
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:277

V I C T O R D E L G A D O

 Exploring the limits of
 cloud computing

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Exploring the limits of cloud computing

Victor Delgado
vdel26@gmail.com

Masters Thesis
October 4, 2010

Kungliga Tekniska Högskolan (KTH)
Stockholm, Sweden

Supervisor and examiner: Gerald Q. Maguire Jr.

Abstract

Cloud computing is a new computing paradigm that, just as electricity was firstly gener-
ated at home and evolved to be supplied from a few utility providers, aims to transform com-
puting into an utility. It is being forecasted that more and more users will rent computing as
a service, moving the processing power and storage to centralized infrastructures rather than
located in client hardware. This is already enabling startups and other companies to start
web services without having to invest upfront in dedicated infrastructure. Unfortunately,
this new model also has some actual and potential drawbacks and remains to be seen whether
concentrating computing at a few places is a viable option for everyone. Consumers are
not used to renting computing capacity. The question of how to measure performance
is already a major issue for cloud computing customers. This thesis demonstrates that
current metrics for the performance of offerings by cloud providers are subject to imprecision
and variability. Several surveys show that customers are concerned with the difficulty of
predicting how the services that they have contracted for will behave. Moreover, switching
from the traditional own and operate model to a service model involves replacing existing
licenses with new license that include service level agreements (SLAs). However, existing
SLAs can not succesfully guarantee performance levels.

This thesis will try to clarify concerns about performance in cloud computing, analyzing
the factors that make the performance of clouds unpredictable and suggesting ways to solve
this problem. The performance degradation due to virtualization and the lack of isolation
between virtual machines were empirically evaluated in an Eucalyptus testbed based on
the KVM virtualizer. Drawing upon previous research, all the parts of the problem, from
the behaviour of specific application types when hosted in clouds to a proposal for a new
generation of SLAs with performance guarantees, will be discussed.

The findings led to the conclusion that clouds will have difficulties to meet the needs of
specific types of workloads, while succesfully adapting to others. This thesis argues for the
formulation of cloud offerings and SLAs that feature performance parameters more familiar
and useful to the customer, such as response time, thus facilitating the process of selecting
cloud provider or deciding whether to move an application to the clouds.

i

Sammanfattning

Cloud computing är en ny computing paradigm som, precis som elektricitet var först
genereras hemma och utvecklats som skall levereras från ett fåtal verktyg leverantörer,
syftar till att omvandla data till ett verktyg. Det är förutspått att fler och fler användare
kommer att hyra datorer som en tjänst, att flytta processorkraft och lagringskapacitet
till centraliserad infrastruktur i stället ligger i klientens hårdvara. Detta är redan möjligt
nystartade företag och andra företag att starta webbtjänster utan att behöva investera i
förskott i särskilda infrastruktur. Tyvärr har den nya modellen också några faktiska och
potentiella nackdelar och återstår att se huruvida koncentrera computing på ett fåtal platser
är ett hållbart alternativ för alla. Konsumenterna är inte vana att hyra datorkapacitet.
Frågan om hur man kan mäta prestanda är redan en viktig fråga för kunderna cloud
computing. Denna avhandling visar att nuvarande mått för utförandet av erbjudanden
genom moln tjänsteleverantörer som omfattas av oklarheter och variabilitet. Flera under-
sökningar visar att kunderna handlar om svårigheten att förutsäga hur de tjänster som de
har beställt kommer att uppföra sig. Dessutom byter från den traditionella äga och driva
modellen till en tjänst modell handlar om att ersätta befintliga licenser med nytt körkort som
innehåller servicenivåavtal (SLA). Däremot kan befintliga SLA inte framgångsrikt garantera
prestanda.

Denna uppsats kommer att försöka klargöra oro prestanda i cloud computing, analy-
sera de faktorer som gör utförandet av moln oförutsägbar och föreslå sätt att lösa detta
problem. Den prestandaförlust på grund av virtualisering och bristen på isolering mellan
virtuella maskiner empiriskt utvärderades i en Eucalyptus testflygplan baserat på KVM
virtualizer. Ritning på tidigare forskning, skall alla delar av problemet, från beteendet för
särskild tillämpning typer när värd i molnen för att ett förslag till en ny generation av
servicenivåavtal med fullgörandegarantier kommer att diskuteras.

Resultaten ledde till slutsatsen att molnen kommer att få svårigheter att tillgodose
behoven av särskilda typer av arbetsbelastningar, medan framgångsrikt anpassat till andra.
Denna avhandling argumenterar för utformningen av moln erbjudanden och SLA som har
prestandaparametrar mer bekant och användbar för kunden, till exempel responstid, vilket
underlättar processen för att välja moln leverantör eller fattar beslut om att flytta ett
program till molnen.

ii

Acknowledgements

I would like to sincerely thank my supervisor and examiner Professor Gerald Q. Maguire
Jr. He introduced me to an interesting topic on which I have enjoyed so much to work.
Gerald’s guidance has also been essential during some steps of this thesis and his quick
invaluable insights have always been very helpful.

I would also like to thank my colleagues in the department, the people I got to know
during my stay in Stockholm which I can now call friends, my friends in Barcelona, and my
familiy and my girlfriend, Laia, all of whom have always been encouraging me during all
this time.

Thank you all.

iii

Table of Contents

List of Tables . vii

List of Figures . viii

Chapter 1 Introduction . 1
1.1 Overview . 1
1.2 Problem statement . 2

Chapter 2 General Background . 3
2.1 What is Cloud Computing? . 3

2.1.1 On-Demand . 5
2.1.2 Pay-per-use . 5
2.1.3 Rapid elasticity . 6
2.1.4 Maintenance and upgrading . 6

2.2 Cloud computing service models . 6
2.2.1 IaaS (Infrastructure as a Service) . 7
2.2.2 PaaS (Platform as a Service) . 7
2.2.3 SaaS (Software as a Service) . 8

2.3 Deployment models . 9
2.3.1 Public clouds . 9
2.3.2 Private clouds . 9
2.3.3 Community clouds . 9
2.3.4 Hybrid clouds . 10

2.4 Technology review . 10
2.4.1 Virtualization . 10
2.4.2 Current alternatives in the cloud computing market 12

2.5 Limitations of cloud computing . 15

iv

2.5.1 Availability of service . 16
2.5.2 Data lock-in . 17
2.5.3 Data segregation . 17
2.5.4 Privilege abuse . 18
2.5.5 Scaling resources . 18
2.5.6 Data security and confidentiality . 19
2.5.7 Data location . 20
2.5.8 Deletion of data . 20
2.5.9 Recovery and back-up . 21
2.5.10 The “Offline cloud” . 21
2.5.11 Unpredictable performance . 22

Chapter 3 Performance study in an Eucalyptus private cloud 24
3.1 Overview . 24
3.2 Software components . 25

3.2.1 Eucalyptus . 25
3.2.2 Euca2ools . 25
3.2.3 Hybridfox . 26
3.2.4 KVM . 26

3.3 Eucalyptus modules . 27
3.3.1 Node controller (NC) . 27
3.3.2 Cloud controller (CLC) . 27
3.3.3 Cluster controller (CC) . 28
3.3.4 Walrus storage controller (WS3) . 28
3.3.5 Storage controller (SC) . 28

3.4 System and networking configuration . 29
3.4.1 System design . 29
3.4.2 Network design . 30
3.4.3 Configuration process . 32

3.5 Testing performance isolation in cloud computing 35
3.5.1 CPU test . 35
3.5.2 Memory test . 37
3.5.3 Disk I/O test . 39
3.5.4 Network test . 44

v

Chapter 4 Cloud performance factors and Service Level Agreements . . 49
4.1 Determining performance behaviour parameters 49

4.1.1 Inside the cloud . 49
4.1.2 From the datacenter to the end-user 52

4.2 SLA problem and application models . 57
4.2.1 The problem with current SLAs . 57
4.2.2 Performance SLA . 59
4.2.3 Application workload models . 63

4.2.3.1 Data-intensive . 66
4.2.3.2 Latency-sensitive . 67
4.2.3.3 Highly geo-distributed . 69
4.2.3.4 Mission-critical applications 69

Chapter 5 Conclusions and future work 71
5.1 Conclusions . 71
5.2 Future work . 74

Bibliography . 75

Acronyms and Abbreviations . 81

vi

List of Tables

Table 3.1 Comparison of Eucalyptus networking modes 31
Table 3.2 Numeric results of the cpu test . 36
Table 3.3 Numeric results of the memory bandwidth test 38
Table 3.4 Latency stress test results . 46

Table 4.1 Distribution of Twitter user base . 55
Table 4.2 Delays experienced by Twitter’s end-users 56

vii

List of Figures

Figure 2.1 Cloud computing service models . 7
Figure 2.2 Server stack comparison between on-premise infrastructure, IaaS, and

PaaS. 8
Figure 2.3 Diagram of an hypervisor virtualization layer with 3 VMMs running 11

Figure 3.1 Networking outline of the private cloud 30
Figure 3.2 Completion time for the calculation of the number Pi 36
Figure 3.3 Memory bandwidth test . 38
Figure 3.4 Small write operation . 40
Figure 3.5 Large write operation . 40
Figure 3.6 Small read operation . 41
Figure 3.7 Large read operation . 41
Figure 3.8 Iozone write test . 42
Figure 3.9 Iozone read test . 42
Figure 3.10 Iozone write test . 42
Figure 3.11 Iozone read test . 42
Figure 3.12 Postmark elapsed time . 43
Figure 3.13 Postmark stdev from average elapsed time 43
Figure 3.14 Jitter stress test results . 47
Figure 3.15 Packet loss stress test results . 48

Figure 4.1 TCP bandwidth between two small instances in Windows Azure . . 51
Figure 4.2 TCP bandwidth between two m1.small instances in Amazon EC2 . . 52
Figure 4.3 Average performance by test type and cloud 64

viii

Chapter 1

Introduction

1.1 Overview

Cloud computing is an emerging area within the field of information technology (IT).
It is turning upside down the way we realize computation by enabling the use of storage,
processing, or higher level elements such as operating systems or software applications, not
by owning them and having them installed on computers that we own - but rather to use
these resources simply as a service. The term cloud computing causes confusion due to the
multiple aspects of service that it may include. From a generic point of view, it could be
said that cloud computing is a kind of computing where scalable, adaptable, and elastic IT
capabilities are provided as a service to multiple users.

In a pure cloud computing model, this means having all the software and data hosted
on a server or a pool of servers, and accessing them through the internet without the need
for very much (if any) local hard disk, memory, or processor capacity, allowing the use of
very light weight client computers by the end user. In some cases the client is simply a
device equipped with a minimal OS and running a web browser. We want to understand if
this is a feasible solution and if there are any limitations on what types of applications or
data that such a computing model can be applied to.

1

1.2 Problem statement

The introduction of cloud computing changes our thinking as what is considered to be
“our system” and “our data” is no longer physically stored on a specific set of computers
and disks, but rather both the concept of system and the locus of our data have evolved
into something diffuse and geographically distributed. A logical deduction is that this
makes it harder to have everything under your control. So, as in most major technologic
developments, there is concern among potential customers of cloud computing services of
the details of the limitations and potentials that cloud computing may offer.

To find what these limitations are we must first look at what cloud computing means
from several different perspectives, specifically in this thesis we will consider the economic,
legal, and technical perspectives. We will identify some of the questions that the customers
are going to ask to the cloud providers before signing a service agreement and entrusting
them with confidential data.

This thesis specially addresses the problems that might arise related to the performance
of applications running in clouds. The analysis is based upon previous research and our
own experimentation in a cloud testbed. The goal was to discern the factors affecting
performance and, when possible, provide some solutions or guidelines to cloud users that
might run into performance problems.

2

Chapter 2

General Background

2.1 What is Cloud Computing?

It seems that everyone in this industry, from experts to cloud providers, has their own
definition about what cloud computing is. Today there is not yet a consensus for what
exactly this term means. Examining some of the existing definitions helps to clarify the
term and what it involves (or might involve). Here we quote four definitions for cloud
computing:

“Cloud computing is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released
with minimal management effort or service provider interaction.” - U.S. National
Institute of Standards and Technology (NIST) [48]

“A pool of abstracted, highly scalable, and managed compute infrastructure
capable of hosting end-customer applications and billed by consumption” -
Forrester Research, Inc. [64]

“A style of computing where massively scalable IT-enabled capabilities are de-
livered as a service to external customers using Internet technologies.” - Gartner,
Inc. [55]

3

“A Cloud is a type of parallel and distributed system consisting of a collection
of interconnected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resources based on service-level
agreements established through negotiation between the service provider and
consumers” - R. Buyya, C.S Yeo, and S.Venugopal [11]

As we can see, and will be explained later in more detail, the definitions of cloud computing
include different classes of services. For example cloud computing can supply remote storage
space; but could also supply processing power to supply applications as a service over the
internet. Reading these definitions there is a noticeable pattern, this pattern enables us to
extract the main features of a cloud computing system. These features are described in the
following subsections.

Finally, it should be noted that there are two major technologies that have led to the
development of the cloud computing paradigm: virtualization and grid computing. The
former will be discussed in detail in section 2.4.1 so nothing more will be added here. The
latter, grid computing, refers to applying the resources of many computers in a network
simultaneously to solve a single problem, and was first introduced by Foster and Kesselman
in the early nineties and formally presented by them in a book in 1999 [30]. Grid computing
is typically used to tackle scientific or technical problems that require a great number of
computer processing cycles or that involve large amounts of data. The difference between
this paradigm and cloud computing is that grid systems are architected so that a single
user can request and consume large fractions of the total resource pool, whereas in cloud
systems individual users’ requests are limited to tiny fractions of the total system capacity.
As a consequence of users having very small fractions of the total capacity, cloud computing
has focused on scaling to handle large numbers of users.

4

2.1.1 On-Demand

A basic condition that a cloud computing provider must fulfill is the ability to deliver
computing resources whenever the customer needs them. From the customer’s point of view
the available computing resources are nearly infinite (i.e., the customer is not limited the
set of servers located at one site and it is the responsibility of the cloud computing provider
to have sufficient resources to satisfy the requirements of all their customers).

Utilizing computing resources on-demand is one of the most desired capabilities for a
large number of enterprises because it eliminates the need for planning ahead, purchasing,
and installing the resources they will require at some point in the future. This enables
the customer to avoid making an unnecessary upfront investment in servers. Furthermore,
when comparing cloud computing with the traditional model of owning the servers, cloud
computing will helps avoid the costs of having underused resources. Effectively the cloud
computing vendor is doing what firms such as EDS did when it started to run service bureaus
- by combining the needs of multiple firms the service bureau is able to take advantages of
the effects of resource pooling. (See for example [71]).

Consequences of this feature of on-demand computing resources are a lowering of the
entry barriers to some business models, as software vendors can develop applications without
worrying beforehand of provisioning for a specific number of customers and then bearing
with the risk of greater success than planned, leading to the service not being available or,
worse, having very few users and a large capital expense caused by purchasing resources
that are very underutilized.

2.1.2 Pay-per-use

Another new aspect of cloud computing is application of an usage based billing model.
The customer pays only for short term use of processors or storage, for example this usage
could be metered in increments of hours or days; converting what would have been capital
expenses (CAPEX) into operational expenses (OPEX).

We can see that the concept of cloud computing is strongly related to the idea of
utility computing. In both cases the computing resources are being provided on-demand,
much as electricity, water, or gas are supplied by a utility company; but in the case of
computing resources the waste product is largely heat and after some time scrap computing
equipment - hence the customer is essentially renting these computing resources. However,
unlike a traditional rental agreement where the resources would be physically located at the

5

customer’s premises, in the case of cloud computing the resources are simply some where in
the cloud - rather than in a single physical location. Further note that unlike the case for
water and gas, which when they are not used are available for later use - not using processor
cycles of a computer does in fact waste these cycles - since they will not be available for
usage later. Therefore it is advantageous for a cloud computing provider to accept business
to utilize all (or nearly all) of these cycles.

2.1.3 Rapid elasticity

Based upon the specific of a service level agreement, the cloud provider scales up or down
the resources that are provided to meet the customer’s changing needs. This service level
agreement must define the response time for the cloud provider to adapt to the customer’s
needs. Such an agreement is needed by the cloud provider, because the cloud provider
does not in fact have infinite resources, so depending upon the service level agreement the
cloud provider has to find a set of allocations of resources that satisfy the current demands
of the aggregate of their users while meeting the various service level agreements of these
costumers - otherwise the service level agreement may specify a penalty that the cloud
provider has to pay to each customer for not meeting the relevant service level agreement.

2.1.4 Maintenance and upgrading

Because the cloud provider rather than the customer maintains the computing resource,
there is an effective outsourcing of maintenance tasks. Thus the cloud provider maintains
and updates the resources, whether the resource is hardware or software. Therefore all
repairs and replacement of the underlying hardware resources are transparent to the cus-
tomer, as they do not affect the customer’s experience. While this might be true in the ideal
case, there may be short intervals when a customer’s image is migrated from one hardware
platform to another in order to perform maintenance or repair of a given physical platform,
during this period of time the customer might not have any of the resources associated with
this image available.

2.2 Cloud computing service models

Cloud computing can be classified by the model of service it offers into one of three
different groups. These will be described using the XaaS taxonomy, first used by Scott

6

Maxwell in 2006, where “X” is Software, Platform, or Infrastructure, and the final "S" is for
Service.

It is important to note, as shown in Figure 2.1, that SaaS is built on PaaS, and the latter
on IaaS. Hence, this is not an excluding approach to classification, but rather it concerns
the level of the service provided. Each of these service models is described in a following
subsection.

Figure 2.1: Cloud computing service models

2.2.1 IaaS (Infrastructure as a Service)

The capability provided to the customer of IaaS is raw storage space, computing, or
network resources with which the customer can run and execute an operating system,
applications, or any software that they choose. The cloud customer is not able to control
the distribution of the software to a specific hardware platform or change parameters of the
underlying infrastructure, but the customer can manage the software deployed (generally
from the boot level upward).

2.2.2 PaaS (Platform as a Service)

In the case of PaaS, the cloud provider not only provides the hardware, but they also
provide a toolkit and a number of supported programming languages to build higher level
services (i.e. software applications that are made available as part of a specific platform).
The users of PaaS are typically software developers who host their applications on the
platform and provide these applications to the end-users.

7

2.2.3 SaaS (Software as a Service)

The SaaS customer is an end-user of complete applications running on a cloud infrastruc-
ture and offered on a platform on-demand. The applications are typically accessible through
a thin client interface, such as a web browser. The customer does not control either the
underlying infrastructure or platform, other than application parameters for specific user
settings.

Figure 2.2 shows the difference in the number of parts of the whole server stack that a
customer of an IaaS or PaaS provider is able to control compared to a private on-premises
server.

Figure 2.2: Server stack comparison between on-premise infrastructure, IaaS, and PaaS.

8

2.3 Deployment models

Clouds can also be classified based upon the underlying infrastructure deployment model
as Public, Private, Community, or Hybrid clouds. The different infrastructure deployment
models are distinguishing by their architecture, the location of the datacenter where the
cloud is realized, and the needs of the cloud provider’s customers (for example, due to
regulatory, legal, or other requirements).

2.3.1 Public clouds

A public cloud’s physical infrastructure is owned by a cloud service provider. Such a
cloud runs applications from different customers who share this infrastructure and pay for
their resource utilization on a utility computing basis.

2.3.2 Private clouds

A pure private cloud is built for the exclusive use of one customer, who owns and
fully controls this cloud. Additionally, there are variations of this in terms of ownership,
operation, etc. The fact that the cloud is used by a specific customer is the distinguishing
feature of any private cloud.

A private cloud might be owned by the customer, but built, installed, and managed
by a third party rather than the customer. The physical servers might be located at the
customer’s premises or sited in a collocation facility.

A recently introduced alternative to a private cloud is a ‘virtual private cloud’. In
such a virtual private cloud a customer is allocated a private cloud within the physical
infrastructure of a public cloud. Due to the allocation of specific resources within the cloud
the customer can be assured that their data stored on and processing is done only on
dedicated servers (i.e., these servers are not shared with any other customer of the cloud
provider).

2.3.3 Community clouds

When several customers have similar requirements, they can share an infrastructure and
might share the configuration and management of the cloud. This management might be
done by themselves or by third parties.

9

2.3.4 Hybrid clouds

Finally, any composition of clouds, be they private or public, could form a hybrid cloud
and be managed a single entity, provided that there is sufficient commonality between the
standards used by the constituent clouds.

2.4 Technology review

There is a feature which has not yet been commented in this report. This feature may be
what sets cloud computing apart from earlier computational styles. This feature is multi-
tenancy, the ability to host different users and allow them operate in the same physical
resource. In cloud computing multi-tenancy is realized using virtualization technologies.
Using virtualization to implement multi-tenancy in cloud computing is a return to what IBM
did in 1972 with their VM/370 system, introducing time-sharing in a mainframe computer
of the System/370 line. IBM was able to provide its multiple users with seemingly separate
System/370 computing systems [20].

2.4.1 Virtualization

In the cloud model what customers really pay for, that is what they dynamically rent, are
virtual machines. This enables the cloud service provider to share the cloud infrastructure
located in a datacenter between multiple customers. The level of virtualization of what is
offered depend on which of the three (SaaS, PaaS, or IaaS) service models the user requires.

Virtualization strictly refers to the abstraction of computer resources using virtual
machines: software implementations of machines that execute programs as if there were
separate physical machines. Virtualization allows multiple operating systems to be executed
simultaneously on the same physical machine. Virtualization and the dynamic migration
of virtual machines allows cloud computing to make the most efficient use of the currently
available physical resources.

Virtualization is achieved by adding a layer beneath the OS, between the OS and the
hardware. This additional layer makes it possible to run several OS instances on top of the
same underlying resources. Two different options for this virtualization layer exist:

• Type-1: This kind of virtualization layer is called a hypervisor. It is installed directly
onto the system, and has direct access to the hardware. For this reason it is the
fastest, most scalable, and robust option.

10

• Type-2: Hosted architecture. The virtualization layer is placed on top of a host
operating system.

In either case, the virtualization layer manages all the virtual machines, launching a virtual
machine monitor (VMM) for each one.

Today the hypervisor technique is the used in all cloud computing datacenters as it is
the most efficient option in terms of hardware utilization. See Figure 2.3.

Figure 2.3: Diagram of an hypervisor virtualization layer with 3 VMMs running

Both options for virtualization are applicable to x86 architecture systems. This platform
will be used for the examples in this thesis as it is by far the most common architecture
nowadays. Due to its dominance in the PC market most operating systems are designed
to be compatible with this architecture. The x86 architecture offers four levels of privilege
named “rings”. In this architecture ring 0 is the most privileged level. The operating
system (OS) is usually located in ring 0. User applications commonly run in ring 3. To
provide the appropriate virtualization and security the virtualization layer must be placed
at ring 0 in order to create and manage the virtual machines that actually deliver the
shared resources. There are some processor instructions that have different semantics when
they are not executed in ring 0, therefore some translation mechanism is needed so that
when these instructions are executed outside ring 0 in a virtual machine that the correct
semantics are applied. There are three different techniques to perform this transformation:
full virtualization, paravirtualization, or hardware-assisted virtualization.

Full virtualization

Full virtualization uses a combination of direct execution and binary translation. Binary
translation is used in order to adapt the non-virtualizable instructions by replacing these

11

instructions with other instructions that realize the same effect on the virtualized hardware.
This approach is called full virtualization because it completely abstracts the guest OS
from the underlying hardware, without the guest OS noticing. The hypervisor traps and
translates all these special instructions and replaces these instructions with a new sequence
of instructions (which are cached for future use). User-level instructions run directly on the
hardware - hence full virtualization has no impact on their execution speed.

Paravirtualization

Paravirtualization involves modification of a guest OS. Today this method is only
supported for open source operating systems, limiting its applicability. However, paravirtu-
alization offers higher performance than full virtualization in performance because it does
not need to trap and translate every OS call.

Hardware assisted virtualization

Hardware assisted virtualization is an alternative approach. In recent years vendors have
added virtualization support to their processors due to the widespread use of virtualization.
Since 2006, hardware assisted virtualization has been available in products employing
Intel’s VT-x and AMD’s AMD-v technologies. This hardware solution is based on a
new CPU execution mode that allows the VMM to run below ring 0. In this approach
sensitive OS requests are automatically trapped by the hypervisor, so there is no need for
paravirtualization or the binary translation required in full virtualization.

2.4.2 Current alternatives in the cloud computing market

This section presents the current cloud computing offers, distinguishing them basing on
the level of abstraction (i.e. the level of service) presented to the programmer and the level
of management of the resources.

Amazon Web Services (AWS)

AWS [25] refers to the services offered by Amazon to cover the entire service spectrum.
Amazon is the only provider to the date with products in all three classes. AWS includes
a number of components:

• Amazon Elastic Compute Cloud (EC2): The IaaS product of Amazon is the leader in
its class. It supplies customers with a pay-as-you-go resource that can include storage

12

or computation. EC2 has a web interface for requesting virtual machines as server
instances. An EC2 instance seems like physical hardware and its relatively low level
of abstraction (i.e. by definition, IaaS have low levels of abstraction when compared
to PaaS or SaaS. See Figure 2.2) lets the customer control settings of nearly the entire
software stack. Customers have the chance to increase or decrease the number of server
instances, then AWS reacts by scaling the number of instances up or down. Server
instances are available in three different sizes; each one having a different amount of
memory, computing power, and bandwidth.

• Amazon Simple Storage Service (S3) implements a dynamically scalable storage ser-
vice which can be used to host applications that are subsequently offered to end-users.

• Amazon SimpleDB realizes a database (DB) and provides it as a web service. Devel-
opers store and query data items via web services requests. Amazon liberates these
developers from worrying about the database’s internal complexity.

Rackspace

Rackspace [16] offers infrastructure as a service, named Cloudservers, or a platform as
a service, Cloudsites, to host web applications with scaling needs. Rackspace also provides
Cloudfiles, a storage service, which can be combined with a content delivery network
(CDN) service. This latter service competes directly with the CDN from Amazon, called
Cloudfront, but Rackspace, unlike Amazon, does not charges for bandwidth consumption
between the storage service and the CDN.

GoGrid

GoGrid [34] provides infrastructure as a service, standing as a direct competitor to
Amazon or Rackspace. GoGrid offers a competitive service consisting on dedicated hosted
servers in their cloud facilities. Thus they are a provider of virtual or physical infrastructure
on-demand, unlike Amazon (who only supplies virtual infrastructure on-demand). Addition-
ally, GoGrid complements the offer of dedicated infrastructure with an hybrid environment
that enables users of their dedicated hosting service to request virtual resources to handle
usage spikes.

13

Salesforce

Salesforce[58] is one of the pioneers in cloud computing. Salesforce’s first and still
main product is a Customer Relationship Management (CRM) web service. Salesforce has
focused on enterprise customers and has added new applications on top of its CRM. While
earlier Salesforce only offered SaaS class products, in 2002 Salesforce shifted towards the
PaaS market with the release of their Force.com platform that allows developers to develop
applications that will execute natively on their Salesforce platform or be integrated with
third party services. In the case of Force.com, Salesforce is responsible for scaling up or down
the platform as needed, thus making the addition of new physical resources transparent to
the user.

The Force.com development environment is based on the Eclipse integrated development
environment (IDE) and uses a new programming language called APEX. APEX is closely
related to C# and Java. Force.com also provides non-programmers with tutorials and
models to enable them to compose business web applications in a visual way.

Google App Engine

Google’s PaaS product [27] is a platform to develop and host web applications on
Google’s servers. The user can leverage Google’s distributed and scalable file systems
(BigTable and File System), along with technologies used by Google’s wide range of web
applications (e.g, Gmail, Docs, Google Reader, Maps, Earth, or Youtube).

Although in the beginning the only programming language supported was Python,
presently there is also support for Java, and it is forecasted that other programming
languages will be allowed in the future. In a move towards connecting both clouds, Google
and Salesforce have recently provided libraries that allow the developer to access the other’s
web services application programming interface (API) from applications. Once installed, the
application can seamlessly make web service API calls of the other service, hence integrating
applications hosted on both clouds.

Microsoft Windows Azure

Microsoft’s PaaS service is called Windows Azure [5]. This is a very new (commercially it
became available starting in February 2010) cloud platform offering that provides developers
with on-demand computing and storage to host, scale, and manage web applications on the
Internet using Microsoft’s datacenters.

14

The Azure Services platform currently runs only .NET Framework applications, but
Microsoft has indicated that a large range of languages will be supported. Indeed, two
software development kits (SDKs) have already been made available for interoperability
with the Azure Services platform that enable Java and Ruby developers to integrate their
application with .NET services.

Sun Cloud

Sun Microsystems (now Oracle) in March 2009 introduced a cloud service to compete
against Amazon EC2 in the field of IaaS [17]. It is uncertain what the future of this service
is today. After the merger with Oracle, it was announced that the Sun Cloud service will
no longer be available, but it is unclear if another Cloud product will be released instead.

Eucalyptus

Eucalyptus [54] is not comparable in size or capacity with the previous offerings, but
worth including because of its distinctive purpose. This is an open source cloud computing
framework developed by the University of California at Santa Barbara as an alternative
to Amazon EC2. The initial mission of Eucalyptus was, and continues to be, to enable
academics to perform research in the field of cloud computing. In addition to the research
market, it has also been positioned as a private cloud system offering (the Eucalyptus
Systems’ Private Cloud - see [54]). This initiative is unique in that no other cloud system
combines support for open development with the goals of being easy to install and maintain.
Its specific scope is the IaaS model where it is also fully compatible with Amazon’s EC2,
as Eucalyptus uses the same API as AWS. Additional information about Eucalyptus and a
detailed analysis of the system and its components can be found in chapter 3 of this thesis.
This platform was implemented in order to perform our own performance tests.

2.5 Limitations of cloud computing

Cloud computing is widely recognized as a revolutionary IT concept and with different
offerings can fit the needs of very diverse customers, ranging from large enterprises, small
start-ups, to end-users. Some cloud based applications, such as Gmail, have had great suc-
cess; but as the diversity of the offerings grows so does the reluctance to trust some services
or to trust more sensitive data to off-site computers. This is easily observed at the enterprise
level when decision makers in the information technology departments of companies and

15

organizations keep rejecting a move to the cloud. At present most organizations are only
willing to outsource applications that involve less sensitive information. According to a
survey of more than 500 chief executives and IT managers of 17 countries they still “trust
existing internal systems over cloud-based systems due to the fear about security threats
and loss of control of data and systems” [57]. The ones that do agree to move to the cloud
still demand third party risk assessments or at least ask the cloud providers questions such
as:

• Who will have access to the data and applications and how will that be monitored?

• What security measures are used for data transmission and storage?

• How are applications and data from different customers are kept separate?

• Where, in terms of geographical location, will be the data stored? Could the choice
of the location affect me?

• Can these measures and details be stipulated in a service level agreement?

All these customer worries can be translated into what can be identified as the main
obstacles to the adoption and growth of cloud computing. Each of these obstacles are
examined in the following subsections.

2.5.1 Availability of service

Outages of a service become a major worry when customers have deposited all their
information in the cloud and might need it at anytime. Given that the customer manage-
ment interfaces of public clouds are accessible via Internet, there is an increased risk of
failure when compared to traditional services since there are more weak points in the chain
of elements needed to access the information or application. For instance, web browser
vulnerabilities could lead to service delivery failures. A feasible means to obtain a high
degree of availability would be using multiple cloud computing providers.

Cloud providers are well aware of these risks and today provide more information
about the current state of the system, as this is something that customers are demanding.
Salesforce for instance shows the real-time average response time for a server transaction
at Trust.salesforce.com. Amazon has implemented a service dashboard that displays basic
availability and status history.

16

2.5.2 Data lock-in

As some people, such as GNU creator Richard Stallman have advised [38], the use of
proprietary cloud-based applications could end up in situations where migration off the
cloud to another cloud or to an in-house IT environment would be nearly impossible. The
reason for the current poor portability and limited interoperability between clouds is the
lack of standardized APIs. As a consequence migration of applications between clouds is a
hard task.

An evolution towards standardized APIs would not only overcome this risk by allowing
SaaS to develop software services interoperable in all clouds, but would provide a firm basis
to progress towards hybrid computing models.

Google is the only cloud provider truly advancing to achieve a more standard environ-
ment and they even have an initiative, called Data Liberation Front [36], to support users
moving data and applications in and out of their platform.

2.5.3 Data segregation

A direct consequence of the multi-tenant usage mode, where different customers’ virtual
machines are co-located in the same server or data is on the same hard disks, is the question
of isolation. How should the cloud securely isolate users? This class of risks includes issues
concerning the failure of mechanisms to separate storage or memory between different users
(i.e., such a failure would enable information to leak from one customer’s VM to another
customer’s VM). There are a number of documented vulnerabilities in different commercial
hypervisors that have been exploited to gain access to one or more customers’ virtual
machines.

Another type of attack whose feasibility has been reported is a side-channel attack. A
case study carried out by MIT and University of California at San Diego on the Amazon
EC2 service considered this style of attack an actual threat, and they demonstrated this
attack by successfully overcoming the following:

• Determining where in the cloud infrastructure a specific virtual machine instance is
located.

• Determining if two instances are co-resident in the same physical machine.

• Proving that it is possible for an adversary to launch on purpose instances that will
be co-resident with another user’s instances.

17

• Proving that it is possible to take advantage of cross-virtual machine information
leakage once co-resident.

They were able to successfully perform all the previous steps given that patterns can be
found in the mapping of virtual machine instances into physical resources (for example,
by examining internal and external IP addresses of a large number of different types of
instances). In their tests they could launch co-resident instances with a 40% probability of
success. They state that the only certain way to avoid this threat is to require exclusive
physical resources, something that ultimately customers with high privacy requirements will
begin to ask for.

2.5.4 Privilege abuse

The threat of a malicious insider with a privileged role (e.g. a system administrator) is
inherent to any outsourced computation model. Abuse by insiders could impact and damage
the customer’s brand, reputation, or directly damage the customer. Note that these same
type of attacks can be carried out by internal employees in a traditional (i.e., non-cloud)
computing infrastructure.

Cloud customers should conduct a comprehensive assessment of any potential cloud
provider, specifying human resource requirements (i.e. stating who will have access to
their data and what level of access they will have) and requiring transparency measures.
Additional trust systems that would not require the customer to blindly trust the provider
would be useful.

2.5.5 Scaling resources

As noted earlier in section 2.1.3, the ability of scaling up or down resources to meet
workload is one of the most desired cloud computing advantages. However, this great
advantage can lead to service failures if it is not well implemented or if a maximum response
time is not agreed upon beforehand. A web application developer who hosts its service on
a cloud may see how the response time steadily increases when the usage of the application
also increases - because the cloud does not scales up resources quickly enough.

On the other hand, scaling must be limited by some threshold. This threshold would
stop the continuous increase in the allocation of resources to prevent the cloud provider from
suffering a denial of service attack because the customer’s application was malfunctioning.
In either case the customer could be billed for service that they did not want.

18

Existing service level agreements determine quality of service requirements, but not in
terms of response time in response to workload variations. There are proposed solutions
in service level agreements (SLA) for scalability implemented through statistical machine
learning.

2.5.6 Data security and confidentiality

The distributed nature of the cloud model necessarily involves more transits of data
over networks, thus creating new challenging security risks. The confidentiality of the data
must be assured whether it is at rest (i.e. data stored in the cloud) or in transit (i.e. to
and from the cloud). It would be desirable to provide a closed box execution environment
where the integrity and confidentiality of the data could be verified by its owner. While
encryption is an answer to securely storing data in the cloud, it does not fit that well with
cloud-based processing. This later problem occurs because generally the cloud both stores
data and applications running on the cloud operate on this data. In most cases the data
has to be unencrypted at some time when it is inside the cloud. Some operations would
be simply impossible to do with encrypted data and, furthermore, doing computations
with the encrypted data would consume more computing resources (and more money, in
consequence).

There are recent steps towards dealing with this issue. One is the Trusted Cloud
Computing Platform [59], which aims to apply the Trusted Computing model (developed
in 2003 by Intel, AMD, HP, and IBM) to the cloud. However the scope of this initiative is
to protect against malicious insiders, inside the cloud provider organization.

Another project of the Microsoft Cryptography Group is a “searchable encryption mech-
anism” introduced by Kamara and Lauter in [41]. The underlying process in this system is
based on a local application, installed on the user’s machine, composed of three modules:
a data processor, a data verifier, and a token generator. The user encrypts the data before
uploading it to the cloud. When some data is required, the user uses the token generator
to generate a token and a decryption key. The token is sent to the cloud, the selected
encrypted file(s) are downloaded, and then these files are verified locally and decrypted
using the key. Sharing is enabled by sending the token and decryption key to another user
that you want to collaborate with. The enterprise version of the solution consists of adding
a credential generator to simplify the collaboration process. Other relevant projects are
also being conducted. One example is a recently published PhD dissertation from Stanford
University done by Craig Gentry in collaboration with IBM [33]. This research proposes

19

“A fully homomorphic encryption scheme”. Using their proposed encryption method data
can be searched, sorted, and processed without decrypting it. The innovation here is the
refreshing mechanism necessary to maintain low levels of noise.

Although successful, both initiatives have turned out to be still too slow and result it
very low efficiency. As a result, they are not commercially utilized yet.

2.5.7 Data location

In addition to the topology of the cloud network, the geographic location of the data
also matters in some cases. Knowing data’s location is fundamental to securing it, as
there might be important differences between regulatory policies in different countries. A
customer could be involved in illegal practices without even noticing, as some governments
prosecute companies that allow certain types of data to cross geographical boundaries.
Cloud computing customers must tackle this issue by understanding the regulatory require-
ments for every country they will be operating in. Not only the data’s location, but the path
the data follows may also matter. According to Forrester’s “Cloud Privacy Heat map” [29],
a possible conclusion is that it can be hard for an application operator to deploy applications
at a minimum “distance” from the users (i.e., there may be locations where the data must
travel to that require following a non-optimal path because the ideal path crosses countries
with restrictive laws).

Currently there are cloud providers that leave the choice of the datacenter location to
the user. For instance, Amazon offers two locations in the US and one in Europe. Very
likely, other providers will add to Amazon’s region choice offer as the location of data is an
increasing important requirement of potential customers.

2.5.8 Deletion of data

Closely related with the isolation issues that the multi-tenant architecture can entail is
the fact that the user can erase data upon request. A user of a public cloud may require his
data to be deleted, i.e., completely removed from the cloud. As this can only be entirely done
by erasing, repeatedly re-writing the disk sectors with random data, and possibly formatting
the server’s hard disk, this could turn out to be impossible to do at the service provider’s
environment. As noted earlier in the discussion of a side-channel attack, a malicious user
could later take advantage of remaining data. Even with multiple cycles of re-writing the
sectors which previously held the file it may be possible to access the "erased" data, but the

20

probability can be reduced - however, this is at a quite high cost in time and disk I/O and
may not be completely successful.

In the latest report about cloud computing by the European Network and Information
Security Agency (ENISA) [14] it has been suggested that if encryption were applied to data
at rest, the level of this risk would be considerably lower.

2.5.9 Recovery and back-up

Cloud providers should have an established plan of data back-up in the event of disaster
situations. This may be accomplished by data replication across different locations and the
plan must be addressed in the service level agreement.

2.5.10 The “Offline cloud”

Being completely dependent upon an Internet connection might turn out to be impos-
sible or highly risky for some users who need an application (or data) to be available at all
times. This creates a bigger problem if the user is moving and the quality of the connection
can change, hence in some situations relying on a Internet service provider is simply not an
option.

The so-called “pure Cloud computing model” causes this impediment. This model is
based on the fact that the most used software application nowadays is the web browser and
that today complete applications can be delivered as a service through the Internet and all
of the end-user’s interaction can occur through a web browser. An obvious conclusion is to
build a web based OS. In this approach the web browser acts as the interface to the rest of
the system and hardware, such as hard disks or powerful processors, would not be needed
locally anymore. Instead, a netbook or other thin-client with a low energy consuming
processor (e.g. Intel Atom, Via Technologies C7, etc.) would suffice provided that most
of the computation would take place in the cloud and that all the data would be stored
there as well. This is the model that Google is pursuing with their Chrome OS [35]. In
addition, other independent software vendors are developing web desktop offerings, such
as the eyeOS [28]. In this pure Cloud model, loosing connectivity to the cloud is a major
problem because it means that the local computer becomes almost useless.

In 2007, Google introduced Gears: a free add-on for the browser that enables data to
be stored locally in a fully searchable database while surfing the Internet. Gears pretty
much solved the “offline problem” enabling web applications to continue their operations

21

while offline and then synchronizing when the connection was available again. The Gears
project has been officially abandoned in February 2010 because a better and more complete
replacement has arrived with the updating of the HTML protocol and the provisional release
of its fifth version, HTML5 [65].

The new version of the HTML protocol addresses the offline issue with a couple of
elements: AppCache and Database. These elements provide methods to store application
data locally on a user’s computer in amounts beyond what can be stored in an HTTP
cookie. Among a long list of new features there are some other HTML5 elements that
are worth a detailed description because of their close relation with new Cloud application
opportunities:

Canvas: Provides a straightforward and powerful way to draw arbitrary graphics on a web
page using Javascript. (e.g. Mozilla’s BeSpin: an extensible web-based code editor
with an interface written in Javascript and HTML. It allows collaboration between
coders accessing a shared project via web browser).

Video: Aims to make it as easy to embed video on a web page as it is to embed images
today. It makes unnecessary the currently used Flash plug-ins. (e.g. Youtube and
Vimeo are already using it as an optional feature).

Webworkers: A new mechanism to undertake on background threads tasks that otherwise
would slow down the web browser.

2.5.11 Unpredictable performance

One of the main features of any cloud computing service is the level of abstraction from
the underlying physical infrastructure it is supplied with. The cloud’s end customer does
not know how are or where the computers where its application is running are located. The
end customer might not even know the number of physical machines that their application is
currently running on. The only source of information the user has about these servers are the
hardware specifications provided by the cloud provider for each type of service. Moreover,
these metrics do not have the same meaning in a cloud server as they did in a traditional
server, as in the cloud server several users may be sharing computing and I/O resources
on a given instance of a physical processor. Users expect always the same performance
for the same money, but this could simply not be true as the performance depends on
various factors - many of which the end customer has no control over. In fact, this is

22

currently one of the three main concerns enterprise customers have about cloud computing,
according to a survey by IDC in the last quarter of 2009 [60]. Cloud computing’s economic
benefits are based on the ability to increase the usage level of the infrastructure through
multi-tenancy, but it is not clear that one user’s activity will not compromise another user’s
application performance. On top of that, the latency to the datacenter where the server
is hosted, along with other network performance parameters, could vary as a function of
the time of day, the particular location of the current servers, and the competing traffic
in the communication links. Therefore, the performance might not be as expected and
furthermore could fluctuate. This variance in performance may cause a problem if the
customer is unable to predict these variations, their magnitude, and duration - as the price
remains deterministic (or at least current SLA are based upon measurements at the cloud’s
servers and not at the end customer’s interfaces or computers).

The remainder of this thesis will focus on this particular area of concern about cloud
computing. Using a set of experiments this thesis will try to clarify if the performance of a
cloud is indeed non-deterministic and, if that is the case, analyze what are the main factors
that cause this, what are its consequences, and present existing or potential solutions to
address this problem.

23

Chapter 3

Performance study in an
Eucalyptus private cloud

3.1 Overview

As it has been pointed out before, varying performance is among the most worrying
characteristics of cloud providers for enterprise customers and as such it has been studied
before. Previous studies have focused on studying the performance of public clouds, spe-
cially Amazon’s EC2. [32], one of the first benchmarks of Amazon’s cloud, found that there
are inconsistencies between the speed of a first request and a second one, and that between
10% and 20% of all queries suffer decreased performance that were at least 5 times slower
than the mean. Tests of Microsoft’s Windows Azure platform [39] show results that indicate
that when the number of concurrent clients increases the performance drops. The greatest
degradation is seen in the networking performance, where the variability sometimes makes
the TCP bandwidth decrease to a quarter of its mean value.

The fact that these previous tests have been done on public clouds is logical as these
are the most popular and pure instances of cloud computing. Additionally, the major
advantages of the cloud computing new paradigm are associated with such public clouds.
However, accurate benchmarking was difficult due to the lack of a controlled environment
where the load in the server and network are exactly known at all times. Although these
earlier experiments have been very insightful, they lack a higher degree of repeatability.
Therefore, in order to identify and pin down with exactitude the effects of resource sharing
between virtual machines, experiments must be performed in a controlled environment

24

without background loads other than the load added for the purposes of benchmarking.
This is the reasoning behind the choice of a private cloud setup for my test environment.
For this research I selected the de facto standard for private clouds: the Eucalyptus open
source private cloud.

In the following sections a thorough explanation of the essential software that comprise
the whole private cloud used will be presented, along with a practical configuration guide
that addresses the problems that arose during the setup process and the necessary steps
that must be taken to realize a running cloud.

3.2 Software components

3.2.1 Eucalyptus

Eucalyptus was the software platform of choice, but it is not the only private cloud
offering today. Similar software can be found from other vendors, among which Open
Nebula stands out. Eucalyptus as open-source software, differs from Open Nebula primarily
in non-fundamental features for the purpose of this research: more specifically Open Nebula
offers an API to extend the core capabilities and the instruction interface. On the other
hand, this could be one of the best reasons for the adoption of Eucalyptus, as although the
API does not enable extension of core capabilities the API used to interact with the cloud
is the same as in the Amazon cloud, making easier the process of building an hybrid cloud
that in low or moderate usage would operate as a private cloud, but that could expand
to utilize a public cloud during peaks in load. The choice of Eucalyptus was based on the
superior quantity of documentation available, as this greatly eased my learning curve.

The installation package chosen was the Ubuntu version, supplied with the Ubuntu
Server 10.04 LTS. This package facilitates the installation of the Eucalyptus’ platform core
components, and implements a few add-on features on top of them.

3.2.2 Euca2ools

Euca2ools is the open-source version of the set of management utilities and command-
line tools used with Amazon’s EC2 and S3 services, called Amazon’s EC2 API tools. They
implement a large list of image, instance, storage, network, and security management
features including:

• Query of availability zones (i.e. called “clusters” in Eucalyptus)

25

• SSH key management (add, list, delete)

• VM management (start, list, stop, reboot, get console output)

• Security group management

• Volume and snapshot management (attach, list, detach, create, bundle, delete)

• Image management (bundle, upload, register, list, deregister)

• IP address management (allocate, associate, list, release)

3.2.3 Hybridfox

Hybridfox is an open source extension for the Mozilla Firefox web browser that helps
manage both Amazon EC2 or Eucalyptus user accounts from a single interface. It is an
alternative for a cloud user to the command-line tools, and although it also implements
administrator tools it does not cover all the functionality of these tools. It was used my
experiments as the interface for hypothetic end user running on a Mac OS X environment.
The main capabilities of Hybridfox are:

• Creating instances of a VM with a Private IP address.

• Support for Eucalyptus 1.5.x as well as 1.6.x

• Other usability enhancements

3.2.4 KVM

Kernel-based Virtual Machine (KVM) [44] is a full virtualization solution for Linux. It
is based upon CPU virtualization extensions (i.e. extending the set of CPU instructions
with new instructions that allow writing simple virtual machine monitors). KVM is a new
Linux subsystem (the kernel component of KVM is included in the mainline Linux kernel)
that takes advantage of these extensions to add a virtual machine monitor (or hypervisor)
capability to Linux. Using KVM, one can create and run multiple virtual machines that
will appear as normal Linux processes and are integrated with the rest of the system. It
works on the x86 architecture and supports hardware virtualization technologies such as
Intel VT-x and AMD-D.

Eucalyptus supports running on either Xen or KVM virtualization. Because Xen (which
appeared first in 2007) has been around for longer than KVM, and also is the underlying

26

virtualization system of the biggest cloud vendor, Amazon, there is much more research
regarding Xen. This fact and the promising features of KVM’s integration with the Linux
kernel caused me to choose to run KVM over Xen in my cloud testbed.

KVM has built in support for live migration, which refers to the ability to migrate a
virtual machine from one host to another one without interruption of service. This migration
is performed transparently to the end-user, without deactivating network connections or
shutting down the applications running in the virtual machine.

Detailed information about KVM is provided in section 3.5, along with the performance
analysis of the testbed private cloud.

3.3 Eucalyptus modules

The Eucalyptus cloud platform is composed of the five software building blocks. Details
of this software are described below.

3.3.1 Node controller (NC)

An Eucalyptus node is a VT-x enabled server capable of running an hypervisor, in our
testbed this was KVM. A Node Controller (NC) runs on each node and controls the life
cycle of virtual machine instances running on the node, from the initial exectution of an
instance to the termination of this instance. Only one NC is needed in each node, and it is
responsible for controlling all the virtual machines executing on a single physical machine.
The NC interacts with the OS and the hypervisor running on the node, and it interacts
with a Cluster Controller (CC). The NC is also responsible for querying the OS running
on the node to discover and map the node’s physical resources (CPU cores, memory size,
available disk space) and reporting this data to a CC.

3.3.2 Cloud controller (CLC)

The Cloud controller (CLC) is at the top of the hierarchy in a private cloud, and
represents the entry point for users to the entire cloud infrastructure. Each Eucalyptus
cloud needs one and only one CLC, installed in the physical server that acts as a front-end
to the whole infrastructure. It provides an external web services interface, compliant with
Amazon’s Web Services’ interfaces, and interacts with the rest of Eucalyptus components
on the other side. The CLC is responsible for authenticating users, monitoring instances

27

running in the cloud, deciding in which cluster a requested instance will be allocated, and
monitoring the overall availability of resources in the cloud.

3.3.3 Cluster controller (CC)

One or more physical nodes, each with its NC, form a cluster, managed by a Cluster
Controller (CC). The CC can be located either on a dedicated server that is able to access
the nodes and the cloud front-end simultaneously or, if in the case of a single node cluster,
directly in a node. Its main tasks are:

• Deploying instances on one of its related nodes upon request from the CLC.

• Resource arbitration: deciding in which physical node a given instance will be de-
ployed.

• Manage the networking for the running instances and control the virtual network
available to the instances.

• Create a single virtual network or grouping instances on virtual networks depending
on the Eucalyptus networking mode established.

• Collection of resource information from NCs and reporting this information to the
CLC.

3.3.4 Walrus storage controller (WS3)

The Walrus storage controller provides a persistent simple storage service using REST
and SOAP (i.e. different style architectures for web services1) APIs compatible with
Amazon’s S3 APIs. Persistent means that it is not exclusively linked to some instance
and thus the contents of this storage persist even when instances are terminated. Therefore
the Eucalyptus Machine Images (i.e. templates used to launch virtual machine instances.
More on this in section 3.4.3) are stored in this stable storage.

3.3.5 Storage controller (SC)

The Storage controller provides persistent block storage for use by the instances, in a
similar way to Amazon’s Elastic Block Storage (EBS) service. The main purpose of the

1In simple terms, in REST each URL is a representation of some object, while SOAP is a protocol for
web services

28

block storage service is providing the instances with persistent storage. This storage can
be used for the creation of a snapshot: capturing a instance’s state at a given moment for
later access.

3.4 System and networking configuration

3.4.1 System design

The latest version of Eucalyptus is prepared to run on very slim resources, for example
it can be run on a single physical machine. A single physical machine configuration of
Eucalyptus is limited in a lot of ways though (e.g. it cannot be used to create isolated virtual
networks, therefore being useless for testing network isolation between virtual machine
instances. See Table 3.1), due to the fact that Eucalyptus currently limits the networking
modes that can be used in a single machine configuration only to SYSTEMmode. Therefore,
although it is not a system requirement, a multiple machine setup is needed to fully test
Eucalyptus functionality. For this research a two machine configuration was used:

• Front-end server, running the cloud controller, cluster controller, Walrus storage
service, and storage controller.

• Node, running the node controller.

29

3.4.2 Network design

The networking as implemented is outlined in the text that follows. An overview of this
network is shown in Figure 3.1.

Figure 3.1: Networking outline of the private cloud

The two servers (marked node and front-end in the Figure) were interconnected using
an ethernet crossover cable, creating a private network. The front-end had two ethernet
interfaces so that it was able to simultaneously access the private network and the local
area network of the lab (this later network will be called the public network). This public
network in turn has access to the internet, but it is important to highlight that the node
itself does not directly access to the internet. By configuring the routing tables of both
machines appropriately, the node directs all of its traffic to and from the internet through
the front-end. During the experiments, the clients of the cloud were located generally on
the public network. Additionally, we succesfully tested the ability of a machine connected
to the internet to access the cloud, launch virtual machines, and communicate with them
from hosts attached to the internet.

The networking configuration and the resulting connectivity can be quite different
depending on which Eucalyptus mode is used. There are four such modes and the main
distinguishing feature among them is the level of control and management features offered
to the cloud administrator (see Table 3.1). In increasing order of configuration features

30

these modes are: SYSTEM, STATIC, MANAGED-NOVLAN, and MANAGED. Only the
two most feature rich modes, MANAGED and MANAGED-NOVLAN, were used in the
experiments. Additional information about both of these modes is given in the following
sections, as their details are important in order to understand the experiments. It is
also worth saying that, although this four level classification is inherent and particular to
Eucalyptus, most cloud platforms offer very similar management techniques and methods.

Table 3.1: Eucalyptus networking modes

Networking Type DCHP server
running on the

network?

CC runs own
DCHP server?

Instance
isolation

Private
IPs

Ingress
filtering

SYSTEM Required No No No No
STATIC No Yes No No No

MANAGED-
NOVLAN

No Yes No Yes Yes

MANAGED No Yes Yes Yes Yes

MANAGED-NOVLAN

The MANAGED-NOVLAN mode is set by default during the initial configuration of
Eucalyptus. In this mode, the Eucalyptus administrator specifies in the cloud controller
configuration file a network from which VM instances will draw their IP addresses. As with
every mode (but the SYSTEM mode), the cloud controller provides a DHCP server (in our
case this will be located in the front-end server) with static mappings for each instance that
is launched. The DHCP server allocates IP addresses when the request is sent to the NC
to raise an instance.

This mode also features what in Eucalyptus is called security groups: a named set of
rules that the system applies to the incoming packets for the instances. The intention of
security groups is to provide the instances with ingress filtering. Each security group can
have multiple rules and only those incoming packets that match the rules will be let in.
These rules are composed of fields (such as protocol, destination, or source port). The
security group of an instance is specifyied prior to its launching. Security groups only apply
to incoming traffic, there is no egress filtering so all outbound traffic is allowed.

31

MANAGED

This mode is nearly identical to the MANAGED-NOVLAN mode but adds the ability
to create multiple VLANs through tagging of packets. According to the Eucalyptus doc-
umentation, this VLAN capability provides the cloud with “instance isolation” but, as it
will be clarified by the network experiments (section 3.5.4), this is not a very accurate term
and can lead to a misunderstanding of what is offered.

The security group concept is more powerful in the MANAGED mode thanks to its
multiple VLAN capability. In this mode, the cloud controller divides the entire range of
IP addresses available to executing instances, thus creating subsets that are allocated to
each security group created by the user. When launching an instance, the user specifyies a
security group to which this new instance should be associated. As a result, all instances
that are part of the same security group use IP addresses from the same subset. Therefore,
there is a difference in the use of security groups as compared with the former mode; here
a cloud user is capable of creating instances that are in different virtual networks with each
VLAN applying different sets of security rules. Experiments exemplifying this characteristic
are described in section 3.5.4.

3.4.3 Configuration process

Before undertaking experiments in the cloud some configuration and tuning must be
performed. Some notes about this process are provided in this subsection. The main tasks
to be commented are: creating new cloud client accounts via a web interface and building
an Eucalyptus Machine Image (EMI).

Web Interface

To access and begin using the private cloud the client uses a web interface, located at
http://192.168.1.211:8443/. This is the IP address of the front-end server. Prospective users
request an account that will have to be approved by the cloud administrator. Should the
user be granted access, the user utilizes one of two types of credentials: an RSA key to bring
up instances and a query interface key to retrieve information from the cloud controller via
Euca2ools or Hybridfox.

32

Building an Eucalyptus Machine Image (EMI)

An EMI is a special type of virtual appliance used to instantiate a virtual machine
within the Eucalyptus private cloud. It has three main components: a virtual disk image,
a ramdisk image, and a kernel image. The virtual disk image is a filesystem image which
includes an operating system and any additional software and data files required to deliver
a service or a portion of it. This virtual disk image is bundled along with the ramdisk and
kernel images, and then compressed, encrypted, signed, and split into a series of smaller
chunks that are uploaded into the WS3. Together with these three main pieces of the
machine image is an XML manifest file that stores essential information about the EMI
(such as name, version, architecture, and the decryption key).

Building an Eucalyptus machine image is not strictly necessary to begin using the private
cloud as there are already several different EMIs available for downloading for free. However,
creating an EMI is very useful as it automates some tasks that otherwise would need be
done everytime a virtual machine instance was raised. Some benchmarking software that
will be commented later on was used for performance analysis, by including these programs
into a customized EMI they are available in every instance, offering a great time saving.

There are several ways to create a customized EMI, all of which boil down to either
creating a completely new EMI or modifying an existing one. As I only needed to add a
few software packages I chose to resize and modify an existing Ubuntu server 10.04 EMI
[40]. The process to do so was:

• Create a 5GB space for the new image: dd if=/dev/zero of=new.img bs=1M count=4096

• Creating temporary mount points for the old (i.e. the unmodifyied Ubuntu image)
and new images, associating them with free loop devices, creating a filesystem on the
new 5GB image and populating it with the Ubuntu server from the old one.

• Temporarily changing the root to the mount point of the new image using the “chroot”
command.

• Install the desired software packages there.

Once the EMI is customized, then the only remaining step is to upload it to the WS3 located
in the front-end server. That is achieved using the following set of Eucalyptus commands
to bundle, upload, and register the parts of the machine image.

• euca-bundle-image

33

• euca-upload-bundle

• euca-register

Each of the three parts (ramdisk, filesystem, and kernel), when uploaded, returns a code
that must be used later to register the three parts as a complete set. If the process was
completed succesfully, then the resulting machine image should appear in the list of available
EMIs after executing “euca-describe-images”.

34

3.5 Testing performance isolation in cloud computing

This section presents the results along with introducing the methodology used to test
the performance isolation capability of an KVM-powered Eucalyptus private cloud. The
main issue is the impact on the performance of a particular virtual machine instance when
another VM is making intensive use of one or more physical, and therefore shared, resources.
The physical resources being considered are the CPU, memory, disk, and network interface.
For each of these, the results of an experiment will be presented followed by a discussion of
the feasible causes for these results, supported by additional references to previous studies
when necessary. As it has been said earlier, a customized EMI was created to run these
tests. This EMI was composed of a clean installation of Ubuntu Server 10.04 and a number
of benchmarking and testing programs. In the following subsections, a brief explanation of
how each of these testing programs works will be given. If not expressed different, every
experiment was performed with two running virtual machine instances of the customized
EMI, with: 15 GB disk, 512 MB RAM, and 1 CPU core.

3.5.1 CPU test

To test the effects of processor interference due to background load (i.e. another instance
resident on the same server), if any, it should be analyzed how each instance uses the
processor. This is a consequence of how Eucalyptus assigns the processor to each instance.
In order to learn this, some sort of practical test must be performed as there is not any
reference to processor allocation techniques in the Eucalyptus documentation. A simple
program in C was created to find out whether there is processor sharing between instances
or not. This program consists of a while loop that calls the function gettimeofday() and
saves the output in a text file. By graphing the timestamps collected one should see a
continuous increasing line. Otherwise, if there is any processor sharing, some gaps will
appear along the graph. In this case the result shows no gaps, so it must be assumed that
each instance has a single CPU core available all of the time.

To test the CPU performance without involving other resources, the benchmark must
be designed to be strictly CPU-bound, without disk or memory accesses. Therefore, an
arithmetical only task is the perfect fit for this kind of test. There is a well known example
of this: the calculation of digits of the number Pi [53]. Measuring the completion time
for a specific number of digits will provide direct information about the performance of
the processor. With the test instance, that will be called from now on the well-behaving

35

instance, idle otherwise, the benchmark is run 100 times, each time calculating 524288 digits
of the number Pi and obtaining 100 samples of the completion time.

Afterwards, the whole process is repeated but with a co-located instance running a
CPU intensive task, modeled using the program “Lookbusy” [13]. This is an application
that can generate and maintain for a desired amount of time a predictable fixed amount
of load on a CPU. Lookbusy is also a strictly CPU-bound task but, to ensure it actually
is, a simple verification is done: we measure the completion time of a run of the program.
It can be observed that the real time equals the user time, which means that there was
no I/O involved in the process. Given this check, the program is set to generate a 100%
CPU load. This will use all of the processor resources allocated to the background instance,
the “misbehaving” instance, to its maximum. Following this, another 100 samples of the
completion time for the calculation of the number Pi to the same number of digits as before
are collected and compared to the first set of samples. The results can be graphed in Figure
3.2:

Figure 3.2: Completion time for the calculation of the number Pi (in miliseconds)

Table 3.2: Numeric results of the cpu test

1 VM 2 VM
mean (ms) 1716,48 1754,90
stdev (ms) 5,39 41,47
stdev (%) 0,31 2,36

36

As shown in Figure 3.2 and summarized in Table 3.2, the mean completion time for the
idle background case reports that a vast majority of samples are grouped around 1720 ms.
Whereas, with a misbehaving processor hogging the CPU resources operating in the same
server, this mean time increases slightly. The absolut increase, in mean, does not suppose
a heavy worsening of the performance. What is remarkable though, is how the variability
increases. As can be better seen in the graph: there are several outliers, a great number of
outliers for a set of samples of this size, leading to a standard deviation eight times greater
than the original.

This result is significant because, as noted earlier, each instance receives an entire core.
This is not always achievable, depending on the available physical processor resources.
The amount of processor assigned to a VM is called the Virtual CPU (VCPU). In this
experiment each VCPU equals exactly one physical core, without sharing. However, it is
common to have a VCPU that is half or less than one core of a multiple core CPU. Given
the measurements from this experiment, it is reasonable presuming that when processor
sharing exists the jitter would be far higher.

3.5.2 Memory test

The memory performance stress test is based upon a bandwidth test, as this is what
distinguishes between types of memories. To measure the memory bandwidth the STREAM
memory benchmark [47] has been used, following recommendations of previous studies in
this area [4]. In this measurement a data set of 100 samples, from 100 consecutive runs
of the benchmark, were collected. Every run consists of 10 trials selecting the best result,
which directly translates into the sample. The size of the RAM memory allocated to both
instances is 512 MBytes.

In this case the misbehaving instance simulates a RAM intensive task of another cloud
user’s application resident in the same server. This is modeled also using the STREAM
memory benchmark, although the data is always gathered from the well-behaving instance.
This is shown in Figure 3.3 and summarized in Table 3.3.

37

Figure 3.3: Memory bandwidth (in MB/s)

Table 3.3: Numeric results of the memory bandwidth test

1 VM 2 VM
mean (MB/s) 3711,70 3540,68
stdev (MB/s) 13,83 321,69
stdev (%) 0,37 9,09

As can be extracted from the results, this problem has a similar result as the case of the
processor interference. There is again a decrease in the average throughput of the memory,
in this case of less than 5%; which in most cases would not be a determinant factor. A
bigger worry is the points far from the mean. The standard deviation, in presence of a
second virtual machine instance, is more than 20 times (or more than 9 percentage points)
higher. This fact could be seen as a much worse tolerance of the memory than the processor
to a background load. Because, while it is true that the glitches in memory throughput
reach very low values, they go to even half of the mean bandwidth, they happen much more
rarely than for the processor.

Currently, memory management techniques that apply to KVM-based virtual machines
are the same as those the Linux kernel that applies to any other process. The memory of a
virtual machine is stored in memory as any other Linux process, managed by the standard
Linux memory allocator. This is due to the fact that KVM is a Linux kernel extension.
The kernel has a feature called Kernel Same-page Merging (KSM), that scans the memory
of each virtual machine, detects where virtual machines have identical memory pages and

38

merges these into a single page shared between the virtual machines. This results in space
saving given as it allows storing only a single copy of each page. If at anytime a guest
wants to change this shared page it will be provided with a private copy of its own. Due
to the characteristics of the test, with the misbehaving instance running exactly the same
benchmark as the well-behaving one, it is assumable that there can be a signficant number
of replicated memory pages. Therefore there is a chance that the KSM feature may be
interceding frequently, in turn could leading to lower memory throughput. This is only a
hypothesis, and should be proved by rerunning this benchmark with a different memory
load generator for the misbehaving instance, but it was not given much importance because
of the relatively low number of outliers that appeared in this test.

3.5.3 Disk I/O test

The I/O access from KVM virtual machines is different than in other hypervisors such
as Xen or VMware. KVM leverages hardware assistance to virtualization provided by
the newest chipsets to its full potential, creating a third additional CPU operating mode
besides the existing two (user and kernel): the guest mode. CPU and memory are managed
directly from the guest mode, using the standard Linux procedures and scheduling policies
(the current standard Linux process scheduler is the Completely Fair Scheduler, CFS). Disk
I/O and network devices are managed from user mode. The normal code is run inside the
virtual machine by the processor in guest mode until an I/O instruction is encountered or
an external event occurs (i.e. a common external event is the arrival of a network packet).
When any of that two situations happens the processor switches to kernel mode where it
evaluates the nature of the interruption. If it is an I/O instruction the processor exits to
user-level, where the I/O is performed, ultimately returning to guest mode, to the point in
the code just after the I/O instruction.

In a virtualized server, the physical server’s disk capacity and bandwidth is typically
shared between competing VMs. The capacity is shared in a straightforward way: each
virtual machine has a virtual disk image of a determined size that is allocated at the virtual
machine starting time. It does not change until the termination of the virtual machine
execution. On the other hand, the bandwidth of the disk is shared between all the resident
VMs and there is currently no method of dividing this bandwidth or imposing limitations
on its consumption by VMs. Therefore, the assumption was that the disk I/O performance
of one user would be interferred by another user’s VM with intensive disk I/O behaviour.

Two types of experiments were performed to evaluate quantitatively the level of perfor-

39

mance degradation that occurred. The first was the Iozone benchmark [51]. This is one
of the most widely used tools for filesystem benchmarking. It allows benchmarking any
possible disk operation, with selectable block size, file size, and number of threads running
the program. It is also capable of expressing results in throughput per operation or time
per operation. Three different kinds of measurements were obtained with Iozone. In each
of which results in throughput and time were calculated:

1. Small read/write operations. Block size of 4KB, file size of 100MB. One Iozone thread
on VM1 against varying number of threads in VM2. (1,2,3,4,5,6)

2. Large read/write operations. Block size of 10MB, file size of 500MB. One Iozone
thread on VM1 against varying number of threads in VM2. (1,2,3,4,5,6)

3. Small read/write operations. Block size of 4KB, file size of 50MB. Two Iozone threads
on VM1, against varying number of threads in VM2. (1,2,3,4,5,6,10,12)

In the case of the writing benchmark, with small operations (experiment 1) the performance
dropped 70% with only one thread running in the misbehaving VM. Although when the
number of threads increased, up to 6 threads, the degradation kept stable at that value,
reaching a maximum of 73%. The behaviour is nearly the same with larger block and file
sizes (experiment 2) but slightly more progressive, dropping a 64% when the misbehaving
VM features a single thread and keeping around a 77% drop from there onwards.

Figure 3.4: Small write operation Figure 3.5: Large write operation

A similar situations is observed reading in small blocks (4KB) from a relatively small file
size (100MB). This operation’s latency drops to the 45% of its peak performance (i.e. the
latency measured when there is not any other VM performing disk I/O operations), from
6 to an average of 11 microseconds. A completely different thing happened when reading
in large chunks from a larger file. Very little degradation is experienced, what is shocking

40

after having seen the previous read or write measurements. As it seems an exception this
may be signalling some error in the procedures of this particular test, so a second set of
experiments was performed.

Figure 3.6: Small read operation Figure 3.7: Large read operation

The second part of the disk I/O performance experiments was aimed at correcting a
possible flaw in the first part of the measurements. Admittedly, using Iozone to create an
intensive read/write background load is completely valid, but can hinder the repeatability
of the measurements. This is due to the fact that Iozone always benchmarks the different
operations in the same order and, when the test being performed in the well-behaving
VM has about the same duration as the benchmark being run in the misbehaving one to
simulate disk activity, this could lead to some of the tests being always performed against
the same I/O operation. Avoiding this situation requires the misbehaving VM to switch
rapidly between read and write operations. This behaviour was implemented with a script
that combines the following write and read instructions in a loop:

• dd if=/dev/zero of=w_temp count=50 bs=1M > output.out

• cat r_temp > /dev/null

The caches were cleared ar each step of the loop to make sure that the reading/writing is
being done, without using memory buffers.

The data yielded by the Iozone test shows a decrease in the performance of 60% in
the throughput of the writing operation and 68-70% in its latency. Whereas, the read
operation shows better isolation of the interference: the throughput drops 20% and the
latency an average of 30%. These results remain stable through multiple repeatitions of the
experiments, so the methodology is considered valid. What was suggested before is now
confirmed: co-resident VMs affect disk I/O operations of other VMs dramatically degrading

41

its performance. It is important to note that, while that is true (i.e. disk I/O interference
happens), there appears to be a ceiling for the amount of degradation that it is not surpassed
by adding further threads of I/O interference. For instance, the write throughput decreases
to 41% of the baseline value when a misbehaving VM runs one thread of alternate I/O
operations, but it only drops about 15% more when there are four threads.

Figure 3.8: Iozone write test (time) Figure 3.9: Iozone read test (time)

Figure 3.10: Iozone write test (throughput)Figure 3.11: Iozone read test (throughput)

For a better grasp of what this interference means, a last experiment is conducted using
Postmark [43]. This is a benchmark that recreates the I/O workload of a large e-mail server,
creating a large pool of continually changing small files. It is configured to generate 3000
files ranging in size from 1 to 20KB and perform 15000 read/write transactions over this
set of files. The elapsed time of this experiment is measured, first with the co-located VM
being idle, and then progressively adding from one to four threads of the disk I/O intensive
script. Each run of the experiment is repeated twenty times, with the following outcome.

42

Figure 3.12: Postmark elapsed time Figure 3.13: Postmark standard deviation

As seen in figures 3.12 and 3.13, the degradation can be a major problem for applications
that make intensive use of disk I/O, similar to this e-mail server simulation. It takes 454%
of the baseline elapsed time to complete the same amount of transactions when there is any
other disk intensive VM using the same physical disk. Not only the total performance is
degradated, but it can be noted that the variability of the results increases proportionally to
the number of threads in the misbehaving VM. The latter is essential, because the scheme
of accesses that the disk perceives in a server with various consolidated VMs is much more
random. This is the main underlying problem with disk I/O in virtualized environments
as current mechanical disk technologies show a performance orders of magnitude slower
when accessed in a random manner. Because, besides the physical disk itself, the disk
scheduler works poorly under such a load. Previous research found that current disk
scheduling methods are not appropriate to work with the random latencies that virtual
disks of guest OSs have, limiting their ability to provide isolation and fair utilization of the
VM’s share of I/O resources. This same research shows the need to modify the current
scheduling in virtualized environments, that happens at the same time at the VM and at
the hypervisor level: the VM level scheduling should leverage the knowledge of application
information, whereas the hypervisor level scheduler should make best use of the underlying
disk technology. VM level disk schedulers should not be built with strict rules about the
disk behaviour. At the same time, new semiconductor based disks could help out solving
this issue [4]. Reportedly, semiconductor disk technologies like Solid-State Drives (SSD)
have faster random access latencies as there is no seeking motion required because they do
not have moving mechanical parts and the physical location of data is irrelevant. This could
allow more VMs to be placed succesfully in the same physical server, this way serving as a
factor to lowering costs of cloud computing.

43

3.5.4 Network test

Having seen the disk I/O interference problems, it is expected to find similar issues in
the process of sharing another resource: the network adapter. What would be fitting to the
purpose of cloud computing is a network sharing methodology that divides the available
bandwidth and provides network isolation maintaining network latency values when multiple
VMs share the link.

To test the network isolation capability announced by Eucalyptus, the system was
switched to the MANAGED mode. Now, Eucalyptus creates a virtual network for every new
instance of VM launched, the same way as described in previous sections. The VM instances
maintain connectivity via the LAN through bridges that share the network interface of the
node.

The network bandwidth measurements were performed using Iperf [66], an open source
network testing tool that can create TCP and UDP data streams and measure the through-
put of the network that is carrying them. It implements a client and server scheme to
measure the network performance between two ends. Experimentally, it is easily checked
that the KVM virtualized system has no built-in system of bandwidth fair-sharing between
VMs: every time concurrent TCP connections to clients in the LAN are started from two
VMs, each of them gets a different share of the link bandwidth and has the ability to starve
the other depending on which connection begins first. Besides KVM, the most popular
hypervisor nowadays and the one being used by Amazon EC2, Xen, does not feature any
bandwidth sharing mechanism either. Therefore, in current clouds, the network sharing
system must be implemented by the network administrator. However, Eucalyptus does
make it easier to implement some sort of solution thanks to its VLAN separation of VMs.
One alternative is to create a traffic shaping mechanism taking advantage of this Eucalyptus’
feature, using the Linux traffic control tool (tc) [3].

The Linux traffic control tool allows attaching queuing disciplines, called “qdisc”, to
the network devices. These qdiscs can either have multiple child classes or not, in which
case they have only a single parent class. These classes form a system of channels or flows
in which the outgoing packets are classified, and over each flow some rules to limit the
bandwidth or other parameters, such as priority, can be specified. Each class, in turn, has
a default queuing discipline that can be changed. Generally, the tc tool filters are used to
classify packets among all the flows but, as in the system of this research Eucalyptus has
already facilitated this by separating different VMs in different VLANs, hence no filters
will be needed. The queuing discipline chosen is the Hierarchical Token Bucket (HTB) [22],

44

whose design suits this experiment since it facilitates guaranteeing bandwidth to classes.
This is only for the outgoing traffic as the incoming traffic utilizes another methodology
called ingress filtering or policing (i.e. basically dropping packets when the number of them
received exceeds the bandwidth specified in the filter). To check the current traffic control
discipline of one of the virtual networks using tc you use the command:

tc -s -d qdisc show dev vnet0

A short script was created to configure each virtual interface shaping and policing discipline.
This script is:

#! /bin/bash

DEV=vnet0

#outgoing traffic

sudo tc qdisc add dev $DEV root handle 1: htb default 12

sudo tc class add dev $DEV parent 1: classid 1:12 htb rate 47mbit

#incoming traffic

sudo tc qdisc add dev $DEV handle ffff: ingress

sudo tc filter add dev $DEV parent ffff: protocol ip prio 50 u32 match ip /

src 0.0.0.0/0 police rate 50mbit burst 10k drop flowid :1

This script sets the outgoing bandwidth share of one VM instance to 47 Mbps, and the
incoming share to 50 Mbps. These values where found experimentally by choosing the
highest possible value that did not cause packet loss when testing with iperf in UDP mode
(that is because in TCP mode Iperf does not allow choosing the bandwidth used in each test,
instead by choosing the highest value possible, without showing the packet loss results). In
practice, this values turn out to be 45 Mbps both in the uplink and in the downlink. Before
moving on, some testing was done to be sure that the traffic shaping setup works. Starting
simulataneous connections from two VMs shows that now each one obtains its fair-share of
bandwidth every time. Therefore, traffic shaping solves the problem of limited bandwidth
while leading to fair sharing pretty well.

Although bandwidth is now being fairly divided, the isolation of latency and packet loss
remain to be proved. To test the network performance isolation, two clients located on the
laboratory LAN (the external network of the cloud) were used. One of them was connected
with the well-behaving VM instance and the other one with the misbehaving one. Since
the goal was to examine both transmitting and receiveing by the server, to see if the traffic

45

shaping could enforce the desired isolation, two types of stress test were designed. In the
first, the misbehaving VM acts as the sender while in the second one it acts as the receiver.
Either when it is sending or when the client that connects with it sends, the background
traffic load is created as concurrent UDP connections at different data rates.

Initially, a large set of baseline round-trip time (RTT) measurements between a client
and a VM were collected by sending 9000 pings in three sets of 3000 with an idle interval
of several minutes between each set. This operation was repeated with the misbehaving
VM acting as if it hosted a network intensive application, in two phases: first sending and
then receving. The methodology of the stress latency test is to collect RTT measurements
between one client and the well-behaving VM while another client is connected to the
misbehaving one.

For both the sending and receiving stress tests the latency results have average values
that grow in direct proportion to the data rate of the misbehaving connection (see table 3.4).
Although the increase is not very significant the fact that there is any difference given that
the bandwidth is being fairly-shared correctly was surprising. What is more worrying is that
the maximum RTT values of the baseline measurements are nearly the same in every set
of samples collected, but, when there is background network activity, there are consistently
higher maximum values that reach as much as ten times the baseline maximum value. This
can be seen in the deviation of the ping times (see table 3.4): while the deviations were the
same for the three sets of samples in the case of the baseline measurement, the deviations
were more than double this value for every set of samples collected with background network
activity.

Table 3.4: Latency stress test results (3 sets of 3000 samples)

SENDER
(Mbps)

avg
(ms)

max
(ms)

dev
(ms)

baseline 0,688 0,792 0,044
baseline 0,688 0,787 0,043
baseline 0,687 0,788 0,043

40 0,847 1,933 0,093
40 0,851 2,870 0,102
40 0,847 1,112 0,101
45 0,924 6,804 0,220
45 0,900 4,772 0,167
45 0,919 1,375 0,099

RECEIVER
(Mbps)

avg
(ms)

max
(ms)

dev
(ms)

baseline 0,688 0,792 0,044
baseline 0,688 0,787 0,043
baseline 0,687 0,788 0,043

40 0,796 2,601 0,129
40 0,799 6,455 0,111
40 0,798 2,002 0,116
45 0,823 3,292 0,126
45 0.828 3,213 0,219
45 0.824 8,103 0,117

46

Since this test showed the variation in the RTT that appears when there is a co-located
network intensive VM, further experiments in this direction were performed. Using Iperf,
a connection to the well-behaving machine was maintained while the other VM sent or
received flows of UDP packets, packet loss and jitter results were obtained. The test involves
incoming and outcoming packets and during each part of the experiment both VMs were
transmitting in the same direction as this is the case of most interference.

Figure 3.14 depicts the amount of jitter (which refers to the variability of the packet
latency across a network) for various combinations of data rates of both VMs. Overall,
jitter was quite proportional to the throughput of the competing VM. Although increasing
slightly, jitter remains low when the competing VM is sending or receiving at a fraction
of its fair-share of bandwidth, but when it uses all of its share, the jitter doubles in the
outgoing case and is almost two orders of magnitude higher in the incoming case. Both
cases show levels of jitters above what is normal for a small ethernet LAN. Nonetheless,
the fact that the incoming case reaches 2.5 ms of jitter at 40 Mbps is clearly an important
issue.

Figure 3.14: Jitter stress test results

Likewise, packet loss levels remain around zero when the misbehaving VM sends or
receives at 10 Mbps, but is higher when it uses all its available bandwidth (see Figure 3.15).
In contrast with the jitter case, packet loss is worse (i.e. higher) in the outgoing situation.
Overall the levels of packet loss are not critical, but for a cloud service, with probably
packets being dropped along the way to the end-user, the levels of packet loss should be
kept minimum (preferably zero) inside the datacenter. Further discussion about this point
will be presented in the following chapter.

47

Figure 3.15: Packet loss stress test results

48

Chapter 4

Cloud performance factors and
Service Level Agreements

4.1 Determining performance behaviour parameters

Drawing from the previous chapter’s results, it has been proved that the environment
where an application executes determines its performance. Not only does virtualization
cause some degradation in the performance of the application itself, but this application
can also cause interference with (and receive interference from) co-resident VMs. Current
hypervisors either do not have performance isolation mechanisms or apply methods that
have not been designed with a virtualized environment in mind (e.g. traditional disk
scheduling mechanisms are used inside VM and at the VMM level at the same time, as
was discussed in subsection 3.4.4). In the previous chapter, inter-VM isolation issues were
analyzed. This is one of the factors that cause the performance of a cloud-based application
to not be deterministic and reliable, but this is not the only factor. To pin down all the
factors that lead to unpredictable performance in cloud computing it is useful to divide what
is perceived as the cloud into two parts. Looking at the whole cloud application delivery
chain, a basic distinction can be made: what happens inside the cloud (i.e. within a single
datacenter) and what happens along the path to and from the end-user.

4.1.1 Inside the cloud

Inside the cloud refers to the servers and networking gear within the datacenter. Typ-
ically these datacenters utilize x86 architecture servers and networking equipments to in-

49

terconnect these servers: the physical layout inside datacenters consists of 20 to 80 nodes
within a rack connected through a top-of-rack switch to a second level aggregation switch
and at a third level connected via routers to storage area networks and the Internet or inter-
datacenter WANs [4]. Thus, possible sources of variation in the performance of this portion
of the cloud application delivery chain are the servers and the connections between them.
The only factors that can contribute to variations in the performance of an application
hosted on one of these servers, besides what is normal for any physical server, must be
consequences of virtualization or other sources related to the datacenter configuration. The
effects of virtualization over these servers’ performance have been discussed in the previous
chapter through hands-on experimentation with an Eucalyptus private cloud, and more of
its consequences will be discussed when analyzing the problems with current Service Level
Agreements (SLAs) for cloud providers.

With regard to the networking inside the datacenters, a few comments should be made.
While the amount of networking inside the datacenter may seem limited it can greatly affect
application performance because of the details of how these applications are deployed in
the cloud. One of the key advantages of the cloud paradigm is its scalability. The earlier
approach to providing performance was by scaling up, meaning adding more computing
power to a same server, now increasing the available computing resources is done scaling
out, adding another VM instance. Every additional instance created to run an application
can be deployed in one physical server or in many physical servers. In the latter case,
the communication between the different instances has to be carried over the networking
within in the datacenter, this traffic can experience queuing at any of the switchs due to
high network load, this delay (and potentially packet drops) could affect the interaction
between application components. Figure 4.11, extracted from Hill et al. [39], shows the
TCP bandwidth between two instances running in Microsoft’s Windows Azure cloud.

1Reproduced here with the permission of the copyright holder

50

Figure 4.1: TCP bandwidth between two small instances in Windows Azure (Source: [39])

The physical network connection in the Azure cloud is a gigabit ethernet link with a
theoretical maximum data rate of 125 MB/s, in a cloud environment. As can be noted in
the figure, the actual bandwidth never reaches this maximum and is mostly around 80 to
90 MB/s. However, there are a considerable number of samples below 50 MB/s, some of
them are even below 10 MB/s. Hill et al. attribute this highly variable performance to
interference caused by neighboring instances located in the same physical platform. This
agrees with the results of my own network tests (as described in subsection 3.5.4), where
the jitter increased in the presence of co-resident instances making intensive use of the
network I/O interface. Although it could not be determined whether Microsoft’s Azure
cloud uses traffic shaping or some other sort of network sharing techniques, there is a need
to implement a mechanism to allow bandwidth sharing between virtual machines without
increasing jitter. The same situation, with slightly better performance than Azure’s but
showing a similar amount of variability, is apparent in Dave Mangot’s measurements of
Amazon’s EC2 service as presented in Figure 4.22.

2Reproduced here with the permission of the copyright holder

51

Figure 4.2: TCP bandwidth between two m1.small instances in Amazon EC2 (Source: [46])

Implications of these findings impact most severely distributed architecture applications,
such as many scientific computing applications. In distributed applications where messages
are sent very often, for instance when using the Message Passing Interface (MPI) when
a number of worker processes have to exchange results in order to proceed to the next
task. Another example is MapReduce-based applications [21]. MapReduce is a framework
introduced by Google and supported in their cloud computing offering App Engine, where
a master process divides a bigger problem in smaller parts that are passed to workers (the
“map” step), each of which computes on its set of data, and then the results are collected
to generate the outcome (the “reduce” step). In both MPI and MapReduce applications if
network connections have low throughput and high jitter, then worker processes may have
to wait for other workers leading to an accumulation of delays that degrade the overall
performance.

4.1.2 From the datacenter to the end-user

Some cloud computing providers have as many as five or six datacenters where users can
request virtual machine instances to be hosted. For cloud-based applications with many
users distributed intercontinentally, thus many of these users are located very far away from
where their application is hosted. The location of the datacenter where an application is
hosted matters for legal reasons about data privacy regulations in different countries as has
been discussed in section 2.5.7. However, the location also matters for the performance that
the end-user perceives, and the variations in these perceptions depending on where the user

52

is located and what other traffic is competing for the links on the path between the user
and their instance(s).

In this part of the delivery chain, the performance parameter that is most important is
latency. Although details of the communication path between the datacenter and the users
are not directly related to cloud computing, it is important to briefly study what happens
along this network path because clouds are widely used to host consumer oriented applica-
tions that must compete against traditional applications installed in the user’s computer.
Therefore each source of performance degradation is worth examining. From this point of
view it is useful to look in a broader sense at the sources of web latency, specifically:

Network latency: the time spent travelling across a network.

Processing latency: the time it takes to the server to prepare the content that will be sent
to the user. This is the part discussed before, that happens inside a datacenter in a
cloud model.

Client-side latency: the time the web browser needs to prepare the received content to be
presented.

The most relevant factor in this discussion is the network latency (since we have considered
the processing latency in the previous section). This network latency is actually a function
of several parameters: the round-trip time between the browser and the server, the number
of round-trip times it takes to completely load a web page, the protocol’s flow & congestion
control properties, and competing traffic. The main source of delay in web applications
is often a consequence of the properties of the TCP protocol. This delay is caused by
the flow control and congestion control properties of TCP. TCP was not designed to
match the characteristics of today’s web applications, but instead was optimized for high
throughput of large files while preventing congestion in the network. TCP uses the slow
start algorithm, which increases the size of the congestion window by the number of data
segments acknowledged for each received acknowledgement, until packet loss occurs. This
point is interpreted by TCP as the maximum capacity of the connection, and from this
point on the TCP’s congestion avoidance mechanism comes into play. As of this year, the
average size of a web page is 320 KB [56], thus the majority of connections do not reach the
maximum bandwidth. Because the initial congestion window is 4KB, most of today’s web
pages take several round-trips to download while at the same time not exiting the slow-start
phase, making an inefficient use of the network link. A common workaround implemented

53

by almost every popular web browser is opening up to six TCP connections. According to
Dukkipati et al. [23], this solution is inefficient because each TCP connection incurs slow-
start problem, but initiating multiple TCP connection tricks TCP’s congestion avoidance
mechanisms. They argue for an increase in the initial congestion window to adapt TCP to
the web applications of today.

The experiments by Dukkipati et al. show that this change would favour specially
high latency or low bandwidth networks. These two particular cases are the two most
common use cases for cloud computing. Low bandwidth networks are characteristic of
mobile communications, a large pool of users that could benefit from cloud computing as
most mobile phones do not have a large amount of storage space and due to battery power
limitations have limited spare local processing capacity. Cloud-based applications delivered
through mobile networks match this requirement very well, and there are an increasing
number of products following this trend. Secondly, networks with high round-trip times
are common in the cloud computing enviroment because, as has been said before, when an
application with global reach is deployed in one or a few cloud datacenters it is likely that
a large fraction of its users are located far away. Therefore changes to the TCP protocol
and modifications to HTTP (such as those proposed by Google’s SPDY [37]) would be
very advantageous for the growth of cloud computing and improved performance of web
browsing.

The impact of the difference in the geographical distribution of users and datacenters
is hard to quantify beforehand, without actually deploying a complete infrastructure and
measuring the perceived performance. Experimental test to measure the effect of geo-
graphical deployment of applications in actual clouds can be expensive. Buyya et al., in
[12] and [70], have developed a toolkit that enables modelling cloud environments in order
to test different application configurations. This toolkit offers two tools: Cloudsim and
CloudAnalyst. Cloudsim [12] is a more complete and fully configurable tool that allows
modelling at the level of schedulling and allocation policies inside the datacenter, whereas
CloudAnalyst [70] is aimed at the simulation of large-scale parameters such as geographic
distributions. In section 3.5 the server-level behaviour of cloud environments was tested
with the Eucalyptus private cloud hence in this section the features of CloudAnalyst are
used to examine the impact of the network distance between the datacenter and the end-
user of cloud computing. As the CloudAnalyst creators have targeted this simulator to
cloud-based social networks, the case that will be briefly studied here will be the micro-
blogging social network named Twitter [67]. Concretely, the simulation is performed using

54

data about this network collected around February 2008. The reason for choosing this date
is that Twitter, as nearly all social networks, does not provide much official data of its user
base and there are few reports or thorough analysis of it. An additional reason is that
Twitter was still hosted in the Joyent cloud at this time (i.e. it was still a public cloud
based application). Later Twitter switched to a dedicated datacenter provided by NTT
America, due to the enormous growth experienced in the latest year that made latencies
grow too high. The sources of parameters for the simulation that I have used for this study
of Twitter are from [45] and [72] (although the latter source is from 2010, only the peak
hours of use were extracted from this source and I have assumed these were the same peak
hours as ocurred in 2008). For a simplier simulation, the inside-of-datacenter setup used in
the simulation is the same as that used by Buyya et al. in their CloudAnalyst whitepaper.
This setup is modeled after Amazon’s EC2 infrastructure offering. The geographic locations
of users were estimated by comparing the time offset each user sets in his account with the
global time zones. For simplicity users of the same region (North America, South America,
Europe, Asia, Africa, or Oceania) are assumed to be in a single time zone. Finally, the
worlwide latencies were extracted from Verizon’s IP statistics web page on October 10th
2010, which is updated on a daily basis [68]. Three geographic deployment scenarios are
considered: one datacenter located in the US, one datacenter located in Europe, or two
datacenters (one each in the US and Europe). This is the worldwide distribution of the user
base of a total 1.400.000 users, according to [45], with the peak hours (i.e. 20-22h, local
time) translated to GMT reference, and the number of simultaneous users in the peak and
low hours (it is worth noting that the difference between peak and low hours, ranges from
6% to 3% of concurrent users and is not as much of a difference between extremes as in
other web services):

Table 4.1: Distribution of Twitter user base (February, 2008)

Time zone #users
(%of total)

GMT peak
hours

peak
concurrent
users (6%)

non-peak
concurrent
users (3%)

N. America -6 700.000 14:00-16:00 42.000 21.000
S. America -4 112.000 16:00-18:00 6.720 3.360
Europe +1 308.000 21:00-23:00 18.480 9.240
Asia +6 280.000 2:00-4:00 16.800 8.400

55

The regions not included in Table 4.1 did not have a significant amount of users or had
none at all during February 2008. Table 4.2 shows the latency results of the CloudAnalyst
simulation when serving each user using the nearest datacenter.

Table 4.2: Delays experienced by Twitter’s end-users (all values are in miliseconds)

1 DC (US) 1 DC (EU) 2 DC (US&EU)
overall avg response time 217,29 309,54 143,51
overall min response time 41,00 (North America) 40,34 (Europe) 39,94 (Europe)
overall max response time 650,88 (Asia) 805,68 (Asia) 392,25 (Asia)

avg response time in N. America 80,54 262,36 101,83
avg response time in S. America 203,51 503,40 203,44
avg response time in Europe 269,91 60,54 68,84
avg response time in Asia 504,91 624,96 305,87

Rather than providing accurate and reliable approximations to what Twitter’s response
times were, the purpose of this simulation was to gain some insight into the effect of the
choice of datacenter location (or cloud provider, if it only has one possible location) in
deployment of a cloud-based application. Table 4.2 shows the magnitude of the differences
that an end-user might experience depending on where the application is hosted. To put
these values into context, Twitter considers that the threshold for user satisfaction of a page
request is 500 ms, although the goal is to ensure a maximum page load time between 250
and 300 ms for any user [1]. Based upon this point of view, the setups with one datacenter
located either in North America or Europe would not be acceptable and only the third
deployment, with two datacenters, would achieve the desired maximum latency, while users
in Asia would still experience worse performance some of the time. Generalizing from these
simulations, leads to the conclusion that it is of major importance to know your application’s
requirements in terms of end-user experience because the response time requirements of your
application and the distribution of its users will be sufficient to compute an aproximation
to the number of locations you may need to meet this requirement for these users.

56

4.2 SLA problem and application models

4.2.1 The problem with current SLAs

The abstracted infrastructure, intrinsic feature of cloud computing, has the side effect
that customers have no way to truly know the type of computers their applications are
running on. To circumvent this, cloud providers supply customers with a number of
performance metrics. For example Amazon’s EC2 Compute Unit (ECU) is a metric provided
by Amazon to compare the processing resources of the different types of virtual machines
they offer. It is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor [25]. This
abstraction of the underlying computing resource is indeed inherent to the utility model
on which cloud computing is based. This enables a cloud provider to supply computing
resources as if they were supplying electricity, on-demand, while the customer only pays for
the resources used. When a customer signs up to use a cloud the customers is not renting
a particular machine, but rather is renting capacity by the hour.

As has been discussed previously, performance metrics such as Amazon’s ECU in a
multi-tenant cloud environment are not directly related to the CPU capacity of a specific
processor. Due to the absence of succesful mechanisms to enforce perfomance isolation the
performance measurement of a instance many not be constant nor reproducible. There is
a need for some sort of agreement between the cloud provider and the customer ensuring
that the price paid for a specific amount of resources will lead to a performance that fulfills
the user’s expectations. This is the reason to explicitely a proper service level agreement
(SLA). SLAs are the contracts negotiated between the two parties that contain a number of
conditions for the delivered quality of service, referred to as service level objectives (SLO),
and the corresponding compensations if these specified service levels are not met.

At present, the SLAs of all the major cloud providers follow the same pattern of
conditions and compensations, and focus, nearly exclusively, on availability of service,
referring to the amount of time the service is up and responsive. However, there are
some differences in the definition of downtime and the method for compensation. For
example, Amazon EC2’s SLA [61] specifies 99.95% service uptime (i.e. about 4.3 hours per
year of non-scheduled downtime), one of the highest levels of service uptime among cloud
providers. In contrast, Rackspace Cloud Server’s SLA [63] guarantees 100% uptime (this
is a typical selling technique, which basically means they will compensate the customer for
any downtime). Unfortunately, if a business depends upon the 100% uptime guarantee it
is likely to be disappointed, since the failure to provide this level of uptime simply leads

57

to a payment by Rackspace which might not compensate the business for their loses due
to not being able to operate for the period of time that the cloud is not available. There
are also differences in the time required to resolve a claim of unmet SLA, here Rackspace
is the only cloud provider that specifies a time limit. The compensation for failing to meet
the terms of the SLA is usually proportional to the amount of non-scheduled downtime
suffered, but while customers of Amazon EC2 have to prove an uptime of less than 99.95%
of availability during the whole year preceding the claim, Google App Engine’s [62] or
Rackspace’s customers need only to prove the uptime was less than the specified amount
(99.9% and 100%, respectively) during the previous month. Last but also important is
who has the responsibility for both detecting and notifying the SLA violation. Today this
is something that all cloud providers agree unanimously upon, this is the responsibility of
the customer. This may be one of the biggest issues concerning the current state of cloud
SLAs, the burden is put on the customer who, besides suffering because of the SLA violation,
has to administratively prove that the violation of the SLA occurred. This is not only a
burden, but is sometimes in feasible. Google App Engine or Amazon’s S3 cloud storage
SLAs define the availability percentage based upon user requests to a cloud customer’s
application that result in an error. From the position of a cloud-customer/developer that
offers an application hosted in the cloud to a large community of users, the complexity of
monitoring the parameters that are specified in the SLA is very high, considering that the
requests usually come directly fom the users’ web browser, making the number of requests
that result in errors difficult to determine and difficult to report as an aggregate number.
A way to avoid this problem would be for cloud providers to take responsiblity for fully
monitoring the service and automatically paying or offering credit when outages occur.

58

4.2.2 Performance SLA

In the previous subsection the problem of deterministically assessing the performance
of cloud offerings was introduced, followed by a review of current cloud SLAs’ weaknesses.
There is currently no cloud provider that includes in their cloud services’ SLA any condition,
any SLO, to ensure a given level of performance. Therefore there is no compensation to
the customer if the service provided (e.g. an instance in the IaaS case) does not behave as
expected. This may be due to the relative immaturity of the cloud computing paradigm,
at least with respect to its mass adoption by larger audiences, but it is also a barrier for its
growth as this is among customers’ top concerns [60] [18]. This problem is exacerbated by
the difficulty customers experience in monitoring cloud providers. Current methods range
from simple semaphore-like indicators of the service status (i.e. up or down) to monitoring
the use of resources (e.g. Amazon’s Cloudwatch). There is a clear need for a more thorough
monitoring system than those that cloud providers currently offer in order for the customer
to understand what the cloud provider’s actual performance was (or perhaps even what
the current performance is). Some third-party companies have begun filling that gap, most
notably CloudSleuth [19]. As of September 2010, CloudSleuth’s response time monitoring
system shows a huge variation in Rackspace Cloud Server’s, with a worldwide 30-day average
of around 6 seconds of response time but varying from 850 milliseconds for users in Dallas,
USA, to the extremely bad 20 seconds experienced by users in Mumbai, India, or 35 seconds
in Beijing, China. While the latter values clearly indicate some exceptional problems, the
variation in response time over the world strongly supports the earlier suggestion about
thoroughly studying the location of your application’s user base(s) and the datacenters
that will be hosting your application.

Future cloud services’ SLAs should take on the problem of specifying performance, in
such a way that the customer the knows limits between which its application performance
may vary. A basic requirement for this is that the performance should be mapped in
measurable factors. For a cloud service these factors could be:

availability: The status of the service is defined as available when it can be reached and
is operational and responsive, and is measured as a percentage of time.

response time: The response time is the delay between when a request is sent by the user
and when the response is received, as measured in seconds to some stated precision.

throughput: The amount of work a cloud instance can do in a given time, measured in
served requests or transactions per unit of time.

59

Establishing bounds to these three parameters makes it straightforward for the customer to
be sure that their requirements will be met, thus succesfully transferring the responsibility
of mantaining performance levels to the cloud provider. In order to achieve an agreement in
terms of performance, the cloud customer should know and be able to map the requirements
of their application or service to be to hosted in the cloud onto these three factors. This
seems an obvious situation, but it is not. According to Durkee [24], customers are inex-
perienced in purchasing computing resources as a commodity and they are overwhelmed
with the complexity of selecting and determining the cost of service, thus many current
cloud end customers use price as their primary decision criteria. In part, they could not
do otherwise due to the lack of reliable benchmarking and performance guarantees. A
new type of SLA which covered performance would enable customers to use factors such
as response time as additional decision criteria, elaborating a value for money idea of the
offering. Unfortunately, today this requires actually deploying the application in each cloud
and testing it yourself.

If performance levels can be included in the negotiation, then the existing difficulty
in selecting cloud provider can be reduced to an optimization problem (as most buying
decisions can): the customer wants to obtain the maximum value at the least possible cost.
In economics, the value that something represents to the customer is called utility. A buying
choice between different products can be represented using a utility function which describes
the amount of utility provided by every possible combination of the products involved in
the choice. Menascé and Ngo [49] proposed the use of utility functions using the three
parameters of performance defined earlier would be suitable for selecting cloud providers
depending on application requirements. Their proposal aims to obtain a combination of ser-
vice levels in availability, throughput, and response time that satisfy a given cloud customer,
requiring that the customer models this utility functions for each of these parameters (i.e. a
function expressing how much satisfaction an “additional unit” of availability, throughput,
or response time would bring the customer). In turn, the cloud provider should adapt their
pricing model to these performance factors, but here the proposal collides with the current
pricing models.

What pricing model is needed to make delivering quality of service guarantees com-
mercially viable is an ongoing discussion in the cloud computing world. The metered
usage of service model being used right now is similar to other utility services, such as
water or electricity. But the actual difference resides in the process of metering: is easier
to measure water or electricity consumption than consumption of computing resources.

60

Experimentation has shown that variable performance results from other users resource
use, but with the current pricing model the customer’s usage would have the same cost
despite the fact that the customer actually got less performance for a given expenditure in
some cases. This does not happen with electricity or water supply. So, either computing is
not suitable for being provisioned as a utility or new pricing strategies have to be developed.
As more and more performance critical business processes are implemented in the cloud,
new methods of determining and monitoring performance have to be deployed to avoid
the current problems of metered usage. Prior to the cloud computing concept becoming
widely popular, there was research about how to control the performance of three-tiered
websites; this research could be adapted to cloud computing. For example, Karma et al.
[42] developed a controller that is able to maintain a stable response time without significant
degradation in the web server’s throughput, and in addition was able to use the feedback
obtained by measuring the response times of each HTTP request to adapt to changes in
workload.

Further study should consider a performance SLA based on response time, as response
time is the customers’ top concern. This research could be organized as follows. A customer
could either: (1) request an statistical bound on their application’s response time, such as
demanding that 90% of the time the response time should be lower than a specifically stated
threshold, or (2) establishing limits for the average response time and the maximum response
time. Any of these options are better than focusing only on average response time, because
they address variability more effectively. As the client perceived response time is what really
matters and this metric is not available at the server, there are two possible ways to collect
this data. The first method is to aproximate the client perceived response time by using
server-side measurements (specifically measuring connection drop, accept, and completion
rates) and a TCP model, such as the “Certes” mechanism presented by Olshefski et al. [52].
The second method involves a third party who would undertake the process of collecting
the client response time measurements, while simultaneously collecting information from
the cloud provider’s monitoring of the resource usage by the customer’s application. In the
second method, this third-party would be in charge of enforcing the agreed performance
at a maximum hourly cost specified by the customer and, in the event that the SLA is
violated, this third party would claim the corresponding financial compensation on behalf
of the customer. The first method is more agile because the cloud provider would be able to
automatically compensate the customer in the case of SLA violations. Additionally, server-
side approximations of client perceived response time would enable the cloud provider to

61

use this as a threshold in the auto scaling process, rather than the resource consumption
metrics currently being used (e.g. Amazon only allows CPU consumption, network activity,
or disk utilization to be used as threshold parameters to invoke auto-scaling). This would
make auto scaling much more straightforward to set up given the application response time
requirements.

62

4.2.3 Application workload models

Having stated that what matters the most is the end-to-end performance, and partic-
ulary the client perceived response time, previous sections of this thesis have focused on
indentifying the factors which these metrics depend on. Initially, the problems that exist
when sharing hardware resources between virtual machines were reviewed and evaluated
through measurements with a private cloud. Next, the effects of networking inside the
cloud and between the cloud and the end user of the cloud-based applications were dis-
cussed. Additionally other researchers have shown there are other factors that impact cloud
performance. For example, there exist substantial differences in the underlying platform
technologies that enables some cloud provider to outperform others in some metrics, while
being worse in others. Closely linked to this is the fact that the requirements for different
types of applications to be hosted in cloud environments can be quite diverse.

When choosing a cloud platform, even among those that offer the same class of service
(namely IaaS, PaaS or SaaS), most of cloud platforms have different target audiences. In
other words, these platforms can be seen as packages with different emphasis, meaning
that there are cloud providers whose architectures give priority to certain aspects of per-
formance at the sacrifice of others. For example, one platform might emphasize fast access
to databases and high I/O performance, whereas the competitive advantage of another
platform might be focused on raw processing power. Previous research has tried to answer
the following question: What are the differences across clouds for specific functions? In July
2010, Bitcurrent and Webmetrics presented an study that covers a great part of this question
[6]. Although they highlight that due to the multi-tenant and the variable nature of clouds
their testing was not scientifical or repeatable, the results are meaningful enough to extract
some conclusions. Similar to the methodology of the chapter 3 but in five public clouds,
they executed four tests to measure the latency of different resource-specific operations:
a disk I/O specific task, a CPU-intensive calculation, the retrieval of a 2 MB image, and
finally fetching a 1-pixel image. They collected measurements from a range of diverse global
locations (see Figure 4.33).

3Reproduced here with the permission of the copyright holder

63

Figure 4.3: Average performance by test type and cloud (Source: [6])

Overall, PaaS providers offer better network I/O that enables them to deliver the large
object faster. This is probably because of their ability to distribute workload out to caching
tiers better than an individual virtual machine can, according to Bitcurrent andWebmetrics.
The Salesforce platform shows poor performance for CPU intensive workloads. This is
specially severe as in their tests the cloud was handling a tenth of the load of the other
cloud providers due to Salesforce’s cloud limitations. Amazon was also poor in terms of
CPU performance, but the type of instance being used was the m1.small, the cheapest and
least powerful type of instance that Amazon offers. Surely a more powerful instance type
would have shown better processing performance and better I/O performance (however,
the measured I/O performance was the worst of all of the clouds). Is again remarkable
that it is difficult to accurately translate Amazon’s performance specifications into real
world work capacity, thus leading to a high degree of unpredictability in the planning stage.
This is particulary visible for network I/O, where there are three levels of performance
depending on the type of instance, literally: low, moderate, or high. Google App Engine
outperformed every other competitor in terms of I/O. It is noteworthy though that this
exceptional I/O performance is due to Google’s particular database system, Bigtable, which
features a perfomance scheme that can be summarized as “insert slow, query fast” [15]. This
characteristic of the filesystem underlying the Google App Engine can have a direct impact
on specific types of workloads, as will be discussed later. Beyond what is apparent in Figure
4.3, there are further limitations that implicitly focus the audience of some cloud providers

64

(i.e. the kinds of applications that fit a specific cloud). A clear example of this is the
upper limit of 30 seconds Google App Engine places on compute time. What this means is
that when an application is called to serve a web request it must issue a response within
30 seconds, clearly limiting the use of this platform for compute-intensive applications. In
summary there is no single best cloud, but rather there are “best clouds” depending on the
specific needs of the customer’s application.

There has been a lot of talk about what kinds of applications can be moved to the cloud
and about whether there are workloads that are simply not adaptable to a cloud computing
environment. Gammage and Dawson [31] have studied the types of workloads that could
suffer performance degradation or not be feasible at all if moved to virtualized environments.
A large number of the applications that they point out as not suitable for virtualization
occur because the application depends on or has specific requirements for perfomance of
one or more hardware resources. How current hypervisors deal with hardware virtualization
has improved since their report was published and it is doubtless that such improvements
will continue thus continuing to lower the difference in performance between a virtualized
resource and a physical one. However, the increase in unpredictability in shared-resource
virtualized environments (such as public clouds) is an additional problem. Undertaking
negotiations of performance and establishing performance SLAs can help to sort this out
by increasing the determinism. It is obvious that this problem affects different types of
workloads in different proportions, so it is worth analyzing how large these differences are.

Determining the precise classification parameters is not an easy task, as the range of
existing classes of applications is very large and grows by the day due to frequent innovations.
This particular classification was tackled by focusing on workload characteristics that can
be linked to particular requirements or lead to problems when moving an application to a
cloud. Some questions to ask in order to sort applications by its constraints or requirements
on a cloud platform would be:

• Does it run across multiple compute nodes, or just on one?

• What resource does it stress the most - disk, network, CPU?

• How much data does it work on?

• Is there any task that requires near real-time interaction?

With these questions, the application or workload could be classified into one of the following
types: data-intensive, latency-intensive, highly geo-distributed, or mission critical applica-

65

tions. The main impacts of moving each of these types of application to a cloud platform
and specific recommendations or guidelines to look for when moving such an application to
the cloud are given in the following sections.

4.2.3.1 Data-intensive

Current cloud offerings usually offer several storage options that are internally connected
to the servers through a high speed link at no cost. This enables applications hosted in vir-
tual machines (such as Amazon’s EC2 instances) fast and free access to the data. However,
uploading the data from local databases to the cloud does have a cost and, furthermore,
the data travels to the cloud at varying speeds typical of the Internet. Applications which
work on large datasets require this data to be uploaded to the cloud, as doing computations
from a cloud but using local storage is not only expensive but requires an unpredictable
amount of time to process this data (due to the varying data access times).

According to The Economist [26], the amount of data being collected and stored globally
is doubling each year , and an increasing number of businesses are using and taking
advantage of this data through data mining (i.e. analyzing large datasets to extract patterns
and useful information). A data-intensive type of workload is also often found in scientific
computation, especially in biomedical and life sciences. Applications such as data mining or
biomedical computation usually have requirements for high processing for a limited period of
time, making a cloud attractive as it can offer this resource at a reduced price (in comparison
to buying and operating compute servers). But the large datasets such applications work
on have to be moved to the cloud and, moreover, in many cases, this dataset needs to be
refreshed frequently. This leads to a bottleneck for data-intensive applications that has not
been solved succesfully to the date. Indeed, as Armbrust et al. suggested in their report [4],
Amazon features an “Import/Export” service so that the customer can ship physical disks
to Amazon to move data into and out of the Amazon cloud. Until there are connections
with high enough and/or cheap enough bandwidth, shipping portable storage devices to
and from the cloud datacenters will be more economical than transferring the bits.

As a final note, the importance in choosing cloud provider, and concretely examining its
database system, is a major factor for these applications. For example when benchmarking
the Google App Engine, Bitcurrent and Webmetrics [6] remark that it took them 37 hours
to insert a relatively small amount of data in Google’s Bigtable database, much more than
in any other provider.

66

4.2.3.2 Latency-sensitive

Latency-sensitive applications are one of the most difficult workloads to move to a cloud
given that, as it has been said throughout this thesis, all the problematic areas in cloud
computing performance, from lack of isolation between virtual machines to the user and
datacenter location effects, negatively impact over response time and latency of operations.
At the same time, this category includes a large number of business opportunities such as:

• Online gaming. A group of users can rent a cloud server to host their game and run
their game clients on their laptops.

• Audio or video streaming. With cloud computing it is easy for anyone to start an
streaming service by harnessing the scalability the cloud provides, without too much
planning upfront and the ability to scale the service to any level of demand.

• Media broadcasting. Similar to the previous use case, newspapers or online TV
channels, who already own web servers, can outsource very popular events to a cloud
instead of provisioning more capacity in their own infrastructure.

• VoIP telephony. The cloud could host VoIP servers, as the telephony demand curve
is usually spiky, rather than uniform. Particularily, it would be advantageous to host
the Session Initiation Protocol (SIP) servers in the cloud as they are the part of the
VoIP system that handles call requests from users. Thus the cloud could help to deal
with the wide variation in the demand the SIP servers usually face.

These are examples of latency-sensitive applications for which moving to the cloud makes
sense for one of two reasons: no upfront investing or scalability (in the face of unknown or
high temporary levels of demand). The essential problem is that these applications usually
require QoS that, as it has been discussed before, current clouds do not offer. The QoS needs
of these applications is very similar and focuses on the following service level guarantees,
as deduced from the survey and analysis by Miras et al. [50]:

• Bandwidth: Audio streaming and VoIP applications require a modest yet sustained
amount of bandwidth (e.g. VoIP can run with just around 64Kbps). For audio other
than voice, the required bandwidth is usually higher as users expect at least FM or CD
quality, but it is usually not high enough to impose a constraint or decision parameter
on the choice of cloud provider. Video streaming can be very bandwidth consuming
depending on the encoding format. Even with the most advanced H.264 encoder, a

67

medium resolution video will consume at least 512Kbps to achieve good visual quality,
whereas a high definition 1080p-resolution video can require as much as 6 Mbps.

• Delay: Streaming applications usually have relaxed requirements about absolute val-
ues of delay. Delay itself only impacts applications that are based on human interac-
tion such as VoIP or video conferencing. In the particular case of VoIP, delays over
a certain amount (around 30ms) cause echo, but this is usually solved using echo
cancellation techniques in the terminals. Miras et al. [50] cite ITU-TG.114 among
other sources to quantify the maximum acceptable delay for VoIP between 150 and
250 ms. Above 250 ms talker overlap happens (i.e. multiple people speaking at the
same time).

• Jitter: Jitter refers to variation in the delay with which packets arrive. In interactive
services, be it audio such as VoIP or video, the requirements for jitter are very strict:
the maximum jitter to ensure good perceived quality is 75 ms, but recommended
values are around 40 ms. Jitter is generally hidden by a de-jitter buffer, but this is
hardly possible to implement in interactive services like VoIP or video conference.

• Packet loss: Packet loss below 2% is considered necessary for VoIP. For video over IP,
the maximum tolerance depends on the encoder used, with a maximum acceptable
value of packet loss around 1.5% to 3% [8], [7].

For a latency-sensitive application to be hosted on the cloud the SLA requirements should
be very specific about network performance, particulary with regard to fluctuations in
bandwidth and delay. Otherwise, applications that involve a level of interactivity would
see their end-user perceived quality being degraded in a much higher proportion than
a normal web application. The extent to which these fluctuations can be controlled is
limited as in cloud computing there are numerous sources of jitter starting with the server.
Therefore, multi-tenant servers that are used to host this kind of workload should have fine-
tuned performance isolation mechanisms to minimize the interference. One direct deduction
from my experiments is that a latency-sensitive, specially jitter-sensitive, applications can
suffer significant unexpected degradations when co-located with disk-hogging or network-
hogging applications of other cloud users. Unfortunately, current mechanisms fail to enforce
complete isolation, thus current clouds are not prepared to host applications that really need
real-time interaction, such as high-frequency trading.

68

4.2.3.3 Highly geo-distributed

There is a group of applications that can benefit from cloud offerings of providers that
own a collection of datacenters plus a large number of edge locations. The term “edge
location” refers to smaller sized datacenters that receive data from “parent” datacenters to
be used temporarily, in a form of data caching. This data will later be erased. This leads to
geographically distributed deployment, enabling more users to experience lower latencies.
Applications that can take advantage of this features have the following pattern in common:

• widely geographically distributed users

• shared data: many reads and writes made by different users to the same data. Agarwal
et al. [2] consider the example of a user’s Facebook wall.

• user mobility: users want to be able to access the information they put in the cloud
from anywhere while experiencing similar performance.

Examples of highly geo-distributed applications include all of the social networks and other
web 2.0 services, such as photo sharing, video sharing, and such. Widely geographically
distributed sensor networks are an additional example. The capacity of the cloud to
facilitate distribution of content through these edge locations or content delivery networks
(CDN), be it propietary (such as Amazon’s Cloud Front) or using a third party (e.g. Akamai
is one of the largest CDN providers), fits very well with this type of applications. This fit
occurs because it combines the scalability typical of clouds (perfect for workloads with
bursty demand, such as that of a video sharing service - Youtube) with the delay-reducing
effect of CDNs. However, this approach faces some challenges, the main one being how to
optimally decide upond data placement. As Agarwal et al. [2] noted, placing each user’s
data as closest to the user as possible is not always the best strategy and, in fact, there
are significant benefits to placing data closest to those who use it most heavily. So, for this
type of application the data placement methodology followed by the cloud provider should
be carefully examined.

4.2.3.4 Mission-critical applications

As with the first steps of adoption of any other new technology, customers and enterprises
who moved to the cloud started by hosting mostly non-business critical processes. But as
cloud computing evolves this will be changing, with customers partly or entirely hosting its

69

main revenue-generating products in the cloud . Leaving aside other performance require-
ments that might be addressed in some of the three previous categories, it is reasonable
that mission-critical applications require strict definitions of availability. Here there are
some distinctions: services which need to access to the actual data at literally any time
versus services that might be satisfied with recent enough data. The latter applications will
not worry about reaching near 100% availability, but instead tolerate some short periods
of downtime that could be scheduled to fit between consecutive refreshes of data. For the
time in between, the user access to data is sorted out through offline client caching methods,
such as the capability provided by HTML5, as was discussed in section 2.5.10. On the other
hand, services that really need the nearly constant uptime guarantees will probably not see
their needs satisfied in current clouds. According to Durkee [24], every additional nine of
availability required doubles the cost to deliver that service, and beyond four or five nines
of availability it is necessary to ensure that only multiple points of failure could bring down
the service. More than four nines of availability is considered unaffordable and unnecessary
for most applications and therefore chances are that in current all-purpose clouds (i.e. that
support every type of application, as all of the providers cited in section 2.4.2 do) it will not
be feasible. Customers with these needs will not move to the cloud or will switch to Clouds
2.0, as Durkee puts it: next generation clouds designed to meet enterprise requirements.
These new clouds will need to be more transparent and have more appropriate service level
agreements. Customers willing to store mission-critical data in the cloud should look for
specific level agreements on two parameters:

availability: the probability that an object stored in the service will be reachable.

durability: the probability that an object stored in the service will remain intact and
accessible after a determined period of time. For example, calculating based on one
year, 100% would mean there is no possible way for the object to be lost and 90%
would mean that there is a 1-in-10 chance of an object being lost within the year.

Both parameters are based on introducing redundancy into infrastructure, the degree of
redundancy will have to be also transparently specified.

70

Chapter 5

Conclusions and future work

5.1 Conclusions

The aim of this thesis was to explore whether cloud computing has any implicit limi-
tations that could restrict its usefulness in some fields. As previous well-known research,
such as [4], had pointed out there exist in fact technical, economic, and legal factors that
put boundaries on the adoption and growth of cloud computing.

This thesis focused on examining the performance of the cloud, as this factor has been
reported to be one of customer’s top three concerns. The methodology was based on finding
the factors which the performance of cloud-hosted applications depend on. Firstly, the
impact on performance of a virtualized and shared physical server was tested throughout
the implementation of a private cloud. This experiment, in contrast to similar benchmarks
found in the literature about the topic, was executed in a controlled environment rather
than in a public cloud, where setup options are limited and background load is generally
difficult to know and uncontrollable, and therefore allowed drawing some clear conclusions.
The analysis of these measurements yielded the following conclusions:

• There is always a performance decrease due to co-located virtual machines running
resource-intensive tasks.

• The drop in perfomance is slight for CPU and memory intensive workload and very
significant for disk and network I/O intensive workloads.

• Variability of the measurements increases dramatically in every case when there is
high background load.

71

• Network peformance isolation is non-existent in the KVM virtualizer nor implemented
in the Eucalyptus platform. In the experiments this was resolved by using traffic
shaping, but there might be better ways to do this.

• New disk scheduling mechanisms for virtualized environments should be developed
because traditional schedulers, which are currently in use, were not designed to suit
virtualized operation.

• Alternatively, fairness in access to disk could be implemented by using network-
attached storage and using the traffic shaping mechanism discussed before to share
the access to disk.

The amount of networking inside the datacenter and, obviously, from the datacenter to the
end-user’s location are also factors in the performance. Partial conclusions are:

• Previous research demonstrated that the network performance inside current data-
centers is not optimal, highly variable, and the theorical peak throughputs are hardly
ever reached. This can greatly hinder the performance of application deployments
based on large numbers of instances that need to intercommunicate frequently, such
as in many parallel computing frameworks.

• Internet latencies make clearly determining the geographic distribution of users and
knowing the application’s latency requirements essential to ensuring a good user
experience. The combination of both types of information can be used as a guideline
to choose the number of hosting locations.

When offering applications as a service, software licenses are replaced by service level
agreements (SLAs). The current state of SLAs in cloud computing is inadequate and there
is a need for fine-grained specifications about more performance parameters than simply
availability. A framework including throughput, response time, and availability would be
a good starting point. This thesis proposed a SLA method based on client perceived
performance as estimated from the server-side or provided by a third-party monitor.

Further insights gained were the fact that different cloud providers, although their
marketing usually describes most of them as all-purpose, actually perform better in some
senses than others. Therefore, choosing a cloud provider should be only done when the
workload of the application to be hosted is fully characterized. This supports the hypothesis
that the application type is one of the main parameters when choosing a cloud provider

72

or even when deciding whether to move to a cloud or not. Here, a classification of cloud
applications with specific requirements when moved to a cloud was provided, alongside with
type-specific recommendations for SLA negotation.

The overall conclusion of this thesis is that cloud computing is in general prepared
to succesfully host most typical web applications and with great cost savings, but those
applications with strict latency requirements or other network performance requirements,
those that require working with large datasets, or those whose needs for availability are
critical need to be studied carefully. In these cases, consideration of specific performance
requirements, different for each type, and compensation models for violation of the SLA
are crucial. Even with the evolution of SLAs, all-purpose clouds might not be willing to
offer guarantees for the most demanding applications, thus there will be an opportunity for
clouds targeted at and designed for particular workloads.

73

5.2 Future work

The experiments in chapter 3 highlighted the need to improve performance isolation
mechanisms in virtualized environments and chapter 4 made some efforts in the direction of
describing complete SLAs for cloud services, and in both areas there are a large number of
possibilities for future research. Additionally, studying the performance of cloud computing
offerings is not an straightforward task and more of it should be done, especially concerning
how different application types behave on different cloud providers. A follow-up work, using
the findings of this thesis would be to benchmark the performance of different applications
across every cloud provider periodically over a longer time span, building a database of
historical values. This could be the basis of a service similar to Cloudsleuth [19], but with
enhanced capabilities: selecting an application type from among a few options and selecting
a cloud provider, would provide an approximation of the performance of an application of
that type in that particular cloud provider. The output would be very useful for application
developers wondering where to host their application.

74

Bibliography

[1] John Adams. Chirp 2010: Scaling Twitter. In http://www.slideshare.net/netik/billions-
of-hits-scaling-twitter, 2010.

[2] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan. Volley:
automated data placement for geo-distributed cloud services. In Proceedings of the
7th USENIX conference on Networked systems design and implementation, page 2.
USENIX Association, 2010.

[3] W. Almesberger et al. Linux network traffic control: implementation overview. In
Sixth IEEE Symposium on, pages 296–301. Citeseer, 2001.

[4] M. Armbrust et al. Above the clouds: A Berkeley view of cloud computing. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[5] Microsoft Windows Azure. http://www.microsoft.com/windowsazure/windowsazure/.

[6] Bitcurrent and Webmetrics. Cloud computing performance. 2010.

[7] F. Boulos, B. Parrein, P. Le Callet, and D. Hands. Perceptual effects of packet loss on
H. 264/AVC encoded videos. 2009.

[8] J.M. Boyce and R.D. Gaglianello. Packet loss effects on MPEG video sent over
the public internet. In Proceedings of the sixth ACM international conference on
Multimedia, pages 181–190. ACM, 1998.

[9] G. Brunette and R. Mogull. Security guidance for critical areas of focus in
cloud computing v2. 1. CSA (Cloud Security Alliance), USA. http://www.
cloudsecurityalliance. org/guidance/csaguide. v2, 1, 2009.

75

[10] E. Brynjolfsson, P. Hofmann, and J. Jordan. Cloud computing and electricity: beyond
the utility model. Communications of the ACM, 53(5):32–34, 2010.

[11] R. Buyya, C.S. Yeo, and S. Venugopal. Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as computing utilities. In
High Performance Computing and Communications, 2008. HPCC’08. 10th IEEE
International Conference on, pages 5–13. IEEE, 2008.

[12] RN Calheiros, R. Ranjan, A. Beloglazov, C. Rose, and R. Buyya. Cloudsim: a
toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and Experience, Wiley Press,
New York, USA, 2010.

[13] Devin Carraway. Lookbusy, 2005.

[14] D. Catteddu and G. Hogben. Cloud computing: benefits, risks and recommendations
for information security. Technical report, European Network and Information Security
Agency, 2009.

[15] F. Chang et al. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[16] Rackspace Cloud. http://www.rackspacecloud.com/.

[17] Oracle Cloud Computing. http://www.oracle.com/us/technologies/cloud/index.htm.

[18] CIOMagazine: Cloud computing survey. http://www.cio.com/documents/whitepapers/CIOCloudComputingSurveyJune2009V3.
pdf, 2009.

[19] Compuware. Cloudsleuth. https://www.cloudsleuth.net/web/guest/home, 2010.

[20] R.J. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of Research
and Development, 25(5):483–490, 1981.

[21] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[22] M. Devera. Hierarchical token bucket. http://luxik.cdi.cz/ devik/qos/htb/.

[23] Nandita Dukkipati et al. An argument for increasing TCP’s initial congestion window.
SIGCOMM Comput. Commun. Rev., 40(3):26–33, 2010.

76

[24] D. Durkee. Why cloud computing will never be free. Queue, 8(4):20–29, 2010.

[25] Amazon EC2. http://aws.amazon.com/ec2/, pages Last accessed at September 17,
2010.

[26] The Economist. Special report: The data deluge. 2010.

[27] Google App Engine. http://code.google.com/appengine/, pages Last accessed at
September 25, 2010.

[28] EyeOS. Cloud computing operating system. http://eyeos.org/.

[29] Inc. Forrester Research. Cloud privacy heat map.
http://www.forrester.com/cloudprivacyheatmap, 2010.

[30] I. Foster and C. Kesselman. The grid: blueprint for a new computing infrastructure.
Morgan Kaufmann, 1999.

[31] Brian Gammage and Philip Dawson. Server workloads: What not to virtualize. Gartner
Research, page 7, 2008.

[32] S.L. Garfinkel. An evaluation of amazon’s grid computing services: Ec2, s3 and sqs.
2007.

[33] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford University,
2009.

[34] GoGrid. Cloud hosting. http://www.gogrid.com/cloud-hosting/.

[35] Google. The Chromium projects: Chromium OS.
http://www.chromium.org/chromium-os.

[36] Google. Data liberation front. http://www.dataliberation.org/.

[37] Google. SPDY: An experimental protocol for a faster web.
http://dev.chromium.org/spdy, 2009.

[38] The Guardian. Cloud computing is a trap, warns GNU founder Richard Stallman.
http://www.guardian.co.uk/technology/2008/sep/29/cloud.computing.richard.stallman,
2008.

77

[39] Z. Hill, J. Li, M. Mao, A. Ruiz-Alvarez, and M. Humphrey. Early observations on the
performance of Windows Azure. Science Cloud Workshop, 2010.

[40] Ubuntu Enterprise Cloud Images. Release candidate server 10.04. 2010.

[41] S. Kamara and K. Lauter. Cryptographic cloud storage. Financial Cryptography and
Data Security, pages 136–149, 2010.

[42] A. Kamra, V. Misra, and E.M. Nahum. Yaksha: A self-tuning controller for managing
the performance of 3-tiered web sites. In Twelfth IEEE International Workshop on
Quality of Service, 2004. IWQOS 2004, pages 47–56, 2004.

[43] J. Katcher. Postmark: A new file system benchmark, 1997.

[44] A. Kivity et al. KVM: the linux virtual machine monitor. In Proceedings of the Linux
Symposium, volume 1, pages 225–230, 2007.

[45] B. Krishnamurthy, P. Gill, and M. Arlitt. A few chirps about twitter. In Proceedings
of the first workshop on Online social networks, pages 19–24. ACM, 2008.

[46] Dave Mangot. EC2 Variability: The numbers revealed: Measuring EC2 system
performance. http://tech.mangot.com/roller/dave/entry/ec2, Web page, Part of the
series urandom Mangot ideas, 2009.

[47] J.D. McCalpin. Memory bandwidth and machine balance in current high performance
computers. IEEE Technical Committee on Computer Architecture Newsletter, 12:19–
25, 1995.

[48] P. Mell and T. Grance. The NIST definition of cloud computing. National Institute of
Standards and Technology, 2009.

[49] D.A. Menascé and P. Ngo. Understanding cloud computing: Experimentation and
capacity planning. In Computer Measurement Group Conference, 2009.

[50] D. Miras et al. A survey on network QoS needs of advanced internet applications.
Working Document of Internet 2 QoS Working Group, 2002.

[51] W.D. Norcott and D. Capps. Iozone filesystem benchmark. www.iozone.org, 55.

[52] D.P. Olshefski, J. Nieh, and D. Agrawal. Inferring client response time at the web
server. ACM SIGMETRICS Performance Evaluation Review, 30(1):171, 2002.

78

[53] Takuya Ooura. Pi CSS5. http://myownlittleworld.com/miscellaneous/computers/piprogram.html,
2006.

[54] Eucalyptus Cloud Platform. http://open.eucalyptus.com/.

[55] DC Plummer, TJ Bittman, T. Austin, D. Clearley, and DM Smith. Cloud computing:
Defining and describing and emerging phenomenon, Gartner, Inc. Retrieved September,
25:2008, 2008.

[56] S. Ramachandran and A. Jain. Web page stats: size and number of resources.
http://code.google.com/speed/articles/web-metrics.html, 2010.

[57] Kelton Research. Survey: Cloud Computing "No Hype", but fear of security and control
slowing adoption. http://tv.sys-con.com/node/852659.

[58] Salesforce. http://www.salesforce.com/, pages Last accessed at September 19, 2010.

[59] N. Santos, K.P. Gummadi, and R. Rodrigues. Towards trusted cloud computing. In
Proceedings of the 2009 conference on Hot topics in cloud computing, page 3. USENIX
Association, 2009.

[60] IDC IT Cloud Services. http://blogs.idc.com/ie/?p=730, 2009.

[61] Amazon EC2 SLA. http://aws.amazon.com/ec2-sla/, pages Last accessed at September
20, 2010.

[62] Google App Engine SLA. http://code.google.com/appengine/business/sla.html, pages
Last accessed at September 20, 2010.

[63] Rackspace Cloud SLA. http://www.rackspacecloud.com/legal/sla, pages Last accessed
at September 20, 2010.

[64] J. Staten. Is cloud computing ready for the enterprise? Forrester Research, March, 7,
2008.

[65] Los Angeles Times. What’s powering Web apps: Google waving goodbye to Gears, hello
to HTML5. http://latimesblogs.latimes.com/technology/2009/11/google-gears.html,
2009.

[66] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs. Iperf: The TCP/UDP
bandwidth measurement tool. http://dast.nlanr.net/Projects/Iperf, 2004.

79

[67] Twitter. www.twitter.com, pages Last accessed at September 16, 2010.

[68] Verizon. IP latency statistics. http://www.verizonbusiness.com/about/network/latency/,
pages Last accessed at September 15, 2010.

[69] G. Wang and TSE Ng. The impact of virtualization on network performance of amazon
EC2 data center. In INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[70] B. Wickremasinghe, R.N. Calheiros, and R. Buyya. CloudAnalyst: A CloudSim-
based visual modeller for analysing cloud computing environments and applications. In
2010 24th IEEE International Conference on Advanced Information Networking and
Applications, pages 446–452. IEEE, 2010.

[71] D. Wischik, M. Handley, and M.B. Braun. The resource pooling principle. ACM
SIGCOMM Computer Communication Review, 38(5):47–52, 2008.

[72] Dan Zarella. State of the Twittersphere, hubspot.com whitepaper.
http://blog.hubspot.com/Portals/249/sotwitter09.pdf, 2009.

80

Acronyms and Abbreviations

API Application Programming Interface

AWS Amazon Web Services

CC Cluster Controller

CDN Content Delivery Network

CFS Completely Fair Scheduler

CLC Cloud Controller

CRM Customer Relationship Management

DHCP Dynamic Host Configuration Protocol

EC2 Amazon Elastic Compute Cloud

EMI Eucalyptus Machine Image

HTB Hierarchical Token Bucket

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

IaaS Infrastructure as a Service

I/O Input/Output

KSM Kernel Samepage Merging

KVM Kernel-based Virtual Machine

NC Node Controller

PaaS Platform as a Service

QDISC Queuing Discipline

QoS Quality of Service

REST Representational State Transfer

81

RSA Rivest, Shamir and Adleman

RTT Round-Trip Time

SaaS Software as a Service

SC Storage Controller

SIP Session Initiation Protocol

SLA Service Level Agreement

SLO Service Level Objective

SOAP Simple Object Access Protocol

SSD Solid-State Drive

SSH Secure Shell

TCP Transport Control Protocol

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VM Virtual Machine

VMM Virtual Machine Monitor

VoIP Voice over Internet Protocol

WS3 Walrus Storage Controller

XML Extensible Markup Language

82

www.kth.se

TRITA-ICT-EX-2010:277

