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Abstract

Today motion recognition has become popular for human computer
interaction in areas, such as health care, computer games, and robotics.
Although many research projects have investigated this field, there are still
some challenges remaining, especially in real-time environments.

In real-time environments, the amount of data needed to compute the
user’s motion and the time required to collect and process this data are crucial
parameters in the performance of a motion recognition system. Moreover, the
nature of the data (accelerometer, gyroscope, camera, . . . ) determines the
design of the motion recognition system. One of the most important challenges
is to reduce the delay between sensing and recognizing the motion, while, at
the same time, achieving acceptable levels of accuracy.

In this thesis we present a solution using Nintendo’s Wii Remote that
solves several problems, such as permitting multiple device interaction and
synchronization. In addition, this thesis addresses the performance challenge
of realizing motion recognition for such a device. Finally, this thesis introduces
a Java architecture which contains a set of interfaces that can be re-used in
future projects.

One of the most important achievements of this project is enabling
interaction among different users and devices in a real-time environment, as,
our application deals with multiple devices at the same time, with an acceptable
delay. The resulting application provides smooth interaction to the user. As
a consequence, our application enables collaborative and competitive activities
which in this thesis project were evaluated in a educational process context.
In this specific context, the main goal of the researchers with whom I was
collaborating was to extend traditional methods of teaching children about
some abstract concepts, such as energy.

In addition, this thesis shows how to achieve different levels of accuracy and
performance, by implementing two different algorithms. The first one is a static
algorithm based on heuristics. The second algorithm, called k-Means, is based
on data clustering. The heuristics based algorithm provides a result in less
than 2 milliseconds, while k-Means takes roughly 4 milliseconds to converge.
A comparison of the performance and flexibility of these two algorithms is
presented.

This project has resulted in a multi-threaded high level architecture based
on Java, which enables interaction between Wiimote devices. The Application
Programming Interface, can be easily extended for future projects, via several
interfaces that provide basic mechanisms, such as an event listener, message
delivery, and synchronization module. Moreover, the two different motion
recognition algorithms offer different performances and different flexibility
features, a crucial parameter closely related with motion recognition accuracy.
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Sammanfattning

Idag rörelse erkännande har blivit populär för människa-dator
interaktion områden, t.ex. hälsovård, dataspel, och robotik. även om många
forskningsprojekt har undersökt detta område finns det fortfarande några
utmaningar som återstår, framför allt i realtid miljöer.

I realtid miljöer, behövs den mängd data för att beräkna användarens
rörelse och den tid som krävs för att samla in och bearbeta dessa data är
avgörande parameter är i utförandet av en rörelse erkännande. Dessutom har
typ av data (accelerometer, gyroskop, kamera, . . . ) bestämmer Utformningen
av rörelse erkännande. En av de viktigaste utmaningarna är att minska
fördröjningen mellan sensorer och erkänna rörelse, medan vid Samtidigt uppnå
en acceptabel nivå av noggrannhet.

I denna avhandling presenterar vi en lösning med Nintendos Wii
Remote som löser flera problem, som tillåter flera enheter samspel och
synkronisering. Dessutom behandlar denna avhandling prestanda utmaningen
förverkliga rörelse erkännande för en sådan enhet. Slutligen, denna avhandling
introducerar en Java-arkitektur som innehåller en uppsättning gränssnitt som
kan återanvändas i framtida projekt.

En av de viktigaste resultaten av detta projekt gör det möjligt för
interaktion mellan olika användare och enheter i realtid miljö som är våra
Ansökan handlar om flera enheter på samma gång, med en acceptabel dröjsmål.
Den nya ansökan innehåller smidigt samspel med användaren. som en följd
av detta gör att vår ansökan samarbete och konkurrens verksamheter som
i detta examensarbete utvärderades i en pedagogisk processen sammanhang.
I detta specifika sammanhang, det viktigaste målet för forskarna som jag har
samarbetat var att utöka traditionella undervisningen barn om några abstrakta
begrepp, såsom energi.

Dessutom visar avhandlingen hur man kan uppnå olika nivåer av
noggrannhet och prestanda genom att införa två olika algoritmer. Den första
är en statisk algoritm baserad på heuristik. Den andra algoritmen, kallade
K-medel, är baseras på data klustring. Den heuristik baserad algoritm ger
ett resultat i mindre än 2 millisekunder, medan k-Betyder tar ungefär 4
millisekunder att konvergerar. En jämförelse av prestanda och flexibilitet för
dessa två algoritmer presenteras.

Detta projekt har resulterat i en flertrådad hög nivå arkitektur baserad på
Java, som möjliggör interaktion mellan Wiimote enheter.
Ansökan Programming Interface, kan enkelt byggas ut för framtida projekt, via
flera gränssnitt som ger grundläggande mekanismer, såsom
en händelseavlyssnare meddelande leverans, och synkronisering modul.
Dessutom har två olika rörelser erkännande algoritmer erbjuder olika
föreställningar och olika flexibilitet funktioner, en avgörande parameter nära
besläktad med rörelse erkännande noggrannhet.
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Chapter 1

Introduction

Motion recognition has become popular in recent years. A great deal of research
effort has been conducted in this field, especially in Human Computer Interaction
(HCI), where the user is one of the most significant parts of the system. Hence,
the possibility to recognize user’s gestures, and, consequently enable a interaction
based upon gestures is an important challenges today.

The main problem we have to deal with is the definition of a specific gesture,
and then, understand how to recognize it. In this project we will recognize gestures
based upon the movement of a specific handheld device. Therefore we have to
communicate with the sensors that are embedded into this device and from this
sensor data recognize the user’s gestures.

The context of this work is a Mobile Life Excellence Center research project
called Generalized Interaction Models [21], lead by Jakob Tholander. The main
focus of the project is adapting the desktop metaphor for the mobile phone, but
not simply imitating the models invented for stationary workstations. Additionally,
this motion recognition project was done in a collaboration with another research
project called Wii Science [8], which is focused on introducing education to learners
through the use of computer and video games.

Once the context was defined we started the motion design process. Carolina
Johansson was the main motion designer, and consequently, she led this process.
In order to define these motions and specify the constraints on these motions, we
started with some conclusions from her studies of sports, such as skateboarding,
and golf.

We decided that we wanted to deal with three simple and quite different motions.
The requirements for those motions were:

• Full body movement, so, users could perform any of the motions without
restrictions in terms of space, shape, or velocity.

1
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• Sensing, so that the user could not cheat by doing a different motion, but
obtain the same result. For instance, making smaller motions when big
motions are required.

• Awareness, defined as the relationship that the user has with a thing when
the user is aware of the thing, but the thing itself is not the focus of attention.
Therefore, the thing (in this case the device with sensors) should allow to the
user to focus on something else.

This criteria was adopted due the nature of the designed experiment, exposed
in chapter 3, “Weather Gods and Fruit Kids Game”, as well as the collaboration
with Wii Science research project [8].

The results of these requirements and the motion design process were the
following motions:

Slow&Soft
The motion should not have high variations in terms of velocity or acceleration.
Hence, the motion should be as smooth as possible.

Big&Large
In this case the user should perform motions with high variations in terms of
velocity, i.e., acceleration. The volume of space used is, consequently wider
than in previous motion type.

Robotic
The motions are short and exhibit a high variation in acceleration followed
by non-activity for a defined minimum period of time. Therefore, after every
motion the user should remain frozen for a short period of time.

The designed motions pretend to be easily distinguishable each from other.
However, as it is possible to observe in chapter 4, Robotic motion presents poor
motion recognition results. So, the solution would be either to make a deeper
analysis in order to detect this lack of motion recognition (and avoid the use of this
motion) or implement a more suitable motion recognition algorithm, such as the
methods descibed in chapter 2.

After defining these motions, we needed to choose the most suitable device for
enabling the interaction with the user. Initially, we thought about two different
devices: a mobile phone and Nintendo Wii remote device (Wiimote). After
evaluation of these alternatives, and an estimate of the time that would be required
time to implement the system, we decided to focus on the Wiimote.

The Wiimote is the main interface device we used during a set of workshops 1,
in which children were to perform one of the three specific motions described above.

1Details of these workshops will be explained in detail in Chapter 4 on page 49
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The device has several different peripherals which provide feedback to the users,
such as rumble, lights via Light-Emitting Diode (LED), and sound. Moreover,
the Wiimote provides 8 bits of acceleration data, in a device centered Cartesian
coordinate system (X, Y, and Z axis). The Wiimote communicates via Bluetooth.

In order to understand how this feedback is related to body motion, it is
important to explain how the host application collects information from the Wiimote
and turns this data into a recognized motion. The Wiimote streams data packets
containing acceleration data at 0-100 packets per second. This information is
collected by the host and after a selectable period of time (500, 250, or 125
milliseconds), the host application forms a chunk containing all the recently received
packets. This chunk is analyzed, by calculating both average and peak values of
acceleration for each of the axes. Following this analysis, the host application
outputs an estimate of whether the body motion was one of these three motions
that the child was to perform: "Slow&Soft", "Big&Large", or "Robotic".

The speaker of the Wiimote provides short and low sound volume effects. The
speaker could be configured either as a 4-bit Adaptive Differential Pulse Code
Modulation (ADPCM), or 8-bit Pulse Code Modulation (PCM) audio device. Once
the device is configured, the sound effects are streamed by a host application, a
square wave (click sound) by sending 20 bytes at a time. The application directly
couples the sound feedbacks to the application’s estimation of the user’s body
motion.

We have defined a sound, emitted every second, as our basic audio feedback. If
the motion was "Slow&Soft" the user will hear only this sound. If the motion was
"Big&Large", then clicking sounds were added to the basic sound. In the third case,
"Robotic" body motion results in the Wiimote playing 3 consecutive sound effects
in a short period of time.

Michael Kantor and David Redmiles have noted that minimizing the total delay
between detecting and evaluating the motion and audio feedback enhances the
awareness of the user [9]. Therefore with the above audio feedback, the user knows
which kind of motion was recognized, just by listening to the sound emitted by the
Wiimote.

In addition, the Wiimote utilizes a small motor to make the device rumble. We
designed the vibration feedback to indicate whether the user’s current body motion
was the expected motion. Consequently, a lack of vibration alerts the user that they
are not performing the correct motion. The vibrations are short enough to avoid
overlap between consecutive device responses, but long enough to properly alert the
user.
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Similar to audio feedback, vibration feedback is computed over the motion
chunks formed by the host. Hence, the user gets either, a vibration or none,
depending on the user’s body motion during the last sensing interval.

The following chapters will describe the design, implementation, and evaluation
of a system which provides feedback in real-time based upon recognition of the user’s
movements. The system will be evaluated in terms of the design requirements.The
initial system architecture is described along with, how it was modified, extended,
re-designed, and implemented. Each of the the different modules and layers in
the design and implementation, are described in detail in terms of how motion
recognition can be performed successfully.

The overall performance of the system is evaluated in terms of the delay between
motion and the time of generating feedback; as well as the probability of correctly
recognizing the motion. The thesis ends with a statement of some conclusions and
recommendations for new techniques to improve the results and alternative ways to
compare motions.



Chapter 2

Background

This chapter presents all the mathematical concepts needed in order to understand
the related projects and the algorithm implemented in this thesis project. Once
these methods are presented several related projects are described. Some of these
studies are closely related with my work, while some other projects described
common methods that could be applied in future work following this thesis project.
Finally, the architecture used to fulfill the design requirements of the research study
is described in detail.

2.1 Mathematical approaches to processing the
acceleration data

This section presents all the mathematical models that are subsequently used to
process the acceleration data, necessary in order to understand section 2.2, and to
understand the algorithm that was implemented to recognize motion.

2.1.1 Hidden Markov Model

2.1.1.1 Markov Model

A Markov Model is random process that fulfills the Markovian property. This
property says that the current state of the model is independent of all previous
observations (Xn) except the most recent [1]. Therefore, the next state (i.e., the
future state) will depend only on the current state (i.e., the present state), not on
the past states. Equation 2.1 presents the Markovian property as a conditional
probability function.

p(X1, ..., Xn) =
N∏
n=1

(Xn | X1, ..., Xn−1) (2.1)

5
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If we add the constraint of a discrete−time process, we obtain a particular case
of the Markov Model known as a Markov Chain. It is possible to characterize
a Markov Chain as a set of either finite or non−finite states (random variables),
where the changes among states are known as transitions. The set of states is
known as state−space and the probability of those transitions are called transition
probabilities. Figure 2.1.2 illustrates a fine Markov chain with three states and their
transitions.
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Figure 2.1. Markov chain

2.1.1.2 Hidden Markov Model

A Hidden Markov Model (HMM) is an specific case of the Markov Model that
introduces the concept of latent variables. These latent variables are used to
represent a specific instance of the state space. Figure 2.2 illustrates the relationship
between latent variables and system states.
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Figure 2.2. HMM latent variables

Latent variables are discrete and multinomial variables, Zn, and describe which
component is responsible for generating the corresponding observationXn [1]. These
latent variables depend on the previous state of the latent variables, through the
same relationship as in a Markov Model, i.e., conditional probability. Figure 2.3
shows the possible states of a latent variable.
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Figure 2.3. Latent variables state transition diagram

In order to characterize a HMM we need to introduce the concept of emission
probability (φ), which is the set of parameters that governs the conditional
probabilities of the observed variables. In orther words, emission probabilities are
the K possible states of the binary vector Zn [1]. Equation 2.2 shows the conditional
probability of a HMM.

p(Zn | Zn−1,A) =
K∏
k=1

K∏
j=1

A
Zn−1,jZnk

j,k (2.2)

2.1.2 Kalman filter
A Kalman filter is a set of equations that recursively updates and estimates the
state of the system. This process takes into account past measurements and present
state, in order to predict future system states. Moreover, it stores the errors and
deviation between the measurements and the estimated states in order to predict
future states. This is done by a set of matrix calculations. The matrix represents
the state of the system. The following matrices are used in the different steps of
realizing a Kalman filter:

Measurement vector (Z) contains the measurements of the system.
For instance, positions, accelerastion, velocity, . . .

State vector (X) states of all measured components, and the first derivative of
those components.

Covariance matrix (P ) contains the errors produced in state vector estimations.

Measurement error (R) stores the random errors produced by the measurement
equipment. Usually, the values in this vector are hard coded based on specific
values of the used sensors that are used.

A Kalman filter is divided in two different phases: Prediction and Correction
[25]. During the Prediction phase two predictions are made:

System state is the reponsible for estimating the future state of the system. It
basically propagates the state vector (X) by predicting the future state with
regard to a time propagator (Φ). See equation 2.3.
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Xpredicted = Φ(4t)X(t) (2.3)

Error covariance propagates a covariance matrix (Z), which contains the error
uncertainties, regarding the previous covariance matrix (P+

k−1) and the same
time propagator used in system state prediction (Φ). Equation 2.4 presents
the covariance matrix propagation.

P−
k = ΦP+

k−1ΦT (2.4)

Before computing the Correction steps the Kalman filter computes the innova-
tion (N), which is the difference between the new measurement and the filter’s
prediction. In order to compute innovation an auxiliary measurement matrix
(H) is needed, due to the difference in dimensions between state vector (X) and
measurements (Z). See equation 2.5.

N = Z −HXpredicted (2.5)

Once the innovation is computed, it is possible to perform the three different
steps which belongs to the Correction phase:

Kalman gain (K) indicates how much of the innovation should be applied to the
estimation [6]. See equation 2.6.

K = P−HT (HP− +R)−1 (2.6)

State vector updating converts the current estimation into the measurements of
the system. This step is performed after a new measurement is received. See
equation 2.7

X+ = Xpredicted +KN (2.7)

Error estimate updating is triggered after a new measurement arrives. The
update process is based on identity matrix (I), auxiliary measurement matrix
(H), Kalman gain (K), and the current covariance error matrix. See equation
2.8.

P+ = (I −KH)P− (2.8)
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Figure 2.4 illustrates the different steps of both phases Prediction and Correc-
tion.

1.2 Project
Error covariance

Correction // 2.1 Compute
Kalman Gain

��
1.1 Project system state

OO

2.2 Update state vector
��

2.2 Update state vector
Prediction

llZZZZZZZZZZZZZZZZZ

Figure 2.4. Kalman filtering process

2.1.3 k-Means Clustering

K-Means is a nonprobabilistic algorithm which partitions a multidimensional space.
The algorithm performs a classification of the data measured by comparing the
observations (D-dimensinal Euclidean variables), with theK centers of the space [1] .
A cluster or partition is a set of data points (Xn) which are associated by computing
the distance among them, which is smaller that the distance to other cluster centers.

Every cluster center is represented by a vector with n dimensions (µk).
The classification is performed by calculating the distance of each data point
(observation) from a cluster center, and selecting the closest cluster center.
Therefore, once the algorithm has computed all the distances (d) to all cluster
centers, it associates the data point with the closest cluster center vector (µk).
Distance is presented in 2.9 equation.

d(Xn, µk) =
√∑

(Xn − µk)2 (2.9)

Equation 2.10 shows how the binary indicator (rnk) of the n data point is set to
1 if this center is the closest cluster center [1].

rnk =
{

1 if k = argmin{d(Xn, µk)}
0 otherwise

(2.10)

The algorithm is divided into two steps [15]:

1. Assignment: in this step the algorithm computes all the distances and assigns
data points (Xn) to the closest cluster centers (µk). This process is described
by equations 2.9 and 2.10.
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2. Update: every cluster center is adjusted by computing a new mean. The mean
parameters are computed based upon all data points that were allocated to a
specific cluster. This is show in equation 2.11

mk =

∑
n
rnkxn∑
n
rnk

(2.11)

These two steps repeated until the algorithm converges, i.e., when no more data
points could be assigned. Figure 2.5 shows a k-Mean process sample within a two
dimension Euclidian data points. In the first system state (a) the data points are
located into the space and two random center clusters are defined (black, and red).
In b, it is possible to observe that all the data points are assigned to closest data
cluster. The next step (c) shows how the cluster centers are updated by computing
all the means (of the data points) that belong to each cluster center. Finally, in (d) is
shown how the algorithm has arrived to its convergence, since no more assignments
could be performed.

Figure 2.5. k-Means process sample
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2.2 Related work

This section presents several projects that are related to my work. These projects
present different solutions based on the methods explained in detail in section 2.1.
I will briefly explain the goal of these projects and their results.

2.2.1 HMM based

Many projects have utilized a Hidden Markov Model (HMM). This method
has become popular, especially in speech and hand-written character recognition.
Wiimote Gesture Recognition [16] is a project which presents a solution based
on a system that performs data acquisition, filtering, and exploitation through
HMM. The goal of this project is motion recognition, while providing reasonable
performance. Wiimote is used as an interaction device to capture acceleration of
the user’s hand. They achieve an 85% accuracy with 3 or 4 HMM states.

Another interesting project is an accelerometer-based gesture control for a design
environment [10]. This project consists of two related studies. In the first study
Mantyjarvi, et al. investigate the gestures that users make for controlling a design
environment. The second study concerns the usefullness of gestures as an interaction
modality as compared to other interaction modalities. The project studied which
types of gestures are natural and useful for performing any task (i.e., controlling a
garage door). These authors present a motion recognition method based on HMM
which incorporates a training system (also based on HMM). Their results depend
on the number of training vectors, ranging from 1 vector (with 81.2% accuracy) to
12 vectors (with 98.9% accuracy).

Another motion recognition project is called “Analysis of 3D Hand Trajectory
Gestures Using Stroke-Based Composite Hidden Markov Models” [11]. This project
presents a glove-based solution to recognize a hand’s 3D gesture’s trajectory. It also
incorporates a Polhemus magnetic position tracker, which generates a sequence of
sampled 3D positions. They introduce a new concept of gesture, where a gesture
does not represent a HMM state. Instead, they define a gesture as a set of different
strokes. This project compares traditional HMM gesture (where every HMM state
represents a gesture) and strokes as a basis for input HMM algorithm. They achieve
96.88% of accuracy.

2.2.2 Kalman based

Shiratori and Hodgins [20] uses a Wiimote as the main device to control a
physically simulated character. They present three different interfaces - each using
accelerometer data from Wiimote. These interfaces require users to imitate some
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motions such as walking, running, and jumping. The goal of the project is to
investigate the use of a Wiimote to control characters and to explore the latency
and its effect on the degradation of the user’s control in character control. They
use a Kalman filter to reduce noise and to extract some features such as a motion
frequency, phase difference between Wiimotes, amplitude, and direction inclination.

Yang Wai-Chong [23] uses a Wiimote to capture 3D motion for use with a
low-cost approach for interacting with a Head-Mounted Display. The project
resulted in a system where the user could perform manipulations of a virtual object.
Moreover, the users are allowed to perform tasks, such as navigating through a
virtual environment. They system utilizes the IR lights mounted on a Nintendo
Wii Zapper gun in order to measure the device’s position. In order to estimate
the global position and the global orientation, a Polhemus Patriot 6-DOF magnetic
tracker was used, which has the gun reported positions as inputs. This magnetic
tracker provides position and orientation as outputs. A Kalman filter is used in
order to improve and smooth the readings from an overhead optical sensor. The
project concludes that the system is suitable if slight inacuracies will not affect the
user’s task performance in a virtual environment.

Finally, Torres et al. [22] have investigated the use of an Inertial Measurement
Unit (IMU) in order to track movement. The IMU is a device composed (in this
case) of a 3-axis sensors indicating acceleration, angular velocity, and magnetic
field. They describe a set of software algorithms to interpret the data from IMU
measurements. Although, this project is not closely related to motion recognition, it
uses Kalman filtering to combine the different measurements outputs from IMU to
predict the orientation of the device. The Kalman filter enables the use of gyroscopes
with short-term precision,with accelerometers and magnetometers which have long-
term stability. The output from each of these devices are computed together by
a Kalman filter, which estimates an orientation matrix. Finally, the orientation
matrix will be used to predict the device’s position.

2.3 System Architecture

This section presents the different parts of the system. Figure 2.6 shows how the host
application and Human Interface Device (HID) device (Wiimote) are connected.
The details of these components will be given in subsequent sections.

2.3.1 Nintendo Wii remote device (Wiimote)

The Wiimote is the main input device we used during the workshops. It has several
different peripherals which provide feedback to the users. It is a wireless device based
on Bluetooth (using a Broadcom BCM2042 [3] chip). In order to communicate with
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Figure 2.6. Human Interface Device stack

the hosts, the host interface connects to the host’s Universal Serial Bus (USB) and
communicates using the HID [18] protocol.

2.3.2 Human Interface Device

The main purpose of the HID protocol is to provide a communication channel
between devices and applications which require low-latency input-output operations.
It provides control of the device’s initialization and allows self-describing devices
[18]. HID defines how data should be transmitted, while avoiding manufacturer
specific protocols. Use of HID is crucial to achieve interoperability, security, and
performance.

HID operates over a lower communication layer,in this case USB. The Logical
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Figure 2.7. Nintendo Wii remote device (Wiimote)

Link Control and Adaptation Protocol (L2CAP) is used to carry data across the
Bluetooth wireless link. HID acts as an interface between these lower layers, and
the host application layer. HID basically defines the host and device interface
requirements required to implement the desired communication.

2.3.3 Software Architecture

The software architecture is a traditional multi-tier design, based on the client-
server paradigm. It is composed of three main layers: low level (C API), interface
(Java Native Interface (JNI)), and high level (Java). The purpose of this design was
to make the most of the underlying C performance, but at the same time provide
a robust and flexible high level application interface. The architecture is shown in
figure 2.8.

2.3.3.1 C API

The lowest layer used a non-commercial 1 API, called "wiiuse" develop by Michael
Laforest [12]. The most important features this API provides are input and output
mechanisms to manage the data, control the wiimote and communication status,
and the functions to deal with wiimote peripherals (in this API the motor, LEDs,
and the Infra-Red (IR) camera could be controlled).

However, some features needed to be added, such as functions to deal with the
speaker, because these were not implemented in the original wiiuse. Therefore, I
extended this API by adding some libraries related to the speaker. I also extended
several data structures, such as the data structure which represents the wiimote’s

1GNU GPLv3 and GNU LGPLv3 licenses
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Figure 2.8. Software Architecture

status. The resulting extensions are document in chapter 4 and the source code is
included in Appendix A.

2.3.3.2 Java Native Interface

Java Native Interface (JNI) [13] provides Java applications with the ability to call
native libraries written in other programming languages (such as C, and C++).
JNI allows us to use C libraries (such as the extended wiiuse API described above),
for operations such as event polling, and to retrieve the incoming data from the Wii
remote.

This layer is based on "wiiuseJ" [5], developed by Guilhem Duche, extended to
enable the use of the new versions of "wiiuse". These extensions are documented in
chapter 4 and the source code is included in Appendix B.
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2.3.3.3 Java API

Initially, we used the "wiiuseJ" Java API, a non-commercial API which is available
from Google code [5]. This API was also developed by Guilhem Duche. It
provides several interesting features, including a monitoring system, a complete
event structure, and event listener protocol.

2.4 WiiuseJ

This section describes both the software architecture and the interaction model
behind the WiiuseJ API [5], a Java interface to interact with Wiimote. The interface
implements a layered architecture based on the Model-View-Controller (MVC)
pattern [19] and event handling paradigm, formed by a set of listeners which react
to events generated by the Wiimote device. Details of the Model View Controller
pattern are described in section 2.4.2.

The API consists of roughly 60 classes. These classes can be classified into
three sets according to the MVC pattern: listeners and managers (controller),
events (model), and displayers (view). Interacting with Wiimote devices is done
through the implementation of interfaces which provide full control over the events
coming from the Wiimote. Therefore, once the listener implements this interface the
programmer can create a reactive software application. This listener is especially
useful since it provides a large number of different types of events. Moreover the
architecture enables an easy way to handle these events. For instance, it is really
easy to gather motion information, just by coding a couple of classes, one of which
implements WiimoteListener interface.

In addition, a Graphical User Interface (GUI) test was provided. This GUI test
offering a clear design and whit lot of options for testing purposes. This Graphical
User Interface (GUI) test can provide information about the real-time acceleration,
orientation or g-force values, and shapes (movement paths). The Graphical User
Interface (GUI) can also be used to send commands to the Wiimote device, such as
cause it to rumble or turn on/off the LEDs.

Before presenting my analysis of the MVC pattern, I will present a model
schema, which offers a means to understand the basic system structure. Following
this, the architecture is divided into components, each of which will be analyzed by
means of Unified Modeling Language (UML) class diagrams [7]. Finally, the last
sections will show some of the relevant processes that are invoked when an event
occurs. This process will be presented using UML sequence diagrams.
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2.4.1 Big Picture - Model Diagram

This section presents a brief introduction to the system structure through a model
diagram, which shows the layered architecture and its components.

I have divided the architecture into three different layers, which I believe to
offer an accurate view of the API. As said previously the main architecture pattern
is an Model-View-Controller (MVC). However, since any application has to react
to incoming events, we must introduce an event handler model. The result is a
MVC model adapted to the required roles (events and listeners) in an event handler
system.

Figure 2.9 represents the model, showing only the most relevant classes (in order
to give a clear snapshot of the overall architecture).

Figure 2.9. System architecture shown as a Model View Controller Diagram
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2.4.2 Model-View-Controller Architecture

2.4.2.1 Model

The well-known role of the model [14] is the representation of the stored data and
its related components. Therefore, the model represents the state of the system
and it provides an interface to interact with this state information, which typically
allowing reading, writing, and modifying of the state data.

The proposed model is based on events, which form the data to subsequently
be modified and handled by the controller. The events are structured according to
their purpose, and handled by specific listeners depending on the listener layer, a
concept that will be explained in detail in 2.4.3 section. The following class diagram
reflects the implemented event structure:

Figure 2.10. Events Class Diagram

On top of the class hierarchy we find GenericEvent, which it is an abstract
class that defines setters and getters related to the Wiimote class. The second level
consists of the WiiuseApiEvent, which is another abstract class that introduces the
concept of event type through an object variable called eventType.

The rest of the event classes contain information for the respective listerners.
I will focus only on WiimoteEvent, as it is the most important event in my work,
since it is the super class of events related to motion capture. This event has the
class structure shown in figure 2.11.

The WiimoteEvent serves as container for the events that are closely related
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Figure 2.11. Wiimote Event Class Diagram

with the user interaction: Buttons, IR Camera, Motion, and Expansion. Details of
these are given below.

• Buttons handle event produced by the Wiimote. The implemented buttons
are: A, B, Up, Down, Left, Right, Minus, Plus, and Home. Moreover, the
event also differentiates between three pressed actions: Pressed. Held. and
Just Pressed.

• IR Camera provides information related with the coordinates (X and Y) and
also with the screen.

• Motion provides information about these important features related with
motion features: (three axis) Acceleration, G- force, and Orientation.

• Expansion can be used to implement of new events.

2.4.2.2 View

The main goal of the View component [14] is to present the data (model) to the
user. The view component provides the interface between the model and the user,
allowing the user to interact with the model. Depending on the purpose of the
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application and the user’s goals, the view should provide different views of the
Model. For instance, for human interaction GUIs are widely used.

The View component in WiiuseJ API is based on the class structure shown in
figure 2.12.

Figure 2.12. GUI objects Class Diagram

These are the basic classes provided to implement a GUI. Each class represents
a screen whose main purpose is to test different aspects of the Wiimote. In this
case the name of each screen clearly indicates the purpose of the screen. WiiuseJ
also includes a complete GUI developed with these classes and the addition of some
other classes. This complete GUI offers the interface shown in figure 2.13. While
figure 2.14 shows how the classes are structured and the relationship among them.

The main class in the View component is WiiuseJGuiTest. It is in turn
responsible for each for each of the following tasks:

• Act as a container (JFrame) of the different screens (JPanels). It performs
the initialization and update of the contained JPanel classes.

• Bind GUI with Wiimote events, by containing a reference to Wiimote object
and implementing WiimoteListener interface. Afterwards, the GUI must be
registered in the Wiimote’s event listeners list to enable the event-handling
connection.



2.4. WIIUSEJ 21

Figure 2.13. Graphical User Interface Testing

• Act as a listener for the incoming interface screen events (from the human
testers), these events are used either send commands to the Wiimote object
or processed locally (screen changes).

Classes from the basic schema (IRPanel, ButtonEventPanel, GForcePanel,
OrientationPanel, and AccelerationPanel) implement theWiimoteListener interface
and extend JPanel. So, these classes are components of the GUI and at the same
time act as a listeners. Hence, they handle incoming events and perform actions.
Therefore, in order to receive events, the reference of the class needs to be saved in
the “transmitter” class (typically on a listener list) and the “receiver” class needs
to extend to proper interface. This ensures that the event-handling classification
is not broken by any class. In this case they are on the bottom of the listerner’s
model. I will provide more details about event handling model in section 2.4.3.

2.4.2.3 Controller

This component [14] interacts with both model and view, in order to fulfill the
actions from the view which has effect on the model. Therefore, the controller is
the responsible for maintaining the model in terms of writes, reads, and updates.
It also can manipulate the access permission, to change the allowed actions for a
specific user.

The API has the class structure for the controller shown in figure 2.16. At
the of the hirarchy we find the WiiApiManager class, which deals with the lowest
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Figure 2.14. GUI objects and Listerners Class Diagram

API level, contained in the WiiUseApi class. It also extends from the Thread Java
class, such that the run() method has a loop where catching all the events coming
from the WiiUseApi class. By implementing a thread in the listener we connect
the controller and view components. Partitioning the functionality into different
components means that an error in one component does not cause problems in
the other component. Moreover, this is a good method to create a reactive GUI,
which allows the user to interact with it when the component is properly running.
Moreover, a reactive GUI allows manual reinitialization of the controller if an error
occurs. In this case, a disconnection is forced and the user needs to press the
reconnect button. By pressing this button a reconection of theWiimote is performed
by WiiUseApiManager and the communication recovered.
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Figure 2.15. WiimoteApiManager Class Diagram

The most important tasks of WiiApiManager are presented here:

1. Deal with the low level API translating the high level requests into primitive
calls. For instance, the method related to the Wiimote’s connection, con-
nectWiimotes(), can be decomposed into the following WiiUseApi primitive
method calls:

• init(),
• find(), and
• connect().

2. Capture the events, through the EventHandler class, and transmit them to the
attached listeners (these listeners implement the WiiApiListener interface).

3. Manage and control the connected devices (Wiimotes). This interactions
utilize methods such as: activateRumble(), setLeds(), or getStatus().

The sequence diagram shown in figure 2.16 illustrates the connection process
which is performed when the main application wants to discover and register the
available Wiimotes. In this process the WiiApiManager has a relevant role, since
it is responsible for interacting with the primitive methods (from the WiiuseApi
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Figure 2.16. Wiimote Connection Sequence Diagram

class), and to create the Wiimote data structure.

When the WiiuseApiManager creates a list of Wiimote objects, those must
be created by WiiuseApiManager, instead from the WiiuseApi. Therefore, the
WiiuseApi class just returns the number of connected devices, not a set of objects
representing each of them. Once theWiimote objects are created they are associated
with and unique identifier.

2.4.3 Event Handler System

This section presents the event system through dynamic schemas, as sequence
diagrams. In section 2.4.2 the static architecture is presented by means of class
diagrams, which clearly reflects the application structure. However, they do not
provide a good view of how the processes are performed by the different components
of the model. This process view will be described in the following subsections.
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2.4.3.1 The Listener Model

As presented above, events are static data structures (represented by classes) which
form the model. There are different types of events, depending on the purpose of
the event. At the top of the the event hierarchy we find the GenericEvent class,
which it is extended by the other event classes.

The result is a dynamic system that is responsible for performing event
management. This structure is based on listeners, which implement two basic
interfaces: WiiuseApiListener and WiimoteListener. Both of these interfaces are
extensions of the Java EventListener API.

The listener hirarchy is shown in the figure 2.17. The basic performance of the
controller is based on a listener hirarchy which utilizes a set of low level listeners,
typically organized as a list of listeners (EventListernerList). Once an event occurs
this listener notifies all of the other listeners which are stored on the list the event.
The notification is performed by calling a specific method defined in each listener
interface. For instance, WiiUseApiManager utilizes notifyWiiUseApiListeners()
method to perform this notifications. Wiimote performs these notifications through
a set of methods, which the name of those depends on the listener’s name
(notify+ListenerName()).

Figure 2.17. Listener Hierarchy Diagram



26 CHAPTER 2. BACKGROUND

2.4.3.2 Event Handling Processes

In order to illustrate the event handling processes we will consider the following
examples. The first of these will be the WiiApiManager event gathering and passing
to WiiuseApiListener listeners. This process is shown in the figure 2.18.

The process is performed in a loop located in the run() method of the thread.
WiiApiManager uses an object called EventGahtherer which is a container of the
incoming events. After retreive the gatherer WiiApiManager notifies that events
are to the available WiiuseApiListeners by calling the onUseApievent() method.
The process ends when the incoming event type is DISCONNECTION_EVENT,
which closes the connection (closeConnection()).

Figure 2.18. Event Handling Sequence Diagram

The above process is followed by the WiiuseApiListener passing generic events
to WiimoteListeners, which is shown in the figure 2.19.

This is the continuation of the first process. Here, the WiiApiManager has
gathered all the incoming events and notifies the WiiuseApiListeners of these
events. This notification triggers another notification, in this case from the
WiiuseApiListeners to WiimoteListeners, which are stored in Wiimote object.

The diagram shown in figure 2.18 shows only a single event case, GENERIC_EVENT
type, which is the most interesting event in terms of user interaction and motion
capture. This event, as mentioned before, may contain: buttons, IR, motion, and
expansion events.
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Figure 2.19. Event Distribution Sequence Diagram





Chapter 3

Method

3.1 Project Context
As mention in Introduction, this masters thesis is framed in a research project [21]
within Mobile Life Center in collaboration with the Wii Science project [8]. The
aim of this collaboration was the study of bodily interation and kinesthetic learning
with a group of children.

Involvement of the body to interact with technology is considered as an
alternative to traditional mouse and keyboard interaction. Bodily interaction
provides the users new forms of experiences that could not achieved with traditional
interactions (i.e., hand-eye interactions). Therefore, the project provided a context
to children which supports the interaction in terms of consumption, preservation,
and creation of energy. As metioned before, a Wii remote (Wiimote) was used as
device to provide sensing of a user’s motion and to provide feedback.

3.1.1 Design Process - Workshops
The design process was divided into several workshops. These workshops provided
sufficient information and experience to define a final activity called “Weather Gods
and Fruit Kids Game”, which allowed us to achieve the goals of the research project
described above. I will briefly explain the different workshops, which are crucial to
a better understanding of the game that was designed and that drove the evolution
of my own part of this project.

First workshop

This workshops served as a preliminary study. Two members
of the team collaborated with teachers to design a game
to demonstrate how kinesthetic learning could be applied

29
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to traditional subjects (i.e., physics). The design method
consisted in a brainstorming session. The conclusion was
that the concept of energy (consumption, charging, and
preservation) was a suitable topic to focus on.

Second workshop

The aim of this second activity was to design a simulated
environment in order to teach kids about energy consumption.
The children wore simulated sensors (on their hands and legs)
and need to perform a set of activities: throwing a ball,
moving to mimic a set of pictures (kite, snake, and ball), and
moving according to specific motions (slow motion, robotic
motion, and bid and round). The children were able to see the
energy consumption for each activity through a computer’s
screen.

Third workshop

In this third workshops sensors were used (i.e., a Wiimote) in
order to measure the actual energy consumption. The goal of
this workshop was make children think about the results of
each activity in terms of energy consumption. Three activities
were designed for this purpose: (i) runing and walking, (ii)
operate a lamp and a fan, and (iii) move to charge a battery.
The Wiimote provided both the audio and vibration feedback.

Through these workshops were that children explored the consumption and
storage of energy in a controlled and structured manner. Moreover, we observed that
the presence of the computer’s screen, for the visualization of the results, restricted
the interactions between the children. Based upon the second and third workshop
we decided to avoid visualitzation as the user’s feedback for The Game.

3.1.2 The Game

“Weather Gods and Fruit Kids Game” consists on two teams (fruit kids and weather
gods) of two players each, which have to compete each other. The activity scenario
was a gym with several obstacles. All the participants had Wiimotes attached to
their arms and legs in order to capture body motion. Figure 3.1 illustrates how the
devices were attached to the players body.

Fruit kids have the objective of collecting pieces of fruit, without touching the
ground, and bring this pieces of fruit to their nest. Once at the nest, they refill their
energy storage to a full level. Weather gods are placed on a stage, where they have
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Figure 3.1. Attached wiimotes

good visibility of the game space. Their goal is to obstruct the fruit kids by stealing
all their energy. In order to do this, the weahter gods charge their Wiimote and,
once charged, cast spells by performing the specific motions (i.e., “Slow motion”,
“Big and Fast”, and “Robotic” motions presented in chapter 1). The spell casting
was accompanied with thunder (speakers) and lighting (spotlight).

In this activity we used vibration and audio as the main feedback to the user
in order to support users understanding their status in the game. However, this
feedback differed depending on the team that the user was a member of. This
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difference in feedback was as follows:

Fruit kids

The feedback was used to inform them of their current energy
level. The vibration consisted of pulses with different frequency
proportional to their energy level. With a high frequency
corresponding to a high energy level.

Weather gods

In this case the vibration informs the players whether the
performed motion was the expected one. Audio feedback (via the
Wiimote speaker) was used to inform the user of the performed
motion (as described in chapter 1).

3.1.3 Conclusions
After analyzing the recorded videos and interviews we found that weather gods
performed motions with both arms and legs. So, their whole bodies were involved
in this experience, rather than just the specific location where the devices were
attached.

Another important aspect of the experience was the role of the device.
For instance, the device and the context allowed the users to perform in an
unconstrained way all motions, so, neither the device nor context dictated their
movements. This increased the child’s ability to interact in the game and lead to
the strange dances that children came up with. In addition, we observed that the
children performed motions more freely than during the first two workshops, the
children’s movements were more controlled.

The important role that this freedom plays is reflected in each child’s behaviour.
For instance, some weather gods performed weird and tricky movements. As a
consequence, the users could produce their own experience by engaging theirselves in
this embodied experience. Another example of this freedom was that some weather
gods choose different ways to cast an spell (i.e., arm fully extended out forward
from the shoulder), regardless of the fact that the action simply required pressing
a button.
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3.2 The architecture from a design point of view

This section describes in detail the architecture [4] that has been proposed in order
to fulfill the requirements that arose from the design process presented in section
3.1.

3.2.1 Overview - Model Diagram

Similar to WiiuseJ, presented in section 2.4.3.2, our platform is based on the
Model-View-Controller (MVC) pattern. However, many changes and extensions
were introduced in order to fulfill the design requirements introduced in chapter 1
and section 3.1. One of the most important changes is the introduction of multi-
threaded behaviour, in order to improve the performance and to enable multiple
device interaction. Figure 3.2 shows the UML class diagram, which represents the
main system classes of the proposed system architecture. In following sections more
detailed information and figures were provided to explain the proposed architecture.

3.2.2 Multithreaded Application

One of the most important requirements was the ability of the platform to deal with
multiple devices in real-time. However, WiiuseJ did not implement a multi-threaded
structure, hence, it could not deal with synchronized devices nor control the user
feedback devices in real-time. Unfortunately, these were important requirements,
since our workshops were designed to study body motion within a group of users
that interact with each other and to provide different device responses (i.e., rumble,
sound, and lights).

The solution was to develop a multi-threaded Java API, where all the atomic
actions (i.e., sending a sound to the speaker, turning on rumble) were controlled
by different threads. This is a distributed system design, where a thread
(MessageDelivery) acts as a C API event listener, delivering all the incoming events
to different listeners (Wiimote listeners). Every device is represented by a Wiimote
object, which has a listener, making the devices completely independent of each
other. By representing every device as an indenpendent process within the same
system, we could implement interaction among them, while at the same time,
providing a sense of concurrent feedback to the user.

The framework we used to achieve our goals was the Executor interface ( [2],
chapter 6). It provides a platform where the tasks or units of work, can run
asynchronously. The main benefit of this framework is improved thread resource
management, as well as increased responsiveness and throughput. Hence, it is
possible to decouple the task submission from task execution. This is crucial for
our purposes, since we need to deliver the sensor with low delay. For instance, the
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Figure 3.2. Architecture - overview

atomic actions (i.e. turn on a LED) are asynchronously executed by tasks ( [2],
chapter 5) (Runnable or Future), which instantly release the listeners. Therefore,
the listeners could manage more incoming events from the Wiimote, increasing the
application’s throughput.

Finally, we defined the communication channel among the architecture com-
ponents. Since our problem perfectly fit a producer-consumer pattern, we used a
queue system based on blocking and non-blocking queues ( [2], chapter 5), which
simplifies the thread communication. For instance, the GameController component
turns on the rumble by sending a command to RumbleController. This is achieved
through a blocking queue.
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3.2.3 Model-View-Controller Architecture

3.2.3.1 Model

The model hierarchy presented in figure 2.10, represeting the event system, was not
modified, but rather some of the classes were adapted by the addition of some fields
to some the rellevant classes.

Although most of the classes of the original API (WiiuseJ) were maintained,
some changes needed to be introduced in order to extend the functionalities of the
system. As introduced in chapter 2 section 2.4, one of the most relevant class is
GenericEvent, which is at the top of event class hierarchy. This class was modified
by the addition of some fields such as refNumber, which is used to keep track of the
packets. This field enables the synchronization of the packets and makes possible
system testing tasks. It is number which is assigned when the packets arrives to the
system.

Another important class is WiimoteEvent, which was modified by the addition
of a time stamp field. This field is also used for both testing and to enable the
construction of data chunks, which are composed of acceleration packets sent by the
Wiimote device. Controller component classes such as Postman and PacketManager
are responsible for performing these tasks. This process will be explained in detail
in subsection 3.2.3.3.

Some classes were added in order to support new functionalities. For instance,
the AccelerationPacket class, represents every element in a data chunks structure.
This class is the basic unit of work of the system, as these data chunks will be
used for motion recognition and our subsequent testing. This class stores some
important information such as accelerometer statitics for each of the three axes (x,
y, and z), the mean and the variance of the accelerations samples, and a time stamp.

Another important addition is the class Centroid, which supports the k-Means
algorithm. This class is a representation of the algorithm’s clusters, thus, it stores
the data points which belongs to each cluster - these are used to compute the cluster
center at each algorithm iteration.

As explained in section 3.1, the concept of a spell needed to be introduced, since
WiiuseJ is a generic API, and we needed some specialized functions to support the
workshop context. This lead to the addition of a Spell class, which contains basic
information such as energy and type, as required in the final workshop.

Finally, some configuration classes were introduced to easily change the system
configuration. This is the case of SpeakerConfiguration class, which stores all the
supported frequencies in both modes PCM and ADPCM.
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3.2.3.2 View

Although WiiuseJ provides a GUI which could be used for data visualization, such
as showing the instant acceleration, this GUI was not really useful for our purposes.
The main reason is the multi-thread architecture behavior, where a lot of processes
are executed in parallel performing multiple tasks at the same time. This parallelism
makes data visualization for debugging and testing purposes such as for statistics
gathering quite difficult.

Moreover, the conclusions presented in section 3.1 discouraged the development
of a GUI for children. Therefore, the decision was to develop a simple visualization
component based on Log4J [17], which basically provides a log framework that
enables data visualization. This framework is presented in detail in subsection 4.1.

3.2.3.3 Controller

Controller suffered multiple modifications and extensions. The need of dealing with
multiple devices, presented in section 3.2.2 force us to design a new Controller
component. This new design is based on executor framework and complemented
with tasks, and communication queues. In addition, some design aspects of WiiUseJ
has been changed in order to increase the code reutilization and the information
hidding. All changes and extensions will be explained in this section.

Class Hierarchy One of the most important changes in class hierarchy is the role
of WiiUseApiManager. This class, in later API versions, had several tasks. These
tasks are:

JNI controller
In order to have access to C functions, JNI methods are called. The
closest class connected to JNI is WiiUseApi, which acts as a controller.
The methods are synchronized to enable secure access to shared functions.
WiiUseApiManager acts as a intermediate controller, providing information
about the system to WiiUseApi.

Connection controller
Before enabling the event handler system, the connection task creates the
Wiimote objects and stores them in a list.

Message gathering
The message gathering task is the responsible for gathering the events
generated in C API (i.e., based upon the events coming from Wiimotes
devices). Moreover, it performs some basic computations before forwarding
the events further in the system.
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Message delivery
Once the messages were received the were forwarded to the eventhandler
system through WiiUseApiListeners obejects.

The conclusion was that WiiUseApiManager performs many tasks that were
not closely related. This supposes a poor design in terms of modularity, since
the problem it is reduced to a big class instead divided into several sub-problems.
Additionally, it complicates the inheritance, by having to include with a lot of
unrelated methods and system state. Finally, the development process becomes
tedious, since the amount of information obcures how the methods change the state
of the system.

As a result theWiiUseApiManager was decomposed into four explicit tasks, with
each task represented by a different class. The proposed design provides specialized
classes and interfaces, which increases the reuse of code, improves information
hidding, and makes it easier to understand the whole system. These four tasks
are:

JNI controller
This task is performed by WiiUseApiManager. As explained above, it is a
controller which filters the access to JNI methods.

Connection controller
The ApiConnection interface and ConnectionManager were created to per-
form this task. The ConnectionManager is the responsible to for initializing
the connection with devices, by creating the Wiimote objects, sending them
connection feedback (vibration), and creating the appropriate listeners for
every connected device.

Message gathering
The MessageDelivery class is responsible for dealing with incoming events.
These events are handled by a continuous event gathering function which is
provided by JNI and the C API.

Message delivery
Once theMessageDelivery task has gathered the incoming events it sends them
to DeliveryAssistants, which are threads (implementing the Runnable inter-
face) that perform some message modification (such as setting a time stamp).
Once this task is performed they deliver the event to the WiiUseApiListener,
which is an interface implemented by Wiimote objects.

PackageManager PackageManager plays an important role in this architecture.
As explained in Introduction, chunks of data are formed from the accelerations
events received from Wiimote. PackageManager is the responsible to form this
data chunks. Once the listerner receives the acceleration events, these are sent to
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this controller, and then, based on the packet time stamp, are grouped in these data
chunks. The data structure which groups these motion events is formed by a vector
that contains the acceleration values (x, y, and z axis), the mean and the variance
of these values, and the distance to the closest cluster centers, in case that k-Means
algorithm was enabled.

It is important to remark that there is a trade-off between the chunk period
and the feedback delay. For instance, a hight chunk period forms data structure
with a lot of information, which provides more information to motion recognition
algorithms, but at the same time increases the application delay. This parameter
was refined through the design process workshops, and the conclusion was to take
250 milliseconds to have enough information, a range from 0 to 25 acceleration
events per chunk, but, at the same time provide a real-time feeling to users.

In addition, perform statistic gathering of the acceleration values received and
send rellevant information (time stamp) to PerformanceController, which keepts
track of the architecture delay. In section 3.2.4 an UML sequence diagram is
provided in order to illustrate the role of the different controller classes, including
PackageManager class.

Event Handling Event Handling system, introduced in detail in chapter 2, also
had suffered several modifications and extensions. These changes were motivated
by the need to implement different system modes, as introduced in section 4.2, that
required new classes to deal with the new functions.Hence, instead having generic
listeners (WiimoteListener interface), especialized listeners are required, since the
tasks are not related. Figure 3.3 shows the current listener class hierarchy.

Figure 3.3. Event Handling classes
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The following listener classes were introduced for enabling the new functions,
most of them are related to testing and gathering system statistics . As introduced
above, these listeners are created by ConnectionManager depending on the running
mode.

WiimoteMotionListener

This is a simple version of WiimoteListener, which enables the motion sensing
task. This listener is used to collect acceleration statistics without enabling
HardwareManager and SoftwareManager controllers. Hence, it is simply
connected to the PacketManager, which as explained above is responsible for
gathering statistics. Figure 3.2 illustrates this scenario.

WiiuseMeasurementListener

As shown in figure 3.3, WiiuseMeasurementListener it is a super-class which
provides some common methods and system state to WiimoteKmeansListener
and WiimotePacketListener. It basically defines a set of variables, such as
wiimote or measureLength, that define the system state, shared by these two
sub-classes.

WiimoteKmeansListener

This a very specific listener which is used when the k-Means algorithm is
enabled. The WiimoteKmeansListener has two different phases. The first one
is information gathering, where the user needs to perform system training of
the designed motions (“Slow”,“Big and Large”, and “Robotic”). In this phase
the listener stores the data points obtained and builds the algorithm clusters,
one per motion. Once this is done, the motion recognition phase starts, and
every acceleration packet is compared (acceleration axis, mean, and packet
rate) and classyfied into a cluster.

WiimotePacketListener

As explained in WiimoteKmeansListener, the k-Means algorithm performs
a comparison between the data points. This comparison, takes several
parameters and one of them is the packet rate received in every period of
time (data chunk). WiimotePacketListener is a basic listerner that computes
statistics about the number of packets received when a specific motion is
performed by the user. This information is used for defining cluster initial
values if the training process it is not enabled, in this case random values are
set, then we measure system properties and the algorithm’s convergence time.
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WiimoteNetListener

This listener is created when network performance is to be tested. As shown
in figure 3.3 WiimoteNetListener is implements a Runnable interface instead
of WiimoteBasicListener. This difference is because the nature of this class is
completely different from the other listeners, so, it could not be classified with
the others. This listener’s main task is sending report packets to Wiimote
devices and measuring the network delay. Moreover, it collects statistics that
enable use to estimate the network delay. Section 4.3 presents a UML sequence
diagram that illustrates this process.

In terms of interfaces, WiimoteBasicListener was created. This interface defines
the most frequently used methods in the WiimoteListener interface and is a
generalization of the EventListener interface, provided by Java Standard Edition
API. As mentioned before, most of the methods defined were not used in the
proposed architecture, so, there was no real need for such a large and complex
interface; hence our definition of a basic listener. Figure 3.4 shows the Event
Handling system interfaces.

Figure 3.4. Event Handling interfaces

Hardware Controller In order to provide a well structured and multithreaded
architecture design, the methods that deal with Wiimote device feedback (LED,
rumble, and speaker), were grouped into a Hardware Controller hierarchy. The
basic role of these components is to provide a parallel access to WiiUseApiManager,
which is responsible for enabling access to the JNI API. Hence, for every response
type there is a responsible class that controls access. HardwareManagerImpl is
responsible for creating the other controllers (LED, Rumble, and Sound classes)
and providing them the needed parameters to perform their task properly.
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Moreover, the HardwareManager interface was created to increase information
hiding and to increase code reuse. Figure 3.5 illustrates the Hardware Controller
class hierarchy.

Figure 3.5. Hardware Controller hierarchy

Software Controller Similar to the Hardware Controller hierarchy, some classes
were grouped into a layer which is responsible for dealing with the requirements
which arose from the “Wheather Gods and Fruit Kids” workshop, as explained in
detail in section 3.1. Figure 3.6 illustrates the Software Controller class hierarchy.

SpellGame

The SpellGame class controls the different states of the game. It is a state
machine where every state represents the expected motion from users. The
expected motions change in time, and the users need to identify which motion
is expected at any time by two main feedbacks, audio and vibration, as
explained in section 3.1. When the device is full charged the state of the
system does not change until the users have casted a spell.

RealTimeFeedback

The RealTimeFeedback is responsible for execution of the motion recognition
algorithm based on computation of mean and peak detection. RealTimeFeed-
back receives data chunks from the listener (WiimoteListener), that previously
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have been computed by PackageManager, and performs the motion recogni-
tion. The resulting recognized motion is sent to the EnergyTransmission class.

EnergyTransmission

The EnergyTransmission class manages the energy state of the device. Based
on the motions performed by the user at any time, and the motion expected
motion for this period of time, this class updates the energy level. If the energy
level, representing how much charge the device has, was explained in section
3.1, determines the possibility of a user casting a spell in case of “Weather
God”. Once the spell is casted the energy level, of the “Weather Gods”, is set
to 0, and no energy is accumulated in the device. The energy levels are based
on thresholds that could be configurated to adapt them to different scenarios.
Finally, when a spell is casted, the information that a spell has been cast is
sent it to the CommunicationClient, which sends the spell cast event to the
computer that controls the state of “Fruit Kids”.

Figure 3.6. Software Controller hierarchy
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3.2.4 Whole Process

This section shows some UML sequence diagrams that provides a better understand-
ing about some important processes, which are perfomed within the architecture.

Message Delivery The figure 3.7 illustrates the process of gathering new events
and spread them into the architecture, through Event Handling system. One of
the most important changes in relation with WiuseJ, explained in chapter 2, is the
introduction of MessageDelivery, in order to decoupling a set of tasks that were
concentrated on WiiUseApiManager, as explained above. Moreover, as mentioned
before, it is possible to observe that MessageDelivery uses the concept of task
introduce by Executor framework, in order to decouple task creation and task
submission. This technique increases the system performance, by creating threads
(which implements either Runnable or Callable interfaces) that perform an specific
task. In this case, theDeliveryAssistant performs a message modification and deliver
the messages to their recipients (Wiimote classes).

Figure 3.7. Message Delivery system

WiimoteListener Figure 3.8 shows the process where the top of the device listen-
ers, WiimoteListener, takes part. In this first step, WiimoteListener sends a report
to PerformanceController, which receives a time stamp. PerformanceController
needs this information for monitoring the architecture delay, explained in detail
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in chapter 4. After sending the time report, WiimoteListener sends the received
motion packets to PacketController, which is responsible to check the time stamp
of the motion events and built data chunks, formed by a set of AccelerationPacket
objects. Afterwards, PacketController send back to WiimoteListener these data
chunks.

Finally, WiimoteListener send these data chunks to RealTimeFeedback, which
performs a motion recognition and sends the result to Software and Hardware
controllers. In this case the motion recognition is performed by an algorithm based
on heuristics, which computes the acceleration mean in three axis (x, y, and z) and
the acceleration peaks. However, the introduction of k-Mean algorithm does not
differ so much, since the architecture modules can easily be replaced.

Figure 3.8. Controllers Part 1

Hardware and Software controllers The last step of the process is performed
by a set of Hardware and Software controllers. Figure 3.9 illustrates this process.
Firstly, RealTimeFeedback sends the frequency to the PermanentSoundController.
This frequency is based on the performed motion rather than the expected motion.
As introduced before, this was a requirement to provide the user a feedback of the
current performed motion.

Later on, RealTimeFeedback sends the recognized motion to SpellGame, which
controls the state of the game, so, which is the expected motion. If the motions,
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expected and performed, match SpellGame will activate the device rumbler by
sending an activation message to PermanentRumbleController. Additionally, will
charge the device’s energy by sendind a message to EnergyTransmissionTask, which
may imply the activation of a LED. In this case, EnergyTransmissionTask sends a
message to PermanentLEDController.

Figure 3.9. Controllers Part 2
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3.3 Heuristic algorithm
In order speed up the design process of the platform, and take some statistics
during the workshops, we decided to develop an easy algorithm to try to recognize
the motions performed by the kids. Moreover, the different workshops allowed us
to refine the inputs (parameters) for this algorithm 1.

Algorithm 1 Heuristic algorithm
motion = NoMotion;
if meanX ≥ N ||meanY ≥ N ||meanZ ≥ N then
motion = Big;

else
if detectPeaks() == true then
motion = Robotic;

else
motion = Slow;

end if
end if
if motion! = NoMotion then
printReport();

else
logWarning(MotionNotRecognized);

end if
returnmotion;

The algoritm is implemented in a class called HeuristicAlgorithm which receives
the data chunks, which contains the acceleration values gathered into a period of
time, from RealTimeFeedback component, as explained in section 3.2.3.

First of all, HeuristicAlgorithm takes the time which the packet has been
received. This information is sent to PerformanceController component, which
keepts track of the system delay. Afterthat, HeuristicAlgorithm computes the
mean of the three axes accelerations contained in the recevied chunk. Once the
three means are computed it calls to the functions which implements the motion
recognition algorithm, giveFeedback(), which returns the recognized motion.

The following parameters have been used in the heuristic algorithm:

N
This parameter is a numeric value which defines the boundary between two
different motions, Slow&Soft and Big&Large. During the workshops it has
been refined in order to find the most suitable value according with the target
of our research, the kids.
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Motion
This variable it can take four different values i) NoMotion, ii) Slow, iii) Big
or iiii) Robotic. It represents the recognized motion.

mean

This is the mean, in the three different axes (x, y, and z), of the acceleration
values contained into a chunk.

Those are the functions used by the algorithm:

detectPeaks()

This function detects how many acceleration peaks contains a chunk.

printReport()

Prints some information about the recognized motion.

logWarning()

It prints that the motion has not been recognized in a warning log file.





Chapter 4

Analysis

4.1 Testing
For testing the log4j [17] framework is used. Log4j is a loggin framework which
provides multiple advantages, especially in multi-thread environments (such as Java
Enterprise Edition (J2EE)). For instance, log4j permits the creation of class loggers,
which are instantianted in every object, and it also supports the use of general logs
(instantiated by several classes). As a result, every class can have its own log, which
stores the customization information in a file, and, in some cases, may print out
the messages on the Java console. The customization process, by which the logs
are defined and configured are set, is simple and flexible. Details of this process are
described in section Introduction of [17].

4.2 System Modes
In order to simplify some testing and statistic gathering, five different run modes
have been implemented. Depending on this mode, the controller component may
be changed by the use of certain classes. The following run modes can be selected:

Normal

In this mode a heuristic based motion recognition algorithm is used. This
enables both Software and Hardware controller components through Wi-
imoteListener classes, in order to recognize user’s motions and provide
feedback. This is the only mode that uses the complete architecture and
it was used to support the different workshops.

49
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Network Measurement

As explained above, the network measurement mode is used to measure
network performance. This mode enables a specific listener called Wi-
imoteNetListener, which sends status request packets to Wiimote and waits
until the response arrives. In this process the Road Trip Time (RTT) of the
network is measuredi in order to measure the delay contribution of the network
communication.

Acceleration Measurement

The acceleration measurement mode is used to collect basic statistic about
the acceleration values coming from the Wiimote. In this mode, the
WiimoteMotionListener class is enabled.

Packet Measurement

The packet measurement mode was designed to collection information con-
cerning the packets as a function of motion performed . This mode is closely
related with the k-Means algorithm cluster centers, since the number of
acceleration packets per second is a component of the four dimensional vector
that represents a cluster center.

k-Means

Finally, an specific k-Means mode was implemented to utilize the k-Means al-
gorithm. As explained above, this mode enables the WiimoteKmeansListener
and this mode is used during two phases: (i) user specific motion information
gathering (training), and (ii) motion recognition.

4.3 Performance
Performance is divided into different topics in order to better understand the
performance of the system. The following sections will consider performance in
terms of three different delays: network delay, architecture delay, and the overall
end-to-end delay. Moreover a motion recognition analysis is presented, which will
make possible to compare both algorithms heuristic and k-Means.

4.3.1 Network Delay

This section explores how the network affects, in terms of delay, to the proposed
architecture. First of all, it is important to define the concept of network delay. In
this case, the network delay includes the RTT and other delays introduced by both
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devices the Wiimote and the computer. The following delays are taken into account
to compute the network delay:

Java API

This delay is formed by the code execution in both ways, when
the request is sent by NetworkListener and when the reply is
received by the same component.

C API

Here, the delay covers the C API code execution which is
basically the JNI call and the read and write driver operations.

Network

This is the RTT.

Wiimote

This includes the process time that the device needs to handle
both the request and the reply.

As introduced in chapter 2, Nintendo Wii remote device (Wiimote) uses a
Human Interface Device (HID) stack in order to send information. However,
Nintendo introduced some modifications of the HID standard, which complicates
the understanding of the communication protocol. The main information source, in
order to design a network delay monitoring strategy, was the Wiibrew webpage [26],
which by reverse engineering discovered most of the features of the Wiimote. The
found features includes a set messages that Wiimote uses in order to communicate
with other devices.

In my case, I needed synchronous communication, to measure the network delay
without introducing undesirable delays. The decision was to send a Status Request
message to Wiimote, which forces a Status Report reply. WiiBew proposes a high
layer representation of the HID messages where each Bluetooth-HID command is
in parentheses, and each two digits corresponds to a byte. The following list shows
an example of the used messages:
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Status Request

(52)15XX

The sencond parameter, 15, is the message id (Status Re-
quest), and the last one is an action, such as turn off the
rumble, that could be performed by the Wiimote.

Status Report

(a1)20BBBBLF0000V V

As in Status Request, 20 corresponds to the message id, in this
case Status Report. BBBB represents the status of the core
buttons. L is the LED status and F is a bitmask of flags (i.e.,
battery, extension connected . . . ). Finally VV is the battery
level.

4.3.1.1 Network Delay Measurements

In order to measure the network performance the program needs to be executed
in Network Measurement mode. This mode, as explained in section 4.2, enables
WiimoteNetListener, which is responsible for sending and receiving messages.

The network measurement test case was designed to send different number of
packets per test. Hence, in every test case a defined number of packets are sent,
only some of which are received due to packet loss. The values are 500, 1000, and
5000 packets. Ten data collection runs were made for every test case. In the tables
below the average of the specific value for these ten runs is report.

Finally, five different timout values (milliseconds) were used. This timout
corresponds to the time that C API must listening before cleaning the buffer and
re-starting listening process. This is a rellevant parameter because of the packet
loss. With certain values, the packet loss increases dramatically. Table 4.1 shows
the results from the different tests in terms of network performance (milliseconds).

Table 4.1. Network Performance

Number of packets

Timeout 500 1000 5000
10 21.77 23.49 29.91
15 21.66 21.53 21.24
20 21.29 21.23 21.3
25 17.08 21.36 21.1
30 19.2 21.33 21.17
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Table 4.2 illustrates the minimum, maximum, and median values of the different
delay values used in the tests.

Table 4.2. Network Performance statistics

Statistic parameters

Number of packets Min Max Median
500 9.62 58.02 18.62
1000 10.16 81.36 19.96
5000 9.14 70.76 21.16

Table 4.3 shows the percentage of packet loss for each test.

Table 4.3. Packet Lost

Number of packets

Timeout 500 1000 5000
10 67.26 79.54 97.51
15 0.0 0.0 12.24
20 39.1 45.46 83.93
25 20.0 13.64 55.01
30 10.0 0.0 21.42

It is possible to observe a high packet loss in the different test. In most of them,
the packet loss makes very difficult to have an acceptable motion recognition, since
most of the packets do not arrive to the receiver. This is specially crucial in Robotic
motion recognition performed by heuristic algorithm, where the lost of packets with
acceleration peaks makes impossible the detection of Robotic motion.

In order to figure out the causes of these poor packet loss results, more
measurements should be done. One of the important issues that should be taken
into account is the Bluetooth stack performance, since this may affect the packet
transmission and the motion recognition. In order to measure the different causes
that may affect the correctness of the transmission, Ehsan Ullah and Stefan Witte
[24] propose an scenario where following parameters are analyzed: i) Bluetooth
packet delay, ii) packet loss, and iii) bit error rate. The accurate measurement of
theses channel parameters, would make possible to distinguish into the packet loss
contribution of Bluetooth stack, and the software architecture.

Furthermore, some results present unexpected values, for instance packet loss
with 1000 packets is much lower than in the 500 packets test, with the same timeout
(30 milliseconds). In order to avoid the possible initial conditions of the system,
and thus, evaluate the platform’s steady state, might be convenient to run longer
test and more replications.
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4.3.2 Architecture Delay
This section presents the delay introduced by the architecture. This is divided into
two main delay contributions: the Delivery System, explained in depth in chapter
3, and the algorithm (heuristic and k-Means).

4.3.2.1 Algorithm Delay Contribution

The delay of each algorithm is based on how much time they need in order to
convergence. For measuring the delay of both algorithms a set of motions has
been performed. Each test case consist of 200 data chunks, which each data
chunk represents a user motion. There were 5 test cases in order to gather enough
information to take a realistic algorithm performance.

When using a heuristic algorithm the user motions (encapsulated in data
chunks), are analyzed without prior system information. As a result, the algorithm
simply computes mean and peak detection parameters of every received data
chunk. Therefore, it is a stateless class.The k-Means algorithm was implemented
to introduce some improvements (as was explained in chapter 2). The k-Means
algorithm has a information gathering phase (introduced in chapter 3). This phase
reduces the convergence time due to two factors: (i) the algorithm just needs to
converge to a new value while processing the chunks one at a time and, (ii) the
algorithm has built the cluster structure based on three different motions, hence,
the convergence time is shorter, since fewer iterations need to be performed.

Table 4.4 shows the delay, in milliseconds, in five tests with both algorithms
(heuristic based and k-Means).

Table 4.4. Motion recognition algorithms performance (with all times in
milliseconds)

Algorithm test1 test2 test3 test4 test5 Average
Heuristic 0.23 0.27 0.30 0.28 0.34 0.28
k-Means 3.07 3.87 3.48 2.98 3.39 3.36

4.3.2.2 System Delivery Delay Contribution

The System Delivery delay contribution it is an important measurement and
indicates the degree of multi-thread performance. A low delay ensures the maximum
throughput provided by Executor framework, as discussed in chapter 3.

The System Delivery Delay contribution is divided in two different phases.
The first one measures the delay of the received packets before the data chunks
are formed. So, the WiimoteEvents pass through MessageDelivery, Wiimote, and
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WiimoteEventListener. Table 4.5 shows the delay (in milliseconds) as measured by
an acceleration packet in the first phase, where 5 test runs of 2000 packets each
were performed.

The second phase measurement starts once the data chunk has been built by
PackageController. It is important to note that the data chunk period, or how long
the period was to receive packets (i.e., to collect packets) before being wrapped
into the same data structure, directly affects the measured delay. As commented
before, there is a trade-off between providing fast feedback and the amount of data
necessary to recognize a performed motion. The time to collect data for the data
chunk was set to 250 milliseconds. This parameter value was selected based on the
workshops, as explained in chapter 3, prior to the start of the game.

The initial point of measurement is the PackageController component, where the
chunks that contain the motion are formed. The end point of the measurement is
difficult to define, since this phase involves many different software and harware
controllers. So, I decided to make the measurement in the SpellGameTask
component, which is the lowest controller that always takes part in the processing,
independent of the expected motion. The UML process diagram 3.9, presented in
chapter 3, shows a clear picture of the software and hardware controller. In order
to measure the delay in the second phase five test runs of 100 data chunks were
performed.

Table 4.5. Acceleration packet delay in milliseconds

Delay test1 test2 test3 test4 test5 Average
Acceleration Packet 1.95 2.0 1.06 6.02 3.52 2.91

Data Chunks 8.55 7.49 6.42 5.46 7.31 7.05

The diagram shown in Figure 4.1 shows a simplified view of the data flow of the
architecture, which helps to understand the two different measurement phases.

4.3.3 End-to-End Delay
Once the two types of delays, network and architecture, were known, we need to
present the overall delay results. A short end-to-end delay is required to guarante
a good user experience. One of the most important parameters, in order to ensure
reasonable feedback, is the data chunk (collection) time. As explained in previous
sections, this is a crucial parameter, since acceleration information is needed to
recognize the user motion, but, at the same time, the system needs to be fast
enough to ensure application responsiveness.
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Figure 4.1. Architecture data flow

One of the main purposes of the two first workshops, as described in chapter
3, was to find out the most suitable time value for creating data chunks (from
acceleration packets). As mentioned before, the value chosen was 250 milliseconds.
We arrived at that conclusion after testing (during the workshops) with different
time values (such as 1000, 500, and 125 milliseconds).

Another important point was to check the algorithm’s performance. As shown
in table 4.4 there are no major differences in terms of time, due to the improvements
implemented in K-Means. Network performance also presents a very similar result,
since most of the delays with the longest tests (5000 packets), present similar time
values, around 21 milliseconds.
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Table 4.6 presents the end-to-end delays 1 of the two different algorithms.

Table 4.6. End-to-end delay in milliseconds

Architecture delay
Algorithm System delivery

Algorithm Network Acceleration Data chunk Total
Heuristic 21.24 0.28 2.91 7.05 281.24
K-means 21.24 3.36 2.91 7.05 284.36

4.3.4 Statistical analysis of experimental results regarding correct
motion recognition

This section presents the efficiency of the implemented algorithms, heuristic and
k-Mean, in order to recognize the performed motions. The motions have been
performed in an unconstrained way, so, neither the device nor the context did not
dictated the movements. This constraint was also used during the workshops and
the "Weather Gods and Fruit Kids Game", explained in chapter 4.

In this context the correct motion should be performed, which was motion
expected by the observer. For instance, during the "Weather Gods and Fruit Kids
Game", the motions were randomly choosen by the platfform. In every period of
time, a configurable parameter, a motion was considered the correct one. This
motion was announced by the observers, and the kids tryed to perform it.

The following experiments have been performed using both algorithms in order
to measure the efficiency with the same input. Ten samples of 100 packets were
taken for each algorithm. The three designed motions, Slow&Soft, Big&Large,
and, Robotic were tested. Moreover, k-Mean mode has been configure with three
different values of packet factor (1,2, and, 3), which weights the influence of the
packet mean parameter in this algorithm.

Table 4.8 shows the motion recognition efficiency regarding the different
algorithms.

As we can see, the efficiency of heuristic algorithm for the two first motions,
Slow&Soft and Big&Large, is acceptable, since most of the cases are properly
recognized. This is due the the nature of these motions, while Slow&Soft motion
has low acceleration averages, Big&Large has high acceleration averages. However,
Robotic motion has a low motion recognition efficiency, lower than 50%, even when
peak detection is performed.

1Notice that Wiimote sensor delay it is not covered
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Table 4.7. Motion recognition efficiency in %

k-Mean
factor 1 factor 2 factor 3

Motion Heuristic
Slow&Soft 83.9 57.8 66.9 82.5
Big&Large 85.6 66.6 76.7 92.7
Robotic 45.8 40.7 32.6 29.2

K-Mean algorithm present a different results. It is possible to observe that the
packet factor, a parameter introduced only in this algorithm, it becomes crucial in
the Slow&Soft and Big&Large motions. The efficiency increases and, in Slow&Soft
case, provides better results than the heuristic algorithm. However, the Robotic
motion is dramatically affected by the packet factor parameter, decreasing to
roughly 30%.

In order to analyze why Robotic motion presents these poor results in the k-Mean
algorithm, I collected some statistics that shows how the samples were classified
when performing the Robotic motion.

Table 4.8. Robotic recognition efficiency interferences in %

k-Mean
factor 1 factor 2 factor 3

Motion
Slow&Soft 24.2 10.7 10.5
Big&Large 34.1 54.7 60.3

These results indicates that k-Mean algorithm has a lot of problems to recognize
Robotic motion. One conclusion is the distance of the centroids. When we designed
the Robotic motion, based on the statistics we took during the workshops, we
located the Robotic centroid between the Slow&Soft and Big&Large movements, in
terms of acceleration mean and received packet average. Hence, when a sample is not
properly recognized, the algorithm classified it as either Slow&Soft or Big&Large.
The packet factor simply increases the lack of Robotic movement recognition by
classifying this movement as Big&Large.

A possible solution for improving the Robotic motion recognition, in case of
heuristic algorithm, would be instead just detecting peaks, analyze the increment
and decrement of the acceleration values in every chunk. By recognizing the pattern
followed by Robotic motion, it is possible to have a better motion recognition.
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4.4 Data process
As described before in depth in chapter 3, the platform builds chunks which contain
the acceleration values received from the Wiimote. Those chunks represent a motion
performed by the user in an unit of time. The designed platform analyzes these
chunks independently.

One of the majors shortcomings is that the implemented algorithms may not
recognize properly motions which happen in more than one chunk. This is because
they just take care of the current incoming chunk, instead having a reference of
chunks received before the current one. Therefore, by analyzing past chunks it
might be possible to increase the motion recognition accuracy, since some motions
may start at some point in the packet, not necesarely at the start of the packet. In
this case, a trade of between the amount of packets use for this purpose and the
introduced delay (each chunk add in average 280 milliseconds) should be analyzed
carefully.





Chapter 5

Conclusions and future work

5.1 Conclusions

5.1.1 Goals and insights

The main goal that has been achieved is the platform design. This design supports
Nintendo Wii remote device (Wiimote), and enables multiple devices interaction
in a real-time environment, while providing a reasonable performance in terms of
delay, as demonstrated in chapter 4.

The implemented Java platform provides a framework fulfilling the Human
Computer Interaction (HCI) goals proposed in chapter 1: (i) full body movement,
(ii) sensing, and (iii) awareness. Moreover, this platfform provides a good way
to reuse existing components which may support future features (i.e., new motion
recognition algorithms). Moreover, an extension of the C API and Java Native
Interface (JNI) were introduced (i.e., to provide sound and LED functionalities).

In terms of motion recognition, a secondary goal of the research project, the
achievements were reasonable considering the results presented in chapter 4. These
results show that two of the three designed motions, Slow&Soft and Big&Large, are
properly recognized most of the times, i.e., up to 90%. However, Robotic motion
recognition shows poor results, and some algorithm changes need to be introduced
in order to increase the probability of correctly recognizing of this movement.

The major insight that I gained is the the experience of working in a larger
collaboration within a research project, where I had to work in team in order
to achieve my goals. This team collaboration, and the reasearch framework were
essential due to the cross-functional nature of the team. This collaboration required
a lot of effort but, at the same time, gave me the chance to learn about other fields.
In that sense, the responsability that I had to take, in terms of technical decissions,
gave me the possibility to grow as a software engineer.
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5.1.2 Suggestions and hints

In terms of motion recognition it is important to notice that there has already been
a lot of research and publication this field. Motion recognition became popular a
few years ago, and many projects have worked with the same issues. I think it is
important to read relevant papers in order to have a good view of the big picture,
and then make appropriate decisions based upon analyzing your own goals, the
nature of the technology you must deal with and the specific problem that needs to
be solved.

The software platfform that has been developed, is the major result of my thesis
project. Developing this platform was crucial in order to achieve the goals of the
project. It is important to have a good platfform which supports the required
basic features while providing sufficiently good performance that it is usable for
experiments. Once the basic functionality was working, then it was possible to
focus on future improvements as these could be made incrementally - allowing the
changes to be both easier and faster.

5.1.3 Modifications

If I were to do this project over again, the only thing that I would change is the
device. While the Nintendo Wii remote device (Wiimote) is a very popular device,
there are some aspects that need to be took into account before deciding to develop
software that will use this device.

The most important aspect is the fact that the Nintendo Wii remote device
(Wiimote) is not an open source project, thus, the most of the available docu-
mentation was obtained by reverse engineering. This means that there are still
some parts of this device that are completely unknown to the software developer
community. This makes it difficult to extend the interaction functionalities, because
most of the time you do not really have enough documentation since nobody has
worked on these specific parts before.

Another reason to choose another device is the limitations of is the device’s ca-
pabilities. Today many devices (particularly smartphones) offer greater possibilities
in terms of hardware devices (i.e., accelerometers, gyroscope, GPS receivers, . . . ),
and also offer greater local processing capabilities. For instance, if you design a
platfform that supports smartphones, these devices provides more flexibility, since
they can locally run applications, which means that the local processing it is not
strictly limited to returning a fixed set of information, as in the case of the Wiimote.
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5.2 Future work

5.2.1 Remaining work and next steps
One of the most important issues that needs to be addressed is how to increase
the Robotic motion recognition performance. As metioned earlier, this movement
was not correctly recognized with either the heuristic and k-Means algorithms.
Therefore, another algorithm should be proposed and evaluated.

In terms of the system, the amount of packet loss should be addressed in order
to reduce the number of packets that are dropped, since this could greatly improve
interaction with the user in a real-time environment. In order to do that a depeer
analysis needs to be made to identify the factors that cause packet loss with the
current software.

An interesting topic proposed by the projects described in chapter 2, would
be to implement HMM and Kalman filter algorithms. The implementation of these
algorithms will expand the possibilities of the proposed Java platform, and they may
solve some problems which arose in this thesis project (i.e., poor Robotic motion
recognition). This next step might be achieved by adding these algorithms to both C
and Java APIs. After that, a performance comparison between the implementation
of these algorithms in different tiers could be easily done.
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