
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

K . M . I M T I A Z - U D - D I N

 Collaboration-based intelligent service
composition at runtime by end users

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Collaboration-based intelligent service
composition at runtime by end users

K. M. Imtiaz-Ud-Din

Academic Advisors:

Prof. Peter Herrmann
Norwegian University of Science and Technology, Norway

&

Prof. Gerald Q. Maguire Jr.

Royal Institute of Technology, Sweden

Supervisor:

Dr. Mohammad Ullah Khan

Norwegian University of Science and Technology, Norway

August 10, 2011

Abstract

In recent years, computing technologies have greatly advanced. This has
resulted in a wide-spread use of services in order to improve the quality of
our daily life. For example, a person with a mobile device can use services to
plan and execute his or her travel, to connect to family and friends, to perform
his or her search, or to manage his or her business. However, most of these
services might only be available at some times, they may lack robustness,
and some of these services are not aware of (or do not exploit) the mobility
of the user. These services appear impermeable to the end users, i.e. the
end users do not get to control or configure the services. We envisage that
end users, with no programming knowledge, will have a hard time to find
services of their choice and that it will be hard for these end users to derive
substantial benefits from these services. Unguided automation is not the
answer to this problem, as a particular service suggested automatically by a
dynamic composition mechanism may not be suitable for a specific user at
a certain point of time and in a given context. On the other hand explicit
specification of service instances will mean that the user will be bogged down
with the problem of runtime optimization in a dynamic environment where
the services having the required functionality may or may not be available.

In order to address this issue we introduce the notion of intelligent service
composition where the end user will have a great degree of flexibility to define
his or her own rules or conditions based on which an optimal composition will
be generated automatically from a set of collaborative services by adaptation
in a specific context and at a specific point in time. This is a step forward
when compared to the present dynamic composition mechanisms which do
not facilitate end users defining their own conditions dictating the selection
of specific service instance at runtime. We have developed this solution to
bring end users towards adaptive use of services. We validated our solution
through a scenario-based evaluation approach with an implementation of a
proof-of-concept prototype.

i

Abstrakt

Under senare år har datorteknik avancerat kraftigt. Detta har resulterat
i en utbredd användning av tjänster för att förbättra kvaliteten i v̊art
dagliga liv. Till exempel kan en person med en mobil enhet använda
tjänster för att planera och genomföra sin resa, för att ansluta till familj och
vänner, att utföra hans eller hennes sök, eller att förvalta hans eller hennes
verksamhet. Däremot kan de flesta av dessa tjänster endast vara tillgängliga
vid vissa tidpunkter, kan de saknar robusthet, och n̊agra av dessa tjänster
är inte medvetna om (eller inte utnyttjar) Rörlighet för användaren. Dessa
tjänster verkar ogenomträngliga för slutanvändarna, dvs slutanvändarna inte
f̊ar att styra eller konfigurera tjänsterna. Vi ser att slutanvändaren, utan
programmeringskunskaper, kommer ha sv̊art att hitta tjänster efter eget val
och att det blir sv̊art för dessa slutanvändare att dra stor nytta av dessa
tjänster. Ostyrda automatisering är inte svaret p̊adetta problem, som en viss
tjänst föresl̊as automatiskt av en dynamisk sammansättning mekanism kan
inte vara lämpliga för en viss användare vid en viss tidpunkt och i ett givet
sammanhang. Ä andra sidan tydliga specifikationer över tjänsten fall kommer
att innebära att användare kommer att köra fast med problemet runtime
optimering i en dynamisk miljö där tjänsterna ha erforderlig funktionalitet
kan eller inte kan vara tillgängliga.

För att lösa denna fr̊aga vi införa begreppet intelligenta tjänsten sam-
mansättning där slutanvändaren kommer att ha en stor grad av flexibilitet
för att definiera sina egna regler eller baserat p̊avilka vilkor en optimal
sammansättning kommer att genereras automatiskt fr̊an en uppsättning
samverkande tjänster genom anpassning i ett visst sammanhang och vid
en viss tidpunkt. Detta är ett steg framåt jämfört med den nuvarande dy-
namiska sammansättningen mekanismer som inte underlättar slutanvändarna
definiera sina egna villkor dikterar valet av specifik tjänst exempelvis vid
körning. Vi har utvecklat denna lösningen för att f̊aslutanvändare mot
adaptiva användning av tjänster. Vi validerade v̊ar lösningen genom ett
scenario-baserad utvärdering strategi med en implementering av ett proof-
of-concept prototyp.

ii

Acknowledgment

This thesis project would not have been possible without the support of my
academic advisors and supervisor. I wish to express my sincere gratitude to
Professor Gerald Q. Maguire, my academic advisor at KTH, and Professor
Peter Herrmann, my academic advisor at NTNU, for their timely and detailed
comments regarding this report. Their continuous feedback based on an in
depth analysis of my work proved very fruitful for me in completing this
research project.

I would also like to acknowledge the support and guidance that I received
from my supervisor Mohammad Ullah Khan. It has been a learning
experience to have worked with him throughout the different phases of this
thesis project. His calm nature and a clear perspective regarding the problem
domain have added strength to my work.

At last, I would like to specially thank my parents and uncle for being the
source of inspiration. This work is dedicated to them.

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Thesis Background . 4
1.4 Research Method . 5
1.5 Report Outline . 6

2 Scenario Based Problem Description 8
2.1 The Scenario . 8
2.2 Analysis of the Scenario . 9

3 State of the Art 13
3.1 A Review of Service Composition Issues 13

3.1.1 Composition Specification 14
3.1.2 Adaptability . 15

3.2 Inference . 16
3.3 UbiCompForAll Notation and Language for Composition Spec-

ification . 17
3.4 The Adaptation Middleware 18

4 Proposed Solution 20
4.1 Key Concepts . 20
4.2 Architecture . 22
4.3 UbiComposer Composition Tool 25
4.4 UbiCompForAll Service Composition

Concepts and Notation . 26
4.5 Composition Description in XML 28
4.6 The MUSIC Conceptual Model 31
4.7 Bridging between UbiCompForAll and

MUSIC Concepts . 35
4.8 Service Discovery . 42

iv

4.9 Building the Transformation Engine 42
4.10 Resolving Dependencies, Compilation,

and Building of the Bundle . 43
4.11 Context Sensing and Composition

Adaptation . 43

5 Implementation 44
5.1 Framework Overview . 44
5.2 Composition Change Detection

Mechanism . 45
5.3 Composition Specification Extraction 46
5.4 MUSIC-compliant Java Source Code

Generation . 46
5.5 Building the OSGi Bundle and Deploying to the Middleware . 47
5.6 Context Plugins . 49

6 Evaluation 50
6.1 Proof of Concept . 50

6.1.1 The Description of the Test Case 51
6.1.2 Composition Specification 51
6.1.3 Resulting Composition 53

6.2 User Survey . 55
6.3 Qualitative Analysis . 57

6.3.1 Meeting the Objective 57
6.3.2 Design . 58
6.3.3 Development . 62
6.3.4 Usability . 63
6.3.5 Comparison with Existing Frameworks 63

7 Discussion 64
7.1 Achievements and Lessons Learned 64
7.2 Limitations and Future Work 65
7.3 Conclusions . 66

A Original Problem Description 68

B Project Source Code 70
B.1 FileWatcher.java . 70
B.2 FlowControl.java . 71
B.3 Parser.java . 72
B.4 EvaluatorDetail.java . 104

v

B.5 Component.java . 104
B.6 Attribute.java . 104
B.7 SendEmailService.java . 105
B.8 SendSMSService.java . 106

vi

List of Tables

4.1 Bridging between the UbiCompForAll and the MUSIC concepts 41

vii

List of Figures

1.1 Thesis Project Plan . 4
1.2 Research Method Flowchart 6

3.1 UbiCompForAll System Overview 18
3.2 A Self Adaptive System . 19

4.1 Generic Architecture of our support 23
4.2 Domain-specific System Architecture of Our Solution Using

UbiCompForAll and MUSIC 24
4.3 UbiComposer User Interface 25
4.4 UbiCompForAll service composition meta-model 26
4.5 Basic Music Concepts . 32
4.6 Composition Concept . 33
4.7 MUSIC System . 34
4.8 Component Type in MUSIC corresponds to Step, Query and

ConditionalStep in UbiCompForAll 36
4.9 Components with provided/required properties 36
4.10 Property Types and their evaluation using context query . . . 37
4.11 Property Evaluator . 37
4.12 A Composition consisting of an ApplicationType, a Utility

function and a CompositeRealization 38
4.13 An Example Composition employing two steps, a conditional

step and a query . 39
4.14 Application Bundle . 39

5.1 Sequential flow of execution of the phases of the framework . . 45
5.2 Project Structure . 48

6.1 Composition without Internet Connectivity 54
6.2 Composition with Internet Connectivity 55

viii

Listings

4.1 Template for Composition Description 28
6.1 Composition Description of the Proof of Concept Scenario . . 51
B.1 FileWatcher.java . 70
B.2 FlowControl.java . 71
B.3 Parser.java . 72
B.4 EvaluatorDetail.java . 104
B.5 Component.java . 104
B.6 Attribute.java . 105
B.7 SendEmailService.java . 105
B.8 SendSMSService.java . 106

ix

List of Acronyms and Abbreviations

DOM Document Object Model
EMF Eclipse Modeling Framework
GUI Graphical User Interface
MUSIC Self-Adapting Applications for

Mobile USers In Ubiquitous Computing Environments
OSGi Open Services Gateway initiative framework
PC Personal Computer
QoS Quality of Service
SLP Service Location Protocol
SMS Short Message Service
SOA Service Oriented Architecture
UbiCompForAll Ubiquitous Computing For All Users
UML Unified Modeling Language
UPnP Universal Plug and Play
XML Extensible Markup Language

x

Chapter 1

Introduction

This chapter provides an introduction to this thesis project. Section 1.1
describes the motivation behind this research work. Section 1.2 specifies the
goals of the thesis project and breaks down the research problem in to a set of
tasks.In section 1.3 we present the thesis background. Section 1.4 describes
the research method that we followed and finally section 1.5 provides the
report outline.

1.1 Motivation

Over the last decade there has been rapid progress in mobile communication,
along with this progress the number of services that assist us in our everyday
life has increased significantly. The advent of new technologies such as smart
phones, tablet computers, and high speed wireless networks have fueled this
growth in services. The foreseeable future as forecasted by this trend is likely
to lead to quite a complex computing environment. End users1 are bound
to face the problem of selecting the services that best serve their individual
purpose from a set of hundreds of similar services. This is because such
purpose may be very different from other users. In addition to this problem,
there looms the inconvenience of making use of multiple services separately

1In the role of an end user an actor uses an application via some user interface. End
users include both service composers and service users. Typically end users do not have a
programming background.

1

in order to accomplish even a simple task. Thus, a typical user may require
half day to find out how to do what he or she wants to do. Questions such as
“How can the user adapt to this environment easily?”, “What can be done
to reduce the user’s burden?” appear as important concerns.

In order to avoid increasing the effort required by an end user, there
needs to be a certain level of abstraction in the system that will hide the
underlying intricate functionalities while at the same time allow the user
to tailor his or her own solution according to the user’s requirement(s).
Attempting to automate the process by adapting service usage without taking
into consideration a user’s preferences is undesirable as a particular service
suggested automatically by a composition mechanism may not be suitable for
a specific user at a certain point of time and in a given context. This concept
of automatically selecting services by the means of adaptation is seemingly
contradictory to allowing end users to selecting services of their own choice.
In contrast, we argue that these concepts are actually complementary when
we consider the fact that services’ main purpose are to satisfy end users
needs.

From the end user’s point of view all he or she needs is an intelligent system
that understands how much intervention or how much adaptation this end
user expects. The idea is to allow a user to combine several services at a
high level in order to achieve his/her goal while automating the details of
coordinating and integrating the tasks within the combined set of services.
This notion of goal oriented composition requires that design environment
facilitates the users’ definition of their own set of objectives and priorities
when constructing a solution. Thus, we not only want the user to be
comfortable when employing the services, but also want to ensure that the
user is able to compose the best service that meets the user’s requirements
and preferences in a given context. This defines the focus of our research in
this thesis.

1.2 Goals

The goal of this thesis project is to systematically devise, document, and
present a novel approach with which an end user will design and develop
composite services based on the user’s preferences. These preferences can be
updated dynamically at runtime. The service composition can be adapted

2

taking into account the context and the service landscape, as well as user
preferences. In order to fulfill this objective, we work towards developing an
intelligent software system that supports enough flexibility for end users in
defining the service composition, while ensuring both the end user control
and the expected adaptation.

A task description to realize these goals includes the following set of
milestones:

• Review related work in end user service composition and the adaptation
support

• Review the end user-friendly notation and the composition tool
provided by the UbiCompForAll project

• Review the support for developing self-adaptive applications using the
Self-Adapting Applications for Mobile USers in Ubiquitous Computing
Environments (MUSIC) middleware

• Investigate how the notation and tool for end user service composition
and the middleware can work together to support end users building
composite services of their choice

• Develope a mechanism for end user service composition to include:

– Concepts related to the involvement of end users in service
composition

– Concepts related to the selection of the best service from possible
alternatives at runtime based on user’s preferences, available
services, and current context.

– Automatically adjust the service based upon changing user needs,
as for example in the case of re-composition at runtime.

• Implement the concepts developed above

• Test the validity of the concept and the implementation using a simple
scenario and by conducting a user survey

• Document the work by writing the thesis report

Figure 1.1 shows the estimated time distribution for the tasks defined above

3

Figure 1.1: Thesis Project Plan

1.3 Thesis Background

The motivation for this thesis stems from two research projects: the
UbiCompForAll project[1], which deals with end user service composition and
the Self-Adapting Applications for Mobile USers in Ubiquitous Computing
Environments (MUSIC) project[2], which deals with composing adaptive
applications from collaborations of components and services. Both of these
projects target an environment in which end user composition and adaptation
are often inter-related. Therefore, this thesis project attempts to bring the
results of these two projects together, by looking at the problem from the
end users’ perspective.

The thesis project serves as input to the UbiCompForAll project, especially in
supporting the projects research on runtime issues. It is therefore necessary
to carefully adhere to the core principles of UbiCompForAll throughout the
design and development phases. Adhering to these principles will be an
implicit goal in addition to those goals explicitly described in section 1.2. As
laid out at the UbiCompForAll website [3] the principles relevant to our work
are as follows:

• Service composition can be supported by generic solutions in the form
of methods and middleware that significantly reduce the complexity of
developing composite services.

• Collaboration-based composition can be applied at runtime and enable
the flexible adaptation and the runtime description of composition of
collaborative services to meet the user’s goals.

• Ontologies can be exploited to describe end user’s goals and to augment
the runtime description of collaborative services with goals, facilitating

4

effective semantic service discovery and the automated composition of
service collaborations.

MUSIC supports adapting mobile applications and services based on the
service landscape and the context that the execution of services depends on.

Both MUSIC and UbiCompForAll will be used as example platforms for
service adaptation and end user service composition, while this thesis project
focuses on generic solutions independent of any particular research project.

1.4 Research Method

We have followed a systematic research method in order to achieve the
goals of the thesis project. The method comprises of a number of different
sequential steps, which also take care of the feedback from a later step.
Different steps of the research method are illustrated in figure 1.2.

We started with the description of the problem extracted from motivating
scenarios. We studied the state of the art related to the end user development
and the adaptation support. We also went through several versions of
the UbiCompForAll end user-friendly service description notations as they
evolved over time in the UbiCompForAll project. The next step was to
critically evaluate the capabilities of middlewares in addition to MUSIC
which we believed could help us in designing our solution. Based on all
of these studies, we developed concepts and designed a generic solution to
address the problem. We further extended the solution to develop a domain
dependent prototype using UbiCompForAll and MUSIC. Implementation
and testing followed. We then rigorously analyzed and reviewed our proposed
solution. We adopted an incremental development approach. Each time a
flaw was detected while working in a particular step, we had traced it back
to its origin in the concept phase. This process was repeated until the design
was clean. The final results were implemented in a functional prototype that
translates user requirements to composite services and are documented in
this thesis report.

5

Figure 1.2: Research Method Flowchart

1.5 Report Outline

After this introductory first chapter, Chapter 2 contains the Scenario
Based Problem Description. The first section presents an example
scenario that will depict the problem at hand. The next section identifies
the points of user control and the points where adaptation is a necessity.

Chapter 3 reviews the State of the Art, including both previous and on-
going work in the areas of end user service composition and adaptation. From
this discussion we identify the features that should be part of our proposed
solution. We then evaluate the UbiCompForAll notation and show that it is
suitable for our solution. We also outline the capabilities of some adaptive
middleware that we believe will be useful in designing our solution and argue
that MUSIC provides a sufficiently good solution to serve our purpose.

Chapter 4 presents The Proposed Solution. Here we present our

6

detailed design based on the preceding chapter. This solution combines the
UbiCompForAll notation and the MUSIC middleware support.

Chapter 5 describes the Implementation of the solution proposed in
Chapter 4. In this chapter we explain the functionality of each of the building
blocks of the proposed solution.

Chapter 6 presents the Evaluation of the solution by providing a proof of
concept using a simplified scenario, conducting a user survey, analyzing the
characteristic features of the solution using a set of parameters, and finally
comparing with the existing dynamic service composition mechanisms based
on a set of parameters relevant to our work.

Finally Chapter 7 presents our concluding Discussion by summarizing
the main achievements and limitations of the project. We also provide some
suggestions for future work based on the limitations and then conclude the
report in the last section.

7

Chapter 2

Scenario Based Problem
Description

In this chapter we will use a scenario to clarify the problem presented in
Chapter 1. Section 2.1 provides a scene by scene description of the scenario.
Section 2.2 analyzes the scenario and identifies the points where user control
and automatic adaptation are needed. The chapter ends with a discussion
of possible variants that can arise due to change in user’s need. In this
thesis, we work on developing a software system that is competent enough
to support such aspects of end user control and adaptation while providing
the flexibility of facing such variations in end users’ needs and adaptation.

2.1 The Scenario

The scenario is written from the perspective of a businessman (end user)
making a travel plan.

Scene 1: John is a businessman. He is flying to Rome on June 12 at 2 p.m.
in order to meet his clients. The airport bus arrives at the bus stop near
his residence every 30 minutes. Using his mobile device, he wants to remind
himself about the relevant bus arrival. In order to catch the flight he wants
to receive an SMS reminder at 11:55 a.m. He also wishes to remind himself
via an email if Internet connectivity is available.

8

Scene 2: After the business meeting, John decides to go out in the afternoon.
He takes a number of photographs and suddenly realizes that his phone
memory is full. He might have to deal with the hassle of manually uploading
the pictures to his web repository in order to free up enough memory. But
by the time he would have been done, it would be evening and there might
be insufficient light to take any more pictures. Therefore, he was in a serious
need of a service that can automatically upload pictures only when the phone
memory was critically low. This is because he not only wants to have enough
memory to take the pictures but also wants to keep the pictures in mobile
phone so that he can access the pictures offline as well.

Scene 3: After coming back from Rome, John knows that he has a
presentation to make in a couple of days. For this presentation he needs
stock exchange data for a particular day. Therefore, he wants to initiate a
task that will obtain the relevant stock exchange data at the lowest price
for the day that he has selected. Additionally, he wishes to receive this
stock exchange information via e-mail.He uses the same e-mail service that
he previously used for the notification about the time to leave for catching
the bus. However, this time the e-mail service will be used to send him stock
exchange data instead of giving him a reminder as in scene 1.

2.2 Analysis of the Scenario

In this section we will have a closer look at the scenario described in section
2.1 in order to identify the points where 1) end user control is expected and
2) adaptation is preferable. We also notice that a number of variations may
occur in both the expected user control and adaptation possibilities. It is
possible to obtain variants by switching between one user controlled option to
another one, one adaptation option to another one, or by changing between
a user controlled option and an adaptation option. We will identify and list
a few of such variants.

End user control

With respect to the scenario described in section 2.1 the points where end
user control is required are:

9

• In scene 1, John sets the flight date and time.

We can think of a number of variants to this user choice.

– Instead of wanting to set the appointment time and the flight
time himself, John might want the composition to be driven by
his calendar and earlier established preferences of when he wants
to be notified of flights and when he wants to be notified to leave
for the bus to go to the airport.

– In another instance, John might want to set the exact time when
the notification that he should depart to catch the bus must be
sent.

• In scene 2, John wants to use a service to upload the photos to a web
repository only when his mobile device lacks sufficient free storage.

We can think of a number of variants to this user choice.

– Instead of having the constraint to be able to keep the pictures in
the phone memory unless absolutely necessary, John’s goal could
have been to have enough space to take pictures, to decrease the
cost of management, and to enhance performance

– In another instance, he might want the system to select the specific
web service which will upload the photos to an online repository
based on some specific conditions.

• In scene 3, John controls the criteria to select the lowest cost service
in order to fetch stock exchange data.

We can think of a number of variants to this user choice.

– Instead of wanting to get the data from the cheapest source, John
might want to select the stock data provider himself from a list
of automatically extracted information providers as the cheapest
option may not always be the most appropriate one.

– John might want the stock exchange data for a particular time
period instead of a particular day.

Need for adaptation

In the scenario described in section 2.1, the points where automatic
adaptation is desirable are:

10

• In scene 1, the appropriate time to send the SMS and/or E-mail
notification is determined based on the flight time and the bus time
table. We can think of a variant to this point of adaptation.

– The desired time of notifications is automatically determined from
John’s calendar and his previously set preferences.

• In scene 1, a copy of the generated reminder by e-mail is sent if Internet
connection is available. We can think of a variant to this point of
adaptation.

– A copy of the generated reminder by e-mail is sent only if free
Wifi Internet connection is available.

• In scene 2, the best web service instance to be used is determined
merely from the knowledge of its functionality and quality of service.
We can think of a number of variants to this point of adaptation.

– The web service instance to be used is selected based on its cost.

– In case of emergency, the web service instance to be used is selected
only based on its functionality.

• In scene 2, a web service instance is automatically used instead of the
local memory management component in order to upload the pictures
from the device to the online repository when the phone memory is
low. We can think of a variant to this point of adaptation.

– A web service instance is automatically used instead of the local
memory management component in order to upload the pictures
from the device to the online repository when a lot of uploading
throughput is available and when the costs of uploading are low.

• In scene 3, the provider offering the lowest price for the stock data
is automatically determined for the selected date. We can think of a
variant to this point of adaptation.

– Instead of using cost as the parameter, the selection of stock data
provider can depend upon other quality of service parameters.

Based on the above analysis we can conclude that the software system that
supports John’s managing these tasks must not only take into account his
conditions and preferences while automating the tasks but also allow him to

11

control the degree of automation. This means that the number and type of
software variation in such systems should actually originate from the different
ways a user wishes to accomplish a given task. It is also worth mentioning
that John, as an end user, is capable of using a PC or mobile devices; but
does not have any programming skills and therefore, the specification means
must be sufficiently end user-friendly that he can specify his choices and no
more.

12

Chapter 3

State of the Art

In this chapter we will review the state of the art in the research areas relevant
to this thesis. In section 3.1, we study the literature related to end user
service composition. Based on this review we identify the design elements in
section 3.2 that can later be used to construct our own solution. In section
3.3, we will then evaluate the suitability of UbiComForAll notation for the
user’s specification of service composition. Finally in section 3.4, we will
evaluate the potential of some adaptive frameworks and justify why MUSIC
is sufficient to fulfill our requirements.

3.1 A Review of Service Composition Issues

Composition of services has been addressed as one of the key features of
ubiquitous computing [4, 5, 6]. For this reason a large number of service
composition frameworks have been developed. We will focus on two service
composition aspects that are of specific interest to our project: Composition
Specification and Adaptability. Each of these aspects will be described along
with their individual roles, to the extent to which they have developed.
Additionally some examples of frameworks implementing these two elements
of service composition are presented in the following subsections.

13

3.1.1 Composition Specification

A composition specification refers to a description outlining the structure of
a composition from its constituent services. The important aspects related
to this mechanism are the level of detail and intuitiveness with which the
composition is specified, the phase of the service life-cycle in which it is
specified, the means of specification, the entity specifying the composition,
and finally the support for specifying particular criteria to drive/direct the
composition.

How much detail?

Services can be specified with varying levels of depth. The most basic form is
to provide an instance in the definition itself. In this case a particular service
is coupled with the composition as in [7]. Numerous authors ([4], [8], [9, 10],
[6], and [11, 12, 13]) have made use of individual instances while defining
the service. If instead the service description is abstracted somewhat and
represented with type information, then after translation by the framework
the type is replaced by an actual instance of service at runtime. Some of the
middleware that makes use of this technique are: [14], [15], [16], and [17].
Finally, in the third approach the user provides a high level task description
that has to be resolved by the middleware into a composition of services. This
method of implicit specification is followed by several authors e.g. [18, 19],
[20], and [21].

When to specify?

A composition of services can either be specified during the development
phase by the service developer and/or at runtime by the service user.
The frameworks described in [18, 19], [14], [15], [4], [8], [9, 10], [6], [21],
[17], and [11, 12, 13] all employ service specification at runtime; while the
frameworks described in [16] and [20] make use of the development time
specification. Some middleware with the runtime support, such as described
in [4], require the users to first select the set of services that will be used
to build the composite service, and then based on the choice an interface
is generated for the service composition. Another alternative, described in
[17], requires application developers to define a description of the service flow
at runtime, and then have actual services dynamically bound to the service
references. Alternatively, platforms similar to that described in [20] require
the user to provide information via an ontology and corresponding classifiers
before running the application. Therefore modification at runtime becomes
impossible.

14

How to specify?

Services can be specified in various forms ranging from a configuration file
and source code to an interactive tool. If a user specifies the composition via
an interface, then an underlying representation has to be available to provide
persistence of the specification. Alternatively, as described in [18, 19], [4],
[8], and [11, 12, 13] it is possible to use an interactive tool for end users,
while the frameworks described in [14], [15], [16], [6], [21], and [17] make use
of a configuration file. The authors of [9, 10] and [20] require specifying the
service as the source code.

Who is the composer?

Composition can be carried out either by developers who construct general
applications or by end users who tailor an application directly to their
individual needs. Developers try to anticipate which services will be available
at runtime. In contrast, when users build the composite, they can do so based
on the currently available services, thus forming a composition in a variety
of unanticipated ways as described in [8, 6].

As described in [17] application developers specify the composition through
a description in which sequences of services are described. Other examples of
frameworks featuring end user composition include those described in [18, 19],
[14], [4], [8], [6], and [11, 12, 13]. In contrast, very few instances of middleware
allow application developers to describe a composition. Some examples of
such middleware are described in [16], [9, 10], [21], [17], and [20].

Can the composer specify parameters that can be used to select a composition

variant?

Very few of the reviewed frameworks [18, 19], [14], and [15] specifically
support users specifying parameters in order to select a composition variant.
Even for middleware that does have this feature, the middleware only allows
users to specify one particular type of property: the quality of service (QoS).
Users can usually define a threshold value for a QoS parameter. Service
instances are then evaluated against this value and if the constraint is
satisfied then this service is incorporated into the composition, by replacing
an abstract service specification.

15

3.1.2 Adaptability

Adaptability is the “capability of the software product to be adapted for

different specified environments without applying actions or means other than

those provided for this purpose for the software considered” [22]. This is also
termed runtime ’modifiability’ in [23].

Casati, et al. [24] and majority of other surveyed frameworks allow the
composition definition to be changed at runtime. In addition to this, most
mechanisms perform service discovery and co-ordination based on previously
defined service types. All of these features support adaptability.

Specifying QoS parameters in order to select a specific service instance
enables adaptability during runtime. Sheng et al. [25] describe some of
the other methods in which users require contextual information in order to
obtain a personalized service. Thus quite a few user interactions are involved
when composing a service. This makes this form of modifiability rather
unrealistic in an environment where a large number of service compositions
need to occur dynamically and simultaneously.

Sheng et al. [25] and IBM’s Tivoli Personalized Services [26] provide
personalized services to users in a pervasive environment based on static
data about the user’s preferences. Therefore, these platforms do not take
into account the dynamic contextual data while realizing personalization.

Yang et al.[15] emphasize the notion of using user specified criteria in order
to attain runtime adaptability, but they fail to specify an actual mechanism
for context awareness that would be crucial for adapting compositions
dynamically at runtime in a real environment. It remains unclear as to when
and how the rules for adaptation are defined in the system and whether the
users are able to easily replace these rules in at their convenience.

3.2 Inference

From the discussion in sections 3.1 and 3.2 we can safely infer that although
a number of works have addressed the area of end user composition and
adaptive composition, a solution to the fundamental problem of this thesis

16

, i.e., supporting both user control and adaptation from an end user’s
perspective, remains very much unfulfilled by the state of the art. However,
the review has helped us identifying the following characteristic features
which we believe are required to design a solution:

• The composition has to be specified by an end user, who is usually not
a programmer or application developer.

• There should be an interface for describing the composition. Also
an underlying representation has to be available so that persistence
is ensured.

• Service descriptions can be both implicit and explicit in nature.

• Specification and updating of the composition can be made by users
both at design and runtime.

• Users should be able to specify parameters that can be used to select
the composition variant that they wish to use.

• Compositions can be adapted based on user-specified criteria. A
context aware environment should facilitate the adaptation process,
so as to dynamically build application variants at runtime.

• Users should be able to plug adaptation rules into the system at their
convenience.

3.3 UbiCompForAll Notation and Language

for Composition Specification

Figure 3.1 shows an overview of the UbiCompForAll system. We are mainly
concerned with the UbiComposer tool within this system that allows non-ICT
professionals to define service composition. The tool is still being developed
and the first release will be available in August, 2011. The tool supports an
end user-friendly composition notation that allows an end user in specifying
service composition both at design time and at runtime in an implicit manner.
This means that services can be defined in terms of types. The notation also
allows the specification of criteria upon which service selection can take place
at runtime. Additionally the tool (shown in figure 4.3) is accompanied with

17

a meta-model (shown in figure 4.4) that can be used to generate a persistent
definition for service composition. Finally the notation is sufficiently flexible
to accommodate for the inclusion or exclusion of service selection criteria
at any time. In summary, this notation satisfies all of our requirements, as
pointed out in section 3.3, for a composition specification language.

Figure 3.1: UbiCompForAll System Overview

3.4 The Adaptation Middleware

A system which can adapt and reconfigure itself according to user and
execution context is a self-adaptive system. Self-adaptive systems are usually
managed using middleware which senses the context and realizes the relevant
changes in the adaptive application. Figure 3.2 illustrates such adaptive
system. The context models take information from the user’s context or from
the system’s resources. The middleware retrieves the necessary information
required for a particular application from the corresponding context model.
It then adapts the application accordingly to provide a variation of the
application which is best suited to satisfy the user’s requirements in the
current situation.

As stated in section 3.2 building our solution requires a context-aware
environment, as shown in figure 3.2. Thus the software should have facilities

18

to sense information and adapt the composition accordingly. MUSIC
(Self-Adapting Applications for Mobile USers In Ubiquitous Computing
Environments) [27] is one such framework to build adaptive systems. But it
is not the only such middleware. Rouvoy, et al. in [28] proposes middleware-
triggered dynamic reconfiguration methods to enable application adaptation
to be based on resource availability in the case of Internet-scale shared
computational grids. Other middleware, such as described in [29], is designed
for the adaptation of distributed multi-user applications. Both of these
frameworks were actually built for a specific kind of environment in order to
make use of the changing context entities related to the domain. In addition
to these frameworks, others have taken a similar approach and tried to focus
on a particular area by taking advantage of the related resources and context
entities. As we are working with mobile applications, MUSIC which mainly
supports mobile applications seems to be a very good choice. Additionally,
MUSIC primarily models the system and its constituent properties, hence the
developer is relieved of the underlying core implementation challenges related
to adaptations. MUSIC facilitates development of self adaptive applications
in the domain of mobile applications with relative ease as compared to
other middleware platforms. This motivates us to make use of the MUSIC
middleware in supporting runtime adaptation as a proof of concept to our
solution.

Figure 3.2: A Self Adaptive System

19

Chapter 4

Proposed Solution

This chapter presents our proposed solution based on the design principles
elucidated in section 3.2 and the goals defined in section 1.2. We start with
defining the key concepts that form the basis of the work. Afterwards, we
outline the overall architecture of the solution and then explain in depth the
working principle behind each of the building blocks in that architecture.

4.1 Key Concepts

This chapter utilizes several concepts that should have a clear definition in
terms of how they are used in this thesis. These concepts are each described
below.

End User

In the role of an end user an actor uses an application via some user
interface. End users include both service composers and service users.
Typically end users do not have a programming background. Examples
of an end user can be a business man scheduling his business trip.
In this thesis the objective of our solution is to facilitate the end
users in controlling and obtaining an adaptive service usage in mobile
computing environment.

20

End User Development

End user development refers to a set of methods, techniques, and
tools that facilitate users of software systems to act as non-professional
software developers by providing the support for creating, modifying,
or extending a software artifact [36]. The idea is to empower end users
by providing as much flexibility as possible at runtime.

The browser extensions in most modern web browsers (such as Mozilla
Firefox, Google Chrome, and others) are examples of software that
supports end user development. Users in this case are able to modify
the basic functionality of their browsers by installing or removing
extensions.

In this thesis, end user development plays the key role, since the
motivation of the work has stemmed from the notion of empowering
end users by providing the user with as much control as possible in the
development process.

Service

A service is a process that enables its users to access a set of pre-defined
capabilities focused on accomplishing a specific goal. Services support
our day to day life and can range from a simple calculator to complex
social networks.

Services in this thesis are viewed from the perspective of end users.
Our objective is to facilitate as much as possible the user’s creation of
composite services of their choice.

Adaptation

Adaptation can be defined as the process of changing by which a system
becomes better suited to its context or environment. Adaptive systems
have two essential functional properties: context sensing and reacting
to the sensed information. One example of such a system is Google
search which adapts the results of queries based on several criteria
such as user’s location and search pattern.

In this thesis project, we focus on adaptation in service composition
based on the requirements of end users.

Collaboration-based Service Composition

Collaboration-based service composition refers to combining together
multiple services to form a composite service providing better capa-
bilities compared to any of the individual constituents. This is the

21

problem domain of our research. Our objective is to provide end users
the maximum amount of control over the composite that they design.

4.2 Architecture

End user service composition faces an inherent dilemma. Users most often
do not want to manually select the best service that fits their requirements.
However, they still would like to dictate in general from an abstract set of
constraints what kind of service is acceptable to them. This means that
they opt for the freedom to impose any number and types of conditions that
determines the services they use. Thus automation of service composition
without end user influence is not desirable, as the users want some level of
control.

Automating service composition through adaptation has its own challenges
which are integrating adaptation capabilities within the composition ar-
chitecture, interoperability and heterogeneity of services, dynamic service
discovery, dynamic updates of requirements, context sensing and reasoning,
performance and scalability issues incurred upon by adaptation reasoning,
robustness, usability, security, and testing and validation of adaptive systems
[30]. But when viewed from the perspective of an end user’s desire to
have the ultimate control over service composition, adaptation falls into an
unchartered territory where novel challenges exist. For this reason, our idea
is to bridge the gap between adaptation reasoning and end user requirements
so that a composition can be adapted dynamically at runtime based on
user preferences. Figure 4.1 portrays a general architecture for solving such
problems.

The Composition Engine generates and runs composite services and the
Adaptation Engine is responsible for adaptation of the composition. Our

Framework extracts End User Requirements constituting the composition
specification and the user’s preferences. It then translates the specification
into a composition definition that will be understood by the composition
engine and the preferences are translated to adaptation rules understood by
the adaptation engine. These rules are subsequently used by the Adaptation
Engine along with context information in order to adapt the composition
generated by the composition engine from the composition definition at
runtime into the variant that the user prefers.

22

Figure 4.1: Generic Architecture of our support

Figure 4.2 outlines the architecture of our solution with a domain spe-
cific reference to end user requirements and composition and adaptation
middleware as provided by the UbiCompForAll project and the MUSIC
project. As MUSIC provides support for both composition and adaptation,
the two translation phases specified in the generic design are integrated in
this solution.

The first block represents user interface that is used to specify the service
composition. After the user has finished describing the composition via this
interface, an XML file corresponding to the description of the composition
is generated. This specification is then fed into the UbiComptoMusic
Code generator engine which maps the UbiCompForAll notations from the
XML specification into MUSIC specific Java source code. During this
process service types are either cast as external services or internal MUSIC
components. If a service type refers to an external service, then the actual
service instances are discovered and bound to the type by the middleware
at runtime. However, for internal MUSIC components, as is the case
for our Proof of Concept (see section 6.1), references to these internal
MUSIC components are generated automatically by the UbiComptoMusic
code genarator and included in the generated Java source code. An
OSGi bundle 1 is then built following the compilation and the dependency

1The Open Services Gateway initiative framework (OSGi) specification describes the
bundle as a unit of modularization that is comprised of Java classes and other resources
which together can provide functions to end users.

23

Figure 4.2: Domain-specific System Architecture of Our Solution Using
UbiCompForAll and MUSIC

resolution of the source code. Consequently, this bundle is uploaded to the
MUSIC middleware to realize the composite service designed by the user.
The middleware adapts the composition at runtime based on the context
information in order to optimize the achievement of the user’s goals. Pre-
developed context sensors can be deployed to the MUSIC middleware as
OSGi bundles as well.

In order to support runtime updates of the composition by end users,
reflecting updated requirements, the process should be able to automatically
change the updated composition and make the necessary adjustments in
the generated source code; and consequently the service may be adapted
automatically.

24

4.3 UbiComposer Composition Tool

In the UbiCompForAll project, work on developing a service composition
tool for end users is currently in progress. Figure 4.3 shows a screen dump
of the graphical user interface of the tool, providing an idea of the visual
notation that are used by end users in specifying their service compositions.

Figure 4.3: UbiComposer User Interface

Triggers define the events (e.g., context change, intents from the Android
system, users moving in or out of a particular area etc.) and conditions
that must be valid to trigger a particular composition. A sequence of
services describe the actions that the services perform in a sequential manner.
Information objects do not perform any task themselves; but they are used
by services to obtain certain information. Details about concepts such as
Trigger, Information Object, and Service Sequence(Step), are discussed in
section 4.4.

Note that in this tool, services are specified at the type level, for example,
the SendSMS service type can be realized by a number of different providers
and the best-suited provider can be chosen at runtime, either by the end user

25

himself/herself or automatically through the adaptation reasoning process of
the adaptation middleware.

4.4 UbiCompForAll Service Composition

Concepts and Notation

Figure 4.4 shows the meta-model representing UbiCompForAll service
composition concepts. A composition of services can be formed with one or
more Tasks which is an entity composed of one or more Triggers, a number
of Steps, and a number of InformationObjects.

Figure 4.4: UbiCompForAll service composition meta-model

A Condition is a statement whose validity can be verified at any given instant
of time. Other entities such as triggers and steps can depend upon conditions
for their activation.

A Trigger is an event which upon its realization will initiate the functioning

26

of an entire composition or a task. A trigger may be accompanied by a
number of conditions. In this case even if the triggering event has occurred,
the task will only be carried out if the condition is satisfied.

A Step is essentially a collaborative service that performs computations on
input sets and produces output sets. In some cases, a condition may be
associated with a step. This means, the step will only participate in the
composition if the condition is true. This genre of step is known as a
ConditionalStep.

InformationObjects are elements that themselves are not an integral part
of the composition in terms of performing any part of a task; but rather
these objects provide necessary information that helps to realize a specific
service. The two different types of InformationObjects are Queries and
DomainObjectReference. Queries are processes that retrieves a set of
information from a particular domain given a set of input parameters, while
DomainObjectReferences are direct references to information that is readily
available.

As seen above, Triggers, Conditions, Steps, and InformationObjects are
BuildingBlocks of a service composition. Each of these building blocks can be
associated with zero or more Property References. A PropertyReference is an
element that maps a property from one BuildingBlock to another property of
another BuildingBlock. For example, the value of attribute A of step A can
be derived from the value of attribute B of step B via a PropertyReference. In
this case attribute A is the toProperty and attribute B is the fromProperty.

A visual notation shown in figure 4.3 is derived for expressing the concepts
defined in the simple meta-model by end users. Domain-specific descriptions
of services can be added in order to define a set of icons representing the
service types in a palette. Service types can be added to the composition
by simply clicking on the appropriate icons. Certain attributes/properties
of each service type are expected to be defined by end users and these are
made visible to the user during editing. Most of these properties are optional,
so that the end user may control them, allow them to be set automatically
to their default values, or allow the adaptation middleware to find the best
value for them.

The end user-friendliness of the notation lies in its simplicity; thus end users
are not over burdened by all the details. The use of icons representing
services is quite intuitive for users with smart phones or PCs as they are

27

already familiar with the use of icons representing services while invoking
these services. The setting of specific properties are made easy by using
end user-friendly names hiding the corresponding technical descriptions or
representations of these properties and services.

4.5 Composition Description in XML

The composition description in XML (in EMF .ecore format) contained in
the file generated by the user interface of section 4.3 was designed based on
the concepts of UbiCompForAll service description meta-model described in
section 4.4. All the components except DomainObjectReference are modeled
as separate XML nodes. DomainObjectRefernce is a tag that is used to refer
to a component from another component and therefore it is included within
individual component node if applicable.

The following listing shows the template, enhancing the corresponding meta-
model of figure 4.4 for the XML file used in this thesis for providing the proof
of concept (see Chapter 6) implementing a subset of the scenario described
in section 2.1.

1 <?xml version=” 1.0 ” encoding=”UTF−8”?>
2 <ecore : EPackage xmi : version=” 2.0 ” xmlns : xmi=”http ://www. omg. org /

XMI”
3 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−i n s t an ce ”
4 xmlns : ecore=” http ://www. e c l i p s e . org /emf /2002/Ecore”
5 name=”DefaultNameOfComposition ” nsURI=”http :// ubi compfora l l .

org /”
6 n sPre f i x=”DefaultNameOfComposition ”>
7 <e C l a s s i f i e r s x s i : type=” ecore : EClass” name=”NameOfTrigger”
8 eSuperTypes=” . . / . . / org . ub i compfora l l . s impl e l anguage/model/

SimpleLanguage . ecore #//Trigger ”>
9 <eS t ru c tu ra l Fea tu r e s x s i : type=” ecore : EAttribute ”

10 name=”NameOfProperty”
11 eType=” ecore : EDataType http ://www. e c l i p s e . org /emf /2002/

Ecore#//EDATATYPE”
12 va lue=”operand1 , operator , operand2” />
13
14 </ e C l a s s i f i e r s >

15 <e C l a s s i f i e r s x s i : type=” ecore : EClass” name=”NameOfCondition”
16 eSuperTypes=” . . / . . / org . ub i compfora l l . s impl e l anguage/model/

SimpleLanguage . ecore#
17 // Condition ”>
18 <eS t ru c tu ra l Fea tu r e s x s i : type=” ecore : EAttribute ”

28

19 name=”NameOfProperty”
20 eType=” ecore : EDataType http ://www. e c l i p s e . org /emf /2002/

Ecore#//EDATATYPE”
21 va lue=”operand1 , operator , operand2” />
22
23 </ e C l a s s i f i e r s >

24 <e C l a s s i f i e r s x s i : type=” ecore : EClass” name=”NameOfTask”
25 eSuperTypes=” . . / . . / org . ub i compfora l l . s impl e l anguage/model/

SimpleLanguage . ecore #//Task”
26 Re f e r s t o=”NameOfTrigger/NameOfCondition”>
27 < e C l a s s i f i e r s x s i : type=” ecore : EClass” name=”

NameOfConditionalStep”
28 eSuperTypes=” . . / . . / org . ub i compfora l l . s impl e l anguage/model/

SimpleLanguage . ecore#
29 // Condi t i ona lStep”
30 Re f e r s t o=”NameOfCondition”>
31 <eS t ru c tu ra l Featu r e s x s i : type=” ecore : EAttribute ”
32 name=”NameOfProperty”
33 eType=” ecore : EDataType http ://www. e c l i p s e . org /emf

/2002/Ecore#//EDATATYPE”
34 va lue=”ValueOfProperty ” />
35
36 </ eC l a s s i f i e r s >

37 < e C l a s s i f i e r s x s i : type=” ecore : EClass” name=”NameOfStep”
38 eSuperTypes=” . . / . . / org . ub i compfora l l . s impl e l anguage/

model/SimpleLanguage . ecore #//Step”>
39 <eS t ru c tu ra l Fea tu r e s x s i : type=” ecore : EAttribute ”
40 name=”NameOfProperty”
41 eType=” ecore : EDataType http ://www. e c l i p s e . org /emf

/2002/Ecore#//EDATATYPE”
42 va lue=”ValueOfProperty ” />
43
44 </ eC l a s s i f i e r s >

45 < e C l a s s i f i e r s x s i : type=” ecore : EClass” name=”NameOfQuery”
46 eSuperTypes=” . . / . . / org . ub i compfora l l . s impl e l anguage/

model/SimpleLanguage . ecore #//Query”>
47 <eS t ru c tu ra l Fea tu r e s x s i : type=” ecore : EAttribute ”
48 name=”NameOfProperty”
49 eType=” ecore : EDataType http ://www. e c l i p s e . org /emf

/2002/Ecore#//EString ”
50 va lue=”ValueOfProperty ” />
51
52 </ eC l a s s i f i e r s >

53 </ e C l a s s i f i e r s >

54 </ecore : EPackage>

Listing 4.1: Template for Composition Description

29

In order to simplify the design of the framework, we restrict our discussion to
only compositions made up of single task. However, compositions consisting
of more than one task can be constructed by the inclusion of multiple tasks
in the same composition XML file. In this case end users can select a task
using conditions and triggers set for each of the tasks in a composition [31].
There can be a problem of having conflicting conditions or triggers so that
more than one task become active at a given instance. MUSIC automatically
solves such conflicts through its adaptation reasoning mechanism by selecting
the task that has the highest utility. Even if the utility becomes equal for a
number of tasks, MUSIC selects only one of them.

In the above template, triggers and conditions are placed outside the task
description node. This is done so that multiple tasks and multiple elements
within them (such as conditional steps) can refer to a single condition or
trigger without having the trigger or condition having to be re-written over
and over again.

Let us now have a closer look at the structures of each of the elements from
the composition. Our primary focus here is to identify the enhancements
to the basic UbiCompForAll XML structure with which we started. First
of all, the representation technique used to store the contents of the ”value”
attribute in triggers and conditions is enhanced. The content of this attribute
is represented in the form of a triplet: constant/variable, operator, and
operand. The first element in the triplet refers to whether the value derived
from the context will be matched against a constant or a variable for the
evaluation of this trigger or condition. The second element defines the
operator used for the comparison. The third element is the constant or
variable against which the context value will be compared. An example can
be (c,eq,4). This is interpreted as a trigger or a condition that will be deemed
as true if the value of the variable used in the trigger or condition and derived
from the context is equal to 4.

Secondly, we introduce the ”Refersto” attribute in tasks and conditional
steps. As the name suggests, this defines the relationship between a task and
triggers and conditions; or between a conditional step and a condition. It
should be noted that a task can depend on multiple triggers and conditions
in which case their names will be represented as comma separated values.

The final enhancement is the convention for a reference used to address
the attributes of one component from within the attribute of the other.
The rule is to form a conjugate of the component and the attribute by

30

placing a ”.” in between them. For example, if we are to refer to attribute
”deptime” of component BusService, then the resulting conjugate would be
”BusService.deptime”.

4.6 The MUSIC Conceptual Model

Before we present the design of the UbiComptoMusic Code generator engine,
we want to familiarize the reader with the MUSIC conceptual model that is
required to build the design. As the MUSIC manual[31] suggests, MUSIC is
a generic middleware that facilitates the creation of context-aware and self-
adaptive software. MUSIC and its runtime representation uses a conceptual
metamodel. The next few paragraphs will explain the core elements of this
metamodel.

A System in MUSIC is defined as the collection of entities that provide and
use services among each other. Entities can be anything from software to
computers, networks, humans, or any phenomena that influences the needs of
humans in their environments. When an entity provides a service to another
entity the relationship between them is termed collaboration. The notion
of service type, entity type, role, composition, and connector are used in
MUSIC’s model of systems.

A service type is used to represent a particular type of service in terms of the
collaboration between the provider and the consumer. As a collaboration
has limited duration due to its irregular availability, a collaboration can
repeatedly call the provided and required operations according to the
protocol used by this collaboration.

An entity type models an entity with respect to its required and provided
services. Entities can either be atomic or composed of other entities.

A composition specification models a composite entity in terms of the types
of constituent entities that it is composed of and their internal and external
collaboration with other entities. An entity type within a composition is
usually referred to as a role. A optional role is used to model entity types
that may be present in one variant of the composition specification and absent
in another.

31

Connectors are used to model the collaborations between the roles of a
composition specification. A connector is related to a service type and with a
provider role and/or a client role. This relationship implies that the provider
role provides the service to the client role.

The concepts explained above are formalized with the entity relationship
diagrams 4.5 and 4.6 adapted from [31].

Figure 4.5: Basic Music Concepts

Figure 4.7 adapted from [31] shows the entity relationship diagram of a
typical MUSIC system. In MUSIC, software entities are referred to as
components. The modeling of a component by a set of service types specifying
the services that the component provides or requires can be carried out by a
component type.

The realization of an atomic component is specified by an atomic plan.
Similarly a composition plan is used to define the realization of several
components combined to form a composite component. This is carried out by
defining the roles included in the composite, the connections between them,
and the logical node in which each component is located.

An application is normally a composite component that can be launched in
the MUSIC middleware to provide a service to an user via an interface and/or
to provide services to other applications. In other words an application is a

32

Figure 4.6: Composition Concept

realization of an application type which is again a specialization of component
type. Usually the application is deployed as a MUSIC bundle. This is a
flexible deployment unit that allows the deployment of individual components
as well as full applications and which also allows us to download the meta-
information or plansseparately from code.

The variability in an adaptive application designed using MUSIC system
is based upon the definition of a set of varying properties specified by
a component type. These properties vary from one realization of the
component type to another. Property Types are associated with the service
types and the corresponding Property Evaluator functions are associated with
component realizations that are used to model them. Property evaluator
functions are expressed in terms of the context, resources, property evaluators
of collaborating components, and also the property evaluators of constituting
components in the case of composite components. These are required when
the property values are not explicitly provided; in which case a Provided
Property Type would have been used to directly retrieve the value of the

33

Figure 4.7: MUSIC System

property.

Variation in extra-functional properties and resource needs and variation
in functionality - can both be modeled by varying some properties of the
components. This means that it is possible to build systems with different
properties from the same model, as well as to modify the characteristic
features of a running system by replacing one or more components. Also, it
is possible to build variants by setting some property values at instantiation
time and then modify them at runtime.

The selection of a variant is dependent on the notion of utility function which
reflects the suitability of a given configuration in a given context based on
the evaluated values of the varying properties. In this case a Context Query
is used to retrieve the value of certain properties in the current context. This
is then matched against the value from either the provided property or the
property evaluator function to compute the utility of a certain application
variant. By maximizing the overall utility, the middleware tries to continually
adapt a running system to provide the optimal solution with respect to a
specific situation.

34

4.7 Bridging between UbiCompForAll and

MUSIC Concepts

The preceding two sections introduced the basic concepts of the
UbiCompForAll service description notation and the MUSIC middleware.
We have integrated them so that the representation of a service composition
in UbiCompForAll notation can be correctly translated to its representation
in MUSIC. In this section, we will use formal UML notations to establish
the relationship between them. UbiCompForAll concepts are represented as
Class names, while MUSIC concepts are represented as Stereotype names.

In a composition description file, Steps, Conditional Steps, and Queries are
represented as abstract types, rather than specific service instances. Thus,
it is intuitive to model them as MUSIC component types as shown in figure
4.8. On the other hand, the actual services realizing these building blocks
are represented with atomic realizations, which is a stereotype used to model
the realization details of atomic components. The condition in a conditional
step is modeled as a required property implying that it must be fulfilled in
order for the step to be picked up for the execution plan. In MUSIC, such
component types are modeled as optional roles so that in some compositions
they may be present while in some other they may be skipped. In the case
of a query or a step, there is no need of mentioning the required property,
because a query or a step is present in all variants of the composition.

35

Figure 4.8: Component Type in MUSIC corresponds to Step, Query and
ConditionalStep in UbiCompForAll

A composition can have components where the output attribute of one is
actually the input to another. Such components are modeled in MUSIC as
connected in a composition and therefore, they appear with ports providing
and requiring certain properties. The mapping of UbiCompForAll concepts
for such component types or service types are shown in figure figure 4.9. If
they have an attribute whose value is provided to others, then it is regarded
as a provided property. While if they have an attribute whose value is derived
from others, it is represented as a required property. Connectors are then
used to draw the relationship between a required property and provided
property in a composition.

Disjoint components that take part in the composition are modeled without
any provision for required or provided properties.

Figure 4.9: Components with provided/required properties

A trigger or a condition requires the operation where either explicitly given
attribute values or attribute values that are to be calculated at runtime
will be matched against values derived in the current context. The provided

36

property type is the representation of the explicitly mentioned attribute value
while the current context value of the attribute of a trigger or a condition is
modeled as a property type as shown in figure 4.10. A context query is used
to evaluate the current value of the property type from the context.

Figure 4.10: Property Types and their evaluation using context query

The attribute values of a trigger or a condition that are to be calculated and
are not explicitly given in the composition can be derived from the property
evaluator function as shown in figure 4.11.

Figure 4.11: Property Evaluator

In figure 4.12, the application framework is represented as a MUSIC
Application Type. As pointed out earlier this application can include one or
more compositions. In the simplest of cases the application type is realized
with just one composite realization. There is a MUSIC stereotype, called

37

¡¡mCompositeRealization¿¿ to represent the concept of composition plan that
can be used to model a composition of steps , conditional steps, queries
and domain object references. The presence of conditional steps in the
composition actually introduces variants of the composition itself because
they will only be executed if their conditions are evaluated to be true. Steps
without condition will always be a part of the execution plan and therefore,
they are present in all compositions.

Figure 4.12: A Composition consisting of an ApplicationType, a Utility
function and a CompositeRealization

In order for the composite realization or a composition to be a part of the
execution plan, the global condition and/or trigger associated with it need
to be realized first. Therefore, these entities are represented as required
properties for the realization.

The utility function in figure 4.12 is the function that computes the suitability
of a certain application variant by comparing the property values of triggers
and/or conditions derived from the current context against those that are
either explicitly provided or computed via property evaluator functions. This
means that the utility function is used to first figure out whether the entire
composition will be executed or not and then to find out which if any of the
conditional steps present in the composition will be executed.

38

Figure 4.13 shows the inner detail of a composition represented by a
composite realization diagram. In this example, the realization is comprised
of two steps(SendSMS and BuyBusTicket), a conditional step(SendEmail)
and a query(RetrieveBusTime). Each of the steps and the query are
represented as MUSIC roles while the conditional step is realized as an
optional role in the composition. The ”SendSMS” step and the ”SendEmail”
step depend on the ”RetrieveBusTime” query. The attribute values of the
steps are derived from the result of the query. This relationship between
a step and a query is modeled with a connector that binds the required
property of the step and the provided property of the query. Two steps
that are dependent on each other can be modeled in exactly the same way.
Disjoint steps, that do not depend on any other entity for their execution,
such as ”BuyBusTicket” from figure 4.13 can also be a part of a composition.

Figure 4.13: An Example Composition employing two steps, a conditional
step and a query

Figure 4.14: Application Bundle

39

In figure 4.14 entire application, composed of services, is shown modeled as
a MUSIC bundle.

The discussion in this section is summarized in table 4.1 which shows the
mapping between UbiCompForAll and MUSIC concepts.

40

Table 4.1: Bridging between the UbiCompForAll and the MUSIC concepts

UbiCompForAll Concept/Generic Concept MUSIC Concept
Step Component Type
Conditional Step Component Type
Query Component Type
Service Instance Service/Component
Trigger Required Property
Condition Required Property
Provided Attribute Provided Property
Required Attribute Required Property
Relationship Connector
Provided value of Attribute Provided Property Type
Value of Attribute from the context Property Type
Function to retrieve the value of Attribute from
the context Context Query

Function to evaluate Attribute values Property Evaluator Function

Application Framework Bundle and Application Type
Composition Composite Realization
Function to compute suitability of application
variant based on provided or evaluated current
property values of Triggers and/or Conditions Utility Function

Step/Query within a Composition Role
Conditional Step within a Composition Optional Role

41

4.8 Service Discovery

The communication services of the MUSIC middleware are responsible for
carrying out discovery of remote external services and their integration to the
platform[31]. The idea is that depending on the type of the services defined
in the UbiCompForAll service composition file by the user, specific instances
of a particular type will be discovered. These instances can then be modeled
as individual atomic realizations of the service type by the UbiComptoMusic
code generator. At runtime, the middleware will pick only one service based
on the defined condition if it is a conditional step or will randomly select one
instance of the service otherwise.

Depending on the particular type of service discovery protocol, specific plug-
ins should be used. A number of implementations such as Universal Plug
and Play(UPnP), Service Location Protocol(SLP), etc. already exist in the
latest version of the middleware.

If the composition of an application only makes use of internal MUSIC
services (or, components), then the service discovery phase can be avoided-
as we can directly use the services that are available within the system. In
our prototype of the framework, we have only made use of internal services,
but have made sure that the nature of the code structure allows for the
integration of a service discovery phase. We will further explain this issue in
Chapter 5.

4.9 Building the Transformation Engine

The transformation engine that translates UbiCompForAll service compo-
sitions to MUSIC-compliant Java source code simply makes use of the
solution described in section 4.7. The design of this tool was carried out
by closely examining the Java source code files generated from UML MUSIC
notations for adaptive applications. As part of our goal to automate the
whole process starting from identifying the changes in the end user-defined
service composition to automatically adapt the service usage, we have made
a major update to the MUSIC development as well.

In MUSIC, they provide a UML2Java transformation tool that also generates

42

Java source code corresponding to the adaptation model and component
skeletons from UML models. However, the source code needs to be manually
filled out with the implementation of Utility functions. Since we would like
to avoid such manual intervention in the process, we need to generate the
implementation of utility function as well. The details of this implementation
are discussed in Chapter 5.

4.10 Resolving Dependencies, Compilation,

and Building of the Bundle

After the code is generated, it is necessary to ensure that all the MUSIC
packages that are required by the code are properly included before
compilation. Once the code is compiled, it is necessary to generate a
customized Manifest file following the OSGi standard and then build the
application bundle using this Manifest file. The final task is to upload the
bundle to run on top of the MUSIC middleware. We will describe this
procedure in more practical terms in Chapter 6.

4.11 Context Sensing and Composition

Adaptation

After the middleware has started running the application bundle, relevant
context information as described in the composition by the means of context
queries are automatically sensed from the environment by using context plug-
ins. We assume that these context plug-ins are pre-installed in the system.
Additionally, such context plug-ins could be uploaded as MUSIC bundles
when needed. These plug-ins can be developed by the framework developers
or service developers beforehand, depending on the type of services supported
by the framework and the parameters that are to be used by the end-users
in order to optimize their composition. Composition adaptation is then
carried out by the middleware by comparing the values derived from the
context and the values already provided in the composition description. The
next chapter outlines the implementation details of a context plug-in and its
working principle will be depicted in Chapter 6.

43

Chapter 5

Implementation

In this chapter we discuss the implementation details of the thesis project.
The implementation phase has been divided in to four parts: Detect changes
in composition, Retrieve composition specification, Generate MUSIC code,
and Create bundle and upload to middleware. Section 5.1 presents an
overview of the framework and each of the subsequent sections except the
last describes a part. Section 5.5 discusses the implementation challenges
related to building context plug-ins.

5.1 Framework Overview

In this version of the prototype we have only included support for internal
services. Thus, the service discovery module is not included. We begin our
discussion with figure 5.1. This figure shows the sequential flow of execution
of the entire system.

The process is triggered whenever there is a change in the composition
description XML file. This can happen when the end user updates his/her
composition. Information related to individual components forming the
composition are extracted from the description file. The code generator
engine then generates MUSIC code from the UbiCompForAll service de-
scription concepts following the relationships established in the chapter 4
and summarized in table 4.1 on page 41. Building this generic parser which

44

generates MUSIC-compliant Java source code was the most difficult and time
consuming phase in the entire implementation process. We had to carefully
analyze all the possible variation of input from the composition description
XML file and then devise a generic algorithm so that all of these variations
are correctly mapped to MUSIC-compliant Java source code. Finally, an
OSGi bundle is created from the generated Java source code and deployed
to the MUSIC middleware. The middleware replaces any previous instance
of the composition bundle with the most recently uploaded one.

Figure 5.1: Sequential flow of execution of the phases of the framework

Three out of the four processes, except for the process labelled create bundle

and upload to middleware shown in the diagram, have been automated. This
means that whenever there is a change in the composition description XML
file it leads to the automatic generation of MUSIC-compliant Java source
code, but the user has to manually create the bundle and upload it to
cause the application to change its behavior. Users are able to modify their
composition at runtime. In the next version of the framework we plan to
automate the entire flow of execution.

5.2 Composition Change Detection

Mechanism

The FlowControl class given in listing B.2 on page 71 uses the FileWatcher

class given in listing B.1 on page 70 to detect a change in the composition
description file. The FileWatcher class runs in a thread and continuously
monitors the composition description file in XML. We detect a change by
comparing the modification time of the file and the length of the file with
the earlier modification time and file length. If there is a change, then
the parser is invoked to translate the composition description to MUSIC
compliant JAVA source code. In this phase our objective is only to detect a

45

change, if any, by the end user in the composition description file.

5.3 Composition Specification Extraction

In order to extract the composition specification from the XML file, we
employ Document Object Model(DOM) tree parsing. We traverse each of the
nodes and their children in a recursive fashion (lines 112 through 144 in listing
B.3 on pages 74-75). The generic information regarding the UbiCompForAll
components from the composition are stored in a data structure called
Component (lines 100 through 102 in listing B.3 on page 74). Their attributes
are stored in another data structure known as Attribute (line 91 in listing
B.3 on page 70).

5.4 MUSIC-compliant Java Source Code

Generation

In order to generate MUSIC-compliant Java source code, we had to first
figure out the structure of code recognized by the middleware. We
designed, implemented, and carefully evaluated several example self-adaptive
applications for deducing the code structure. The parser in listing B.3 on
pages 72-104 implements this code structure. We now discuss the code
generation process carried out by the parser in detail.

The MUSIC-compliant Java source code generation process starts with the
generation of the bundle file (lines 207 through 216 in listing B.3 on pages
76-77). The name of this bundle is automatically generated based upon the
name of the composition in the composition description file. The Type Names

(for component types and application types) (lines 282 through 297 in listing
B.3 on pages 78-79)and Names(for realizing plans)(lines 299 through 311 in
listing B.3 on page 79) are generated inside the bundle from the names of
the composition and the constituent services.

Next the Application Type is generated (lines 313 through 321 in listing B.3
on page 79). This part of the code is mostly static except for its name which is
taken from the name of the composition application. The Component Types

46

(lines 323 through 341 in listing B.3 on pages 79-80)are then generated from
the the Steps and Queries.

Next comes the Atomic Plans (lines 343 through 534 in listing B.3 on
pages 80-84) with specific reference to the context dependencies. These are
generated from the conditions of Conditional Steps.

The Service Plans (lines 536 through 539 in listing B.3 on page 85) are
generated as an empty block, since we are not using any external services for
this prototype.

A composition plan (lines 541 through 978 in listing B.3 on pages 85-95) with
explicit mention of roles and optional roles are generated next. This includes
the specification of the global condition and/or trigger in the form of context
dependencies.

As an extension to the MUSIC support (which generates only a skeleton of the
utility function, while it must be implemented manually), the implementation
of the Utility Function is also generated. The Utility Function (lines 995
through 1207 in listing B.3 on pages 95-100) is generated next. Its code
contains a comparison between all the property values and the current
context values retrieved from the environment. If the property value is
not directly provided, then a Property Evaluator(lines 1209 through 1247
in listing B.3 on pages 100-101) is generated in order to evaluate its value.

After the bundle file has been generated, a file is created for each of the
components and the entire composition (lines 1261 through 1348 in listing B.3
on pages 102-104). The generated code for the component files instantiate
an object of the actual service that realizes the component. Also, code is
generated to pass on the property values of the components to the actual
services and finally to run the service.

5.5 Building the OSGi Bundle and Deploying

to the Middleware

We have created a Java plug-in project with the generated source code.
Figure 5.2 shows the project structure of our prototype.

47

Figure 5.2: Project Structure

The following steps were followed in order to create the OSGi bundle from the
project in figure 5.2 and to deploy it to run on top of the MUSIC middleware:

• The package structure containing all the generated files was copied to
the ”src” directory of the project from which the bundle will be built.

• A components.xml file containing project specific information was
added to the projects META-INF directory.

• Next we manually edited the MANIFEST.MF file. The general
information such as the name of the application was adjusted by editing
the relevant fields in the MANIFEST.MF file.

• Packages were added using ”Imported packages” option in the bundle
creation utility. The list of required packages in this case depended on
the MUSIC libraries used in the project.

48

• The project was added to ”Exported Packages” in the bundle creation
utility. The application was then exported using the ”Export Wizard”
of the bundle creation utility. The output was a OSGi bundle in the
form of a ”.jar” file.

• The bundle was uploaded to the middleware using the MUSIC GUI.
The application was started using the GUI as well.

5.6 Context Plugins

The MUSIC manual[32] for developing plug-ins provides a detail guide to
building of context plug-ins that can be used in general for any context-
aware system. For our work, we did not develop any context sensor plug-in
by ourselves; rather the screen sensor context plug-in of the middleware has
been used by us to evaluate the functionality of the test case discussed in the
next chapter.

49

Chapter 6

Evaluation

This chapter presents the evaluation of our solution. We evaluate the
work from a number of different points of view. A proof of concept
prototype evaluates the feasibility of our proposed conceptual solution and
its implementation, a user survey measures the applicability of the solution
to the needs of real users and a qualitative analysis of the solution against a
set of relevant criteria helps measuring the fulfillment of its scientific goals.
Section 6.1 provides a proof of concept using a simplified scenario. We carry
out a small user survey in section 6.2 to complement the evaluation process.
In section 6.3 we use a set of parameters to analyze the solution in depth.
We also use the criteria defined in section 3.1 to draw a comparison between
our solution and other existing dynamic service composition frameworks in
this section.

6.1 Proof of Concept

In this section we take a subset of the scenario described in chapter 2 and
use it to develop a composite service using our prototype implementation.
Section 6.1.1 outlines the test case. The composition specification based on
the test case is presented in section 6.1.2. The outputs from the composition
shown in section 6.1.3 serve as a proof of the concept presented in earlier
chapters.

50

6.1.1 The Description of the Test Case

The simplified scenario is as follows:

John is a businessman. He is flying to Rome on June 12 at 2 p.m. in order to
meet his clients. The airport bus arrives at the bus stop near his house every
30 minutes. In order to remind himself about the suitable bus time so that
he can catch the flight he wants to be sent an SMS reminder at 11:55 a.m.
He also wishes to remind himself with an email service, but only if Internet
connectivity is available.

From the above scenario we identify the key elements and their corresponding
mapping to the UbiCompForAll concepts:

• 11:55 a.m. on June 12 - Trigger

• SMS service - Step

• Email service - Conditional Step

• Internet Availability - Condition

6.1.2 Composition Specification

Based on the UbiCompForAll concepts presented in section 4.4, the following
service composition has been manually composed using the UbiCompForAll
service composition template from section 4.5:

1
2 <?xml version=” 1.0 ” encoding=”UTF−8”?>
3 <ecore : EPackage xmi : version=” 2.0 ”
4 xmlns : xmi=”http ://www. omg. org /XMI”
5 xmlns : x s i=”http ://www.w3 . org /2001/XMLSchema−

i n s t an ce ”
6 xmlns : ecore=”http ://www. e c l i p s e . org /em
7 name=”col labservcompexample ”
8 nsURI=”http :// ubi compfora l l . org /”
9 n sPre f i x=” col labservcompexample ”>

10 < e C l a s s i f i e r s x s i : type=” ecore : EClass”
11 name=” Cal endarAlert”

51

12 eSuperTypes=” . . / . . / org . ub i compfora l l .
s impl e l anguage/model/SimpleLanguage . ecore #//
Trigger ”>

13 <eS t ru c tu ra l Fea tur e s x s i : type=” ecore : EAttr ibute ”
14 name=” execut i ondatet ime ”
15 eType=” ecore : EDataType http ://www. e c l i p s e .

org /emf /2002/Ecore#//EDouble”
16 va lue=”c , eq , 1155120611” />
17 </ e C l a s s i f i e r s >

18 < e C l a s s i f i e r s x s i : type=” ecore : EClass”
19 name=”NetworkAvCheck”
20 eSuperTypes=” . . / . . / org . ub i compfora l l .

s impl e l anguage/model/ SimpleLanguage . ecore #//
Condition ”>

21 <eS t ru c tu ra l Fea tu r e s x s i : type=” ecore : EAttribute ”
22 name=” InternetAv ”
23 eType=” ecore : EDataType http ://www.

e c l i p s e . org /emf /2002/Ecore#//
EBoolean”

24 va lue=”c , eq , t rue ” />
25 < e C l a s s i f i e r s x s i : type=” ecore : EClass”
26 name=”ExampleComposition ”
27 eSuperTypes=” . . / . . / org . ub i compfora l l .

s impl e l anguage/model/ SimpleLanguage . ecore #//
Task”

28 Re f e r s t o=” Cal endarAlert”>
29 < e C l a s s i f i e r s x s i : type=” ecore : EClass”
30 name=”SendSMS”
31 eSuperTypes=” . . / . . / org . ub i compfora l l .

s impl e l anguage/model/ SimpleLanguage . ecore #//
Step”>

32 <eS t ru c tu ra l Fea tu r e s x s i : type=” ecore : EAttribute ”
33 name=” to ”
34 eType=” ecore : EDataType http ://www.

e c l i p s e . org /emf /2002/Ecore#//
EString ”

35 va lue=”+4748341631” />
36 <eS t ru c tu ra l Fea tu r e s x s i : type=” ecore : EAttribute ”
37 name=”message”
38 eType=” ecore : EDataType http ://www.

e c l i p s e . org /emf /2002/Ecore#//
EString ”

39 va lue=”bus has a r r i v ed ” />
40 </ e C l a s s i f i e r s >

41 < e C l a s s i f i e r s x s i : type=” ecore : EClass”
42 name=”SendEmail ”
43 eSuperTypes=” . . / . . / org . ub i compfora l l .

s impl e l anguage/model/ SimpleLanguage . ecore
#//Condi t i ona l ”>

52

44 Re f e r s t o=”NetworkAvCheck”>
45 <eS t ru c tu ra l Featu r e s x s i : type=” ecore : EAttribute ”
46 name=”from”
47 eType=” ecore : EDataType http ://www.

e c l i p s e . org /emf /2002/Ecore#//
EString ”

48 va lue=” imtiazud@stud . ntnu . no” />
49 <eS t ru c tu ra l Featu r e s x s i : type=” ecore : EAttribute ”
50 name=” to ”
51 eType=” ecore : EDataType http ://www.

e c l i p s e . org /emf /2002/Ecore#//
EString ”

52 va lue=” imtu7986@gmail . com” />
53 <eS t ru c tu ra l Featu r e s x s i : type=” ecore : EAttribute ”
54 name=” t i t l e ”
55 eType=” ecore : EDataType http ://www.

e c l i p s e . org /emf /2002/Ecore#//
EString ”

56 va lue=”Bus Schedule ” />
57 <eS t ru c tu ra l Featu r e s x s i : type=” ecore : EAttribute ”
58 name=”msg”
59 eType=” ecore : EDataType http ://www.

e c l i p s e . org /emf /2002/Ecore#//
EString ”

60 va lue=”bus has a r r i v ed ” />
61 </ e C l a s s i f i e r s >

62 </ e C l a s s i f i e r s >

63
64 </ecore : EPackage>

Listing 6.1: Composition Description of the Proof of Concept Scenario

6.1.3 Resulting Composition

The composition description in the last section was used as an input to
the prototype. For convenience, we simulated the functionality of the
”Internet Availability” with the screen orientation context plug-in provided
by MUSIC, instead of building our own context plug-in. We also built simple
services ”SendEmailService.java” shown in listing B.7 on pages 105-106 and
”SendSMSService.java” shown in listing B.8 on pages 106-107 for the purpose
of evaluation. Figure 6.1 shows the output when the Internet is not available.
It should be noted that the application uses and displays values that were
input by the user during composition as shown in the XML in section 6.1.2.

53

This includes the phone number (”+4748341631”) and message (”bus has
arrived”) that should be delivered by the SMS service.

Figure 6.2 shows the output of the composition when the Internet is
available. Both SMS and Email services are executed this time. The
contents of the email service such as sender(”imtiazud@stud.ntnu.no”),
receiver(”imtu7986@gmail.com”), title(”bus schedule”), and body(”bus has
arrived”) are obtained from the composition provided by the end user in
the XML shown in section 6.1.2. The application in the figure displays this
information.

Figure 6.1: Composition without Internet Connectivity

54

Figure 6.2: Composition with Internet Connectivity

The outputs of the composition certainly prove the validity of our solution.
The user in this case had been able to define ”Internet connectivity” as
the condition that was then used by the composition engine at runtime
to decide whether ”E-mail” service would be included in the composed
service or not. Runtime adaptation of the composition based on user
requirement was verified first by running the composition in a computer
without Internet connectivity as shown in figure 6.1 and then by connecting
the computer to the Internet without stopping the application as shown
in figure 6.2. Additionally, the system required the user to specify the
composition implicitly, thus the user mentioned the type of the service to be
used in the composition rather than indicating the actual service instance.

6.2 User Survey

Although it was not possible to carry out a formal usability study due to time
constraint, we tried to evaluate the validity of our solution by conducting an
informal survey. Five candidates participated in this study. All of them were

55

Master’s students studying Telematics at NTNU. While they have previous
knowledge of computer programming languages such as C, Java, and others,
they had no previous knowledge regarding UbiCompForAll or MUSIC. As
the fully functioning composition tool was unavailable, the participants were
given instructions regarding the process of specifying their own compositions.
Although initially it was cumbersome, the participants managed to write
their service compositions by specifying both service types and conditions
using the template shown in section 4.4. The example used in section 6.1
is also used for explaining the solution to the survey participants. Their
comments on the entire mechanism, after they observed the execution of their
compositions, were summarized in the form of a question/answer session:

How easy was it to compose and how easy was it to include the conditions?

The participants said that had there been a fully functioning end user-friendly
service composition tool available, it would have been really easy to compose
services as it took some time to understand the composition from the XML
file. They further concluded that it was very easy to incorporate conditions in
the composition as the UbiCompForAll notation is rather intuitive in nature.

How efficient was the nature of the composition?

In response to the above question, the users said that they did not need to
find the specific service that meets each of their criteria. According to them,
this made the system user-friendly. Additionally, the resulting composition
behaved exactly as they wanted it to behave, that is the composition adapted
according to the runtime environment and users’ needs. This led them
to conclude that the system generated the optimal composition (the most
desired composition according to user’s requirement in a given context and
point in time). Additionally, after we briefly explained how the system
functioned they said it was efficient, as they felt that in this system existing
services were combined together as per their requirements to carry out a task
which otherwise would have been really difficult and inconvenient to achieve
if new programs had to be written each time.

56

6.3 Qualitative Analysis

In this section we make our qualitative analysis from three different
perspectives: design, development, and user perspectives. Starting with
the general objective in section 6.4.1 we continue towards a comprehensive
evaluation of the prototype based upon our own parameters: extensibility,
flexibility and control, re-usability and portability, modularity, development
approach, compatibility with user interface, and usability, in sections 6.4.2,
6.4.3, and 6.4.4. Alongside these parameters we use the key issues:
service discovery, service coordination and management, uniform information
exchange infrastructure, fault tolerance and scalability, and adaptability
, that are related to service composition described by Chakrabarty and
Joshi[33] to evaluate the solution in the section 6.4.2.

6.3.1 Meeting the Objective

The primary objective of this thesis project was to devise a service
composition solution that would bridge the gap between end user control
and runtime adaptation. In an ideal environment designed to facilitate end
users, the user should be able to dictate both the quality and substance of a
composition from an abstract level with as much or as little detail as he or she
prefers. In our prototype the user orchestrates a composite composition by
defining the set of constituent services, their corresponding properties, and
the goal driving the composition. We have also incorporated the continuous
re-evaluation of adaptation parameters and re-configuration of adaptation
throughout the life cycle of the composition in a given context. This fulfills
the characteristic requirement of a dynamic computing environment whose
state is almost never constant.

Beside meeting the overall objective of the project, the realization of the
generic solution with UbiCompForAll and MUSIC fulfills the implicit goals
stated in section 1.2 in the first chapter. The service composition notation
of UbiCompForAll provided us a formal method for describing services.
Coupling this with the adaptation capabilities of the MUSIC middleware
allows users to easily design and compose services of their choice. The
evaluation of service variants at runtime by the utility function ensures
composition optimization (the generation of the most desired composition
according to user requirement in a given context and point in time) to

57

meet the user’s goal. Finally, the meta-modeling support in the form of
triggers and conditions in UbiCompForAll notation enables users to define
their goals along with the service components, thus making the process
of forming collaborative services a lot easier. This is not only applicable
for UbiCompForAll but rather is true for any other composition notation
mechanism supporting specification of both the goals and the components of
a composition.

6.3.2 Design

In this section we evaluate the framework in terms of extensibility, flexibility
and control, re-usability and portability, service discovery in section, service
coordination and management in section, uniform information exchange
infrastructure in section, fault tolerance and scalability, and adaptability.

Extensibility

The design of the framework is such that it can be easily extended. For
example, in the future if users are allowed to specify the composition using
some high level definition, then the only modification in the system that
would be required is to build a language parser which translates this high level
definition to generate a composition description in UbiCompForAll notation.
The rest of the system should operate as it currently does.

Similarly the notion of allowing users to specify ”as much or as little detail” as
they like while describing the composition can be achieved by incorporating
an additional module that extracts previously stored information from the
user’s profile and uses this information to automatically fill out property
values of services that are not filled in by the user himself. Learning can also
be introduced by enhancing the module to automatically update the user’s
profile with the information drawn by sensing his or her activities.

58

Flexibility and Control

The flexibility of the design is best portrayed by the plug and play mechanism
with which users can introduce conditions in the composition. Since triggers
and conditions are modeled as context plug-ins, a user simply acquires
the particular plug-in that will evaluate the specified condition and plugs
it in with the rest of the bundle. The only other change needed is in
the service description template file where the information regarding the
trigger or condition must be added along with the other components.
The UbiCompToMusic translator does not have any difficulty with the
newly added conditions or triggers because of its generic translation. Also,
the runtime environment must have this context plug-in included in the
application’s bundle. This approach of adding the context plug-in to the
framework is more end user friendly when compared to the process of adding
libraries to source codes written in typical programming languages. This is
because in this case the user does not provide instructions to the system as to
how the plug-in should be used in order to evaluate his provided condition,
rather he simply adds the plug-in as a library and selects the trigger or
condition that will be evaluated by the middleware using that plug-in.

The level of flexibility achieved by using context plug-ins has a tremendous
significance in terms of the user’s control of the composition. Users will
not only be able to select components based on their functional and other
non-functional properties retrieved from the service description file, but they
will also be able to tune the nature of the composition based on innovative
parameters such as best-rated service among friends in a social network.
This can be achieved by building plug-ins that will query the necessary
information from different sources, such as the social network in this case,
at runtime and provide this information to the system which then uses the
utility function to select the most desired service instance as per the user’s
requirement(s). Quality of Service including selection of secure services
can also be incorporated into the composition in the same way by the
use of plug-ins. The user in this case will specify the Quality of Service
requirement in the form of a condition and a context plug-in will be used
to evaluate the actual value for the specified Quality of Service parameter
at runtime for a given component. The system will then use the utility
function to compare whether the component fulfills the user’s Quality of
Service requirement or not. The component becomes a part of the resulting
composition only if it fulfills the requirements of the user. Other forms
of security such as secure communication between the components can be

59

ensured by developing a secure communication protocol and adding it to the
existing pool of communication protocols supported by MUSIC.

The pluggable nature of the framework discussed above makes its enhance-
ment a relatively simple job as new types of plug-ins can be easily developed
by third party developers and provided to the end users.

Re-usability and Portability

The re-usability of composition descriptions in the proposed solution in-
creases the efficiency of service composition. Users can use compositions
that they have created in the past either by retaining the composition in its
entirety or by editing it to whatever extent they wish.

Another feature that enhances efficiency is portability. Due to the use of
Java, any composition that is composed on one platform can be transferred
and used in another platform given that the necessary context plug-ins are
made available.

Service Discovery

Since the services can follow a wide range of definitions, it is important for
any good service composition framework to be able to support a variety
of discovery techniques. While MUSIC currently supports quite a few
including UPnP and SLP, the range can be extended by simply plugging
in new discovery and communication protocols directly into the middleware
as discussed in [31]. This is possible because MUSIC has a pluggable
architecture.

Service Coordination and Management

The MUSIC middleware itself manages and coordinates the components in
our framework. The advantage of using MUSIC to manage the entities is
that it already has built-in functions for co-ordination and management in
both stand-alone and distributed environments. So, the measure of efficiency

60

in handling co-ordination and management of our solution is exactly equal
to the already proven level of efficiency of MUSIC as discussed in [31].

Uniform Information Exchange Infrastructure

In a ubiquitous environment, we can have different services following different
information exchange mechanisms operating together. It is important that
an ideal composition framework is able to communicate with a variety of
services and blend them together in a composition even though they might
utilize quite different types of information exchange paradigms. MUSIC
currently can only support services that are tailored following the Service
Oriented Architecture (SOA). However, the general solution provided in this
project is not limited by the built-in capability of MUSIC and therefore
further research is needed to formulate domain specific solution for building
an uniform information exchange infrastructure.

Fault Tolerance and Scalability

In the ideal case, a fault tolerant composition system should be able to
detect when services become unavailable in the distributed environment
and invoke a fault control mechanism. Because MUSIC is at the core of
our framework we can exploit MUSIC’s inherent ability to detect the event
that will occur when services become unavailable. Once the event has been
generated, an automatic adaptation process can be initiated. New services
can replace unavailable ones, but because no state information was retained,
the mechanism is not that robust for stateful services, while it can operate
smoothly for stateless services.

Scalability is another point of concern in a system where a user can compose
large complex composite services that can have a lot of application variants.
Fortunately MUSIC has an inherent adaptation mechanism to deal with
the computational complexity of a large number of application variants.
Depending on the number of application variants it can either use brute
force, greedy, or a more sophisticated algorithm[34, 35, 30].

61

Adaptability

Services are not persistent in terms of their existence in a dynamic
environment due to various reasons, such as network failure, service down-
time, etc. This fact makes it vary important for a service composition
platform to be adaptive in nature and make the best use of currently available
services. As mentioned earlier the proposed framework has the ability to
dynamically adapt according to the current state of the context in order to
optimize itself to meet the user’s requirement(s).

6.3.3 Development

In this section we evaluate the framework in terms of modularity, develop-
ment approach, and compatibility with user interface.

Modularity

The code structure of the prototype is divided into separate sections. This
means that developers will be able to enhance one part without having to
worry about a ripple effect that any change might have on rest of the code.
For example, a developer is free to construct the utility function completely
in their own way. In order to do so, they simply need to modify the portion
of the UbiCompToMusic method that generates the utility function.

Development Approach

We followed the incremental development methodology for engineering the
prototype framework. This means that feedback provided during the
previous step of development was followed as necessary.

62

Compatibility with user interface

Any front-end generating the composition file in the UbiCompForAll service
description notation can be used as the user interface for the proposed
framework. From the developers’ perspective, they are thus relieved of the
task of integrating an interface with the framework engine.

6.3.4 Usability

As described earlier in section 6.2, the usability review had five persons who
gave positive feedback regarding the framework. These five persons have
commented that they have been empowered through the notion of user-driven
adaptive composition as they have control over both the content and quality
of the service without having to explicitly identify specific service instances
at design time.

6.3.5 Comparison with Existing Frameworks

In order to evaluate our work, we use the same set of parameters that
we devised in section 3.1 to analyze existing end user service composition
frameworks. Our framework fulfills all the criteria defined in section 3.2.
Just like the other frameworks supporting dynamic composition discussed
in Chapter 3, it allows the end users to specify the composition at runtime
implicitly at type level. Additionally, it has a provision for including an user
interface which we have stated is under development by others.

In addition to the above features, our framework allows users to specify
parameters that can be used to select the composition variant that they wish
to use. Composition adaptation is carried out in a context aware environment
by dynamically building application variants based on user criteria provided
at runtime. To the best of our knowledge, this is unique among all the
reviewed frameworks and other dynamic service composition techniques.
Thus evaluating the performance of our primary contribution, composition
adaptation based on end user preferences, with respect to other works is not
possible at this time.

63

Chapter 7

Discussion

In this chapter we first outline the achievements of this thesis project in
section 7.1. Next we list the shortcomings of the proposed solution and based
on them we suggest some future work in section 7.2. We also foresee the
possibility of a research project at a bigger scale. We conclude the discussion
in section 7.3 portraying our view to the problem addressed in this thesis
project based on our experience throughout the whole process.

7.1 Achievements and Lessons Learned

The achievements and lessons learned from this thesis project are described
below:

• We have learned a systematic approach of conducting research. Al-
though we had to re-schedule the submission date, mainly because of
a longer than anticipated implementation phase, we followed a specific
research method by starting with a task description, the specification
of milestones, and the estimation of time required for accomplishing
the tasks as shown in Chapter 1.

• We have studied and acquired in depth understanding of the state of
the art in end user development, dynamic service composition, and

64

adaptation. We have also developed a usage scenario and analyzed it
in order to formulate the problem and acquire insight in it.

• We have developed a conceptual solution to bridge the gap between
end user development and automatic service adaptation by providing
user-driven runtime composition adaptation mechanism. In doing so
we have enhanced the UbiCompForAll service composition notation
support and designed a pluggable architecture that provides users to
easily define their conditions based on which composition adaptation
takes place.

• We have implemented a prototype of our conceptual solution. In that
process, we have also enhanced the MUSIC support by adding the
automatic generation of the source code for the utility function.

• We have evaluated the solution from a number of different perspectives:
a proof of concept prototype to evaluate the feasibility, a user survey to
measure the applicability and a qualitative analysis to determine the
scientific value of the work.

7.2 Limitations and Future Work

We believe that a scientific work is a part of a bigger process towards the
development of knowledge. Therefore, besides our achievements we have also
identified a number of points that offer an opportunity of improvement. Such
points are listed below:

• We developed the complete conceptual solution to bridge the gap
between end user development and automatic service adaptation.
However, in the implementation of the prototype, we did not have
enough time to implement the facility in order to automate the
last phase of our framework, i.e., the automatic deployment of the
application bundle to run on the MUSIC middleware.

• In our Proof of Concept we only used a subset of the original scenario
to keep things simple. While the chosen subset of the scenario is good
enough to evaluate the work, a more complete implementation of the
scenario, especially by realizing the actual functionality of the services
could provide a more comprehensive understanding of the solution.

65

• In the implementation phase, we used simplified and internal services
only.

• We could not use the UbiComposer service composition tool, because
it is still under development. This deprived us from employing the
survey participants in composing their services using a graphical user
interface.

Thus, most of the limitations concern the implementation. The work can be
further improved by:

• Completing the entire automation process of the composition life cycle
by automatic creation of the application bundle and uploading it to the
MUSIC middleware

• Enhancing the framework in order to test connected services and
external service support

• Developing basic Quality of Service related context plug-ins

• Enhancing the UbiComptoMusic translator so that end users may
dictate the design of the utility function from an abstract level if they
wish

• Evaluating the framework with the complete scenario and employing
the end user-friendly service composition tool, which is planned to be
released in August, 2011.

Apart from these, we also believe that the problem addressed in this thesis
will gain more importance in the near future and a commercially viable
solution might be needed. We believe that a future research project on a
larger scale than this thesis project can build upon our work.

7.3 Conclusions

In this thesis project the problem we have addressed was how to empower
end users to dynamically compose services to suit their preferences. In

66

this context, automation and adaptation are often the most desirable goals.
However, automatic service composition without the consideration of users’
preferences does not bring about user satisfaction to a great extent as it
is natural for each user to want different things in a given context and
point in time. In order to understand this issue further we have critically
evaluated the state of the art in end user service composition. Existing
works in this field have only addressed areas related to the development of a
service composition tool without looking too deeply into the issue of end user
control. We thus go one step further and propose a solution for intelligent
service composition where users are able to define a composition both in
terms of quality and the type of constituent services based on which this
service will be dynamically adapted at runtime. Next we use self adaptive
middleware and a service description notation to instantiate this solution.
With the help of a test case and the prototype, we proved the feasibility of
our idea.

We believe that the automation achieved by integrating end user control
and adaptation are key to obtaining the user’s desired service composition
despite the ever changing characteristic of the dynamic environment and its
service landscape. Analysis of our design shows that it has the potential to
evolve into a method with which the user in a given context will be able
to provide himself or herself with the optimal composition according to his
or her requirements without the user having to explicitly define all of the
requirements. We, therefore, conclude that our work is a firm step towards
providing the support for intelligent service composition which maximizes
end user satisfaction, control, and adaptation by using services in a dynamic
environment.

67

Appendix A

Original Problem Description

Title: Collaboration-based intelligent service composition at runtime
by end users

With mobile devices being an integral part of the daily life of millions of
users having little or no ICT knowledge, mobile services are being developed
to save them from difficult or tedious tasks without compromising with their
needs. In the UbiCompForAll project, starting with a number of real life
scenarios we have been working towards supporting end-users in managing
their services in an efficient and user-friendly manner. We observe that these
scenarios consist of sub-tasks that can be solved with collaborative service
units. Therefore, a composition of such service units will serve the needs of
the end-user for the complete scenario. We envisage that a visual formalism
and tools can be developed to support these end-users in creating such service
compositions. Moreover, methodologies and middleware can significantly
reduce the complexity of developing composite services.

In this thesis, the student will investigate the collaboration-based composi-
tion of services at runtime. Collaborative services are performed by objects
that may take initiatives towards the service users. This is typical for
telecom services, but also for many new services such as attentive services,
context aware services, notification services and ambient intelligence. Such
services in general entail a collaboration among several active objects. Partial
service functionalities can be specified as collaborating roles, where such roles
are realized by the collaborative objects. Service composition involves in
specifying the collaboration both in a static way at design time as well as

68

supporting dynamic discovery, learning, adaptation and binding at runtime.
The expected results of the work include evaluation of different end user-
friendly specification techniques for collaborative services, utilizing the tool
support in composing services by the end users and applying the concepts
and developments in one or more application domain(s). Throughout the
process the main focus will be on runtime issues; e.g., adjusting the service
usage to the changing needs of the user at runtime, issues related to the
discovery of new services and selection among alternatives etc.

69

Appendix B

Project Source Code

B.1 FileWatcher.java

1 import java . u t i l . ∗ ;
2 import java . i o . ∗ ;
3
4 pub l i c ab s t r a c t c l a s s Fi leWatcher extends TimerTask {
5 p r i v a t e l ong timeStamp ;
6 p r i v a t e F i l e f i l e ;
7 p r i v a t e l ong length ;
8
9 pub l i c Fi leWatcher (F i l e f i l e) {

10 t h i s . f i l e = f i l e ;
11 t h i s . length = f i l e . length () ;
12 t h i s . timeStamp = f i l e . l a s tMod i f i ed () ;
13 }
14
15 pub l i c f i n a l void run () {
16 long timeStamp = f i l e . l a s tMod i f i ed () ;
17
18 i f (t h i s . timeStamp != timeStamp) {
19
20 i f (t h i s . length != f i l e . length ()){
21 t h i s . length = f i l e . length () ;
22 t h i s . timeStamp = timeStamp ;
23 onChange (f i l e) ;
24 }
25 }
26 }
27

70

28 protected ab s t r a c t void onChange (F i l e f i l e) ;
29 }

Listing B.1: FileWatcher.java

B.2 FlowControl.java

1
2 import java . i o . F i l e ;
3 import java . u t i l .Date ;
4 import java . u t i l . Timer ;
5 import java . u t i l . TimerTask ;
6
7
8 pub l i c c l a s s FlowControl {
9

10 /∗∗
11 ∗ @param args
12 ∗/
13 pub l i c s t a t i c void main(S t r i n g [] a rgs) {
14 // TODO Auto−generated method stub
15
16 S t r i ng f i l e a d d r e s s = new St r i ng (”C: / Users /IMTIAZ/workspace/

Flow Test / s r c /example . ecore ”) ;
17 // monitor a s i n g l e f i l e
18 TimerTask task = new FileWatcher (new F i l e (f i l e a d d r e s s))

{
19 protect ed void onChange (F i l e f i l e) {
20 // here we code the a c t i o n on a change
21 //System . out . p r i n t l n (” F i l e ”+ f i l e . getName () +” have

change ! ”) ;
22 Parser parser = new ParserTest () ;
23 parse r . UbiCompToMUSICconverter(f i l e a d d r e s s) ;
24
25 }
26 } ;
27
28 Timer t imer = new Timer () ;
29 // repeat the check every second
30 t imer . schedul e (task , new Date () , 1000) ;
31
32 }
33
34 }

Listing B.2: FlowControl.java

71

B.3 Parser.java

1
2 //package parser ;
3 import java . i o . Fi leNotFoundException ;
4 import java . i o . Fi leOutputStream ;
5 import java . i o . IOException ;
6 import java . i o . PrintStream ;
7 import java . text . DateFormat ;
8 import java . text . SimpleDateFormat ;
9 import java . u t i l . ArrayLi st ;

10 import java . u t i l . Calendar ;
11 import java . u t i l .Date ;
12
13 import java . u t i l . L i s t ;
14 import javax . xml . pa r s e r s . DocumentBuilder ;
15 import javax . xml . pa r s e r s . DocumentBui lderFactory ;
16 import javax . xml . pa r s e r s . FactoryConf i gurat i onError ;
17 import javax . xml . pa r s e r s . ParserConf i gurat i onExcep t i on ;
18
19 import org . w3c .dom . Document ;
20 import org . w3c .dom . Element ;
21 import org . w3c .dom . NodeList ;
22 import org . xml . sax . SAXException ;
23
24 pub l i c c l a s s Parser {
25
26 /∗∗
27 ∗ @param args
28 ∗/
29 p r i v a t e s t a t i c L i st<Component> ComponentArray = new ArrayList <

Component>() ;
30 p r i v a t e s t a t i c L i st<Eva luatorDeta i l> EvalArray = new ArrayList

<Eva luatorDeta i l >() ;
31
32 p r i v a t e s t a t i c Component getComponent(Element comp) {
33
34 // for each <Compnent> element get type , name , RefersTo and
35 // Attr ibuteArray
36
37 S t r i ng AttributeName = null ;
38 S t r i ng DataType = null ;
39 S t r i ng Value = null ;
40 S t r i ng RefersTo = null ;
41 S t r i n g ComponentType = comp. g e tAt t r i bu t e (”eSuperTypes ”) .

s p l i t (”//”) [1] ;
42 S t r i ng ComponentName = comp. g e tAt t r i bu t e (”name”) ;
43 // i f (comp . hasAttr ibute (” Re f e r s t o”))

72

44 RefersTo = comp . g e tAt t r i but e (” Re f e r s t o”) ;
45
46 // r e t r i e v e the ch i l d r en nodes o f the Task
47
48 NodeList t a sk ch i l d r en = comp. getElementsByTagName (”

e C l a s s i f i e r s ”) ;
49
50 i f (t a sk ch i l d r en != null && ta sk ch i l d r en . getLength () > 0) {
51 for (i n t i = 0 ; i < t a sk ch i l d r en . getLength () ; i++) {
52
53 // get the Component element
54 Element elm = (Element) t a sk ch i l d r en . item (i) ;
55
56 // get the Component ob j e c t
57 Component taskch i l comp = getComponent(elm) ;
58
59 // add i t to l i s t
60 ComponentArray . add (taskch i l comp) ;
61
62 }
63 }
64
65 // r e t r i e v e the ch i l d r en nodes o f the Component
66
67 NodeList ch i l d r en = comp . getElementsByTagName (”

eS t ru c tu ra l Fea tur e s”) ;
68
69 // c r ea t e a new component
70 Component newcomponent = new Component () ;
71
72 // i t e r a t e through the ch i l d r en and parse t h e i r in fo rmat ion
73 i f (ch i l d r en != null && ch i l d r en . getLength () > 0) {
74 for (i n t i = 0 ; i < ch i l d r en . getLength () ; i++) {
75
76 // i f (ch i l d r en . item (i) . getLocalName () !=null) {
77 Element a t t r i bu t e = (Element) ch i l d r en . item (i) ;
78
79 AttributeName = a t t r i bu t e . g e tAt t r i bu te (”name”) ;
80 DataType = a t t r i bu t e . g e tAt t r i but e (”eType”) . s p l i t (”//”)

[2] . s p l i t (”E”) [1] ;
81 Value = a t t r i bu t e . g e tAt t r ibu te (” va lue”) ;
82
83 Attr ibute newattr ibute = new Attr ibute () ;
84 newattr ibute . AttributeName = AttributeName ;
85
86 i f (DataType . equa l s (” Int ”))
87 DataType = new St r i ng (” In t eg e r ”) ;
88 newattr ibute . DataType = DataType ;
89 newattr ibute . Value = Value ;

73

90
91 newcomponent . Attr ibuteArray . add (newattr ibute) ;
92
93 // }
94
95 }
96 }
97
98 // Create a new Component with the va lue read from the xml

nodes
99

100 newcomponent . ComponentType = ComponentType ;
101 newcomponent . ComponentName = ComponentName;
102 newcomponent . RefersTo = RefersTo ;
103
104 return newcomponent ;
105 }
106
107 pub l i c void UbiCompToMUSICconverter(S t r i ng f i l e a d d r e s s) {
108 // TODO Auto−generated method stub
109
110 // TODO Auto−generated method stub
111
112 try {
113 // i n s t a n t i a t i n g a DOM implementation
114 DocumentBui lderFactory f a c t o ry = DocumentBui lderFactory
115 . newInstance () ;
116 // c r ea t e a document l o ad e r
117 DocumentBuilder l o ad e r = f a c t o ry . newDocumentBuilder () ;
118
119 // load ing a DOM tree
120 Document document = l o ade r
121 . parse (f i l e a d d r e s s) ;
122 // Retr i eve the root element
123 Element t r e e = document . getDocumentElement () ;
124
125 // get a node l i s t o f the Components in the xml
126 NodeList n l = t r e e . getElementsByTagName (” e C l a s s i f i e r s ”) ;
127
128 // i t e r a t e through the xml tree , parse the in fo rmat i on and

bui ld a
129 // Component Array
130
131 i f (n l != null && nl . getLength () > 0) {
132 for (i n t i = 0 ; i < nl . getLength () ; i++) {
133
134 // get the Component element
135 Element elm = (Element) n l . i tem (i) ;
136 Component comp = new Component () ;

74

137 i f (elm . g e tAt t r ibut e (”eSuperTypes ”) . s p l i t (”//”) [1] .
equa l s (”Task”) | | elm . g e tAt t r i but e (”eSuperTypes ”) .
s p l i t (”//”) [1] . equa l s (” Trigger ”) | | elm . g e tAt t r ibu te (
”eSuperTypes ”) . s p l i t (”//”) [1] . equa l s (” Condition ”))
{

138 // get the Component ob j e c t
139 comp = getComponent(elm) ;
140 // add i t to l i s t
141 ComponentArray . add (comp) ;
142 }
143
144 }
145 }
146
147 // I t e r a t e through the ComponentArray and Print the

el ements
148
149 System . out . p r i n t l n (” I t e r a t i n g through ArrayLi st e l ements

. . . ”) ;
150 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
151 System . out . p r i n t l n (i) ;
152 System . out . p r i n t l n (ComponentArray . get (i) . ComponentName) ;
153 System . out . p r i n t l n (ComponentArray . get (i) . ComponentType) ;
154 System . out . p r i n t l n (ComponentArray . get (i) . RefersTo) ;
155 for (i n t j = 0 ; j < ComponentArray . get (i) . Attr ibuteArray

. s ize () ; j++) {
156 System . out . p r i n t l n (ComponentArray . get (i) .

Attr ibuteArray
157 . get (j) . AttributeName) ;
158 System . out . p r i n t l n (ComponentArray . get (i) .

Attr ibuteArray
159 . get (j) . DataType) ;
160 System . out . p r i n t l n (ComponentArray . get (i) .

Attr ibuteArray
161 . get (j) . Value) ;
162 }
163 }
164
165 // Generate the Music Code us ing the parsed UbiCompforAll

notat i on
166 MusicCodeGenerator () ;
167
168 /∗
169 ∗ ClassName = t r ee . getTagName() ;
170 ∗
171 ∗ NodeList n l i s t = t r e e . getChi ldNodes () ; for (i n t i = 0 ;

i <

172 ∗ n l i s t . getLength () ; i++) { System . out . p r i n t l n (” va lue o f
node ” + i

75

173 ∗ + ” ” + n l i s t . i tem (i) . g e tAt t r i bu t e s ()) ; }
174 ∗/
175
176 // c r ea t e a c l a s s f i l e with the name o f the root element

o f the t r e e
177
178 /∗
179 ∗ FileOutputStream out = new FileOutputStream (ClassName+”

. java”) ;
180 ∗
181 ∗ PrintStream p = new PrintStream (out) ;
182 ∗
183 ∗ p . p r i n t l n (” pub l i c c l a s s ”+ClassName+
184 ∗ ”{ pub l i c s t a t i c void main(S t r i n g args []) {System . out .

p r i n t l n (\ ” hi \”) ;}} ”
185 ∗) ;
186 ∗
187 ∗ p . close () ;
188 ∗/
189
190 } catch (ParserConf i gurat i onExcept i on e) {
191 e . pr intStackTrace () ;
192 } catch (IOException e) {
193 e . pr intStackTrace () ;
194
195 } catch (SAXException e) {
196 e . pr intStackTrace () ;
197 } catch (FactoryConf i gurat i onError e) {
198 e . pr intStackTrace () ;
199 }
200
201 }
202
203 p r i v a t e s t a t i c void MusicCodeGenerator () throws

Fi leNotFoundException {
204
205 S t r i ng CompositionName = null ;
206
207 for (i n t j = 0 ; j < ComponentArray . s ize () ; j++) {
208 i f (ComponentArray . get (j) . ComponentType . equa l s (”Task”)) {
209 CompositionName = ComponentArray . get (j) . ComponentName;
210 System . out . p r i n t l n (ComponentArray . get (j) . ComponentName) ;
211 }
212 }
213
214 // c r ea t e a c l a s s f i l e with the name o f the root element o f

the t r e e
215

76

216 Fi leOutputStream out = new FileOutputStream (CompositionName
+ ” . java”) ;

217
218 PrintStream p = new PrintStream (out) ;
219
220 p . p r i n t l n (”/∗∗”) ;
221 p . p r i n t l n (”∗ The MUSIC pro j e c t (Contract No . IST−035166) i s

an In t eg ra t ed Pro j ec t (IP) ”) ;
222 p . p r i n t l n (”∗ with in the 6 th Framework Programme , Pr i o r i t y

2 . 5 . 5 (So f tware and Serv i c e s) . ”) ;
223 p . p r i n t l n (”∗”) ;
224 p . p r i n t l n (”∗ More in fo rmat i on about the p ro j e c t i s a va i l a b l e

at : http : //www. i s t−music . eu”) ;
225 p . p r i n t l n (”∗”) ;
226 p . p r i n t l n (”∗ This l i b r a r y i s f r e e so f tware ; you can

r e d i s t r i b u t e i t and/or”) ;
227 p . p r i n t l n (”∗ modify i t under the terms o f the GNU Lesser

General Publ i c”) ;
228 p . p r i n t l n (”∗ License as publ i shed by the Free So f tware

Foundation ; e i t h e r ”) ;
229 p . p r i n t l n (”∗ v e r s i o n 2 .1 o f the Li cense , or (at your opt i on)

any l a t e r v e r s i o n . ”) ;
230 p . p r i n t l n (”∗”) ;
231 p . p r i n t l n (”∗ This l i b r a r y i s d i s t r i bu t ed in the hope that i t

w i l l be u s e f u l , ”) ;
232 p . p r i n t l n (” ∗ but WITHOUT ANY WARRANTY; without even the

impl i ed warranty o f ”) ;
233 p . p r i n t l n (”∗ MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the ”) ;
234 p . p r i n t l n (”∗ GNU Lesse r General Publ i c L i cense f o r more

d e t a i l s . ”) ;
235 p . p r i n t l n (”∗”) ;
236 p . p r i n t l n (”∗ You should have r e c e i v ed a copy o f the GNU

Lesser General ”) ;
237 p . p r i n t l n (”∗ Publ i c L i cense a l ong with t h i s l i b r a r y ; i f not ,

wr i te to the ”) ;
238 p . p r i n t l n (”∗ Free So f tware Foundation , Inc . , 59 Temple Place

, Su i te 330 , ”) ;
239 p . p r i n t l n (”∗ Boston , MA 02111−1307 USA”) ;
240 p . p r i n t l n (”∗/”) ;
241 p . p r i n t l n (”\n”) ;
242
243 p . p r i n t l n (”// TODO: package name generat i on / check ing ”) ;
244 i f (CompositionName != null)
245 p . p r i n t l n (”package org . i s tmus i c . UbiCompServiceComp . ”
246 + CompositionName . toLowerCase () + ” ; ”) ;
247 p . p r i n t l n (”\n”) ;
248
249 p . p r i n t l n (” import org . i s tmus i c .mw. model . ∗ ; ”) ;

77

250 p . p r i n t l n (” import org . i s tmus i c .mw. model . property . ∗ ; ”) ;
251 p . p r i n t l n (” import org . i s tmus i c .mw. r e sou r c e s . impl . d e s c r i p t o r s

. ResourceVocabulary ; ”) ;
252 p . p r i n t l n (” import java . u t i l . HashMap ; ”) ;
253 p . p r i n t l n (” import java . u t i l .Map; ”) ;
254 p . p r i n t l n (” import java . u t i l . Vector ; ”) ;
255 p . p r i n t l n (”\n”) ;
256 p . p r i n t l n (”\n”) ;
257
258 p . p r i n t l n (”/∗∗”) ;
259 p . p r i n t l n (”∗ This c l a s s implements the H i e r a r ch i ca l bundle”)

;
260 p . p r i n t l n (”∗ <p/>”) ;
261
262 DateFormat dateFormat = new SimpleDateFormat (”dd/MM/yyyy”) ;
263 Date date = new Date() ;
264 p . p r i n t l n (”∗ Date : ” + dateFormat . format (date)) ;
265
266 Calendar now = Calendar . g e t I n s t an ce () ;
267 p . p r i n t l n (”∗ Time : ” + now . get (Calendar .HOUR OF DAY) + ” : ”
268 + now . get (Calendar .MINUTE) + ” : ” + now . get (Calendar .

SECOND)) ;
269 p . p r i n t l n (”∗”) ;
270 p . p r i n t l n (”∗ @author UbiCompToMusic Transformation Tool”) ;
271 p . p r i n t l n (”∗/”) ;
272 p . p r i n t l n (”\n”) ;
273
274 p . p r i n t l n (” pub l i c c l a s s ” + CompositionName + ” implements

IBundle {”) ;
275
276 long number = (long) Math . f loor (Math . random() ∗

9000000000000L) + 1000000000000L ;
277 p . p r i n t l n (”\ t p r i v a t e s t a t i c f i n a l l ong ser i a lVers i onUID = ”

+ number
278 + ”L ; ”) ;
279
280 p . p r i n t l n (”\n”) ;
281
282 p . p r i n t l n (”// Type Names”) ;
283 p . p r i n t l n (” p r i v a t e s t a t i c MusicName ”
284 + CompositionName
285 + ”App = MusicName . nameFromString(\ ”/type/ org . i s tmus i c .

UbiCompServiceComp . ”
286 + CompositionName + ”/” + CompositionName + ”App\”) ; ”) ;
287 f o r (i n t i = 0 ; i < ComponentArray . s i z e () ; i++) {
288 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep ”)
289 | | ComponentArray . get (i) . ComponentType . equa l s (”Step”)

78

290 | | ComponentArray . get (i) . ComponentType . equa l s (”Query”)
) {

291 p . p r i n t l n (” p r i v a t e s t a t i c MusicName ”
292 + ComponentArray . get (i) . ComponentName
293 + ” Type = MusicName . nameFromString(\ ”/type/ org .

i s tmus i c . UbiCompServiceComp . ”
294 + CompositionName + ”/”
295 + ComponentArray . get (i) . ComponentName + ” Type\”) ; ”)

;
296 }
297 }
298
299 p . p r i n t l n (”// Names”) ;
300 p . p r i n t l n (” p r i va t e s t a t i c S t r i ng Composite ” +

CompositionName
301 + ” Name = \”Composite ” + CompositionName + ”\” ; ”) ;
302 f o r (i n t i = 0 ; i < ComponentArray . s i z e () ; i++) {
303 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep ”)
304 | | ComponentArray . get (i) . ComponentType . equa l s (”Step”)
305 | | ComponentArray . get (i) . ComponentType . equa l s (”Query”)

) {
306 p . p r i n t l n (” p r i va t e s t a t i c S t r i ng ”
307 + ComponentArray . get (i) . ComponentName + ” Name = \””
308 + ComponentArray . get (i) . ComponentName + ”\” ; ”) ;
309 }
310 }
311 p . p r i n t l n (”\n”) ;
312
313 p . p r i n t l n (”// get app l i ca t i o n types ”) ;
314 p . p r i n t l n (” pub l i c Appl icationType [] getAppl i ca t i onTypes () {”)

;
315 p . p r i n t l n (”\n\ t Appl icationType appType 0 = new

Appl icationType (”
316 + CompositionName + ”App , nu l l) ; ”) ;
317 p . p r i n t l n (”\n\ t Appl icationType [] appTypes = new

Appl icationType [] {”) ;
318 p . p r i n t l n (”\ t\ t appType 0”) ;
319 p . p r i n t l n (”\ t } ; ”) ;
320 p . p r i n t l n (”\ t return appTypes ; ”) ;
321 p . p r i n t l n (”}”) ;
322
323 p . p r i n t l n (”// get component types”) ;
324 p . p r i n t l n (” pub l i c ComponentType [] getComponentTypes () {”) ;
325 i n t compno = 0 ;
326 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
327 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep ”)
328 | | ComponentArray . get (i) . ComponentType . equa l s (”Step”)

79

329 | | ComponentArray . get (i) . ComponentType . equa l s (”Query”)
) {

330 p . p r i n t l n (”\n\ t ComponentType compType ” + compno
331 + ” = new ComponentType (”
332 + ComponentArray . get (i) . ComponentName + ” Type , nu l l

) ; ”) ;
333 compno++;
334 }
335 }
336 p . p r i n t l n (”\n\ t ComponentType [] compTypes = new

ComponentType [] {”) ;
337 for (i n t i = 0 ; i < compno ; i++)
338 p . p r i n t l n (”\ t \ t compType ” + i + ” , ”) ;
339 p . p r i n t l n (”\ t } ; ”) ;
340 p . p r i n t l n (”\ t return compTypes ; ”) ;
341 p . p r i n t l n (”}”) ;
342
343 p . p r i n t l n (”//Create and i n s t a l l p l ans ”) ;
344 p . p r i n t l n (” p r i v a t e AtomicPlan [] getAtomicPlans () {”) ;
345 i n t noo fa tp lans = 0 ;
346 for (i n t m = 0 ; m < ComponentArray . s ize () ; m++) {
347 i f (ComponentArray . get (m) . ComponentType . equa l s (”

Condi t i ona lStep ”)
348 | | ComponentArray . get (m) . ComponentType
349 . equa l s (”ConditionalQuery ”))
350 noo fa tp lans ++;
351
352 }
353
354 p . p r i n t l n (”\ t AtomicPlan [] ATOMIC PLANS = new AtomicPlan [”
355 + noo fatp lans + ”] ; ”) ;
356
357 i n t counter = 0 ;
358 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
359 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep ”)
360 | | ComponentArray . get (i) . ComponentType
361 . equa l s (”ConditionalQuery ”)) {
362 p . p r i n t l n (”\n\ t S t r i n g [] contextDep ” + counter + ” = {”

) ;
363
364 i f (ComponentArray . get (i) . RefersTo != null) {
365 p . p r i n t l n (”\ t \ t new St r i ng (\ ”http ://www. i s t−music . eu/

Onto logy v0 1 . xml#Thing . Concept . Ent i ty .”

366 + ComponentArray . get (i) . RefersTo
367 + ” ; http ://www. i s t−music . eu/Onto logy v0 1 . xml#

Thing . Concept . Scope . ”
368 + ComponentArray . get (i) . RefersTo + ”\”) ”) ;
369 p . p r i n t l n (”\ t } ; ”) ;

80

370
371 p . p r i n t l n (”\ t ATOMIC PLANS[” + counter
372 + ”] = new AtomicPlan (”
373 + ComponentArray . get (i) . ComponentName + ” Name , ”
374 + ComponentArray . get (i) . ComponentName + ” Type , ”
375 + ComponentArray . get (i) . ComponentName
376 + ” . c l a s s . getName () , contextDep ” + counter + ”) ; ”

) ;
377 p . p r i n t l n (”\n\ t {”) ;
378 p . p r i n t l n (”\ t \ t Map propertyMap = myCreateMap (”) ;
379
380 i n t j ;
381 i n t index = 0 ;
382 for (j = 0 ; j < ComponentArray . s ize () ; j++) {
383 i f (ComponentArray . get (j) . ComponentName
384 . equa l s (ComponentArray . get (i) . RefersTo)) {
385 // p . p r i n t l n (”\ t \ t \ t new St r i ng [] { \ ””+
386 // ComponentArray . get (j) . Attr ibuteArray . get (0) .

AttributeName
387 // + ”\” } , ”) ;
388 index = j ;
389
390 }
391
392 }
393 // p . p r i n t l n (”\ t\ t\ t \ t new Object [] { ”) ;
394
395 i n t f lag = 0 ;
396 S t r i ng temp [] = null ;
397 Eva luatorDeta i l ev a l d e t = new Eva luatorDeta i l () ;
398
399 i f (ComponentArray . get (index) . Attr ibuteArray . get (0) .

Value
400 . conta ins (” ,p , ”)) {
401
402 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
403 . s p l i t (” ,p , ”) ;
404 eva l d e t . operator = new St r i ng (”+”) ;
405 } else i f (ComponentArray . get (index) . Attr ibuteArray .

get (0) . Value
406 . conta ins (” , s , ”)) {
407
408 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
409 . s p l i t (” , s , ”) ;
410 eva l d e t . operator = new St r i ng (”−”) ;
411 } else i f (ComponentArray . get (index) . Attr ibuteArray .

get (0) . Value

81

412 . conta ins (” ,d , ”)) {
413
414 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
415 . s p l i t (” ,d , ”) ;
416 eva l d e t . operator = new St r i ng (”/”) ;
417 } else i f (ComponentArray . get (index) . Attr ibuteArray .

get (0) . Value
418 . conta ins (” ,m, ”)) {
419
420 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
421 . s p l i t (” ,m, ”) ;
422 eva l d e t . operator = new St r i ng (”∗”) ;
423 } else i f (ComponentArray . get (index) . Attr ibuteArray .

get (0) . Value
424 . conta ins (” , g , ”)) {
425
426 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
427 . s p l i t (” , g , ”) ;
428 eva l d e t . operator = new St r i ng (”>”) ;
429 } else i f (ComponentArray . get (index) . Attr ibuteArray .

get (0) . Value
430 . conta ins (” , ge , ”)) {
431
432 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
433 . s p l i t (” , ge , ”) ;
434 eva l d e t . operator = new St r i ng (”>=”) ;
435 } else i f (ComponentArray . get (index) . Attr ibuteArray .

get (0) . Value
436 . conta ins (” , l , ”)) {
437
438 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
439 . s p l i t (” , l , ”) ;
440 eva l d e t . operator = new St r i ng (”<”) ;
441 } else i f (ComponentArray . get (index) . Attr ibuteArray .

get (0) . Value
442 . conta ins (” , l e , ”)) {
443
444 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
445 . s p l i t (” , l e , ”) ;
446 eva l d e t . operator = new St r i ng (”<=”) ;
447 }
448

82

449 else i f (ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
450 . conta ins (” , eq , ”)) {
451
452 temp = ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
453 . s p l i t (” , eq , ”) ;
454 eva l d e t . operator = new St r i ng (”==”) ;
455 }
456
457 // eva l d e t . componentname = ComponentArray . get (index) .

ComponentName;
458
459 eva l d e t . evalname = ComponentArray . get (index) .

Attr ibuteArray
460 . get (0) . AttributeName ;
461 eva l d e t . operands = temp ;
462 System . out . p r i n t l n (”\n\n\n\n\n” + temp [0]) ;
463 System . out . p r i n t l n (”\n\n\n\n\n” + temp [1]) ;
464 eva l d e t . DataType = ComponentArray . get (index) .

Attr ibuteArray
465 . get (0) . DataType ;
466
467 EvalArray . add (eva l d e t) ;
468
469 i f (! ComponentArray . get (index) . Attr ibuteArray . get (0) .

Value
470 . conta ins (”c , ”)) {
471 p . p r i n t l n (”\ t\ t\ t new St r i ng [] { \ ””
472 + ComponentArray . get (index) . Attr ibuteArray
473 . get (0) . AttributeName
474 + ”\” } , ”) ;
475
476 p . p r i n t l n (”\ t\ t\ t \ t new Object [] { ”) ;
477 p . p r i n t l n (”\ t\ t\ t \ t \ t new ”
478 + ComponentArray . get (index) . Attr ibuteArray
479 . get (0) . AttributeName + ”Evaluator () }) ; ”) ;
480 //p . p r i n t l n (”\ t\ t \ t \ t \ t new U t i l i t y () }) ; ”) ;
481
482 }
483
484 else i f (ComponentArray . get (index) . Attr ibuteArray . get

(0) . Value
485 . conta ins (”c , ”)) {
486 p . p r i n t l n (”\ t\ t\ t new St r i ng [] { \ ””
487 + ComponentArray . get (index) . Attr ibuteArray
488 . get (0) . AttributeName + ”\” } , ”) ;
489 p . p r i n t l n (”\ t\ t\ t \ t new Object [] { ”) ;

83

490 i f (ComponentArray . get (index) . Attr ibuteArray . get (0) .
DataType

491 . equa l s (” S t r i n g”))
492 p . p r i n t l n (”\ t\ t \ t \ t \ t new ConstProperty (new ”
493 + ComponentArray . get (index) . Attr ibuteArray
494 . get (0) . DataType + ” (\ ”” + temp [1]
495 + ”\”)) }) ; ”) ;
496 else

497 p . p r i n t l n (”\ t\ t \ t \ t \ t new ConstProperty (new ”
498 + ComponentArray . get (index) . Attr ibuteArray
499 . get (0) . DataType + ” (” + temp [1]
500 + ”)) }) ; ”) ;
501 }
502
503 } else {
504 p . p r i n t l n (”\ t } ; ”) ;
505 p . p r i n t l n (”\ t ATOMIC PLANS[” + i + ”] = new AtomicPlan

(”
506 + ComponentArray . get (i) . ComponentName + ” Name , ”
507 + ComponentArray . get (i) . ComponentName + ” Type , ”
508 + ComponentArray . get (i) . ComponentName
509 + ” . c l a s s . getName () , contextDep ” + counter + ”) ; ”

) ;
510 p . p r i n t l n (”\n\ t {”) ;
511 p . p r i n t l n (”\ t \ t Map propertyMap = myCreateMap (”) ;
512 p . p r i n t l n (”\ t \ t\ t new St r i ng [] { } , ”) ;
513 p . p r i n t l n (”\ t \ t\ t\ t \ t new Object [] { }) ; ”) ;
514 }
515
516 p . p r i n t l n (”\n\ t \ t Map resourceMap = myCreateMap (”) ;
517 p . p r i n t l n (”\ t \ t \ t new St r i ng [] { } , ”) ;
518 p . p r i n t l n (”\ t \ t \ t\ t\ t new Object [] { }) ; ”) ;
519
520 p . p r i n t l n (”\n\ t \ t Feature [] f e a tu r e s = {”) ;
521 p . p r i n t l n (”\n\ t \ t } ; ”) ;
522
523 p . p r i n t l n (”\n\ t \ t ATOMIC PLANS[”
524 + counter
525 + ”] . addPlanVariant (propertyMap , nul l , resourceMap ,

f ea tu r e s) ; ”) ;
526 p . p r i n t l n (”\ t }”) ;
527
528 counter++;
529 }
530
531 }
532
533 p . p r i n t l n (”\n\ t return ATOMIC PLANS; ”) ;
534 p . p r i n t l n (”}// getAtomicPlans () ”) ;

84

535
536 p . p r i n t l n (”\n p r i v a t e Serv i cePlan [] g e tS e rv i c eP lan s () {”) ;
537 p . p r i n t l n (”\ t Serv i cePlan [] SERVICE PLANS = new Serv i cePlan

[0] ; ”) ;
538 p . p r i n t l n (”\n\ t return SERVICE PLANS ; ”) ;
539 p . p r i n t l n (”\n}// g e tS e rv i c eP l ans () ”) ;
540
541 p . p r i n t l n (”\n\n p r i v a t e CompositionPlan []

getCompositionPlans () {”) ;
542 p . p r i n t l n (”\ t Vector composi t i onPlans = new Vector () ; ”) ;
543
544 p . p r i n t l n (”\ t HashMap roleMap = new HashMap () ; ”) ;
545 p . p r i n t l n (”\ t roleMap . put (\ ”” + CompositionName
546 + ”App Role\” , new Role (\ ”” + CompositionName + ”

App Role\” , ”
547 + CompositionName + ”App)) ; ”) ;
548 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
549 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep ”)
550 | | ComponentArray . get (i) . ComponentType . equa l s (”Step”)
551 | | ComponentArray . get (i) . ComponentType . equa l s (”Query”)

) {
552 p . p r i n t l n (”\ t roleMap . put (\ ””
553 + ComponentArray . get (i) . ComponentName
554 + ” Type Role\” , new Role (\ ””
555 + ComponentArray . get (i) . ComponentName
556 + ” Type Role\” , ”
557 + ComponentArray . get (i) . ComponentName + ” Type)) ; ”) ;
558 }
559 }
560
561 p . p r i n t l n (”\n\ t //Create ROLES f o r the Component Framework”)

;
562 p . p r i n t l n (”\ t Role [] ROLES = new Role [] { ”) ;
563 p . p r i n t l n (”\ t\ t (Role) roleMap . get (\ ”” + CompositionName
564 + ”App Role\”) , ”) ;
565 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
566 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep ”)
567 | | ComponentArray . get (i) . ComponentType . equa l s (”Step”)
568 | | ComponentArray . get (i) . ComponentType . equa l s (”Query”)

) {
569 p . p r i n t l n (”\ t \ t (Role) roleMap . get (\ ””
570 + ComponentArray . get (i) . ComponentName
571 + ” Type Role\”) , ”) ;
572 }
573 }
574
575 p . p r i n t l n (”\ t } ; ”) ;

85

576 p . p r i n t l n (”\ t ComponentFrameworkModel fwModel = new
ComponentFrameworkModel(ROLES) ; ”) ;

577
578 p . p r i n t l n (”\n\ t //Create composi t i on plan (s) f o r Composite ”
579 + CompositionName + ” composite r e a l i z a t i o n ”) ;
580
581 p . p r i n t l n (”\n\ t S t r i n g [] contextDep Composite” +

CompositionName
582 + ” = {”) ;
583
584 i n t index = 0 ;
585 for (i n t k = 0 ; k < ComponentArray . s ize () ; k++) {
586 i f (ComponentArray . get (k) . ComponentType . equa l s (”Task”))
587 index = k ;
588 }
589
590 S t r i ng [] taskdep = ComponentArray . get (index) . RefersTo . s p l i t (

” , ”) ;
591
592 i f (ComponentArray . get (index) . RefersTo != null) {
593 for (i n t i = 0 ; i < taskdep . length ; i++) {
594 S t r i ng comma = new St r i ng (” , ”) ;
595
596 i f (i != taskdep . length − 1)
597 p . p r i n t l n (”\ t \ t new St r i ng (\ ”http ://www. i s t−music . eu/

Onto logy v0 1 . xml#Thing . Concept . Ent i ty .”

598 + taskdep [i]
599 + ” ; http ://www. i s t−music . eu/

Onto logy v0 1 . xml#Thing . Concept . Scope
. ”

600 + taskdep [i] + ”\”) ” + comma) ;
601 else

602 p . p r i n t l n (”\ t \ t new St r i ng (\ ”http ://www. i s t−music . eu/
Onto logy v0 1 . xml#Thing . Concept . Ent i ty .”

603 + taskdep [i]
604 + ” ; http ://www. i s t−music . eu/

Onto logy v0 1 . xml#Thing . Concept . Scope
. ”

605 + taskdep [i] + ”\”) ”) ;
606
607 }
608 }
609 p . p r i n t l n (”\ t } ; ”) ;
610
611 p . p r i n t l n (”\n\ t //TODO: Constra ints o f composi t ion are not

used”) ;
612 p . p r i n t l n (”\n\ t //Feature s p e c i f i c a t i o n ”) ;
613

86

614 p . p r i n t l n (”\n\ t Vector f ea tureSpec Composi te” +
CompositionName

615 + ” = new Vector () ; ”) ;
616
617 p . p r i n t l n (”\n\ t FeatureTypeAssoci a ti on []

f ea tureTypeAssocs Composite”
618 + CompositionName
619 + ” = new FeatureTypeAssocia t ion [f ea tureSpec Composi te”
620 + CompositionName + ” . s i z e ()] ; ”) ;
621 p . p r i n t l n (”\ t f ea tureTypeAssocs Composite” + CompositionName
622 + ” = (FeatureTypeAssoci at ion []) f ea tureSpec Composi te”
623 + CompositionName
624 + ” . toArray (new FeatureTypeAssoci at ion [

f ea tureSpec Composi te”
625 + CompositionName + ” . s i z e ()]) ; ”) ;
626
627 p . p r i n t l n (”\n\ t //Composition 0 o f r e a l i z a t i o n

CompositeHelloWorld”) ;
628 p . p r i n t l n (”\n\ t {”) ;
629 p . p r i n t l n (”\ t\ t //Connection spec ”) ;
630 p . p r i n t l n (”\ t\ t ConnectionSpec [] connect i on s = new

ConnectionSpec [] { ”) ;
631 p . p r i n t l n (”\ t\ t } ; ”) ;
632 p . p r i n t l n (”\ t\ t //Port d e l eg a t i o n s p e c i f i c a t i o n ”) ;
633 p . p r i n t l n (”\ t\ t PortDel egat i onSpec [] d e l eg a t i o n s = new

PortDel egat i onSpec [] { ”) ;
634 p . p r i n t l n (”\ t\ t } ; ”) ;
635
636 p . p r i n t l n (”\n\ t \ t // Plans f o r node deployment spec 0 ”) ;
637 p . p r i n t l n (”\n\ t \ t {”) ;
638 p . p r i n t l n (”\n\ t \ t \ t NodeDeploymentSpec [] deployments = new

NodeDeploymentSpec [] { ”) ;
639 p . p r i n t l n (”\n\ t \ t \ t } ; ”) ;
640 p . p r i n t l n (”\n\ t \ t \ t CompositionSpec composi t i on = new

CompositionSpec (fwModel , deployments , connect i ons ,
d e l eg a t i on s , f ea tureTypeAssocs Composite”

641 + CompositionName + ”) ; ”) ;
642 p . p r i n t l n (”\n\ t \ t \ t CompositionPlan compPlan = new

CompositionPlan(Composite ”
643 + CompositionName
644 + ” Name , ”
645 + CompositionName
646 + ”App , Composite ”
647 + CompositionName
648 + ” . c l a s s . getName() , contextDep Composite”
649 + CompositionName
650 + ” , composi t i on) ; ”) ;
651 p . p r i n t l n (”\n\ t \ t \ t composi t i onPlans . add (compPlan) ; ”) ;
652

87

653 p . p r i n t l n (”\n\ t \ t \ t {”) ;
654 p . p r i n t l n (”\n\ t \ t \ t \ t Map propertyMap = myCreateMap (”) ;
655
656 i n t k ;
657 i n t ind = 0 ;
658 for (k = 0 ; k < ComponentArray . s ize () ; k++) {
659 i f (ComponentArray . get (k) . ComponentType . equa l s (”Task”))
660 ind = k ;
661 }
662
663 S t r i ng [] ta skprop = null ;
664
665 i f (ComponentArray . get (ind) . RefersTo !=null)
666 taskprop = ComponentArray . get (ind) . RefersTo . s p l i t (” , ”) ;
667
668 // Global Context Dependencies (t r i g g e r and cond i t i o n)
669
670 S t r i ng compcomma = new St r i ng (” , ”) ;
671
672 i n t com = 0 ;
673
674 p . print (”\n\ t\ t \ t \ t new St r i ng [] { ”) ;
675
676 for (i n t a = 0 ; a < ta skprop . length ; a++) {
677 for (i n t j = 0 ; j < ComponentArray . s ize () ; j++) {
678 i f (ComponentArray . get (j) . ComponentName. equa l s (ta skprop [

a])) {
679 // p . p r i n t l n (”\ t\ t\ t new St r i ng [] { \ ””+
680 // ComponentArray . get (j) . Attr ibuteArray . get (0) .

AttributeName
681 // + ”\” } , ”) ;
682 com = j ;
683
684
685
686 i f (! ComponentArray . get (com) . Attr ibuteArray . get (0) .

Value
687 . conta ins (”c , ”)) {
688 //EvalArray . add (compevaldet) ;
689
690 //p . p r i n t l n (”\ t\ t \ t \ t new St r i ng [] { ”) ;
691
692
693
694 i f (a!= taskprop . length−1)
695 p . print (”\””
696 + ComponentArray . get (com) . Attr ibuteArray
697 . get (0) . AttributeName+”\” , ”) ;
698 else {

88

699 p . print (”\””
700 + ComponentArray . get (com) . Attr ibuteArray
701 . get (0) . AttributeName+”\” , IPropertyEva luator .

UTILITY PROPERTY} , ”) ;
702
703 }
704 //
705 //+ ”\” , IPropertyEva luator .UTILITY PROPERTY} , ”) ;
706
707
708 } e l s e i f (ComponentArray . get (com) . Attr ibuteArray
709 . get (0) . Value . conta ins (”c , ”)) {
710
711 //p . p r i n t l n (”\ t\ t \ t \ t new St r i ng [] { ”) ;
712
713 i f (a!= taskprop . l ength−1)
714 p . p r i n t (”\””
715 + ComponentArray . get (com) . Attr ibuteArray
716 . get (0) . AttributeName+”\” , ”) ;
717
718
719 e l s e {
720 p . p r i n t (”\””
721 + ComponentArray . get (com) . Attr ibuteArray
722 . get (0) . AttributeName+”\” , IPropertyEva luator

.UTILITY PROPERTY} , ”) ;
723 }
724 }
725
726 e l s e {
727 p . p r i n t (”} , ”) ;
728
729 }
730
731 }
732 }
733 }
734
735 p . p r i n t l n (”\n\ t \ t \ t \ t new Object [] { ”) ;
736
737 Eva luatorDeta i l compevaldet = new Eva luatorDeta i l () ;
738
739 i n t com1 = 0 ;
740 f o r (i n t z = 0 ; z < ta skprop . l ength ; z++) {
741 f o r (i n t y = 0 ; y < ComponentArray . s i z e () ; y++) {
742 i f (ComponentArray . get (y) . ComponentName. equa l s (taskprop [

z])) {
743
744 com1 = y ;

89

745
746
747 i n t compflag = 0 ;
748 S t r i ng comptemp [] = nu l l ;
749
750
751 i f (ComponentArray . get (com1) . Attr ibuteArray . get (0) .

Value
752 . conta ins (” ,p , ”)) {
753
754 comptemp = ComponentArray . get (com1) . Attr ibuteArray
755 . get (0) . Value . s p l i t (” ,p , ”) ;
756 compevaldet . operator = new St r i ng (”+”) ;
757 } e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
758 . get (0) . Value . conta ins (” , s , ”)) {
759
760 comptemp = ComponentArray . get (com1) . Attr ibuteArray
761 . get (0) . Value . s p l i t (” , s , ”) ;
762 compevaldet . operator = new St r i ng (”−”) ;
763 } e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
764 . get (0) . Value . conta ins (” ,d , ”)) {
765
766 comptemp = ComponentArray . get (com1) . Attr ibuteArray
767 . get (0) . Value . s p l i t (” ,d , ”) ;
768 compevaldet . operator = new St r i ng (”/”) ;
769 } e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
770 . get (0) . Value . conta ins (” ,m, ”)) {
771
772 comptemp = ComponentArray . get (com1) . Attr ibuteArray
773 . get (0) . Value . s p l i t (” ,m, ”) ;
774 compevaldet . operator = new St r i ng (”∗”) ;
775 } e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
776 . get (0) . Value . conta ins (” , g , ”)) {
777
778 comptemp = ComponentArray . get (com1) . Attr ibuteArray
779 . get (0) . Value . s p l i t (” , g , ”) ;
780 compevaldet . operator = new St r i ng (”>”) ;
781 } e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
782 . get (0) . Value . conta ins (” , ge , ”)) {
783
784 comptemp = ComponentArray . get (com1) . Attr ibuteArray
785 . get (0) . Value . s p l i t (” , ge , ”) ;
786 compevaldet . operator = new St r i ng (”>=”) ;
787 } e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
788 . get (0) . Value . conta ins (” , l , ”)) {
789
790 comptemp = ComponentArray . get (com1) . Attr ibuteArray
791 . get (0) . Value . s p l i t (” , l , ”) ;
792 compevaldet . operator = new St r i ng (”<”) ;

90

793 } e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
794 . get (0) . Value . conta ins (” , l e , ”)) {
795
796 comptemp = ComponentArray . get (com1) . Attr ibuteArray
797 . get (0) . Value . s p l i t (” , l e , ”) ;
798 compevaldet . operator = new St r i ng (”<=”) ;
799 }
800
801 e l s e i f (ComponentArray . get (com1) . Attr ibuteArray
802 . get (0) . Value . conta ins (” , eq , ”)) {
803
804 comptemp = ComponentArray . get (com1) . Attr ibuteArray
805 . get (0) . Value . s p l i t (” , eq , ”) ;
806 compevaldet . operator = new St r i ng (”==”) ;
807
808 System . out . p r i n t l n (ComponentArray . get (com1) .

Attr ibuteArray
809 . get (0) . AttributeName+” ”+ComponentArray . get (com1) .

Attr ibuteArray
810 . get (0) . Value) ;
811
812 System . out . p r i n t l n (compevaldet . operator) ;
813 }
814
815 //compevaldet . componentname = ComponentArray . get (com1)

. ComponentName;
816 compevaldet . evalname = ComponentArray . get (com1) .

Attr ibuteArray
817 . get (0) . AttributeName ;
818 compevaldet . operands = comptemp ;
819 System . out . p r i n t l n (”\n\n\n\n\n” + comptemp [0]) ;
820 System . out . p r i n t l n (”\n\n\n\n\n” + comptemp [1]) ;
821 compevaldet . DataType = ComponentArray . get (com1) .

Attr ibuteArray
822 . get (0) . DataType ;
823
824
825
826 EvalArray . add (compevaldet) ;
827
828 i f (! ComponentArray . get (com1) . Attr ibuteArray . get (0) .

Value
829 . conta ins (”c , ”)) {
830
831 i f (z != taskprop . length−1)
832 p . p r i n t l n (”\ t\ t \ t \ t \ t\ t new ”
833 + ComponentArray . get (com1) . Attr ibuteArray . get

(0) . AttributeName + ” Evaluator () , ”) ;
834

91

835 else {
836 p . p r i n t l n (”\ t\ t \ t \ t \ t\ t new ”
837 + ComponentArray . get (com1) . Attr ibuteArray . get

(0) . AttributeName + ” Evaluator () , ”) ;
838
839 p . p r i n t l n (”\ t\ t \ t \ t \ t\ t new U t i l i t y () }) ; ”) ;
840
841
842 }
843
844 //
845 //p . p r i n t l n (”\ t\ t \ t \ t \ t\ t new U t i l i t y () }) ; ”) ;
846 }
847
848 else i f (ComponentArray . get (com1) . Attr ibuteArray
849 . get (0) . Value . conta ins (”c , ”)) {
850
851 i f (z != taskprop . length−1){
852
853 i f (ComponentArray . get (com1) . Attr ibuteArray . get (0)

. DataType . equa l s (” S t r i n g”))
854 p . p r i n t l n (”\ t \ t \ t \ t\ t\ t new ConstProperty (new ”+

ComponentArray . get (com1) . Attr ibuteArray . get

(0) . DataType + ” (\ ””+ comptemp [1] + ”\”)) , ”) ;
855 else

856 p . p r i n t l n (”\ t \ t \ t \ t\ t\ t new ConstProperty (new ”+
ComponentArray . get (com1) . Attr ibuteArray . get

(0) . DataType + ” (”+ comptemp [1] + ”)) , ”) ;
857 }
858
859 else{
860
861 i f (ComponentArray . get (com1) . Attr ibuteArray . get (0)

. DataType . equa l s (” S t r i n g”))
862 p . p r i n t l n (”\ t \ t \ t \ t\ t\ t new ConstProperty (new ”+

ComponentArray . get (com1) . Attr ibuteArray . get

(0) . DataType + ” (\ ””+ comptemp [1] + ”\”)) , ”) ;
863 else

864 p . p r i n t l n (”\ t \ t \ t \ t\ t\ t new ConstProperty (new ”+
ComponentArray . get (com1) . Attr ibuteArray . get

(0) . DataType + ” (”+ comptemp [1] + ”)) , ”) ;
865
866 p . p r i n t l n (”\ t\ t \ t \ t \ t\ t new U t i l i t y () }) ; ”) ;
867
868 }
869
870
871
872 }

92

873
874 else {
875 p . p r i n t l n (”}) ; ”) ;
876 }
877
878
879
880 }
881 }
882
883 }
884
885
886
887
888
889
890
891
892
893
894
895
896
897 //
898 // p . p r i n t l n (”\ t \ t \ t \ t\ t new Object [] { ”) ;
899 // p . p r i n t l n (”\ t \ t \ t \ t\ t\ t new ”
900 // + ComponentArray . get (com) . Attr ibuteArray
901 // . get (0) . AttributeName + ”Evaluator () , ”) ;
902 // p . p r i n t l n (”\ t \ t \ t \ t\ t\ t new U t i l i t y () }) ; ”) ;
903 //
904 // }
905 //
906 // else i f (ComponentArray . get (compcondind) . Attr ibuteArray
907 // . get (0) . Value . conta ins (”c , ”)) {
908 // p . p r i n t l n (”\ t \ t \ t \ t new St r i ng [] { \ ””
909 // + ComponentArray . get (compcondind) . Attr ibuteArray
910 // . get (0) . AttributeName + ”\” } , ”) ;
911 //
912 // p . p r i n t l n (”\ t \ t \ t \ t\ t new Object [] { ”) ;
913 // i f (ComponentArray . get (compcondind) . Attr ibuteArray
914 // . get (0) . DataType . equa l s (” S t r i n g”))
915 // p . p r i n t l n (”\ t \ t \ t\ t\ t \ t new ConstProperty (new ”
916 // + ComponentArray . get (compcondind) . Attr ibuteArray
917 // . get (0) . DataType + ” (\ ””
918 // + comptemp [1] + ”\”)) }) ; ”) ;
919 // else

920 // p . p r i n t l n (”\ t \ t \ t\ t\ t \ t new ConstProperty (new ”
921 // + ComponentArray . get (compcondind) . Attr ibuteArray

93

922 // . get (0) . DataType + ” (”
923 // + comptemp [1] + ”)) }) ; ”) ;
924 // }
925 //
926 // else {
927 // p . p r i n t l n (”\n\ t \ t \ t\ t new St r i ng [] { } , ”) ;
928 // p . p r i n t l n (”\n\ t \ t \ t\ t\ t new Object [] { }) ; ”) ;
929 // }
930 //
931 //}
932 //}
933 //}
934
935 /∗
936 ∗ i f (ComponentArray . get (index) . RefersTo != null) {
937 ∗ p . print (”\n\ t\ t \ t \ t \ t new St r i ng [] { \ ””) ; f o r (i n t l = 0 ; l <

938 ∗ ta skprop . l ength ; l++) { f o r (i n t j = 0 ; j < ComponentArray .
s i z e () ;

939 ∗ j++) {
940 ∗
941 ∗ i f (ComponentArray . get (j) . ComponentName . equa l s (ta skprop [l]))

{
942 ∗
943 ∗ i f (l !=taskprop . l ength −1)
944 ∗ p . p r i n t (ComponentArray . get (j) . Attr ibuteArray
945 ∗ . g et (0) . AttributeName+compcomma) ;
946 ∗
947 ∗ e l s e i f (l==taskprop . l ength −1)
948 ∗ p . p r i n t (ComponentArray . get (j) . Attr ibuteArray
949 ∗ . g et (0) . AttributeName+”\” , IPropertyEva luator .UTILITY PROPERTY

} , ”) ;
950 ∗
951 ∗
952 ∗ index = j ; }
953 ∗
954 ∗ }
955 ∗
956 ∗ }
957 ∗
958 ∗ p . p r i n t l n (”\n\ t \ t \ t \ t \ t\ t new Object [] { ”) ; // System . out .

p r i n t l n (j) ;
959 ∗ p . p r i n t l n (”\ t\ t \ t \ t \ t new ConstProperty (new ” +
960 ∗ ComponentArray . get (index) . Attr ibuteArray . get (0) . DataType + ” (

” +
961 ∗ ComponentArray . get (index) . Attr ibuteArray . get (0) . Value + ”)) })

; ”) ;
962 ∗
963 ∗ } else {
964 ∗

94

965 ∗ p . p r i n t l n (”\n\ t \ t \ t \ t \ t new St r i ng [] { } , ”) ;
966 ∗ p . p r i n t l n (”\n\ t \ t \ t \ t \ t\ t new Object [] { }) ; ”) ; }
967 ∗/
968 // end o f global context dependenci es
969
970 p . p r i n t l n (”\n\ t\ t\ t \ t Map resourceMap = myCreateMap (”) ;
971 p . p r i n t l n (”\n\ t\ t\ t \ t \ t new St r i ng [] { } , ”) ;
972 p . p r i n t l n (”\n\ t\ t\ t \ t \ t \ t new Object [] { }) ; ”) ;
973 p . p r i n t l n (”\n\ t\ t\ t \ t compPlan . addPlanVariant (propertyMap , nul l ,

resourceMap , nu l l) ; ”) ;
974 p . p r i n t l n (”\ t \ t\ t }”) ;
975 p . p r i n t l n (”\ t \ t }”) ;
976 p . p r i n t l n (”\ t }”) ;
977 p . p r i n t l n (”\ t return (CompositionPlan []) composi t i onPlans .

toArray (new CompositionPlan [composi t i onPlans . s i z e ()]) ; ”) ;
978 p . p r i n t l n (”}// getComposit ionPlans () ”) ;
979
980 p . p r i n t l n (”\n pub l i c IPlan [] getPlans () {”) ;
981 p . p r i n t l n (”\ t IPlan [] atomicPlans = getAtomicPlans () ; ”) ;
982 p . p r i n t l n (”\ t IPlan [] composi t i onPlans = getComposit ionPlans () ; ”

) ;
983 p . p r i n t l n (”\ t IPlan [] s e rv i c eP l an s = g e tS e rv i c eP l an s () ; ”) ;
984 p . p r i n t l n (”\n\ t IPlan [] p l ans = new IPlan [atomicPlans . l ength +

composi t i onPlans . l ength + se rv i c eP l an s . l ength] ; ”) ;
985 p . p r i n t l n (”\ t System . arraycopy (atomicPlans , 0 , plans , 0 ,

atomicPlans . l ength) ; ”) ;
986 p . p r i n t l n (”\ t System . arraycopy (composi tionPlans , 0 , plans ,

atomicPlans . l ength , composi t i onPlans . l ength) ; ”) ;
987 p . p r i n t l n (”\ t System . arraycopy (s e rv i c eP l ans , 0 , plans ,

atomicPlans . l ength+composi t i onPlans . l ength , s e rv i c eP l an s .
l ength) ; ”) ;

988 p . p r i n t l n (”\ t return plans ; ”) ;
989 p . p r i n t l n (”}”) ;
990
991 p . p r i n t l n (”\n pub l i c IPlan [] getExtens i onPlans () {”) ;
992 p . p r i n t l n (”\ t return new IPlan [0] ; ”) ;
993 p . p r i n t l n (”}”) ;
994
995 // s t a r t o f u t i l i t y function

996
997 p . p r i n t l n (”\n c l a s s U t i l i t y extends AbstractPropertyEva luator{”)

;
998
999 long number2 = (long) Math . f loor (Math . random() ∗ 9000000000000L)

+ 1000000000000L ;
1000 p . p r i n t l n (”\ t p r i v a t e s t a t i c f i n a l l ong ser i a lVers i onUID = ” +

number2
1001 + ”L ; ”) ;
1002

95

1003 p . p r i n t l n (”\n\ t pub l i c Object eva luate (IContextVa lueAccess
context , IPropertyEvaluatorContext eva lContext) ”) ;

1004 p . p r i n t l n (”\ t {”) ;
1005 p . p r i n t l n (”\n\ t\ t double u t i l i t y = 0 . 0 ; ”) ;
1006 p . p r i n t l n (”\n\ t\ t double t emput i l i t y = 0 . 0 ; ”) ;
1007 p . p r i n t l n (”\n\ t\ t i n t count = 0 ; ”) ;
1008 p . p r i n t l n (”\n\ t\ t // contextRe f e ren ces ”) ;
1009
1010 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
1011 i f (ComponentArray . get (i) . ComponentType . equa l s (”Task”)) {
1012
1013
1014
1015 S t r i n g datatype = null ;
1016 i n t search = 0 ;
1017
1018 S t r i n g [] ta sdep = ComponentArray . get (index) . RefersTo . s p l i t (”

, ”) ;
1019
1020
1021 for (i n t t =0;t<ta sdep . length ; t++){
1022
1023 for (i n t a = 0 ; a < ComponentArray . s ize () ; a++) {
1024 i f (ComponentArray . get (a) . ComponentName
1025 . equa l s (ta sdep [t])) {
1026 search = a ;
1027 break ;
1028 }
1029 }
1030
1031 i f (ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1032 . equa l s (”Boolean”))
1033 datatype = ”Bool ” ;
1034 else

1035 datatype = ComponentArray . get (search) . Attr ibuteArray . get

(0) . DataType ;
1036
1037 S t r i n g de f a u l t v a l = null ;
1038 i f (datatype . equa l s (”Bool ”))
1039 de f au l t v a l = new St r i ng (” f a l s e ”) ;
1040 else i f (datatype . equa l s (” Int ”))
1041 de f au l t v a l = new St r i ng (”0”) ;
1042 else i f (datatype . equa l s (”Double”))
1043 de f au l t v a l = new St r i ng (” 0 .0 ”) ;
1044
1045
1046
1047

96

1048
1049 p . p r i n t l n (”\n\ t \ t ”
1050 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1051 . toLowerCase ()
1052 + ” ”
1053 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1054 + ”= context . get ”
1055 + datatype
1056 + ”Value (\ ”http ://www. i s t−music . eu/Onto logy v0 1 . xml#

Thing . Concept . Ent i ty .”

1057 + ComponentArray . get (i) . RefersTo
1058 + ” ; http ://www. i s t−music . eu/ Onto logy v0 1 . xml#Thing .

Concept . Scope . ”
1059 + ComponentArray . get (i) . RefersTo + ”\” , ”+de f au l t va l+”

) ; ”) ;
1060 p . p r i n t l n (”\n\ t \ t // ro l ePrope r t yRe f e ren ce s ”) ;
1061 p . p r i n t l n (”\n\ t \ t ”
1062 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1063 . toLowerCase ()
1064 + ” ”
1065 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1066 + ”Provided = ((”
1067 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1068 + ”) eva lContext . eva luate (\ ””
1069 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1070 + ”Provided \” , context)) . ”
1071 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1072 . toLowerCase () + ”Value () ; ”) ;
1073 p . p r i n t l n (”\n\ t \ t // ownPropertyReferences ”) ;
1074
1075 i n t opind = 0 ;
1076
1077 S t r i n g abc = null ;
1078
1079 for (i n t q = 0 ; q < EvalArray . s ize () ; q++) {
1080 abc = EvalArray . get (q) . evalname ;
1081 i f (abc . equa l s (ComponentArray
1082 . get (search) . Attr ibuteArray . get (0) . AttributeName)) {
1083 opind = q ;
1084 break ;
1085 }
1086 }

97

1087
1088 System . out . p r i n t l n (ComponentArray
1089 . get (search) . Attr ibuteArray . get (0) . AttributeName+”1”

) ;
1090
1091 System . out . p r i n t l n (EvalArray . get (opind) . evalname+”2”) ;
1092 System . out . p r i n t l n (”\n\n\n\n”+EvalArray . get (opind) .

operator+”3”) ;
1093
1094 System . out . p r i n t l n (”\n\n\n\n”) ;
1095
1096 p . p r i n t l n (”\n\ t \ t i f (”
1097 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1098 + ” ”
1099 + EvalArray . get (opind) . operator
1100 + ” ”
1101 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1102 + ”Provided) u t i l i t y = 1 . 0 ; ”) ;
1103 p . p r i n t l n (”\n\ t \ t e l s e u t i l i t y = 0 . 0 ; ”) ;
1104 }
1105 }
1106
1107 }
1108
1109 // other context dependenci es
1110
1111 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
1112 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep”)) {
1113
1114 i f (ComponentArray . get (i) . RefersTo != null) {
1115 S t r i n g datatype = null ;
1116 i n t search = 0 ;
1117 for (i n t a = 0 ; a < ComponentArray . s ize () ; a++) {
1118 i f (ComponentArray . get (a) . ComponentName
1119 . equa l s (ComponentArray . get (i) . RefersTo)) {
1120 search = a ;
1121 break ;
1122 }
1123 }
1124
1125 i f (ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1126 . equa l s (”Boolean”))
1127 datatype = ”Bool ” ;
1128 else

1129 datatype = ComponentArray . get (search) . Attr ibuteArray

98

1130 . get (0) . DataType ;
1131
1132 S t r i n g def = null ;
1133 i f (datatype . equa l s (”Bool ”))
1134 def = new St r i ng (” f a l s e ”) ;
1135 else i f (datatype . equa l s (” Int ”))
1136 def = new St r i ng (”0”) ;
1137 else i f (datatype . equa l s (”Double”))
1138 def = new St r i ng (” 0 .0 ”) ;
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149 p . p r i n t l n (”\n\ t \ t ”
1150 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1151 . toLowerCase ()
1152 + ” ”
1153 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1154 + ”= context . get ”
1155 + datatype
1156 + ”Value (\ ”http ://www. i s t−music . eu/Onto logy v0 1 . xml#

Thing . Concept . Ent i ty .”

1157 + ComponentArray . get (i) . RefersTo
1158 + ” ; http ://www. i s t−music . eu/ Onto logy v0 1 . xml#Thing .

Concept . Scope . ”
1159 + ComponentArray . get (i) . RefersTo + ”\” , ”+def+”) ; ”) ;
1160
1161 p . p r i n t l n (”\n\ t \ t // ro l ePrope r t yRe f e ren ce s ”) ;
1162
1163 p . p r i n t l n (”\n\ t \ t ”
1164 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1165 . toLowerCase ()
1166 + ” ”
1167 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1168 + ”Provided = ((”
1169 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1170 + ”) eva lContext . eva luate (\ ””

99

1171 + ComponentArray . get (search) . Attr ibuteArray . get (0) .
AttributeName

1172 + ”Provided \” , context)) . ”
1173 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

DataType
1174 . toLowerCase () + ”Value () ; ”) ;
1175 p . p r i n t l n (”\n\ t \ t // ownPropertyReferences ”) ;
1176
1177 i n t opind = 0 ;
1178
1179 for (i n t q = 0 ; q < EvalArray . s ize () ; q++) {
1180 i f (EvalArray . get (q) . evalname . equa l s (ComponentArray
1181 . get (search) . ComponentName))
1182 opind = q ;
1183 }
1184
1185 p . p r i n t l n (”\n\ t \ t i f (”
1186 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1187 + ” ”
1188 + EvalArray . get (opind) . operator
1189 + ” ”
1190 + ComponentArray . get (search) . Attr ibuteArray . get (0) .

AttributeName
1191 + ”Provided) t emput i l i t y = 1 . 0 ; ”) ;
1192 p . p r i n t l n (”\n\ t \ t e l s e t emput i l i t y = 0 . 0 ; ”) ;
1193 p . p r i n t l n (”\n\ t \ t u t i l i t y = u t i l i t y + temput i l i t y ; ”) ;
1194 p . p r i n t l n (”\n\ t \ t count++;”) ;
1195
1196 }
1197 }
1198 }
1199
1200 p . p r i n t l n (”\n\ t\ t u t i l i t y = u t i l i t y / count ; ”) ;
1201
1202 p . p r i n t l n (”\n\ t\ t return new Double (u t i l i t y) ; ”) ;
1203
1204 p . p r i n t l n (”\n\ t }”) ;
1205 p . p r i n t l n (”\n }”) ;
1206
1207 // end o f u t i l i t y function

1208
1209 // Property Evaluator Class
1210
1211 for (i n t m = 0 ; m < EvalArray . s ize () ; m++) {
1212 i f (! EvalArray . get (m) . operands [0] . equa l s (”c”)) {
1213 p . p r i n t l n (”\n c l a s s ” + EvalArray . get (m) . evalname
1214 + ”Evaluator extends AbstractPropertyEva luator{”) ;
1215 long newnumber = (long) Math

100

1216 . f loor (Math . random() ∗ 9000000000000L) + 1000000000000L ;
1217 p . p r i n t l n (”\ t p r i v a t e s t a t i c f i n a l l ong ser i a lVers i onUID = ”
1218 + newnumber + ”L ; ”) ;
1219
1220 p . p r i n t l n (”\n\ t pub l i c Object eva luate (IContextValueAccess

context , IPropertyEva luatorContext eva lContext) {”) ;
1221
1222 S t r i n g [] newtemp = new St r i ng [2] ;
1223
1224 newtemp [0] = EvalArray . get (m) . operands [0] . sub s t r i n g (0 ,
1225 EvalArray . get (m) . operands [0] . indexOf (” . ”)) ;
1226 newtemp [1] = EvalArray . get (m) . operands [0] . sub s t r i n g (
1227 EvalArray . get (m) . operands [0] . indexOf (” . ”) + 1 ,
1228 EvalArray . get (m) . operands [0] . length ()) ;
1229 System . out . p r i n t l n (newtemp [0]) ;
1230 p . p r i n t l n (”\n\ t \ t ” + EvalArray . get (m) . DataType + ” ”
1231 + newtemp [0] + ” Type ” + EvalArray . get (m) . evalname
1232 + ” = ((” + EvalArray . get (m) . DataType
1233 + ”) eva lContext . eva luateForRo l e (\ ”” + newtemp [1]
1234 + ”\” , context , \”” + newtemp [0] + ” Type Role\”)) . ”
1235 + EvalArray . get (m) . DataType . toLowerCase () + ”Value () ; ”)

;
1236 p . p r i n t l n (”\n\ t \ t ” + EvalArray . get (m) . DataType + ” ”
1237 + EvalArray . get (m) . evalname + ” = ” + newtemp [0]
1238 + ” Type ” + EvalArray . get (m) . evalname + ” ”
1239 + EvalArray . get (m) . operator + ” ”
1240 + EvalArray . get (m) . operands [1] + ” ; ”) ;
1241 p . p r i n t l n (”\n\ t \ t return new ” + EvalArray . get (m) . DataType
1242 + ” (” + EvalArray . get (m) . evalname + ”) ; ”) ;
1243 p . p r i n t l n (”\n\ t }”) ;
1244 p . p r i n t l n (”\n }”) ;
1245
1246 }
1247 }
1248
1249 p . p r i n t l n (”\n p r i v a t e HashMap myCreateMap (S t r i n g [] keys , Object

[] va lues) {”) ;
1250 p . p r i n t l n (”\ t HashMap propMap = new HashMap () ; ”) ;
1251 p . p r i n t l n (”\ t f o r (i n t i = 0 ; i < keys . l ength ; i++){”) ;
1252 p . p r i n t l n (”\ t \ t propMap . put (keys [i] , va lues [i]) ; ”) ;
1253 p . p r i n t l n (”\ t }”) ;
1254 p . p r i n t l n (”\ t return propMap ; ”) ;
1255 p . p r i n t l n (” }”) ;
1256 p . p r i n t l n (”}”) ;
1257
1258 // end o f main f i l e
1259 p . close () ;
1260
1261 // generate other f i l e s

101

1262
1263 for (i n t i = 0 ; i < ComponentArray . s ize () ; i++) {
1264 i f (ComponentArray . get (i) . ComponentType . equa l s (”

Condi t i ona lStep”)
1265 | | ComponentArray . get (i) . ComponentType . equa l s (” Step”)
1266 | | ComponentArray . get (i) . ComponentType . equa l s (”Query”)) {
1267
1268 Fi leOutputStream output = new FileOutputStream (
1269 ComponentArray . get (i) . ComponentName + ” . java”) ;
1270
1271 PrintStream pout = new PrintStream (output) ;
1272
1273 pout . p r i n t l n (”/∗”) ;
1274 pout . p r i n t l n (”∗ @author K M Imtiaz−Ud−Din”) ;
1275
1276 DateFormat newdateFormat = new SimpleDateFormat (”dd−MMM−yyyy

”) ;
1277 Date newdate = new Date () ;
1278 pout . p r i n t l n (”∗ Created on ” + newdateFormat . format (newdate)

) ;
1279 pout . p r i n t l n (”∗”) ;
1280 pout . p r i n t l n (”∗/”) ;
1281
1282 i f (CompositionName != null)
1283 pout . p r i n t l n (”\n\npackage org . i s tmus i c . UbiCompServiceComp .

”
1284 + CompositionName . toLowerCase () + ” ; ”) ;
1285
1286
1287
1288
1289
1290
1291
1292 pout . p r i n t l n (”\nimport org . i s tmus i c .mw. adaptat i on .

con f i g u ra t i o n . Conf i gurab l eImpl ; ”) ;
1293 pout . p r i n t l n (”\nimport org . UbiMusic . S e rv i c e s . ”+

ComponentArray . get (i) . ComponentName+” Serv i c e ; ”) ;
1294 pout . p r i n t l n (”\ npubl i c c l a s s ”
1295 + ComponentArray . get (i) . ComponentName
1296 + ” extends Conf i gurab leImpl {”) ;
1297 pout . p r i n t l n (”\ t pub l i c void s t a r tAc t i v i t y () {”) ;
1298 pout . p r i n t l n (”\ t \ t ” + ComponentArray . get (i) . ComponentName+”

Serv i c e ”
1299 + ” s e r v i c e = new ”
1300 + ComponentArray . get (i) . ComponentName + ” Serv i c e () ; ”) ;
1301 for (i n t s = 0 ; s < ComponentArray . get (i) . Attr ibuteArray .

s ize () ; s++)
1302 pout . p r i n t l n (”\ t \ t s e r v i c e . s e t ”

102

1303 + ComponentArray . get (i) . Attr ibuteArray . get (s) .
AttributeName

1304 + ” (\ ””
1305 + ComponentArray . get (i) . Attr ibuteArray . get (s) . Value
1306 + ”\”) ; ”) ;
1307
1308 pout . p r i n t l n (”\ t \ t s e r v i c e . s t a r t () ; ”) ;
1309 pout . p r i n t l n (”\ t }”) ;
1310 pout . p r i n t l n (”}”) ;
1311
1312 }
1313 }
1314
1315 // generate the composite f i l e
1316
1317 Fi leOutputStream compoutput = new FileOutputStream (”Composite ”
1318 + CompositionName + ” . java”) ;
1319
1320 PrintStream cpout = new PrintStream (compoutput) ;
1321
1322 cpout . p r i n t l n () ;
1323 cpout . p r i n t l n (”/∗”) ;
1324
1325 cpout . p r i n t l n (”∗ @author K M Imtiaz−Ud−Din”) ;
1326
1327 DateFormat ndateFormat = new SimpleDateFormat (”dd−MMM−yyyy”) ;
1328 Date ndate = new Date () ;
1329 cpout . p r i n t l n (”∗ Created on ” + ndateFormat . format (ndate)) ;
1330 cpout . p r i n t l n (”∗”) ;
1331 cpout . p r i n t l n (”∗/”) ;
1332
1333 i f (CompositionName != null)
1334 cpout . p r i n t l n (”\n\npackage org . i s tmus i c . UbiCompServiceComp . ”
1335 + CompositionName . toLowerCase () + ” ; ”) ;
1336
1337 cpout . p r i n t l n (”\nimport org . i s tmus i c .mw. adaptat i on . con f i g u ra t i o n

. Conf i gurab l eImpl ; ”) ;
1338 cpout . p r i n t l n (”\ npubl i c c l a s s ” + ”Composite ” + CompositionName
1339 + ” extends Conf i gurab l eImpl {”) ;
1340 cpout . p r i n t l n (”\n\ t pub l i c ” + ”Composite ” + CompositionName + ”

() {”) ;
1341 cpout . p r i n t l n (”\n\ t \ t super () ; ”) ;
1342 cpout . p r i n t l n (”\n\ t \ t System . out . p r i n t l n (\ ”Composition created

. . . \ ”) ; ”) ;
1343 cpout . p r i n t l n (”\n\ t }”) ;
1344 cpout . p r i n t l n (”\n }”) ;
1345
1346 }
1347

103

1348 }

Listing B.3: Parser.java

B.4 EvaluatorDetail.java

1
2
3 pub l i c c l a s s Eva luatorDeta i l {
4 // S t r i n g componentname ;
5 S t r i n g evalname ;
6 S t r i n g operands [] ;
7 S t r i n g operator ;
8 S t r i n g DataType ;
9

10 }

Listing B.4: EvaluatorDetail.java

B.5 Component.java

1
2
3 import java . u t i l . ArrayLi st ;
4 import java . u t i l . L i s t ;
5
6 pub l i c c l a s s Component {
7
8 S t r i n g ComponentType ;
9 S t r i n g ComponentName;

10 S t r i ng RefersTo ;
11 Li st<Attr ibute> Attr ibuteArray = new ArrayList <Attr ibute >() ;
12 }

Listing B.5: Component.java

B.6 Attribute.java

104

1
2
3 pub l i c c l a s s Attr ibute {
4
5 S t r i n g AttributeName ;
6 S t r i n g DataType ;
7 S t r i n g Value ;
8
9 }

Listing B.6: Attribute.java

B.7 SendEmailService.java

1 package org . UbiMusic . S e rv i c e s ;
2
3 import java . awt . Component ;
4 import java . awt . Frame ;
5 import java . awt . TextArea ;
6 import java . awt . TextComponent ;
7
8 pub l i c c l a s s SendEmailService {
9

10 p r i v a t e s t a t i c S t r i n g from , to , t i t l e , msg ;
11
12 pub l i c void set f rom (S t r i ng from) {
13
14 t h i s . from = from ;
15 }
16
17 pub l i c void s e t t o (S t r i n g to) {
18
19 t h i s . to = to ;
20 }
21
22 pub l i c void s e t t i t l e (S t r i n g t i t l e){
23
24 t h i s . t i t l e = t i t l e ;
25
26 }
27
28 pub l i c void setmsg (S t r i n g msg) {
29
30 t h i s . msg = msg ;
31 }

105

32
33 pub l i c void s t a r t () {
34 Frame msgBox = new Frame () ;
35 msgBox . s e tT i t l e (”Email Sender ”) ;
36 msgBox . s e tS i z e (500 , 100) ;
37 msgBox . setLocat i on (100 , 100) ;
38
39 TextArea textArea = new TextArea (” d e f a u l t text f o r Email

sender ”) ;
40
41 S t r i ng text = ”A message has been sent from ”+from+” to ”+

to+ ”\nwith t i t l e : ”+ t i t l e+ ” \nand having message : ”+
msg ;

42 textArea . setText (text) ;
43
44
45 msgBox . add (textArea) ;
46 msgBox . s e tV i s i b l e (true) ;
47
48 System . out . p r i n t l n () ;
49 System . out . p r i n t l n (”=======Email sender =========”) ;
50 System . out . p r i n t l n (”A message has been sent from ”+from+”

to ”+ to+ ”\nwith t i t l e : ”+ t i t l e+ ” \nand having message
: ”+msg) ;

51 System . out . p r i n t l n () ;
52 }
53
54 }

Listing B.7: SendEmailService.java

B.8 SendSMSService.java

1 package org . UbiMusic . S e rv i c e s ;
2
3 import java . awt . Frame ;
4 import java . awt . TextArea ;
5
6 pub l i c c l a s s SendSMSService {
7
8 p r i v a t e s t a t i c S t r i ng to , message ;
9

10 pub l i c void s e t t o (S t r i n g to) {
11
12 t h i s . to = to ;
13 }

106

14
15
16 pub l i c void setmessage (S t r i n g message) {
17
18 t h i s . message = message ;
19 }
20
21 pub l i c void s t a r t () {
22 Frame msgBox = new Frame () ;
23 msgBox . s e tT i t l e (”SMS Sender ”) ;
24 msgBox . s e tS i z e (500 , 100) ;
25 msgBox . setLocat i on (650 , 100) ;
26
27 TextArea textArea = new TextArea (” d e f a u l t text f o r SMS

Sender ”) ;
28
29 S t r i ng text = ”A text message has been sent to ”+ to+ ”\

nwith message ”+message ;
30 textArea . setText (text) ;
31
32 msgBox . add (textArea) ;
33
34 msgBox . s e tV i s i b l e (true) ;
35
36 System . out . p r i n t l n () ;
37 System . out . p r i n t l n (”=======SMS sender =========”) ;
38 System . out . p r i n t l n (”A text message has been sent to ”+ to+

”\nwith message ”+message) ;
39 System . out . p r i n t l n () ;
40 }
41
42 }

Listing B.8: SendSMSService.java

107

Bibliography

[1] UbiCompForAll - Ubiquitous service composition for all users /
The project, http://www.sintef.no/Projectweb/UbiCompForAll/The-
project/ (Accessed: 28 June 2011)

[2] The Project, http://ist-music.berlios.de/site/index.html#project (Ac-
cessed: 28 June 2011)

[3] Approach,UbiCompForAll - Ubiquitous service composition for
all users, http://www.sintef.no/Projectweb/UbiCompForAll/The-
project/Approach/ (Accessed: 27 June 2011).

[4] S. Ponnekanti et al., ICrafter: A Service Framework for Ubiquitous
Computing Environments. Proc. 3rd Conf. Ubiquitous Computing
(UbiComp), LNCS 2201, Springer, 2001, pp. 56-75.

[5] M. Romn, B. Ziebart, and R.H. Campbell, Dynamic Application
Composition: Customizing the Behavior of an Active Space. Proc. 1st
IEEE Intl Conf. Pervasive Computing and Communications(PerCom 03),
IEEE CS Press, 2003, pp.169-176

[6] D. Svensson, G. Hedin, and B. Magnusson, Pervasive Applications
through Scripted Assemblies of Services. Proc. IEEE Intl Conf. Pervasive
Services, IEEE Press, 2007, pp. 301-307

[7] R. Moats, URN Syntax. RFC 2141 (Proposed Standard), May 1997.

[8] W.K. Edwards, M. W. Newman, J. Z. Sedivy, and T. F. Smith, Bringing
network effects to pervasive spaces. IEEE Pervasive Computing 4, 3
(2005), 15-17.

[9] R. Grimm, One. world: Experiences with a Pervasive Computing
Architecture. IEEE Pervasive Computing 3, 3 (2004), 22-30.

108

[10] R. Grimm, J. Davis, E. Lemar, A. Macbeth, S. Swanson, T. Anderson,
B. Bershad, G. Borriello, S. Gribble, and D. Wetherall, System support
for pervasive applications. ACM Trans. Comput, Syst. 22, 4 (2004), 421-
486.

[11] W. K. Edwards, M. W. Newman, J. Sedivy, and S. Izadi, Challenge:
recombinant computing and the speakeasy approach. In Proceedings of
ACM MobiCom (New York, USA, 2002), ACM Press, pp. 279-286.

[12] K. Edwards, et al., Using speakeasy for ad hoc peer-to-peer
collaboration. In Proceedings of ACM CSCW ’02(2002), ACM Press, pp.
256-265.

[13] M. Newman, et al., Designing for serendipity: supporting end-user
configuration of ubiquitous computing environments. In Proceedings of
DIS ’02 (New York, NY,USA, 2002), ACM Press, pp. 147-156.

[14] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, Project Aura:
toward distraction-free pervasive computing. Pervasive Computing, IEEE
1, 2(2002), 22-31.

[15] Y. Yang, F. Mahon, M. H. Williams, and T. Pfeifer, Context-
aware dynamic personalised service re-composition in a pervasive
service environment. In Proceedings of Ubiquitous Intelligence and
Computing(2006), vol. 4159 of LNCS, Springer, pp. 724-735.

[16] M. Roman, et al., Dynamic application composition: Customizing
the behavior of an active space. In Proceedings of IEEE PERCOM
(Washington, DC, USA, 2003), IEEE Computer Society, p. 169.

[17] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, Service composition
for mobile environment. Mobile Networks and Applications 4, 10 (August
2005), 435-451.

[18] S. Ben Mokhtar, J. Liu, N. Georgantas, and V. Issarny. Qosaware
dynamic service composition in ambient intelligence environments. In
Proceedings of the 20th IEEE/ACM Int. Conf. on Automated software
engineering (ASE 05), pages 317320, 2005.

[19] M. Vallee, F. Ramparany, and L. Vercouter, Flexible Composition
of Smart Device Services. In The 2005 International Conference on
Pervasive Systems and Computing (PSC-05), Las Vegas, Nevada, USA.,
June(2005), pp. 27-30.

109

[20] S. Maffioletti, M. Kouadri, and B. Hirsbrunner, Automatic resource and
service management for ubiquitous computing environments. Pervasive
Computing and Communications Workshops, 2004. Proceedings of the
Second IEEE Annual Conference on (2004), 219-223.

[21] E. Kiciman, and A. Fox, Using dynamic mediation to integrate COTS
entities in a ubiquitous computing environment. In Proceedings of
HUC2000 (2000), no. 1927 in LNCS, pp. 211-226.

[22] ISO/IEC. Software engineering—product quality, part 1-4, 2001. ISO-
9126-1,-2,,3,-4, page-11.

[23] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practise.
2nd ed. Addison-Wesley, 2003, page-80.

[24] F. Casati, S. Ilnicki, Li-Jie Jin, V. Krishnamoorthy, and Ming-
Chien Shan, ”eFlow: a platform for developing and manag-
ing composite e-services”, Academia/Industry Working Conference
on Research Challenges (AIWORC’00), pp.341-348, 2000, doi:
http://doi.ieeecomputersociety.org/10.1109/AIWORC.2000.843314.

[25] Q. Z. Sheng, B. Benatallah, et al, Enabling Personalized Composition
and Adaptive Provisioning of Web Services. The 16th International
Conference on Advanced Information Systems Engineering (CAiSE),
Riga, Latvia, June 7-11. (2004)

[26] IBM. Tivoli Personalized Services Manager, Version 1.2.
ftp://ftp.software.ibm.com/software/pervasive/info/tech/tpsm ss.pdf,
2002.

[27] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein O.
Hallsteinsen, Jorge Lorenzo, Alessandro Mamelli, and Ulrich Scholz,
Music: Middleware support for self-adaptation in ubiquitous and
service-oriented environments. In Software Engineering for Self-Adaptive
Systems, pages 164-182, 2009.

[28] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela,
The Internet Operating System: Middleware for adaptive distributed
computing. International Journal of High Performance Computing
Applications (IJHPCA), Special Issue on Scheduling Techniques for
Large-Scale Distributed Platforms, 20(4):467480, 2006.

[29] M. Mochizuki, H. Tokuda, ”Possession System: adaptation support mid-
dleware for collaborative multimedia applications in Java,” Multimedia

110

Computing and Systems, 1999. IEEE International Conference on , vol.1,
no., pp.339-344 vol.1, Jul 1999.

[30] Mohammad Ullah Khan, ”Unanticipated Dynamic Adaptation
of Mobile Applications”,Ph.D. dissertation, University of Kassel,
Electrical Engineering and Computer Science, Kassel Germany,
March 2010, http://www.uni-kassel.de/upress/online/frei/978-3-89958-
918-4.volltext.frei.pdf

[31] Hewlett Packard Italiana,System design of the MUSIC
architecture,Deliverable reference: D4.3, 02 October
2009, http://svn.berlios.de/svnroot/repos/ist-music/music-
documentation/trunk/deliverables/D04.3

[32] Developing the Context Sensor Bundle,
https://docs.google.com/View?id=dhq9qbc3 38gcrc37fg
(Accessed: 27 June 2011).

[33] Dipanjan Chakrabarty and Anupam Joshi (2001), Dynamic Service
Composition: State-of-the-Art and Research Directions. University of
Maryland, Baltimore County: Baltimore(USA). TR-CS-01-19

[34] Romain Rouvoy, Roman Vitenberg, Frank Eliassen, Enhancing
Planning-Based Adaptation Middleware with Support for Dependability:
a Case Study,1st International Workshop on Context-aware Adaptation
Mechanisms for Pervasive and Ubiquitous Services (CAMPUS08).
Electronic Communications of EASST (ECEASST), vol. 11. Oslo,
Norway. June 3, 2008.

[35] Mourad Alia, Geir Horn, Frank Eliassen, Mohammad Ullah Khan, Rolf
Fricke, and Roland Reichle, A Component-based Planning Framework
for Adaptive Systems. The 8th International Symposium on Distributed
Objects and Applications (DOA), Oct 30 Nov 1, 2006, Montpellier,
France.

[36] H. Lieberman, F. Paterno, and V. Wulf. End-User Development.
Springer, October 200

111

www.kth.se

TRITA-ICT-EX-2011:189

