
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

D A O Y U A N L I

A Proxy for Distributed Hash Table
based Machine-to-Machine Networks

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Aalto University
School of Science
Degree Programme in Security and Mobile Computing

Daoyuan Li

A Proxy for Distributed Hash Table based
Machine-to-Machine Networks

Master’s Thesis
Espoo, June 29, 2011

Supervisors: Professor Gerald Q. Maguire Jr., Royal Institute of Technology (KTH)
Professor Antti Ylä-Jääski, Aalto University

Instructor: Jani Hautakorpi, PhD, Ericsson Research NomadicLab, Finland

Aalto University
School of Science ABSTRACT OF
Degree Programme of Security and Mobile Computing MASTER’S THESIS

Author: Daoyuan Li
Title:
A Proxy for Distributed Hash Table based Machine-to-Machine Networks

Date: June 29, 2011 Pages: 14 + 74
Professorship: Data Communications Software Code: T-110
Supervisors: Professor Gerald Q. Maguire Jr.

Professor Antti Ylä-Jääski
Instructor: Jani Hautakorpi, PhD

Wireless sensor networks (WSNs) have been an increasingly interest for both
researchers and entrepreneurs. As WSN technologies gradually matured and
more and more use is reported, we find that most of current WSNs are still
designed only for specific purposes. For example, one WSN may be used to
gather information from a field and the collected data is not shared with other
parties.

We propose a distributed hash table (DHT) based machine-to-machine (M2M)
system for connecting different WSNs together in order to fully utilize informa-
tion collected from currently available WSNs. This thesis specifically looks at
how to design and implement a proxy for such a system. We discuss why such
a proxy can be useful for DHT-based M2M systems, what the proxy should
consist of, and what kind of architecture is suitable. We also look into different
communication protocols that can be used in these systems and discuss which
ones best suit our purposes. The design of the proxy focuses on network man-
agement and service discovery of WSNs, and security considerations as well as
caching mechanisms in order to improve performance. A prototype is imple-
mented based on our design and evaluated. We find it feasible to implement
such a DHT-based M2M system and a proxy in the system can be necessary
and useful. Finally, we draw conclusions and discuss what future work remains
to be done.

Keywords: M2M, P2P, DHT, Proxy, Gateway, ZigBee, 6LoWPAN,
CoAP, Cache

Language: English

i

Sammanfattning

Trådlösa sensornätverk (WSN) har en allt större intresse för både forskare
och företagare. Som WSN teknik successivt mognat och allt fler använder
rapporteras, finner vi att de flesta av dagens WSN fortfarande är konstruer-
ade enbart för särskilda ändamål. Till exempel kan en WSN användas för
att samla in information från ett fält och de insamlade data inte delas med
andra parter.

Vi föreslår en distribuerad hashtabell (DHT) baserad maskin-till-maskin (M2M)
system för att koppla olika WSN tillsammans för att fullt ut utnyttja informa-
tion som samlats in från tillgängliga WSN. Denna avhandling tittar särskilt
på hur man kan utforma och genomföra en fullmakt för ett sådant system.
Vi diskuterar varför en proxy kan vara användbart för DHT-baserade M2M
system, vad proxy bör bestå av, och vilken typ av arkitektur är lämplig.

Vi tittar också på olika kommunikationsprotokoll som kan användas i dessa
system och diskuterar vilka som bäst passar våra syften. Utformningen av
proxy fokuserar på nätverksadministration och service upptäckten av WSN,
och med hänsyn till säkerheten samt cachning mekanismer för att förbättra
prestanda. En prototyp genomfördes baserat på vår design och utvärderas.
Vi tycker att det är möjligt att genomföra en sådan DHT-baserade M2M
system och en proxy i systemet kan vara nödvändig och nyttig. Slutligen
drar vi slutsatser och diskutera vad framtida arbete återstår att göra.

Nyckelord: M2M, P2P, DHT, Proxy, Gateway, ZigBee, 6LoWPAN, CoAP,
Cache

ii

Acknowledgements

This thesis would not have been possible without the help of several individ-
uals who in one way or another offered their valuable and generous assistance
in the preparation and completion of this study.

First and foremost, I want to thank my supervisors, Professor Gerald Q.
Maguire Jr. at Royal Institute of Technology and Professor Antti Ylä-Jääski
at Aalto University, for their guidance through this thesis project, especially
Professor Maguire, who has given me extremely helpful and concrete com-
ments on my thesis drafts.

Secondly, I would like to express my gratitude to people at Ericsson Research
NomadicLab. My industrial advisor Dr. Jani Hautakorpi has given me valu-
able instructions in the design and implementation of the system, as well as
in thesis writing. Section manager of LMF/TRM, Jouni Mäenpää warmly
welcomed me to the lab and generously offered his help during my stay in
the lab. My colleagues have offered many useful suggestions regarding the
thesis. I have had very interesting discussions with Jaime Jiménez Bolonio
and Nalin Gupta; those discussions have been of great help for my thesis.
Rasib Hassan Khan and Gaëtan Charmette have been nice companies, es-
pecially during lunch times when we talk and share stories and anecdotes.
Their cheerful spirit has kept me motivated and enthusiastic.

Last but not least, I would like to thank my parents, whose kindness, dili-
gence, and positive attitude towards life have deeply influenced me and have
been an invaluable influence throughout my life.

Jorvas, Kirkkonummi, Finland
June 22, 2011

Daoyuan Li

iii

Contents

Abstract i

Sammanfattning ii

Acknowledgements iii

Table of Contents iv

List of Tables viii

List of Figures ix

Abbreviations and Acronyms xi

1 Introduction 1

1.1 Overview . 1

1.2 Problem Description . 2

1.3 Contributions . 2

1.4 Thesis Organization . 3

2 Background 4

2.1 The Internet of Things . 4

2.2 Machine-to-Machine Commmunication 6

2.3 Wireless Sensor Networks . 7

2.3.1 WSN Architecture . 7

iv

2.3.2 WSN Sensor Node Architecture 8

2.3.3 Routing in WSNs . 9

2.4 Protocols for Wireless Sensor Networks 10

2.4.1 IEEE 802.15 Working Group 10

2.4.2 IEEE Std 802.15.4TM 11

2.4.3 ZigBeeTM . 12

2.4.4 6LoWPAN . 14

2.4.5 CoAP . 14

2.5 Distributed Hash Tables . 15

2.5.1 Hash Algorithms . 16

2.5.2 Consistent Hashing . 17

2.5.3 Chord . 18

2.6 Simple Network Management Protocol 19

2.7 Summary . 20

3 Design 22

3.1 Motivation . 24

3.2 Objective . 25

3.3 Principles . 26

3.4 Architecture . 27

3.5 Details . 28

3.5.1 Proxy Joining and Leaving 29

3.5.2 WPAN Management 29

3.5.2.1 WPAN Start Up 30

3.5.2.2 Node Joining 30

3.5.2.3 Node Leaving 31

3.5.2.4 Naming, Addressing, and Routing 34

3.5.3 WPAN Service Management 34

3.5.3.1 Service Discovery 35

3.5.3.2 Service Updates 36

v

3.5.4 Caching . 36

3.5.4.1 Caching for WPAN Nodes 37

3.5.4.2 Caching in DHT 37

3.5.5 Security . 38

3.5.5.1 Secure Communication between WWAN Peers 38

3.5.5.2 WPAN Security 38

3.6 Summary . 39

4 Implementation 40

4.1 Hardware and Software . 40

4.1.1 WPAN Nodes . 40

4.1.2 Proxy and Wide Area Nodes 42

4.1.3 Prototype Architecture 43

4.2 Proxy Start Up . 43

4.3 WPAN Node Joining and Leaving 45

4.4 Application Logic . 45

4.4.1 CoAP Message Parsing 45

4.4.2 Waspmote Application Packet Fragmentation and Re-
assembling . 46

5 Discussions 47

5.1 Functionality Evaluation . 47

5.2 Performance Measurements 49

5.2.1 Node Lookup Time . 49

5.2.2 RTT between WWAN and WPAN Nodes 51

5.3 Performance Discussions . 54

5.3.1 Proxy Throughput . 55

5.3.2 Proxy Reliability . 55

5.4 Power Source . 56

6 Conclusions and Future Work 57

vi

6.1 Summary . 57

6.2 Future Work . 59

References 60

A Implementation Issues 69

A.1 RXTX Port Scan . 69

A.2 Bug in Waspmote API . 69

A.3 Tweaks in Waspmote API . 72

A.3.1 Direction Change Interruption Thresholds 72

A.3.2 Maximum Data Length 73

A.4 Waspmote Logic . 74

vii

List of Tables

2.1 An example of Chord finger table. 19

3.1 An example of service table, where the proxy manages one
sensor and one actuator. 35

viii

List of Figures

2.1 A multi-hop wireless sensor network. 7

2.2 The architecture of sensors. 8

2.3 IEEE 802.15.4 specification in context. 11

2.4 ZigBee stack architecture. 13

2.5 Illustration of a Chord ring. 19

3.1 Overall architecture. 23

3.2 Flow of communications between MCN and a single sensor(s)
that returns the temperature that it has measured locally. . . 24

3.3 Proposed proxy architecture. 27

3.4 Protocol stack of the proxy node. 28

3.5 The UML use case diagram of the proxy. 28

3.6 Node joining a ZigBee network. 31

3.7 The “eagle” scheme in which the proxy polls WPAN nodes. . . 32

3.8 The “eagle” scheme in which WPAN nodes actively send keep-
alive messages to the proxy. 33

3.9 The “ostrich” scheme. 33

3.10 Authentication and encryption in ZigBee packets. 39

4.1 A Libelium Waspmote used in our implementation. 41

4.2 The hardware of the proxy prototype, where a Libelium Wasp-
mote Gateway and a 3G dongle are connected to a Gumstix
Overo Earth through a USB hub. 42

ix

4.3 A prototype of the DHT-based M2M system, where a proxy is
used to make WPAN nodes globally addressable and accessible
from a 3G WWAN. 44

4.4 A prototype used for our implementation. 44

4.5 Waspmote application header. 46

5.1 A sample scenario implemented in our prototype, where a local
WPAN sensor sends message to a WWAN actuator. 48

5.2 A sample scenario implemented in our prototype, where a
WWAN sensor sends message to a local WPAN actuator. . . . 49

5.3 The number of nodes in the DHT does not significantly affect
node lookup time, but he stability of node looking up decreases
as the number of DHT nodes increases. 50

5.4 RTT is affected more significantly by the size of CoAP mes-
sages rather than the number of DHT nodes, when the major-
ity of DHT nodes are virtual nodes residing on a single PC. . . 52

5.5 RTT between two WWAN nodes is not significantly influenced
by CoAP message size, when CoAP messages are between 180
and 300 bytes. 53

5.6 RTT is affected by the size of CoAP messages when the system
has 50 DHT nodes (48 of which are virtual nodes residing on
a single PC). 54

x

Abbreviations and Acronyms

3G 3rd Generation mobile telecommunications
6LoWPAN IPv6 over Low-power Wireless Personal Area

Networks
ACK Acknowledgment
AODV Ad hoc On-demand Distance Vector
APDU Application layer Protocol Data Unit
API Application Programming Interface
APS Application support sub-layer
APSDE Application support sub-layer data service entity
APSME Application support sub-layer management service

entity
CoAP Constrained Application Protocol
CRC Cyclic Redundancy Check
CoRE Constrained RESTful Environments working group
CRUD Create, Read, Update and Delete
CSMA/CA Carrier Sense Multiple Access with Collision

Avoidance
DHT Distributed Hash Table
DDNS Distributed Domain Name Service
DNS Domain Name Service
DVI Digital Visual Interface
EEPROM Electrically Erasable Programmable

Read-Only Memory
ERP Enterprise Resource Planning
FFD Full-Function Device
GAF Geographic Adaptive Fidelity
GEAR Geographic and Energy-Aware Routing
GPRS General Packet Radio Service
GPS Global Positioning System
HTTP Hypertext Transfer Protocol

xi

ICT Information and Communication Technologies
IDE Integrated Development Environment
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
IPC Inter-Process Communication
LEACH Low-energy adaptive clustering hierarchy
LLC Logical Link Control
LR-WPAN Low-Rate Wireless Personal Network
LoWPAN Low-power Wireless Personal Network
M2M Machine-to-Machine
M2M CE Machine-to-Machine Communication Enabler
MAC Medium Access Control
MCN Monitoring and Control Node
MD5 Message-Digest algorithm 5
MECN Mminimum Energy Communication Network
MIC Message Integration Code
OS Operating System
OSI Open Systems Interconnection
OTAP Over The Air Programming
P2P Peer-to-Peer
PAN Personal Area Network
PC Personal Computer
PDU Protocol Data Unit
PEGASIS Power-efficient GAthering in Sensor Information

Systems
PHY Physical Layer
QoS Quality of Service
REST Representational State Transfer
RFD Reduced-Function Device
RFID Radio-Frequency IDentification
RISC Reduced Instruction Set Computing
RMI Remote Method Invocation
RPC Remote Procedure Call
RTT Round Trip Time
SAR Sequential Assignment Routing
SCM Supply Chain Management
SHA Secure Hash Algorithm
SMECN Small Minimum Energy Communication Network
SNMP Simple Network Management Protocol

xii

SPIN Sensor Protocols for Information via Negotiation
SRAM Static Random-Access Memory
TEEN Threshold sensitive Energy Efficient sensor Network

protocol
UDP User Datagram Protocol
UML Unified Modeling Language
URI Universal Resource Indicator
USB Universal Serial Bus
WAN Wide Area Network
WPAN Wireless Personal Area Network
WSN Wireless Sensor Network
WWAN Wireless Wide Area Network
ZDO ZigBee Device Object

xiii

Chapter 1

Introduction

1.1 Overview

Wireless sensor networks (WSNs) have been of increasingly interest for both
researchers and entrepreneurs. While WSN technologies have gradually ma-
tured and more and more uses of WSNs have been reported, still most of
current WSNs are designed only for specific purposes. For example, one
WSN may be used to gather information from a field, but the collected data
is not immediately available to other parties.

As the concept of Internet of Things (IoT) and Machine-to-Machine (M2M)
communications have developed, more and more scenarios have been sug-
gested for them. However, current M2M systems may not fit into scenarios
where a large number of WSNs and actuator nodes are required to commu-
nicate with each other; for example, a smart traffic control scenario where
sensors monitor traffic volume and road condition in one place and may need
to communicate with actuators several kilometers away. Who makes the de-
cisions to change traffic lights based on the information collected by those
sensors? As a result, we propose a distributed hash table (DHT) based M2M
system for interconnecting different M2M networks in order to make full use
of information collected from currently available WSNs.

In the rest of this chapter we first introduce the problem we are trying to
tackle. Next we list the expected contributions of this thesis project. Finally
we describe how this thesis is organized.

1

CHAPTER 1. INTRODUCTION 2

1.2 Problem Description

Current M2M networks are often used to capture events and translate them
into human intelligible information. For example, WSNs are used to gather
information within a specific area. These networks usually have a hierarchical
or mesh topology. The sensor nodes are organized into clusters; the nodes
generally communicate at low bit rate and strive for low power consumption.
Low-Rate Wireless Personal Area Network (LR-WPAN) protocols, such as
IEEE 802.15.4 (see Section 2.4), are usually used in these scenarios. M2M
networks are good for gathering information, but maybe not be sufficient for
the case of several M2M networks needing to exchange information with each
other, when centralized servers are not available to control the exchange of
information.

In this thesis project we will connect M2M networks to a wide area network
using a Peer-to-Peer (P2P) overlay. Additionally, the nodes in the system
are not only sensors, but could also be actuators (a given node might even
support both functions at the same time). The nodes share information col-
lected from environments around them over a wide area network (WAN) in
order to make independent decisions and perform operations on their envi-
ronment. This P2P network consists of proxies complemented by traditional
WSNs that forward data to these proxies. The P2P network will be imple-
mented using DHT technology.

For this project, we will design, implement, and evaluate a proxy implement-
ing DHT-based M2M communication. Such a proxy should make it possible
to incorporate inexpensive sensors/actuators as part of the DHT network.
The proxy nodes are 3G-enabled sensors/actuators. In practice, each proxy
is implemented by adding logic (software) to both cheap LR-WPAN sensors
and/or 3G-enabled proxy sensors/actuators.

1.3 Contributions

The contributions of this thesis include use of DHT in M2M systems in order
to increase scalability, a justification for introducing a proxy in DHT-based
M2M systems, a design for such a proxy, a working prototype with minimum
functionality, and an evaluation of this prototype.

CHAPTER 1. INTRODUCTION 3

1.4 Thesis Organization

Chapter 2 discusses related concepts that the user will find useful when read-
ing the remainder of the thesis. We introduce basic terms and technologies,
including Internet of Things (Section 2.1), Machine-to-Machine communica-
tion (Section 2.2), Wireless Sensor Networks (Section 2.3), Low-Rate Wireless
Personal Area Network protocols (Section 2.4), and Distributed Hash Tables
(Section 2.5).

In Chapter 3 we describe the design decisions concerning our proxy. Specif-
ically we will consider aspects of wireless personal area network(WPAN)’s
node management and service management.We also discuss caching mecha-
nisms used in the proxy and security related issues.

Chapter 4 describes the implementation of the proxy, including specific tech-
nologies and techniques we used in the implementation.

Chapter 5 analyzes the prototype proxy implemented in this thesis project
and discusses performance considerations that should be taken into account.

We state our conclusions in Chapter 6. We summarize what has been done
and our results. The thesis closes with a discussion about what future im-
provements are needed or might be needed.

Chapter 2

Background

2.1 The Internet of Things

According to “Internet of things in 2020: Roadmap for the future” [1], the
Internet of Things (IoT) is defined as “things having identities and virtual
personalities operating in smart spaces using intelligent interfaces to connect
and communicate within social, environmental, and user contexts”; Seman-
tically, IoT means “a world-wide network of interconnected objects uniquely
addressable, based on standard communication protocols” [1]. IoT focuses
on interconnecting various devices (big or small in size, smart or dumb from
the perspective of information processing, mobile or stationary) together to
a large area network (typically running on IP).

IoT is a new concept that is becoming more and more popular in the field of
(wireless) communications. The basic idea of this paradigm is the pervasive
presence of computational resources around us, which are able to interact
and cooperate with each other, through unique identification schemes and
agreed communication protocols, in order to perform certain common tasks
together [2]. The IoT is expected to have a even higher level of device het-
erogeneity than the current Internet has. Devices such as Radio-Frequency
IDentification (RFID) [3] tag readers, sensors, actuators, mobile phones, and
so on, are expected to be “things” in the IoT. According to Robin Duke-
Woolley: “Within those we look at the individual devices that could be con-
nected and could be of value, and we currently track over 300 different device
types being used” [4].

It is foreseeable that IoT will have a strong impact on several aspects of
people’s daily life. Thanks to the increasing computational power, decreas-

4

CHAPTER 2. BACKGROUND 5

ing size, and increased energy efficiency of the devices, and their inter-
connectivity and interoperability, the IoT will play a role in numerous sce-
narios. From the perspective of a private person, the IoT can be used in
both work and home environments. For example, users may employ the IoT
for health monitoring and for assisted living. Additionally, from the perspec-
tive of businesses, IoT will have a high impact on fields such as industrial
manufacturing, automation, logistics, process management, and so on.

IoT will be ubiquitous, penetration into our life even more than the Internet
and mobile technologies have. The number of devices that will form the
IoT could be huge. According to Ericsson, there will be 50 billion connected
devices by 2020 [5]. In comparision, today about 5 billion users are connected
to mobile networks worldwide. In other words, we will expect a shift of focus
from person-to-person communication to pervasive M2M communication.

Some devices in the IoT will be intelligent and will exhibit behaviors accord-
ing to predefined routines. Furthermore, some devices will have the ability
to collaborate with each other in a more intelligent manner, i.e. they may be
able to make decisions based upon their environment by themselves or in col-
laboration with other devices, instead of human users explicitly controlling
them. In addition to acting on their own, devices can also gather information
and deliver it to users of applications. For example, a device could send an
alarm message to its owner when its battery power level is low in the form
of a text message sent to the owner’s cellular phone.

One of the most challenging issues in IoT is device power consumption, as
we expect a large number of battery powered devices to be connected to
the IoT. Due to limitations such as tiny physical size, harsh environment,
absence of human intervention, and so on, it is important to efficiently utilize
available power resources. Another issue is reliability. We do not want to
require devices to be extremely reliable, because ensuring the reliability of
an individual device may cost a lot. However, the reliability of a group of
devices trying to accomplish a common task can be much higher than their
individual reliabilities. To achieve this, the devices in the IoT should be
adaptive to failures of others and be able to self-configure. Furthermore,
since the number of devices in the IoT will be large, individually configuring
devices will simply not be feasible in practice.

Despite the excitement of imagining the wonderful vision of the IoT, we
need to tackle the two challenges mentioned above before this vision can be
realized. Mellor [6] expects that it will take a while before the M2M commu-
nications and wireless sensor networks are deployed pervasively. While there
are existing M2M technologies, they are still under development and do not

CHAPTER 2. BACKGROUND 6

work well with each other. We will explore more about these two challenges
in the following two sections.

2.2 Machine-to-Machine Commmunication

Machine-to-Machine (M2M)1 commmunication generally refers to commu-
nication between machines, as opposed to communication between human
beings, or communication between humans and machines. Because of the in-
creasing amount of M2M commmunication, the “internet of things” is emerg-
ing as a new paradigm.

M2M communications is based on the idea that rather than having a few
stand alone machines, interconnecting machines with each other is more use-
ful [7, 8]. M2M systems combine Information and Communication Technolo-
gies (ICT) with smart objects, to provide interaction among systems without
human intervention [9]. These automated systems can perform a variety of
tasks.

M2M is a broad concept and has many application scenarios [10]. M2M “cov-
ers an enormous number of potential devices and applications,” according to
Robin Duke-Woolley at Harbor Research2. Harbor Research regularly mon-
itors eight different markets – buildings, energy, industrial, medical, retail,
transportation, security/public safety and consumer/professional – so as to
track M2M’s progress [4].

A typical M2M system has five basic components: users, objects, network,
service platform, and enterprise information system [9]. These are described
as:

• Users – can be individual persons or other objects that make use of
the system.

• Objects – such as sensors and actuators that can communicate with
internal peers and external peers.

• Network – the communication network enables objects to communicate
either internally with peers or externally with users. This network may
be a wired or wireless network.

1 M2M is sometimes interpreted as Man-to-Machine, Machine-to-Man, Machine-to-
Mobile, or Mobile-to-Machine. In this thesis we only refer Machine-to-Machine as M2M.

2http://www.harborresearch.com/

http://www.harborresearch.com/

CHAPTER 2. BACKGROUND 7

• Service platform – controls data routing as well as administration of
the communicating participants. The service platform provides a mid-
dleware layer that can optimize data flow among objects and provides
services and interfaces to applications.

• Enterprise information system – integrates the M2M solution with en-
terprise applications such as Enterprise Resource Planning (ERP), Sup-
ply Chain Management (SCM), and so on.

2.3 Wireless Sensor Networks

Wireless sensor networks (WSNs) have become increasingly popular in recent
years, as both the power consumption of sensor nodes and their cost have
decreased [11]. WSNs are widely deployed in many application areas [11,
12], such as industrial control and monitoring, home automation, security
and military sensing, inventory management and asset tracking, environment
sensing, health monitoring, and so on.

2.3.1 WSN Architecture

In a WSN, sensor nodes are scattered over a sensor field. These nodes gather
information and transmit this information to a sink node perhaps via other
sensor nodes. As shown in Figure 2.1, the sink acts as a gateway, exchanging

Sink

 User
(Task manager)

Internet/Satellite

Sensor field

Sensor

Figure 2.1: A multi-hop wireless sensor network.

data with a task manager node through the Internet or a satellite connec-
tion [11]. The user may have some specific requirements for the sensor nodes.
The user sends requests to the sink rather than directly to the sensor nodes.

CHAPTER 2. BACKGROUND 8

WSNs can be very different from other wireless networks, such as wireless ad
hoc networks [13]. WSNs have several distinct features as compared with ad
hoc networks [11]. First of all, in a WSN there are usually a large number
of sensors deployed in a field, frequently orders of magnitude more than the
number of nodes in an ad hoc network. Secondly, unlike ad hoc network, WSN
nodes are more prone to failure. Thirdly, the topology of WSNs, especially
those where the sensor nodes are sparsely deployed [14], is likely to change, as
sensor nodes fail. Due to changes in network topology, the sensor nodes have
to re-self-organize in order to send data to the sink (gateway). Finally, the
energy available to a WSN node is limited, and recharging after deployment
is usually very difficult or impossible. As a result of the limitations on node
energy power management is a major issue in WSNs.

Due to the above features, WSNs are designed to take these many aspects
into account. Generally, WSNs have to be fault tolerant since sensor node
failures are common; they should be scalable because the number of nodes
in the networks can be very large; and they have to be cost-effective – oth-
erwise there would be little benefit in deploying WSNs; and they must be
power-efficient and resource-efficient, due to limitations on the size of the in-
dividual sensor nodes and other constraints such as cost and environmental
limitations.

2.3.2 WSN Sensor Node Architecture

As shown in Figure 2.2, a sensor is composed of four main units [11]: a sensing

Figure 2.2: The architecture of sensors.

CHAPTER 2. BACKGROUND 9

unit for information gathering, a processing unit for processing information,
a transceiver for communication with other nodes, and a power unit to supply
energy.

Optional modules such as a power generator, location finding system, mobi-
lizer and so on, may be added to this architecture, based on requirements of
the actual application. Generally speaking, these modules have to interact
with the power unit on a node, i.e., they either provide power to the power
unit or consume power provided by the power unit.

2.3.3 Routing in WSNs

Finding the appropriate path to transfer data is very important in WSNs.
Both data transfer and the routing protocol should use as little power as
possible, since power in sensor nodes is a limited resource. Additionally,
the communication processing should not require too much computation or
memory, since these are also limited resources, especially if we want to achieve
low cost for sensor nodes. As noted previously, the WSN itself should be self-
organized. The environment of the sensor field may change, changing both
the topology and the set of events that need to be reported. Since generally
sensor nodes are left unattended, they must find a valid path from each sensor
node to the sink by themselves.

Akkaya and Younis [15] categorize routing protocols in WSNs into the fol-
lowing four categories:

1. Data-centric protocols: They are query-based, thus they depend upon
the name of the data and the values of these named data. Redun-
dant values of a named data item can be eliminated or aggregated.
Mechanisms in this category include flooding and gossiping [16], sensor
protocols for information via negotiation (SPIN) [17], directed diffu-
sion [18], etc.

2. Hierarchical protocols: These protocols focus on scalability. In hier-
archical routing protocols, network clusters are established and the
network is divided into smaller subnetworks, easing management and
increasing scalability. Examples of hierarchical routing protocols are
low-energy adaptive clustering hierarchy (LEACH) [19], Power-efficient
GAthering in Sensor Information Systems (PEGASIS) [20], Threshold
sensitive Energy Efficient sensor Network protocol (TEEN) [21], and
so on.

CHAPTER 2. BACKGROUND 10

3. Location-based protocols: These protocols use knowledge of the phys-
ical locations of sensor nodes. They take advantage of location infor-
mation in an energy efficient way. They may be useful especially when
there is no IP-address scheme and nodes are spatially deployed in a re-
gion. Protocols falling into this category include minimum energy com-
munication network (MECN) [22], small minimum energy communica-
tion network (SMECN) [23], geographic adaptive fidelity (GAF) [24],
geographic and energy-aware routing (GEAR) [25], and so on.

4. Network flow and QoS-aware protocols: Some protocols model route
setup process as a network flow problem. For example, maximum life-
time energy routing [26] and maximum lifetime data gathering [27]
fit into this category. QoS-aware protocols take end-to-end delay re-
quirements into consideration while setting up routes in the network.
Sequential assignment routing (SAR) [28] is an example of a QoS-aware
protocol.

2.4 Protocols for Wireless Sensor Networks

This section describes WSNs that utilize IEEE 802.15.4 network protocols.
We first introduce the standard making community, the IEEE 802.15.4 work-
ing group. Next we look at the IEEE 802.15.4 standard, which specifies
Low-Rate Wireless Personal Networks (LR-WPANs). After that we look at
upper layer protocols that operate over an underlying IEEE 802.15.4 link.
We introduce ZigBeeTMin Section 2.4.3 and 6LoWPAN in Section 2.4.4.

2.4.1 IEEE 802.15 Working Group

The IEEE 802.15 Working Group3 focuses on the development and stan-
dardization of Wireless Personal Area Networks (WPAN)4, or short distance
wireless networks.

This working group is organized into distinct sub-groups. IEEE 802.15
WPAN Task Group 1 (TG1)5 focuses on standards based on BluetoothTM

technology; while the IEEE 802.15 WPAN Task Group 4 (TG4)6 is char-
3http://www.ieee802.org/15/
4http://www.ieee802.org/15/about.html
5http://www.ieee802.org/15/pub/TG1.html
6http://www.ieee802.org/15/pub/TG4.html

http://www.ieee802.org/15/
http://www.ieee802.org/15/about.html
http://www.ieee802.org/15/pub/TG1.html
http://www.ieee802.org/15/pub/TG4.html

CHAPTER 2. BACKGROUND 11

tered to focus on WSNs [29], specifically the LR-WPAN standard for low
complexity, low cost, and extremely low-power wireless connectivity.

2.4.2 IEEE Std 802.15.4TM

After low data rate technology emerged the IEEE 802.15.4 committee began
to work on a low data rate standard. IEEE Std 802.15.4TM is a standard de-
veloped and maintained by the IEEE 802.15 WPAN Task Group 4. The latest
version of this standard is IEEE Std 802.15.4-2006 [30], which is backward-
compatible with IEEE Std 802.15.4-2003 [31]. It specifies the lower layers
in the open systems interconnection (OSI) model [32]: the wireless Medium
Access Control (MAC) and Physical Layer (PHY) for LR-WPANs, as shown
in Figure 2.3. Note that IEEE 802.15.4 operates under the IEEE Logical
Link Control (LLC) protocol.

Figure 2.3: IEEE 802.15.4 specification in context.

There may be two different types of devices participating in an IEEE 802.15.4
network: full-function devices (FFDs) and reduced-function devices (RFDs).
An FFD may serve as a coordinator in a network or as device; it can commu-
nicate with other FFDs and RFDs. In contrast, an RFD may only talk to an
FFD. Two or more devices within a personal operating space communicat-
ing on the same wireless channel can form a WPAN. IEEE 802.15.4 WPANs
support star, tree, cluster tree, and mesh topologies.

IEEE Std 802.15.4-2006 specifies four different data rates for LR-WPANs:
250 kb/s, 100 kb/s, 40 kb/s, and 20 kb/s. Other characteristics of LR-
WPANs include star or peer-to-peer topologies; 16-bit short addresses or

CHAPTER 2. BACKGROUND 12

64-bit extended address space; carrier sense multiple access with collision
avoidance (CSMA/CA) channel access, low power consumption; 16 channels
in the 2450 MHz band, 30 channels in the 915 MHz band, and 3 channels in
the 868 MHz band; and so on.

The PHY of a device is implemented by a radio transceiver. The PHY layer
is responsible for activation and deactivation of the radio transceiver, channel
selection, data transmitting and receiving via the physical medium, and so
on. The radio operates in unlicensed bands (meaning that the user does not
have to have a license to operate the device, but the manufacturer needs to
meet the requirements of the regulators), e.g. 868 – 868.6 MHz in Europe,
902 – 928 MHz in North America, and 2400 – 2483.5 MHz world wide [30].

The MAC layer provides addressing and physical channel access for upper
layers. Its features include beacon management, channel access, association
and disassociation, and so on [30]. It manages all access to the physical
radio channel and is responsible for generating network beacons on coordina-
tor devices, synchronizing to network beacons, supporting PAN association
and disassociation, employing the CSMA/CA mechanism for channel access,
providing link reliability between two peer MAC entities, and so on [30].

On top of the MAC layer is a service-specific convergence sublayer (SSCS),
providing the IEEE 802.2 logical link control (LLC) Layer access to the MAC
layer. The IEEE 802.2 LLC layer further provides addressing and physical
channel access for upper layers.

2.4.3 ZigBeeTM

ZigBeeTM is a low data rate, low power consumption wireless protocol in-
tended for automation and remote control and monitoring [33]. The ZigBee
Alliance7 was established in 2002, in order to “develop standards that ulti-
mately deliver greater freedom and flexibility for a smarter, more sustainable
world” [34]. ZigBeeTM is developed on top of IEEE Std 802.15.4-2003 [31]
and supports only star, tree, and mesh topologies. That is, ZigBee does not
support cluster tree network topology [35].

IEEE and the ZigBee Alliance have worked closely during the standardization
process. However, these two communities have different foci. The IEEE
802.15.4 Working Group mainly focuses on the physical and data link layer
of the protocol stack; while the ZigBee Alliance focuses on specifying the
upper layers (from the network layer and above, see Figure 2.4), in order to

7http://www.zigbee.org/

http://www.zigbee.org/

CHAPTER 2. BACKGROUND 13

MAC

NWK

IEEE 802.15.4 Specification

Security Service
 Provider

PHY

Application Support Sublayer

Application
Framework

 ZigBee
Device Object

Application Layer

ZDO
Mangement

ZigBee SpecificationAPSDE
APSME

Figure 2.4: ZigBee stack architecture.

provide inter-operable networking, security services, application interfaces,
as well as marketing and engineering evolution of the ZigBeeTM standard.

The ZigBeeTM network layer is designed to facilitate power conservation and
to ensure low latency. It provides functionality to control and utilize the
MAC layer as well as a service interface to the application support sub-
layer (APS) above it. The ZigBee network layer is responsible for starting a
network, assigning node addresses, configuring new devices, discovering other
ZigBee networks, and applying security policies [35].

The APS provides an interface between the network layer and the application
layer [36] by providing services that are offered by two entities: the data
service entity (APSDE) and the management service entity (APSME). The
APSDE enables the transportation of application protocol data units (PDUs)
between devices. The services APSDE provides include:

1. Generation of the application level PDUs (APDUs) – adding an appro-
priate protocol header to APDUs and generating APS PDUs.

2. Binding – creating a unidirectional logical link between a source endpoint-
cluster identifier pair and a destination endpoint. The APSDE is able
to send messages from one device to another once these two devices are
bound.

3. Group address filtering based on endpoint group membership.

CHAPTER 2. BACKGROUND 14

4. Reliable transport – providing transaction reliability by employing end-
to-end retries.

5. Duplicate packet rejection.

6. Fragmentation – segmentation and reassembly of APDUs longer than
the payload of a single network layer packet.

The application layer in ZigBee consists of the application framework and the
ZigBee device object (ZDO). The application framework allows each ZigBee
node to define up to 240 application endpoints in order to transmit and
receive application data. The ZDO provides functions such as service and
device discovery, coordinator initialization, security management, application
endpoint binding management, and network management.

2.4.4 6LoWPAN

RFC 4919 [37] defines Low-power wireless personal area networks (LoW-
PANs) as networks comprised of IEEE 802.15.4-2003 [31] devices, which are
characterized by short range, low bit rate, small packet size, low power, and
low cost. A LoWPAN targets wireless connectivity for applications with
limited power and low throughput requirements.

It is beneficial to have IP working over IEEE 802.15.4 links, in that IP net-
works are pervasive, proven to work, and built on open standards. Further-
more, IPv6 [38] meets LoWPAN requirements in that IPv6 has solutions for
network auto-configuration and statelessness, which are desirable for LoW-
PAN devices, and IPv6 supports a large address space as needed in LoW-
PANs. In addition, IPv6 supports subsuming IEEE 802.15.4 MAC addresses
when desired. Finally, IPv6 provides interconnectivity to other IP networks,
e.g., the Internet.

However, there are several challenges when transferring IPv6 packets over
IEEE 802.15.4 networks, because of the small frame size limitation and other
constraints of LoWPANs. For example, there needs to be a fragmentation
and reassembly layer below IP in order to transfer larger packets and there
should also be a header compression mechanism in order to reduce overhead.

RFC 4944 [39] defines an adaption layer for enabling IPv6 on top of IEEE
802.15.4 networks. It also defines header compression mechanisms making
IPv6 practical on IEEE 802.15.4 networks. However, RFC 4944 does not
deal with mesh routing specifications.

CHAPTER 2. BACKGROUND 15

2.4.5 CoAP

Constrained Application Protocol (CoAP) [40] is an application layer transfer
protocol for resource constrained networks. CoAP is defined by the IETF
Constrained RESTful Environments (CoRE) working group. CoAP can be
used in M2M applications such as home automation, industrial automation,
smart grids, and so on. Because of resource limitations of M2M nodes, CoAP
is designed to have small message overhead. Hence, fragmentation is not
allowed in CoAP. It realizes a subset of the Representational State Transfer
(REST) protocol [41] common with HTTP [42].

It uses a method/response interaction model between different application
endpoints, that is, CoAP messages contain either a method or response code,
carrying a request or response semantics respectively. A request could either
be Confirmable or Non-confirmable. The response to a request is carried in
an Acknowledgment when the requested response is immediately available.
It is a piggy-backed response. When a response is not immediately available,
an empty Acknowledgment is returned first. A new Confirmable message is
sent to the client when the response is ready. After receiving the response
the client has to return an Acknowledgment.

CoAP also supports built-in resource discovery in order to facilitate M2M
applications. This feature is very important for M2M applications since
there are no humans in the M2M loop. To achieve this, the endpoints should
conform to the CoRE Link Format [43] of discoverable resources. Resource
discovery can either be unicast or multicast, which is useful when resources
in a limited scope need to be located.

CoAP easily translates to HTTP since it supports a subset of HTTP func-
tionality. It is useful for integration with web services. Sometimes an HTTP
to CoAP mapping is necessary, for example, this can be implemented in a
CoAP-HTTP proxy.

2.5 Distributed Hash Tables

A hash table or sometimes a hash map is a data structure that maps keys to
values using a hash algorithm (see Section 2.5.1). A distributed hash table
(DHT) is a hash table constructed and used in a distributed manner. A hash
table is easy to deploy in a distributed system since it places few constraints
on the keys or data, nor how they are organized. Distributed system’s DHTs
are maintained by the nodes in a network. These nodes act autonomously,

CHAPTER 2. BACKGROUND 16

i.e. nodes join or leave the network without any centralized control [44].

DHT relies on three main components: the key space, the key partitioning
algorithm, and the overlay network [44, 45]. The key space is the set of all
possible keys. The key splitting algorithm splits the key space into different
partitions, which are the responsibility of different nodes. The overlay net-
work connects the participating nodes so that the node storing a specific key
and its associated data can be found.

DHTs are widely used in peer-to-peer (P2P) systems for data lookup, since
a DHT implements just one function: looking up a key and returning the ID
of the node responsible for this key. The major issues when implementing a
DHT include the following three [46]:

1. Load balancing among nodes: keys should be evenly assigned to the
participating nodes so that every node is responsible for roughly the
same number of keys. This assumes that each node has roughly the
same local resources; if they have unequal resources, then of course the
keys should be assigned proportional to the node’s share of the total
resource. This can be achieved using consistent hashing, as we will
discuss in Section 2.5.2.

2. Forwarding lookups to appropriate nodes: when a node receives a
lookup request and does not have the requested content, it should for-
ward the request to a node that is closer to the key so that the request
reaches the correct node. For example, when a node i receives a request
for key k, which is greater than the node’s ID Ni, then this node should
forward this request to another node j, such that Nj > Ni and Nj 6 k.

3. Building routing tables: every node keeps track of some other nodes in
order to forward requests to them. This can be done in various ways.
We will look at one implementation, Chord, in Section 2.5.3.

2.5.1 Hash Algorithms

Hash functions are algorithms which transform a variable length (binary)
string of data into a small fixed length item. Hash functions are lossy com-
pression functions that can be used to generate a fingerprint for a certain
input. A widely used hash function is the MD5 [47] algorithm. The MD5
algorithm converts a variable-sized input into a 128-bit message digest of the
input. It has been widely used since it was invented, for example the most

CHAPTER 2. BACKGROUND 17

common uses are checking the integrity of files, SSL/TLS [48], IPSec [49],
pseudo random number generation [50], and so on.

2.5.2 Consistent Hashing

Before introducing consistent hashing, we first describe the phenomenon of
hot spots in a network. Hot spots happen when a single server receives
requests from a large number of clients. This may overload the server, causing
a denial of service, exponentially increasing load, increase probability of node
failure, etc. The hot spot phenomenon is quite common with web services,
when the service suddenly becomes very popular there may be more clients
simultaneously attempting to access the server than the server was designed
to cope with [51].

One way to remedy the hot spot phenomenon is to use cache servers. A cache
server sits between the clients and the server. When it receives a request from
a client, it looks up the data being requested in its own cache. If the data
is in the cache, then the data is returned to the client; otherwise the cache
server has to contact other cache servers or the actual server for the data.

One problem with this traditional approach is that the system may not scale,
and when one cache server fails or new cache servers are added to the system,
the cache servers may need to remap their cached pages [52]. David Karger et
al. [51] address this problem with random cache trees and consistent hashing.
Random cache trees are used to coalesce requests from clients. Consistent
hashing is employed to balance the load even with a fluctuating number of
cache servers. Consistent hashing tries to split items into sets so that every
set has roughly the same number of items; at the same time ensuring that:

1. A change in one set does not cause re-assignment of items to other sets;

2. Moving items from one set to another causes only slightly different
arrangements of the mapping of items to sets.

In contrast, a traditional hashing algorithm will cause all items to be remapped
when the number of sets changes. Consistent hashing is used to enable easy
re-assignment of keys to adjacent nodes when there is a loss or addition of
a node. Note that keys and values have to be stored redundantly, otherwise
the loss of a node leads to a loss of data. According to [53], consistent hash-
ing ensures with high probability the minimum amount of remapping of keys
when the N th node joins or leaves the network; in this case only O(1/N) of

CHAPTER 2. BACKGROUND 18

the keys need to be moved to a different node in order to balance the load
across the nodes.

A consistent hashing algorithm is easy to implement [54]. First we need a
standard hash function, such as cyclic redundancy checks (CRCs) [55], MD5,
one of the SHA series of hash functions, e.g. SHA-1 [56], and so on. This
function will map strings into numbers in the range [0, . . . ,M], where M is
the number of sets. A consistent hashing function can be constituted by
dividing the numbers by M so that every hash value falls into the interval
[0, 1], thus the values can be mapped to a unit circle. In this way every string
(item) is mapped to a single point on the circle. By mapping these hashing
cache servers onto the same circle, we assign items to corresponding cache
servers, that is, every cache server is responsible for items between itself and
the previous cache server.

Consistent hashing is usually used in DHTs to map keys to nodes, thanks
to the property that removal or addition of one node changes only the set
of keys owned by the nodes with adjacent IDs, while leaving all other nodes
unaffected [54].

2.5.3 Chord

Chord [53, 57] is a distributed lookup protocol for efficiently locating a node
that stores certain data item in P2P applications. It addresses problems in-
cluding load balancing, decentralization, scalability, availability, and flexible
naming. In a N-node system, each Chord node stores information about
O(logN) other nodes when the system is in steady state. Lookups are re-
solved via O(logN) messages to other nodes. Nodes joining and leaving the
system will result in no more than O(log2N) messages with high probability.

In Chord, each node has an ID and is mapped to a certain place in a circle [58],
as shown in Figure 2.5. The predecessor of a node is the peer in front of it
when traversing the circle clockwise. Likewise, the successor of a node is
the peer following it. For example, in Figure 2.5 node N2’s predecessor and
successor are N0 and N3 respectively. Each node is responsible for data
with a key between the predecessor’s ID and its own ID. For example, in
Figure 2.5 node N2 is responsible for data with a key K1.

Each Chord node contains a routing table (or finger table) about O(logN)
other nodes in the half of the Chord ring clockwise from the node. The ith

entry in node Nn’s finger table contains the identity of the first successor
that is at least 2i−1 away from Nn on the ring. Each node also maintains
information about its predecessor. For example, the finger table of node

CHAPTER 2. BACKGROUND 19

Figure 2.5: Illustration of a Chord ring.

N2 in Figure 2.5 looks as Table 2.1. Routing in Chord is accomplished

Table 2.1: An example of Chord finger table.

Start Successor
N2 + 1 N3
N2 + 2 N4
N2 + 4 N6
Predecessor = N0

by querying the nearest finger of the key being looked up. Each routing hop
reduces the distance on the circle/ring to the destination node approximately
in half, thus ensuing efficient lookups.

When a node joins, it performs a lookup with its own node ID, treating
the result as its successor. It then does lookups to locate its predecessor
and updates its finger table. Its predecessor and successor will also update
their finger tables subsequently, during their periodic maintenance time slots.
When a node plans to leave, it informs its immediate predecessor and suc-
cessor and transfers its data items to its successor [58].

CHAPTER 2. BACKGROUND 20

2.6 Simple Network Management Protocol

The Simple Network Management Protocol (SNMP) [59] aims to provide
node management functionality in the Internet. An SNMP management
system contains three components [60]:

1. Manager entities that generate commands and listen for responses.

2. Nodes that are managed by the manager. These nodes (agents) are
software processes that maintain information about themselves and
their environment, as well as respond to commands received from man-
agers. Agents often reside in network equipments such as network hubs,
routers, and workstations.

3. A management protocol that conveys management information be-
tween the managers and agents.

The SNMPv1 [59] protocol specifies five command, response, or alert PDUs:

1. GetRequest – A request sent from a manager to an agent to retrieve
the value of a variable stored by the agent.

2. SetRequest – A request sent from a manager to an agent to change the
value of a variable stored by the agent.

3. GetNextRequest – A request sent from a manager to an agent to discover
the next available variable and its value as stored by the agent.

4. Response – A message sent from an agent to a manager in reply to a
fetch command such as GetRequest, SetRequest, GetNextRequest.

5. Trap – An unsolicited alert message sent from an agent to a manager
when there is a significant event.

SNMPv2 specifies two more PDUs in RFC 1905 [61], namely GetBulkRequest
which optimizes GetNextRequest, and InformRequest enabling acknowledged
asynchronous notification between managers.

2.7 Summary

In this chapter we have discussed concepts and technologies related to this
thesis. We summarize what we have covered as follows:

CHAPTER 2. BACKGROUND 21

• The IoT embraces heterogeneous devices into a worldwide network
based on standard protocols. IoT will penetrate into our life more
than the current technologies have. By 2020 there will be 50 billion
connected to the IoT.

• M2M is a similar concept that intersects with IoT. M2M network gen-
erally consists of smart objects interacting with each other without hu-
man intervention. A typical M2M system has five basic components:
users, objects, network, service platform, and enterprise information
system.

• WSNs are used for monitoring as well as control purposes, for exam-
ple, industrial control and monitoring, home automation, security and
military sensing, and so on. Nodes in WSNs scatter over a sensor field
and the number of sensor node is usually large. These nodes are prone
to failure and the network topology may subject to change. Different
routing protocols have been proposed to find an appropriate path to
transfer data in WSNs. These routing protocols are categorized into
four categories: data-centric protocols, hierarchical protocols, location-
based protocols, and network flow and QoS-aware protocols.

• IEEE Std 802.15.4 specifies the PHY and MAC layer for LR-WPANs.
ZigBee is developed on top of IEEE Std 802.15.4 and it defines the
upper layers (from the network layer and above) in the OSI model.
ZigBee provides a stack profile standard that allows developers to create
their own application profiles. The IEFT specifies 6LoWPAN as an
alternative to enable IPv6 on top of IEEE 802.15.4. Since 6LoWPAN
is only an adaption layer, CoAP is suggested as the application layer
protocol for M2M systems.

• A DHT is a hash table constructed and used in a distributed manner
in order to provide an efficient way of data lookup in highly scalable
P2P systems. Chord is one of the DHT algorithms that yield good
performance in load balancing, decentralization, scalability, availability,
and flexible naming.

• SNMP is a protocol that provides node management functionality in
the Internet. It is specified by the IETF.

Chapter 3

Design

The goal of this thesis project is to connect resource constrained devices
to a larger network, for instance the Internet. In particular, we assume a
scenario as shown in Figure 3.1. In this scenario, we assume a number of
LR-WPANs are scattered in different geographic locations. The distance
from one WPAN to another can be tens of kilometers or more. Thus it is
impossible for nodes in one LR-WPAN to communicate with nodes in another
WPAN. The WPAN nodes are assumed to be battery powered and have very
constrained computational capability.

Under this assumption, one proxy node is introduced in each LR-WPAN in
order to connect the LR-WPANs together. This proxy node is both wire-
less wide area network (WWAN) and WPAN enabled. It is responsible for
managing WPAN nodes that are in the same WPAN as the proxy, as well
as exchanging information with WWAN peers. Note that proxy nodes may
also have sensor or actuator modules attached to them. The proxy nodes
have fewer resource constraints as compared with WPAN sensors/actuators,
and they will mostly be mains powered. However, the power consumption of
these nodes are relatively low compared with personal computers, and they
have less computational capability.

To ensure scalability, a DHT overlay is used and all proxy nodes as well as
other WWAN nodes are connected to this DHT overlay network. DHT is
used for node lookup (resembling the functionality of a domain name system
(DNS)) and resource locating. A M2M Communication Enabler (M2M CE)
provides functionality to translate a resource URI to a responsible proxy
node’s IP address. However, the functionality of M2M CE is not within the
scope of this thesis project.

Furthermore, a monitoring and control node (MCN) is used to gather infor-

22

CHAPTER 3. DESIGN 23

Figure 3.1: Overall architecture.

mation from end WPAN nodes and proxies, as well as to send commands
to them in order to configure the system. The MCN may not be online all
the time. However, it has to be in the DHT overlay in order to easily access
both the WWAN nodes and WPAN nodes. The communication between the
Monitoring and Control Node (MCN) and the sensor nodes looks roughly as
Figure 3.2.

To simplify the problem, we assume the underlying WWAN link technol-
ogy is a 3G connection, since it is mature technology and easily accessible.
For the LR-WPAN communication we choose ZigBee over 6LoWPAN and
other technologies based on IEEE 802.15.4, because ZibBee devices are more
popular in the market.

CHAPTER 3. DESIGN 24

Figure 3.2: Flow of communications between MCN and a single sensor(s)
that returns the temperature that it has measured locally.

3.1 Motivation

We believe a proxy is necessary in a P2P-based M2M network for the follow-
ing reasons:

1. Most nodes in WSNs are so resource-constraint that it is not feasible to
run P2P protocols on them. In fact, it may not be feasible to run P2P
protocols on even less resource-constraint devices, for instance mobile
phones, according to [62], which shows it consumes significant battery
and yields long message delays when running REsource LOcation And
Discovery (RELOAD) [63] on mobile phones.

2. A proxy enables efficient data aggregation and management. As we
discussed in Section 2.3, sensor nodes are generally densely deployed
in a WSN, and they typically produce a large amount of data. The
same data value may be collected multiple times by a single node or by
multiple nodes. Although data aggregation mechanisms may be applied
on the sensor nodes themselves, these mechanisms may not produce
satisfactory results due to limitations of nodes themselves. Hence it is
essential to perform data aggregation at the sink (proxy) node before
storing all the gathered information in the P2P overlay, so as to avoid
unnecessarily flooding nodes in the overlay (since data will be stored
in a distributed manner in the overlay).

3. A proxy can act as a firewall or access control server, thus ensuring

CHAPTER 3. DESIGN 25

security of the system. Instead of exposing all the sensor nodes to the
larger network, i.e. the Internet, the proxy controls which resources
in the WSN can be accessed by another specific party. This kind of
security control is more convenient than specifying security policies at
the individual sensor nodes, due to sensor node limitations.

4. Introducing a proxy into the system simplifies the design of application
logic on the WSN nodes. This design paradigm shifts the complexity
of sensor nodes to proxies. Since the proxy nodes are supposed to be
more capable than the sensor nodes, it is straightforward to keep the
sensor nodes simple and shift the complexity to the proxy.

5. A proxy can connect heterogeneous sensor nodes to the system. This
is especially important for M2M networks, since nodes in the network
may rely on different communication protocols. The proxy can bridge
different communication protocols, thus embracing various portions of
networks into the M2M system.

Although some of the above functionality may be realized by nodes other
than a proxy; for example, a dedicated security server can be used to handle
resource access control, we feel these mechanisms may again add complexity
to the whole system. As a result,we try to keep the sensor node logic simple
and move all the complexity to proxy nodes, without complicating the M2M
system too much.

3.2 Objective

The goal of this thesis project is to make WPAN nodes addressable from
the WWAN. A proxy node bridges the communication between a WWAN
node and a WPAN node. Thus, a WWAN node requests WPAN resources
through the proxy node, and vice versa. In our case the proxy should have
the following capabilities:

1. WPAN node discovery: The proxy should be able to discover new
WPAN devices when they are connected to the WPAN and announce
them to the DHT overlay if needed.

2. WPAN service discovery: The proxy should be able to discover the
services that each WPAN device provides. For instance, the proxy
should be aware of all services each sensor/actuator node supports.

CHAPTER 3. DESIGN 26

3. Retrieve information from WPAN nodes and WWAN nodes. For ex-
ample, the proxy should be able to get information from and post data
to sensors and actuators both in the WPAN or WWAN.

4. Process information gathered from WPAN nodes or WWAN nodes and
store this information to the DHT overlay (if required).

3.3 Principles

When designing the proxy, we have kept several principles in mind. These
principles have clearly affected the design and implementation of the proxy.
These principles are:

1. Power efficiency: The proxy should take power consumption into con-
sideration when communicating with WPAN nodes, since the WPAN
nodes may have very limited energy on-board.

2. Interoperability: The proxy should enable heterogeneous devices to
communicate with each other. We assume that the WPAN nodes may
have different hardware architectures, operate over different underlying
communication protocols, or suit different application purposes. The
proxy should provide transparent access to the WPAN nodes from the
WWAN nodes.

3. Scalability: The proxy should to be able to function well when the
number of nodes in its WPAN increases. The proxy should not cause
low responsiveness, long response times, service unavailability, etc., due
to the large number of nodes in the WPAN.

4. Security: The proxy should protect both the confidentiality and in-
tegrity of the data collected by a WPAN node. It should also be able to
detect potential security attacks and report unusual events to a MCN.

5. Reliability: The proxy should reply with reliable data upon request
from WWAN nodes. Furthermore, it should be aware of the unavail-
ability of WPAN nodes and act accordingly in order to produce satis-
fying results for the WWAN nodes.

CHAPTER 3. DESIGN 27

3.4 Architecture

Based on the above discussions, we present a system architecture as shown
in Figure 3.3. In this architecture, the proxy provides the MCN with man-
agement and data access to the WPAN nodes. The proxy intelligence is a
daemon that listens to incoming requests, distinguishes different types of re-
quests, and calls the corresponding APIs. The management API provides
interfaces for managing WPANs, WPAN security, and WPAN services. The
data API provides interfaces for collecting data from the WPAN and deliv-
ering commands to the WPAN.

 Security
Management

 WPAN
Management

 Service
Management

Management API

ZigBee

Caching

Data Service

Data API

Proxy Intelligence

IP

UDP

CoAP

M2M CEManagement Module

Figure 3.3: Proposed proxy architecture.

This proxy bridges the communication between a WWAN and a WPAN. On
the WWAN (IP network) side, the proxy communicates with the management
module and M2M CE using protocols based on IP, such as SNMP and CoAP;
on the WPAN (ZigBee network) side, the proxy communicate with WPAN
nodes using WPAN protocols, for example, ZigBee and CoAP (if 6LoWPAN
is the used in the WPAN). The protocol stack on a proxy node is shown in
Figure 3.4.

CHAPTER 3. DESIGN 28

IEEE 802.15.4

UDP

SNMP

Proxy Logic

IP

DHT

M2M CE

3G / GSM

CoAP

ZigBee NWK

ZigBee APS

ZigBee APP
ZDO

Management
 Module

Proxy Node

Figure 3.4: Protocol stack of the proxy node.

3.5 Details

The unified modeling language (UML) [64] use case diagram of the proxy
is shown in Figure 3.5. We will discuss the functionality in detail in the
following sections.

Figure 3.5: The UML use case diagram of the proxy.

CHAPTER 3. DESIGN 29

3.5.1 Proxy Joining and Leaving

The proxy itself has to be a part of the DHT overlay in order to make WPAN
nodes accessible from the DHT. As a result, the proxy should join the DHT
first before announcing WPAN nodes to the DHT or revoking them from the
overlay.

To join the overlay, the proxy should have a CoAP URI, which can be pre-
configured or configured using SNMP. When the proxy joins the DHT, it
negotiates with an M2M CE instance, which may either reside in the same
node or on a different node in the network. After it becomes a part of the
overlay, the proxy scans all the resources that are supposed to be visible in
the WWAN and announces them to the overlay, again via negotiations with
an M2M CE instance.

To leave a DHT overlay, the proxy first revokes all the resources it has an-
nounced to the overlay. Then it leaves the overlay itself. All operations on
the DHT overlay by the proxy are done through an M2M CE instance.

3.5.2 WPAN Management

The proxy is responsible for configuring the WPAN. It should allow or disal-
low new WPAN devices joining the network. When a node leaves the network
or silently leaves – due to failure because of battery exhaustion or hardware
failure, the proxy should detect that a node has left the network within a
suitable time period ranging from a few seconds to possibly hours, depending
on the actual application scenario.

Another important aspect of WPAN management is ensuring security. The
proxy should enable secure data transmission among WPAN nodes. This
security should ensure both data integrity and authenticity of the data. We
will discuss more about system security in Section 3.5.5.

The proxy acts as the coordinator in the WPAN. It is responsible for the
initial configuration of each WPAN network. It selects an appropriate ZigBee
PAN ID and operating frequency (radio channel), then configures security
options including encryption options and encryption keys. Details of the
proxy’s operation will be described in more detail below.

CHAPTER 3. DESIGN 30

3.5.2.1 WPAN Start Up

To start up a ZigBee network, the proxy first performs a channel scan creating
a list of potential channels, while removing channels with excessive energy
levels (i.e., these channels are already busy with other traffic) [65].

Next the proxy tries to select a PAN ID. To ensure that PAN ID is not already
in use the proxy performs a PAN scan by sending beacon broadcasts on
each potential channel. After it receives responses from nearby coordinators
and routers that have already joined a network, it either randomly selects a
available PAN ID or chooses a PAN ID specified by the upper layers.

Next the proxy will configure the network based upon any specified security
policies. To perform this configuration, the proxy sets whether security is
enabled in the network, and if so generates the network security key and the
trust center link key. Follow this, the proxy configures the relevant encryption
options, such as whether to use a trust center and how to send the security
key when each node joins the network.

The reason we co-locate the ZigBee PAN coordinator and the proxy is to
minimize energy consumption. If the coordinator is placed in another node,
then transmitting messages would consume more energy. All of these re-
quirements on the proxy and coordinator implies that the node supporting
the proxy and coordinate should be mains powered.

3.5.2.2 Node Joining

In ZigBee networks routers and end devices can join an existing network. In
order to join a network, the node has to configure itself with the PAN ID of
the network that it wants to join, then perform a channel scan with a bit-
mask containing the proxy’s operating channel. Additionally, this potential
new node must have a security policy conforming to the proxy’s settings.

A node can only join a network if it has the correct PAN ID, pre-configured
security keys, and the proxy permits this node to join the network. We
demonstrate the process of a node joining a network in Figure 3.6. After the
proxy starts up, initially there are no other nodes in the network. In order
for the proxy to permit a node to join its network, the node’s parameters
must be configured to conform to the proxy network settings. Initially we
will assume that the user manually configures the sensor node, then sends
a “add node request” from the MCN to the proxy. The proxy should first
verify the request, then enable nodes to join the network. At this point the
node is able to join the network. Once this node has joined the network the

CHAPTER 3. DESIGN 31

Figure 3.6: Node joining a ZigBee network.

proxy will send an acknowledgment to the MCN.

After a node has joined the network, the proxy will keep a record of the newly
added node – including what services it can provide. In order to do that, a
node service discovery is performed, this will be discussed in Section 3.5.3.1.

3.5.2.3 Node Leaving

Some nodes may need to leave the WAPN. Generally speaking, there could be
two ways that a node leaves a network: explicit leaving and implicit leaving.
Explicit leaving means that a node notifies the network that it intends to
leave, while implicit leaving refers to the situation where the network is not
explicitly informed when a node leaves.

If a node leaves the network explicitly, then it sends a “leaving network”
message to the proxy. This will cause the proxy to remove the node from
its list of “available nodes”. The M2M CE should also be notified about the
change in the network topology. Moreover, the MCN should be notified of
this change.

CHAPTER 3. DESIGN 32

Implicit leaving is a bit more complicated. Two schemes may be used to find
out whether a node is alive or not, depending on how aggressive the proxy
wishes to be.

Figure 3.7: The “eagle” scheme in which the proxy polls WPAN nodes.

The first scheme will be named the “eagle” scheme, in this scheme the keep-
alive messages are used. The keep-alive messages can either be sent by the
proxy (see Figure 3.7) or by the WPAN nodes (see Figure 3.8).

In the first case the proxy continually asks the nodes if they are alive or not.
If the proxy does not receive an acknowledgement from a WPAN node during
a timeout period, then the proxy considers the WPAN node to be unavail-
able. The keep-alive message interval can be configured by the management
module.

In the second case the WPAN nodes actively send keep-alive messages to the
proxy without proxy polling. Similarly, when the proxy times out waiting
for a keep-alive message from a WPAN node, it treats that node as dead and
informs the DHT overlay via an M2M CE. Since the WPAN nodes control the
intervals to send keep-alive messages, the proxy should be able to configure
this parameter by negotiating with the corresponding WPAN node. The
solution for this may depend on the actual WPAN node, for example, the
communication protocol and firmware of the node. This may be possible for
nodes that support over the air programming (OTAP) [66].

Unfortunately, both cases in the “eagle” scheme consumes energy of both the
target node and other nodes on the path to this node. However, this scheme

CHAPTER 3. DESIGN 33

WPAN node (sensor1)Proxy

Keep-Alive

Keep-Alive

Timeout

M2M CE

Node left: sensor1

Figure 3.8: The “eagle” scheme in which WPAN nodes actively send keep-
alive messages to the proxy.

may be necessary for WPAN nodes that are critical for the system.

Figure 3.9: The “ostrich” scheme.

The second scheme will be named the “ostrich” scheme (see Figure 3.9), in
this scheme the proxy does not send keep-alive messages at all. Instead, the
proxy queries a node only when data transmission is needed. If there are

CHAPTER 3. DESIGN 34

several consecutive missing acknowledgments, then the proxy considers this
node to be dead and notifies the upper layers.

In order for the WPAN service to be more reliable, the proxy should provide
mechanisms to warn the MCN about potential failures that are going to
happen in a period of time. For instance, when the proxy detects a WPAN
node has low battery level, it should report this to the MCN.

3.5.2.4 Naming, Addressing, and Routing

We use concepts of names, addresses, and routes conforming to those defined
in [67]. A name denotes an entity and is usually human-readable. A route
is a list of names representing the path from one to another. An address is
intended for machine processing and route generation.

Every entity has a human-readable CoAP name in our system. This name
is used whenever human users are involved in the loop, for instance, when a
user configures which node a sensor should report to when certain thresholds
are met. More specifically, CoAP names are used mainly by the MCN, via
which human users communicate with the M2M system.

The DHT overlay acts as a distributed domain name service (DDNS) system,
translating CoAP names to addresses. Since our DHT overlay relies on IP,
the CoAP names are always mapped to an IP address, that is, names of
proxy nodes and WWAN nodes map to IP addresses (of themselves), and
names of WPAN nodes map to the IP addresses of their proxies. Each proxy
is responsible for translating names of WPAN nodes to their corresponding
addresses, in our case, their 16-bit WPAN addresses or 64-bit link addresses.

Routing in IP networks is not a major concern of this thesis, as we utilize
the current network infrastructure; otherwise routing in WPANs depends
on the use and functionality of the WPAN. For instance, many-to-one rout-
ing [65] is suitable for scenarios where many nodes send data to a single
central collector. For use cases where a node sends data to many other
nodes, source routing can result in low packet delays and good network per-
formance. Generally speaking, mesh routing mechanisms based on ad hoc
on-demand distance vector (AODV) [68] can also be appropriate for mesh
networks.

CHAPTER 3. DESIGN 35

3.5.3 WPAN Service Management

Not only is the proxy responsible for managing the WPAN nodes, but it is also
responsible for managing the services provided by these nodes. The proxy
discovers what services are offered by each WPAN node. For example, the
proxy may need to be aware of whether a WPAN node provides a temperature
reporting service or a light switch service.

The proxy may need to update the list of services provided by a WPAN or
WPAN node. For instance, when a service on a node is no longer available or
the node becomes unavailable, then the proxy should be aware of this change;
furthermore, when a new service is enabled, the proxy should be informed of
the change. We will discuss this in detail in the following sections.

3.5.3.1 Service Discovery

Service discovery is usually performed by the proxy immediately after a new
node joins the WPAN. However, the proxy may also perform service discovery
upon request from a MCN (there may even be more than one MCN in the
system).

When service discovery is needed, the proxy sends a “service discovery” re-
quest to a WPAN node. After getting a response from the node, it parses
the response and creates entries in a service table. The table should contain
information about the WPAN node’s identity, service type, supported access
methods, and availability. The table might also contain additional informa-
tion about the service, for instance, description of the service. An example
of the entries that might be in such a service table are shown in Table 3.1.

Table 3.1: An example of service table, where the proxy manages one sensor
and one actuator.

Node ID Service Methods Last Available Time

sensor1
Temperature GET 13:55:21 Mar 29, 2011
Humidity GET 13:25:29 Mar 29, 2011
Wind Speed GET 13:56:41 Mar 29, 2011

actuator2 Light Switch GET, PUT 06:36:41 Mar 29, 2011

Service discovery in WPAN can be done in various ways [69]. In our case we
perform service discoveries by sending queries to WPAN nodes. These queries
can be broadcast when the WPAN is initially formed. After the network

CHAPTER 3. DESIGN 36

becomes more stable, unicast queries are sent to specific nodes instead of the
whole network.

We are able to use ZigBee ZDO functionality. For example, ZDO provides
commands to request node descriptors from a ZigBee device, active end-
points in a node and simple descriptor of a specific endpoint. Similarly, for
WPANs running on 6LoWPAN, CoAP with CoRE link format [43] provides
mechanisms to perform resource discovery. For general purpose WPANs,
SensorML [70] provides an XML encoding for describing any processes and
resources specifically for sensor networks.

The proxy is not required to inform the M2M CE or the MCN of service
table changes, since this table could constantly change. Constantly updating
the overlay of table changes may cause flooding in the overlay and may
unnecessarily consume energy at the proxy as well (although the proxy is
mains powered, energy efficiency should always be a concern). On the other
hand, when certain critical services go down, it is necessary for the proxy to
inform upper layers. We will discuss this in the following section.

3.5.3.2 Service Updates

The proxy does not have to inform the overlay about all changes that occur in
the service table. However, if critical changes occur in the service table, then
the M2M CE or the MCN should be notified. Therefore, in the service table
we keep track of all the critical services. Once a critical service is detected
to be unavailable, then a notification will be immediately sent to the M2M
CE.

When a service is required to be actively turned off, then the proxy will mark
the status of this service as “Not Available”. This can be done by sending
a request from the MCN to the proxy, requesting that specific services be
turned off. Similarly, the proxy may enable services, thus an MCN can turn
on (or off) specific services. Upon receiving an indication of unavailable
services for a request, an error message will be returned to the sender of this
request.

3.5.4 Caching

Caching mechanisms will improve system performance when used correctly.
We employ cache mechanisms in two separate ways in our system, that is,
caching is used both for WPAN node data and for proxy peers. We discuss
both of them in detail in this section.

CHAPTER 3. DESIGN 37

3.5.4.1 Caching for WPAN Nodes

The proxy nodes cache data received from the WPAN. Cached data is sent
back when the requested data resides in the cache. Caching for WPAN nodes
in the proxy is need for several reasons:

1. To save energy: Energy is a major issue for LR-WPANs, thus we should
avoid frequently operations on these nodes. Additionally, it is fre-
quently unnecessary to get real-time data from the LR-WPAN nodes.
For instance, the temperature as measured by one sensor node may not
change significantly in a short time, e.g. in a few seconds. For applica-
tions that do not need real-time data, the proxy can reply to requests
with cached data, thus avoiding waking up WPAN nodes constantly,
while still providing the requested data via the proxy.

2. To ensure reliability: Nodes in a LR-WPAN may be vulnerable due
to their constrained on-board resources and changing environment. As
a result, they may be temporally out of service at times. Employing
cache mechanisms will offer more reliable data service, at a cost of
potentially obsolete data.

3. To improve response time: Getting data from the WPAN nodes will
require more time than to get data from the proxy.

While caching is useful with applications not so critical with getting data in
real-time, for certain applications caching may be inappropriate. As a result,
the proxy should be configured explicitly with which data can be cached and
which should not. This can be configured using SNMP.

3.5.4.2 Caching in DHT

To further increase reliability caching for peers (proxy nodes and WWAN
nodes) is needed. Since all nodes in a WPAN communicate with nodes
outside the WPAN via a proxy, this proxy represents a single point of failure.
Once a proxy fails, all the nodes in a WPAN would be unable to send or
receive data, hence there are two alternatives: a standby (or secondary)
proxy and peer caching.

A peer caching mechanism enables a proxy in the DHT network to cache a
copy of data for another node. When one proxy fails, the DHT overlay still
has a relatively fresh copy of the data provided by the dead proxy, thus it
may respond to requests on behalf of this failed proxy. This mechanism is

CHAPTER 3. DESIGN 38

realized by requesting the M2M CE to store data in the overlay. Note that
the overlay itself does not actually store any data, instead it keeps track of
where specific data has been stored.

3.5.5 Security

We discussed in Section 3.1 using a proxy simplifies the security management
of WPAN nodes. This design thus emphasizes implementing a secure gateway
that authenticates the source of incoming service requests and ensures secure
data communication in WPANs.

3.5.5.1 Secure Communication between WWAN Peers

The security of communication between WWAN peers or proxy nodes is
not a complicated issue, since CoAP and SNMP are used for different pur-
poses. Generally we utilize CoAP for data communication and SNMP for
management tasks. Security is ensured in CoAP either with Datagram TLS
(DTLS) [71] binding or IPSec [49]. Security in SNMP is also well specified
in many IETF RFCs, for example, RFC 1909 [72], RFC 1910 [73], RFC
3414 [74], RFC 3816 [75], etc.

3.5.5.2 WPAN Security

Our WPANs consist of ZigBee networks in this thesis project. ZigBee ensures
both infrastructure security and application data security [76]. Infrastructure
security in ZigBee includes network access control, packet routing integrity,
and prevention of unauthorized packet transport; and application data secu-
rity ensures message integrity, authentication, freshness, and privacy.

When a node joins a ZigBee network, it has to possess a shared network key.
After it joins the network any two nodes communicating with each other
share a link key. A trust center is used for key management and distribution.
The trust center in our case is the ZigBee coordinator, which is a part of the
proxy node. Figure 3.10 shows authentication and encryption performed on
a ZigBee packet when both network layer security and APS layer security
are applied.

CHAPTER 3. DESIGN 39

Figure 3.10: Authentication and encryption in ZigBee packets.

3.6 Summary

This chapter has covered the design of our proxy in a DHT-based M2M sys-
tem. We first discussed why a proxy in such systems is needed: WPAN nodes
can not run P2P protocols; a proxy is good for data aggregation and security;
it simplifies WPAN node logic; and a proxy connects heterogeneous devices
to the system. Then we proposed a proxy architecture based on principles
including power efficiency, interoperability, scalability, security, and reliabil-
ity. Then we looked at proxy joining and leaving, WPAN management, and
service management in detail. We introduced caching mechanisms in our de-
sign in order to achieve power efficiency, reliability, and better response time.
Finally we have discussed security considerations regarding communication
between the proxy and WWAN peers as well as communication between
WPAN nodes.

Chapter 4

Implementation

We have implemented a prototype proxy for this thesis project. The major
functionality of this prototype includes WPAN node management, WPAN
resource announcement to the DHT overlay, and translation between IP ad-
dress and ZigBee address. We introduce what hardware and software are
used and how the prototype is implemented. More details can be found in
Appendix A.

4.1 Hardware and Software

We want to build a prototype with low cost. As a result, inexpensive products
and free/open source software are used in this prototype implementation. We
discuss what hardware and software resources have been used in this section.

4.1.1 WPAN Nodes

We choose the Libelium1 Waspmote2 as our WPAN node (see Figure 4.1).
On board it has a low-power Atmel3 8-bit RISC-based microcontroller with a
frequency of 8MHz, combined with 128KB of flash memory, 8KB of SRAM,
and 4KB of EEPROM [77]. It has low power consumption, supports ZigBee
and other communication modules such as Bluetooth and GPRS. More im-
portantly, it has a sensor board to which many sensors can be adapted. For
example, this sensor board supports sensors to detect gases, temperature,

1http://www.libelium.com
2http://www.libelium.com/products/waspmote
3http://www.atmel.com/

40

http://www.libelium.com
http://www.libelium.com/products/waspmote
http://www.atmel.com/

CHAPTER 4. IMPLEMENTATION 41

liquid level, weight, pressure, humidity, and so on. For our application we
use a Digi4 XBeeTM ZB5 transceiver as our ZigBee communication module.

Figure 4.1: A Libelium Waspmote used in our implementation.

The Libelium Waspmotes are based on an open source project named Ar-
duino6. Arduino is a platform designed for sensing electronics. It consists of
two components: an Arduino board and an Arduino integrated development
environment (IDE). The board of Waspmotes was designed by Libelium,
while the Waspmote IDE is based on Arduino IDE. On top of Arduino IDE
Libelium provides a set of APIs for application developers. The APIs are
also open source and include functions to handle sensor utilities and ZigBee
communication [78, 79].

4http://www.digi.com/
5http://www.digi.com/products/wireless-wired-embedded-solutions/

zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module.jsp
6http://www.arduino.cc/

http://www.digi.com/
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module.jsp
http://www.digi.com/products/wireless-wired-embedded-solutions/zigbee-rf-modules/zigbee-mesh-module/xbee-zb-module.jsp
http://www.arduino.cc/

CHAPTER 4. IMPLEMENTATION 42

4.1.2 Proxy and Wide Area Nodes

The proxy nodes are implemented with Gumstix7 OveroTM Earth computer-
on-module8 developing board. It ships with an ARM CortexTM A8 CPU
(OMAP3503 applications processor9 from Texas Instruments10), with a clock
rate of 600 MHz. It has 256MB of RAM and 256MB of flash memory. In
addition, Overo Earth supports other extension boards. For example, Gum-
stix Tobi11 can be mounted to Overo Earth and it provides support of digital
visual interface (DVI) display, Ethernet, USB console, stereo audio, and so
on. The OS on Overo Earth is a Linux distribution using opkg12 package
management system. We use cacao13 Java virtual machine in order to run
Java applications. The 3G data communication is provided by a 3G USB

Figure 4.2: The hardware of the proxy prototype, where a Libelium Wasp-
mote Gateway and a 3G dongle are connected to a Gumstix Overo Earth
through a USB hub.

7http://www.gumstix.com/
8http://www.gumstix.com/store/product_info.php?products_id=211
9http://focus.ti.com/docs/prod/folders/print/omap3503.html

10http://www.ti.com/
11http://www.gumstix.com/store/product_info.php?products_id=230
12http://wiki.openmoko.org/wiki/Opkg
13http://www.cacaovm.org/

http://www.gumstix.com/
http://www.gumstix.com/store/product_info.php?products_id=211
http://focus.ti.com/docs/prod/folders/print/omap3503.html
http://www.ti.com/
http://www.gumstix.com/store/product_info.php?products_id=230
http://wiki.openmoko.org/wiki/Opkg
http://www.cacaovm.org/

CHAPTER 4. IMPLEMENTATION 43

dongle.

In order for the proxy node to communicate with the WPAN, a ZigBee com-
munication module is needed. We implement this with a Libelium Waspmote
Gateway. It is an XBee ZB transceiver mounted on a USB dongle. Libelium
does not provide any APIs to operate the XBee module of the Waspmote
Gateway. For example, when receiving data from the XBee module, the
data frame is read directly from the USB serial port; likewise, we need to
construct data frames by ourselves when sending data to the XBee module.
To ease the XBee communication process and to focus on our proxy proto-
type, we use an open source API named xbee-api [80]. Although this API is
not complete for all of our purposes, it provides functionality to send and re-
ceive data, and ease the management of the XBee coordinator. The xbee-api
uses RXTX14 to enable data communication via the USB serial port.

SNMP4J [81] is used for node management purposes. An SNMP4J agent
runs on every proxy node and wide area node. We choose JCoAP [82] as
the CoAP stack implementation for our prototype because it is under active
development and supports all the features specified by CoAP RFC drafts at
the time of writing this thesis.

4.1.3 Prototype Architecture

We implemented a prototype DHT-based M2M system, the architecture of
which is shown in Figure 4.3. Since there will be many processes running on
the proxy or wide area nodes, inter-process communication (IPC) is needed.
In this prototype we use Java to implement most of the logic module, as
a result, we choose Java remote method invocation (RMI) [83] as the IPC
mechanism. The protocol stack used for the implementation is shown in
Figure 4.4.

4.2 Proxy Start Up

When the proxy starts up, it first loads a proxy configuration from a file
specified by the user. The configuration file contains information about the
M2M CE, the XBee coordinator and the proxy. It specifies which name and
URI to look for a M2M CE instance with Java RMI. It also defines which
port the XBee coordinator uses to connect to the Gumstix and what baud

14http://users.frii.com/jarvi/rxtx/

http://users.frii.com/jarvi/rxtx/

CHAPTER 4. IMPLEMENTATION 44

Figure 4.3: A prototype of the DHT-based M2M system, where a proxy is
used to make WPAN nodes globally addressable and accessible from a 3G
WWAN.

IEEE 802.15.4

UDP

SNMP4J

Proxy Logic

IP

Chord

M2M CE

3G / GSM

JCoAP

XBee

xbee-api

Management
 Module

Proxy Node

Figure 4.4: A prototype used for our implementation.

rate should be used for serial communication. Finally the configuration file
specifies the CoAP name of the proxy and Java RMI information so that the
proxy instance can be called from another application process.

The proxy then gets a handle on the M2M CE instance with Java RMI and
joins the DHT overlay with its name specified in the configuration file. After
it becomes a part of the overlay it is ready to announce WPAN nodes to
the overlay. In addition, a CoAP server starts listening on a certain port to
accept incoming requests from other proxy peers or WWAN nodes.

CHAPTER 4. IMPLEMENTATION 45

4.3 WPAN Node Joining and Leaving

Initially when the proxy starts up, it allows XBee nodes with correct security
options to join the WPAN. Once an XBee node joins, it is announced to
the overlay by the proxy with a predefined CoAP name. This name can
be later configured using SNMP. However, it is not implemented in this
implementation.

An XBee coordinator checks its network configuration (PAN ID, operating
channel, stack profile, and security options) after a reset or power cycle. If any
parameter is invalid then the coordinator tries to start up another network,
unless the network settings have been written to non-volatile memory. An
XBee end device runs in a similar way as the coordinator, except that it
tries to join another network instead of starting another network when the
parameters are not valid after a reset or power cycle.

When an XBee coordinator starts up a network and end devices join the
network, they will send ZDO “device announcement” messages to the coor-
dinator. After the XBee coordinator is reset or power cycled, then the end
devices do not send a “device announcement” to it when they are started.
Instead, when many-to-one routing is used in the XBee network they send
the coordinator a “route record indicator” messages, which carries a distance-
vector like information indicating all the nodes the message have passed by.
When a “route record indicator” message is received by the coordinator, we
consider an XBee node has (re)joined the network.

4.4 Application Logic

4.4.1 CoAP Message Parsing

When the proxy receives a message it checks the destination of the message.
More specifically, a “URI-Host” option defines the destination. If the final
destination is the proxy, it digests the message itself. On the other hand, if
the destination is a WPAN node, the proxy then translates the CoAP name
into ZigBee 64-bit address and relays the message to the corresponding XBee
node.

CHAPTER 4. IMPLEMENTATION 46

4.4.2 Waspmote Application Packet Fragmentation and
Reassembling

Libelium introduces an application header to deal with fragmentation and
reassembly. This header is shown as in Figure 4.5.

Figure 4.5: Waspmote application header.

In this header an application is used in the receiver differentiates different
packets. When the data to be transferred is longer than the maximum pay-
load it has to be fragmented. A fragment number and first fragment indicator
fulfill this purpose. The original sender fills the source type (64-bit MAC, 16-
bit network address, or maximum 20-byte node identifier string) and source
address. Finally, the data field carries the actual payload.

On the proxy side xbee-api does not provide any APIs to operate on Wasp-
mote application packets. As a result we implemented those functions to send
and receive Waspmote application packets. These functions deal specifically
with fragmentation and assembly of Waspmote application packets.

Chapter 5

Discussions

We have stated in Section 3.3 that principles including power efficiency, in-
teroperability, scalability, security, and reliability have affected the proxy
design. Some design choices are results endeavor of conforming to one or
more principles. For instance, the introduction of caching mechanism in the
system tries to improve both power efficiency and reliability (and potentially
scalability as well). However, the focus of this thesis project has been sys-
tem architecture, design, and prototype implementation. We have confirmed
the basic functionality of the prototype and carried out some preliminary
performance measurements on this prototype.

In the remaining of this chapter we discuss the functionality and perfor-
mance evaluation we have done, what are the aspects that may affect system
performance, and our thoughts on power sources.

5.1 Functionality Evaluation

We stated in Section 3 that the goal of this thesis project is to make resource
constrained WPAN devices accessible from a larger network. In our design,
sensors/actuators are able to join a WPAN managed by a proxy, which an-
nounces them to a DHT-overlay that runs on top of IP. The proxy is able to
discover services available in a sensor/actuator and announce these services
to the DHT-overlay as well.

Simple applications have been developed to test the functionality of the
proxy. For example, we have two sample scenarios shown in Figure 5.1 and
Figure 5.2, in which nodes from one WPAN are able to communicate trans-
parently with nodes in a WWAN. In Figure 5.1 we have verified a scenario

47

CHAPTER 5. DISCUSSIONS 48

where a Waspmote detects motion and sends a message to a Gumstix node
connected to an IP network. Specifically, when the Waspmote is moved or
shook, it sends a message “Motion detected” to a Gumstix node (the des-
tination is hard-coded at the moment). This message is handled by the
Waspmote’s proxy node. The proxy first gets the IP address of the Gumstix
node, then it sends a CoAP message to the IP address.

Send to: actuator1

"Motion detected"

LN Sensor
(sensor1)

Proxy M2M CE

getIP(actuator1)

WN Actuator
(actuator1)

P2P operations

IP of actuator1

Send to: actuator1

CoAP Message: "Motion detected"

Motion

Figure 5.1: A sample scenario implemented in our prototype, where a local
WPAN sensor sends message to a WWAN actuator.

Figure 5.2 describes another scenario where the data flow is from a Gumstix
to a Waspmote in a WPAN. Users can specify which WPAN node the Gum-
stix should send a message to, using a command line interface (this interface
will be updated with a button in our following work). This Gumstix then
looks up the IP of the proxy responsible for the WPAN node and sends a
CoAP message to the proxy, specifying which WPAN node is the final desti-
nation. Upon receiving the message, the proxy looks up the ZigBee address of
the Waspmote and sends a ZigBee message to the corresponding Waspmote.
The Waspmote blinks its LED lights if the message is “Blink”.

CHAPTER 5. DISCUSSIONS 49

M2M CE

getIP(actuator2)

Proxy
LN Actuator
(actuator2)

P2P operations

IP of actuator2’s proxy

Send to: actuator2

CoAP Message: "Blink"

Local lookup

Message: "Blink"

WN Sensor
(sensor2)

Send message
to actuator2

Blink LEDs

Figure 5.2: A sample scenario implemented in our prototype, where a WWAN
sensor sends message to a local WPAN actuator.

5.2 Performance Measurements

We did some preliminary measurements investigating the performance of our
prototype. More specifically, we measured how the number of nodes in the
DHT overlay affects the time it takes for one node to look up the IP address of
another node, and how the number of nodes in the DHT and CoAP message
size affect the round trip time (RTT) between a WWAN node and a WPAN
node. We will present our result in the remaining of this section.

5.2.1 Node Lookup Time

We set up an environment to investigate the relationship between the number
of nodes in the DHT and the time it takes for one node A to get the IP
address of another node B by looking up the node B’s name in the DHT.
In this environment we have two Gumstix nodes running Chord DHT. We

CHAPTER 5. DISCUSSIONS 50

have a personal computer (PC) in the same network as those two Gumstix
nodes. The connection was Ethernet instead of 3G, since our operator has
blocked most of the ports we needed to run DHT algorithms (when we are
doing the evaluation). On this PC a number of virtual nodes are started.
For the first measurement there are 8 virtual DHT nodes running on the
PC, and 18 virtual nodes in the second measurement, 28 virtual nodes in the
third measurement, and so forth. We look up the IP address of Gumstix A
from Gumstix node B and note down the time this process takes. Finally we
plotted a figure showing how the number of DHT nodes affects node lookup
time, as shown in Figure 5.3.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 10 20 30 40 50 60 70

T
im

e
(m

s)
 o

f l
oo

ki
ng

 u
p

th
e

IP
 a

dd
re

ss
 o

f a
 n

od
e

Number of nodes in DHT

Figure 5.3: The number of nodes in the DHT does not significantly affect
node lookup time, but he stability of node looking up decreases as the number
of DHT nodes increases.

We can see from Figure 5.3 that the both the average and medium lookup
time is around 200 milliseconds when there are no more than 30 nodes in the
DHT. Almost all lookups were successful within 300 milliseconds. However,
as the number of DHT nodes increases to 40, the average lookup time remains
low, while the medium lookup time increases significantly because of one peek
value in one case where the lookup takes more than 5000 milliseconds. This

CHAPTER 5. DISCUSSIONS 51

abnormality might have been caused by busy process scheduling on the PC
on which the virtual DHT nodes run. Similarly, when the number of DHT
nodes increases to 50, another peek value is found. When the number of DHT
nodes increases to 60, the average lookup time increases not so much, but the
medium lookup time increases much and the variations are large compared
with the testing case where there are no more than 30 DHT nodes. We
believe these phenomena are caused by the depletion of resources (CPU slots
and memory) on the PC running virtual DHT nodes. In fact, when we had
58 virtual nodes running on a single PC, it was too busy running the virtual
nodes to response to external user input, for example, keyboard interruptions.
From this observation we feel that the node lookup time is low enough in
most cases, when the number of DHT nodes is small. Further measurements
need to be carried out with the actual network factors involving into the test
cases, for example, by running a number of virtual DHT nodes on different
PCs placed in a network.

5.2.2 RTT between WWAN and WPAN Nodes

Next we measure the RTT between a WWAN node and a WPAN node,
using the same environment as we did in the previous sub-section. This time
we still simulate virtual DHT nodes on a PC, and try to investigate how
the number of DHT nodes and CoAP message size affect the RTT from a
Gumstix node to a Waspmote. We generate random character strings with
size from 1 to 180 bytes and note down the time the messages travel from
the Gumstix to the Waspmote and then get back to the original Gumstix
node. We have plotted the collected data in Figure 5.4.

From Figure 5.4 we see that RTT is not significantly affected by the number
of nodes in the DHT, as the curves show similar behaviors whether there are
10 or 60 DHT nodes. It should not be a surprise since the measured RTT does
not include node IP lookup time. Furthermore, the DHT nodes are mostly
virtual nodes and therefore the number of nodes does not significantly influ-
ence traffic volume in the network. Note that some messages larger than 150
bytes yield exceptionally long RTT. It happens with scenarios where 10, 20,
or 30 DHT nodes participate in the network. This happens because of some
CoAP message timeout and retransmissions (see the following discussions).

We have two test cases in which the RTT between two WWAN nodes is
measured. Specifically, we noted down the time it takes for CoAP messages to
travel from one Gumstix to another Gumstix proxy node in the same network
and then get back to the original Gumstix. This is done by letting the

CHAPTER 5. DISCUSSIONS 52

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 20 40 60 80 100 120 140 160 180

R
T

T
 (

m
s)

 b
et

w
ee

n
a

W
W

A
N

 n
od

e
an

d
a

W
P

A
N

 n
od

e

CoAP message size (bytes)

10 DHT nodes
20 DHT nodes
30 DHT nodes
40 DHT nodes
50 DHT nodes
60 DHT nodes

Figure 5.4: RTT is affected more significantly by the size of CoAP messages
rather than the number of DHT nodes, when the majority of DHT nodes are
virtual nodes residing on a single PC.

Gumstix proxy to reply with the same CoAP message it receives if messages
are larger than 180 bytes, without sending the message to a WPAN node.
That is, CoAP messages no more than 180 bytes are delivered to WPAN
nodes (results have been plotted in Figure 5.4) but larger messages are simply
returned to the sender. The measured data is plotted in Figure 5.5. We
notice from Figure 5.5 that one CoAP message yields a RTT of almost 650
milliseconds. However, if we leave this abnormality out, the medium RTT
for both test cases is around 350 milliseconds and the average RTT is around
300 milliseconds. Another phenomenon we can see from Figure 5.5 is that
CoAP message size does not seem to have a significant impact on the RTT
(when the CoAP messages are between 180 and 300 bytes). Although we do
not have any measured data on how it goes with CoAP messages less than
180 bytes, we believe it is safe to assume that the medium RTT between two
WWAN nodes will be around 350 milliseconds and the average RTT will be
around 300 milliseconds, assuming no CoAP messages time out or need to
be retransmitted.

CHAPTER 5. DISCUSSIONS 53

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 700

 180 200 220 240 260 280 300

R
T

T
 (

m
s)

 b
et

w
ee

n
tw

o
W

W
A

N
 n

od
es

CoAP message size (bytes)

Test case one
Test case two

Figure 5.5: RTT between two WWAN nodes is not significantly influenced
by CoAP message size, when CoAP messages are between 180 and 300 bytes.

Since those curves in Figure 5.4 are so similar with each other, now we
will just analyze one curve (see Figure 5.6), which shows the relationship
between the size of CoAP messages and RTT, when there are 50 nodes in the
DHT. The RTT is quite large when the Gumstix is sending one-byte CoAP
messages. This is probably caused by the fact that neither the Gumstix
sender or the receiving proxy node has fully loaded the relevant applications
in their cache memory. After that the RTT does not change drastically until
the CoAP message size reaches 62 bytes, where the RTT almost doubled.
This is because the proxy has to fragment any messages larger than 61 bytes.
The maximum Waspmotes message payload that may fit into one packet is
61 bytes in our prototype. Similarly, when the CoAP message size reaches
123 bytes, the RTT again goes onto another higher stage, since the maximum
payload for the second (and following) fragments is 62 (rather than 61) bytes.
We can also see from the curve that messages divided into the same number
of fragments have similar RTT.

From the above discussions we may conclude the size of CoAP messages does
not play an important role in affecting the RTT between two WWAN nodes,

CHAPTER 5. DISCUSSIONS 54

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 20 40 60 80 100 120 140 160 180

R
T

T
 (

m
s)

 b
et

w
ee

n
a

W
W

A
N

 n
od

e
an

d
a

W
P

A
N

 n
od

e

CoAP message size (bytes)

Figure 5.6: RTT is affected by the size of CoAP messages when the system
has 50 DHT nodes (48 of which are virtual nodes residing on a single PC).

especially for small messages. However, the message size indeed influence
the RTT between a WWAN node and a WPAN node. To be exact, RTT
increases as the number of fragments the proxy have to divide the message
into increases. The RTT is acceptable in most cases given the hardware
and software we use. Nevertheless, the system performance may be further
improved by disabling unnecessary logging and debugging functions. Due to
the fact that the virtual DHT nodes do not significantly influence network
traffic, we can not claim that the number of DHT nodes does not significantly
affect the RTT between a WWAN node and a WPAN node. We still need
to investigate this with more measurements in scenarios with an extremely
large number of DHT nodes and practical network environment.

5.3 Performance Discussions

Although we have just done some preliminary performance evaluation of
the prototype, it is still worthwhile discussing what factors may affect our

CHAPTER 5. DISCUSSIONS 55

system’s performance. In this section we specifically discuss in two aspects:
proxy throughput and reliability.

5.3.1 Proxy Throughput

DHT-based P2P systems are often thought to be scalable. However, the
use of DHT in our system does not immediately imply that our system is
scalable. The DHT provides scalability in the perspective of connecting a
large number of WWAN nodes to the system. In this section we discuss
what can be the bottlenecks that may hinder scalability of our design. The
proxy in our system are responsible of WPAN management and act as a
gateway for WPAN nodes. All requests from or to a WPAN are processed by
the proxy. As a result, how fast the proxy can process these requests affects
the overall performance of the M2M system.

We expect an increase of requests to the proxy as the number of WPAN nodes
relying on that proxy grows. Similarly, when the number of WWAN nodes
grows larger and the communication between WWAN nodes and WPAN
nodes become more frequent, the proxy should also expect a grow of requests.
Ideally, the proxy should be able to process as many requests as possible
and produce low delays. Otherwise the performance of the M2M system is
downgraded when proxy throughput can not match the increase of requests.

In order to increase proxy throughput, we may need to use more advanced
hardware for proxies and switch to technologies providing more incoming and
outgoing bandwidth (other than 3G). However, this will obviously increase
the cost of proxies and eventually the cost of the system. An alternative is
to introduce more proxies when more WPAN nodes need to join the system.
This alternative attacks the problem by slightly shifting the scalability issue
of proxies to the DHT.

5.3.2 Proxy Reliability

Since a proxy reflects a single point of failure in our design, caching mech-
anisms are introduced so tackle this problem. Caching partly remedies this
problem at the cost of potentially obsolete data. That is, caching in DHT
(see Section 3.5.4.2) may be useful for other nodes to get a data copy col-
lected by a WPAN node even if the proxy fails. However, this does not help
when WPAN management operations are need on a WPAN when its proxy
has failed.

CHAPTER 5. DISCUSSIONS 56

One way to remedy the above problem is introducing redundancy on prox-
ies. Unfortunately in our case this is not feasible since the proxy acts as
the coordinator node, while only one coordinator is allowed for each ZigBee
network. Another option is to ensure fast recovery of the proxy. Fast re-
covery implies fast detection of proxy failure. Fast failure detection can be
implemented using underlying DHT algorithms. For instance, Chord ensure
robustness in face of node failures; and this mechanism can be used for node
failure detection. Once node failure is detected, alarm messages can be sent
to (predefined or dynamically configured) administrators. Then it should be
easier to diagnose what has failed and bring up the node again.

5.4 Power Source

In our design the proxies are supposed to be mains powered. It may be
desirable to have battery powered proxies in some scenarios, for example
where no electric sockets are available. In such cases renewable energy sources
may come to help. For example, we can use solar panel batteries to provide
power the proxies.

The WPAN sensors are expected to last. Generally speaking, these sensor
are in sleeping mode most of the time in order to save energy. For sensors
that may consume much energy, we can consider using wireless charging
technologies [84], which is a quickly emerging and promising technology.

Chapter 6

Conclusions and Future Work

This study was a part of the Devices and Interoperability EcosysteM (DIEM)
program1 sponsored by the Finnish Funding Agency for Technology and In-
novation (TEKES)2 as well as other industrial and research parties. The
study at NomadicLab of Ericsson Finland focuses on finding a solution to
move the intelligence of an M2M system from a centralized server to the net-
work edge. We proposed a DHT-based M2M system to fulfill this purpose.
This project has been further divided into three master’s thesis topics: one
topic focuses on system management applications; one focuses on distributed
intelligence; and finally this thesis study focuses on the network edge, i.e.,
the proxy and end WPAN nodes. We close this thesis with what we have
done in this thesis project, our conclusions, and what future work is needed.

6.1 Summary

We have done a study on DHT-based M2M networks in this thesis project.
More specifically, we focused on the network edge and introduced a proxy in
such networks. We discussed why proxies are necessary for these systems and
why those efforts are essential. We have kept in mind principles including
power efficiency, interoperability, scalability, security, and reliability during
this study. Based on these principles, we proposed our design of the proxy,
implemented a prototype, and finally analyzed our design and implementa-
tion.

A proxy is necessary since WPAN nodes can not run P2P algorithms due to
1http://www.diem.fi/programme
2http://www.tekes.fi/en/

57

http://www.diem.fi/programme
http://www.tekes.fi/en/

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 58

resource constraints. In addition, proxies are good for data management and
security. They also simplify application logic on WSN nodes and connect
heterogeneous WPAN nodes to the M2M system. Although some of the
above functionality may be realized by nodes other than a proxy, they are
likely to add complexity to the whole system. As a result, a proxy can be
a good tradeoff to keep the WPAN node logic simple and at the same time
avoid complicating the M2M system too much.

The design of our proxy mainly focuses on WPAN node management and ser-
vice management. The proxy acts as both the coordinator and data collector
of the WPAN. It is responsible for configuring the WPAN and allows or dis-
allows new WPAN devices joining the network. In our design node joining is
done by applying security options as an access control mechanism, i.e., only
nodes with the same shared security keys as the proxy may join the WPAN.
After one node has joined a WPAN, it may voluntarily or involuntarily leave
the network. When a node voluntarily leaves, it may either inform the proxy
or not. The proxy provides mechanisms to detect whether a node has left
the WPAN. The proxy is also responsible for discovering available services
one WPAN provides. This is dependent on the underlying WPAN protocols,
for example, in CoAP resource discovery can be used and in ZigBee ZDO is
our choice.

Caching mechanisms have been introduced in order to provide better per-
formance. One proxy can cache data both for WPAN nodes and in DHT.
Caching for WPAN nodes saves the efforts of querying the WPAN all the
time; caching in DHT improves system reliability. Security has also been a
concern in the proxy design. The secure communication between a proxy and
its WWAN peers takes advantage of security mechanisms specified either by
CoAP or SNMP; and the secure communication between the WPAN nodes
is ensure by WPAN protocols (for example ZigBee security specifications).

Based on our design, a prototype proxy was implemented using Gumstix
boards and Waspmote sensor nodes. The implementation took advantage
of inexpensive hardware and free/open source software in order to keep the
cost low. We have confirmed the basic functionality of the prototype and
made some discussions regarding the design and the prototype. The focus
of this thesis project has been system architecture, design, and prototype
implementation, while not so much performance evaluation has been con-
ducted. However, a few preliminary performance measurements have been
carried out. We believe that it should be feasible to use our prototype in
practical scenarios.

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 59

6.2 Future Work

Since no performance evaluation has been done in this thesis work, this should
be carried out in the following study. Specifically, the evaluation should fo-
cus on power consumption of WPAN nodes, delays the proxy introduces,
proxy throughput, comparison of proxy with and without caching mecha-
nisms, and system scalability. Although ZigBee devices are designed to last
several months or even years with batteries, different applications may have
different battery lifetime. Further investigations are needed in order to pro-
vide concrete evidence on which application scenarios are appropriate. The
proxy’s performance should be further measured from the perspective of de-
lay and throughput, since these factors affect system’s performance as well
as scalability.

Our design mainly uses ZigBee as the WPAN protocol. In the future more
WPAN protocols should be included in the system, for example, 6LoWPAN,
Z-Wave, Bluetooth, and so on. When we think about IoT or M2M, devices
in either system are heterogeneous. Various protocols have been developed
for different purposes. However, devices running on top of these protocols
can be integrated into one system by making the proxy support them. One
proxy node may not support different protocols at the same time since it
may add complexity to the proxy logic. However, proxies supporting dif-
ferent underlying WPAN protocols will easily embrace different devices and
application scenarios into one system, making the system truly intelligent
and more ubiquitous.

References

[1] INFSO D.4 Networked Enterprise & RFID INFSO G.2 Micro &
Nanosystems in cooperation with the Working Group RFID of the ETP
EPOSS, “Internet of Things in 2020: Roadmap for the Future,” May
2008. Version 1.1, http://www.iot-visitthefuture.eu/fileadmin/
documents/researchforeurope/270808_IoT_in_2020_Workshop_
Report_V1-1.pdf.

[2] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, pp. 2787–2805, October 2010.

[3] S. E. Sarma, S. A. Weis, and D. W. Engels, “RFID Systems and Security
and Privacy Implications,” in In Workshop on Cryptographic Hardware
and Embedded Systems, pp. 454–470, Springer, 2002.

[4] J. Conti, “The Internet of Things,” Communications Engineer, vol. 4,
pp. 20 –25, December – January 2006.

[5] A. Walter-Krisch, “Heading towards 50 billion connections.”
Ericsson OSS/BSS: http://www.ericsson.com/campaign/
opportunitysupportsystems/newsfeed/posts/15/. Accessed Febru-
ary 14, 2011.

[6] B. Mellor, “A world of connections,” The Economist, April 2007.

[7] G. Lawton, “Machine-to-machine technology gears up for growth,” Com-
puter, vol. 37, pp. 12 – 15, September 2004.

[8] S. Gupta and A. Hirdesh, “Overview of M2M.” Ankit Hird-
esh Papers website: http://hriday.ankit.googlepages.com/M2M_
overview_paper.pdf. Accessed February 16, 2011.

[9] I. Brezeanu and G. Gorghiu, “Machine to machine applications in enter-
prise a new step to intelligent internet control,” in Proceedings of the 1st

60

http://www.iot-visitthefuture.eu/fileadmin/documents/researchforeurope/270808_IoT_in_2020_Workshop_Report_V1-1.pdf
http://www.iot-visitthefuture.eu/fileadmin/documents/researchforeurope/270808_IoT_in_2020_Workshop_Report_V1-1.pdf
http://www.iot-visitthefuture.eu/fileadmin/documents/researchforeurope/270808_IoT_in_2020_Workshop_Report_V1-1.pdf
http://www.ericsson.com/campaign/opportunitysupportsystems/newsfeed/posts/15/
http://www.ericsson.com/campaign/opportunitysupportsystems/newsfeed/posts/15/
http://hriday.ankit.googlepages.com/M2M_overview_paper.pdf
http://hriday.ankit.googlepages.com/M2M_overview_paper.pdf

REFERENCES 61

Workshop on Energy, Transport and Environment Control Applications
(ETECA’09), (Targoviste, Romania), pp. 30–45, May 2009.

[10] G. Privat, “From Smart Devices to Ambient Communication.” Work-
shop “From RFID to the Internet of Things”. Brussels, Belgium, March
2006.

[11] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Communications Magazine, vol. 40,
pp. 102–114, August 2002.

[12] J. Edgar H. Callaway, Wireless Sensor Networks: Architectures and Pro-
tocols. AUERBACH, August 2003.

[13] E. M. Royer and C.-K. Toh, “A Review of Current Routing Protocols for
Ad-Hoc Mobile Wireless Networks,” IEEE Personal Communications,
vol. 6, pp. 46–55, 1999.

[14] L. Song and D. Hatzinakos, “Architecture of Wireless Sensor Networks
With Mobile Sinks: Sparsely Deployed Sensors,” IEEE Transactions on
Vehicular Technology, vol. 56, pp. 1826–1836, 2007.

[15] K. Akkaya and M. Younis, “A survey on routing protocols for wireless
sensor networks,” Ad Hoc Networks, vol. 3, pp. 325–349, 2005.

[16] S. M. Hedetniemi, S. T. Hedetniemi, and A. L. Liestman, “A survey
of gossiping and broadcasting in communication networks,” Networks,
vol. 18, no. 4, pp. 319–349, 1988.

[17] W. R. Heinzelman, J. Kulik, and H. Balakrishnan, “Adaptive proto-
cols for information dissemination in wireless sensor networks,” in Pro-
ceedings of the 5th annual ACM/IEEE international conference on Mo-
bile computing and networking, MobiCom ’99, (New York, NY, USA),
pp. 174–185, ACM, 1999.

[18] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: a
scalable and robust communication paradigm for sensor networks,” in
Proceedings of the 6th annual international conference on Mobile com-
puting and networking, MobiCom ’00, (New York, NY, USA), pp. 56–67,
ACM, 2000.

[19] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan, “Energy-
efficient communication protocol for wireless microsensor networks,” in
System Sciences, 2000. Proceedings of the 33rd Annual Hawaii Interna-
tional Conference on, p. 10 pp. vol.2, January 2000.

REFERENCES 62

[20] S. Lindsey and C. Raghavendra, “Pegasis: Power-efficient gathering in
sensor information systems,” in Aerospace Conference Proceedings, 2002.
IEEE, vol. 3, pp. 1125 – 1130, 2002.

[21] A. Manjeshwar and D. Agrawal, “Teen: a routing protocol for enhanced
efficiency in wireless sensor networks,” in Parallel and Distributed Pro-
cessing Symposium., Proceedings 15th International, pp. 2009 – 2015,
April 2001.

[22] V. Rodoplu and T. Meng, “Minimum energy mobile wireless networks,”
Selected Areas in Communications, IEEE Journal on, vol. 17, pp. 1333
– 1344, August 1999.

[23] L. Li and J. Halpern, “Minimum-energy mobile wireless networks revis-
ited,” in Communications, 2001. ICC 2001. IEEE International Confer-
ence on, vol. 1, pp. 278 –283, June 2001.

[24] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy con-
servation for ad hoc routing,” in Proceedings of the 7th annual interna-
tional conference on Mobile computing and networking, MobiCom ’01,
(New York, NY, USA), pp. 70–84, ACM, 2001.

[25] Y. Yu, R. Govindan, and D. Estrin, “Geographical and energy aware
routing: a recursive data dissemination protocol for wireless sensor net-
works,” tech. rep., UCLA Computer Science Department, 2001.

[26] J.-H. Chang and L. Tassiulas, “Maximum lifetime routing in wireless sen-
sor networks,” IEEE/ACM Trans. Netw., vol. 12, pp. 609–619, August
2004.

[27] K. Kalpakis, K. Dasgupta, and P. Namjoshi, “Maximum lifetime data
gathering and aggregation in wireless sensor networks,” Networks The
Proceedings of the Joint International Conference on Wireless LANs and
Home Networks ICWLHN 2002 and Networking ICN 2002, pp. 685–696,
2002.

[28] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, “Protocols for self-
organization of a wireless sensor network,” IEEE Personal Communica-
tions, vol. 7, pp. 16–27, 2000.

[29] J. A. Gutiérrez, E. H. Callaway, and R. L. Barrett, Low-Rate Wire-
less Personal Area Networks: Enabling Wireless Sensors with IEEE
802.15.4. IEEE Standards, USA: Standards Information Network -
IEEE Press, 1. ed., 2003.

REFERENCES 63

[30] LAN/MAN Standards Committee of the IEEE Computer Society, Wire-
less Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications for Low-Rate Wireless Personal Area Networks (LR-WPANs).
New York, USA: IEEE, IEEE Std 802.15.4-2006 ed., 2006.

[31] LAN/MAN Standards Committee of the IEEE Computer Society, Wire-
less Medium Access Control (MAC) and Physical Layer (PHY) Speci-
fications for Low-Rate Wireless Personal Area Networks (LR-WPANs).
New York, USA: IEEE, IEEE Std 802.15.4-2003 ed., 2003.

[32] H. Zimmermann, “Innovations in Internetworking,” ch. OSI reference
model – The ISO model of architecture for open systems interconnection,
pp. 2–9, Norwood, MA, USA: Artech House, Inc., 1988.

[33] S. C. Ergen, “ZigBee/IEEE 802.15.4 Summary,” September 2004. http:
//pages.cs.wisc.edu/~suman/courses/838/papers/zigbee.pdf.
Accessed March 12, 2011.

[34] ZigBee Alliance, “The Alliance,” http://www.zigbee.org/About/
AboutAlliance/TheAlliance.aspx. Accessed April 4, 2011.

[35] A. Elahi and A. Gschwender, ZigBee Wireless Sensor and Control Net-
work. Prentice Hall Communications Engineering and Emerging Tech-
nologies Series, Prentice Hall, 2009.

[36] ZigBee Standards Organization, ZigBee Specification, Docu-
ment 053474r17. California, USA: http://www.zigbee.org/
Specifications.aspx, January 2008.

[37] N. Kushalnagar, G. Montenegro, and C. Schumacher, “IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals,” RFC 4919, Internet Engi-
neering Task Force, August 2007.

[38] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) specifi-
cation,” RFC 2460, Internet Engineering Task Force, December 1998.

[39] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission
of IPv6 Packets over IEEE 802.15.4 Networks,” RFC 4944, Internet En-
gineering Task Force, September 2007.

[40] Z. Shelby, K. Hartke, C. Bormann, and B. Frank, “Constrained Ap-
plication Protocol (CoAP), work in progress,” draft-ietf-core-coap-05,
Internet Engineering Task Force, 2011.

http://pages.cs.wisc.edu/~suman/courses/838/papers/zigbee.pdf
http://pages.cs.wisc.edu/~suman/courses/838/papers/zigbee.pdf
http://www.zigbee.org/About/AboutAlliance/TheAlliance.aspx
http://www.zigbee.org/About/AboutAlliance/TheAlliance.aspx
http://www.zigbee.org/Specifications.aspx
http://www.zigbee.org/Specifications.aspx

REFERENCES 64

[41] R. T. Fielding, Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, University of California, Irvine,
Irvine, California, 2000.

[42] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext transfer protocol – HTTP/1.1,” RFC 2616,
Internet Engineering Task Force, June 1999.

[43] Z. Shelby, “CoRE Link Format, work in progress,” draft-ietf-core-link-
format-03, Internet Engineering Task Force, 2011.

[44] G. S. Manku, Dipsea: a modular distributed hash table. PhD thesis,
Stanford University, August 2004.

[45] M. Naor and U. Wieder, “Novel Architectures for P2P Applications:
the Continuous-Discrete Approach,” ACM TRANSACTIONS ON AL-
GORITHMS, vol. 3, no. 3, pp. 50–59, 2007.

[46] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica, “Looking up data in P2P systems,” Communications of the ACM,
vol. 46, pp. 43–48, February 2003.

[47] R. Rivest, “The MD5 Message-Digest algorithm,” RFC 1321, Internet
Engineering Task Force, April 1992.

[48] R. Oppliger, SSL and TLS: Theory and Practice. Norwood, MA, USA:
Artech House, Inc., 2009.

[49] S. Kent and K. Seo, “Security Architecture for the Internet Protocol,”
RFC 4301, Internet Engineering Task Force, December 2009.

[50] P. Gutmann and P. Gutmann, “Software generation of practically strong
random numbers,” in In Proceedings of the 8th USENIX Security Sym-
posium, pp. 243–257, 1998.

[51] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web,” in Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing,
STOC ’97, (New York, NY, USA), pp. 654–663, ACM, 1997.

[52] T. White, “Consistent hashing,” http://www.lexemetech.com/2007/
11/consistent-hashing.html. Accessed February 21, 2011.

http://www.lexemetech.com/2007/11/consistent-hashing.html
http://www.lexemetech.com/2007/11/consistent-hashing.html

REFERENCES 65

[53] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in Proceedings of the 2001 conference on Applications, technolo-
gies, architectures, and protocols for computer communications, SIG-
COMM ’01, (New York, NY, USA), pp. 149–160, ACM, 2001.

[54] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching with
consistent hashing,” Computer Networks, vol. 31, no. 11-16, pp. 1203 –
1213, 1999.

[55] W. Peterson and D. Brown, “Cyclic Codes for Error Detection,” Proceed-
ings of the Institute of Radio Engineers, vol. 49, pp. 228 –235, January
1961.

[56] D. Eastlake and P. Jones, “US secure hash algorithm 1 (SHA1),” RFC
3174, Internet Engineering Task Force, September 2001.

[57] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Sto-
ica, and H. Balakrishnan, “Building peer-to-peer systems with chord, a
distributed lookup service,” in Proceedings of the 8th IEEE Workshop
on Hot Topics in Operating Systems (HotOS-VIII), pp. 71–76, 2001.

[58] J. Hautakorpi and G. Camarillo, “Evaluation of DHTs from the view-
point of interpersonal communications,” in Proceedings of the 6th in-
ternational conference on Mobile and ubiquitous multimedia, MUM ’07,
(New York, NY, USA), pp. 74–83, ACM, 2007.

[59] J. Case, M. Fedor, M. Schoffstall, and C. Davin, “Simple network man-
agement protocol (SNMP),” RFC 1157, Internet Engineering Task Force,
May 1990.

[60] D. Harrington, R. Presuhn, and B. Wijnen, “An architecture for describ-
ing simple network management protocol (SNMP) management frame-
works,” RFC 3411, Internet Engineering Task Force, December 2002.

[61] J. Case, K. McCloghrie, M. Rose, and S. Waldbusser, “Protocol oper-
ations for version 2 of the simple network management protocol (SN-
MPv2),” RFC 1905, Internet Engineering Task Force, Januaray 1996.

[62] J. Mäenpää and J. J. Bolonio, “Performance of resource location and
discovery (reload) on mobile phones,” in Wireless Communications and
Networking Conference (WCNC), 2010 IEEE, pp. 1 – 6, April 2010.

REFERENCES 66

[63] C. Jennings, B. B. Lowekamp, E. Rescorla, S. A. Baset, and
H. Schulzrinne, “REsource LOcation And Discovery (RELOAD) Base
Protocol, work in progress,” draft-ietf-p2psip-base-15, Internet Engi-
neering Task Force, May 2011.

[64] S. W. Ambler, The Object Primer : Agile Model-Driven Development
with UML 2.0. Cambridge University Press, 2004.

[65] Digi International, “XBee R© /XBee-PRO R© ZB RF Modules,” November
2010. http://ftp1.digi.com/support/documentation/90000976_G.
pdf. Accessed April 26, 2011.

[66] Libelium Comunicaciones Distribuidas S.L., “Over the Air Program-
ming with 802.15.4 and ZigBee: Laying the groundwork,” May
2011. http://www.libelium.com/documentation/waspmote/over_
the_air_programming.pdf. Accessed June 16, 2011.

[67] B. M. Hauzeur, “A model for naming, addressing and routing,” ACM
Transactions on Information Systems (TOIS), vol. 4, pp. 293–311, De-
cember 1986.

[68] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc On-Demand distance
vector (AODV) routing,” RFC 3561, Internet Engineering Task Force,
July 2003.

[69] C. Frank, V. Handziski, and H. Karl, “Service discovery in wireless sensor
networks,” tech. rep., Technical University Berlin, 2004.

[70] M. Botts and A. Robin, “SensorML.” http://www.ogcnetwork.net/
SensorML. Accessed June 19, 2011.

[71] E. Rescorla and N. Modadugu, “Datagram Transport Layer Security,”
RFC 4347, Internet Engineering Task Force, April 2006.

[72] K. McCloghrie, “An administrative infrastructure for SNMPv2,” RFC
1909, Internet Engineering Task Force, 1996.

[73] G. Waters, “User-based security model for SNMPv2,” RFC 1910, Inter-
net Engineering Task Force, 1996.

[74] U. Blumenthal and B. Wijnen, “User-based security model (USM) for
version 3 of the simple network management protocol (SNMPv3),” RFC
3414, Internet Engineering Task Force, 2002.

http://ftp1.digi.com/support/documentation/90000976_G.pdf
http://ftp1.digi.com/support/documentation/90000976_G.pdf
http://www.libelium.com/documentation/waspmote/over_the_air_programming.pdf
http://www.libelium.com/documentation/waspmote/over_the_air_programming.pdf
http://www.ogcnetwork.net/SensorML
http://www.ogcnetwork.net/SensorML

REFERENCES 67

[75] U. Blumenthal, F. Maino, and K. McCloghrie, “The advanced encryp-
tion standard (AES) cipher algorithm in the SNMP user-based security
model,” RFC 3826, Internet Engineering Task Force, June 2004.

[76] J. S. Reddy, “ZigBee Security,” 2004. http://www.zigbee.org/imwp/
idms/popups/pop_download.asp?contentID=9436. Accessed June 12,
2011.

[77] Libelium Comunicaciones Distribuidas S.L., “Waspmote Datasheet,”
March 2011. http://www.libelium.com/documentation/waspmote/
waspmote-datasheet_eng.pdf. Accessed April 26, 2011.

[78] Libelium Comunicaciones Distribuidas S.L., “Waspmote Technical
Guide,” October 2010. http://www.libelium.com/documentation/
waspmote/waspmote-technical_guide_eng.pdf. Accessed April 26,
2011.

[79] Libelium Comunicaciones Distribuidas S.L., “Waspmote ZigBee
Networking Guide,” July 2010. http://www.libelium.com/
documentation/waspmote/waspmote-zigbee-networking_guide.
pdf. Accessed April 26, 2011.

[80] Google Code Project Home, “xbee-api: A Java API for Digi XBee/XBee-
Pro OEM RF Modules.” http://code.google.com/p/xbee-api/. Ac-
cessed June 18, 2011.

[81] SNMP4J.org, “The SNMP API for Java.” http://www.snmp4j.org/.
Accessed June 18, 2011.

[82] D. Pauli, “Java imlementation of CoAP.” https://github.com/
dapaulid/JCoAP. Accessed June 18, 2011.

[83] Oracle, “Remote Method Invocation Home.” http://www.oracle.com/
technetwork/java/javase/tech/index-jsp-136424.html. Accessed
June 13, 2011.

[84] D. W. Harrist, “Wireless battery charging system using radio frequency
energy harvesting,” Master’s thesis, University of Pittsburgh, USA,
2004.

[85] Trouble shooting - Rxtx. http://rxtx.qbang.org/wiki/index.
php/Trouble_shooting#How_does_rxtx_detect_ports.3F__Can_I_
override_it.3F. Accessed June 18, 2011.

http://www.zigbee.org/imwp/idms/popups/pop_download.asp?contentID=9436
http://www.zigbee.org/imwp/idms/popups/pop_download.asp?contentID=9436
http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-datasheet_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-technical_guide_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-technical_guide_eng.pdf
http://www.libelium.com/documentation/waspmote/waspmote-zigbee-networking_guide.pdf
http://www.libelium.com/documentation/waspmote/waspmote-zigbee-networking_guide.pdf
http://www.libelium.com/documentation/waspmote/waspmote-zigbee-networking_guide.pdf
http://code.google.com/p/xbee-api/
http://www.snmp4j.org/
https://github.com/dapaulid/JCoAP
https://github.com/dapaulid/JCoAP
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://rxtx.qbang.org/wiki/index.php/Trouble_shooting#How_does_rxtx_detect_ports.3F__Can_I_override_it.3F
http://rxtx.qbang.org/wiki/index.php/Trouble_shooting#How_does_rxtx_detect_ports.3F__Can_I_override_it.3F
http://rxtx.qbang.org/wiki/index.php/Trouble_shooting#How_does_rxtx_detect_ports.3F__Can_I_override_it.3F

REFERENCES 68

[86] Libelium Comunicaciones Distribuidas S.L., “Waspmote Accelerom-
eter Programming Guide,” July 2010. http://www.libelium.com/
documentation/waspmote/waspmote-accelerometer-programming_
guide.pdf. Accessed April 26, 2011.

http://www.libelium.com/documentation/waspmote/waspmote-accelerometer-programming_guide.pdf
http://www.libelium.com/documentation/waspmote/waspmote-accelerometer-programming_guide.pdf
http://www.libelium.com/documentation/waspmote/waspmote-accelerometer-programming_guide.pdf

Appendix A

Implementation Issues

A.1 RXTX Port Scan

RXTX tries scanning all devices in /dev for potential ports by default. This
process takes a long time (around two minutes) on Gumstix. One may restrict
the scanning process in order to speed up the proxy logic [85]. In Java this
can be done by specifying environment parameters “gnu.io.rxtx.SerialPorts”
and “gnu.io.rxtx.ParallelPorts”. For example, in our case we start up the
proxy using the following command:

java -cp . \
-Djava.security.policy=client.policy \
-Dgnu.io.rxtx.SerialPorts=/dev/ttyUSB3 \
-jar proxy.jar proxy.config

A.2 Bug in Waspmote API

There is a bug related to security key setting in Waspmote API version 0.15
and previous versions. Only the first eight bytes of the key will be used when
setting the network key or link key. The problem lies in function “gen_data()”
in lines 4355-4403 of “WaspXBeeCore.cpp” in Waspmote API version 0.15,
as listed below.

1 /∗
2 Function : Generates the API frame to send to the XBee module
3 Parameters :
4 data : The s t r i n g t ha t con ta ins par t o f the API frame

69

APPENDIX A. IMPLEMENTATION ISSUES 70

5 param : The param to s e t
6 Returns : Nothing
7 Values : S tore s in ’command ’ v a r i a b l e the API frame to send to

the XBee module
8 ∗/
9 void WaspXBeeCore : : gen_data (const char∗ data , uint8_t∗ param)

10 {
11 uint8_t inc =0;
12 uint8_t inc2 =0;
13
14 clearCommand () ;
15 i t =0;
16 while (data [i t] != ’ \0 ’) {
17 inc++;
18 i t ++;
19 }
20 inc /=2;
21
22 while (inc2<inc) {
23 command [inc2]= Ut i l s . conve r t e r (data [2∗ inc2] , data [2∗ inc2 +1]) ;
24 inc2++;
25 }
26
27 i f (inc >11)
28 {
29 for (i t =0; i t <8; i t++)
30 {
31 command [inc−9+i t]=param [i t] ;
32 }
33 }
34 else i f (inc==11)
35 {
36 for (i t =0; i t <3; i t++)
37 {
38 command [inc−4+i t]=param [i t] ;
39 }
40 }
41 else i f (inc==10)
42 {
43 for (i t =0; i t <2; i t++)
44 {
45 command [inc−3+i t]=param [i t] ;
46 }
47 }
48 else command [inc −2]=param [0] ;
49 }

APPENDIX A. IMPLEMENTATION ISSUES 71

However, this bug has been fixed since Waspmote API version 0.161. The
fixed function “gen_data()” is listed as follows.

1 /∗
2 Function : Generates the API frame to send to the XBee module
3 Parameters :
4 data : The s t r i n g t ha t con ta ins par t o f the API frame
5 param : The param to s e t
6 Returns : Nothing
7 Values : S tore s in ’command ’ v a r i a b l e the API frame to send to

the XBee module
8 ∗/
9 void WaspXBeeCore : : gen_data (const char∗ data , uint8_t∗ param)

10 {
11 uint8_t inc =0;
12 uint8_t inc2 =0;
13
14 clearCommand () ;
15 i t =0;
16 while (data [i t] != ’ \0 ’) {
17 inc++;
18 i t ++;
19 }
20 inc /=2;
21
22 while (inc2<inc) {
23 command [inc2]= Ut i l s . conve r t e r (data [2∗ inc2] , data [2∗ inc2

+1]) ;
24 inc2++;
25 }
26 // The f o l l ow i n g l i n e s have been updated .
27 i f (inc==24)
28 {
29 for (i t =0; i t <16; i t++)
30 {
31 command [inc−17+ i t]=param [i t] ;
32 }
33 }
34 else i f (inc==16)
35 {
36 for (i t =0; i t <8; i t++)
37 {
38 command [inc−9+i t]=param [i t] ;
39 }
40 }
41 else i f (inc==11)
42 {

1http://www.libelium.com/downloads/Waspmote_changelog.txt

http://www.libelium.com/downloads/Waspmote_changelog.txt

APPENDIX A. IMPLEMENTATION ISSUES 72

43 for (i t =0; i t <3; i t++)
44 {
45 command [inc−4+i t]=param [i t] ;
46 }
47 }
48 else i f (inc==10)
49 {
50 for (i t =0; i t <2; i t++)
51 {
52 command [inc−3+i t]=param [i t] ;
53 }
54 }
55 else command [inc −2]=param [0] ;
56 }

A.3 Tweaks in Waspmote API

A.3.1 Direction Change Interruption Thresholds

We changed some thresholds in Waspmote API in order to detect more sen-
sitive motion on the Waspmotes, as no API are provided to change them in
the application [86]. Lines (357-378) in “WaspAcc.h” have been modified, as
shown below.

1 #define DD_THSI_L_val 0x00
2
3 /∗ ! \ de f DD_THSI_H_val
4 \ b r i e f Direc t ion Change In t e rna l Threshold MSB
5
6 Direc t ion Change In t e rna l Threshold MSB.
7 ∗/
8 #define DD_THSI_H_val 0x01
9

10 /∗ ! \ de f DD_THSE_L_val
11 \ b r i e f Direc t ion Change Externa l Threshold LSB
12
13 Direc t ion Change Externa l Threshold LSB.
14 ∗/
15 #define DD_THSE_L_val 0x00
16
17 /∗ ! \ de f DD_THSE_H_val
18 \ b r i e f Direc t ion Change Externa l Threshold MSB
19
20 Direc t ion Change Externa l Threshold MSB.

APPENDIX A. IMPLEMENTATION ISSUES 73

21 ∗/
22 #define DD_THSE_H_val 0x02

The original values are:
1 #define DD_THSI_L_val 0x00
2
3 /∗ ! \ de f DD_THSI_H_val
4 \ b r i e f Direc t ion Change In t e rna l Threshold MSB
5
6 Direc t ion Change In t e rna l Threshold MSB.
7 ∗/
8 #define DD_THSI_H_val 0x30
9

10 /∗ ! \ de f DD_THSE_L_val
11 \ b r i e f Direc t ion Change Externa l Threshold LSB
12
13 Direc t ion Change Externa l Threshold LSB.
14 ∗/
15 #define DD_THSE_L_val 0x00
16
17 /∗ ! \ de f DD_THSE_H_val
18 \ b r i e f Direc t ion Change Externa l Threshold MSB
19
20 Direc t ion Change Externa l Threshold MSB.
21 ∗/
22 #define DD_THSE_H_val 0x3C

A.3.2 Maximum Data Length

We changed the length of the maximum data that can be transferred by
the Waspmotes. The original value is 100 bytes, we change it to 300 bytes.
This is done by changing the value in line 56 of “WaspXBeeConstants.h” in
Waspmote API version 0.18.

1 #define MAX_DATA 300

APPENDIX A. IMPLEMENTATION ISSUES 74

A.4 Waspmote Logic

We simulate two different type of WPAN nodes in our prototype: a motion
sensor and an LED actuator. A motion sensor detects its own movement.
When it is moved or shook, it sends a message to a destination node (hard-
coded at the moment). An LED actuator listens to incoming ZigBee messages
and once it receives a specific command (hard-coded and will be configurable
in following work), it blinks its LED lights on board.

www.kth.se

TRITA-ICT-EX-2011:146

	Abstract
	Sammanfattning
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations and Acronyms
	1 Introduction
	1.1 Overview
	1.2 Problem Description
	1.3 Contributions
	1.4 Thesis Organization

	2 Background
	2.1 The Internet of Things
	2.2 Machine-to-Machine Commmunication
	2.3 Wireless Sensor Networks
	2.3.1 WSN Architecture
	2.3.2 WSN Sensor Node Architecture
	2.3.3 Routing in WSNs

	2.4 Protocols for Wireless Sensor Networks
	2.4.1 IEEE 802.15 Working Group
	2.4.2 IEEE Std 802.15.4™
	2.4.3 ZigBee™
	2.4.4 6LoWPAN
	2.4.5 CoAP

	2.5 Distributed Hash Tables
	2.5.1 Hash Algorithms
	2.5.2 Consistent Hashing
	2.5.3 Chord

	2.6 Simple Network Management Protocol
	2.7 Summary

	3 Design
	3.1 Motivation
	3.2 Objective
	3.3 Principles
	3.4 Architecture
	3.5 Details
	3.5.1 Proxy Joining and Leaving
	3.5.2 WPAN Management
	3.5.2.1 WPAN Start Up
	3.5.2.2 Node Joining
	3.5.2.3 Node Leaving
	3.5.2.4 Naming, Addressing, and Routing

	3.5.3 WPAN Service Management
	3.5.3.1 Service Discovery
	3.5.3.2 Service Updates

	3.5.4 Caching
	3.5.4.1 Caching for WPAN Nodes
	3.5.4.2 Caching in DHT

	3.5.5 Security
	3.5.5.1 Secure Communication between WWAN Peers
	3.5.5.2 WPAN Security

	3.6 Summary

	4 Implementation
	4.1 Hardware and Software
	4.1.1 WPAN Nodes
	4.1.2 Proxy and Wide Area Nodes
	4.1.3 Prototype Architecture

	4.2 Proxy Start Up
	4.3 WPAN Node Joining and Leaving
	4.4 Application Logic
	4.4.1 CoAP Message Parsing
	4.4.2 Waspmote Application Packet Fragmentation and Reassembling

	5 Discussions
	5.1 Functionality Evaluation
	5.2 Performance Measurements
	5.2.1 Node Lookup Time
	5.2.2 RTT between WWAN and WPAN Nodes

	5.3 Performance Discussions
	5.3.1 Proxy Throughput
	5.3.2 Proxy Reliability

	5.4 Power Source

	6 Conclusions and Future Work
	6.1 Summary
	6.2 Future Work

	References
	A Implementation Issues
	A.1 RXTX Port Scan
	A.2 Bug in Waspmote API
	A.3 Tweaks in Waspmote API
	A.3.1 Direction Change Interruption Thresholds
	A.3.2 Maximum Data Length

	A.4 Waspmote Logic

