
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

P R A J W O L K U M A R N A K A R M I

 In the context of IMS

Evaluation of VoIP Security
for Mobile Devices

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

KTH Royal Institute of Technology

Master’s Programme in Security and Mobile Computing - NordSecMob

Communication Systems (CoS)

Prajwol Kumar Nakarmi

nakarmi@kth.se

Evaluation of VoIP Security for Mobile Devices
in the context of IMS

Master’s Thesis

Stockholm, June 16, 2011

Host Supervisor: Professor Gerald Q. Maguire Jr.(maguire@kth.se)
Royal Institute of Technology

Home Supervisor: Professor Antti Ylä-Jääski, (antti.yla-jaaski@tkk.fi)
Aalto University School of Science

Instructor: John Mattsson, (john.mattsson@ericsson.com)

Ericsson Security Research

Abstract

KTH ROYAL INSTITUTE ABSTRACT OF
OF TECHNOLOGY MASTER’S THESIS
Communication Systems (CoS)
Master’s Programme in Security and Mobile Computing - NordSecMob

Author: Prajwol Kumar Nakarmi
Title of thesis:
Evaluation of VoIP Security for Mobile Devices in the context of IMS

Date: June 16, 2011 Pages: 12 + 68

Supervisors: Professor Gerald Q. Maguire Jr.
Professor Antti Ylä-Jääski

Instructor: John Mattsson

Market research reports by In-Stat, Gartner, and the Swedish Post and Telecom
Agency (PTS) reveal a growing worldwide demand for Voice over IP (VoIP) and
smartphones. This trend is expected to continue over the coming years and there
is wide scope for mobile VoIP solutions. Nevertheless, with this growth in VoIP
adoption come challenges related with quality of service and security. Most consumer
VoIP solution, even in PCs, analog telephony adapters, and home gateways, do not
yet support media encryption and other forms of security. VoIP applications based
on mobile platforms are even further behind in adopting media security due to a
(mis-)perception of more limited resources. This thesis explores the alternatives
and feasibility of achieving VoIP security for mobile devices in the realm of the IP
Multimedia Subsystem (IMS).

Keywords: VoIP, smartphones, IMS, SIP, SRTP, MIKEY-TICKET, GBA
GBA Digest

Language: English

i

KTH KUNGLIGA SAMMANFATTNING
TEKNISKA HÖGSKOLAN

Författare:: Prajwol Kumar Nakarmi
Titeln p̊a Avhandlingen:
Evaluation of VoIP Security for Mobile Devices in the context of IMS

Marknadsundersökningar fr̊an In-Stat, Gartner och Post- och telestyrelsen (PTS)
visar p̊a en växande global efterfr̊agan p̊a Voice over IP (VoIP) och smartphones.
Denna trend förväntas fortsätta under de kommande åren och det finns stort
utrymme för mobila VoIP-lösningar. Men, med denna ökning av VoIP kommer
utmaningar som rör tjänsternas kvalitet och säkerhet. De flesta VoIP-lösningar
för konsumenter, i datorer, analog telefoni adaptrar och home gateways, stöder
ännu inte mediakryptering och andra former av säkerhet. VoIP-applikationer
baserade p̊a mobila plattformar är ännu längre efter säkerhetsmässigt p̊a grund
av en (miss–)uppfattning om mer begränsade resurser. Denna uppsats undersöker
alternativ och möjligheter att uppn̊a VoIP-säkerhet för mobila enheter inom IP
Multimedia Subsystem (IMS).

Spräk: Engelska

ii

AALTO-YLIOPISTO DIPLOMITYÖN
PERUSTIETEIDEN KORKEAKOULU TIIVISTELMÄ

Tekijä: Prajwol Kumar Nakarmi
Diplomityön Otsikko:
Evaluation of VoIP Security for Mobile Devices in the context of IMS

In-Statin, Gartnerin, ja Ruotsin posti -ja tietoliikenneviraston (PTS) markki-
natutkimusraportit paljastavat kasvavan maailmanlaajuisen kysynnän Voice over
IP (VoIP) ja älypuhelimille. Tämän trendin uskotaan jatkuvan seuraavien vuosien
aikana, joten mobiili VoIP-ratkaisut tulevat yleistymään. Siitä huolimatta VoIP:in
kasvuun liittyy haasteita, kuten palvelun laadun takaaminen ja tietoturva-asiat.
Useimpien VoIP-ratkaisujen käyttö, PC:issä, analogisten puhelinten adaptereissa
ja koti gatewayssa eivät vielä tue sisällön salausta, eikä muitakaan tietoturvan
muotoja. VoIP-sovellukset, perustuen mobiilialustoihin, ovat sitäkin enemmän
jäljessä sisällön tietoturvaratkaisujen käyttöönotossa, johtuen epätietoisuudesta
resurssien riittävyydestä. Tämä työ tarkastelee mobiililaitteiden VoIP-tietoturvan
eri vaihtoehtoja ja niiden käyttökelpoisuutta IP Multimedia Subsystem (IMS):in
piirissä.

Kieli: Englanti

iii

Acknowledgment

I owe my gratitude to Professor Gerald Q. Maguire Jr., who is my host supervisor,
for guiding me all the way. His immense knowledge and experience with the
subject matter have helped me in all the phases of this thesis work. I feel very
lucky to have him as my supervisor who always finds time, admist his busy
schedule, for students.

I thank my home supervisor, Professor Antti Ylä-Jääski, for the timely help and
suggestions regarding my thesis.

I am grateful to John Mattsson, who is my industrial supervisor and author of the
MIKEY-TICKET protocol, for making available his experience and knowledge
of industry standards.

I would also like to thank Oscar Olsson, my colleague at Ericsson Research, for
helping me during the implementation phase.

I am thankful to Ericsson Research for providing me with the equipments
necessary to conduct the thesis work. I experienced a wonderful, friendly and
intellectual working environment here.

I thank all the open source communities and forums who are responsible for my
ever growing knowledge.

I want to express my love for my friends and family.

Stockholm, June 16, 2011

Prajwol Kumar Nakarmi

iv

Contents

Abbreviations and Acronyms x

1 Introduction 1

1.1 Goals of Thesis . 2

1.2 Contribution . 2

1.3 Structure of the Report . 3

2 Background 4

2.1 VoIP . 4

2.2 SIP . 5

2.3 SDP . 9

2.4 RTP . 10

2.5 SRTP . 12

2.6 MIKEY . 15

2.7 MIKEY-TICKET . 17

2.8 SDES . 18

2.9 DTLS-SRTP . 20

2.10 ZRTP . 20

2.11 IMS . 22

2.12 GBA . 23

2.13 Summary . 25

3 Related Work 27

3.1 Initial SRTP Performance Measurements 27

3.2 Initial MIKEY Performance Measurements 28

3.3 SRTP and ZRTP Performance Measurements 28

3.4 Security Analysis of MIKEY-TICKET 28

3.5 Call Establishment Delay for Secure VoIP 29

v

3.6 A Secure VoIP User Agent on PDAs 29

3.7 Secure VoIP: Call Establishment and Media Protection 29

3.8 Secure VoIP Performance on Handheld Devices 30

3.9 Evaluation of Secure Internet Telephony 31

3.10 Alternatives to MIKEY/SRTP to Secure VoIP 31

3.11 Mobile Web Browser Extensions 31

3.12 Key Management Extensions for SDP and RTSP 32

3.13 3GPP TS 33.328 IMS Media Plane Security 32

3.14 3GPP TR 33.914 using SIP Digest in IMS 33

3.15 Existing VoIP Applications and Libraries 34

3.16 Summary . 34

4 Design 36

4.1 Device Platform . 36

4.2 Signaling Protocol . 36

4.3 Transport Protocol . 36

4.4 Security Protocol . 37

4.4.1 Strategy 1 - Modifying the Application 37

4.4.2 Strategy 2 - Developing a Shim 37

4.4.3 Strategy 3 - Manipulating IP Packets 38

4.4.4 Strategy 4 - Implementing a B2BUA 38

4.5 Key Exchange Protocol . 39

4.6 Authentication Mechanism . 40

4.7 System Components . 40

4.8 Operational Flow . 40

4.9 Summary . 42

5 Implementation 43

5.1 Methodology . 43

5.2 System Components Details . 44

5.3 GBA Enabler in UE . 45

5.4 Extended BSF that Supports GBA Digest 46

5.5 Summary . 46

6 Measurements 48

6.1 Test Environment . 48

vi

6.2 Measurement Methodology . 49

6.3 Specific Functions of Interest during the
Measurements . 50

6.4 Measurement 1: Initiating a Call 51

6.5 Measurement 2: Receiving a Call 51

6.6 Measurement 3: Receiving a 200 OK 52

6.7 Measurement 4: SRTP Profiling 52

6.8 Measurement 5: Ringing Delay 53

6.9 Measurement 6: GBA Digest Bootstrapping 53

6.10 Observations and Summary . 53

7 Conclusions and Future Work 55

7.1 General . 55

7.2 Summary of the Work . 55

7.3 Future Work . 56

References 56

A Message Flows 64

A.1 Between UE and BSF during Bootstrapping 64

A.2 Between BSF and HSS during Bootstrapping of UE 65

A.3 Between Initiator’s UE and KMS 66

A.4 Between KMS and BSF during Bootstrapping Usage 66

A.5 Between Initiator’s UE and Responder’s UE during Initiation of
a Call . 67

A.6 Between Responder’s UE and KMS 68

A.7 Between Responder’s UE and Initiator’s UE during Acceptance of
a Call . 68

vii

List of Tables

2.1 Encryption and Authentication Transforms in SRTP [1] 14

2.2 MIKEY-SRTP Relation [2] . 16

2.3 Modes of MIKEY-TICKET . 18

3.1 Potential Interfaces between the Network Elements in GBA Digest 34

3.2 Some Relevant VoIP Applications and Libraries 34

5.1 System Components Description 44

6.1 Measurement Statistics at Caller’s Side when Initiating a Call . . 51

6.2 Measurements Statistics at Receiver’s Side when Receiving a Call 52

6.3 Measurement Statistics at Caller’s Side when Receiving 200 OK . 52

6.4 Measurement Statistics for SRTP Profiling 52

6.5 Measurements Statistics for Ringing Delay 53

6.6 Measurements Statistics for GBA Digest Bootstrapping 53

viii

List of Figures

2.1 SIP Session Setup Example . 7

2.2 RTP Header Format [3] . 11

2.3 SRTP Packet Format [1] . 13

2.4 Default SRTP Encryption Process [1] 15

2.5 MIKEY Key Management Procedure [2] 16

2.6 MIKEY-TICKET in Full Three Round-Trips Mode 17

2.7 DTLS Message Exchange in SIP Trapezoid 20

2.8 ZRTP Call Flow Example . 21

2.9 ZRTP Packet Format . 22

2.10 Network Elements for Bootstrapping with GBA and GAA 23

2.11 Bootstrapping Process . 24

2.12 Bootstrapping Usage Process . 24

3.1 KMS Based Solution for Media Plane Security [4] 33

4.1 VoIP Application in TCP/IP Layer 37

4.2 Alternative Approaches for Media Protection in Handset 38

4.3 System Components Diagram . 40

4.4 Operational Flow . 41

6.1 Test Environment . 48

ix

Abbreviations and Acronyms

3GPP 3rd Generation Partnership Project
ACK Acknowledgment
AES Advanced Encryption Standard
AOR Address-of-Record
AV Authentication Vector
B2BUA Back-to-Back User Agent
BSF Bootstrapping Server Function
CNAME Canonical Name
CRC Cyclic Redundancy Check
CS Crypto Session
CSB Crypto Session Bundle
CSRC Contributing Source
DH Diffie-Hellman
DTLS Datagram Transport Layer Security
GAA Generic Authentication Architecture
GBA Generic Bootstrapping Architecture
GHz Gigahertz
GUSS GBA User Security Settings
HP Hewlett-Packard
HSS Home Subscriber System
HTTP Hypertext Transfer Protocol
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IMS IP Multimedia Subsystem
IP Internet Protocol
IPsec Internet Protocol Security
JNI Java Native Interface
KDF Key Derivation Function
KG Keystream Generator
KMS Key Management Service
MAA Multimedia-Auth-Answer
MAR Multimedia-Auth-Request
MB Megabyte

x

MGCP Media Gateway Control Protocol
MIKEY Multimedia Internet KEYing
MitM Man in the Middle
MKI Master Key Identifier
MTU Maximum Transmission Unit
NAF Network Application Function
PC Personal Computer
PDA Personal Digital Assistant
PSTN Public Switched Telephone Network
PT Payload Type
PTS Swedish Post and Telecom Agency
QoS Quality of Service
RAM Random Access Memory
RFC Request for Comments
ROC Rollover Counter
RTCP RTP Control Protocol
RTP Real-time Transport Protocol
S/MIME Secure/Multipurpose Internet Mail Extensions
SA Security Association
SD SIP Digest
SDES SDP Security Description for Media Streams
SDES* Source Description (*only in case of RTCP report)
SDP Session Description Protocol
SIP Session Initiation Protocol
SLF Subscriber Locator Function
SRTP Secure Real-time Transport Protocol
SSRC Synchronization Source
TCP Transmission Control Protocol
TEK Traffic-Encrypting Key
TGK TEK Generation Key
TLS Transport Layer Security
UA User Agent
UAC User Agent Client
UAS User Agent Server
UDP User Datagram Protocol
UE User Equipment
UICC Universal Integrated Circuit Card
URI Uniform Resource Identifier
USA United States of America
VoIP Voice over IP

xi

Chapter 1

Introduction

In reports published by the Swedish Post and Telecom Agency (PTS) [5],
the Voice over IP (VoIP) market share in Nordic countries shows very fast
growth, with the IP telephony market share reaching 20 % of all fixed telephony1

in Sweden already by 2009. Another interesting development is that VoIP is
spreading from the fixed-line world to the mobile world. While Nokia introduced
a native Session Initiation Protocol (SIP) stack in its Symbian phones some
time ago [6, 7], Android recently introduced a built in SIP stack (starting
from Android version 2.3) [8]. The growth of smartphones and possibility of
cost efficient communication have catalyzed the evolution of VoIP on mobile
platforms. Reports published by the market research firm In-Stat [9] forecast
huge worldwide adoption of smartphones and VoIP, specifically:

2012 more than half of cellular handset shipments in the United States of
America (USA) will be smartphones

2013 VoIP penetration among businesses in the USA will reach 79 %

2014 mobile VoIP users will rise to nearly 139 million

2015 annual business mobile VoIP gateway revenues will soar past 6 billion U.S.
dollars

2015 annual worldwide smartphone shipments will be nearly 1 billion and IP
phone shipments will exceed 40 Million

However, as we move from traditional telephony to VoIP, we face the
inherent security issues of IP based systems. The availability of tools, such
as Wireshark [10], makes it easy to sniff and listen to the VoIP conversations if
one connects to a suitable point in the network. Due to the wide availability
of computers and such software tools, VoIP calls are more susceptible to
eavesdropping compared to Public Switched Telephone Network (PSTN) calls2.
This lack of security in VoIP seems to be very serious, especially since most
consumer VoIP solutions do not yet support encryption. Although Skype [12]

1Fixed telephony referring to PSTN, ISDN, and broadband telephony.
2Even though the PSTN calls are easy to eavesdrop, the equipment required to connect to

high capacity links carrying PSTN calls is not readily available as in the case of VoIP. [11]

1

has positively accessed its security [13], it is proprietary software and therefore
its technology can not be used by others. In addition, because the source code
is closed, it is not clear what security mechanisms are used or who has access to
the encryption keys3.

There have been several efforts to address the security in VoIP based
systems, these will be discussed in chapter 2 and chapter 3. However VoIP
security is still not common even in Personal Computer (PC) applications.
Due to the (mis-)perception that mobile platforms have limited resources, the
development of VoIP security for mobile applications has lagged behind that of
PC applications. Thus far, we have not found full blown VoIP security being
implemented in any open-source SIP based mobile applications.

This thesis project will be an opportunity to explore the alternatives and
feasibility of achieving VoIP security in mobile devices. VoIP security in itself
is a broad topic (as it includes signaling security, media security, guaranteeing
Quality of Service (QoS), etc). To focus this thesis project the specific aspects
of VoIP security that will be addressed are described in the next section.

1.1 Goals of Thesis

This thesis project is primarily focused on VoIP media security, with the
following goals:

1. Evaluate alternatives for realizing VoIP media protection in mobile hand-
sets with the focus on SIP used together with SRTP.

2. Integrate the key management protocol MIKEY-TICKET, the context of
3GPP IP Multimedia Subsystem (IMS), into the software which realizes
the first goal.

3. Analyze possible solutions to use password based authentication, the
context of 3GPP IMS, and make recommendations to extension of the
current standard that uses a Universal Integrated Circuit Card(UICC).

4. Offer recommendations to those implementing VoIP applications on mobile
handsets (particularly for handsets running Android) based on measure-
ments and analysis of software which realizes the first, second, and third
goals.

1.2 Contribution

This thesis work provides a prototype of secure VoIP mobile client complaint
with IMS standards. According to the author’s knowledge, this work is the
first to integrate MIKEY-TICKET into a VoIP client. Also this thesis is the
first reference implementation of an ongoing 3GPP study on using SIP digest
based Generic Bootstrapping Architecture (GBA). The measurements presented

3Recently, a Russian researcher Efin Bushmanov has claimed to have
reverse-engineered the Skype (http://skype-open-source.blogspot.com/2011/06/
skype-protocol-reverse-engineered.html)

2

http://skype-open-source.blogspot.com/2011/06/skype-protocol-reverse-engineered.html
http://skype-open-source.blogspot.com/2011/06/skype-protocol-reverse-engineered.html

in this report are also the first regarding the current generation of mobile devices
(specifically Android handsets).

1.3 Structure of the Report

The rest of the report is organized as - chapter 2 describes the necessary
knowledge from the literature required to understand the technologies involved in
this thesis. Chapter 3 summarizes other theses and publications relevant to this
thesis. Chapter 4 presents the design decisions that have been made regarding
various technologies in order to realize secure VoIP in mobile devices. Chapter
5 discusses the implementation details of our prototype. Chapter 6 presents the
results of measurements made on the implementation. Chapter 7 concludes this
report and suggest some further work. Appendix A presents the message flow
between various components during a secure VoIP call.

3

Chapter 2

Background

This chapter presents some background information required to understand
the works done in this thesis project. It introduces the protocols and technologies
that are related to Voice over IP (VoIP) and security in VoIP. It starts by
introducing the concept of VoIP. Then, it presents protocols related to signaling,
media transfer, and key exchange. Finally it discusses the mechanism for
establishing and using the subscriber authentication.

2.1 VoIP

Voice over IP (VoIP) is a technology for transmission of voice over packet-
switched IP networks. It is also frequently referred to as IP telephony or Internet
telephony. The basic idea behind VoIP is to transmit digitized samples of voice
over a data network and replay them at the receiver. While the “V” in “VoIP”
standards for ”voice” it should be clear that the media could be audio, video,
timed text, etc.; thus the general service is multimedia communication over an
IP network.

While there is a cost for network connectivity, VoIP applications, such as
Skype [12], Yahoo Messenger [14], Google Chat [15], etc. allow “free” calls to
their users. In this context “free” refers to the marginal cost of making each call,
thus there is no per call charge and no per minute cost for a call. Long distance
phone calls via VoIP service providers, such as Jumblo [16], are also generally
cheaper than via traditional telecommunications service providers. VoIP reduces
the infrastructure cost because a single network is used to carry both voice and
data, and the packets only need to be delivered when there is media content to be
delivered (thus enabling statistical multiplexing of the links). With a sufficient
quality Internet connection and a VoIP service provider, the user can receive and
make calls from anywhere. Additionally, it is possible to integrate VoIP services
with other systems such as email, conferencing, and so on. Hence, VoIP offers
flexible communication options at low operational cost.

4

Some modes of operations for VoIP are [17]:

• PC-to-PC,

• Phone-to-Phone,

• PC-to-Phone,

• Phone-to-PC, and

• Network to Network.

Our study will address PC-to-PC calls in context of handsets. The term
PC, here, will refer to both generic computers and smartphones, e.g. when a
VoIP call is made between two Android phones, the model is still PC-to-PC
rather than Phone-to-Phone. We will reserve the term Phone-to-Phone to be a
call that involves two traditional telephones attached to a traditional telephone
exchange or exchanges making a call via the Internet.

Some important technologies and protocols related to VoIP are:

• H.323 [18],

• Session Initiation Protocol (SIP) [19],

• Media Gateway Control Protocol (MGCP) [20], and

• Real-time Transport Protocol (RTP) [3].

The following sections describe the technologies of interest to this thesis
project. Section 4.2 describes H.323 briefly. Because MGCP involves controlling
telephony gateways it will not be referred to further in this document.

2.2 SIP

The Session Initiation Protocol (SIP) is a signaling protocol that is used for
management of multimedia sessions. SIP was defined by the Internet Engineering
Task Force (IETF) [21] and the latest version of its specification is RFC 3261
[19] 1.

SIP is a text-based application layer protocol and uses Uniform Resource
Identifiers (URIs) (e.g. sip:nakarmi@kth.se) to address the caller and callee.
Similar to HTTP, SIP works in request-response transaction model, i.e. a
client request invokes a method in the server and the server sends back at-
least one response. SIP is independent of the underlying transport layer and
the transactional mechanism allows it to use unreliable transport protocols such
as UDP [22] or reliable transport protocols such as TCP, T/TCP, TCP over
TLS/SSL, etc..

1RFC 3261 has been updated by RFCs 3265, 3853, 4320, 4916, 5393, 5621, 5626, 5630, and
5922.

5

As described in RFC 3261, SIP supports the following five features for
multimedia communications:

User location

know where to contact the callee

User availability

know if callee is available and willing to communicate

User capabilities

know which media formats to use

Session setup

establish the session for communication between caller and callee

Session management

modify or tear-down the ongoing session

Some of important SIP related terms that will be used in this document are:

Call

A communication session between peers.

Conference

Communication session between multiple participants.

Address-of-Record (AOR)

A SIP URI where the user might be available.

SIP Transaction

Comprises all messages from the first request sent from the client to the
server up to a final response sent from the server to the client.

User Agent Client (UAC)

A logical entity that creates request. The role lasts for the duration of
transaction.

User Agent Server (UAS)

A logical entity that responds to a request. The role lasts for the duration
of transaction.

User Agent (UA)

A logical entity that can act as both UAC and UAS.

Proxy

Primarily serves the role of routing SIP requests and possibly responses; and
if necessary rewrites specific parts of a request message before forwarding it.

Dialog

A peer-to-peer SIP relationship between two UAs that persists for some
time.

6

Back-to-Back User Agent (B2BUA)

A concatenation of UAC and UAS at the same time. It receives the request
as a UAS and in order to respond to that request it itself generates requests as
a UAC.

A simple scenario of Alice making a call to Bob (using SIP) is illustrated in
figure 2.1.

Alice Bob

Invite

200 OK

ACK

SESSION

Bye

200 OK

Figure 2.1: SIP Session Setup Example

Alice’s INVITE message would look like the following (adapted from RFC
3261 [19]):

INVITE sip:bob@biloxi.com SIP/2.0

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds

Max-Forwards: 70

To: Bob <sip:bob@biloxi.com>

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:alice@pc33.atlanta.com>

Content-Type: application/sdp

Content-Length: 142

(Alice’s SDP not shown)

Similarly 200 OK message from Bob would look like the following (adapted
from RFC 3261 [19]):

SIP/2.0 200 OK

Via: SIP/2.0/UDP bigbox3.site3.atlanta.com;

branch=z9hG4bK77ef4c2312983.1;received=192.0.2.2

7

Via: SIP/2.0/UDP pc33.atlanta.com;branch=z9hG4bK776asdhds;

received=192.0.2.1

To: Bob <sip:bob@biloxi.com>;tag=a6c85cf

From: Alice <sip:alice@atlanta.com>;tag=1928301774

Call-ID: a84b4c76e66710@pc33.atlanta.com

CSeq: 314159 INVITE

Contact: <sip:bob@192.0.2.4>

Content-Type: application/sdp

Content-Length: 131

(Bob’s SDP not shown)

The SIP header fields have the following meanings:

Via

contains the address at which the client is expecting to receive responses.
The branch identifies this transaction.

To

contains a display name and a SIP URI of the called party.

From

contains a display name and a SIP URI of the caller.

Call-ID

contains a globally unique identifier for this call.

CSeq

is command sequence that contains a sequence number and a method name.

Contact

contains a SIP URI that represents a direct route to contact the client.

Max-Forwards

limits the number of hops a request is allowed to traverse.

Content-Type

contains a description of the message body (not shown).

Content-Length

contains an octet (byte) count of the message body.

Unlike H.323, SIP is only involved in the signaling portion of a commu-
nication session. Thus SIP acts as a component which works with several
other protocols to offer a complete multimedia architecture typically, using
RTP for transporting real-time data (such as voice and video streams) and
SDP for describing multimedia sessions in terms of protocols, port numbers,
coder/decoders (CODECs), and so on.

The RFC 3261 [19] defines six request methods - REGISTER for registering

8

contact information, INVITE, ACK, and CANCEL for setting up sessions,
BYE for terminating sessions, and OPTIONS for querying servers about their
capabilities. Similarly, the specification allows six responses, as follow:

1xx(Provisional)

request is being processed

2xx(Success)

the request was processed successfully

3xx(Redirection)

further action needs to be taken for completing the request

4xx(Client Error)

bad request by client

5xx(Server Error)

request is valid, but server cannot fulfill the request

6xx(Global Failure)

the request cannot be fulfilled at any server

2.3 SDP

The Session Description Protocol (SDP) is a media description protocol
which is intended for describing multimedia sessions. It provides a standard
representation to convey session metadata such as transport addresses and media
details. It is independent of the transport layer and does not handle the media
encodings or the session negotiation by itself. The SDP standard was published
and revised by IETF and is defined in RFC 4566 [23].

The presence of SDP is denoted by the media type application/sdp and a
session description is composed of several lines with the following format:

<type>=<value>

The specification does not allow any whitespace between either side of “=” sign.

A simple SDP description is shown below (adapted from RFC 4566 [23]):

v=0

o=jdoe 2890844526 2890842807 IN IP4 10.47.16.5

s=SDP Seminar

i=A Seminar on the session description protocol

c=IN IP4 224.2.17.12/127

t=2873397496 2873404696

m=audio 49232 RTP/AVP 98

a=rtpmap:98 L16/16000/2

The fields have following meaning:

v Protocol version. The specification describes it as 0

9

o Origin. The origin is specified in the format shown below:

<username> <sess-id> <sess-version> <nettype> <addrtype>

<unicast-address>

Note that there is a space, not newline (as above because it could not fit in
single line), between <addrtype> and <unicast-address>. In the example
given above, the user jdoe is using IPv4 INternet with address 10.47.16.5
with session-id 2890844526 and session-version 2890842807.

s Session name.

i Session information. This is an optional field.

c Connection data. This is also an optional field. If present it has following
format:

<nettype> <addrtype> <connection-address>

t Timing information in the decimal representation of NTP time values in
seconds since 1900. It has the following format:

<start-time> <stop-time>

m Media description in the format:

<media> <port>/<number of ports> <proto> <fmt>

The examples above shows the audio data will use UDP port 49232 and
the RTP protocol. The <fmt>format denotes the payload type numbers
(the numeric value 98 is mapped by an a field - as described next).

a Media attribute. This is the primary means for tailoring SDP to particular
media. The example shows the mapping of dynamic payload type 98 to
16-bit linear encoded stereo audio sampled at 16 kHz.

2.4 RTP

The Real-time Transport Protocol (RTP) is a transport protocol which
provides end-to-end transport functions for delivering real-time data such as
audio and video over IP networks. It is one of the technical foundations of VoIP
and is used together with H.323 or SIP. Nevertheless, for RTP to be used in
VoIP, there is a need for a separate signaling protocol, such as SIP and a media
description protocol, such as SDP. RTP is defined by IETF [21] and the latest
version of its specification is RFC 3550 [3].

The RTP header format is shown in figure 2.2. The first twelve octets are
present in every RTP packet.

10

0 2 3 4 8 9 16 31

V P X CC M PT Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers

Figure 2.2: RTP Header Format [3]

The fields have the following meanings:

V

version number (current version is 2)

P

whether payload contains padding

X

whether header extension is present

CC

number of CSRC identifiers

M

profile specific marker for frames

PT

identifies the RTP payload type

sequence number

incremental numbers used to define a packet sequence and used by the
receiver to detect packet loss

timestamp

sampling instant of the first octet in the RTP data packet

SSRC

identifies a synchronization source; this must be unique in each RTP session

CSRC list

list of contributing sources for the payload contained in the packet (0 to 15
sources)

Since real-time streaming applications require timely delivery of data and
are resilient to some packet loss, RTP implementations are generally built on
UDP. Therefore RTP does not guarantee any specific QoS for real-time services.
However, as described in the specification, RTP can be augmented by a RTP
Control Protocol (RTCP) to allow monitoring of the data delivery. While RTP
carries data that has real-time properties, RTCP monitors the quality of service
and conveys information about the participants in an on-going session. When

11

used together, RTP utilizes even port numbers and the corresponding RTCP
stream uses the next higher odd port number. It should be noted that both RTP
and RTCP are independent of the underlying transport and network layers.

If RTCP is used, then RTCP packets are periodically transmitted to all
participants in the session in a similar fashion as the data packets. The RTCP
packets carry the following:

SR

Sender report, for transmission and reception statistics from active senders

RR

Receiver report, for reception statistics from non active senders

SDES

Source description items, including CNAME

BYE

Indicates end of participation by a node

APP

Application-specific functions

According to the specification, RTCP performs the following four functions:

1. provide feedback on the quality of the data distribution,

2. carry a persistent transport-level identifier for an RTP source called the
canonical name or CNAME,

3. control its packets in order for RTP to scale up to a large number of
participants, and

4. convey minimal session control information, for example participant
identification.

One of the main advantages of using RTP is that new multimedia formats
can be added without changing the underlying standard. As such, application
specific information are specified by RTP profiles and payload formats, and not
included in the generic RTP header. For example, RFC 3551 [24] defines a set
of static payload type assignments, and a mechanism for mapping between a
payload format, and a payload type identifier using SDP. Another example of a
profile that is relevant to this thesis project is SRTP [1] which provides a security
service for RTP payload data.

2.5 SRTP

The Secure Real-time Transport Protocol (SRTP) is a RTP profile developed
by researchers at Cisco and Ericsson. It was published by IETF as RFC 3711 [1].
SRTP was designed with the security goals of providing confidentiality, message
authentication, and replay protection to the RTP traffic and RTCP. In addition
to the security goals, SRTP has following properties that makes it a suitable

12

protection scheme in heterogeneous networks:

• low computational cost,

• low bandwidth cost (limited packet expansion, preservation of RTP header
compression efficiency),

• small code size and data memory for keying information and replay lists,
and

• independence from the underlying transport, network, and physical layers
used by RTP, in particular high tolerance to packet loss and re-ordering.

The general idea is to intercept the RTP packets and to convert them to
equivalent SRTP packets before sending them to the transport layer. The reverse
is done on the receiving side. As such, SRTP can be considered a “bump in the
stack”. The companion protocol SRTCP (Secure RTCP) provides the same
security services to RTCP as SRTP does to RTP.

SRTP uses cryptographic contexts - the information about the cryptographic
state for sender and receiver. There are two types of keys: session keys and
master keys. The session key is used for the actual encryption and message
authentication; where as the master key is used to derive the session keys. It
should be noted that the SRTP standard itself does not specify how to establish
the master key. It is the responsibility of a key management protocol to determine
the master key. MIKEY [2], SDES [25], and ZRTP [26] are examples of key
management protocols.

The SRTP packet format is shown in figure 2.3. The Master Key Identifier
(MKI) and the authentication tag are the only fields defined by SRTP that are not
in RTP. The optional MKI field identifies the master key from which the session
key(s) were derived that authenticate and/or encrypt this particular packet. The
recommended authentication tag is used to carry message authentication data.

0 2 3 4 8 9 16 31

V P X CC M PT Sequence number

Timestamp

Synchronization source (SSRC) identifier

Contributing source (CSRC) identifiers

RTP extension (optional)

Payload ...

RTP padding RTP pad count

E
n

cr
y
p

te
d

P
or

ti
on {

A
u

th
en

ticated
P

ortion

SRTP MKI (optional)

Authentication tag (recommended)

Figure 2.3: SRTP Packet Format [1]

13

Table 2.1 shows the default algorithms for encryption and authentications
as defined in the specification.

Table 2.1: Encryption and Authentication Transforms in SRTP [1]
mandatory-to-implement optional default

encryption AES-CM, NULL AES-f8 AES-CM
message integrity HMAC-SHA1 - HMAC-SHA1
key derivation (PRF) AES-CM - AES-CM

The steps on sender side to construct the SRTP packet are:

1. Determine which cryptographic context to use (including which encryption
algorithm to use)

2. Determine the index of the SRTP packet

3. Determine the master key and master salt

4. Determine the session keys and session salt

5. Encrypt the RTP payload

6. Append the MKI to the packet if required

7. Append the authentication tag to the packet if required

8. Update the Rollover Counter (ROC) 2 if necessary

Similarly the steps on the receiver side to optionally authenticate and
decrypt the SRTP packet are:

1. Determine which cryptographic context to use

2. Get the index of the SRTP packet

3. Determine the master key and master salt

4. Determine the session keys and session salt

5. Check if the packet has been replayed and discard it if replayed

6. Verify the authentication tag and discard the packet if verification fails

7. Decrypt the encrypted RTP payload

8. Update the ROC and replay list

9. Remove the MKI and authentication tab if present

The process of encrypting the packet is shown in figure 2.4. It consists of
generating a keystream segment corresponding to the packet, and then bitwise
exclusive-oring that keystream segment with the payload of the RTP packet in
order to produce the encrypted portion of the SRTP packet. Note that the
keystream segments can be computed independently for each RTP packet and
they can be computed in advance.

2The ROC used here is a 32-bit unsigned rollover counter. It records how many times the
RTP sequence number has been reset to zero. It is used in determining the index of SRTP
packet.

14

RTP Payload

Encrypted portion of SRTP Packet

KG Keystream

XOR

Figure 2.4: Default SRTP Encryption Process [1]

2.6 MIKEY

The Multimedia Internet KEYing (MIKEY) is a key management scheme
that can be used with real-time applications. It is specifically designed to
setup the encryption keys for SRTP-secured multimedia sessions. MIKEY was
developed by researchers at Ericsson Research and the specification is defined in
RFC 3830 [2].

MIKEY fits well in a heterogeneous environment because of following
features:

1. Simplicity

2. End-to-end security only the participants involved in the communication
have access to the generated key(s).

3. Efficiency in terms of:

• low bandwidth consumption

• low computational workload

• small code size

• minimal number of roundtrips

4. Tunneling, e.g. it is possible to integrate MIKEY with SDP.

5. Independence from any specific security functionality of the underlying
transport

Some of the important definitions in MIKEY are listed below. These
definitions can be related to SRTP as illustrated in table 2.2.

Data Security Association (SA) information for the security protocol like
SRTP

Crypto Session (CS) data streams protected by a single instance of a security
protocol e.g. RTP and RTCP can both be protected by single SRTP
cryptographic context

Crypto Session Bundle (CSB) collection of one or more CSs

15

TEK Generation Key (TGK) a bit-string associated with CSB from which
TEKs can be generated without needing further communication

Traffic-Encrypting Key (TEK) the actual key used to protect the CS

Salting key a random or pseudo-random string used to protect against attacks
on the security protocol

Table 2.2: MIKEY-SRTP Relation [2]
MIKEY SRTP

Crypto Session SRTP stream (typically with related SRTCP stream)
Data SA input to SRTPs crypto context
TEK SRTP master key

MIKEY produces a Data SA to be used as input to the security protocol as
shown in figure 2.5.

TEK derivation

CSB Key transport/

exchange

CS ID

Data SA

TEK

Crypto Session

(Security Protocol)

Security

protocol

parameters

TGK

Figure 2.5: MIKEY Key Management Procedure [2]

The specification document for MIKEY specifies three methods for estab-
lishing a TGK:

Pre-shared key - uses symmetric cryptography and is most efficient to handle;
however it is not scalable to very large numbers of user - although it may
be feasible for a small to medium sized group of users

Public-key encryption - scalable but more resource consuming than pre-shared
key

Diffie-Hellman key exchange - most resource consuming (in terms of computa-
tion and bandwidth), but provides perfect forward secrecy

16

2.7 MIKEY-TICKET

MIKEY-TICKET (defined in RFC 6043 [27]) is a key exchange protocol that
extends MIKEY [2] with a set of new modes, all of which support the concept of
a ticket similar to that in Kerberos [28]. MIKEY-TICKET uses a trusted Key
Management Service (KMS) for ticket-based key distribution and is primarily
designed to be used for media plane security in the IP Multimedia Subsystem
(IMS), see section 2.11. IMS media plane security is discussed in section 3.13 on
page 32.

MIKEY-TICKET requires up to three different round-trips as illustrated in
figure 2.6. We assume that the KMS has pre-established trust with both the
Initiator and the Responder. The KMS is involved only during the exchange of
MIKEY messages and is not involved at all in securing the media session. The
Ticket Request round-trip is used by the Initiator to request keys and ticket from
KMS; the Ticket Transfer round-trip transfers a ticket to the Responder, and the
Ticket Resolve round-trip is used by the Responder to request the keys mentioned
in the ticket from KMS. The Ticket Request and Ticket Resolve round-trips can
use either the Pre-Shared Key (PSK) method or Public-Key (PK) method of
MIKEY. The RFC 6043 describes the four modes of MIKEY-TICKET operation
as illustrated in table 2.3.

Initiator KMS Responder

REQUEST_INIT

REQUEST_RESP

TRANSFER_INIT

RESOLVE_INIT

RESOLVE_RESP

TRANSFER_RESP

Figure 2.6: MIKEY-TICKET in Full Three Round-Trips Mode

Since MIKEY-TICKET is based on use of a trusted KMS, it is well suited
to serving large numbers of users. Moreover, it is also possible to externalize the
KMS and hence the basis of trust can be located outside of IMS, i.e. the trust
in KMS can be independent of the trust in the IMS operator. When used in Full
three round-trips and Otway-Rees like modes of operation, MIKEY-TICKET
does late binding of the keys to the user and hence forking is secure, if present.
It also supports deferred delivery and reuse of tickets (during the ticket’s validity
time period, several media sessions can be protected using the same ticket).

17

Table 2.3: Modes of MIKEY-TICKET

Mode
Keys shared

between
Ticket

generated by
Round trips Supports

Forking

1. Full three round-trips No one KMS
Ticket Request,
Ticket Transfer,
Ticket Resolve

Yes

2. Kerberos like
Responder
and KMS

KMS
Ticket Request,
Ticket Transfer

No

3. Otway-Rees like
Initiator and

KMS
Initiator

Ticket Transfer,
Ticket Resolve

Yes

4. PSK like
Initiator and
Responder

Initiator Ticket Transfer No

2.8 SDES

The SDP Security Description for Media Streams (SDES) specifies a
mechanism to signal and negotiate the cryptographic parameters for media
streams in general and for SRTP in particular. It introduces a new SDP
attribute called “crypto” which can be used by SRTP to establish cryptographic
parameters in a single round-trip. Since the keys are carried within the SDP
message, SDES is suitable only if the SDP is protected, e.g. with IPsec,
TLS, SIP S/MIME [19], or similar means. Otherwise the media stream cannot
be considered as secured if the keys themselves are not protected. SDES is
standardized by IETF and specified in RFC 4568 [25]. 3GPP has standardized
SDES as one of the key management solutions (another is MIKEY-TICKET) for
media protection (see section 3.13).

The “crypto” attribute has the following format which describes the
cryptographic suite, key parameters, and session parameters for the preceding
media line.

a=crypto:<tag> <crypto-suite> <key-params> [<session-params>]

e.g. a=crypto:1 AES_CM_128_HMAC_SHA1_80

inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR|2^20|1:4

The tag field (in this example: 1) is a decimal numeric identifier which is
used to determine which of several offered crypto attributes has been negotiated.

The crypto-suite field (AES_CM_128_HMAC_SHA1_80) is an identifier that
signifies the encryption and authentication algorithms.

The key-params field provides one or more sets of keying material. It is
formatted as following

key-params = <key-method> ":" <key-info>

The key-method field (inline) indicates that the actual keying material is
provided in the key-info field itself. The key-info can be expressed as following

18

<key||salt> ["|" lifetime] ["|" MKI ":" length]

In the above example, the first field (PS1uQCVeeCFCanVmcjkpPywjN-WhcYD0m
XXtxaVBR) is the master key with the master salt appended and encoded in
base64. The second field (2ˆ20) indicates the lifetime of the master key and the
third field (1:4) is the value of MKI and its byte length.

The session-params field is defined as a general character string and its usage
is specific to any given transport. This field is ommitted in the above example.

An example of SDES key setup from [25]:

Offerer sends:

v=0

o=sam 2890844526 2890842807 IN IP4 10.47.16.5

s=SRTP Discussion

i=A discussion of Secure RTP

u=http://www.example.com/seminars/srtp.pdf

e=marge@example.com (Marge Simpson)

c=IN IP4 168.2.17.12

t=2873397496 2873404696

m=audio 49170 RTP/SAVP 0

a=crypto:1 AES_CM_128_HMAC_SHA1_80

inline:WVNfX19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz|2^20|1:4

FEC_ORDER=FEC_SRTP

a=crypto:2 F8_128_HMAC_SHA1_80

inline:MTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5QUJjZGVm|2^20|1:4;

inline:QUJjZGVmMTIzNDU2Nzg5QUJDREUwMTIzNDU2Nzg5|2^20|2:4

FEC_ORDER=FEC_SRTP

Answerer replies:

v=0

o=jill 25690844 8070842634 IN IP4 10.47.16.5

s=SRTP Discussion

i=A discussion of Secure RTP

u=http://www.example.com/seminars/srtp.pdf

e=homer@example.com (Homer Simpson)

c=IN IP4 168.2.17.11

t=2873397526 2873405696

m=audio 32640 RTP/SAVP 0

a=crypto:1 AES_CM_128_HMAC_SHA1_80

inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR|2^20|1:4

In this example, the session would use the AES_CM_128_HMAC_SHA1_80

crypto suite. However, it should be noted that SDES does not provide end-
to-end media encryption when there are proxies involved as these proxies will
have access to the SDES information. One method of addressing this is to use
S/MIME to encode the SDES information so that only the end node can decode
it.

19

2.9 DTLS-SRTP

Datagram Transport Layer Security (DTLS) is a channel security protocol
for UDP (defined in RFC 4347 [29]) and SRTP is a security profile for RTP (see
section 2.5). While SRTP has been specifically tuned for securing RTP payloads,
DTLS is generic protocol. Therefore, DTLS is not as optimized for RTP as SRTP
is. DTLS-SRTP (defined in RFC 5764 [30]), on the other hand, is a DTLS
extension to establish keys for SRTP. DTLS-SRTP uses SRTP for encrypting
RTP payloads, and DTLS for key management. RFC 5763 [31] describes a
framework to use SIP to establish a SRTP context using DTLS protocol.

As shown in figure 2.7, when using DTLS-SRTP, a fingerprint attribute is
transported in the SDP (e.g. as “a=fingerprint: SHA-1 4A:AD:B9:B1:3F:82:

18:3B:54:02:12:DF:3E:5D:49:6B:19:E5:7C:AB”) that identifies the certificate
that will be presented during the DTLS handshake. In order to protect the
integrity of fingerprint from modification by proxies, the SIP Identity mechanism
[32] can be used. The agreement on which side acts as a DTLS client and which
side acts as a DTLS server is established via SDP. The key exchange happens
on the media path, independent of the signaling path, and the resulting keying
material is fed into the SRTP stack.

When a certificate is presented in the DTLS handshake, then each peer can
verify if the certificate matches the one used in the signaling or not. Therefore,
the use of fingerprint binds the DTLS key exchange in the media plane to the
signaling plane. However, this requires some form of integrity protection on the
signaling plane.

Alice

SDP

(+fingerprint)

Bob
DTLS

Proxy X Proxy Y

SDP

(+fingerprint

+auth.id.)

SRTP

SDP

(+fingerprint

+auth.id.)

Figure 2.7: DTLS Message Exchange in SIP Trapezoid

2.10 ZRTP

ZRTP is an end-to-end media path keying protocol intended to negotiate
the encryption keys to be used in a VoIP session. It is called media path keying
because it is independent of support (or lack thereof) in the signaling layer and
all the key negotiations occur through the RTP stream. It uses Diffie-Hellman
(DH) for key exchange and the SRTP profile for encryption. ZRTP is described

20

in the RFC 6189 [26].

An example of ZRTP’s call flow is illustrated in figure 2.8. Even though the
signaling protocol does not participate in the key exchange mechanism of ZRTP,
it can announce ZRTP capability via SDP attribute “a=zrtp-hash”. If such an
announcement is not present, then ZRTP attempts to perform opportunistic
encryption and sends ZRTP Hello messages via the RTP session. The purpose
of the Hello message is to check if the other endpoint supports the protocol and
to discover a common algorithm. Any of the participants can initiated the Hello
message. If a Hello response is received, then the remaining processing is carried
out, otherwise it is assumed that the other party does not support ZRTP and no
additional ZRTP messages are exchanged.

Alice Bob

Hello

HelloACK

RTP SESSION

HelloACK

Hello

Commit

DH

DH

Confirm

Confirm

ConfirmACK

SRTP SESSION

Figure 2.8: ZRTP Call Flow Example

In ZRTP ephemeral DH keys are generated for each session and therefore it
does not require any Public Key Infrastructure (PKI). To protect the keys from
a Man in the Middle (MitM) attack, ZRTP uses a Short Authentication String
(SAS) which is generally displayed to the user and verified verbally.

The ZRTP packet format is illustrated in figure 2.9. Since its packet format
is syntactically distinguishable from an RTP packet (as was shown in figure 2.2
on page 11), the concept of using Hello messages works fine. If the receiver tries

21

to decode this packet as a RTP packet, the version field (V) will be 0, the Padding
field (P) will be 0, and the extension field (X) will be 1. Thus the receiver should
check if the timestamp field is equal to the ZRTP magic cooking, i.e., the ASCII
string ‘ZRTP’, if so, then the packet should be decoded as a ZRTP message,
otherwise the packet should be discarded.

0 1 2 3 4 8 16 31

0 0 0 1 Not used (set to zero) Sequence Number

Magic Cookie ‘ZRTP’ (0x5a525450)

Source Identifier

ZRTP Message (length depends on Message Type)

CRC (1 word)

Figure 2.9: ZRTP Packet Format

The fields have following meanings:

Sequence Number is a count of ZRTP packet sent. It is used to estimate
packet loss and detect packet order.

Magic Cookie is a 32 bit string that uniquely identifies a ZRTP packet. It has
the value 0x5a525450 (meaning ZRTP).

Source Identifier is the SSRC number of the RTP stream that this ZRTP
packet relates to.

ZRTP Message is variable length message, e.g. Hello, Commit, and so on.

CRC is a 32 bit word used to detect transmission errors.

2.11 IMS

IP Multimedia Subsystem (IMS) is a generic architecture for offering
multimedia services using SIP and (S)RTP. IMS is access agnostic and therefore
is a key technology for network consolidation. The IMS specification is defined
in 3GPP TS 23.228 [33].

In an IMS domain, each user is assigned exactly one IP Multimedia Private
Identity (IMPI) and one or more IP Multimedia Public Identity (IMPU). The
IMPI, e.g. nakarmi@kth.se, is used for authentication, accounting, and so on.
The IMPU, e.g. sip:nakarmi@kth.se, tel:+46-6-66666666, on the other hand
is used in communications with other users.

IMS is not a service in itself, but rather it is a service enabler and it integrates
different services (e.g. multimedia, instant messaging, presence, etc.) utilizing
a single technology (SIP). Since IMS supports both native IP based services as
well as voice services on IP, it offers network operators a significant reduction
in the cost of operating their networks. Moreover, since IMS is uses the same
protocols as the Internet, it is easier for developers to create applications using
the already existing Internet protocols. Explaining all the details of IMS is not

22

possible in a short section, for more details refer to 3GPP’s IMS specification
[33]. Ericsson’s white paper [34] outlines the value of using IMS.

2.12 GBA

3GPP’s Generic Bootstrapping Architecture (GBA) is a mechanism that
provides bootstrapping of application security for subscriber authentication. It
is based on the Authentication and Key Agreement (AKA) [35] protocol. The
GBA specification is 3GPP TS 33.220 [36]. The specification mentions two
types of GBA: GBA ME and GBA U. In the case of GBA ME, the UICC in
the mobile device is GBA unaware and all GBA specific functions are carried
out in the Mobile Equipment (ME), whereas in the case of GBA U, the GBA
specific functions are split between the ME and UICC.

Figure 2.10 shows the network elements involved in the bootstrapping
architecture. It is important to notice the difference between GBA and Generic
Authentication Architecture (GAA). The GAA enables the Network Application
Function (NAF) to re-use the bootstrapped authentication and to agree on a
shared secret with the User Equipment (UE).

HSS

Zh

BSF

UE

NAFSLF

ZnDz

Ub Ua

GBA

GAA

Figure 2.10: Network Elements for Bootstrapping with GBA and GAA

23

A brief description of these network elements:

User Equipment (UE)

The UE is the terminal equipment that participates in bootstrapping process
(figure 2.11) using the UICC to establishe a temporary shared secret Ks with
Bootstrapping Server Function (BSF). It also generates a key, Ks NAF, to
authenticate messages exchanged with the Network Application Function (NAF).

IMPI

UE BSF HSS

HTTP Digest AKA

IMPI

AV, GUSS

200 OK, B-TID, Key lifetime

Ub Zh

B-TID, Ks

B-TID, Ks

Figure 2.11: Bootstrapping Process

Bootstrapping Server Function (BSF)

The BSF participates in the bootstrapping process (figure 2.11) with the UE
to establish a temporary shared secret Ks. It facilitates the bootstrapping usage
process (figure 2.12) by supplying the NAF with an appropriate key (Ks NAF)
to authenticate the UE. It also acquires the GBA User Security Settings (GUSS)
from the HSS.

B-TID, Request data

Response data

ZnUa
NAF BSFUE

B-TID, Ks B-TID, Ks

Ks_NAF

B-TID, NAF-Id

Ks_NAF, Bootstrap. time,

Key lifetime

Ks_NAF

Figure 2.12: Bootstrapping Usage Process

24

Network Application Function (NAF)

The NAF supports GBA based user authentication and participates in
bootstrapping usage process (figure 2.12). It communicates securely with the
BSF to acquire the key (Ks NAF).

Home Subscriber System (HSS)

The HSS stores information related to each subscriber. It performs the
combined job of Home Location Register (HLR) + Authentication Centre (AuC)
in Global System for Mobile Communications (GSM). Communication with the
HSS uses the Diameter protocol [37].

Subscriber Locator Function (SLF)

The SLF provides the BSF with the name of the HSS that is to be used, if
there is more than one HSS in the domain. The BSF may be configured to use
a pre-defined HSS

The interfaces between the network elements are described below:

Ua The Ua interface between UE and NAF is used for for GAA. This interface
supplies Bootstrapping Transaction Identifier (B-TID) to the NAF. It
uses an application-specific protocol secured by Ks NAF. These protocols
include: HTTP digest authentication [38], HTTPS [39], and PKI [40].

Ub The Ub interface between UE and BSF is used for GBA. It establishes a
security association between the UE and the BSF, i.e. it establishes B-TID
and Ks. This interface uses HTTP Digest AKA and is described in 3GPP
TS 24.109 [38].

Zh The Zh interface between BSF and HSS is used for GBA. It enables the
BSF to retrieve an Authentication Vector (AV) and GUSS from the HSS.
This interface is based on Diameter protocol and is described in 3GPP TS
29.109 [41].

Zn The Zn interface between BSF and NAF is used for GAA. It enables the
NAF to retrieve key material and user security settings from the BSF. This
interface is based on Diameter/Web Services and is described in 3GPP TS
29.109 [41].

Dz The Dz interface between BSF and SFL is used to retrieve the name of the
HSS.

2.13 Summary

In this chapter, we discussed VoIP and the protocols related to VoIP. SIP
is a signaling protocol which is used for management of multimedia sessions.
Similarly, SDP is a media description protocol which is used for describing the
multimedia sessions. Used together with SIP and SDP, RTP is a transport
protocol for delivering real-time data over IP networks. SRTP, on the other
hand, is a security profile for RTP. SRTP provides confidentiality, authentication
and replay protection to RTP traffic. MIKEY is one of the key management

25

protocols which is used to establish encryption keys for security protocols,
specifically SRTP. MIKEY-TICKET is also a key management protocol which
extends MIKEY and uses a trusted KMS for ticket-based key distribution. SDES
and ZRTP are yet another key exchange mechanisms. While SDES establishes
cryptographic parameters via SDP, ZRTP uses RTP streams to exchange the
keys. IMS is an architecture for offering multimedia services using SIP and
(S)RTP. GBA is a mechanism used in IMS that provides bootstrapping of
application security for subscriber authentication.

26

Chapter 3

Related Work

This chapter presents some theses, reports and standards that are related to
the evaluation and implementation of secure VoIP. It summarizes some of the
related theses and reports. Then it presents specifications by IETF and 3GPP.
Finally it mentions some of the application and libraries that are relevant to this
thesis project.

3.1 Initial SRTP Performance Measurements

In his master’s thesis [42], Israel Abad Caballero discussed and evaluated a
security model for Mobile VoIP and addressed both signaling protocol (SIP) as
well as the data transport protocol (RTP). The evaluation presented in his thesis
focused on SRTP and its effects on media processing. The tests were conducted
using a 700 MHz Pentium III processor machine with 112 MB RAM and with
his SRTP implementation (called MINIsrtp) was integrated into the minisip [43]
SIP user agent (UA).

He argues that the additional 4 bytes that SRTP transmits (if the
authentication tag is present) adds negligible time for transmission of the SRTP
packets as compared to RTP packets. His measurements show that packet
creation time for RTP+SRTP took ~80 µs as compared to ~5 µs for ordinary RTP
packet, hence the difference in processing time per packet is small. Therefore,
he concludes that the ultimate impact on performance and transmission is
imperceptible.

He also makes several suggestions to improve VoIP security. These
suggestions are:

1. Improve session security by using:

• DNSSEC to secure DNS look-ups

• TLS to protect SIP transactions

2. Improve media security by using:

• MIKEY as the key-management protocol

• SRTP+AES to protect media stream

27

~
~

3.2 Initial MIKEY Performance Measurements

In his master’s thesis [44], Johan Bilien discussed and measured the
additional delay required for key exchange during call establishment when using
MIKEY (Note that at the time MIKEY was in the process of being standardized).
He also discussed how MIKEY can be used when there is session mobility and/or
device mobility.

His measurements after adding security features were presented in a separate
co-authored paper [45] (these results are discussed in section 3.5).

3.3 SRTP and ZRTP Performance Measurements

Alexander, Wijesinha, and Karne have presented their experiments on the
performance of SRTP in [46]. Their experiments were conducted using Windows-
based snom1, Linux-based Twinkle [48], and bare PC softphones [49]. The snom
and bare PC softphones used SDES/SIP for key exchange; whereas Twinkle used
ZRTP.

The processing times were measured on the bare PC softphone with 128-
bit AES keys and 32-bit HMAC/SHA-1 authentication tag, as well as 192 and
256-bit AES keys and an 80-bit authentication tag. The VoIP performance was
evaluated on the snom, Twinkle, and bare PC softphones with 128-bit AES key
and a 32-bit authentication tag. The results show that SRTP processing adds
less than 1 ms to RTP processing (indicating a negligible increase in processing
time due to SRTP) and the throughput is 81.6 kbps without SRTP, and 83.23
kbps with SRTP (indicating no significant alteration in throughput). Note that
the increased data rate for the case of SRTP is due strictly to the additional
authentication field which is included with each RTP packet.

They concluded that the authentication processing is more expensive than
encryption regardless of key/tag-size and that the addition of SRTP protection
to VoIP traffic over RTP has a negligible effect on voice quality, in terms of either
jitter or packet inter-arrival time.

3.4 Security Analysis of MIKEY-TICKET

Oscar Olsson, in his master’s thesis [50], has done a security analysis of
MIKEY-TICKET and offered some recommendations. Oscar performed his
analysis by focusing on the symmetric-key variant and the two-party case of
MIKEY-TICKET. MIKEY-TICKET was still an IETF draft version during his
thesis work. Oscar concluded that the protocol is secure in the realistic setting
of multiple sessions running in parallel in an adversary controlled network.

1A reference for snom is missing from the original paper. We found [47] during our Internet
search for snom.

28

3.5 Call Establishment Delay for Secure VoIP

In [45], Johan Bilien, Erik Eliasson, and Jon-Olov Vatn presented the effect
of MIKEY authentication handshake and SRTP session key generation on the
call setup delay. They have presented the measurements of the call setup delay
for their own implementation of MIKEY and SRTP protocols. The test-bed UAs
were running on 1.4 GHz Pentium IV machines and measurements were taken
in terms of the MIKEY Response in the 200 OK message.

The measurements show that the calling delay is increased by about 4 ms and
the answering delay is increased by around 10 ms. Thus the authors suggest that
call setup delay will not be significantly affected by introducing these security
protocols.

3.6 A Secure VoIP User Agent on PDAs

In [51], Bilien, Eliasson, and Vatn give an overview of secure VoIP
measurements from their earlier papers ([42] and [45]) of delays related to call
setup delay and media protection. Their measurements were based on UAs
running in PCs.

With regard to their experience running the same UA on a PDA the authors
presented only a general discussion regarding battery power consumption and
audio quality, but have not given measurements of the performance of their
implementation when running on a PDA. The PDA was a HP iPAQ h5550
running Familiar Linux2 and minisip was the SIP UA.

3.7 Secure VoIP: Call Establishment and Media Pro-
tection

In [52], Bilien, Eliasson, Orrblad, and Vatn discuss different security
services relevant for VoIP and have presented their measurements of secure call
establishment for MIKEY, SRTP, and IPsec. Their measurements are based on
a minisip [43] UA running on a 500 MHz Pentium III machine. They conclude
that the call establishment delay will not be significantly affected by introducing
these security protocols.

In their implementation for a keying protocol, the MIKEY messages are
carried as a multi-part MIME body in the SIP message and not as an SDP
attribute. They discovered that when TLS is used, digital signatures of MIKEY
messages and their verification take less time than when TLS is not used. They
attribute this difference in delay to the pre-initialized crypto library and cached
certificates/keys (as this shifted some of the computation to the TLS tunnel’s
initiation - thus removing this delay from the MIKEY computations).

Their measurements show that initial ringing delay was ~80 ms for both

2 The official Familiar web page http://familiar.handhelds.org/ is currently under
maintenance as of this writing

29

~
http://familiar.handhelds.org/

IPsec and SRTP which is insignificant to a human user. However, the per RTP
packet delays for both the caller and the callee are found to be higher when using
IPsec than when using SRTP. Since these results are implementation dependent
the authors do not draw the conclusion that IPsec in general leads to higher per
RTP packet delays than SRTP.

Based upon the measurements of their implementation they suggest:

1. Use SRTP for media protection

2. Use S/MIME and MIKEY for end-to-end authentication and keying

3. Use TLS for hop-by-hop protection of SIP messages

The authors suggest using SRTP to protect the media streams because it is
easier to write portable implementations which can be independent of the IPsec
support provided by the end-host system. Additionally, the application can know
if it implements SRTP and hence has end-to-end security, but the application
can not easily know if the IP stack has an IPsec tunnel for the end point with
which it is communicating.

3.8 Secure VoIP Performance on Handheld Devices

In [53], Erik Eliasson presents his performance measurements of a secure
VoIP UA running on an HP iPAQ h5550, running the Familiar Linux distribution
and connected wirelessly. He reports measurements for both call-setup and
media-processing.

Minisip was used as the UA. This means that the caller’s computation of
the session key starts before the 200 OK response is received and the MIKEY
messages are exchanged before the callee’s phone starts ringing. These features
minimize the media clipping and the risk of ghost ringing. Media clipping occurs
when the media is not delivered at the start of the session. Ghost ringing occurs
when the ringing starts, but the session is not subsequently initiated. Avoiding
ghost ringing requires reliable provisional reponses. The call-setup measurements
show that there is ~3 seconds of ringing delay and the caller’s session key
calculation takes ~1600 ms as compared to the callee’s which takes ~400 ms.
These delays are large and noticeable by user. The time required to compute
the session keys affects the number of audio packets that are lost (leading to
media clipping - since there were no keys to encrypt the audio until the session
key and derived keys care available). Because the session key computation time
will increase with decreasing processing power, this is potentially an issue for low
performance processors. The authors suggest that code-optimization of minisip
for handheld devices can improve the performance considerably. However, the
authors did not do any code optimization.

Regarding the media processing, this report focused on the overhead of
the security protocols as compared to the rest of the processing steps, e.g.
silence detection/suppression and echo cancellation. In their measurements the
processor took only ~0.07 ms to encrypt 20 ms of audio data and ~0.36 ms to
do per packet authentication processing. The total processing time on both the

30

~
~
~
~
~

caller and callee side was ~1.3 ms. As a result the iPAQ hardware had no problem
handling several simultaneous VoIP calls.

This work differs from ours in that we have explored various alternatives
and derived recommendations to achieve VoIP security in the current generation
of mobile devices (based on Android). We have also broadened the research by
making the system complaint to the standards used in 3GPP’s IMS (see section
1.2).

3.9 Evaluation of Secure Internet Telephony

In his licentiate thesis [54], Erik Eliasson has shown a way to implement
end-to-end secure VoIP using open standards - TLS for the signaling, SRTP for
media, and MIKEY to do an authenticated session key exchange. The use of
IPsec to transport the media has also been implemented and evaluated.

His thesis builds upon his five of earlier works, already summarized in
sections 3.5, 3.7, and 3.8. His performance measurements show that secure
VoIP can be implemented both on PC hardware and devices with relatively
low processing power such as the HP iPAQ PDA.

3.10 Alternatives to MIKEY/SRTP to Secure VoIP

In [55], Joachim Orrblad examines IPsec as an alternative to MIKEY/SRTP
and shows how to integrate the key exchange for IPsec in the SIP call signaling.
He concludes that while IPsec may be valuable for its ability to protect general
traffic (not only the media streams) and even though SIP initiated IPsec makes
it possible to establish IPsec tunnels between two VoIP peers, SRTP should still
be used for media protection.

He favors SRTP over IPsec for following reasons:

• With IPsec, the UA is dependent upon a particular IPsec implementation
and/or operating system that it is running on.

• His measurements revealed that with IPsec, there is loss of packets for ~0.7
seconds in the beginning of the call. However, this could be due to his
particular implementation.

• IPsec causes problems for some NAT and firewall devices.

• IPsec offers host-to-host security, where as SRTP offers application-to-
application security.

3.11 Mobile Web Browser Extensions

In [56], Tomas Joelsson has shown the use of local web server (proxy),
running as a background process on a mobile phone, to add new functionality
to web applications running in the phone’s built-in browser. The author has
implemented a MIDlet [57] to communicate with both local browser and remote
server.

31

~
~

This work is relevant to us in the sense that it deals with the use of a
local proxy in mobile device. As will be discussed in the section 4.4.4, one of
the implementation strategies for our work is to use a proxy for intercepting
both signaling traffic and media. Although the implementation platform, proxy
functions, and deployment environment will be different from this earlier work,
the concepts in his thesis are helpful.

3.12 Key Management Extensions for SDP and RTSP

The extension to SDP defined in IETF RFC 4567 [58] is relevant to this
thesis because it provides a mechanism to carry messages specific to a key
management protocol in SDP. Although the specification presents the use of
this mechanism with MIKEY, the mechanism is applicable to MIKEY-TICKET
without any modification (because MIKEY-TICKET is just a mode of MIKEY).

The SDP extension in its simplest form looks like following:
Format : a=key-mgmt:<prtcl-id> <keymgmt-data>

Example : a=key-mgmt:mikey AQAFgM0XflABAAAAAAAAAAAAAAsAyO...

The key-mgmt is a string indicating this is a key management attribute,
while prtcl-id is a protocol identifier and keymgmt-data is a message specific to
the key management protocol used and is encoded in base64 [59]. This attribute
may be used at session level, media level, or at both levels.

This specification is more powerful than “k=” field in SDP because a key
management protocol generally has more parameters than just a key, hence the
“k=” field is not sufficient. Moreover, this specification is independent of the
signaling protection used and hence it is better than SDES which requires the
keying material to be protected along with the signaling.

3.13 3GPP TS 33.328 IMS Media Plane Security

3GPP TS 33.328 [4] defines a standard for IMS media plane security
that provides end-to-end protection of RTP payload over any network. The
specification uses SRTP as its security protocol and has two key management
solutions. The first one is based on SDES and the second one is based on a Key
Management Service (KMS). The KMS based solution is relevant to this thesis.

The KMS based solution uses MIKEY-TICKET as described in section
2.7. GBA-GAA (as discussed in section 2.12) acts as the reference model,
where the KMS performs the role of a NAF. This solution is attractive
because it is independent of the SIP signaling security and is scalable to
large numbers of users. Figure 3.1 summarizes the processing involved in this
solution. The interaction with KMS includes the REQUEST_INIT, REQUEST_RESP,
RESOLVE_INIT, and RESOLVE_RESP messages of MIKEY TICKET (as illustrated
in figure 2.6 on page 17). These Ticket Request/Resolve key management
messages are based on HTTP. Similarly, SDP offer/answer exchange includes
TRANSFER_INIT and TRANSFER_RESP messages. These Ticket Transfer/Response
key management messages are based on SIP using the SDP extension described

32

in section 3.12.

UE Initiator UE Responder

SDP offer

SDP Answer

SIP

Bootstrap Bootstrap

Interact

with KMS

Interact

with KMS

Figure 3.1: KMS Based Solution for Media Plane Security [4]

3.14 3GPP TR 33.914 using SIP Digest in IMS

The current GBA standard (see section 2.12) provides a bootstrapping
mechanism that is limited to UICC-based credentials. However, the most popular
authentication mechanism in most IMS deployments is SIP Digest (SD) (see
RFC 3261 [19]). The use of SD credentials means that there is no need for a
separate security infrastructure and even fixed devices (with no UICC) can use
the bootstrapping mechanism. Therefore, in order to enable GBA bootstrapping
using SIP Digest, 3GPP has started a study (3GPP TR 33.914 [60]) on an
extension of GBA known as GBA Digest.

The interface between the network elements have been summarized in table
3.1. The password that is used for the SD digest response calculation is proposed
to be calculated as shown in Equation (3.1). The Key Derivation Function (KDF)
used in this Equation is described in 3GPP TS 33.220 [36].

password = KDF (H(A1), “GBA Digest RESP”) (3.1)

Another proposal in TR 33.914 is the caculation of Ks as shown in Equation
(3.2). In order to prevent man-in-the-middle (MITM), TLS_MK_Extr (to be
extracted from TLS master key) has been used. For more details on this, refer
the original document 3GPP TR 33.914 [60].

Ks = KDF (H(A1), TLS MK Extr, “GBA Digest Ks”, Digest− response)
(3.2)

As of this writing, TR 33.914 has not yet been completed. Chapter 4 and
chapter 5 in this thesis describe what assumptions have been made and how
GBA Digest has been implemented for authentication bootstrapping.

33

Table 3.1: Potential Interfaces between the Network Elements in GBA Digest
Interface between Remarks

UE and NAF It is application specific. Ua from GBA can be reused.
UE and BSF Ub in GBA needs to be extended to use SD.

NAF and BSF Zn from GBA can be reused.
BSF and HSS BSF now needs SD-AV from HSS. There are two options

to achieve this:

1. Extended Zh in GBA

2. Use Cx interface (see 3GPP TS 29.228 [61] and
3GPP TS 29.229 [62])

3.15 Existing VoIP Applications and Libraries

Some of the VoIP applications and libraries that are relevant are shown
in table 3.2. We will consider using one or more of these in our design and
implementation, described in chapter 4 and chapter 5.

Table 3.2: Some Relevant VoIP Applications and Libraries

Name Type Encryption Platform Reference

Minisip
Application,

libraries
SRTP,

MIKEY
PC,

handseta
[43]

Sipdroid Application N/A Android [63]

Nebula Application N/A
Android,

Linuxb [64]

SIP
Communicator

Application ZRTP PC [65]

Twinkle Application ZRTP Linux only [48]
Zfone Softwarec ZRTP PC [66]
libSRTP Library SRTP Linux [67]
Zorg Library ZRTP PC, mobile [68]

a Minisip had been tested in HP iPAQ [51]
b Linux version of Nebula is based on Minisip
c Zfone works on top of existing SIP+RTP programs

3.16 Summary

In this chapter, we discussed some theses and summarized their findings.
These theses showed that SRTP had very good performance both in PC and HP
iPAQ, and suggested using SRTP for media protection. The results presented in
some of these theses showed that the call setup delay in PC was not significantly
affected by introducing security features. But the call setup delay in HP iPAQ
was, however, large and noticeable by the user. Besides these, we also discussed
how RFC 4567 extends standard SDP to carry key management messages. Then

34

we summarized 3GPP’s specification (TS 33.328) for media plane security in
IMS. 3GPP’s TS 33.328 has standardized to use SDES and MIKEY-TICKET as
key management protocols, and SRTP as security protocol. We also discussed
the ongoing 3GPP’s standardization effort on extension of GBA known as GBA
Digest, which is supposed to use SIP Digest for bootstrapping mechanism.
Finally, we mentioned some VoIP applications and libraries, one or more of
which are considered in our design and implementation.

35

Chapter 4

Design

This chapter presents the alternatives and choice of various technologies/
components that will be used for implementation. First, it discusses about
choosing various protocols for signaling, transport, security, and key exchange.
Then, it discusses on authentication mechanisms. Finally, it presents the system
components and describes the operational flow.

4.1 Device Platform

Regarding the choice of mobile device platform, we decided to worked on
Android. The motivation for choosing Android was driven by its very rapid
growth (888.8 % growth in 2010, and forecasted to be the number one mobile
operating system by 2014 [69]).

4.2 Signaling Protocol

H.323 is a ITU-T recommendation for multimedia communication. It
describes how a number of protocols fit together to provide a multimedia
conference. H.323 uses signaling concepts from the telecommunications industry.
SIP on the other hand covers only the signaling parts of H.323. SIP is an Internet-
centric protocol and is simpler than H.323. For these reasons, SIP has been
widely deployed for initiating, terminating, and controlling multimedia sessions
over IP. SIP has also been accepted as the signaling protocol for IMS. Therefore,
this thesis focuses on SIP as the signaling protocol.

4.3 Transport Protocol

RTP is one of the technical foundations of VoIP and is used together with
H.323 or SIP. One of the main advantages of using RTP is that new multimedia
formats can be added without changing the underlying standard. This thesis
focuses on RTP as the media transport protocol.

36

4.4 Security Protocol

SRTP is a well established security protocol for RTP based traffic. 3GPP
has standardized on using SRTP in IMS irrespective of the key management
solution. Therefore, this thesis adopts SRTP as the media security protocol.

A VoIP application produces RTP data in the application layer (see figure
4.1). The data moves down to the transport layer before finally leaving the
device via the network access layer (the link and physical layer are hidden by
the operating system). We, therefore, have opportunities to work on different
layers, each of which presents various alternatives for converting RTP into SRTP.
The following sections present some ideas concerning alternatives for how to
implement this RTP to SRTP conversion at each of these different layers.

Application

Transport

Internet

Network Access

VoIP Application

RTP

Figure 4.1: VoIP Application in TCP/IP Layer

4.4.1 Strategy 1 - Modifying the Application

In this approach we integrate SRTP into the VoIP application (see figure
4.2(a)). This approach involves modification of the application so that the
RTP packets are transformed into the corresponding SRTP packets within the
application. If the source code of the application is available, then this approach
should be the most efficient.

4.4.2 Strategy 2 - Developing a Shim

Another alternative is to intercept library calls in order to change the
behavior of an application. The library or application which does this is known
as a shim (see figure 4.2(b)). In this approach, a suitable shim will intercept the
system calls from the VoIP application so that when it reads/writes the socket,
the necessary conversions are done between RTP and SRTP packets. As a result
the SRTP packets are generated in the application layer before being passed to
the transport layer. This approach has been used frequently in the past to realize
various solutions, such as SOCKS [70]. To my knowledge, Android phones need
to be rooted to implement this strategy.

37

VoIP Application

RTP

SRTP

Transport

(a) Modifying the application

VoIP Application

RTP

Transport

SRTP

(b) Developing a shim

VoIP Application

RTP

Transport

Internet

Network Access

RTP to SRTP

(c) Manipulating IP packets

Internet

Network Access

B2BUA

RTP to SRTPSRTP to RTP

(d) Implementing a B2BUA

Figure 4.2: Alternative Approaches for Media Protection in Handset

4.4.3 Strategy 3 - Manipulating IP Packets

Another approach is to capture and modify the IP packets, in a similar
fashion to how a firewall captures the IP packets at the Internet layer and
drops or modifies them. The idea would be to replace each RTP packet with
a corresponding SRTP packet (see figure 4.2(c)). The success of this approach
assumes the ability to intercept and manipulate IP packets. To my knowledge,
Android phones need to be rooted to implement this strategy [71].

Since this approach processes RTP data present in each IP packet, there may
be problems during datagram fragmentation, i.e. when a single RTP datagram is
spread over more than one IP packet. Nevertheless, generally for audio data, say
for packetization times of 20–100 ms @ 8000 Hz, the RTP payload ranges in size
from 160-800 bytes which is much less than a typical MTU (1500 for Ethernet
[72], ~2200 for IEEE 802.11 [73], and upto 1500 for 3G [74]). As such, there
should not be any problem due to datagram fragmentation in most networks.

4.4.4 Strategy 4 - Implementing a B2BUA

The idea is to implement a B2BUA that acts as intermediary (proxy) for
both the SIP signaling and the media transfer (see figure 4.2(d)). The B2BUA
resides in the mobile phone and runs as a local server. The VoIP application is
configured to connect to the B2BUA (e.g. 127.0.0.1:5060) and the B2BUA in

38

~

turns connects to the SIP server (e.g. sip.server:5060). The VoIP application,
therefore, sees the B2BUA as a SIP proxy server as well as the remote peer. To
achieve this the B2BUA manipulates the SIP messages to redirect all the SIP
traffic via itself. Similarly, after the call establishment, the B2BUA does the
RTP to SRTP and SRTP to RTP conversion of the media between the remote
peer and the local VoIP application.

Since the strategy of modifying the application does not require rooting
the Android phone and is simpler to implement than other strategies mentioned
here, this thesis focuses on modifying the open source VoIP client Sipdroid [63].
The development of Sipdroid is very active. Moreover, the author already has
familiarity with the codes of Sipdroid while working on his previous project [64].
Hence the modification can be done in less time, unlike if other VoIP clients
were chosen (Note that IMSDroid [75] is an open source 3GPP IMS Client for
Android devices, and would also have been a good choice).

4.5 Key Exchange Protocol

One of the potential alternatives for a key exchange protocol is ZRTP (see
section 2.10). ZRTP is interesting because it is multiplexed on the same port
as RTP and is indifferent to the support for media security in the signaling
protocol. However, ZRTP has some practical issues. First, ZRTP uses a Short
Authentication String (SAS) (which is generally displayed to the user and verified
verbally). To verify SAS with everyone is unfeasible in a group communication.
Next, ZRTP needs an established RTP session for key exchange. But IMS does
not allow media to be sent through the network before the signaling is done.
When using ZRTP, the key exchange can suffer from this delay. ZRTP is also
naturally prone to issues like ghost-ringing and media-clipping (see report [53]).

Another alternative is DTLS-SRTP (see section 2.9), but it is dependent
on the integrity protection of signaling plane. Like ZRTP, DTLS-SRTP also
performs the key exchange in the media stream. Hence, it also suffers from the
delay before the RTP media can flow. Similarly, both ZRTP and DTLS-SRTP
do no favor lawful interception (LI). Both of them are also not suitable for group
keys (since only individual peer-to-peer keys are provided). Note that DTLS-
SRTP has been already not chosen for IMS, even though it was considered in a
technical report 3GPP TR 33.828 [76].

On the other hand, 3GPP has standardized SDES (see section 2.8) and
MIKEY-TICKET (see section 2.7) as key management solutions for media
protection. Note that with SDES and MIKEY-TICKET, it is possible to
perform lawful interception (LI). While SDES relies on the SIP signaling se-
curity, MIKEY-TICKET is independent of the signaling and transport network.
Moreover, MIKEY-TICKET is based on use of a trusted KMS, and scales well to
serve a large numbers of users. Therefore, MIKEY-TICKET is more appropriate
for end-to-end security.

This thesis focuses on using MIKEY-TICKET as the key exchange protocol.

39

4.6 Authentication Mechanism

This thesis takes into account both GBA (UICC based, see section 2.12)
and GBA Digest (SIP digest, see section 3.14). For experiments with GBA,
a vitual UICC was used. For GBA Digest, the necessary modification to the
network components and interfaces were made to use SD. In the case of BSF-
HSS communication, Zh was extended for SD instead of using Cx. The reason
to choose Zh is that it allows operators to support GUSS; whereas the usage of
GUSS is not possible with Cx.

4.7 System Components

The components of the system are illustrated in figure 4.3. The Mobile
Handset is a UE which is used to make VoIP calls. The HSS and the BSF
participate in bootstrapping (GBA and GBA Digest) whereas the KMS (acting
as NAF in GAA) issues and resolves Tickets for MIKEY-TICKET based key
exchange.

The UE provides a User Interface (UI) for making and handling calls. It
also contains a SIP stack which takes care of SIP signaling. Similarly, recording
and playback of voice is done by a RTP/CODECs stack. Conversion of RTP to
SRTP and SRTP to RTP is handled by SRTP Profiler.

The KMS and UE both contain a MIKEY-TICKET Enabler and a GBA
Enabler in order to use MIKEY-TICKET messages and GBA/GAA respectively.
Section 5.2 presents the details of each component.

SIP RTP/CODECs UI

SRTP Profiler

MIKEY-TICKET

Enabler
GBA Enabler

BSF

HSS

KMS

MIKEY-TICKET

Enabler

GBA

Enabler

Mobile Handset

Figure 4.3: System Components Diagram

4.8 Operational Flow

Figure 4.4 illustrates the operational flow of messages in the system for both
the Initiator (notation to right and on top of line) and the Responder (notation
to left and at the bottom of line, enclosed in curly braces).

40

SIP RTP/CODECs UI

SRTP Profiler

Mikey-Ticket

Enabler
GBA Enabler

KMS BSF

HSS

1/11

2

3/5

4

0.a

0.b

6/9

7/8

10

12

12’

{1/9}

{2/7}

{0.a}

{0.b}

{3}

{4/6}

{5}

{10}

{8}

{11}

{11’}

Figure 4.4: Operational Flow

Initiator side (Full three round-trips with Forking enabled)

0. a,b Bootstrapping process. If the existing B-TID is still valid, it can be
skipped (that is why this is labeled as the zeroth step).

1. User initiates the call

2. MIKEY-TICKET API gets B-TID and Ks NAF from GBA Enabler

3. TICKET INIT message, containing the B-TID (Note that if the existing
Ticket is valid, the same Ticket can be used)

4. KMS gets Ks NAF for Initiator from BSF

5. TICKET RESP message, containing the Ticket

6. Ticket is embedded in SDP payload of INVITE message, i.e. TRANSFER INIT
message and security is indicated by SAVP in media line attribute

7. INVITE message is sent

8. Response message is received, if it is not 200 OK, call does not succeed

9. TRANSFER RESP message is extracted from SDP

10. If TRANSFER RESP message can be parsed and validated, session keys
are available for SRTP, otherwise call does not succeed

11. User is notified

12. 12, 12’ incoming SRTP packets are decoded to RTP and outgoing RTP
packets are encoded to SRTP

Responder side (Full three round-trips with Forking enabled)

0. a,b Bootstrapping process. If the existing B-TID is still valid, it can be
skipped (that is why this is labeled as the zeroth step).

41

1. INVITE message is received, with TICKET INIT message

2. SAVP is detected and ticket in the SDP is extracted

3. MIKEY-TICKET API gets B-TID and Ks NAF from GBA Enabler

4. RESOLVE INIT message

5. KMS gets Ks NAF for Responder from BSF

6. RESOLVE RESP message

7. If step no. 6 does not succeed, then the call does not succeed neither, so
CANCEL is sent, otherwise 200 OK is prepared to be sent

8. User is notified of call, if he denies, call does not succeed.

9. TRANSFER RESP message

10. Session keys are available for SRTP

11. 11, 11’ incoming SRTP packets are decoded to RTP and outgoing RTP
packets are encoded to SRTP

4.9 Summary

In this chapter, we presented the design of system. The final choice of
technologies has been motivated by industry standards and fulfillment of the
purpose. SIP (RFC 3261) was chosen as a signaling protocol and RTP (RFC
3550) was chosen as media transport protocol. Similarly, SRTP (RFC 3711)
was chosen as security protocol and Sipdroid was chosen to be modified in order
to integrate SRTP in the application layer. MIKEY-TICKET (RFC 6043) was
chosen as a key exchange protocol. Regarding the authentication mechanism,
both the standard GBA (TS 33.220) and GBA Digest (TR 33.914) were chosen
to be considered. Finally, we presented the system components and illustrated
the operation flow of messages.

42

Chapter 5

Implementation

This chapter describes the implementation of the system according to
the design as discussed in chapter 4. It presents the methodology of the
implementation and describes how each components were developed and/or
adapted.

5.1 Methodology

We followed the Evolutionary Prototyping Model [77] for our implementa-
tion. The choice of this model is driven by the fact that it enabled us to gradually
enhanced the software with new features and improvements, while allowing me
to take a functional snapshot of the software for each prototype release. This
facilitated our performance evaluation for each separate component.

In order to avoid reinventing the wheel, the following artifacts were used
and/or adapted:

1. Sipdroid [63] was selected as the basis of the VoIP application, it provides
the SIP/RTP stack

2. libSRTP [67] was selected to implement RTP to SRTP and SRTP to RTP
transformations, in order to implement SRTP

3. Ericsson’s internal MIKEY-TICKET API, standalone KMS, and BSF

4. Mobile Web Security Bootstrap (MWSB) [78] for GBA API

5. Fraunhofer’s FOKUS HSS [79]

The following steps were defined as checkpoints to produce distinct proto-
types during the implementation of the complete system.

1. Integration of SRTP with hard-coded master key in Sipdroid

2. Integration of key management messages in SDP in Sipdroid

3. Integration of MIKEY-TICKET client in Sipdroid

4. Adaptation of standalone KMS to use hard-coded PSK

5. Integration of GBA client in Sipdroid

43

6. Development of Java EE KMS to perform GAA

7. Adaptation of Sipdroid, BSF, and HSS to use GBA Digest

5.2 System Components Details

Table 5.1 describes how each system component was developed or adapted.

Table 5.1: System Components Description

Components Based on Modification/Development

UI
(Android)

Sipdroid

New settings were added to set security releted
information such as KMS/BSF address.
The home screen tells the user if security is
enabled or not.

RTP/Codecs
(Android)

Sipdroid
No changes were made to Sipdroid. A PCMA 8
kHz sampling rate CODEC was used during the
measurements.

SIP
(Android)

Sipdroid

When security is enabled, key management
messages are included in SDP according to RFC
4567 [80].
The initiator includes a MIKEY-TICKET ticket
in its INVITE message.
The responder resolves the ticket when it
receives this INVITE, then sends its response
in the 200 OK message.
SDP was removed from the 180 Ringing
message.

SRTP
Profiler

(Android)
libSRTP

The libSRTP library is written in C. It was
compiled for Android using the Android NDK
and integrated with Sipdroid using Java Native
Interface (JNI).
The SRTP Engine was developed to interface via
JNI with the library.
When security is enabled RTP packets are
encoded into SRTP packets before they are
transferred via a UDP socket. Similarly, SRTP
packets are decoded into RTP packets before
they are given to the application for playback.

MIKEY-
TICKET
Enabler

(Android)

MIKEY-
TICKET

API
(Ericsson)

The MIKEY-TICKET API is written in C. It
was compiled for Android using the Android
NDK and integrated with Sipdroid using JNI.
MIKEY-TICKET Engine was developed to
interface via the JNI with this C code.
The required dependencies of this library are
OpenSSL and Curl.

Continued on next page

44

Table 5.1 – continued from previous page

Components Based on Modification/Development

OpenSSL
The OpenSSL distribution from [81] was used.
It was compiled using Android NDK and
embedded into Sipdroid as a static library.

Curl

The original Curl distribution from [82] was
used. It was compiled together with the source
code of Android Froyo and used in Sipdroid as
a shared library.

GBA
Enabler

(Android)

MWSB
(Ericsson

Lab)

The GBA Client API version 2 from [78] was
customized and integrated into Sipdroid. See
section 5.3 for more details.

KMS
(Server)

MIKEY-
TICKET

API
(Ericsson)

The KMS works as NAF in GAA. The KMS
Server was deployed in the Glassfish [83] Java
EE server.
Ticket Request and Ticket Resolve requests are
handled by a Servlet.
The MIKEY-TICKET API was integrated into
the server using JNI and a Glassfish specific
configuration for JNI.

MWSB
(Ericsson

Lab)

The GBA NAF API version 2 from [78] was
used.

BSF
Ericsson

Lab

The version of BSF that is deployed in Ericsson
Lab was used without modification for GBA.
This BSF was extended in order to support GBA
Digest (see section 5.4).

HSS
FHoSS
(Fraun-
hofer)

The FOKUS Home Subscriber Server (FHoSS)
[79] was used without modification as HSS for
GBA. For GBA Digest, 16777228 was registered
as a new Application Identifier for the extended
Zh interface (EZh). Note that the identifier
16777228 was chosen by the author only for
testing. The EZh interface then returns SD-AV
in its Multimedia-Auth-Answser (MAA).

5.3 GBA Enabler in UE

For GBA: The original API [78] is targeted for Java SE. A conflict between
the Android SDK and the dependencies on the Apache Commons Codec [84] was
solved by renaming the original Apache packages, and then refactoring the GBA
Client code. Additionally, the Android Patch for XML DataType [85] had to be
used.

For GBA Digest: In GBA Digest, the subscriber authentication is
done by using SIP Digest instead of HTTP Digest AKA. Hence a new class

45

SIPDigestClient was made for authentication. SIPDigestClient is compliant
with current version of 3GPP TR 33.914 [60]. Note that 3GPP TR 33.914 is not
yet complete. The following derivations are assumed by author:

1. FC that is used in KDF is 0x02. This should be defined. Note that FC is
a single octet that distinguishes different instances of the algorithm. The
value of FC for original GBA is 0x01.

2. TLS_MK_Extr is a hard coded string for now. The value should be extracted
from the real TLS master key. Note that TLS_MK_Extr denotes a session
key extracted for a TLS master key. The use of TLS_MK_Extr binds the
outer authentication protocol established by the TLS tunnel with the inner
authentication established through the GBA process.

3. Ksip_digest is calculated as MD5(cnonce:realm:H(A1)). This should be
defined. Note that Ksip_digest denotes a SIP Digest response key which
is used to calculate Bres as mentioned in point no. 4 below.

4. Bres is calculated in same way as Digest-response, but with different
parameters. Bres calculation uses TLS_MK_Extr as entity body and
Ksip_digest as password. This should be defined. Note that Bres serves
as a Message Authentication Code (MAC).

5. New directive ”bres” is added to the response authorization header. This
should be defined.

5.4 Extended BSF that Supports GBA Digest

To support GBA Digest in BSF, both the Ub and Zh interfaces were
extended (see section 3.14 on page 33 and section 4.6 on page 40). The extended
Zh interface enables the BSF to retrieve SD-AV and GUSS from the HSS. The
Diameter application identifier 16777228 was used in the Multimedia-Auth-
Request (MAR) to indicate the extended Zh (EZh). Note that the identifier
16777228 was chosen by the author only for testing; an assigned value should
be asked for from Internet Assigned Numbers Authority (IANA). The Diameter
aplication identifier assigned to the original Zh interface application is 16777221.
EZh also parses the MAA from HSS that now contains the SD-AV.

The extended Ub interface (EUb) uses the SD-AV to present SD authen-
tication challenge to the UE. The SD is in compliance with 3GPP TR 33.914.
Note that the assumptions presented in section 5.3 applies to EUb as well. For
more details on MAR, MAA, and SD-AV, see 3GPP TS 29.228 [61] and 3GPP
TS 29.229 [62].

5.5 Summary

In this chapter, we presented the implementation details of the system. We
followed the Evolutionary Prototyping Model during the implementation. We
presented how a secure VoIP client was implemented in Android by using and/or
modifying various applications and libraries. We described how the reference

46

implementation of GBA Digest was done. Since the GBA Digest standardization
effort (3GPP’s TS 33.220) has not completed yet, we had to make necessary
assumptions. These assumptions are the inputs to 3GPP’s TS 33.220.

47

Chapter 6

Measurements

This chapter presents the measurements. It describes the test environment
and the measurement methodology. Then it presents various measurements
related to different processes that are involved during a secure VoIP call.

6.1 Test Environment

Figure 6.1 shows the test environment under which the measurements were
done. A modified Sipdroid was installed in two Nexus One (N1) mobile phones
running Android 2.3.3 GRI49. Each N1 mobile phone had 1 GHz Qualcomm R©

QSD8250
TM

processor and 512 MB RAM. They were connected to a laboratory
WLAN via a WEP secured 54 Mbps IEEE 802.11g network. All the SIP messages
were sent using UDP. The VoIP calls were made using a PCMA 8 kHz sampling
rate CODEC.

The server components were hosted in a single laptop with a 2.6 GHz Intel R©

Core
TM

2 Duo CPU and 3 GB RAM. The operating system was 32 bit Ubuntu
10.10 (maverick) Kernel 2.6.35-27-generic. The OpenSIPS version was 1.6.4 and
MySQL version was 5.1.49. All the GBA/GAA related server components (i.e.,
KMS, BSF, and HSS) were deployed in a single GlassFish server 3.1 (Sun Java
1.6.0-24). A MySQL database server running on this laptop hosted the databases
for HSS and OpenSIPS.

BSF

HSS

Glassfish

KMS
OpenSIPS

MySQL

Ubuntu

AP

N1 N1

Figure 6.1: Test Environment

48

6.2 Measurement Methodology

Four of the measurements were related to evaluation of the delay introduced
by security mechanisms. These four measurements were:

1. Measurements at the caller’s side of the delay when initiating a call (see
section 6.4)

2. Measurements at the receiver’s side of the delay when receiving a call (see
section 6.5)

3. Measurements at the caller’s side of the delay when receiving 200 OK (see
section 6.6)

4. Measurements of the delay for SRTP profiling of the media packets (see
section 6.7)

In these measurements, original GBA bootstrapping (see section 2.12) was
performed using a virtual UICC. Note that the bootstrapping was done each time
and the MIKEY-TICKET was used in full three round-trips mode. Moreover,
measurement of each part of the process was done along with a measurement
of the total time delay. Due to these separate measurements, it is possible to
estimate the time delay that would occur when bootstrapping is not done in the
call sequence or when MIKEY-TICKET is used in its other modes.

For measurements android.os.Debug and Traceview were used to deter-
mine the most time consuming methods of our interest (see tutorial [86]). After
this, appropriate timestamps were taken using java.lang.System.nanoTime().
We made a custom class StopWatch to make it easy to take timestamps for
various methods and dump the CSV results into a file on the external memory
card.

Since Android 2.3 has a built-in native SIP stack, an additional measurement
was made (see section 6.8) to compare its performance with that of Sipdroid (in
both insecure and secure modes). We used tcpdump (compiled for the ARM
processor) in one of the N1 handsets to capture the packets as a call was made
(note that this was the caller’s handset). The tcpdump is a command line packet
analyzer which can capture and display the network packets being transmitted
or received. The packet capture file produced by tcpdump was then loaded into
Wireshark for analysis. We calculated the ringing delay for this scenario, i.e.
the time between sending the INVITE and receiving the first 180 Ringing SIP
message. Note that in order to use tcpdump, we had to root the N1.

To compare the effect of GBA Digest, another measurement was made (see
section 6.9) at both the caller’s side and the receiver’s side. In this measurement,
we recorded only the time taken for bootstrapping because other process flows
are not changed by this.

49

6.3 Specific Functions of Interest during the
Measurements

1. GBAEngineJava.bootStrap

This function is in Java. It is responsible for the bootstrapping process
and includes the BSS-HSS communication. After executing this function,
the UE has learned B-TID and Ks NAF.

2. MikeyTicketEngine.getTicket

This function calls the underlying function written in C via JNI. This
function computes and sends the REQUEST INIT and receives the
REQUEST RESP messages of MIKEY-TICKET. After executing this
function, the initiator’s UE has a Ticket that can be used in the
TRANSFER INIT message of MIKEY-TCKET.

3. UserAgent.addKeyMgmtMessage

This function is in Java and is responsible for adding the MIKEY-TICKET
Ticket to the SDP of the SIP INVITE message.

4. Sipdroid.call_menu

This function is in Java. It comprises of all the processes for making a
call, including updating the user interface. GBAEngineJava.bootStrap,
MikeyTicketEngine.getTicket and UserAgent.addKeyMgmtMessage are
called by this function.

5. MikeyTicketEngine.getTicketResponse

This function calls the underlying function written in C via JNI. It com-
putes and sends the RESOLVE INIT and receives the RESOLVE RESP
messages of MIKEY-TICKET. After executing this function, the respon-
der’s UE has a response Ticket that can be used in the TRANSFER RESP
message of MIKEY-TICKET. The responder’s UE also has the necessary
SRTP master key and salt.

6. UserAgent.onCallIncoming

This function is in Java. It comprises of all the processes for handling an
incoming call, including updating the user interface. This functions calls
MikeyTicketEngine.getTicketResponse.

7. MikeyTicketEngine.verifyResponseTicket

This function calls the underlying function written in C via JNI. It parses
the Ticket received via the TRANSFER RESP message of the MIKEY-
TICKET. After executing this function, the caller’s UE has necessary
SRTP master key and salt.

8. UserAgent.onCallAccepted

This function is in Java. It comprises of all the processes for handling
the 200 OK, including updating the user interface. This functions calls
MikeyTicketEngine.verifyResponseTicket.

50

9. SRtpEngine.protect

This function calls the underlying function written in C via JNI. In this
experiment, each call to this function converts 160 bytes of RTP payload
into SRTP.

10. SRtpEngine.unprotect

This function calls the underlying function written in C via JNI. In this
experiment, each call to this function converts 160 bytes of SRTP payload
into RTP.

11. Parse SDP and Read Ticket

These group of functions consists of all the underlying functions that
parse the SDP and extract the key management message. The underlying
functions are written in Java.

6.4 Measurement 1: Initiating a Call

Table 6.1 summarizes the measurements (10 measurements were made) and
illustrates the effect of introducing a key management mechanism (MIKEY-
TICKET) to the caller’s side when initiating a call. The bootstrapping process
(in Java) took longer to complete than the key management process (the latter
were written in C). The high variation in total time can be attributed to the
UI related updates. In the worst case, there is additional delay of ~150 ms.
Given the fact that bootstrapping (~127 ms) is not done for every single call, the
overhead of initiating a secure call can be less than 50 ms. Moreover, if a Ticket
is reused (during its validity period) or MIKEY-TICKET is used in Otway-Rees
like or PSK like modes, then the overhead can be as small as ~7 ms.

Table 6.1: Measurement Statistics at Caller’s Side when Initiating a Call
Function Secure Call Average delay (ms)

GBAEngineJava.bootStrap Yes 127.4
MikeyTicketEngine.getTicket Yes 413.8

UserAgent.addKeyMgmtMessage Yes 695.4
Sipdroid.call menu Yes 544.2

Sipdroid.call menu No 423.8

6.5 Measurement 2: Receiving a Call

Table 6.2 summarizes the measurements (10 measurements were made) and
illustrates the effect of introducing a key management mechanism (MIKEY-
TICKET) to the receiver’s side for receiving a call. The secure call took ~80 µs
more for the process of parsing SDP and reading the MIKEY-TICKET Ticket.
Bootstrapping (in Java) took longer to complete than the case of caller. The
additional overall delay is less than 250 ms in comparison to a non-secure call.
If bootstrapping is removed from the process, then the additional delay is only

51

~
~
~
~80

around ~80 ms. Moreover, if MIKEY-TICKET is used in Kerberos like or PSK
like mode, then the delay is less than 7 ms on average.

Table 6.2: Measurements Statistics at Receiver’s Side when Receiving a Call
Function Secure Call Average delay (ms)

GBAEngineJava.bootStrap Yes 164.9
MikeyTicketEngine.getTicketResponse Yes 706.3

UserAgent.addKeyMgmtMessage Yes 626.8
Read Ticket Yes 365.8
Parse SDP Yes 971.9

UserAgent.onCallIncoming Yes 624.2

Parse SDP No 932.9
UserAgent.onCallIncoming No 407.8

6.6 Measurement 3: Receiving a 200 OK

Table 6.3 summarizes the measurements (10 measurements were made) and
illustrates the effect of introducing a key management mechanism (MIKEY-
TICKET) to the caller’s side with respect to the time required to receive a 200
OK. The secure call took ~70 µs more for the process of parsing SDP and reading
the MIKEY-TICKET Ticket. The total process experienced an additional delay
of ~4 ms. It should be noted that when TICKET RESP is not sent (as indicated
by the F bit), then there is no delay or additional performance cost for the caller.

Table 6.3: Measurement Statistics at Caller’s Side when Receiving 200 OK
Function Secure Call Average delay (ms)

MikeyTicketEngine.verifyResponseTicket Yes 325.9
Read Ticket Yes 396.3
Parse SDP Yes 673.7

UserAgent.onCallAccepted Yes 107.1

Parse SDP No 643.3
UserAgent.onCallAccepted No 111.0

6.7 Measurement 4: SRTP Profiling

Table 6.4 depicts the performance overhead of SRTP encryption and
decryption for 200 samples of data, each 160 bytes (PCMA 8 kHz). The SRTP
to RTP and RTP to SRTP processing, on average, took less than 300 µs.

Table 6.4: Measurement Statistics for SRTP Profiling
Function Average delay (µs)

SRtpEngine.protect 291.2
SRtpEngine.unprotect 281.5

52

~
~
~

6.8 Measurement 5: Ringing Delay

Table 6.5 shows the statistics of measurements (10 measurements were
made) and illustrates a comparison of ringing delay while using the Android
Native SIP stack and the modified Sipdroid. The measurements are based on
the timestamps of packets captured by tcpdump. For this data we can see that
the ringing delay in Android’s Native SIP stack is ~250 ms less than Sipdroid
for insecure calls. However, Android’s Native SIP stack does not have security
features. In the case of Sipdroid, the ringing delay increased by ~200 ms when
security is used (note that this included bootstrapping process and MIKEY-
TICKET was used in full three round trips mode).

Table 6.5: Measurements Statistics for Ringing Delay
UE Secure Call Average delay (ms)

Android Native No 475.9
Sipdroid No 708.7
Sipdroid Yes 898.3

6.9 Measurement 6: GBA Digest Bootstrapping

Table 6.6 shows the average bootstrapping time at the caller’s side and the
receiver’s side when using GBA Digest (10 measurements were made). These
average time are similar to the bootstrapping time when using GBA (see table
6.1 and table 6.2). Therefore, using GBA Digest does not seem to introduce any
additional delay in the bootstrapping mechanism. Note that TLS_MK_Extr was
hard coded instead of extracting it from the real TLS master key. However, we
think that it should not take any significant amount of time if the underlying
TLS stack provides a mechanism for extracting the master key.

Table 6.6: Measurements Statistics for GBA Digest Bootstrapping
UE Secure Call Average delay (ms)

Caller’s side Yes 142.0
Receiver’s side Yes 165.4

6.10 Observations and Summary

The timing measurements in this chapter should be considered relative to
the delays without security, rather than as absolute timing measurements. If the
experiments were conducted using a 3G network and different implementations
of GBA and MIKEY-TICKET, then the results would differ from the values that
have been presented here. However, the results presented above are helpful to
understand the relative processing time relationships between each component
of the complete process of making a secure VoIP call.

Based on these measurements, we found that secure VoIP has good
performance on a N1 running Android Gingerbread (2.3). In the worst case

53

~
~

scenario, when the secure call involves bootstrapping of both caller and receiver
sides, and MIKEY-TICKET is used in full three round-trips mode, then the call
setup delay was as long as ~400 ms. The time taken for the bootstrapping process
could be further reduced if its implementation is done in C 1, as was done for
MIKEY-TICKET. Moreover, when the previous bootstrapping is still valid for
both caller and receiver sides, and MIKEY-TICKET is used in PSK like mode,
then the call setup delay can be less than 20 ms. SRTP, on the other hand, had
an overhead of ~300 µs for every RTP packet (containing 160 bytes of voice data
corresponding to ~20 ms of PCMA 8 kHz).

The results show that less than 1 second of additional time can yield both
improved security and privacy. Therefore it is a fair conclusion that the current
generation of mobile devices should perform well when using the media plane
security architecture specified by 3GPP (MIKEY-TICKET and SRTP).

1Towards the end of this thesis work, a prototype implementation of GBA Client in C was
also tested in Andoid via JNI and 10 measurements were taken. The result was an average of

~40 ms for bootstrapping. This means that if all the libraries were in C, the worst-case call
setup delay will be ~200 ms.

54

~
~
~
~
~

Chapter 7

Conclusions and Future Work

7.1 General

With mobile VoIP likely to have increasing adoption, mobile VoIP security
will attract more attention in coming years. Today media protection has not been
widely implemented in mobile consumer VoIP applications, hence this thesis is
interesting both from a practical point of view (in evaluating the alternatives
for media protection for mobile devices) and from a theoretical point of view (in
integrating security using existing stacks and deployment).

7.2 Summary of the Work

This thesis explored the alternatives and feasibility of achieving VoIP
security for mobile devices. A secure VoIP client (based on Sipdroid [63]) was
produced for mobile devices running Android OS. The implementation was based
on the 3GPP’s IMS standards. SIP (RFC 3261 [19]) was used as signaling
protocol, SRTP (RFC 3711 [1]) was used as security protocol, MIKEY-TICKET
(RFC 6043 [27]) was used as key management protocol, SDP extension as defined
in RFC 4567 [80] was used to carry key management messages, and 3GPP’s
GBA (TS 33.220 [36]) was used for authentication bootstrapping. Finally, a
reference implementation of 3GPP’s GBA Digest (TR 33.914 [60]) was made for
authentication bootstrapping.

The prototype implementation of GBA Client written in C took only ~40
ms to bootstrap; while the Java version took ~130–160 ms for the operation.
Therefore in Android, it is better performance-wise if the library code is written
in C and interfaced to the application via JNI. Doing this also gives the
opportunity to compile the library for other mobile platforms as well (e.g.
Microsoft’s Windows Mobile can integrate C/C++ code and Apple’s iOS uses
Objective-C). Nevertheless, in case of Android any error in C that is not
handled crashes the application before the error is propagated to Java. This
security/stability issue should be kept in mind when developing and testing the
libraries.

The measurements (see chapter 6) show that GBA Digest bootstrapping

55

~
~

(with channel binding) could be performed in almost the same amount of time
as GBA bootstraping, thereby protecting the bootstrapping operation from a
Man in the Middle (MitM) attack. The measurements of various operations
enable us to conclude that less than 500 ms of additional time during the call-
setup and less than 500 µs of overhead is added for every 160 bytes of voice
data, but the results are a secure and private VoIP call. Therefore the end user
experience should not be affected by introducing VoIP security in the current
generation of mobile communication devices.

7.3 Future Work

Currently, the Intiator of a call includes a MIKEY-TICKET TRANSFER_INIT

message in the SDP of SIP INVITE message and the Responder includes a
TRANSFER_RESP message in the SDP of SIP 200 OK message (see table 5.1 on
page 44). If the Initiator finds the TRANSFER_RESP message is invalid, then it
hangs up the call. This makes the Responder’s UE susceptible to ghost ringing
(see report [53] and section 3.8). Future work should avoid ghost ringing by using
a SIP Session Progress (SIP 183) message and Reliable Provisional Responses
[87]. It is also recommended to standardized this way of transferring the key
management messages in 3GPP TS 33.328 [4].

3GPP TR 33.914 [60] proposes to bind the TLS tunnel and the SIP digest
protocol in order to prevent MitM attacks. However, the MWSB library [78] that
was used in this thesis project, for communication between UE and BSF, does
not support TLS at this time. Therefore, the reference implementation of 3GPP
TR 33.914 used a hard coded string as the TLS_MK_Extr (see section 5.3 on page
45). Future work should use TLS between UE and BSF, and find and/or extend
a suitable TLS stack in which the TLS tunnel session key could be extracted.

The assumptions made in section 5.3 on page 45 and section 5.4 on page 46
by the author should also be properly defined in 3GPP TR 33.914.

56

References

[1] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman.
The Secure Real-time Transport Protocol (SRTP). RFC 3711 (Proposed
Standard), March 2004. Updated by RFC 5506.

[2] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman. MIKEY:
Multimedia Internet KEYing. RFC 3830 (Proposed Standard), August
2004. Updated by RFC 4738.

[3] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport
Protocol for Real-Time Applications. RFC 3550 (Standard), July 2003.
Updated by RFCs 5506, 5761, 6051, 6222.

[4] 3GPP. IP Multimedia Subsystem (IMS) media plane security. TS 33.328,
3rd Generation Partnership Project (3GPP), December 2010.

[5] The Swedish Post and Telecom Agency. PTS Statistics Portal. http://

www.statistics.pts.se/start_en/ Accessed February 27, 2011.

[6] Implementation Specifications for Nokia S60 VoIP v1.4. http:

//sw.nokia.com/id/f933e423-ae06-48f3-8612-705fbc576c17/

Implementation_Specifications_for_Nokia_S60_VoIP_v1_4_en.pdf.
Accessed February 2, 2011.

[7] VOIP Support in Nokia Devices. http://wiki.forum.nokia.com/index.

php/VoIP_support_in_Nokia_devices. Accessed February 2, 2011.

[8] Android 2.3 Platform Highlights. http://developer.android.com/sdk/

android-2.3-highlights.html. Accessed February 2, 2011.

[9] In-Stat Market Research and Intelligence. http://www.instat.com/

Accessed February 27, 2011.

[10] Wireshark - Network Protocol Analyzer. http://www.wireshark.org/.
Accessed February 27, 2011.

[11] Romanidis Evripidis. Lawful Interception and Countermeasures: In
the era of Internet Telephony. Master’s thesis, KTH, Septem-
ber 2008. http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/

080922-Romanidis_Evripidis-with-cover.pdf Accessed March 7, 2011.

57

http://www.statistics.pts.se/start_en/
http://www.statistics.pts.se/start_en/
http://sw.nokia.com/id/f933e423-ae06-48f3-8612-705fbc576c17/Implementation_Specifications_for_Nokia_S60_VoIP_v1_4_en.pdf
http://sw.nokia.com/id/f933e423-ae06-48f3-8612-705fbc576c17/Implementation_Specifications_for_Nokia_S60_VoIP_v1_4_en.pdf
http://sw.nokia.com/id/f933e423-ae06-48f3-8612-705fbc576c17/Implementation_Specifications_for_Nokia_S60_VoIP_v1_4_en.pdf
http://wiki.forum.nokia.com/index.php/VoIP_support_in_Nokia_devices
http://wiki.forum.nokia.com/index.php/VoIP_support_in_Nokia_devices
http://developer.android.com/sdk/android-2.3-highlights.html
http://developer.android.com/sdk/android-2.3-highlights.html
http://www.instat.com/
http://www.wireshark.org/
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080922-Romanidis_Evripidis-with-cover.pdf

[12] Skype Internet Telephony. http://www.skype.com/. Accessed February
27, 2011.

[13] Tom Berson. Skype security evaluation. http://skype.com/security/

files/2005-031%20security%20evaluation.pdf, October 2005.

[14] Yahoo! Messenger. http://messenger.yahoo.com/. Accessed February
27, 2011.

[15] Google Chat. http://www.google.com/talk/. Accessed February 27, 2011.

[16] Jumblo, VoIP service provider. http://www.jumblo.com/. Accessed
February 27, 2011.

[17] Gerald Q. Maguire Jr. Practical Voice Over IP (VoIP): SIP and related
protocols. http://www.ict.kth.se/courses/IK2554/VoIP-20100826.

pdf. Accessed February 27, 2011.

[18] International Telecommunication Union. Packet-based Multimedia
Communications Systems. ITU-T Recommendation H.323, December 2009.
http://www.itu.int/rec/T-REC-H.323-200912-I Accessed February 27,
2011.

[19] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler. SIP: Session Initiation Protocol.
RFC 3261 (Proposed Standard), June 2002. Updated by RFCs 3265, 3853,
4320, 4916, 5393, 5621, 5626, 5630, 5922, 5954, 6026, 6141.

[20] F. Andreasen and B. Foster. Media Gateway Control Protocol (MGCP)
Version 1.0. RFC 3435 (Informational), January 2003. Updated by RFC
3661.

[21] The Internet Engineering Task Force (IETF). http://www.ietf.org/.
Accessed February 27, 2011.

[22] J. Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[23] M. Handley, V. Jacobson, and C. Perkins. SDP: Session Description
Protocol. RFC 4566 (Proposed Standard), July 2006.

[24] H. Schulzrinne and S. Casner. RTP Profile for Audio and Video Conferences
with Minimal Control. RFC 3551 (Standard), July 2003. Updated by RFC
5761.

[25] F. Andreasen, M. Baugher, and D. Wing. Session Description Protocol
(SDP) Security Descriptions for Media Streams. RFC 4568 (Proposed
Standard), July 2006.

[26] P. Zimmermann, A. Johnston, and J. Callas. ZRTP: Media Path Key
Agreement for Unicast Secure RTP. RFC 6189 (Informational), April 2011.

58

http://www.skype.com/
http://skype.com/security/files/2005-031%20security%20evaluation.pdf
http://skype.com/security/files/2005-031%20security%20evaluation.pdf
http://messenger.yahoo.com/
http://www.google.com/talk/
http://www.jumblo.com/
http://www.ict.kth.se/courses/IK2554/VoIP-20100826.pdf
http://www.ict.kth.se/courses/IK2554/VoIP-20100826.pdf
http://www.itu.int/rec/T-REC-H.323-200912-I
http://www.ietf.org/

[27] J. Mattsson and T. Tian. MIKEY-TICKET: Ticket-Based Modes of
Key Distribution in Multimedia Internet KEYing (MIKEY). RFC 6043
(Informational), March 2011.

[28] C. Neuman, T. Yu, S. Hartman, and K. Raeburn. The Kerberos Network
Authentication Service (V5). RFC 4120 (Proposed Standard), July 2005.
Updated by RFCs 4537, 5021, 5896, 6111, 6112, 6113.

[29] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC
4347 (Proposed Standard), April 2006. Updated by RFC 5746.

[30] D. McGrew and E. Rescorla. Datagram Transport Layer Security (DTLS)
Extension to Establish Keys for the Secure Real-time Transport Protocol
(SRTP). RFC 5764 (Proposed Standard), May 2010.

[31] J. Fischl, H. Tschofenig, and E. Rescorla. Framework for Establishing
a Secure Real-time Transport Protocol (SRTP) Security Context Using
Datagram Transport Layer Security (DTLS). RFC 5763 (Proposed
Standard), May 2010.

[32] J. Peterson and C. Jennings. Enhancements for Authenticated Identity
Management in the Session Initiation Protocol (SIP). RFC 4474 (Proposed
Standard), August 2006.

[33] 3GPP. IP Multimedia Subsystem (IMS); Stage 2. TS 23.228, 3rd Generation
Partnership Project (3GPP), September 2010.

[34] Ericsson. Introduction to IMS. http://www.facweb.iitkgp.ernet.in/

~pallab/mob_com/Ericsson_Intro_to_IMS.pdf. Accessed May 27, 2011.

[35] A. Niemi, J. Arkko, and V. Torvinen. Hypertext Transfer Protocol (HTTP)
Digest Authentication Using Authentication and Key Agreement (AKA).
RFC 3310 (Informational), September 2002.

[36] 3GPP. Generic Authentication Architecture (GAA); Generic Bootstrapping
Architecture (GBA). TS 33.220, 3rd Generation Partnership Project
(3GPP), June 2010.

[37] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter
Base Protocol. RFC 3588 (Proposed Standard), September 2003. Updated
by RFCs 5729, 5719.

[38] 3GPP. Bootstrapping interface (Ub) and network application function
interface (Ua); Protocol details. TS 24.109, 3rd Generation Partnership
Project (3GPP), June 2010.

[39] 3GPP. Generic Authentication Architecture (GAA); Access to network
application functions using Hypertext Transfer Protocol over Transport
Layer Security (HTTPS). TS 33.222, 3rd Generation Partnership Project
(3GPP), June 2010.

59

http://www.facweb.iitkgp.ernet.in/~pallab/mob_com/Ericsson_Intro_to_IMS.pdf
http://www.facweb.iitkgp.ernet.in/~pallab/mob_com/Ericsson_Intro_to_IMS.pdf

[40] 3GPP. Generic Authentication Architecture (GAA); Support for subscriber
certificates. TS 33.221, 3rd Generation Partnership Project (3GPP), June
2010.

[41] 3GPP. Generic Authentication Architecture (GAA); Zh and Zn Interfaces
based on the Diameter protocol; Stage 3. TS 29.109, 3rd Generation
Partnership Project (3GPP), April 2010.

[42] I. Abad. Secure Mobile VoIP. Master’s thesis, KTH, June
2003. http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/

030626-Israel_Abad_Caballero-final-report.pdf Accessed January
27, 2011.

[43] Minisip - SIP User Agent. http://minisip.org/. Accessed February 27,
2011.

[44] J. Bilien. Key Agreement for secure Voice over
IP. Master’s thesis, KTH, December 2003. http:

//web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/

031215-Johan-Bilien-report-final-with-cover.pdf Accessed January
27, 2011.

[45] Johan Bilien, Erik Eliasson, and Jon-Olov Vatn. Call establishment delay
for secure voip. In Proceedings of WiOpt ’04: Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, 2004. http://www.minisip.org/

publications/secvoip.pdf Accessed January 27, 2011.

[46] A.L. Alexander, A.L. Wijesinha, and R. Karne. An Evaluation of Secure
Real-Time Transport Protocol (SRTP) Performance for VoIP. In Network
and System Security, 2009. NSS ’09. Third International Conference on,
pages 95 –101, October 2009.

[47] snom technology AG - VoIP phones. http://www.snom.com/. Accessed
February 27, 2011.

[48] Twinkle - SIP softphone for linux. http://www.xs4all.nl/~mfnboer/

twinkle/index.html. Accessed February 27, 2011.

[49] Gholam H. Khaksari, Alexander L. Wijesinha, Ramesh K. Karne, Long
He, and Sandeep Girumala. In Consumer Communications and Networking
Conference, 2007. CCNC 2007. 4th IEEE, title=A Peer-to-Peer Bare PC
VoIP Application, pages 803 –807, 2007.

[50] O. Olsson. Security Analysis of Key-Exchange Protocol Mikey-Ticket.
Master’s thesis, KTH, 2010. http://www.nada.kth.se/utbildning/

grukth/exjobb/rapportlistor/2010/rapporter10/olsson_oscar_

10019.pdf Accessed May 27, 2011.

[51] Johan Bilien, Erik Eliasson, and Jon-Olov Vatn. Experiences of using a
secure VoIP user agent on PDAs, May 2004. http://www.minisip.org/

publications/wifi-voice-minisip.ppt Accessed January 27, 2011.

60

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/030626-Israel_Abad_Caballero-final-report.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/030626-Israel_Abad_Caballero-final-report.pdf
http://minisip.org/
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf
http://www.minisip.org/publications/secvoip.pdf
http://www.minisip.org/publications/secvoip.pdf
http://www.snom.com/
http://www.xs4all.nl/~mfnboer/twinkle/index.html
http://www.xs4all.nl/~mfnboer/twinkle/index.html
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/olsson_oscar_10019.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/olsson_oscar_10019.pdf
http://www.nada.kth.se/utbildning/grukth/exjobb/rapportlistor/2010/rapporter10/olsson_oscar_10019.pdf
http://www.minisip.org/publications/wifi-voice-minisip.ppt
http://www.minisip.org/publications/wifi-voice-minisip.ppt

[52] Johan Bilien, Erik Eliasson, Joachim Orrblad, and Jon-Olov Vatn. Secure
voip : call establishment and media protection. In Proceedings of 2nd
Workshop on Securing Voice over IP, 2005. http://www.minisip.org/

publications/secvoip-minisip-camera.pdf Accessed January 27, 2011.

[53] Erik Eliasson. Secure VoIP performance on handheld devices. Technical
Report 06:03, KTH, Telecommunication Systems Laboratory, TSLab, 2006.
Paper D on http://www.minisip.org/publications/ErikEliasson_

LicentiateThesis.pdf Accessed February 1, 2011.

[54] Erik Eliasson. Secure Internet telephony : design, implementation
and performance measurements, 2006. http://www.minisip.org/

publications/ErikEliasson_LicentiateThesis.pdf Accessed January
27, 2011.

[55] J. Orrblad. Alternatives to MIKEY/SRTP to secure VoIP. Master’s thesis,
KTH, March 2005. http://www.minisip.org/publications/Thesis_

Orrblad_050330.pdf Accessed January 28, 2011.

[56] Tomas Joelsson. Mobile Web Browser Extensions. Master’s
thesis, KTH, April 2008. http://web.it.kth.se/~maguire/

DEGREE-PROJECT-REPORTS/080412-Tomas_Joelsson-with-cover.pdf

Accessed February 27, 2011.

[57] Sing Li and Jonathan Knudsen. Beginning J2ME: From Novice to
Professional. APress, third edition, 2005.

[58] J. Arkko, F. Lindholm, M. Naslund, K. Norrman, and E. Carrara. Key
Management Extensions for Session Description Protocol (SDP) and Real
Time Streaming Protocol (RTSP). RFC 4567 (Proposed Standard), July
2006.

[59] S. Josefsson. The Base16, Base32, and Base64 Data Encodings. RFC 4648
(Proposed Standard), October 2006.

[60] 3GPP. SSO for Application Security for IMS - based on SIP Digest. TR
33.914, 3rd Generation Partnership Project (3GPP), May 2011.

[61] 3GPP. IP Multimedia (IM) Subsystem Cx and Dx Interfaces; Signalling
flows and message contents. TS 29.228, 3rd Generation Partnership Project
(3GPP), April 2011.

[62] 3GPP. Cx and Dx interfaces based on the Diameter protocol; Protocol
details. TS 29.229, 3rd Generation Partnership Project (3GPP), September
2010.

[63] Sipdroid - Open source SIP/VoIP client for Android. http://sipdroid.

org/. Accessed February 27, 2011.

[64] Nebula Android - SIP based application for instant group communication.
http://csd.xen.ssvl.kth.se/csdlive/content/8-yards. Accessed
February 27, 2011.

61

http://www.minisip.org/publications/secvoip-minisip-camera.pdf
http://www.minisip.org/publications/secvoip-minisip-camera.pdf
http://www.minisip.org/publications/ErikEliasson_LicentiateThesis.pdf
http://www.minisip.org/publications/ErikEliasson_LicentiateThesis.pdf
http://www.minisip.org/publications/ErikEliasson_LicentiateThesis.pdf
http://www.minisip.org/publications/ErikEliasson_LicentiateThesis.pdf
http://www.minisip.org/publications/Thesis_Orrblad_050330.pdf
http://www.minisip.org/publications/Thesis_Orrblad_050330.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080412-Tomas_Joelsson-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080412-Tomas_Joelsson-with-cover.pdf
http://sipdroid.org/
http://sipdroid.org/
http://csd.xen.ssvl.kth.se/csdlive/content/8-yards

[65] SIP Communicator - the Java VoIP and Instant Messaging client. http:

//sip-communicator.org/. Accessed February 28, 2011.

[66] The Zfone Project. http://zfoneproject.com/. Accessed February 28,
2011.

[67] LibSRTP - a library for secure RTP. http://srtp.sourceforge.net/

srtp.html. Accessed February 28, 2011.

[68] ZORG - ZRTP implementation. http://www.zrtp.org/. Accessed
February 28, 2011.

[69] Gartner - Information technology research and advisory company. http:

//www.gartner.com/. Accessed February 28, 2011.

[70] Socks. http://www.eurescom.eu/~public-webspace/P1000-series/

P1009/doc3_3.html Accessed March 7, 2011.

[71] DroidWall - Android Firewall. http://code.google.com/p/droidwall/.
Accessed March 7, 2011.

[72] J.C. Mogul and S.E. Deering. Path MTU discovery. RFC 1191 (Draft
Standard), November 1990.

[73] P. Congdon, B. Aboba, A. Smith, G. Zorn, and J. Roese. IEEE 802.1X
Remote Authentication Dial In User Service (RADIUS) Usage Guidelines.
RFC 3580 (Informational), September 2003.

[74] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov. TCP
over Second (2.5G) and Third (3G) Generation Wireless Networks. RFC
3481 (Best Current Practice), February 2003.

[75] IMSDrouid - Open source 3GPP IMS Client for Android. http://code.

google.com/p/imsdroid/. AccessedMay 27, 2011.

[76] 3GPP. IP Multimedia Subsystem (IMS) media plane security. TR 33.828,
3rd Generation Partnership Project (3GPP), June 2010.

[77] Evolutionary Prototyping White Paper. http://www.construx.com/File.
ashx?cid=814. Accessed May 27, 2011.

[78] Mobile Web Security Bootstrap API. https://labs.ericsson.com/apis/
mobile-web-security-bootstrap/. Accessed May 27, 2011.

[79] FOKUS Home Subscriber Server. http://www.openimscore.org/

project/FHoSS. Accessed May 27, 2011.

[80] J. Arkko, F. Lindholm, M. Naslund, K. Norrman, and E. Carrara. Key
Management Extensions for Session Description Protocol (SDP) and Real
Time Streaming Protocol (RTSP). RFC 4567 (Proposed Standard), July
2006.

62

http://sip-communicator.org/
http://sip-communicator.org/
http://zfoneproject.com/
http://srtp.sourceforge.net/srtp.html
http://srtp.sourceforge.net/srtp.html
http://www.zrtp.org/
http://www.gartner.com/
http://www.gartner.com/
http://www.eurescom.eu/~public-webspace/P1000-series/P1009/doc3_3.html
http://www.eurescom.eu/~public-webspace/P1000-series/P1009/doc3_3.html
http://code.google.com/p/droidwall/
http://code.google.com/p/imsdroid/
http://code.google.com/p/imsdroid/
http://www.construx.com/File.ashx?cid=814
http://www.construx.com/File.ashx?cid=814
https://labs.ericsson.com/apis/mobile-web-security-bootstrap/
https://labs.ericsson.com/apis/mobile-web-security-bootstrap/
http://www.openimscore.org/project/FHoSS
http://www.openimscore.org/project/FHoSS

[81] OpenSSL for Android. https://github.com/eighthave/

openssl-android. Accessed May 27, 2011.

[82] cURL library. http://curl.haxx.se/. Accessed May 27, 2011.

[83] GlassFish - Open Source Java EE Application Server. http://glassfish.
java.net/. Accessed May 27, 2011.

[84] Apache Commons Codec. http://commons.apache.org/codec/. Accessed
May 27, 2011.

[85] Javax Patch for Android. http://grepcode.com/

snapshot/repo1.maven.org/maven2/it.tidalwave.bluebill/

it-tidalwave-android-javax-xml-datatype/1.0.6. Accessed May
27, 2011.

[86] Profiling Android Applications. http://developer.android.com/guide/

developing/debugging/debugging-tracing.html. Accessed February 27,
2011.

[87] J. Rosenberg and H. Schulzrinne. Reliability of Provisional Responses in
Session Initiation Protocol (SIP). RFC 3262 (Proposed Standard), June
2002.

63

https://github.com/eighthave/openssl-android
https://github.com/eighthave/openssl-android
http://curl.haxx.se/
http://glassfish.java.net/
http://glassfish.java.net/
http://commons.apache.org/codec/
http://grepcode.com/snapshot/repo1.maven.org/maven2/it.tidalwave.bluebill/it-tidalwave-android-javax-xml-datatype/1.0.6
http://grepcode.com/snapshot/repo1.maven.org/maven2/it.tidalwave.bluebill/it-tidalwave-android-javax-xml-datatype/1.0.6
http://grepcode.com/snapshot/repo1.maven.org/maven2/it.tidalwave.bluebill/it-tidalwave-android-javax-xml-datatype/1.0.6
http://developer.android.com/guide/developing/debugging/debugging-tracing.html
http://developer.android.com/guide/developing/debugging/debugging-tracing.html

Appendix A

Message Flows

This appendix illustrates the message flows between various components as
captured by Wireshark. Note that the message flows correspond to the GBA
Digest bootstrapping.

A.1 Between UE and BSF during Bootstrapping

The bootstrapping request/response message flows look like the following.

GET / bs fv2 / bs f HTTP/1 .1
Author i zat ion : Digest username=”i n i t i a t o r @ 1 9 2 . 3 6 . 1 5 8 . 1 0 1 ” , realm

=”192 .36 .158 .101” , nonce =””, u r i =”/bs fv2 / bs f ” , r e sponse=””
Host : 1 9 2 . 3 6 . 1 5 8 . 1 0 1 : 8 0 8 0
Connection : Keep−Al ive
User−Agent : Apache−HttpCl ient /UNAVAILABLE (java 1 . 4)

HTTP/1 .1 401 Unauthorized
X−Powered−By : S e r v l e t /3 .0 JSP/2 .2 (GlassFish Server Open Source

Edit ion 3 .1 Java/Sun Microsystems Inc . / 1 . 6)
Server : GlassFish Server Open Source Edit ion 3 .1
Set−Cookie : JSESSIONID=ba4847f10c283c5803b24dd1b854 ; Path=/bs fv2 ;

HttpOnly
WWW−Authent icate : Digest realm=”l o c a l h o s t ” , nonce=”LvnKbf09xY76Vlk/2

OnftxANVbjEymwldtkbFhUt8rk=”, a lgor i thm=”MD5” , qop=”auth”
Content−Length : 0
Date : Thu , 26 May 2011 0 9 : 31 : 00 GMT

GET / bs fv2 / bs f HTTP/1 .1
Author i zat ion : Digest username=”i n i t i a t o r @ 1 9 2 . 3 6 . 1 5 8 . 1 0 1 ” , realm=”

l o c a l h o s t ” , nonce=”LvnKbf09xY76Vlk/2OnftxANVbjEymwldtkbFhUt8rk=”,
u r i =”/bs fv2 / bs f ” , qop=”auth ” , nc =00000001 , cnonce=”
J9i0yjbYo8dQqW2JJHqxYw==”, re sponse =”58
c fd7b9c34a0b5f13 fc f0ad74019a54 ” , bres=”
b089ce901a600788c5382043dba42411 ” , a lgor i thm=”MD5”

Host : 1 9 2 . 3 6 . 1 5 8 . 1 0 1 : 8 0 8 0
Connection : Keep−Al ive
User−Agent : Apache−HttpCl ient /UNAVAILABLE (java 1 . 4)
Cookie : JSESSIONID=ba4847f10c283c5803b24dd1b854

64

HTTP/1 .1 200 OK
X−Powered−By : S e r v l e t /3 .0 JSP/2 .2 (GlassFish Server Open Source

Edit ion 3 .1 Java/Sun Microsystems Inc . / 1 . 6)
Server : GlassFish Server Open Source Edit ion 3 .1
Authent icat ion−In f o : qop=”auth ” , rspauth=”03

c0ed50aae913ed8c3f8a876a4711be ” , cnonce=”J9i0yjbYo8dQqW2JJHqxYw
==”,nc=00000001

Content−Type : a p p l i c a t i o n /vnd . 3 gpp . b s f+xml
Content−Length : 221
Date : Thu , 26 May 2011 0 9 : 31 : 00 GMT

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<Boots t rapp ingIn fo xmlns=”u r i : 3 gpp−gba−d i g e s t”><btid>LvnKbf09xY76Vlk

/2OnftxANVbjEymwldtkbFhUt8rk=@loca lhost </btid><l i f e t i m e
>2011−05−26T10 : 3 1 : 0 0 . 2 2 8 Z</ l i f e t i m e ></BootstrappingInfo>

A.2 Between BSF and HSS during Bootstrapping of
UE

The BSF gets SD-AV for the initiator from HSS as following. Note that
Auth-Application-Id is chosen for test by the author.

MAR: Command Code : 303 Multimedia−Auth
Sess ion−Id : l o c a l h o s t ; −365155413;55
Vendor−Id : 10415
Auth−Appl icat ion−Id : 16777228
Auth−Sess ion−State : NO STATE MAINTAINED (1)
Origin−Host : l o c a l h o s t
Origin−Realm : l o c a l h o s t
Dest inat ion−Realm : l o c a l h o s t
Dest inat ion−Host : l o c a l h o s t
User−Name : i n i t i a t o r @ 1 9 2 . 3 6 . 1 5 8 . 1 0 1

MAA: Command Code : 303 Multimedia−Auth
Sess ion−Id : l o c a l h o s t ; −365155413;55
Vendor−Id : 10415
Auth−Appl icat ion−Id : 16777228
Result−Code : DIAMETER SUCCESS (2001)
Auth−Sess ion−State : NO STATE MAINTAINED (1)
Origin−Host : l o c a l h o s t
Origin−Realm : l o c a l h o s t
User−Name : i n i t i a t o r @ 1 9 2 . 3 6 . 1 5 8 . 1 0 1
SIP−Number−Auth−Items : 1
SIP−Item−Number : 1
SIP−Authent icat ion−Scheme : SIP Digest
Digest−HA1: 6 a1b6417d55f28734b1755babef7f980
Digest−Realm : l o c a l h o s t
GBA−UserSecSet t ings : 3

C3F786D6C2076657273696F6E3D22312E302220656E636F . . .

65

A.3 Between Initiator’s UE and KMS

The REQUEST_INIT/RESP messages look like the following.

POST /keymanagement? reques t type=t i c k e t r e q u e s t HTTP/1 .1
Host : 1 9 2 . 3 6 . 1 5 8 . 1 0 1 : 8 0 8 0
Content−Type : a p p l i c a t i o n /mikey
Content−Length : 360
User−Agent : KMS Test
From : i n i t i a t o r @ 1 9 2 . 3 6 . 1 5 8 . 1 0 1
Date : Thu , 26 May 2011 0 9 : 30 : 52 GMT

AQcFgAAAAAAAAQsA1Ur1PAAAAAAX

HTTP/1 .1 200 OK
Date : Thu , 26 May 2011 0 9 : 31 : 00 GMT
Content−Type : a p p l i c a t i o n /mikey
Content−Length : 436

AQkFAAAAAAAAARkA1Ur1PAAAAAABAEoAAAAA

A.4 Between KMS and BSF during Bootstrapping
Usage

The bootstrapping usage messages look like the following.

POST / bs fv2 / reque s tBoot s t rapp ing In fo HTTP/1 .1
Content−Type : t ex t /xml ; cha r s e t=utf −8
User−Agent : Java / 1 . 6 . 0 24
Host : 1 9 2 . 3 6 . 1 5 8 . 1 0 1 : 8 0 8 0
Accept : t ex t /html , image/ g i f , image/ jpeg , ∗ ; q=.2 , ∗/∗ ; q=.2
Connection : keep−a l i v e
Content−Length : 303

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<r eques tBoots t rapp ingIn foReques t xmlns=”http ://www. 3 gpp . org /

GBAService”><btid>LvnKbf09xY76Vlk/2OnftxANVbjEymwldtkbFhUt8rk=
@loca lhost </btid><naf id>MTkyLjM2LjE1OC4xMDE6ODA4MAEAAAAA</naf id><
gs id >0</gs id><gbaUAware>True</gbaUAware></
requestBootst rapp ingIn foRequest>

HTTP/1 .1 200 OK
X−Powered−By : S e r v l e t /3 .0 JSP/2 .2 (GlassFish Server Open Source

Edit ion 3 .1 Java/Sun Microsystems Inc . / 1 . 6)
Server : GlassFish Server Open Source Edit ion 3 .1
Content−Type : t ex t /xml ; cha r s e t=utf −8
Transfer−Encoding : chunked
Date : Thu , 26 May 2011 0 9 : 31 : 00 GMT

238
<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<requestBoots t rapp ingIn foResponse xmlns=”http ://www. 3 gpp . org /

66

GBAService”><impi>i n i t i a t o r @ 1 9 2 .36.158.101 </ impi><meKeyMaterial>
mLJbLxgP+FE6pN1ky++5r+4Wpz6qjE0n9cpWdL5kxtw=</meKeyMaterial><
uiccKeyMater ia l>5u7xPk9Dy666oMsNaed99ESeEciHQTDSuQJWHJ94npY=</
uiccKeyMater ia l><keyExpiryTime>2011−05−26T10 : 3 1 : 0 0 . 2 2 8 Z</
keyExpiryTime><bootstrappingInfoCreat ionTime >2011−05−26T09
: 3 1 : 0 0 . 2 2 8 Z</bootstrappingInfoCreat ionTime><ussL i s t ><![CDATA[<?
xml v e r s i o n =”1.0” encoding=”UTF−8”?>

<u s s L i s t />
]]></ us sL i s t ></requestBootst rappingIn foResponse>

0

A.5 Between Initiator’s UE and Responder’s UE
during Initiation of a Call

The SIP INVITE message contains the MIKEY-TICKET TRANSFER_INIT

message in the SDP offer as the following. Notice the key-mgmt attribute.

INVITE s i p : responder@192 . 3 6 . 1 5 8 . 7 8 : 3 3 8 6 7 ; t ranspor t=udp SIP /2 .0
Record−Route : <s i p : 1 9 2 . 3 6 . 1 5 8 . 1 0 1 ; l r=on>
Via : SIP /2 .0/UDP 1 9 2 . 3 6 . 1 5 8 . 1 0 1 ; branch=z9hG4bKcfc7 . 4 b545663 . 0
Via : SIP /2 .0/UDP 1 9 2 . 3 6 . 1 5 8 . 1 0 7 : 3 3 7 8 5 ; r e c e i v e d =192 .36 .158 .107 ; rpor t

=33785; branch=z9hG4bK99633
Max−Forwards : 69
To : <s i p : responder@192 .36 .158.101 >
From : <s i p : i n i t i a t o r @ 1 9 2 .36 .158 .101 > ; tag=z9hG4bK29389008
Call−ID : 143839269191@192 . 3 6 . 1 5 8 . 1 0 7
CSeq : 1 INVITE
Contact : <s i p : i n i t i a t o r @ 1 9 2 . 3 6 . 1 5 8 . 1 0 7 : 3 3 7 8 5 ; t ranspor t=udp>
Expires : 3600
User−Agent : S ipdro id /2 .1 beta /Nexus One
Content−Length : 859
Content−Type : a p p l i c a t i o n /sdp

v=0
o=i n i t i a t o r @ 1 9 2 . 3 6 . 1 5 8 . 1 0 1 0 0 IN IP4 192 . 36 . 158 . 107
s=Ses s i on SIP/SDP
c=IN IP4 192 . 36 . 158 . 107
t=0 0
a=key−mgmt : mikey

AQoFgAAAAAABAAAAAAAAAAAAAAsA1Ur1PAAAAAAXEAAAAAAAAAAA
m=audio 21000 RTP/SAVP 9 8 0 97 3 106 101
a=rtpmap : 8 PCMA/8000
a=rtpmap : 0 PCMU/8000
a=rtpmap : 9 G722/8000
a=rtpmap : 3 GSM/8000
a=rtpmap :101 te lephone−event /8000
a=fmtp :101 0−15
m=video 21070 RTP/SAVP 103
a=rtpmap :103 h263−1998/90000

67

A.6 Between Responder’s UE and KMS

The RESOLVE_INIT/RESP messages look like the following.

POST /keymanagement? reques t type=t i c k e t r e s o l v e HTTP/1 .1
Host : 1 9 2 . 3 6 . 1 5 8 . 1 0 1 : 8 0 8 0
Content−Type : a p p l i c a t i o n /mikey
Content−Length : 464
User−Agent : KMS Test
From : responder@192 . 3 6 . 1 5 8 . 1 0 1
Date : Thu , 26 May 2011 0 9 : 30 : 36 GMT

AQwFgHTwpnsAAQsA1Ur1LAAAAAAXEG+lZewAAAAA (t runcated)

HTTP/1 .1 200 OK
Date : Thu , 26 May 2011 0 9 : 31 : 00 GMT
Content−Type : a p p l i c a t i o n /mikey
Content−Length : 196

AQ4FgHTwpnsAAQEA1Ur1LAAAAAALAQBRew7n0/8XDddqOK (t runcated)

A.7 Between Responder’s UE and Initiator’s UE
during Acceptance of a Call

The SIP 200 OK contains the MIKEY-TICKET TRANSFER_RESP message
as the following. Notice the key-mgmt attribute. Note that the TRANSFER_RESP

can be sent in other SIP messages as well.

SIP /2 .0 200 OK
Via : SIP /2 .0/UDP 192 . 3 6 . 1 5 8 . 1 0 1 ; branch=z9hG4bKcfc7 . 4 b545663 . 0
Via : SIP /2 .0/UDP 192 . 3 6 . 1 5 8 . 1 0 7 : 3 3 785 ; r e c e i v ed =192 .36 .158 .107 ; rpor t =33785;

branch=z9hG4bK99633
Record−Route : <s i p : 1 9 2 . 3 6 . 1 5 8 . 1 0 1 ; l r=on>
To : <s i p : responder@192 .36 .158 .101 > ; tag=484bf542a61edbc4
From : <s i p : i n i t i a t o r@192 .36 .158 .101 > ; tag=z9hG4bK29389008
Cal l−ID : 143839269191@192 . 3 6 . 1 5 8 . 1 0 7
CSeq : 1 INVITE
Contact : <s i p : responder@192 . 3 6 . 1 5 8 . 7 8 : 3 3 8 6 7 ; t r anspo r t=udp>
Server : S ipdro id /2 .1 beta /Nexus One
Content−Length : 401
Content−Type : app l i c a t i on /sdp

v=0
o=responder@192 . 3 6 . 1 5 8 . 1 0 1 0 0 IN IP4 192 . 36 . 158 . 78
s=Ses s i on SIP/SDP
c=IN IP4 192 . 36 . 1 58 . 7 8
t=0 0
a=key−mgmt : mikey AQsFgAAAAAABAAAAAAAAAAAAAAsA1Ur1PAAAAAA (t runcated)
m=audio 21000 RTP/SAVP 9 101
a=rtpmap : 8 PCMA/8000
a=rtpmap :101 te lephone−event /8000
a=fmtp :101 0−15
m=video 21070 RTP/SAVP 103
a=rtpmap :103 h263−1998/90000

68

www.kth.se

TRITA-ICT-EX-2011:111

	Abbreviations and Acronyms
	Introduction
	Goals of Thesis
	Contribution
	Structure of the Report

	Background
	VoIP
	SIP
	SDP
	RTP
	SRTP
	MIKEY
	MIKEY-TICKET
	SDES
	DTLS-SRTP
	ZRTP
	IMS
	GBA
	Summary

	Related Work
	Initial SRTP Performance Measurements
	Initial MIKEY Performance Measurements
	SRTP and ZRTP Performance Measurements
	Security Analysis of MIKEY-TICKET
	Call Establishment Delay for Secure VoIP
	A Secure VoIP User Agent on PDAs
	Secure VoIP: Call Establishment and Media Protection
	Secure VoIP Performance on Handheld Devices
	Evaluation of Secure Internet Telephony
	Alternatives to MIKEY/SRTP to Secure VoIP
	Mobile Web Browser Extensions
	Key Management Extensions for SDP and RTSP
	3GPP TS 33.328 IMS Media Plane Security
	3GPP TR 33.914 using SIP Digest in IMS
	Existing VoIP Applications and Libraries
	Summary

	Design
	Device Platform
	Signaling Protocol
	Transport Protocol
	Security Protocol
	Strategy 1 - Modifying the Application
	Strategy 2 - Developing a Shim
	Strategy 3 - Manipulating IP Packets
	Strategy 4 - Implementing a B2BUA

	Key Exchange Protocol
	Authentication Mechanism
	System Components
	Operational Flow
	Summary

	Implementation
	Methodology
	System Components Details
	GBA Enabler in UE
	Extended BSF that Supports GBA Digest
	Summary

	Measurements
	Test Environment
	Measurement Methodology
	Specific Functions of Interest during the Measurements
	Measurement 1: Initiating a Call
	Measurement 2: Receiving a Call
	Measurement 3: Receiving a 200 OK
	Measurement 4: SRTP Profiling
	Measurement 5: Ringing Delay
	Measurement 6: GBA Digest Bootstrapping
	Observations and Summary

	Conclusions and Future Work
	General
	Summary of the Work
	Future Work

	References
	Message Flows
	Between UE and BSF during Bootstrapping
	Between BSF and HSS during Bootstrapping of UE
	Between Initiator's UE and KMS
	Between KMS and BSF during Bootstrapping Usage
	Between Initiator's UE and Responder's UE during Initiation of a Call
	Between Responder's UE and KMS
	Between Responder's UE and Initiator's UE during Acceptance of a Call

