediaPlayer MediaPlayer
bound

Java instances
Java instance

no
possible
binding

Figure 4.11: Binding problem.

be invoked once, and further calls are ignored. This makes it necessary to utilize another
surface video for every MediaPlayer. Unfortunately, since SurfaceView is a heavy object and
it consumes a significant amount of resources, this approach is not efficient. Therefore, in our

4.4. CLIENT 41

implementation several instances of MediaPlayer are created but only one instance is attached
to a SurfaceView.

4.4.4.2 Implementation

The listeners of the Player activity and the MediaPlayer class constitute the essential elements of
this implementation. Listing 4.7 shows the most significant lines of the onCreate() Java method,
here the surfaceHolder and MediaPlayer objects are instantiated.

Listing 4.7: Fragment of the activity’s initialization method onCreate().

1 surfaceHolder = surfaceView.getHolder(); // Create surfaceHolder and set listeners
2 surfaceHolder.addCallback(this);
3 surfaceHolder.setType(SurfaceHolder.SURFACE_TYPE_PUSH_BUFFERS);
4
5 mediaPlayer = new MediaPlayer(); // Create media player and set listeners
6 mediaPlayer.setOnPreparedListener(this);
7 mediaPlayer.setOnCompletionListener(this);
8 mediaPlayer.setOnErrorListener(this);
9 mediaPlayer.setScreenOnWhilePlaying(true);

Listing 4.8 shows the handleNextSegment() method. It is launched as a background
task once the surfaceView resource is ready. This task manages the playback of media
segments, by checking whether there are entries in the playlist. When there are new entries,
the next appropriate media segment is load asynchronously, as shown in listing 4.9. There
is one restriction imposed by the Android specification (as depicted in the state diagram of
figure 4.12): the MediaPlayer object used by the activity must be restarted for every segment,
since setDataSource() can only be invoked after reset().

Listing 4.8: Procedure to handle the next media segment to be played.

1 private void handleNextSegment() {
2 while (!playList.isReadyToPlay()) {} // Waiting for segments on playlist
3 ... // Update UI elements (loading wheel)
4 ... //Update segment pointers
5 lastSegmentPath = currentSegmentPath;
6 currentSegmentPath = playList.getNext(); // Read next entry
7
8 if (currentSegmentPath != null) {
9 setNextDataSource(currentSegmentPath); // Start segment load procedure

10 } else {
11 if (buffer.get404Errors() > MAX_404ERRORS)
12 closeMedia("Many segments missing");
13 }
14 }

Listing 4.9: Setting the next data source of the MediaPlayer instance.

1 private void setNextDataSource(String nextFilePath) {
2 try {
3 mediaPlayer.reset();
4 mediaPlayer.setDataSource(nextFilePath);
5 mediaPlayer.prepareAsync(); // Prepare segment asynchronously
6 } catch (Exception e) {
7 playHandler.post(nextSegment); // If errors: continue with next segment
8 }
9 }

Once segments are successfully loaded, the onPrepared() listener is triggered, as illustrated
in listing 4.10. The player proceeds to play the segment as soon as possible, subsequently
launching (according to the DELETION_TIMEOUT parameter9) a background cleaning task. This
task removes old entries in the representation lists and deletes already played segments.

9This timeout is set to avoid unnecessary consumption of CPU cycles within the segment’s load interval. Any
arbitrary value longer that a segment’s load average loading time (500 ms) would be acceptable.

42 CHAPTER 4. DESIGN AND IMPLEMENTATION

Idle

Playback
completed

InitializedPreparing

Prepared

Started

Stopped Paused

End

Error

reset()

OnPreparedListener.onPrepared()

setDataSource()

prepareAsync()

prepare()

seekTo()

start()

Looping == true AND
playback completes

pause()

start()

seekTo()/pause()

stop()

stop()

stop()

Looping == false
AND onCompletion

invoked on
OnCompletionListener

start()
(from beginning)

stop()

seekTo()/start()

prepare()

seekTo()

stop()

prepareAsync()

onErrorListener.onError()

release()

Figure 4.12: State diagram of Android’s media player. Note that setDataSource() can only be called
from the Idle status. Figure adapted from [8].

4.4. CLIENT 43

Listing 4.10: Listener triggered when the media segment is loaded.

1 public void onPrepared(MediaPlayer mp) {
2 if (playedSegments == 0) Timer.startPlayback(); // Timing info
3 mp.start();
4 new Thread(new Runnable() { // Update dynamic plots on screen in a new thread
5 @Override
6 public void run() {
7 cleaningHandler.postDelayed(new Runnable() {
8 @Override
9 public void run() {

10 ... // Perform RepresentationLists cleaning
11 ... // Remove played segments from external storage
12 }
13 }, DELETION_TIMEOUT);
14 }
15 }).start();
16 }

A completion listener (onCompletion()) is invoked when segments have reached their end.
Consequently, the next segment is immediately prepared in order to minimize interruptions in
the media during playback. The code to do this is shown in listing 4.11.

Listing 4.11: Listener triggered after playback completion.

1 public void onCompletion(MediaPlayer mp) {
2 ... // Logging
3 playedSegments++;
4 playHandler.post(nextSegment); // Launch background task
5 ... // Update UI’s buffer bar
6 }

Upon termination of the activity, background tasks and resources are released (using the
method closeMedia() as shown in the simplified listing 4.12).

Listing 4.12: Termination of background tasks.

1 public void closeMedia() {
2 if (mediaPlayer != null) mediaPlayer.release();
3 if (buffer != null) buffer.stop(); // Stop buffering background task
4 if (parser != null){ // Stop manifest updater task
5 ...
6 if (isLive())
7 if (mpdHandler != null) mpdHandler.getLooper().quit();
8 }
9 finish(); // Terminate activity

10 }

4.4.5 Parser module

This module parses a file which follows either the MPEG-DASH standard or Apple’s m3u8
extended playlists. After completion, a list of available segments is generated for every
representation, ordered by bandwidth (a basic example was illustrated in table 4.2). In addition,
two parsing modes are defined:

Strict mode the parser checks that the manifest file follows all specifications, in particular
mandatory attributes.

Non-strict mode the parser operates on a best effort basis. If there are some attributes missing,
it utilizes with default values.

The player is responsible for calling the parser module at the start of the player’s execution.
If the manifest file is available and it satisfies the supported standards implemented in this

44 CHAPTER 4. DESIGN AND IMPLEMENTATION

prototype, an initial set of parameters is defined: number of representations, number of
segments, type of content (on-demand or live) and segment duration, among other parameters
(a full list of the supported parameters is given in the following section).

Table 4.2: Sample set of representation lists, assuming three quality levels (denoted by bw1, bw2, and
bw3) and 10s-long segments.

Time Segment URL

0.00 .../bw1/1.mp4

10.00 .../bw1/2.mp4

20.00 .../bw1/3.mp4

... ...

Time Segment URL

0.00 .../bw2/1.mp4

10.00 .../bw2/2.mp4

20.00 .../bw2/3.mp4

... ...

Time Segment URL

0.00 .../bw3/1.mp4

10.00 .../bw3/2.mp4

20.00 .../bw3/3.mp4

... ...

In the case of live content, this module is executed quasi-periodically (assuming that the
segments are the same length). The manifest file is parsed again and the lists of segments are
updated. The parsing procedure is aborted if the manifest file has not changed10.

4.4.5.1 DOM and SAX

Java’s Simple API for XML (SAX) and the Document Object Model (DOM) are two widely used
parsing methodologies. In this design, SAX has been selected as the parsing technology for
this module11. SAX demonstrates better capabilities for the type of files handled in the overall
application. Advantages of SAX compared to DOM are:

• SAX parsing can be stopped at any line, at any time.

• SAX is better for large files because it consumes less memory than DOM.

• SAX takes less time than DOM to read the document.

• SAX is read only, whereas DOM can produce changes in the file.

• SAX parses sequentially, DOM can go backwards to the parent nodes.

In summary, SAX provides a faster method to parse XML files than DOM. Since these files
basically consist of a set of parameters and list of segments, it can be read sequentially and there
is no need for the client to modify any field. In fact, the server is responsible for providing new
updates of the manifest file and is the only entity that updates this file.

4.4.5.2 Implementation

Listing 4.13 shows the Java constructor, which makes use of the SAXParser, SAXParserFactory,
and XMLReader classes included in the Android framework. The main method is parse() (see
listing 4.14) which will be invoked just once for on-demand services and periodically for live
content. A XMLHandler private class (listing 4.15) reads all XML-tags and their attributes to
generate Java objects and lists of segments for different representations. Tables 4.3 to 4.8 present
the attributes of the MPD [1] supported in this implementation.

10Modifications of the manifest file are detecting by reading attributes which are meant to change, such as the time-
stamps (available start time) or the last segment index.

11Specific parsers such as the Piccolo XML parser for Java (see http://piccolo.sourceforge.net) could have been
chosen for this prototype. However, Android does not run a standard Java virtual machine, therefore customized parsers
might not offer the same performance benefits when running on the Android virtual machine (Dalvik). Thus, using the
DOM or SAX APIs ensures a better compatibility with any version of Android since they are officially supported.

http://piccolo.sourceforge.net

4.4. CLIENT 45

Listing 4.13: DASH parser constructor.

1 public DASHParser(String manifestURL, Mode mode) throws IOException,
2 UnvalidManifestException {
3 ... // Init SAX variables
4 try {
5 SAXParser = factory.newSAXParser();
6 XMLReader = SAXParser.getXMLReader();
7 userXMLHandler = new UserXMLHandler();
8 XMLReader.setContentHandler(userXMLHandler);
9 } catch (...) {} // Exception handling

10 initTempDirectory(); // Create temporal directory to save segments
11 }

Listing 4.14: Java method to parse an MPD file.

1 public void parse() throws IOException, SAXException,
2 UnvalidManifestException {
3 XMLReader.parse(parsingUrl);
4 if (!isValidManifest())
5 throw new UnvalidManifestException("Manifest is not valid");
6 sortSegmentLists();
7 this.segmentLists = getSegmentLists();
8 }

Listing 4.15: XMLHandler private class, it overrides SAX methods to parse supported MPD tags. It
parses attributes and transforms them into Java objects and lists of segments.

1 private class UserXMLHandler extends DefaultHandler {
2 ... // Override methods: startDocument(), endDocument() and endElement()
3 @Override
4 public void startElement(String uri, String localName, String qName,
5 Attributes attributes) throws SAXException {
6 /* Detect all supported tags and transform to Java objects */
7 createMPD(attributes); // MPD tag
8 createProgramInformation(attributes); //ProgramInformation tag
9 createPeriod(attributes); // Period tag

10 createSegmentInfoDefault(attributes); // SegmentInfo tag
11 createRepresentation(attributes); // Representation tag
12 createSegmentInfo(attributes); // SegmentInfo tag
13 createURL(attributes); // URL tag
14 createUrlTemplate(attributes); // URLTemplate tag
15 }
16 }

Table 4.3: Supported attributes for the MPD tag in MPEG-DASH.

Attribute Definition

Type Optional, on-demand by default. Type of the media presentation.
On-demand and live types are defined

Base URL Optional. Base URL on MPD level

Minimum update period Mandatory. Minimum period the MPD is updated on the server.

Minimum buffering time Mandatory. Minimum amount of initially buffered media that is
needed to ensure smooth playback.

Media presentation duration Optional. Duration of the entire media presentation.

Availability start time Mandatory for live, optional for on-demand. Start time of the first
period of the media presentation in UTC format.

Available shifting time Optional. Duration of the time shifting buffer that is available for a
Live presentation. If it is present for on-demand services, the client
should ignore this attribute.

46 CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4.4: Supported attributes for the Period tag in MPEG-DASH.

Attribute Definition

Start Optional. Accurate start time of the period relative to the
availability start time of the media Presentation.

Identifier Optional. Unique identifier for this period within the media
Presentation.

Default segment information Optional. Default Segment information about Segment durations
and, optionally, URL construction.

Table 4.5: Supported attributes for the Representation tag in MPEG-DASH.

Attribute Definition

Identifier Mandatory. Unique identifier for this representation within the period.

Bandwidth Mandatory. Minimum bandwidth of a hypothetical constant bit-rate channel in bits
per second over which the representation can be delivered such that a client, after
buffering for exactly the minimum buffering time can be assured of having enough
data for continuous playback.

MIME type Mandatory. MIME type of the initialization segment, if present. If not, it provides
the MIME type of the first media segment. This MIME type includes the CODEC
parameters for all media types, including profile and level information where
applicable.

Table 4.6: Supported attributes for the SegmentInfo tag in MPEG-DASH.

Attribute Definition

Base URL Optional. Base URL on representation level.

Segment duration Mandatory if duration is not specified on period level. Constant approximate
segment duration. All segments within this segment information element have
the same duration unless it is the last segment within the period, which could
be significantly shorter. If this attribute is not present, the value of this attribute
is derived to be equal to the value of the duration attribute on period level, if
present.

Start index Optional, 1 by default. Index of the first accessible media segment in this
representation.

URL template Optional. The presence of this element specifies that a template construction
process for media segments is applied. The element must include attributes to
generate a segment list for the representation associated with this element.

Table 4.7: Supported attributes for the URL tag in MPEG-DASH.

Attribute Definition

Source URL Optional. URL of the media segment. If not present, then any base URL is mapped to
the sourceURL attribute and the range attribute should be present.

4.4. CLIENT 47

Table 4.8: Supported attributes for the URLTemplate tag in MPEG-DASH.

Attribute Definition

Source URL Optional. The source string providing the template. If the template is not present, the
id attribute on representation level provides the necessary information to construct
the template.

End index Optional. Index of the last accessible media segment in this representation.

The lexical representation of all duration attributes follows the W3C ISO 8601 Date and Time
Formats syntax [15, section 3.2.6] ”P nY nM nD T nHnM nS”, where nY represents the number
of years, nM the number of months, nD the number of days, T is the date/time separator, nH
the number of hours, nM the number of minutes and nS the number of seconds (decimal digits
supported).

Additionally, extended M3U playlists can be parsed (see listing 4.16). Table 4.9 and table 4.10
show the tags of the Apple’s extended M3U playlists [59] which are supported in the prototype.

Table 4.9: Supported tags for extended M3U playlists.

Tag Definition

#EXTM3U Mandatory. All playlists files must start with this tag. If not, the client must
not attempt to use the playlist.

#EXT-X-VERSION Optional. It specifies the protocol version. The client checks if it supports
the version. if not, it must not attempt to use the playlist file.

#EXT-X-TARGETDURATION Mandatory. It specifies the maximum media file duration. The EXTINF
duration of each media file in the playlist file must be less than or equal
to the target duration.

#EXT-X-MEDIA-SEQUENCE Optional. It indicates the sequence number of the first URI that appears in
a playlist file. This tag can only appear once.

#EXTINF Conditionally mandatory. It is a marker which describes the media file
identified by the URI that follows it. Each media file URI must be preceded
by this tag.

#EXT-X-STREAM-INF Optional. It indicates that the next URI in the playlist file identifies another
playlist file (sub-playlist).

Table 4.10: Supported attributes for the EXT-X-STREAM-INF tag.

Attribute Definition

BANDWIDTH Mandatory. Decimal integer of bits per second. It must be an upper bound of the
overall bit-rate of each media file, including container overhead.

PROGRAM-ID Optional. Decimal integer that uniquely identifies a particular presentation within the
scope of the playlist file. A playlist file may contain multiple EXT-X-STREAM-INF tags
with the same PROGRAM-ID to identify different encodings of the same presentation.
These variant playlists could contain additional EXT-X- STREAM-INF tags.

CODECS Optional. Quoted string containing a comma-separated list of formats, where each
format specifies a media sample type that is present in a media file in the playlist file.
Valid format identifiers are those in the ISO File Format Name Space [34].

RESOLUTION Optional. Decimal value describing the approximate encoded horizontal and vertical
resolution of video within the stream.

48 CHAPTER 4. DESIGN AND IMPLEMENTATION

Listing 4.16: Java method to parse an extended M3U playlist (.m3u8).

1 public void parse() throws MalformedURLException, IOException,
2 InvalidPlaylistException, UnmodifiedMPDException {
3
4 String filename = downloadManifest(new URL(playlist));
5 FileReader reader = new FileReader(filename);
6 Scanner scanner = new Scanner(reader);
7 ...
8 while (scanner.hasNextLine()) {
9 ... // Analysis of each extended tag

10 }
11 sortSegmentLists();
12 }

4.4.6 Segment-downloader module

The segment-downloader module is responsible for opening HTTP connections to fetch the
available segments. It sends HTTP requests and waits for the corresponding reply, checking the
HTTP headers and response codes in the reply. Once the connection is opened, the received byte
stream is transferred to a buffer to store the media files (in this prototype, the cellphone’s MicroSD
card - a so-called external storage device - acts as the buffer12). Although the Android system
natively supports HTTP progressive streaming, it is necessary to pre-download the segments in
order to avoid pauses once playback has started. Immediately after a new segment is stored in
the buffer, this module performs two actions:

1. It converts the media file into a supported format, if necessary. This occurs when
Apple-HLS segments are contained in the MPEG-TS (.ts) format, as they cannot be
directly played by Stagefright. This task will be performed by the transcoder module, further
explained in section 4.1.1 on page 28.

2. It tests the media file using a background (fake) player, which is not bound to
any SurfaceView. This fake player simply prepares the segment and triggers the
onPrepared() and onError() listeners. If there is an error preparing a particular
segment, then the module will try to download this segment one more time. If an error
persists, the software will skip this segment. If the buffer is not empty, the next segment
is played. Otherwise, a buffering animated wheel is shown to the user to indicate that the
playback has paused.

Video fragments that are successfully downloaded are added to a playlist, as proposed in [69].
This list is represented as a table with two columns: estimated (relative) playback time and
filename (path) to the media segments. A simple example is shown in table 4.11. The timing
column is calculated based upon the information provided by the parsing module.

This module also provides a segment re-download mechanism. Segments whose download
time increases greatly, must be immediately discarded. This is one of the indicators of
an inadequate representation level and the rate-adaptation module must be notified, (the
information that will be shared between the segment-downloader and the rate-adaptation
modules is depicted in figure 4.13). Equation 4.3 indicates the maximum download time or
timeout (Tt i meout) where Sd represents the duration of the segment. In this prototype, the

12The reason to choose the external storage device as a buffer is rather simple: internal memory in Android cellphones
is accessible and writable, but only plain-text files can be saved directly. Other file types such as video files can only
be saved into the internal storage if they are transferred from the external storage, by means of the openFileInput
and openFileOutput Java methods, therefore segments have to be saved into the external storage in any case. More
information about data storage on Android devices can be found at http://developer.android.com/guide/topics/
data/data-storage.html.

http://developer.android.com/guide/topics/data/data-storage.html
http://developer.android.com/guide/topics/data/data-storage.html

4.4. CLIENT 49

timeout value is fixed at 80% of the segment duration, which provides enough tolerance to enable
a segment to be downloaded and potentially be downloaded a second time at a lower bit-rate.

Tt i meout = 80% ·Sd (4.3)

Table 4.11: Playlist example.

Time Path to segment

0.00 /media/sdcard/tmp/...segment1.mp4

10.00 /media/sdcard/tmp/...segment2.mp4

20.00 /media/sdcard/tmp/...segment3.mp4

... ...

Segment
downloader

Rate
adaptation

nextSegmentURL

playbackTime

measuredBW

fillBuffer

Figure 4.13: Communication between the segment-downloader and the rate-adaptation modules.
Dashed lines represent requests whereas normal lines represent notifications.

A client’s throughput metric (τ, measured in bits per second) has been defined to inform the
rate-adaptation module right after every segment is downloaded of the recently experienced
HTTP connection throughput. Throughput at the client’s side is calculated as:

τ= Si

Ti
(4.4)

Where Si is the size in bits of the segment i and Ti is the time it took to download it, measured
in seconds.

4.4.6.1 Implementation

The segment-downloader module is implemented as a background task (i.e., a secondary thread
executing as an infinite loop), as shown in the listing 4.17. First, a call to fillBuffer() in the
rateLogic (rate adaptation module) determines whether a new segment should be downloaded
to the buffer. If so, the destination URL will be requested by means of the getNextSegment()
method. Two situations could arise: (1) there is already a new segment available to download or
(2) there is not, in which case the loop continues in case of live content or ends in case of video
on-demand. Note that this module only downloads segments given a URL. The decisions about
the appropriate representation level are managed in the rate-adaptation module.

Listing 4.17: Main method of the segment-downloader module.

1 public void run() {
2 while (running) {
3 try {
4 if (rateLogic.fillBuffer()) {
5 URL url = rateLogic.getNextSegment();
6 if (url != null) {
7 try {

50 CHAPTER 4. DESIGN AND IMPLEMENTATION

8 downloadSegment(url); // Fetch next segment
9 rateLogic.addEstimatedTime(); // Notify rate-adaptation module

10 storedSegments++;
11 playList.isReadyToPlay(); // Update playlist status
12 bufferBarUpdate();
13 } catch (DownloadAgainException e) { ...
14 } finally {
15 rateLogic.adapt(); // Perform adaptation in the rate-adaptation module
16 }
17 } else {
18 if (playList.isLive()) continue; // Infinite loop for live content
19 else break;
20 }
21 }
22 } catch (...) {} // Catch exceptions
23 }
24 playList.setEnd();
25 }

If there is a new segment available, then this module calls the downloadSegment() method.
The first step is the initialization of the HTTP connection, which is shown in listing 4.18. The code
must check that the HTTP responses have correct headers and a valid response code. If there is
an error, then the code attempts for a limited number of times (modeled as MAX_ATTEMPS and
set to five in this implementation) to download the segment again - until a valid HTTP code is
returned.

Listing 4.18: Opening a valid HTTP connection.

1 while (attempt < MAX_ATTEMPTS) {
2 connection = (HttpURLConnection) url.openConnection();
3 connection.setConnectTimeout(TIMEOUT);
4 connection.setDoInput(true);
5 connection.connect();
6
7 int responseCode = connection.getResponseCode(); // Obtain HTTP response code
8 if (responseCode == HttpURLConnection.HTTP_OK)
9 break;

10 if (responseCode == HttpURLConnection.HTTP_NOT_FOUND)
11 throw new IOException("HTTP 404 not found");
12 attempt++;
13 connection.disconnect();
14 }
15 if (connection.getResponseCode() != HttpURLConnection.HTTP_OK)
16 return; // Exit if HTTP response code is not HTTP-200
17 ... // Read the Content-Length header field
18 connection = (HttpURLConnection) url.openConnection();

Listing 4.19 illustrates the management of the flow of bytes. The byte stream obtained from
the HTTP connection (produced by an instance of BufferedInputStream) is redirected to
the external storage (instance of FileOutputStream). In order to provide maximum timing
accuracy, timing measurements are performed at the beginning of the byte transfers. A timeout
(as explained above) is defined in this implementation as MAX_ALLOWED_TIME and is used as the
criteria of when to discard and re-download segments that could not be retrieved in time.

Listing 4.19: Procedure to download a new media segment.

1 private void downloadSegment(URL url) throws ... {
2 String filename = tempPath + getFileName(url.toString());
3 if (!new File(filename).exists()) {
4 ... // Init HTTP connection
5 bis = new BufferedInputStream(connection.getInputStream(), BYTE_BLOCK);
6 fos = new FileOutputStream(filename);
7 ... // Start timer
8 while ((count = bis.read(data, 0, data.length)) != -1) {
9 ... // Stop downloading if player is closed

10 if (Timer.getByteFlowTime() > MAX_ALLOWED_TIME) {

4.4. CLIENT 51

11 if (rateLogic.shouldDownloadAgain()) {
12 ... // Calculate availBW and notify Logic module
13 throw new DownloadAgainException(...);
14 }
15 }
16 fos.write(data, 0, count);
17 bytes += count;
18 }
19 ... // Close streams
20 try {
21 availBW = (int) ((totalBytes * 8 * 1000) / Timer.endByteFlow());
22 rateLogic.setAvailBandwidth(availBW);
23 } catch (ArithmeticException e){}
24
25 if (Player.isM3U8) // Perform MPEG-TS conversion if necessary
26 filename = Transcoder.convertToMp4(filename);
27
28 try {
29 new FakePlayer(filename); // Test downloaded segment in FakePlayer
30 } catch (DownloadAgainException e) {
31 rateLogic.retryOnError();
32 throw new DownloadAgainException(e.getMessage());
33 }
34 playList.add(filename); // Add segment to the playlist
35 }
36 }

Once the media file has been correctly downloaded, the segment-downloader module provides
a new bandwidth measurement (equation 5.5) to the rate-adaptation module. Notification is also
performed when discarding segments, which forces the selection of the appropriate quality level
before fetching another piece of content. Finally, the segment’s path is added to the playlist,
which is implemented as a Java List<MediaSegment>, where MediaSegment objects consist of
a estimated playback time-stamp and a file path.

4.4.7 Rate adaptation module

This module can be considered the core of the adaptation logic. It receives information about the
estimated playback time and the measured bandwidth from the segment-downloader module
(as explained in section 4.4.6). In addition, the rate-adaptation module has access to the different
playlists generated by the parsing module (see section 4.4.5). Based upon all of this information
the rate-adaptation module runs the adaptation algorithm to decide which representation level
is the optimal one. In this module, the aggressive, conservative, and mean algorithm (proposed
in section 4.4.2) have been implemented.

4.4.7.1 Implementation

In terms of Java programming, the rate-adaptation module is a submodule of the segment-
downloader, since they execute in the same thread. The algorithms proposed in the previous
sections rely on actions that increase or decrease the representation level. Hence, four Java
methods (listing 4.20) have been developed to provide this functionality. switchUp() and
switchDown() receive a parameter indicating the number of level switching steps. The
implementation of the switch-up method is shown in listing 4.21.

Listing 4.20: Java methods used to switch the representation level.

1 private void switchUp(int levels);
2 private void switchDown(int levels);
3 private void switchMaxUp();
4 private void switchMinDown();

52 CHAPTER 4. DESIGN AND IMPLEMENTATION

Listing 4.21: Switch-up method. Increase the selected representation level. The number of steps to
increase is passed as a parameter.

1 private void switchUp(int levels) {
2 while (levels > 0 && !isMaxBandwidth) {
3 try {
4 /* Try to access the next representation list */
5 segmentLists.get(currentId + levels);
6 /* Success, update the pointers */
7 currentId += levels;
8 currentList = segmentLists.get(currentId);
9 setBandwidths();

10 break;
11 } catch (IndexOutOfBoundsException e) {}
12 levels--;
13 }
14 }

The process of adaptation is performed after the download of every segment. The segment-
downloader module calls the adapt() method within the rate-adaptation module. Listing 4.22
shows a simplified version of the Java code, only the adaptive (aggressive) algorithm is shown in
this example. The remainder of the implementation follows the algorithms.

Listing 4.22: Adaptation Java method. It selects the appropriate representation level for each
algorithm.

1 public void adapt() {
2 switch (logic) { // Apply rate algorithm according to adaptive profile
3 case PROGRESSIVE:
4 ... // Null adaptation, testing purposes
5 case ADAPTIVE_CONSERVATIVE:
6 ... // Implementation of the conservative adaptive algorithm
7 case ADAPTIVE_CONSERVATIVE:
8 if (playList.isEmpty()) {
9 switchMinDown();

10 } else {
11 int throughput = (int) (measuredThroughput * SENSITIVITY);
12 if (throughput > currentBW) {
13 while (nextBW < throughput && !isMaxBandwidth)
14 switchUp(1);
15 } else {
16 do {
17 switchDown(1);
18 } while (prevBW > throughput && !isMinBandwidth);
19 }
20 }
21 break;
22 case ADAPTIVE_MEAN:
23 ... // Implementation of the mean adaptive algorithm
24 }
25 ... // Prevent re-download a segment at the same quality twice
26 }

4.4.8 Transcoder module

Media segments are fetched and allocated in the Android device’s external storage, as was
previously explained in section 4.4.6. In case of the MPEG-DASH standard, media formats
produced by the HTTP servers are fully supported in Stagefright, making the segments suitable
for playback. However, the Apple-HLS specification contemplated only MPEG-TS as a media
container format. Unfortunately, this container format is not natively supported in Stagefright,
hence a transcoder is utilized to perform the necessary conversion.

The transcoder module solves the compatibility problem by providing additional processing
for Apple’s HLS media content. Fortunately, most Apple-HLS sources contains streams encoded

4.4. CLIENT 53

with H.264 (baseline profile) and AAC, thus the transcoder only needs to change the MPEG-
TS container into one of the Android’s supported formats (listed in table 2.4 on page 21).
Figure 4.14 illustrates the necessary transformation for compatibility. Since this procedure
consumes a considerable amount of CPU cycles13, it must be performed within a bounded
period of time to avoid interrupting the playback (see experiments in section 5.7). As an absolute
maximum upperbound, the overall execution of the operations performed in the buffering and
transcoder modules may never take longer that the previous segment’s duration, as expressed in
equation 4.5.

T (i)downl oad +T (i)conver si on < T (i −1)dur ati on (4.5)

Assuming that all segments are of the same length, equation 4.5 can be expressed as:

Tdownl oad +Tconver si on < Tdur ati on (4.6)

Transcoder

MPEG-TS

.ts

H.264 BP

AAC

H.264 BP

AAC

MP4

.mp4

input output

Figure 4.14: Media container conversion performed in the transcoder module. It provides
compatibility with Apple-HLS.

4.4.8.1 Implementation

This module makes use of the FFmpeg audio and video libraries. Since they are written in the
C and C++ programming languages, a binding is needed to invoke the proper functions from
Android’s Java standard code. This binding is achieved by means of the Java Native Interface
(JNI). Fortunately a Native Development Kit (NDK)14 is offered at the official Android developers
site, which provides several tools to link Java code to pieces of native code. The basic Android
application model does not change, since the NDK works in combination with the Android’s
SDK (introduced in section 2.10). The integration of the FFmpeg libraries can be found in the
appendix C.

Listing 4.23 describes how exceptions can be thrown from the native code to the Java activities
to notify them of an exception in the native code.

Listing 4.23: C function which throws a Java exception via JNI.

1 int jniThrowException(JNIEnv* env, const char* className, const char* msg) {
2 jclass exceptionClass = env->FindClass(className);
3 if (exceptionClass == NULL)
4 return -1;
5 env->ThrowNew(exceptionClass, msg)
6 return 0;
7 }

A set of native functions have been defined in a Java FFmpeg class: the most important of these
are shown in listing 4.24. These methods provide a basic interface to prepare the conversion.
The first two functions, native_avcodec_register_all() and native_av_register_all(),
initialize all the media formats and CODECs that have been enabled when FFmpeg was

13External libraries (FFmpeg) perform the conversion of container format and require a significant amount of time
smartphones’ CPUs.

14Android NDK. Available from http://developer.android.com/sdk/ndk.

http://developer.android.com/sdk/ndk

54 CHAPTER 4. DESIGN AND IMPLEMENTATION

compiled. Input and output file names are set with native_av_setInputFile() and
native_av_setOutputFile(), respectively. The output CODECs are set by calling the
native_av_setVideoCodec() and the native_av_setAudioCodec() functions. In the
FFmpeg notation, media streams can remain unaltered if copy is indicated as the video and audio
CODECs, in this case changes will be made to the container format, which is the main purpose
of this module in our current prototype.

Listing 4.24: A particular set of native functions defined in the FFmpeg class.

1 /* Codec initialization */
2 private native void native_avcodec_register_all();
3 private native void native_av_register_all();
4 private native void native_av_init()
5 throws RuntimeException;
6 /* Input parameters */
7 private native FFmpegAVFormatContext native_av_setInputFile(String filePath)
8 throws IOException;
9 private native FFmpegAVFormatContext native_av_setOutputFile(String filePath)

10 throws IOException;
11 private native void native_av_setVideoCodec(String codec);
12 private native void native_av_setAudioCodec(String codec);
13 private native void native_av_parse_options(String[] args)
14 throws RuntimeException;
15 /* Main conversion method */
16 private native void native_av_convert()
17 throws RuntimeException;
18 /* Release resources */
19 private native int native_av_release(int code);

The initialization procedure is specified in listing 4.25, where the input options are allocated.
Input parameters are parsed in the FFmpeg_parseOptions() native function, which has been
simplified in listing 4.26.

Listing 4.25: Initialization native function.

1 static void FFmpeg_init(JNIEnv *env, jobject obj) {
2 sObject = (*env)->NewGlobalRef(env, obj);
3 jclass clazz = (*env)->GetObjectClass(env, obj);
4 int i=0;
5 for(i=0; i<AVMEDIA_TYPE_NB; i++){
6 avcodec_opts[i]= avcodec_alloc_context2(i);
7 }
8 avformat_opts = avformat_alloc_context();
9 sws_opts = sws_getContext(16, 16, 0, 16, 16, 0, sws_flags, NULL, NULL, NULL);

10 }

Listing 4.26: Parsing native function to obtain conversion parameters.

1 static void FFmpeg_parseOptions(JNIEnv *env, jobject obj, jobjectArray args) {
2 ... // Init variables
3 if (args != NULL) {
4 argc = (*env)->GetArrayLength(env, args);
5 argv = (char **) malloc(sizeof(char *) * argc);
6 for(i=0;i<argc;i++) {
7 jstring str = (jstring)(*env)->GetObjectArrayElement(env, args, i);
8 argv[i] = (char *)(*env)->GetStringUTFChars(env, str, NULL);
9 }

10 }
11 parse_options(argc, argv, options, opt_output_file); // Parse options
12 /* Check input and output files */
13 if(nb_output_files <= 0 && nb_input_files == 0)
14 jniThrowException(env, ...);
15 if (nb_output_files <= 0)
16 jniThrowException(env, ...);
17 if (nb_input_files == 0)
18 jniThrowException(env, ...);
19 }

4.4. CLIENT 55

Finally, listing 4.27 illustrates FFmpeg_transcode(), where the fundamental FFmpeg function
av_transcode() is invoked. Calling this function implies that all input parameters have been
properly set without throwing any JniException.

Listing 4.27: Convert native function.

1 static void FFmpeg_transcode(JNIEnv *env, jobject obj, jlong outputFile,
2 jlong inputFile) {
3 ...
4 if (av_transcode(output_files, nb_output_files, input_files, nb_input_files,
5 stream_maps, nb_stream_maps) < 0)
6 jniThrowException(env, ...);
7 }

The Java method convertTo() (simplified in listing 4.28) wraps all the native functions
previously explained, providing a simple shortcut to utilize the FFmpeg libraries from any
Android activity. This procedure is depicted in figure 4.15. The whole operation can be simplified
into three simple steps:

Listing 4.28: Java conversion method.

1 private static String convertTo(String inputFile, String extension)
2 throws FFmpegException, RuntimeException, IOException {
3
4 ffmpeg = new FFmpeg(); // Prepare conversion parameters
5 ffmpeg.setVideoCodec("copy"); // Only conversion of the container format
6 ffmpeg.setAudioCodec("copy");
7 ffmpeg.init(inputFile, outputFile);
8 ffmpeg.convert(); // Start format conversion
9 return outputFile;

10 }

1. The Java convertTo() method is invoked after downloading a segment in the
segment-downloader module (as was explained in section 4.4.6). The function
convertTo() internally calls the native function native_av_convert().

2. JNI launches the corresponding C function (FFmpeg_transcode(), listing 4.27) which
makes use of the FFmpeg libraries.

3. The FFmpeg av_transcode() function is started. There are two possible outcomes:

• Conversion was successfully performed, thus a new file has been created in the
Android device’s external storage and this file should be properly added to the playlist.

• A failure occurred in some point in the conversion procedure (av_transcode()
returned -1). In this case a JniException is thrown up to the Java layer, which is
viewed as a RuntimeException.

External
storage

FFmpeg
A/V libraries

JNI

convertTo()

FFmpeg_transcode(JNIEnv *env)

av_transcode()

jniThrowException

ret=-1

Java SE

C/C++

RuntimeExceptionnative_av_convert()

1

2

3

Figure 4.15: FFmpeg conversion interface.

56 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.4.9 Timer module

The timer module provides accurate timing information about multiple events that take place in
the client application. The following measurements are essential for our evaluation of the system:

Start-up delay time it takes to start the playback.

Download delay time required to download a single media segment.

Absolute playback time starting playback time of a single segment, expressed in absolute time
(based upon being synchronized with a NTP server).

Load time it takes to prepare the visualization of a single segment to be
played until it is shown on the screen.

Parsing delay time it takes to receive and parse the whole playlist since it is requested.

Conversion delay time spend in transcoding or conversion operations (currently this is
only applicable for Apple-HLS, as described in section 4.1.1).

Inactivity interval of time when the client is inactive, i.e., when all available
segments have been fetched.

Pause time the player spends stopped during playback because the buffer is
empty.

Session lifetime total duration of the session, i.e., the time since the system was started
until it is shutdown.

The timer module is synchronized with a pool of NTP servers, as introduced in section 4.2.
Table 4.12 summarizes the most significant SNTP parameters used in this implementation.

Table 4.12: NTP settings.

NTP server NTP port Version Mode NTP timeout (s) NTP update (s)

europe.pool.ntp.org 123 3 3 15 30

4.4.9.1 Implementation

A sntpClient class has been created to request timing information from an NTP server. A NTP
datagram is sent to the server and port specified in table 4.12, indicating the current system time
in the OriginateTimeStamp header field. Calculation of the offset time between the cellphone’s
internal clock and the NTP server’s clock is shown in listing 4.29.

Listing 4.29: Request NTP time.

1 private static boolean requestNTPTime() {
2 if (ntpClient.requestTime(NTP_SERVER, NTP_TIMEOUT)) {
3 /* Calculate offset */
4 offsetNTP = ntpClient.getNtpTime() + SystemClock.elapsedRealtime()
5 - ntpClient.getNtpTimeReference()
6 - System.currentTimeMillis();
7 return true;
8 }
9 return false;

10 }

The first NTP request is sent upon initialization of this module. Consequently, a background
task is started to make future requests to the NTP servers (see listing 4.30). This module offers
two types of timing metrics:

4.5. NETWORK EMULATOR 57

Absolute time calculated as the sum of the system’s internal time and the NTP received offset.

Time intervals based strictly on the system’s internal clock, computed as the difference between
time-stamps.

Listing 4.30: NTP initialization.

1 public static void init() {
2 time = System.currentTimeMillis(); // System’s local clock
3 ... // Request NTP time and calculate offset
4 ... // Set all counters to zero
5 new Thread(new Runnable() { // Init NTP update in a background task
6 @Override
7 public void run() {
8 Looper.prepare();
9 ntpHandler = new Handler();

10 ntpHandler.postDelayed(NTPUpdate, NTP_UPDATE);
11 Looper.loop();
12 }
13 }).start();
14 }

4.5 Network emulator

A prototype of the media player presented in section 4.4 has been developed to provide network
adaptation. Rate adaptation implies that the client reacts in a reasonable time to changes in the
network conditions.

4.5.1 Emulator requisites

In order to evaluate the capabilities of the application (as will be done in chapter 5), a network
simulator was interposed between the client and the server to control the characteristics of the
HTTP traffic. This emulator must do at least the following: (1) perform bandwidth limitation
(bidirectional, and optionally, unidirectional), (2) produce packet loss with a given probability or
error rate, and (3) induce appropriate packet delays.

Dummynet [20, 21] has been selected as the evaluation tool since it satisfies the above
requirements and it is easily integrated in the system15. Dummynet’s is briefly explained in
the following section, along with the functions that will be used during the evaluation (see
the network scenarios defined in section 5.1.7). There are multiple alternative emulation tools
available, but they present some integration difficulties:

• WANem16 is a Wide Area Network (WAN) emulator, which provides several tools to perform
experiments in a Local Area Network (LAN) environment. WANem can be used to emulate
different WAN conditions such as packet loss, packet re-ordering, or jitter. However,
WANem has two disadvantages for integration in our test environment: (a) WANem is
intended to be deployed with ethernet interfaces, but the communication between client
and server is performed over a wireless interface) and (b) unfortunately, WANem is only
offered as a Gnu/Linux (Knoppix) live distribution, which makes scheduled scripting more
difficult, since it requires a separate machine running the emulator.

• Trickle17 is a Gnu/Linux bandwidth shaper which limits traffic over a socket. The
trickle command simply precedes any other command in order to limit bandwidth in

15A second alternative would have been tc. Tc is a Linux kernel tool which can be used to configure network traffic with
similar functionality as Dummynet. A comparison study [58] determined that both tc and Dummynet equally emulated
bit-rates up to 500 Mb/s.

16WANem. Available from: http://wanem.sourceforge.net.
17Trickle. Available from: http://monkey.org/~marius/pages/?page=trickle.

http://wanem.sourceforge.net
http://monkey.org/~marius/pages/?page=trickle

58 CHAPTER 4. DESIGN AND IMPLEMENTATION

this application. An example of this would be: trickle [parameters] application.
Since both on-demand and live server (described in sections 4.3.1 and section 4.3.2) have
been deployed as Gnu/Linux daemons, trickle cannot be easily invoked several times
during the servers’ execution18. Trickle does not support modification of the emulation
parameters on-the-fly, therefore servers will have to be restarted for every variation in
the emulation scenario. Since the live server requires a considerable19 time to inspect
all segments during its initialization, it should not be restarted for every variation in the
intended emulation.

4.5.2 Dummynet

Dummynet is the network emulator deployed for our evaluation. For simplicity, Dummynet
was installed on the same Gnu/Linux machine as the HTTP server. Dummynet intercepts the
packets within the protocol stack, as shown in figure 4.16. These packets are selected according
to different rules, which have been previously specified by means of the ipfw shell command.

Network

Applications

dummynet

Protocol
stack

Figure 4.16: Dummynet introduces one or more pipes and queues in the protocol stack. Packets are
intercepted and delayed according to the set of network rules. Adapted from [21, figure 3].

The intercepted packets are passed through one or more queues and pipes (as depicted in
figure 4.17) which emulate propagation delays, limitations of available bandwidth, and packet
loss. Pipes behave as fixed-bandwidth channels and queues can be weight-assigned.

Network rules can be easily defined. These rules establish a networking profile. Several
profiles were proposed for the experiments and measurements described in the next chapter. For
example, listing 4.31 shows how to define a simple pipe rule that restricts the available bandwidth
to 2 Mb/s and introduces a packet delay of 1000 ms. Listing 4.32 shows a more complex example,
where both outcoming and incoming traffic have different bit-rates, packet delay, and packet loss
specifications.

Listing 4.31: A simple pipe created in Dummynet. The pipe bidirectionally limits the network traffic
to 2 Mb/s and induces a packet delay of 1000 ms.

1 # Define bandwidth and delay of the emulated link
2 ipfw pipe 1 config bw 2Mbit/s delay 1000ms
3 # Pass all traffic through the emulator
4 ipfw add pipe 1 ip from any to any

18Gnu/Linux daemons are intended to be as user-independent as possible. Daemons are executed in background and
typically provide a reduced set of commands such as start, stop, status, and restart.

19The live servers analyzes all the media segments encoded at different bit-rates (for all the media clips), in order
to detect missing segments (i.e., removed from the system for any reason) and generate manifest files accordingly. The
manifest file is not available until this procedure has finished.

4.5. NETWORK EMULATOR 59

delay

bwqueue

input packets output packets
dummynet pipe

queue size

Figure 4.17: Pipes and queues, the basic elements of Dummynet. Adapted from [20, figure 3].

Listing 4.32: A more complete example of pipes in Dummynet. Incoming network traffic is limited to
512 kb/s with a delay of 32 ms and 1% probability of error; whereas the outcoming traffic is limited to
256 kb/s, 100 ms of packet delay, and 5% of packet loss.

1 # Define pipes for incoming and outcoming network traffic
2 ipfw add pipe 3 out
3 ipfw add pipe 4 in
4 # Pipes configuration
5 ipfw pipe 3 config bw 512Kbit/s delay 32ms plr 0.01
6 ipfw pipe 4 config bw 256Kbit/s delay 100ms plr 0.05

Chapter 5

Evaluation

”Premature optimization is the root of all
evil.”

– Donald Knuth

In this chapter a number of potential experiments are proposed to evaluate the performance
of the adaptive mechanisms presented in section 4.4.7.

The evaluation environment is introduced in section 5.1, including the segmentation schemas
(defined in section 5.1.3), the input/output characterization (section 5.1.5), the metrics proposed
(section 5.1.6), and the network scenarios emulated (section 5.1.7). Results of the experiments are
described in section 5.2 to section 5.7.

5.1 Experimental environment

Figure 5.1 illustrates the evaluation environment. Three components of the architecture have
been provided with input parameters:

1. The client’s application provides several rate mechanisms: the aggressive, conservative, and
mean algorithms (as introduced in section 4.4.7).

2. A set of scenarios (explained in detail in section 5.1.7) are emulated in the underlying
network between server and client.

3. The preparation of the content follows different segmentation schemas (section 5.1.3). In
particular, schemas might differ in media formats, CODECs, and duration of the segments.

Client

Network
emulator

Internet

HTTP servers

Network
scenarioRate

mechanism

External
HTTP server

HTTP/1.1
Content

preparation

Segmentation
profile

Figure 5.1: Evaluation environment with three different parametrized components (shown in gray).

Additionally, a real-world scenario has been included in this evaluation. This scenario exploits
the fact that several TV channels following the Apple-HLS standard are freely available on the
Internet (see section 5.7).

61

62 CHAPTER 5. EVALUATION

5.1.1 Experimental devices

Table 5.1 summarizes the specifications of the devices utilized on the experiments. The same
machine (a standalone netbook) acts as HTTP server and prepares the content (as explained in
section 4.1 and section 4.3). The client is a mid-range smartphone running Android 2.2.1.

Table 5.1: Specifications of devices employed in the experiments. Extracted from [63].

Client Server

Name Samsung Galaxy Ace S5830 Acer Aspire One D150

CPU 800 MHz ARM 11 processor 1.60 GHz Intel Atom N270

Memory RAM: 256 MB
Internal: 158 MB
External: 2GB microSD

RAM: 1 GB DDR3 @ 667 MHz
Storage: 160 GB SATA HDD

OS Android v2.2.1 (Froyo) Kubuntu Gnu/Linux 2.6.36

Network 2G: GSM 850/900/1800/1900
3G: HSDPA 900/2100
WLAN: Wi-Fi 802.11 b/g/n

WLAN: Wi-Fi 802.11 b/g/n

Display TFT HVGA touchscreen. 480 × 320 px -

5.1.2 Content source

The 3D animation film Sintel [16] has been selected for this evaluation, since is free-distributable
under the Creative Commons Attribution (CC-A) license. Sintel is a 15-minute movie produced
by the Blender Foundation and created entirely with open source software. It was released at the
Netherlands Film Festival in September 2010.

5.1.3 Segmentation schemas

The media content which is pushed to the HTTP servers can be offered in multiple ways. Our
evaluation focus on two essential aspects: the number of quality levels (R) and the duration of
the segments (Sd). Table 5.2 defines the different segmentation schemas used in our evaluation.

Each schema provides a different media segment duration Sd , from 5 s to 15 s. The reference
time has been set to 10 s, as this duration was recommended by Zambelli [74] (see also table 2.6
on page 23). For simplicity, a homogeneous but sufficient [49, 50] number of representations
has been provided in all schemas. Selection of the different levels of quality is explained in
section 5.1.4.

Table 5.2: Segmentation schemas.

Schema 1 Schema 2 Schema 3 Schema 4

Sd (s) 5 8 10 15

R 10 10 10 10

5.1.4 Selection of media quality levels

Table 5.3 illustrates the Android’s official encoding recommendations for low and high quality
media content. For the sake of simplicity, in this evaluation the frame rate, audio channels,

5.1. EXPERIMENTAL ENVIRONMENT 63

sampling rate, GOP size1, and resolution are set to typical values (as shown in table 5.4), whereas
video and audio bit-rates are part of our design choices. Both audio and video bit-rates are
increased in every media representation that we have conducted experiments with.

Table 5.3: Official Android’s encoding recommendations for low and high quality video. Extracted from
the Android’s developer site [6].

Parameter Low quality video High quality video

Video CODEC H.264 Baseline Profile H.264 Baseline Profile

Video resolution (px) 176 × 144 480 × 360

Frame rate (fps) 12 30

Video bit-rate (kb/s) 56 500

Audio CODEC AAC-LC AAC-LC

Audio channels 1 (mono) 2 (stereo)

Audio bit-rate (kb/s) 24 128

Table 5.4: Set of fixed parameters used in all representations.

Container format CODECs Frame rate (fps) GOP size Resolution (px)

MP4 (.mp4) H.264 BP + AAC 25 25 480 × 320

Table 5.5 defines the quality levels which will be provided to the HTTP servers, with increasing
bit-rates from 80 kb/s to 2 Mb/s. In particular, these representations have been selected to supply
a higher density of levels for lower bit-rates, since this prototype is intended for mobile networks
that may have more limited bandwidth. Therefore, the difference in rates between levels is not
uniform. This selection of media bit-rates leads to potentially large changes in quality levels by
the rate adaptation algorithms.

Table 5.5: Set of media representation levels generated on the streaming server.

Level (ri) 1 2 3 4 5 6 7 8 9 10

Video bit-rate (kb/s) 56 70 100 150 200 400 700 900 1400 1900

Audio bit-rate (kb/s) 24 24 44 64 94 94 94 94 94 94

Audio channels 1 1 1 1 2 2 2 2 2 2

Sampling rate (kHz) 22.05 22.05 22.05 22.05 44.1 44.1 44.1 44.1 44.1 44.1

Avg. bit-rate (kb/s) 80 100 150 200 300 500 800 1000 1500 2000

As an example of the video streams, figure A.6 shows a set of frames from the same clip encoded
at different video/audio bit-rates. For simplicity, only four quality levels are represented: 80 kb/s
(first representation), 150 kb/s, 800 kb/s, and 2000 kb/s (last representation). Higher rates assign
more bits per image, resulting in a better quality.

1A fixed GOP setting in the encoder simplifies the stream switching between video levels.

64 CHAPTER 5. EVALUATION

(a) 80 kb/s (b) 150 kb/s

(c) 800 kb/s (d) 2000 kb/s

Figure 5.2: Frame samples from Sintel encoded at different bit-rates.

5.1.5 Input and output characterization

Table 5.6 and table 5.7 summarize, respectively, the input and output parameters that have been
considered in our evaluation.

Table 5.6: Input parameters.

Notation Unit Definition

T s Total session time

Tshi f t s Available shifting time on server

Tmi n−bu f s Minimum buffering time, specified on server

Sd s Segment duration

S segments Total number of segments in session. Calculated as S = T /Sd

Tt i meout s Segment’s downloading timeout. Tt i meout = Sd ·80%

R levels Total number of representations offered on the server

ri b/s Ordered representation levels by bit-rates, where 1 < i < R. The last
representation, rR represents the highest quality level offered by the server

bwavai l (t) b/s Available bandwidth emulated during the session.

b̃w avai l (t) b/s Maximum available bandwidth

pe - Probability of error

The available bandwidth (bwavai l (t)) represents the bit-rate offered at the server’s side over
the session time as emulated by Dummynet. The available bandwidth is a function defined from
t = 0 s to t = T .

5.1. EXPERIMENTAL ENVIRONMENT 65

Table 5.7: Output parameters.

Notation Unit Definition

Tbu f s Total buffering time, i.e., total time the playback is interrupted due to buffer
underrun during the session

Tst ar t−up s Start-up time

Ti nacti ve s Total inactive time, i.e., the client is not downloading segments

Smi ssed segments Total number of missed segments due to HTTP-404 responses

Sr etr y segments Total number of retried segments, i.e., segments which are discarded to be
re-downloaded at another quality level

τ(t) b/s Throughput, i.e., measured link bit-rate on client’s side

b(t) b/s Media bit-rate selected on client’s side

scl i ent (t) s Segments’ actual playback on client (absolute time-stamps synchronized
with NTP)

sser ver (t) s Server’s segment availability (absolute time-stamps synchronized with
NTP)

cst ate (t) - Client’s state function

The maximum available bandwidth (b̃w avai l (t)) is defined as the available bandwidth at
the highest representation bit-rate offered by the server (rR). In this evaluation, truncation
is produced at rR = 2 Mb/s (corresponding to representation number 10 in table 5.5). The
maximum available bandwidth is a function defined from t = 0 s to t = T . Figure 5.3 depicts
an example of the bwavai l (t) and the b̃w avai l (t) functions.

b̃w avai l (t) = bwavai l (t) 0 < b̃w avai l (t) < rR (5.1)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

bw
a
v
a
il
(t
)
(M

b
/s
)

re
p
re
se
n
ta
ti
on

s
(M

b
/s
)

0 100 200 300 400 500 600

Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

b̃w
a
v
a
il
(t
)
(M

b
/s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.3: Example of a available bandwidth function (bwavai l (t)) and the representation levels
depicted in the left hand figure. The maximum available bandwidth function (b̃w avai l (t)) is depicted
on the right hand figure, truncated at the maximum representation level (rR = 2 Mb/s)

The throughput function (τ(t)) represents the measured link bit-rate on the client’s side. The
throughput is a stepwise function computed over the individual throughput of every segment
(τi). This is calculated as:

τi = Si

Ti

66 CHAPTER 5. EVALUATION

Where Si is the size in bits of the segment i and Ti the time the client spends downloading the
segment i . The throughput function is constructed as follows:

τ(t) =

0 0 < t < tb1

τ1 = s1

tb1 − ta1
tb1 < t < tb2

τ2 = s2

tb2 − ta2
tb2 < t < tb3

.

Where s1, s2, . . . are the sizes of the downloaded segments and ta1, ta2, . . . and tb1, tb2 . . . are
respectively the starting and ending time-stamps which determine the downloading time for
each segment.

The selected media bit-rate (b(t)) is a stepwise function which records the representation
level selected by the client for the segments that have been successfully downloaded. Note that,
the representation level of the segments that are discarded (to be re-downloaded at a lower
quality level) are not considered in b(t). The selected media bit-rate is the result of the decisions
taken by the adaptation mechanisms (introduced in the previous chapter, section 4.4.7). These
mechanisms use the throughput (τ(t)) as the only metric to produce adaptation.

5.1.6 Metrics

Table 5.8 enumerates the metrics defined for our evaluation. All of these metrics are defined using
a common reference (i.e., the session time, T), to ease comparison regardless of the experiments’
session time. These metrics are calculated over all the data accumulated over the session. Thus,
the disparity of the results obtained by running the same experiment several times is minimized.
The following subsections explain in detail how these metrics are computed.

Table 5.8: The metrics that will be used for our evaluation.

Notation Unit Definition

u(t) % Bandwidth utilization

e(t) s End-to-end latency

εbw % Bandwidth utilization efficiency

εbu f % Buffering efficiency

ε f etch % Segment fetch efficiency

εr etr y % Segment-retry efficiency

εacti ve % Active efficiency

εst ar t−up % Start-up efficiency

εup % Reaction (switching-up) efficiency

εdown % Reaction (switching-down) efficiency

5.1.6.1 Weighted functions

A pair of weighted functions (depicted in figure 5.4 have been proposed to define some
of the metrics of this evaluation. In particular, these functions are used for the active
efficiency (section 5.1.6.8), the start-up efficiency (section 5.1.6.9), and the reaction efficiency
(section 5.1.6.10).

5.1. EXPERIMENTAL ENVIRONMENT 67

The first weighting function (wlong (t)) is a linear, monotonically decreasing function which
assigns higher weights at the beginning than at the end of session T . The function wlong (t) is
defined to provide weight to metrics which involve measurements during the whole session time
(T).

wlong (t) = 1− t

T
0 < t < T

wshor t (t) is a non-linear function which assigns higher weights given small time values.
wshor t (t) decreases much faster than wl ong (t), such that a delay of 20 s (the maximum segment
duration in the experiments) is assigned2 a weight of 50% (wshor t (20) = 0.5). As a result, wshor t (t)
provides higher weight to metrics which measure short delays or intervals shorter than the
session time (T), such as reaction times.

wshor t (t) = 1
t

20
+1

0 < t < T

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300 400 500 600

Time (s)

wlong(t)

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40 45 50

Time (s)

wshort(t)

Figure 5.4: Weighted functions. wlong (t) weights metrics over the whole session T , whereas wshor t (t)
is more suitable to weight delays and short intervals.

5.1.6.2 Bandwidth utilization

The bandwidth utilization function (u(t)) is defined as the selected bandwidth of the client (b(t))
normalized by the maximum available bandwidth (b̃w avai l). Thus, given a time t , this function
compares the media bit-rate selected on the client’s side compared to the maximum available bit-
rate in the network. Values of u(t) lower than 1 represent an underestimation of the maximum
available bandwidth, whereas values greater than 1 denote an overuse of the available bandwidth.

u(t) = b(t)

b̃w avai l (t)
(5.2)

5.1.6.3 Bandwidth efficiency

The bandwidth utilization efficiency (εbw) is defined as the integral of the bandwidth utilization
(u(t)), normalized to the session time T . As a result εbw represents the efficacy of the bandwidth
utilization throughout the whole session. This coefficient is calculated as follows:

First, the bandwidth utilization function (u(t)) is separated into the sum of two sub-functions
uunder (t) and uover (t):

u(t) = uunder (t)+uover (t)

2Many other conditions could have been chosen arbitrarily. For our evaluation, the condition for wshor t (t) is defined
based on the largest value of Sd considered in our experiments, i.e., 20 s.

68 CHAPTER 5. EVALUATION

Where uunder (t) and uover (t) contain respectively the values of u(t) that are lower and greater
than 1:

uunder (t) =
 u(t) u(t) < 1

0 u(t) > 1

uover (t) =
 0 u(t) < 1

u(t) u(t) > 1

Given these two functions, the bandwidth utilization efficiency is calculated as follows:

εbw = 1

T

∫
T

uunder (t)d t +
∫
T

1

uover (t)
d t

 (5.3)

Note that the second integral is calculated using the inverse of uo ver (t) since all values of
uo ver (t) are all greater than 1. The inverse is utilized to correlate εbw with the underestimation
and overestimation of the available bandwidth.

5.1.6.4 Buffering efficiency

The buffering efficiency (εbu f) measures the total playback time over the session. Note that in our
evaluation it is assumed that there is always playable content during the experiments, therefore
the player can be only switched between two states: buffering or playing. εbu f is calculated using
the cumulative buffering time (Tbu f), i.e., the time the playback has been interrupted due to
buffer underrun as indicated in equation 5.4.

εbu f = 1− Tbu f

T
(5.4)

5.1.6.5 Segment-fetch efficiency

The segment-fetch efficiency (ε f etch) is the ratio of segments successfully downloaded (S −
Smi ssed) over the total number of segments that should have been in the session (S). It provides a
comparison between the number of segments that have been successfully fetched and the missed
segments due to HTTP-404 responses.

ε f etch = 1− Smi ssed

S
(5.5)

5.1.6.6 Segment-retry efficiency

The segment-retry efficiency (εr etr y) represents the proportion of the time consumed when
the client re-downloads segments at different qualities, compared to the session time (T). The
consumed time is calculated as the number of re-attempts (Sr etr y) multiplied by the maximum
time to download a segment (Tt i meout). Note that Tt i meout is defined as the 80% of the segment
duration (Sd).

εr etr y = 1− Sr etr y ·Tt i meout

T
(5.6)

5.1. EXPERIMENTAL ENVIRONMENT 69

5.1.6.7 End-to-end latency

The end-to-end latency (e(t)) indicates the delay from when a new segment is available on the
server’s side until the client actually plays the segment (not when the segment is stored in buffer).
e(t) is an stepwise function calculated as follows:

e(ti) = scl i ent (ti)− sser ver (ti) (5.7)

Where e(ti) is the end-to-end latency of the segment i , scl i ent (ti) represents the time-stamp
of the actual playback of segment i on the client’s side, and sser ver (ti) is the time-stamp when
segment i is produced on the server’s side. Time-stamps are synchronized with a NTP server (as
explained in section 4.2).

5.1.6.8 Active efficiency

The active efficiency (εacti ve) provides a weighted sum of the total time the client is in the active
state, normalized by the total active time during the session. εacti ve is calculated as:

εacti ve = 1− 1

Ti nacti ve

∫
T

cst ate (t) ·wl ong (t)d t (5.8)

Where wl ong (t) is a weighting function (defined in section 5.1.6.1) and cst ate (t) denotes the
stepwise state function:

cst ate (t) =
 1 inactive

0 active

5.1.6.9 Start-up efficiency

The start-up efficiency (εst ar t−up) is defined as the weighted start-up time, that is, the wshor t (t)
weighted function is applied to the time it takes to start playback (Tst ar t−up). Tst ar t−up is defined
as the interval since the begin of the experiment (t = 0 s) until the first media segment starts to
play.

εst ar t−up = wshor t (Tst ar t−up) (5.9)

5.1.6.10 Reaction efficiency

Figure 5.5 illustrates the criteria employed to calculate the reaction times in our evaluation. Two
types of intervals are defined:

1. The switching-up reaction interval (Tup) is the elapsed time since a bit-rate increase
occured in the network (bwavai l (t)) until the client increments the quality level (b(t)). Note
that further switching operations might be performed; however, they are not considered in
the Tup interval.

2. The switching-down reaction interval (Tdown) is defined similarly to Tup , in case of bit-rate
reductions in bwavai l (t).

Thus, the reaction efficiencies for switching-up and switching-down (εup , εdown) are defined
as Tup and Tdown weighted by the wshor t (t) function.

εup = wshor t (Tup) (5.10)

70 CHAPTER 5. EVALUATION

εdown = wshor t (Tdown) (5.11)

Tup Tdown
t

bwavail(t)

b(t)

Tup Tdown

Figure 5.5: Reaction times.

5.1.7 Network scenarios

Figure 5.6 depicts the network scenarios considered in our evaluation. These scenarios provide
persistent and non-persistent bandwidth fluctuations. The session time for all the experiments
was defined to be sufficiently long enough to determine the long-term behaviour of the system:
an experimental run of 10 minutes (T = 600 s) prevents bias of the results. Considering the
longest segment duration evaluated on this scenarios (Sd = 20 s), the session duration is 600±20 s
(±3.33%), thus providing a confidence of 96.67%. For all scenarios, two families of experiments
were performed:

1. Performance of the three adaptive mechanisms during the session. The duration of
segments is fixed to 10 seconds (Sd = 10 s) in this set of experiments.

2. Performance of the conservative mechanism with different segment durations (5 s, 10 s,
and 20 s).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

bw
a
v
a
il
(t
)
(M

b
/s
)

0 100 200 300 400 500 600

Time (s)

Scenario 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

bw
a
v
a
il
(t
)
(M

b
/s
)

0 100 200 300 400 500 600

Time (s)

Scenario 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bw
a
v
a
il
(t
)
(M

b
/s
)

0 100 200 300 400 500 600

Time (s)

Scenario 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

bw
a
v
a
il
(t
)
(M

b
/s
)

0 100 200 300 400 500 600

Time (s)

Scenario 4

Figure 5.6: Network scenarios emulated during the evaluation. All of them produce variations in the
available bandwidth.

5.2. SCENARIO 1: LONG-TERM VARIATIONS OF THE AVAILABLE BANDWIDTH 71

5.2 Scenario 1: long-term variations of the available bandwidth

The first network scenario (depicted in figure 5.7) produces long-term variations of the available
bandwidth. The scenario has two parts: from t = 0 s to t = 300 s, bit-rates are decreased at
intervals of one minute from 4 Mb/s to 250 kb/s. In the second part, bit-rates are increased from
250 kb/s to 4 Mb/s at one minute intervals.

4 Mb/s

2
1

0.5
0.25

0.5 1
2

4

time (s)
0 60060 180 240 360 420 480 540120

4

Figure 5.7: Series of Dummynet pipes for the first network scenario.

This network scenario evaluates the behaviour of the client to abrupt, but not frequent
fluctuations in the available bandwidth. The first part forces the client to reduce the selected
media level, whereas in the second part the client may gradually switch to the highest possible
representation level.

5.2.1 Performance of the adaptation mechanisms

Figure 5.8, figure 5.9 and figure 5.10 represent respectively the performance of the aggressive,
conservative, and mean mechanisms in terms of bandwidth utilization and buffer state. The
analysis of the figures show that all algorithms started with the lowest quality level and
successfully switched to the highest possible level within the first 12 s (aggressive: t = 11 s;
conservative: t = 8 s; mean t = 8 s), subsequently achieving the 100% use of bandwidth
(u(t) = 1.0).

The aggressive mechanism (figure 5.8) was significantly more sensitive to bandwidth
fluctuations. Consequently, the selected media levels (b(t)) suffered unnecessary variations
during the 250–350 s interval. This high sensitivity is illustrated at t = 145 s when there was a
sudden diminution of bandwidth and the aggressive algorithm detected it appropriately.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

50

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.8: Performance of the aggressive mechanism over the scenario 1.

72 CHAPTER 5. EVALUATION

The conservative mechanism (figure 5.9) selected different quality levels with considerably
fewer fluctuations than the aggressive method. During the whole session the aggressive
mechanism performed 32 switching operations, whereas the conservative mechanism only
switched 21 times (versus 25 switching operations in the case of the mean algorithm). However,
in the 500–560 s interval, the conservative mechanism produced a notably lower efficiency (50%)
than the other two mechanisms (about 70%).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

50

60

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.9: Performance of the conservative mechanism over the scenario 1.

The mean mechanism (figure 5.10) required two (or more) switching steps to select the
appropriate bandwidth level. This behaviour is a consequence of the nature of the algorithm,
which considers the last three throughput measurements (as defined in algorithm 3). These
additional steps took place during the intervals 165–176 s and 360–385 s. Furthermore, this
mechanism is the slowest one to adapt during the first part of the scenario (monotonically
decreasing bit-rate). The bandwidth utilization remained at 200% (u(t) = 2.0) during 45.2 s,
meaning that the quality of the segments was overestimated, i.e., segments’ downloading times
increased.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

50

60

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.10: Performance of the mean mechanism over the scenario 1.

5.2.1.1 Impact on the metrics

Results of this experiment have been summarized in Table 5.9 and figure 5.11 according to the
metrics defined previously in section 5.1.6. Figure 5.11 provides a graphical representation of
table 5.9, where the differences among the metrics for each mechanism are easily discernible.

5.2. SCENARIO 1: LONG-TERM VARIATIONS OF THE AVAILABLE BANDWIDTH 73

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Aggressive,
Conservative,
Mean,

Sd = 10 s
Sd = 10 s

Sd = 10 s

Figure 5.11: Graphical comparison under network scenario 1 for aggressive, conservative, and mean
adaptive mechanisms.

Table 5.9: Computed metrics under network scenario 1 for aggressive, conservative, and mean
adaptive mechanisms.

Mechanism εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

Aggressive 60.22% 96.28% 91.6% 79.78% 49.99% 87.43% 69.70% 52.26%

Conservative 61.59% 100% 100% 92.59% 72.3% 87.51% 50.01% 43.22%

Mean 62.14% 94.71% 95% 84.26% 96.85% 90.08% 72.92% 37.14%

The bandwidth, buffering, and start-up efficiencies (εbw , εbu f , εst ar t−up) are not affected by
the adaptive mechanism selected, whereas the active efficiency (εacti ve) and the segment-retry
efficiency (εr etr y) reveal a remarkable dependency.

The bandwidth efficiency (εbw) exceeds the 50% in all adaptive mechanisms (aggressive:
60.22%; conservative: 61.59%; and mean: 62.14%). With regard to the buffering efficiency (εbu f),
the conservative mechanism did not stop during the whole session (denoted by εbu f = 100%),
whereas the aggressive and the mean mechanism produced interruptions in playback during
3.72% (εbu f = 96.28%) and 5.29% (εbu f = 94.71%) of the session time due to buffer underrun.

The segment-fetch efficiency (ε f etch) is over 90% in all mechanisms, with the worst value in the
aggressive one (91.6%). This means that less than 10% of the media content is not played. The
aggressive mechanism re-downloads more segments due to more frequent switching operations
(it presents the worst segment-retry efficiency, εr etr y = 79.78%).

The active efficiency (εacti ve) is significantly better for the mean mechanism (96.85%) than the
aggressive (49.99%) and conservative mechanism (72.3%).

5.2.2 Performance with different duration segments

Figure 5.12 and figure 5.13 represent the behaviour of the conservative mechanism over time with
a shorter and longer duration segments, respectively (for 10s-long segments, see figure 5.9). The
fundamental difference between the three cases is the adaptability to the available bandwidth.
It is notable that the reaction times are dependent of the duration of the segments, since
the throughput is measured after segments have been transferred. Switching operations are
produced earlier for 5s-long segments than 10s-long segments and consequently, even earlier
than for 20s-long segments.

74 CHAPTER 5. EVALUATION

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0

20

40

60

80

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.12: Performance of the conservative mechanism over the scenario 1 with a segment duration
of 5 s.

Figure 5.13 shows that the selection of the adequate bit-rate level for 20s-long segments is
performed inadequately during the first 300 s of the session. The conservative mechanism
downloaded the first and second media segments at the lowest quality levels, therefore it takes
more than 40 s (a pair of 20s-long segments) to switch to the highest possible quality level. Upon
reduction of the available bandwidth, segments are more likely to be discarded therefore the
buffer can be empty. In consequence, levels are unnecessarily lowered to the minimum quality
level in four occasions (t = 77 s, t = 146 s, t = 207 s and t = 283 s) due to buffer underrun.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

u
(t
)

0 100 200 300 400 500 600

0
10
20
30
40
50
60
70

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.13: Performance of the conservative mechanism over the scenario 1 with a segment duration
of 20 s.

5.2.2.1 Impact on the metrics

Table 5.10 and figure 5.14 summarize the results of this experiment. The buffering, segment-
fetch, segment-retry, and start-up efficiencies (εbu f , ε f etch , εr etr y , and εst ar t−up , respectively)
show minor dependency on the duration of the segments. In contrast, the active efficiency
(εacti ve) and the reaction efficiencies (εup and εdown) are improved for shorter duration of
segments (best case for 5s-long, worse case for 20s-long).

In general, a shorter segment duration improves the efficiencies defined in our evaluation.
In the case of 5s-long segments, only the start-up efficiency (εst ar t−up) presents worse values
than 20s-long segments. Since the required buffered time to start playback is set to 10 s

5.2. SCENARIO 1: LONG-TERM VARIATIONS OF THE AVAILABLE BANDWIDTH 75

(Tmi n−bu f = 10 s), two 5s-long segments need to be downloaded to start playback, whereas
only one segment is enough if Sd ≥ 10 s.

Table 5.10: Metrics comparison under network scenario 1 for 5s-long, 10s-long and 20s-long segments.

Sd (s) εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

5 64.18% 96.7% 95.83% 96.77% 100% 80.55% 62.11% 63.82%

10 61.59% 100% 100% 92.59% 72.3% 87.51% 50.01% 43.22%

20 52.52% 97.23% 100% 90.36% 53.4% 88.69% 37.24% 41.12%

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Conservative,
Conservative,
Conservative,

Sd = 5 s
Sd = 10 s
Sd = 20 s

Figure 5.14: Graphical comparison under network scenario 1 for 5s-long, 10s-long, and 20s-long
segments.

5.2.3 Analysis of the end-to-end latency

Figure 5.15 represents the end-to-end latency (e(t)) for the first scenario in two situations:
(1) experiments with the three adaptation mechanisms and (2) experiments with different
segment durations.

Note that in our evaluation, the end-to-end latency is decreased if segments are missed
(the client receives HTTP-404 responses), since the next segment in the playlist will be played
earlier3. In contrast, the end-to-end latency is increased if the playback is interrupted due to
an empty buffer, since the next segment will be player after the interruption in playback. Thus,
the important aspects of the e(t) function are related to the variations produced by these two
occurrences (missed segments and playback interruptions).

According to figure 5.15a, the aggressive mechanism presents the most significant variation in
latency, with a delay of 40 s at the beginning of the session (t = 0 s) and 25 s at the end (t = 600 s).
The effects of packet losses can be seen for the mean mechanism around t = 190 s and t = 250 s
when the latency is reduced. The conservative mechanism is the only one whose latency function
remains stable throughout the whole experiment, meaning that there were no segments lost and
there were no playback interruptions.

The effects of segment durations on the end-to-end latency are shown in figure 5.15b. A shorter
duration of the segments (Sd = 5 s) produced more variation of the end-to-end delay: 47 s at the
beginning of the session and 25 s at the end. A longer duration of the segments (Sd = 20 s) only
produced an increase of end-to-end delay at t = 250 s.

3In this master’s thesis project, segments are played sequentially. If there is a missed segment, the next buffered
segment is played directly without waiting.

76 CHAPTER 5. EVALUATION

0

5

10

15

20

25

30

35

40

45

50

55

60
e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Aggressive, Sd = 10 s

Conservative, Sd = 10 s

Mean, Sd = 10 s

(a) Different adaptation mechanisms

0

5

10

15

20

25

30

35

40

45

50

55

60

e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Conservative, Sd = 5 s

Conservative, Sd = 10 s

Conservative, Sd = 20 s

(b) Different duration of segments

Figure 5.15: End-to-end latency throughout the session for scenario 1.

5.2.4 Discussion

The first scenario was intended to test the behaviour of the adaptation algorithms under the
reduction of the available bit-rate (performed in four steps until the middle of the session) and
subsequent increase of the available bit-rate until the end of the experiment.

All of the adaptation mechanism were able to detect the bit-rate fluctuations although
they exhibited major differences. The aggressive mechanism performed multiple switching
operations due to small variations in the throughput measurements. The quality levels selected
by the client oscillated more with the aggressive and mean mechanism, without any real
improvement in the utilization of bandwidth.

The mean algorithm reacts later than the other mechanisms to the bit-rate fluctuations,
requiring several switching steps to select the highest possible representation. The conservative
mechanism performed fewer switching operations, thus seeming to be the most appropriate
algorithm for this scenario, with the cost of underestimation of the available bandwidth at nearly
the end of the session.

The effects of different segment durations take place in the first part of the scenario 1 (when
bit-rates are decreased). Longer segment duration lead to a inadequate utilization of the available
bandwidth, since throughput measurements are taken less frequently. Consequently, buffer
underrun events are more probable, resulting in a abrupt reduction of the media bit-rate selected.

5.3 Scenario 2: short-term variations of the available bandwidth

The second network scenario (represented in figure 5.16) produces periodic short-term
variations of the available bandwidth. In this context, short-term changes are fluctuations
produced at intervals of a maximum of 30 s. The duration of these intervals is deliberately
chosen to analyze their impact on the mean algorithm, which considers the last three throughput
measurements.

Two parts are defined in this network scenario: in the first 5 minutes (300 s) the bit-rates
oscillate between 250 kb/s and 1 Mb/s with a frequency of 1/30 Hz. In the second part, bit-rates
switch between 1 Mb/s and 4 Mb/s. This scenario is intended to evaluate the behaviour of the
client with more frequent bit-rate fluctuations than scenario 1.

5.3. SCENARIO 2: SHORT-TERM VARIATIONS OF THE AVAILABLE BANDWIDTH 77

time (s)
0 60060 180 240 330 360 420 480 54012030 90 150 210 270 410 450 510 570

0.25 Mb/s
1 Mb/s

4 Mb/s

Figure 5.16: Series of Dummynet pipes for the second network scenario.

5.3.1 Performance of the adaptation mechanisms

Figure 5.17, figure 5.18, and figure 5.19 illustrate the selected bandwidth by the three different
mechanisms over time. The conservative mechanism offers the most stable behaviour in
comparison with the aggressive and mean algorithms.

The aggressive mechanism (figure 5.17) seems to produce better adaptation upon the
bandwidth restrictions in the first part of the experiments (from 0 s to 300 s). In this part, it only
overuses the offered network bit-rate during two short intervals (60–66 s and 180–199 s). However,
it is noticeable that there is an excessive number of switching operations (i.e., 28 switches). In
the second part (from 300 s to 600 s) the bandwidth is doubly overestimated on four occasions4

(intervals 360–390 s, 420–450 s, 480–496 s and 540–565 s). Finally, in t = 500 s the mechanism
needed to switch to the lowest quality level.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0

1

2

3

4

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

50

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.17: Performance of the aggressive mechanism over the scenario 2.

The conservative mechanism (figure 5.18) appropriately followed the fluctuations produced by
this scenario. During the first part, the bandwidth utilization (u(t)) is better than the aggressive
scenario (about 50%), although it is overestimated in more occasions (up to four). After t = 300 s,
u(t) oscillates between 100% an 200%, with short intervals where the utilization decreases to
50%. This mechanism did not need to switch down abruptly to the lowest quality level during the
second part of the experiment.

4Note that the starting time of the intervals always corresponds to a bit-rate fluctuation in the network’s emulated
bandwidth.

78 CHAPTER 5. EVALUATION

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0

20

40

60

80

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.18: Performance of the conservative mechanism over the scenario 2.

The mean mechanism (figure 5.19) presented a mixed behaviour between the two previous
mechanisms. In the first part of the experiment, 25 switching operations were performed. The
available bandwidth was overestimated for four intervals, although the duration of those intervals
differ (unlike the conservative mechanism). In the second part, the mean mechanism needed to
switch to the lowest quality levels on two occasions, increasing to 100% of bandwidth utilization
in several switching steps.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

50

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.19: Performance of the mean mechanism over the scenario 2.

5.3.1.1 Impact on the metrics

Table 5.11 and figure 5.20 collect the performance results of the three adaptive mechanisms
under the second scenario. The majority of coefficients have similar values. Only the segment-
retry efficiency (εr etr y) turns out to be considerable better for the conservative mechanism
(86.66%) than the aggressive (51.66%) and mean (48.33%) mechanisms.

Active efficiency (εacti ve), start-up efficiency (εst ar t−up), and reaction efficiencies (εup and
εdown) are slightly better for the mean mechanism and aggressive mechanisms.

5.3. SCENARIO 2: SHORT-TERM VARIATIONS OF THE AVAILABLE BANDWIDTH 79

Table 5.11: Metrics comparison under network scenario 2 for aggressive, conservative, and mean
adaptive mechanisms.

Mechanism εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

Aggressive 45.60% 98.34% 95% 74.25% 70.67% 66.17% 72.73% 47.65%

Conservative 52.95% 100% 98.33% 91.46% 70.3% 59.14% 70.09% 39.72%

Mean 48.87% 94.36% 91.66% 74.25% 83.07% 70.17% 79.91% 46.29%

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Aggressive,
Conservative,
Mean,

Sd = 10 s
Sd = 10 s

Sd = 10 s

Figure 5.20: Graphical comparison under network scenario 2 for aggressive, conservative, and mean
adaptive mechanisms.

5.3.2 Performance with different duration segments

Figure 5.21 represents the performance of the conservative mechanism with 5s-long segments.
Reaction times are significantly improved although the overall adaptation is similar that achieved
for segments of 10 s (figure 5.18 in page 78).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0
10
20
30
40
50
60
70
80
90

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.21: Performance of the conservative mechanism over the scenario 2 with a segment duration
of 5 s.

Deficient reaction times are illustrated in figure 5.22, due to use of 20s-long segments. Under
these conditions, the conservative algorithm is not able to follow rapid bit-rate variations, since
the algorithm is only run after a whole segment has been downloaded. This disadvantage is
present in the throughput curves (τ(t)) of both figures. For segments of 5 s, τ(t) is contained

80 CHAPTER 5. EVALUATION

within the limits of the available bandwidth (bwavai l (t)) whereas for 20 s, the throughput
measurements are more inaccurate.

0

500

1000

1500

2000

2500

3000

3500

4000

4500
B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0.0

0.5

1.0

1.5

2.0

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

50

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.22: Performance of the conservative mechanism over the scenario 2 with a segment duration
of 20 s.

5.3.2.1 Impact on the metrics

The metrics for the scenario 2 are collected in table 5.12 and figure 5.23. 5s-long segments provide
a better performance for most of the parameters (εbw , εbu f , εr etr y , εacti ve , εup , and εdown), and
similar results for the segment-fetch efficiency.

The most influenced metrics in this scenario are the active efficiency (εacti ve) and the reaction
time for switching up operations (εup). The improvement of εacti ve relates to the number of
requests needed for shorter segments. In order to download 20 s of video content, four 5s-long
segments have to be downloaded, whereas just one for 20s-long segments. εup is completely
dependent of the segment length (5s-long: 84.11%, 10s-long: 39.06%, 20s-long: 17.25%).

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Conservative,
Conservative,
Conservative,

Sd = 5 s
Sd = 10 s
Sd = 20 s

Figure 5.23: Graphical comparison under network scenario 2 for 5s-long, 10s-long and 20-seconds
long segments.

5.3. SCENARIO 2: SHORT-TERM VARIATIONS OF THE AVAILABLE BANDWIDTH 81

Table 5.12: Metrics comparison under network scenario 2 for 5s-long, 10s-long and 20s-long segments.

Sd (s) εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

5 57.96% 99.03% 95% 93.75% 86.7% 47.78% 83.46% 49.26%

10 52.95% 100% 98.33% 91.46% 70.3% 59.14% 70.09% 39.72%

20 50.6% 98.01% 96.66% 78.94% 52.5% 61.59% 50.87% 38.93%

5.3.3 Analysis of the end-to-end latency

Figure 5.24 depicts the end-to-end latency during the session for the second scenario. As it can
be seen in figure 5.24a, the mean mechanism has the strongest variation of end-to-end delay,
starting with 45 s of delay at the beginning of the session, being reduced to 11 s at the end of
the experiment (t = 600 s). This behaviour is caused by successive segments missed in t = 200 s,
t = 450 s, and t = 500 s. The aggressive mechanism presents a similar behaviour to the mean
mechanism, reducing the end-to-end delay from 40 s (t = 0 s) to 20 s (t = 600 s).

Considering different segment durations (see figure 5.24b), a shorter segment duration (5s-
long) reduces the performance in the first part (up to t = 300 s), since more segments are missed,
reducing on several occasions from an end-to-end delay of 70 s to 40 s. A longer segment duration
improves the stability of the end-to-end delay function throughout the session. Only one change
in the e(t) function occurs for 20s-long segments (t = 150 s).

0

10

20

30

40

50

60

70

80

e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Aggressive, Sd = 10 s

Conservative, Sd = 10 s

Mean, Sd = 10 s

(a) Different adaptation mechanisms

0

10

20

30

40

50

60

70

80

e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Conservative, Sd = 5 s

Conservative, Sd = 10 s

Conservative, Sd = 20 s

(b) Different duration of segments

Figure 5.24: End-to-end latency throughout the session for scenario 2.

5.3.4 Discussion

The second network scenario was intended to test the behaviour of the adaptation algorithms
under more frequent variations of the available bandwidth. The conservative mechanism
selected more appropriately the bit-rates levels, whereas the aggressive mechanism produced
unnecessarily fluctuations, especially in the first part of the experiment. The mean mechanism
performed with a mixed behaviour between that of the aggressive and the conservative
mechanisms, as it was able to select the appropriate quality level but required an additional
switching step. The most significant difference among the adaptation mechanism is the number
of segments which are re-downloaded due to variations in the available bandwidth.

82 CHAPTER 5. EVALUATION

A larger size of the segment drastically reduced the reaction times, resulting in a delayed
selection of the bit-rate levels. In contrast, a shorter segment duration produced the opposite
effects, reducing the delay between switching operations.

5.4 Scenario 3: peaks in the available bandwidth

The third network scenario (represented in figure 5.25) supplies a constant low bit-rate of
250 kb/s with high bit-rate peaks (more than ten times higher, 3 Mb/s) at intervals of one minute.
The duration of these peaks is increased over time, starting from 5 s up to 35 s. This scenario aims
to measure the reaction time (detection) of the client upon extreme variations of bit-rate. This
scenario is especially tricky and challenging for the adaptive mechanisms: detecting the end of
the peak becomes the most important issue in order to avoid an empty buffer.

time (s)
0 60 65 125 135 195 210 270 290 350 375 435 465 525 560 600

0.25

3 Mb/s

Figure 5.25: Series of Dummynet pipes for the third network scenario over time.

5.4.1 Performance of the adaptation mechanisms

The quality level selected for the three adaptive mechanism is depicted in figures 5.26, 5.27,
and 5.28. Under this scenario, the aggressive and conservative mechanisms illustrate a equal
behaviour in terms of detecting the bit-rate peaks. Neither of these two methods switches to
a higher quality level for the first peak (of 5 s duration). However, adaptation is successfully
performed in the following six peaks.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.26: Performance of the aggressive mechanism over the scenario 3.

The most inadequate behaviour was observed in the case of the mean algorithm (figure 5.28),
which presents an irregular adaptation throughout the session. It is capable of detecting all the
peaks, but the switching down is performed too late as compared to the other two mechanisms.

5.4. SCENARIO 3: PEAKS IN THE AVAILABLE BANDWIDTH 83

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.27: Performance of the conservative mechanism over the scenario 3.

The worst situation happens at t = 290 s, when bit-rate is reduced from 3 Mb/s to 250 kb/s. The
algorithm maintained the quality level for 62 s, leading to an empty buffer - hence no playout.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.28: Performance of the mean mechanism over the scenario 3.

5.4.1.1 Impact on the metrics

Results of this experiments are listed in table 5.13 and represented graphically in figure 5.29.
The stops during playback and the number of missed segments are frequent occurrences in this
network scenario, consequently reducing εr etr y , ε f etch , and εbu f .

Table 5.13: Metrics comparison under network scenario 3 for aggressive, conservative, and mean
adaptive mechanisms.

Mechanism εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

Aggressive 38.87% 84.37% 80% 77.31% 100% 74.25% 85.71% 40.23%

Conservative 34.54% 94.22% 91% 83.33% 100% 68.89% 68.74% 36.63%

Mean 31.22% 83.07% 78.33% 77.31% 100% 71.43% 80.85% 34.60%

84 CHAPTER 5. EVALUATION

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Aggressive,
Conservative,
Mean,

Sd = 10 s
Sd = 10 s

Sd = 10 s

Figure 5.29: Graphical comparison under network scenario 3 for aggressive, conservative, and mean
adaptive mechanisms.

The conservative mechanism provides the best management of the fluctuations produced by
the scenario, but it has poor reaction (εup = 68.74%, εdown = 36.63%) and start-up efficiencies
(εst ar t−up = 68.89%). In particular, εup shows better values for the aggressive (85.71%) and the
mean mechanisms (80.85%).

5.4.2 Performance with different duration of segments

Figure 5.30 and figure 5.31 depicts the performance of the conservative mechanism with 5s-long
and 20s-long segments respectively. All peaks are successfully detected in both cases (as the
throughput curve denotes). However, the essential difference is present in the first peaks (shorter
in time, produced at t = 60 s and t = 125 s) which are adequately utilized with shorter segments
(figure 5.30) in comparison with longer segments (figure 5.31).

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

10

20

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.30: Performance of the conservative mechanism over the scenario 3 with a segment duration
of 5 s.

5.4. SCENARIO 3: PEAKS IN THE AVAILABLE BANDWIDTH 85

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

10

20

30

40

50

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.31: Performance of the conservative mechanism over the scenario 3 with a segment duration
of 20 s.

5.4.2.1 Impact on the metrics

Results of this experiments are expressed in table 5.14 and figure 5.32. Results present high
disparity for all the coefficients, meaning that the segment duration has a strong importance
on this type of scenario.

The reaction (up and down) efficiencies and the active efficiency are the metrics which
presents more variation (more than 50%), whereas the buffering efficiency (εbu f) is less affected
by the length of segments (from 6.97% to 19.43%, greater for shorter segments).

Table 5.14: Metrics comparison under network scenario 3 for 5s-long, 10s-long, and 20s-long
segments.

Sd (s) εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

5 42.87% 86.4% 79.16% 86.70% 100% 50.88% 85.01% 53.83%

10 34.54% 94.22% 91.66% 83.33% 100% 68.89% 68.74% 36.63%

20 30.27% 90.63% 93.33% 74.25% 55.8% 58.90% 62.03% 29.05%

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Conservative,
Conservative,
Conservative,

Sd = 5 s
Sd = 10 s
Sd = 20 s

Figure 5.32: Graphical comparison under network scenario 3 for 5s-long, 10s-long, and 20-seconds
long segments.

86 CHAPTER 5. EVALUATION

5.4.3 Analysis of the end-to-end latency

Figure 5.33 depicts the end-to-end latency in the experiments in the third scenario. The most
noticeable occurrence is the irregularities of the end-to-end delay throughout the session for all
cases, independent of the chosen adaptation mechanism or segment duration. Results of these
experiments show that peaks in the network’s available bandwidth have a strong influence on the
segments’ playback time-stamps, i.e., when the media segments are played.

The longest playback interruption can be seen in the mean mechanism at t = 323 s (see
figure 5.33a), when the player was buffering content during 27 s. As a result, the end-to-end
delay was abruptly increased from 37 s to 64 s. Several segments are missed after this occurrence,
as it can be seen in a reduction of 26 s in the end-to-end delay (t = 436 s).

The aggressive and conservative mechanisms only achieve stability in the e(t) function in the
second part of the experiment (from t = 300 s), when bit-rate peaks last for more than 20 seconds.

Reducing the segment duration does not improve the end-to-end delay stability. As depicted in
figure 5.33b, using 5s-long segments decreases monotonically the e(t) function more than 50 s.
A longer segment duration (20 s) produces strongest variations in the end-to-end delay for the
shorter peaks (as it can be seen at t = 96 s, t = 143 s and t = 240 s). Stability in the e(t) function
for 20s-long segments is poorly achieved in the second part of the experiment due to playback
interruptions (t = 404 s and t = 410 s).

0

10

20

30

40

50

60

70

80

e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Aggressive, Sd = 10 s

Conservative, Sd = 10 s

Mean, Sd = 10 s

(a) Different adaptation mechanisms

0

10

20

30

40

50

60

70

80

e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Conservative, Sd = 5 s

Conservative, Sd = 10 s

Conservative, Sd = 20 s

(b) Different duration of segments

Figure 5.33: End-to-end latency throughout the session for scenario 3.

5.4.4 Discussion

The third scenario was intended to test the behaviour of the adaptation algorithms under high-
bandwidth-peaks of different durations. The overall performance of the aggressive and the mean
algorithm was worse than the conservative mechanism, although the latter showed a notable
irregularity in the selection of bit-rate levels. The computed metrics show that the conservative
mechanism prevented playback interruptions better than the other mechanisms.

The size of the segments has a significant influence in this scenario. The use of shorter
segments improves the reaction times, but increases the probability of missed segments due to
HTTP-404 responses. A larger size of the segments leads to a more inactive player, since fewer
HTTP requests need to be sent. As a consequence, peaks in the available bandwidth are not used

5.5. SCENARIO 4: TROUGHS IN THE AVAILABLE BANDWIDTH 87

appropriately (peaks are detected but segments are more probable to be re-downloaded since
the segment size in bytes is much bigger).

5.5 Scenario 4: troughs in the available bandwidth

The fourth network scenario presents the opposite situation of the third scenario (evaluated in
section 5.4). Scenario 4 supplies a continuous high bit-rate of 3 Mb/s, with low bit-rate troughs
(more than ten times lower, 250 kb/s) every minute, as shown in figure 5.34. Duration of these
troughs is also increased over time, the first troughs lasts 5 s increasing up to 35 s in the last one.

3 Mb/s

0.25

time (s)
0 60 65 125 135 195 210 270 290 350 375 435 465 525 560 600

Figure 5.34: Series of Dummynet pipes for the fourth network scenario.

5.5.1 Performance of the adaptation mechanisms

Figure 5.35, 5.36, and 5.37 show the performance of the three adaptive mechanisms under the
network conditions of the fourth network scenario. The most noticeable difference is the election
of the representation level during the abrupt decreases in the available bandwidth.

The aggressive mechanism (figure 5.35) reduced the quality level following the first trough.
However, for the following two troughs it maintained the maximum level, keeping the bandwidth
utilization at 100% between troughs. After the fourth, fifth, and sixth troughs (t = 270 s, t = 350 s,
and t = 435 s, respectively) the level was switch down to an intermediate level, since the measured
throughput was imprecise (the bandwidth detected during troughs was (incorrectly) estimated
to be over 500 kb/s). During the last trough (t = 525 s), the buffer reached the minimum due to
several segments which were re-downloaded. As a result, the level was set to the minimum and
the bandwidth was correctly estimated.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

20

40

60

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.35: Performance of the aggressive mechanism over the scenario 4.

88 CHAPTER 5. EVALUATION

Figure 5.36 depicts the behaviour of the conservative mechanism. As expected, quality levels
are selected slightly below the optimal. For all troughs this mechanism successfully lowered the
bit-rate level to 1 Mb/s or below. The buffering procedure was significantly better for the overall
session in comparison with the aggressive mechanism. From the start until t = 100 s the buffer
fluctuates between one and two segments stored (after 10 s and 20 s respectively). After that
interval, the buffer is never empty.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

20

40

60

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.36: Performance of the conservative mechanism over the scenario 4.

The mean mechanism (figure 5.37) presented a mixed behaviour between the aggressive and
the conservative mechanisms. Troughs are correctly detected, but the selected bit-rate level is
greater than the client’s measured throughput. Only in the trough produced in t = 435 s does
the quality level reached the minimum, while in the rest of the troughs the quality selected was
between 1 Mb/s and 1.5 Mb/s. In addition, the buffer becomes empty in the last three troughs.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

20

40

60

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.37: Performance of the mean mechanism over the scenario 4.

5.5.1.1 Impact on the metrics

Table 5.15 and figure 5.38 summarize the experimental results under this scenario. The active
efficiency (εacti ve) is the metric which shows the biggest variation for the different algorithms
(more than 50%) being the best case εacti ve = 86.74 for the mean mechanism. However, the
bandwidth utilization efficiency (εbw) is quite similar in the three cases (around 70%), meaning
that the mean algorithm spent more time downloading segments without a clear adaptation
improvement. This leads to a reduction of the segment-retry efficiency (εr etr y).

5.5. SCENARIO 4: TROUGHS IN THE AVAILABLE BANDWIDTH 89

Table 5.15: Metrics comparison under network scenario 4 for aggressive, conservative, and mean
adaptive mechanisms.

Mechanism εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

Aggressive 72.15% 100% 96% 92.59% 39.41% 87.26% 58.77% 40.59%

Conservative 66.45% 100% 100% 90.36% 36.9% 89.69% 61.12% 58.06%

Mean 69.94% 99% 98% 85.22% 86.74% 71.91% 58.06% 45.96%

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Aggressive,
Conservative,
Mean,

Sd = 10 s
Sd = 10 s

Sd = 10 s

Figure 5.38: Graphical comparison under network scenario 4 for aggressive, conservative, and mean
adaptive mechanisms.

5.5.2 Performance with different duration segments

Figure 5.39 and figure 5.40 illustrate the behaviour of the conservative mechanism with a segment
duration of 5 s and 10 s. Reaction times are significantly improved for the case of shorter segment
duration, as it is shown in figure 5.39. The quality level is reduced in all troughs accordingly, less
than 500 kb/s except for the shortest trough (t = 60 s), where the bit-rate is only decreased to
800 kb/s. It is important to point out that the periods when the quality was lowered are shorter.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

20

40

60

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.39: Performance of the conservative mechanism over the scenario 4 with a segment duration
of 5 s.

The behaviour of the conservative mechanism with a longer duration segments (20 s) is
illustrated in figure 5.40. The resulting adaptation is poor compared to 5s-long and 10s-long

90 CHAPTER 5. EVALUATION

segments, presenting no benefit. The reduction of bit-rate clearly influences the selection of the
quality level, leading to an under-estimation of the available bandwidth in the network. This
effect is illustrated in the troughs produced at t = 60 s, t = 125 s, t = 195 s, and t = 525 s. After the
fourth trough (t = 270 s), the mechanism could not reach the maximum quality level.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

B
an

d
w
id
th

(k
b
/s
)

0 100 200 300 400 500 600

Time (s)

bwavail(t)
τ(t)
b(t)

0
1
2
3
4
5
6
7
8

u
(t
)

0 100 200 300 400 500 600

0

20

40

60

B
u
ff
er

(s
)

0 100 200 300 400 500 600

Time (s)

Figure 5.40: Performance of the conservative mechanism over the scenario 4 with a segment duration
of 20 s.

5.5.2.1 Impact on the metrics

Results of scenario 4 with different segment durations are presented in Table 5.16 and figure 5.41.
They reveal that the use of a shorter segment duration significantly improves the reaction
efficiencies (εup and εdown), the active efficiency, and most importantly, the utilization of
bandwidth (εbw) is about 10% better than using 10s-long segments. The cost of these
improvements are mainly the increased number of segments re-downloaded and missed (leading
to a reduction in the εr etr y and ε f etch efficiencies, respectively).

In contrast, using a longer duration segment (20 s) does not provide significant benefits. In
comparison with 10s-long segments, only the active efficiency (εacti ve = 42.6) and the switching-
down efficiency (εdown = 47.58) are slightly increased (less than 10%), while the rest of the metrics
had equal values.

bw

buf

fetch

retry

active

start-up

up

down

25%

50%

75%

100%

Conservative,
Conservative,
Conservative,

Sd = 5 s
Sd = 10 s
Sd = 20 s

Figure 5.41: Graphical comparison under network scenario 4 for 5s-long, 10s-long, and 20-seconds
long segments.

5.5. SCENARIO 4: TROUGHS IN THE AVAILABLE BANDWIDTH 91

Table 5.16: Metrics comparison under network scenario 4 for 5s-long, 10s-long, and 20s-long
segments.

Sd (s) εbw εbu f ε f etch εr etr y εacti ve εst ar t−up εup εdown

5 76.97% 99.79% 92.5% 91.46% 100% 79.70% 79.69% 52.07%

10 64.45% 100% 100% 90.36% 36.9% 89.69% 61.26% 44.21%

20 52.92% 100% 100% 82.41% 42.6% 89.57% 59.70% 47.58%

5.5.3 Analysis of the end-to-end latency

Figure 5.42 depicts the end-to-end latency for the experiments performed under the fourth
network scenario. As depicted in figure 5.42a, the three mechanisms performed equally in the
first part of the experiment (from t = 0 s to t = 300 s), achieving a constant end-to-end delay.
During the second part of the session (from t = 300 s to t = 600 s) the aggressive and mean
mechanisms received several HTTP-404 responses (as it can be seen in t = 374 s, t = 456 s, and
t = 558 s), resulting in a reduction of the value of the e(t) function.

Figure 5.42b represents the resulting end-to-end delay using different duration of segments.
A shorter segment duration (5 s) produces more variation in the e(t) function when troughs are
longer than 20 s (as in the second part of the experiment, from t = 300 s). In contrast, choosing a
segment duration of 10 s or 20 s does not affect the end-to-end latency during the whole session,
meaning that segments are not missed and playback is not interrupted (the buffer is never empty
when the next segment must be played).

0

10

20

30

40

50

60

70

80

e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Aggressive, Sd = 10 s

Conservative, Sd = 10 s

Mean, Sd = 10 s

(a) Different adaptation mechanisms

0

10

20

30

40

50

60

70

80

e(
t)
:
en
d
-t
o-
en
d
la
te
n
cy

(s
)

0 100 200 300 400 500 600

Time (s)

Conservative, Sd = 5 s

Conservative, Sd = 10 s

Conservative, Sd = 20 s

(b) Different duration of segments

Figure 5.42: End-to-end latency throughout the session for scenario 4.

5.5.4 Discussion

The fourth scenario was intended to test the behaviour of the adaptation algorithms under low-
bandwidth-peaks of different durations. The three proposed mechanisms performed efficiently
under this scenario, preventing playback interruptions and successfully downloading the media
segments when they were available on the server. Results of these experiments indicated a major
difference in the number of buffered segments during the session. The conservative mechanism

92 CHAPTER 5. EVALUATION

always filled the buffer in time, whereas the aggressive and mean mechanism experienced a
reduction in the buffer level during the second part of the experiments, when troughs were
significantly longer. It is noteworthy that the mean algorithm consumed most of the session
time in the active state, i.e., downloading segments, whereas the aggressive and the conservative
mechanism spent a significant amount of time in the inactive state, which could be used to re-
download segments which were already buffered at a higher quality.

Results regarding the effects of the size of the segments are very similar to the results of the
third scenario (peaks in bandwidth). A shorter duration of the segments improves most of the
metrics considered in our evaluation, whereas a longer duration of segments does not lead to
any significant improvement over the reference duration (10 s).

5.6 Effects of packet loss

The effects of packet loss in the underlying network was measured through a set of four
experiments where packets are lost according to a probability of error pe : 5%, 10%, 15%, and
20%. Table 5.17 enumerates the input parameters which were fixed for the experiments carried
out in this section.

In order to evaluate the effects of packet losses on playback, the conservative mechanism
has been chosen since this algorithm achieved better buffering efficiency in the previous
experiments. The duration of the segments was fixed at the reference value (10 s). The emulated
bandwidth was constant at 2 Mb/s during the whole session (from t = 0 s to t = 600 s).

Table 5.17: Input parameters.

Mechanism T (s) R bwavai l (Mb/s) Sd (s)

Conservative 600 10 2 10

5.6.1 Impact on the metrics

Table 5.18 and figure 5.43 show the results of these experiments. Note that the reaction
efficiencies have not been considered, since the network’s available bandwidth is constant
throughout the session (i.e., there are no bandwidth fluctuations that the client may detect.).

Table 5.18: Metrics comparison under different probability of packet losses.

pe εbw εbu f ε f etch εr etr y εacti ve εst ar t−up

5% 51.17% 100% 100% 100% 41.80% 88.97%

10% 14.72% 95.18% 93.33% 70.66% 100% 83.71%

15% 5.66% 51.70% 55% 80% 100% 59.83%

20% 4.14% 54.64% 56.66% 98.66% 100% 55.02%

In general, increasing the probability of packet loss has a strong influence on all the metrics
defined in our evaluation. εbw , εbu f , ε f etch , and εst ar t−up showed a clear dependency on pe .
The higher the probability of error, the lower these metrics are. The computed values for the
active efficiency (ε f etch) are rather simple to deduce: with low probability of error, the client is
able to fetch the segments on time, switching to the inactive state when all available segments
are downloaded. Increasing the probability of error leads to a more active client, as it must spend
more time fetching the segments (due to packet losses, the HTTP transactions last longer).

Interesting results can be observed for the segment-retry efficiency (εr etr y). Up to pe = 10%
the efficiency decreases since more segments are being discarded. However, for pe = 15% and

5.7. EVALUATION WITH REAL LIVE EVENTS 93

pe = 20% the efficiency is increased. Although it seems to be an improvement, these values
simply indicate that the segments are not being fully downloaded or are downloaded at the lowest
quality level, therefore the client cannot discard them.

bw

buffetch

retry

active start-up

25%

50%

75%

100%

pe = 5%
pe = 10%
pe = 15%
pe = 20%

Figure 5.43: Graphical comparison under different probability of packet losses.

5.6.2 Discussion

Results of these experiments have shown that the player avoids playback interruptions and
fetches the segments in time for packet loss rates of up to 10% of the network traffic transferred
between the server and client. When the probability of error reaches 15% of network traffic, then
the quality of service is drastically reduced, since the playback is interrupted 50% of the session
time and half of the segments are not fetched in time. Therefore, in a 2 Mb/s channel, the client’s
application is able to maintain an acceptable quality of service with up to 10% probability of
packet losses.

5.7 Evaluation with real live events

The performance of the client’s application under real live scenarios is evaluated in this section.
A survey has been carried out to determine which TV channels currently offer an HTTP-based
alternative following any of the adaptive streaming protocols introduced in section 2.4. During
this master’s thesis project, there was no TV channel offering content using the MPEG-DASH
protocol, although there were several using Apple-HLS and Microsoft-LSS.

The final match of the FIFA Women’s World Cup (2011) was selected as the live event for this
experiment. The match was broadcasted by the Eurosport channel. Eurosport provides free live
content using Apple-HLS5. Table 5.19 summarizes the characteristics the offered media stream.
Eurosport provides segments with a duration of 10 s (Sd = 10 s) and an available shifting time of
30 s (Tshi f t = 30 s), i.e., only three media segments are available at any point of time.

Table 5.19: Characteristics offered by the Eurosport channel over Apple-HLS.

Sd (s) Tshi f t (s) R Avg. bit-rate (kb/s) CODEC Media container

10 30 1 900 H.264 MPEG-TS

The experiment was carried out from 21:00:33 to 23:05:10 on the 17th, July 2011, resulting in
a session time of 02:04:37 (T = 7477 s). Listing 5.1 shows the extended M3U playlist offered by

5Eurosport’s live channel can be found at http://live.iphone.eurosport.com/uk1/stc_0_0.m3u8.

http://live.iphone.eurosport.com/uk1/stc_0_0.m3u8

94 CHAPTER 5. EVALUATION

the server. This playlist was updated every 10 s (as specified by the #EXT-X-TARGETDURATION
tag). Since only one quality level is offered on the server’s side (with a bit-rate of 900 kb/s), this
experiment focused on the long-term behaviour of the client’s application with a live event. In
particular, the costs of the transcoding step (see section 4.1.1) in terms of the quality of service
during playback was analyzed.

Listing 5.1: Extended M3U playlist retrieved from the Eurosport’s HTTP server.

1 #EXTM3U
2 #EXT-X-TARGETDURATION:10
3 #EXT-X-MEDIA-SEQUENCE:
4 #EXTINF:10,
5 2011-07-17/V0A0/14/Media_20110717_19452220_19453220_0_0.mp4
6 #EXTINF:10,
7 2011-07-17/V0A0/14/Media_20110717_19453220_19454220_0_0.mp4
8 #EXTINF:10,
9 2011-07-17/V0A0/14/Media_20110717_19454220_19455220_0_0.mp4

5.7.1 Impact on the metrics

Table 5.20 and figure 5.44 show the results of the experiment on a real live event. The bandwidth,
buffering, fetch, and retry efficiencies reached their maximum value (εbw , εbu f , ε f etch , and
ε f etch respectively), hence not a single segment was missed during the match and there were no
interruptions in playback. The active efficiency (εacti ve) was about 50%, meaning that the client
was able to fetch the segments in time and spent a significant amount of time in the inactive state.
The start-up efficiency (εst ar t−up) indicates that the client is able to start playback rapidly even
though media files needed to be converted into a format supported by Stagefright.

Table 5.20: Metrics comparison in a real live event.

εbw εbu f ε f etch εr etr y εacti ve εst ar t−up

100% 100% 100% 100% 50.06% 74.67%

bw

buffetch

retry

active start-up

25%

50%

75%

100%

Figure 5.44: Graphical comparison of metrics in a real live event.

The average downloading time for the 10s-long segments throughout the whole session was
3.84 s (38.4% of the segment duration, Sd = 10 s), including the conversion. The average time
consumed by conversion step was 2.41 s (24.1% of the segment duration, Sd = 10 s). Hence,
the time required for the client to store Stagefright-compatible segments into the buffer was
increased 1.43 s on average (14.3% of the segment duration, Sd = 10 s).

5.7. EVALUATION WITH REAL LIVE EVENTS 95

5.7.2 Discussion

This experiment was intended to evaluate the behaviour of the client’s application with a real
live event. Results show that the quality of service provided on the client’s side is very high
since there were no interruptions or missed fragments. The client’s application consumes a
significant amount of time converting media files. However, this procedure was performed in
the background sufficiently quickly that the quality of playback was not decreased.

Chapter 6

Conclusions

”The world always seems brighter when
you’ve just made something that wasn’t
there before.”

– Neil Gaiman

In this chapter the findings of this master’s thesis project are presented. Section 6.1 presents
a discussion of the results achieved in the previous chapter. Section 6.2 enumerates some of the
possible improvements to this project which should be considered in future works.

6.1 Discussion

In this master’s thesis project a full service has been proposed in order to evaluate the benefits of
different adaptive streaming mechanisms using HTTP as a delivery protocol. Three mechanisms
were proposed to provide bit-rate adaptation on the client’s side: the aggressive, conservative, and
mean algorithms.

Results of the experiments with heterogeneous network scenarios have shown that the
adaptation mechanisms efficiently utilize the available bandwidth of the network. The aggressive
mechanism produces an adequate adaptation to short-term bandwidth fluctuations, although
this mechanism increases the probability of discarded and missed segments due to bandwidth
underestimation. The conservative mechanism prevents playback stops, at the cost of a non-
optimal utilization of available bandwidth in the short-term, although experiments have shown
that bandwidth utilization is equal to that of the aggressive mechanism in the long-term. The
mean mechanism presents a similar performance to the aggressive mechanism, although it
consumes more time downloading segments.

Major differences can be seen in the level of activity of the media player. While using the mean
algorithm the player remains mostly in the active state throughout the session, the aggressive and
conservative mechanisms spent a considerable time in the inactive state. These inactive intervals
could have been used to re-download some segments at a better quality, hence improving the
overall use of the available bandwidth.

The reaction times to switch between media bit-rates were significantly better when the
available bit-rate was increased rather than reduced, since segments were downloaded faster.
As a consequence, the throughput measurements occur earlier and the adaptation mechanisms
decide upon the next appropriate level of quality sooner.

Reducing the size of the segments improves the reaction times to variation of the network
bit-rate, at the cost of increased activity by the client. More time is consumed sending and
receiving HTTP messages, hence the probability of missing a segment, i.e., the probability of
receiving a HTTP-404 response, is increased. The bit-rate adaptation is also improved for shorter
segments since the bandwidth measurements occur more often. The opposite situation happens
with larger segments, hence the network’s available bandwidth is used less efficiently since
measurements are taken less frequently. In addition, the switching operations are performed
significantly later. However, downloading longer segments leads to a more inactive client, since
fewer segments need to be downloaded in order to play the media content. The client spends

97

98 CHAPTER 6. CONCLUSIONS

more time in the inactive state, which could be used to perform other actions, for example, to
fetch segments at higher bit-rates.

Finally, experiments indicate that the client’s application is able to maintain an acceptable
quality of service with up to 10% packet losses in the underlying network.

6.2 Future work

This section explores some of the limitations and assumptions made in the prototype developed
for this master’s thesis project, in order to be improved in future works.

For simplicity, the algorithms defined in section 4.4.2 are only invoked when segments are fully
downloaded, thus restricting the adaptation procedure to the boundaries of segments. This leads
to infrequent adaptation in the case of larger segments (as shown throughout the evaluation in
the previous chapter). The algorithms use the throughput calculated for each media segment
as an input parameter. The throughput measurement could be computed several times in the
case of larger segments, in order to more frequently inform the adaptation algorithms about the
characteristics of the underlying network.

The conservative mechanism can be improved by always fetching the next lower level (than
the current long-term bandwidth allows) instead of multiplying the throughput measurement by
a sensitivity parameter (see algorithm 2). Then, if there is additional time fetch the delta to this
lower level that would bring up the quality level. Thus, there will be always segments to play,
improving the quality when there is extra bandwidth. This improvement meets the first and third
requirements defined in section 4.4.2, while approximating the second requirement.

In section 4.4.6 a skipping mechanism was defined to discard media segments upon reduction
of the network’s available bandwidth to re-download segments at a lower quality level. This
procedure considers a fixed fraction of the segment duration (a downloading timeout is defined
as the 80% of the segment duration), rather than a time estimated by subtracting the estimated
download time from the segment duration. This estimated download time could be computed
in terms of median observed download time or maximum observed time. Improvements to the
re-download mechanism would lead to a more efficient use of the network resources, since the
bytes received during the HTTP transaction are simply discarded and never played by the client.

The MPEG-DASH protocol allows clients to request a single range of bytes of the media
segments, as HTTP/1.1 supports the transmission of a partial entity-body by means of the
Content-Range header field. This feature has not been considered in our prototype, instead,
the full body of the HTTP responses is always assumed to be transferred. Requesting partial
segments (subsegments) could be useful to improve the re-download mechanism and to enable
faster switching between rates.

In our client’s application, segments which are stored in the buffer are played sequentially.
This leads to a reduction of the end-to-end delay function (as it was defined in section 5.1.6)
if the client is not able to fetch some segments on time, since the next segment will be played
without synchronization with the server. Segments do not have to be played sequentially. The
specification of the MPD in the MPEG-DASH standard allows the clients to determine the time-
stamp at which the segments have to be played. Since server and client are synchronized with an
external NTP server, this feature could be added to the prototype, improving the stability of the
end-to-end delay function presented in the evaluation chapter.

Apple-HLS is natively supported on Android 3.0 onwards (section 2.10.2 provides a summary of
the adaptive protocols supported on Android). It would be interesting to evaluate the capabilities
of the official implementation of Apple-HLS on Android OS, in order to determine the behaviour
of the adaptation mechanism developed by Google and potentially providing a comparison with
the results achieved in our evaluation.

The evaluation presented in this work does not cover situations where the client disconnects
from the streaming server and restarts the connection (for instance, due to a network failure).
The adaptation mechanisms could be improved by storing information about the previous state

6.2. FUTURE WORK 99

of the network, in order to avoid the repetition of the switching operations at the beginning of
the session. Additionally, other reliable transport protocol such as SCTP could be used instead
of TCP. SCTP can improve the measured throughput [60] and provides better protection against
Denial of Service attacks.

Finally, it would be interesting to study the scalability of the system. Scalability could be
improved if a caching proxy is displaced between clients and servers. This caching proxy would
store the most frequent content requested by the end-users. Once a client requests a media
stream, following clients which request the same content will experience better throughput
measurements, reducing the influence of the selected adaptation mechanism.

Bibliography

[1] 3GPP TS.234. Transparent end-to-end packet switched streaming service (PSS); Adaptive
HTTP Streaming. Section 12 [cited 2011, April 6].

[2] 3GPP TS.244. Transparent end-to-end packet switched streaming service (PSS); 3GPP file
format (3GP). Release 10. 2011, June [cited 2011, August 3].

[3] O. Abboud, T. Zinner, K. Pussep, S. Al-Sabea, and R. Steinmetz. On the Impact of
Quality Adaptation in SVC-based P2P Video-on-Demand Systems. ACM Multimedia Systems
Conference (MMSys). 2011, February 23-25. San Jose, California, USA.

[4] Adobe Systems Inc. Real-Time Messaging Protocol (RTMP) specification. 2009. Available
from: http://www.adobe.com/devnet/rtmp.html.

[5] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental Evaluation of Rate-Adaptation
Algorithms in Adaptive Streaming over HTTP. ACM Multimedia Systems Conference (MMSys).
2011, February 23-25. San Jose, California, USA.

[6] Android developers’ site. Available from: http://developer.android.com.

[7] Android developer’s site: platform versions [updated 2011, July 5; cited 2011, July 31].
Available from: http://developer.android.com/resources/dashboard/platform-
versions.html.

[8] Android’s media player reference [cited 2011, July 25]. Available from http://developer.
android.com/reference/android/media/MediaPlayer.html.

[9] AndroidPlot. Available from http://androidplot.com.

[10] Apple Corporation. Best Practices for Creating and Deploying HTTP Live Streaming
Media for the iPhone and iPad. iOS Reference Library. Technical Note TN2224.
2010, March 19 [updated 2010, April 19; cited 2011, February 17]. Available from:
http://developer.apple.com/library/ios/#technotes/tn2010/tn2224.html#
//apple_ref/doc/uid/DTS40009745.

[11] Apple Corporation. HTTP Live Streaming Overview. iOS Reference Library [updated
2010, November 15; cited 2011, July 19]. Available from: http://developer.
apple.com/library/mac/documentation/NetworkingInternet/Conceptual/
StreamingMediaGuide/StreamingMediaGuide.pdf.

[12] A. Barth. HTTP State Management Mechanism. IETF Network Working Group, Request For
Comments: 6265. 2011, April. Available from: http://tools.ietf.org/html/rfc6265.

[13] F. Bellard et al., FFmpeg libraries. Available from: http://www.ffmpeg.org.

[14] T. Berners-Lee, R. Fielding, and L. Masinter. Uniform Resource Identifiers (URI): Generic
Syntax. IETF Network Working Group, Request For Comments: 2396. 1998, August. Available
from: http://tools.ietf.org/html/rfc2396.

[15] P. V. Biron and A. Malhotra. XML Schema Part 2: Datatypes Second Edition [updated 2004,
October 24; cited 2011, August 1]. W3C Recommendation. Available from: http://www.w3.
org/TR/xmlschema-2.

101

http://www.adobe.com/devnet/rtmp.html
http://developer.android.com
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/resources/dashboard/platform-versions.html
http://developer.android.com/reference/android/media/MediaPlayer.html
http://developer.android.com/reference/android/media/MediaPlayer.html
http://androidplot.com
http://developer.apple.com/library/ios/#technotes/tn2010/tn2224.html#//apple_ref/doc/uid/DTS40009745
http://developer.apple.com/library/ios/#technotes/tn2010/tn2224.html#//apple_ref/doc/uid/DTS40009745
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://developer.apple.com/library/mac/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://tools.ietf.org/html/rfc6265
http://www.ffmpeg.org
http://tools.ietf.org/html/rfc2396
http://www.w3.org/TR/xmlschema-2
http://www.w3.org/TR/xmlschema-2

102 BIBLIOGRAPHY

[16] Blender Foundation. Sintel short film. Released under Creative Commons Attribution (CC-
A) license. Directed by Colin Levy, produced by Ton Roosendaal. 2010, September. Available
from http://www.sintel.org. Entry in the Internet Movie Database (IMDb):
http://www.imdb.com/title/tt1727587.

[17] K. Brandenburg. MP3 and AAC explained. AES 17th International Conference on High
Quality Audio Coding. Fraunhöfer Institute for Integrated Circuits FhG-IIS A, Erlangen,
Germany Erlangen, Germany. 1999.

[18] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup Language (XML)
1.0 (Second Edition). W3C Working Draft 14. 2000, August. Available from: http://www.w3.
org/TR/2000/WD-xml-2e-20000814.

[19] J. A. Bocharov, Q. Burns, F. Folta, K. Hughes, A. Murching, L. Olson, P. Schnell, and J. Simmons
Protected Interoperable File Format (PIFF). Microsoft Corp. 2009, September 8 [updated
2010, March 9; cited 2011, February 21]. Available from: http://go.microsoft.com/
?linkid=9682897.

[20] M. Carbone and L. Rizzo. An emulation tool for PlanetLab. 2010, February. Available from
http://info.iet.unipi.it/~luigi/papers/20100316-cc-preprint.pdf.

[21] M. Carbone and L. Rizzo. Dummynet revisited. SIGCOMM CCR, vol. 40, n. 2. 2010, April.
Available from http://info.iet.unipi.it/~luigi/papers/20100304-ccr.pdf.

[22] A. F. Carlacci. Ogg Vorbis and MP3 Audio Stream characterization. University of Alberta.
2002, September.

[23] L. De Cicco, S. Mascolo, and V. Palmisano. Feedback Control for Adaptive Live Streaming.
ACM Multimedia Systems Conference (MMSys). 2011, February 23-25. San Jose, California,
USA.

[24] Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2010
to 2015. 2011, February 1. Available from: http://www.cisco.com/en/US/solutions/
collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html.

[25] M. Day, B. Cain, G. Tomlinson, and P. Rzewski. A Model for Content Internetworking (CDI).
IETF Network Working Group, Request For Comments: 3466, section 2.4. 2003, February.
Available from: http://tools.ietf.org/html/rfc3466.

[26] W. Eklöf. Adaptive Video Streaming. Master of Science Thesis. KTH (COS/CCS 2008-28).
Stockholm, Sweden, 2008.

[27] K. Evensen, D. Kaspar, C. Griwodz, and P. Halvorsen. Improving the Performance of Quality-
Adaptive Video Streaming over Multiple Heterogeneous Access Networks. ACM Multimedia
Systems Conference (MMSys). 2011, February 23-25. San Jose, California, USA.

[28] S. V. Every. Pro Android Media: Developing Graphics, Music, Video, and Rich Media Apps for
Smartphones and Tablets. Apress. USA. 2010, December.

[29] A. Fecheyr-Lippens. A review of HTTP Live Streaming. 2010, January [cited 2011, February
16]. Available from: http://andrewsblog.org/a_review_of_http_live_streaming.
pdf.

[30] A. Fettig. Twisted: Network Programming Essentials. O’Really Media. 2006.

[31] R. Fieldning, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol (HTTP/1.1). IETF Network Working Group, Request for
Comments: 2616. 1999, June. Available from: http://tools.ietf.org/html/rfc2616.

[32] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies. IETF Network Working Group, Request for Comments:
4281. 1996, November. Available from: http://tools.ietf.org/html/rfc2045.

http://www.sintel.org
http://www.imdb.com/title/tt1727587
http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://www.w3.org/TR/2000/WD-xml-2e-20000814
http://go.microsoft.com/?linkid=9682897
http://go.microsoft.com/?linkid=9682897
http://info.iet.unipi.it/~luigi/papers/20100316-cc-preprint.pdf
http://info.iet.unipi.it/~luigi/papers/20100304-ccr.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-520862.html
http://tools.ietf.org/html/rfc3466
http://andrewsblog.org/a_review_of_http_live_streaming.pdf
http://andrewsblog.org/a_review_of_http_live_streaming.pdf
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2045

BIBLIOGRAPHY 103

[33] Gartner, Inc. Market Share Analysis: Mobile Devices, Worldwide, 1Q11. 2011, May 18.
Available from: http://www.gartner.com/it/page.jsp?id=1689814.

[34] R. Gellens, D. Singer, and P. Fröjdh. The Codecs Parameter for "Bucket" Media Types. IETF
Network Working Group, Request for Comments: 4281. 2005, November. Available from:
http://tools.ietf.org/html/rfc4281.

[35] J. Goerzen. Foundations of Python Network Programming. Apress. 2004.

[36] S. Hacker. MP3: The Definitive Guide. O’Really Media. 2000, March.

[37] D. Hassoun. Dynamic streaming in Flash Media Server 3.5: Overview of the new capabilities
[updated 2010, August 16; cited 2011, February 15]. Available from: http://www.adobe.
com/devnet/flashmediaserver/articles/dynstream_advanced_pt1.html.

[38] I. Hickson. HTML5. A vocabulary and associated APIs for HTML and XHTML. W3C Working
Draft. 2011, May 25 [cited 2011, August 3]. Available from: http://www.w3.org/TR/html5.

[39] ISO/IEC 11172-3:199. Information Technology. Coding of moving pictures and associated
audio for digital storage media at up to about 1,5 Mbit/s. Part 3: Audio. 1993.

[40] ISO/IEC 13818-7:2006. Information technology. Generic coding of moving pictures and
associated audio information. Part 7: Advanced Audio Coding (AAC). 2006.

[41] ISO/IEC 14496-3:2009. Information technology. Coding of audio-visual objects. Part 3:
Audio. 2009.

[42] ITU-T and ISO/IEC JTC1, H.264 and ISO/IEC 14 496-10 (MPEG-4) AVC Recommendation.
Advanced video coding for generic audiovisual services. 2003. Available from: http://www.
itu.int/rec/T-REC-H.264-201003-I/en.

[43] ITU-T H.222 Recommendation. ISO/IEC 13818-1:2000. Available from http://www.itu.
int/rec/T-REC-H.222.0-199507-S/

[44] ITU-T H.263 Recommendation. Video coding for low bit rate communication. 2005, January.

[45] S. Khemmarat, R. Zhou, L. Gao, and M. Zink. Watching User Generated Videos with
Prefetching. ACM Multimedia Systems Conference (MMSys). 2011, February 23-25. San Jose,
California, USA.

[46] R. Kuschnig, I. Kofler, and H. Hellwagner. Evaluation of HTTP-based Request-Response
Streams for Internet Video Streaming. ACM Multimedia Systems Conference (MMSys). 2011,
February 23-25. San Jose, California, USA.

[47] B. Laurie and P. Laurie. Apache: The Definitive Guide, Third Edition. O’Really Media. 2002,
December.

[48] J. Y. B. Lee. Scalable continuous media streaming systems: Architecture, design, analysis and
implementation. John Wiley & Sons, Ltd. Kong Kong, China. 2005.

[49] C. Liu, I. Bouazizi, and M. Gabbouj. Rate Adaptation for Adaptive HTTP Streaming. ACM
Multimedia Systems Conference (MMSys). 2011, February 23-25. San Jose, California, USA.

[50] Longtail video. Adaptive HTTP Streaming Framework. Release 1.0 alpha. 2011, February.

[51] C. McDonald. HTTP Live Video Stream Segmenter and Distributor, 2009, July [updated 2010,
April 5; cited 2011, February 16]. Available from: http://www.ioncannon.net/projects/
http-live-video-stream-segmenter-and-distributor.

[52] C. McDonald. iPhone Windowed HTTP Live Streaming Using Amazon S3 and
Cloudfront Proof of Concept, 2009, July 5 [cited 2011, February 16]. Available from:
http://www.ioncannon.net/programming/475/iphone-windowed-http-live-
streaming-using-amazon-s3-and-cloudfront-proof-of-concept.

http://www.gartner.com/it/page.jsp?id=1689814
http://tools.ietf.org/html/rfc4281
http://www.adobe.com/devnet/flashmediaserver/articles/dynstream_advanced_pt1.html
http://www.adobe.com/devnet/flashmediaserver/articles/dynstream_advanced_pt1.html
http://www.w3.org/TR/html5
http://www.itu.int/rec/T-REC-H.264-201003-I/en
http://www.itu.int/rec/T-REC-H.264-201003-I/en
http://www.itu.int/rec/T-REC-H.222.0-199507-S/
http://www.itu.int/rec/T-REC-H.222.0-199507-S/
http://www.ioncannon.net/projects/http-live-video-stream-segmenter-and-distributor
http://www.ioncannon.net/projects/http-live-video-stream-segmenter-and-distributor
http://www.ioncannon.net/programming/475/iphone-windowed-http-live-streaming-using-amazon-s3-and-cloudfront-proof-of-concept
http://www.ioncannon.net/programming/475/iphone-windowed-http-live-streaming-using-amazon-s3-and-cloudfront-proof-of-concept

104 BIBLIOGRAPHY

[53] Microsoft Corporation. ISS Smooth Streaming Transport Protocol. 2009, September.

[54] Microsoft Corporation. Silverlight 5 Beta. Technical features. [cited 2011, August 8].
Available from: http://i1.silverlight.net/content/downloads/silverlight_5_
beta_features.pdf

[55] Microsoft Corporation. Microsoft Live Smooth Streaming. Available from: http:
//www.iis.net/download/LiveSmoothStreaming. Technical Overview available
from: http://www.microsoft.com/downloads/en/details.aspx?displaylang=
en&FamilyID=03d22583-3ed6-44da-8464-b1b4b5ca7520.

[56] D. Mills. Simple Network Time Protocol (SNTP) Version 4, IETF Networking Working Group,
Request For Comments: 4330. January 2006. Available from: http://tools.ietf.org/
html/rfc4330.

[57] C. Müller and C. Timmerer. A Test-Bed for the Dynamic Adaptive Streaming over HTTP
featuring Session Mobility. ACM Multimedia Systems Conference (MMSys). 2011, February
23-25. San Jose, California, USA.

[58] L. Nussbaum and O. Richard. A comparative study of network link emulators. Proceedings
of the 2009 Spring Simulation Multiconference. 2009. Available from: http://www.loria.
fr/~lnussbau/files/netemulators-cns09.pdf.

[59] R. Pantos and W. May. HTTP Live Streaming, version 6. IETF Internet-Draft [updated 2011,
March 31; cited 2011, April 6]. Expires 2011, October 2. Available from: http://tools.
ietf.org/html/draft-pantos-http-live-streaming-06.

[60] R. Rajamani, S. Kumar, N. Gupta. SCTP versus TCP: Comparing the Performance of
Transport Protocols for Web Traffic. 2002, July 22. University of Wisconsin-Madison, USA.

[61] M. Ransburg, M. Jonke, and H. Hellwagner. An Evaluation of Mobile End Devices in
Multimedia Streaming Scenarios. First International Workshop on Mobile Multimedia
Networking (IWMMN). 2010, June 30. Chicago, USA. Available from: http://www-itec.
uni-klu.ac.at/publications/mmc/paper9355.pdf.

[62] Md. Safiqul Islam. A HTTP Streaming Video Server with Dynamic Advertisement Splicing.
Master of Science Thesis. KTH (TRITA-ICT-EX-2010:46). Stockholm, Sweden, 2010.

[63] Samsung. Galaxy Ace GT-S5830 specifications [cited 2011, August 6]. Available from:
http://www.samsung.com/uk/consumer/mobile-devices/mobile-phones/touch-
screen/GT-S5830OKAXEU/index.idx?pagetype=prd_detail&tab=specification.

[64] Y. Sánchez, T. Schierl, C. Hellge, D. De Vleeschauwer, and W. Van Leekwijck. iDASH:
Improved Dynamic Adaptive Streaming over HTTP using Scalable Video Coding. ACM
Multimedia Systems Conference (MMSys). 2011, February 23-25. San Jose, California, USA.

[65] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for Real-
Time Applications. IETF Network Working Group, Request for Comments: 3550. 2003, July.
Available from: http://tools.ietf.org/html/rfc3550.

[66] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP). IETF Network
Working Group, Request for Comments: 2326. 1998, April. Available from: http://tools.
ietf.org/html/rfc2326.

[67] M. F. Siraj. HTTP Based Adaptive Streaming over HSPA. Master of Science Thesis. KTH (EES
2011-04). Stockholm, Sweden, 2011, April.

[68] SQLite. Available from http://www.sqlite.org.

[69] T. Stockhammer. Dynamic Adaptive Streaming over HTTP - Standards and Design
Principles. ACM Multimedia Systems Conference (MMSys). 2011, February 23-25. San Jose,
California, USA.

http://i1.silverlight.net/content/downloads/silverlight_5_beta_features.pdf
http://i1.silverlight.net/content/downloads/silverlight_5_beta_features.pdf
http://www.iis.net/download/LiveSmoothStreaming
http://www.iis.net/download/LiveSmoothStreaming
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=03d22583-3ed6-44da-8464-b1b4b5ca7520
http://www.microsoft.com/downloads/en/details.aspx?displaylang=en&FamilyID=03d22583-3ed6-44da-8464-b1b4b5ca7520
http://tools.ietf.org/html/rfc4330
http://tools.ietf.org/html/rfc4330
http://www.loria.fr/~lnussbau/files/netemulators-cns09.pdf
http://www.loria.fr/~lnussbau/files/netemulators-cns09.pdf
http://tools.ietf.org/html/draft-pantos-http-live-streaming-06
http://tools.ietf.org/html/draft-pantos-http-live-streaming-06
http://www-itec.uni-klu.ac.at/publications/mmc/paper9355.pdf
http://www-itec.uni-klu.ac.at/publications/mmc/paper9355.pdf
http://www.samsung.com/uk/consumer/mobile-devices/mobile-phones/touch-screen/GT-S5830OKAXEU/index.idx?pagetype=prd_detail&tab=specification
http://www.samsung.com/uk/consumer/mobile-devices/mobile-phones/touch-screen/GT-S5830OKAXEU/index.idx?pagetype=prd_detail&tab=specification
http://tools.ietf.org/html/rfc3550
http://tools.ietf.org/html/rfc2326
http://tools.ietf.org/html/rfc2326
http://www.sqlite.org

BIBLIOGRAPHY 105

[70] WebM. An open web media project. Available from: http://www.webmproject.org.

[71] x264 VideoLan libraries. Available from: http://www.videolan.org/developers/x264.
html.

[72] Xiph.Org Foundation. Vorbis I specification [updated 2010, February 3; cited 2011, August
3].

[73] J. Yao, S. S. Kanhere, I. Hossain, and M. Hassan. Empirical Evaluation of HTTP Adaptive
Streaming under Vehicular Mobility. 2011. Sydney, Australia.

[74] A. Zambelli. ISS smooth streaming technical overview. Microsoft Corporation, 2009, March.

http://www.webmproject.org
http://www.videolan.org/developers/x264.html
http://www.videolan.org/developers/x264.html

Appendix A

Demonstration of the client’s application

This appendix explains in more detail the features of the client’s application. Section A.1 and
section A.2 introduce the graph generator and the logging system. Section A.3 presents the
elements of the client’s graphical user interface (GUI).

A.1 Graph generator

The client’s GUI shows several graphs which are dynamically generated during the streaming
session. These graphs are created with AndroidPlot [9], a Java API designed exclusively for the
Android platform1. Two types of graphs are available in our prototype (see figure A.1):

Bandwidth graph Compares the measured bandwidth (green plot) with the selected media bit-
rate (red plot).

Download graph Represents the segments’ downloading time (pink plot) and the segments’
loading time (blue bars). The average of each plot is calculated and depicted
in purple and dark blue colours, respectively. Note that the first blue bar
corresponds to the start-up delay, whereas successive bars illustrate the time
it takes to load the media segment into the fake player.

(a) Sample bandwidth graph. (b) Sample download graph.

Figure A.1: Available graphs in the client’s application.

A.2 Logging system

The client’s application creates several plain-text files (logs). These files are updated throughout
the session for each measurement (segments’ downloading times, measured throughput,
selected media bit-rate, size of the buffer. . .), as defined in section 5.1.6 on page 66. At the end of
the session, a summary file is generated. Listing A.1 shows an example:

1A feature comparison of graph libraries for Android can be found at http://androidplot.com/wiki/Feature_
Comparison.

107

http://androidplot.com/wiki/Feature_Comparison
http://androidplot.com/wiki/Feature_Comparison

108 APPENDIX A. DEMONSTRATION OF THE CLIENT’S APPLICATION

Listing A.1: Summary log file.
1 # Session log file
2 # Starting at 20110709T210900
3 # Model: GT-S5830
4 # Brand: Samsung
5 # Id: FROYO
6 # Display: FROYO.XWKA9
7 # 602.482 END SESSION. TOTALS:
8 # HTTP requests (manifest): 138
9 # HTTP requests (segments): 78

10 # Start-up delay: 8.802 s
11 # Total pause (excluding initial pause): 0.0 s
12 # Segments played: 70
13 # Segments missed (404 errors): 1
14 # Segments skipped: 0
15 # Segments skipped (due to FFmpeg error): 0

A.3 Overview of the client’s GUI

The following subsections explain the features of the client’s GUI.

A.3.1 Adding media sources

Media sources can be added into the list using the options menu (see figure A.2a). New manifest
URL opens a new text dialog, where the URL of the manifest can be inserted (figure A.2b). The list
of media sources is stored in a private database (i.e., only accessible from the client’s application)
using SQLite [68], since it is fully supported on Android.

(a) Options menu. (b) New manifest dialog. (c) List updated.

Figure A.2: Adding media sources.

The application checks the existing entries on the database to avoid duplicate URLs. If the
inserted URL was not registered on the database, the list of media sources is updated with the new
URL (figure A.2c). The application distinguishes between MPEG-DASH and Apple-HLS sources
(.3gm and .m3u8 file extensions, respectively), displaying them with different icons.

A.3.2 Importing multiple media sources

Multiple URIs can be added using the option Import list. This option opens a new dialog to select
the file which contains a list of URIs. This list is parsed and the database is updated.

A.3. OVERVIEW OF THE CLIENT’S GUI 109

A.3.3 Searching for media sources

The option Search manifests opens a new dialog to specify a web server’s URI (figure A.3a). The
client’s application performs an HTTP request and parses the HTTP response, searching for
MPEG-DASH or Apple-HLS sources, i.e., URIs with .3gm or .m3u8 extensions (figure A.3b). If
so, URIs are added to the list of sources (figure A.3c).

(a) Text dialog. (b) Loading widget. (c) List updated.

Figure A.3: Searching for media sources.

A.3.4 Modifying and deleting media sources

Media sources can be modified of deleted using the context menu as shown in figure A.4a. The
context menu is triggered by long-pressing any element of the list. Figure A.4b shows how to
delete all the media sources. This action is followed by a confirmation dialog (figure A.4c).

(a) Context menu. (b) Options menu. (c) Confirmation dialog.

Figure A.4: Modifying and deleting media sources.

110 APPENDIX A. DEMONSTRATION OF THE CLIENT’S APPLICATION

A.3.5 Opening a media source

If a media source is selected from the list, the application shows the Settings Activity (figure A.5a).
There are two parameters that can be selected in this view: (1) the adaptation mechanism and
(2) the graph to be displayed on the screen. Note that the displayed graph can be switched
during playback, but the adaptation mechanism can not be changed once the streaming session
is started (play button).

(a) Settings Activity. (b) Adaptation dialog. (c) Graph dialog.

Figure A.5: Selection of the session parameters.

A.3.6 Playback during the streaming session

Figure A.6a shows the state of the graph at the beginning of the streaming session, when the
first segment has been downloaded. The graph is updated when successive segments are
downloaded, as it is shown in figure A.6b and figure A.6c.

(a) Playing segment 1. (b) Playing segment 2. (c) Playing segment 3.

Figure A.6: Dynamic graphs.

Figure A.7 to A.10 show the client’s application during the performance evaluation over the
scenarios 1 to 4 (defined in section 5.1.7 on page 70).

A.3. OVERVIEW OF THE CLIENT’S GUI 111

(a) Displaying bandwidth graph. (b) Displaying download graph.

Figure A.7: Sample of playback using the conservative mechanism over the scenario 1.

(a) Displaying bandwidth graph. (b) Displaying download graph.

Figure A.8: Sample of playback using the conservative mechanism over the scenario 2.

112 APPENDIX A. DEMONSTRATION OF THE CLIENT’S APPLICATION

(a) Displaying bandwidth graph. (b) Displaying download graph.

Figure A.9: Sample of playback using the conservative mechanism over the scenario 3.

(a) Displaying bandwidth graph. (b) Displaying download graph.

Figure A.10: Sample of playback using the conservative mechanism over the scenario 4.

A.3. OVERVIEW OF THE CLIENT’S GUI 113

Note that the blue bars depicted in figure A.8b and A.9b represent interruptions on playback
due to buffer underflow. If so, the client’s GUI displays the last video frame on the screen and a
loading wheel animation until the next media segment starts playing.

Appendix B

FFmpeg capabilities

This appendix includes further information about the transcoding capabilities of the FFmpeg
libraries. Tables B.1 to B.3 summarize the supported audio/video CODECs and container file
formats.

Table B.1: FFmpeg supported audio CODECs. Extracted from [13].

Name Encoding Decoding Details

AAC Yes Yes Encoding supported through external library
libfaac

MP3 (MPEG audio layer 3) Yes Yes Encoding supported through external library
LAME, ADU MP3 and MP3 on MP4 also
supported

Vorbis Yes Yes A native but very primitive encoder exists

Table B.2: FFmpeg supported container formats. Extracted from [13].

Name Encoding Decoding Details

Flash (SWF) Yes Yes

Flash Video (FLV) No Yes Macromedia Flash video files

MOV/QuickTime/MP4 Yes Yes 3GP, 3GP2, PSP, iPod variants supported

MPEG-TS (transport stream) Yes Yes Also known as DVB Transport Stream

MPEG-4 Yes Yes MPEG-4 is a variant of QuickTime

Ogg Yes Yes

Raw H.263 Yes Yes

Raw H.264 Yes Yes

Raw MPEG-2 No Yes

Raw MPEG-4 Yes Yes

WAV Yes Yes

115

116 APPENDIX B. FFMPEG CAPABILITIES

Table B.3: FFmpeg supported video CODECs. Extracted from [13].

Name Encoding Decoding Details

Flash Video (FLV) Yes Yes Sorenson H.263 used in Flash

H.263 / H.263-1996 Yes Yes

H.263+ / H.263-1998 / H.263
version 2

Yes Yes

H.264 / AVC / MPEG-4 AVC /
MPEG-4 part 10

Yes Yes Encoding supported through external library
libx264

MPEG-2 video Yes Yes

MPEG-4 part 2 Yes Yes

VP8 Yes Yes fourcc: VP80, encoding supported through
external library libvpx

Theora Yes Yes Encoding supported through external library
libtheora

Appendix C

Integration of FFmpeg libraries using the
Android NDK

This appendix explains in more detail the process of integration of the FFmpeg libraries into the
client’s application for Android. Listing C.1 shows the configuration steps that are needed to
compile the FFmpeg libraries for the ARM architecture1 (see the specifications of the client’s
device in table 5.1 on page 62). The ./configure command (listing C.1, line 12) simply
specify the flags which enable or disable the features provided by the libraries. Note that
the most important arguments are --arch=arm and --enable-cross-compile which allow
the compilation for the ARM architecture. Additional flags are provided by the arguments
--extra-cflags and --extra-ldflags.

Listing C.1: Integration script.

1 #!/bin/bash
2 # Path to the prebuild directory of the Android NDK
3 PREBUILT=/usr/share/android-ndk/toolchains/arm-eabi-4.4.0/prebuilt/linux-x86
4
5 # Path to the platform directory of the Android NDK
6 PLATFORM=/usr/share/android-ndk/platforms/android-8/arch-arm
7
8 # Update PATH
9 export PATH=$PREBUILT/bin:$PATH

10
11 # Configure the FFmpeg libraries with the following command line
12 ./configure --target-os=linux \
13 --arch=arm \
14 --enable-version3 \
15 --enable-gpl \
16 --enable-nonfree \
17 --disable-stripping \
18 --disable-ffmpeg \
19 --disable-ffplay \
20 --disable-ffserver \
21 --disable-ffprobe \
22 --disable-encoders \
23 --disable-muxers \
24 --disable-devices \
25 --disable-protocols \
26 --enable-protocol=file \
27 --enable-avfilter \
28 --disable-network \
29 --disable-mpegaudio-hp \
30 --disable-avdevice \
31 --enable-cross-compile \
32 --cc=$PREBUILT/bin/arm-eabi-gcc \
33 --cross-prefix=$PREBUILT/bin/arm-eabi- \
34 --nm=$PREBUILT/bin/arm-eabi-nm \
35 --extra-cflags="-fPIC -DANDROID" \
36 --disable-asm \
37 --enable-neon \
38 --enable-armv5te \
39 --extra-ldflags="-Wl,-T,$PREBUILT/arm-eabi/lib/ldscripts/armelf.x -Wl,

1More information can be found at http://www.arm.com.

117

http://www.arm.com

118 APPENDIX C. INTEGRATION OF FFMPEG LIBRARIES USING THE ANDROID NDK

40 -rpath-link=$PLATFORM/usr/lib -L$PLATFORM/usr/lib
41 -nostdlib $PREBUILT/lib/gcc/arm-eabi/4.4.0/crtbegin.o
42 $PREBUILT/lib/gcc/arm-eabi/4.4.0/crtend.o -lc -lm -ldl"
43
44 # Compile the FFmpeg libraries using the Android NDK
45 ndk-build

Listing C.2 shows the Makefile utilized in our prototype to generate the static and dynamic
libraries loaded by the Java application.

Listing C.2: Android makefile (Android.mk).

1 LOCAL_PATH := $(call my-dir)
2 include $(CLEAR_VARS)
3 ...
4 LOCAL_CFLAGS := -D__STDC_CONSTANT_MACROS
5 ...
6 LOCAL_C_INCLUDES += \
7 $(LOCAL_PATH)/../libffmpeg \
8 $(LOCAL_PATH)/../include
9

10 LOCAL_SRC_FILES := \
11 onLoad.cpp \
12 com_media_ffmpeg_FFMpegAVFrame.cpp \
13 com_media_ffmpeg_FFMpegAVInputFormat.c \
14 com_media_ffmpeg_FFMpegAVRational.c \
15 com_media_ffmpeg_FFMpegAVFormatContext.c \
16 com_media_ffmpeg_FFMpegAVCodecContext.cpp \
17 com_media_ffmpeg_FFMpegUtils.cpp
18
19 LOCAL_SRC_FILES += \
20 com_media_ffmpeg_FFMpeg.c \
21 ../libffmpeg/cmdutils.c
22
23 LOCAL_LDLIBS := -llog
24
25 LOCAL_SHARED_LIBRARIES := libjniaudio libjnivideo
26 LOCAL_STATIC_LIBRARIES := libavcodec libavformat libavutil libpostproc libswscale
27
28 LOCAL_MODULE := libffmpeg_jni
29
30 include $(BUILD_SHARED_LIBRARY)

Trivia

”I can’t go to a restaurant and order food
because I keep looking at the fonts on the
menu.”

– Donald Knuth

• This master’s thesis report is written entirely on LATEX 2ε. It uses a template from the Royal
Institute of Technology (KTH), available from: system.csc.kth.se/misc/tex.

• The following Latex packages were used: graphicx, hypens, hyperref, parskip, subfig,
colortbl, xcolor, multirow, tabulary, longtable, listings, caption, minted,
algorithm2e, fourier, and epstopdf. All of them are available via ctan.org.

• The Android logo is published by Google Inc. under the terms of the Creative Commons
Attribution (CC-A) license. According to the brand guidelines: ”the android robot can
be used, reproduced, and modified freely in marketing communications. http://www.
android.com/branding.html.

• All figures (except screenshots of Sintel) were drawn in vectorial format (SVG) using
Inkscape (available from inkscape.org). Imported into Latex in EPS format. The Latex
package epstopdf eases the integration.

• Plots were generated with the Graphics Layout Engine (GLE), available from glx.
sourceforge.net.

• Source code listings were highlighted with the minted Latex package, available from
ctan.org/tex-archive/macros/latex/contrib/minted. It is based on the powerful
Pygments library, available from pygments.org.

• The word cloud showed at the end of this report was created with Wordle (available from
wordle.net), based on the most repeated words of this document.

• This master’s thesis project was presented on 27 September 2011 at KTH (Kista campus,
Hörby seminar room).

system.csc.kth.se/misc/tex
ctan.org
http://www.android.com/branding.html
http://www.android.com/branding.html
inkscape.org
glx.sourceforge.net
glx.sourceforge.net
ctan.org/tex-archive/macros/latex/contrib/minted
pygments.org
wordle.net

www.kth.se

TRITA-ICT-EX-2011:225

	List of Acronyms and Abbreviations
	List of Tables
	List of Figures
	List of Code Listings
	List of Algorithms
	Introduction
	The problem and motivation
	Goals
	Scope
	Audience
	Organization of the thesis

	Background
	Traditional streaming
	Real-Time Transport Protocol (RTP)
	Real-Time Streaming Protocol (RTSP)

	Progressive download
	Adaptive streaming
	Transcoding
	Scalable encoding
	Stream switching

	HTTP-based adaptive streaming
	Why HTTP?
	Apple's HTTP Live Streaming (HLS)
	Microsoft's Live Smooth Streaming (LSS)
	Adobe's HTTP Dynamic Streaming
	MPEG Dynamic Adaptive Streaming over HTTP (MPEG-DASH)

	Video CODECs
	Video frames
	Decoding and presentation time-stamps
	H.263
	H.264/MPEG-4 AVC
	VP8

	Audio CODECs
	MP3
	Advanced Audio Coding (AAC)
	Vorbis

	Container formats
	Quality video levels
	Video on-demand and live streaming
	Google's Android operating system
	Media formats supported on Android
	Adaptive protocols over HTTP supported on Android
	Apple-HLS support
	Microsoft-LSS support
	Adobe-HDS support

	Comparison among the different HTTP-based adaptive solutions

	Related work
	Design and implementation
	Content preparation
	Transcoder module
	Segmenter and combiner modules
	Indexing module

	Synchronization between server and client
	HTTP Servers
	On-demand server
	Live server

	Client
	Features
	Adaptation mechanisms
	Aggressive adaptive mechanism
	Conservative adaptive mechanism
	Mean adaptive mechanism

	Module characterization
	Activities

	Player module
	Video surface management
	Implementation

	Parser module
	DOM and SAX
	Implementation

	Segment-downloader module
	Implementation

	Rate adaptation module
	Implementation

	Transcoder module
	Implementation

	Timer module
	Implementation

	Network emulator
	Emulator requisites
	Dummynet

	Evaluation
	Experimental environment
	Experimental devices
	Content source
	Segmentation schemas
	Selection of media quality levels
	Input and output characterization
	Metrics
	Weighted functions
	Bandwidth utilization
	Bandwidth efficiency
	Buffering efficiency
	Segment-fetch efficiency
	Segment-retry efficiency
	End-to-end latency
	Active efficiency
	Start-up efficiency
	Reaction efficiency

	Network scenarios

	Scenario 1: long-term variations of the available bandwidth
	Performance of the adaptation mechanisms
	Impact on the metrics

	Performance with different duration segments
	Impact on the metrics

	Analysis of the end-to-end latency
	Discussion

	Scenario 2: short-term variations of the available bandwidth
	Performance of the adaptation mechanisms
	Impact on the metrics

	Performance with different duration segments
	Impact on the metrics

	Analysis of the end-to-end latency
	Discussion

	Scenario 3: peaks in the available bandwidth
	Performance of the adaptation mechanisms
	Impact on the metrics

	Performance with different duration of segments
	Impact on the metrics

	Analysis of the end-to-end latency
	Discussion

	Scenario 4: troughs in the available bandwidth
	Performance of the adaptation mechanisms
	Impact on the metrics

	Performance with different duration segments
	Impact on the metrics

	Analysis of the end-to-end latency
	Discussion

	Effects of packet loss
	Impact on the metrics
	Discussion

	Evaluation with real live events
	Impact on the metrics
	Discussion

	Conclusions
	Discussion
	Future work

	Bibliography
	Demonstration of the client's application
	Graph generator
	Logging system
	Overview of the client's GUI
	Adding media sources
	Importing multiple media sources
	Searching for media sources
	Modifying and deleting media sources
	Opening a media source
	Playback during the streaming session

	FFmpeg capabilities
	Integration of FFmpeg libraries using the Android NDK
	Trivia

